

MQP-CS-DXF-NV22

NVIDIA Regression Testing Utilities

A Major Qualifying Project Report

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science.

Submitted by:

Shaoming Feng

Tory Jaskoviak

March 6, 2012

2

Some confidential material has been removed from

this report at the request of our sponsor.

3

Abstract

 Upgrades to the Android system on a Tegra chip may cause unintended hardware issues,
including complications with clock generator and multiplexer components. Regression testing is
required to ensure these impediments do not occur. Currently, manual testing of such
components is time consuming and complex. We were tasked with developing utilities to
automate this process. At the conclusion of our project, we were able to develop two tools that
significantly reduced time spent on regression testing. The clock tree sanity tool can efficiently
compare clock trees and return issues with clock components. Similarly, the pin multiplexer tool
can read, write, and debug register values with great ease of use.

4

Acknowledgements

 The team would like to thank the following people for their invaluable help with the
project by providing information and guidance.

Professor David Finkel

Karthik Ramakrishnan

Daniel Solomon

Wen Yi

5

Contents	

Abstract ... 3	

Acknowledgements ... 4	

List of Figures ... 7	

Executive Summary .. 8	

1.0	 Introduction .. 10	

2.0	 Background .. 12	

2.1	 NVIDIA .. 12	

2.1.1	 Overview ... 12	

2.1.2	 Main Brand .. 12	

2.1.3	 Historical Events .. 13	

2.2	 Tegra Processors .. 13	

2.2.1	 Introduction ... 13	

2.2.2	 Clock Distribution Network .. 13	

2.2.3	 Pin Multiplexer .. 14	

2.3	 Android OS .. 15	

2.4	 Device Input/Output ... 15	

3.0	 Methodology .. 17	

3.1	 Clock Tree Sanity Tool .. 17	

3.1.1	 Requirements ... 17	

3.1.3	 Usage ... 18	

3.1.4	 Input ... 19	

3.1.5	 Output .. 20	

3.1.6	 Project Deliverables ... 20	

3.2	 Pinmux Tester Tool .. 21	

3.2.1	 Requirements ... 21	

3.2.2	 High-Level Design .. 21	

3.2.3	 Usage ... 21	

3.2.4	 Input ... 22	

3.2.5	 Output .. 24	

6

3.2.6	 Project Deliverables ... 24	

4.0	 Results & Conclusion .. 26	

References ... 28	

Appendices .. 29	

Appendix A: Clock Tree Sanity Tool Usage .. 29	

Appendix B: Clock Tree Sanity Tool Warnings File .. 30	

Appendix C: Clock Tree Sanity Tool Output .. 31	

Appendix D: Clock Tree Sanity Tool Schedule .. 32	

Appendix E: Pinmux Tester Tool Usage ... 34	

Appendix F: Pinmux Tester Tool Interactive Mode Usage .. 35	

Appendix G: Pinmux Tester Tool CSV File Example .. 36	

Appendix H: Pinmux Tester Tool Output ... 37	

Appendix I: Pinmux Tester Tool Project Schedule ... 38	

7

List of Figures

Figure 1: Clock Generator Signal [13] .. 14	
Figure 2: GPIO/SFIO Pin Multiplexing Architecture [10] ... 14	
Figure 3: Sample Clock Tree .. 19	
Figure 4: Sample Clock Tree Warning File .. 19	
Figure 5: Sample Clock Tree Output .. 20	
Figure 6: Sample Pinmux CSV File ... 23	

8

Executive Summary

The Tegra family is a series of chips NVIDIA developed for mobile devices. Currently,
the Tegra 3 is predominantly used in Android devices. Due to strict hardware conditions, certain
Tegra components must run within certain tolerance values. For instance, each clock generator
has a maximum frequency. Occasionally, updates to the Tegra software on the Android system
can cause such components to run outside of these tolerances. To prevent this from happening,
software engineers perform stringent regression testing on many Tegra components, including
clock generators and multiplexer pins. Manually testing these components is extremely
inefficient and complex, as there are over 250 clocks and 250 pins. Thus, we were tasked with
developing automated tools to speed up the regression test of clock generators and multiplexer
pins.

 The first utility, the clock tree sanity tool, accomplishes the task of regression testing
clock generators (clocks). We began with a preliminary version of the tool developed by
software engineers at NVIDIA. There were several issues with this version that made it
susceptible to false negatives and complete failures. We were tasked with developing a more
efficient and stable tool. The first issue was that clocks are prone to slight fluctuations, which
must be ignored when sampling. Therefore, we decided the most effective solution was to take
multiple samples over a given interval. We had to build the internal structure for maintaining
multiple samples and calculating the mode of the samples in order to best represent one clock
tree. Another issue we encountered is that the clocks were affected by power use. The state of the
device is relevant to power use, as an idle state uses much less power than a graphic intensive
application. Each of these states must be tested individually. We added functionality so that the
tool could put the device in a different state before it began sampling. The last issue we had to
overcome was extra power usage as a result of the USB connection with the test device. We
decided to replace the USB connection with a RS-232 serial connection, which uses much less
power. Then, we changed the commands to communicate over the new port. At the conclusion,
we had developed a tool that is easily used and satisfies all of our initial requirements. The final
clock tree sanity tool can sample and compare clocks efficiently in less than five seconds.

 The second utility, the pin multiplexer tool, completes the task of regression testing
multiplexer pins. We faced several key problems during the design and development process.
The first problem was the format of user input. We had to design an easy and flexible input
format for the user to generate. Our solution was a comma-separated value file format which was
easily generated and supported by an existing Python module. The second problem was how to
set the device to a user-defined power state, similar to the issue with the clock tree sanity tool.
We solved this issue by researching android shell commands and application management and
we developed the tool to set power state accordingly. The third problem was parsing the system
output from a serial connection. As on Tegra 3 devices, both kernel space and user space
messages are mixed together, and thus we needed to identify and separate them for later use.
Furthermore, the shell output format differed between different Android versions. We had to
account for different shell prompt positions and different characters used between these versions.
In these circumstances, we carefully studied the Android system to learn its output format and
we were able to handle these issues successfully. In conclusion, we built an easy to use, flexible,

9

and good quality tool that is able to reduce the time and difficulty needed during the pinmux
testing process.

10

1.0 Introduction

The goal of our project was to develop regression testing utilities to automate the testing
of clock generator and pin multiplexer components in the Tegra 3 chip. We will discuss clock
generator and pin multiplexer components in more detail in Section 2.2. In this section we will
introduce our project in the context of its problem background. We will highlight the pitfalls of
manual testing, followed by the advantages of automated testing, and finally how automation
would benefit our project in the fields of efficiency and accuracy.

Glenford Myers writes in his book, The Art of Software Testing, “Testing is the process
of executing a program with the intent of finding errors.” [1] The benefits of testing are apparent,
as testing helps to minimize the amount of defects found in a product. Software defects become
more expensive to fix as the project timeline progresses. Therefore, manual testing, the most
common form of testing, helps to alleviate that cost. But this is not enough. According to a study
released by the National Institute of Standards and Technology, in 2002 “software bugs, or
errors, [were] so prevalent and so detrimental that they cost the U.S. economy an estimated $59.5
billion annually.” [2] One reason for the high number and cost of software bugs in 2002 was the
unreliability of manual testing. Manual testing is very time consuming and can be inaccurate.
The solution to this issue is automated testing.

Automated testing became increasingly prevalent in the last few years. It can drastically
increase accuracy and efficiency. In a case study performed by Three Rivers Technologies,
automated testing was developed to cover 80% of a client’s test plan. This resulted in the
reduction of time spent testing from several weeks to four hours. Moreover, there was an
increase in the number of defects found and the automation was robust enough to last several
years. Overall, the automated tests saved tens of thousands of man hours at the cost of six
months to develop the automation. The end product was better quality and the client saved
money. [3] Automated testing can apply to any category of testing, including regression testing.
Regression testing is the process of testing to ensure no new errors occur as a result of
enhancements to existing software.

NVIDIA currently performs regression testing on most of its products. In the case of the
Tegra 3 chip, regression testing is performed to ensure that hardware components work within
their given tolerances. The manual testing of clock generator and pin multiplexer components is
inefficient and complex. There are over 250 clocks and each clock has 10 attributes. Similarly,
there are over 250 multiplexer pins. Given the wide benefits of automated testing, our project
objective was to develop automated utilities to regression test the clock generators and pin
multiplexer components of the Tegra 3 chip. Such automation should be able to reduce the time
spent regression testing these components dramatically and increase the accuracy of the tests.

Our report is outlined in the following sections:

Chapter 2 discusses the background knowledge relevant to understanding our project.
This includes information about clock generators, pin multiplexers, the Android OS, and Tegra
processors. Afterwards, Chapter 3 states the methodology and requirements of our project,
including main deliverables. There are two parts in Chapter 3; Chapter 3.1 discusses the clock

11

tree sanity tool and Chapter 3.2 discusses the pin multiplexer tool. Finally, Chapter 4 discusses
the results and conclusion of our project. Further information regarding our citations and various
materials can be found in the references and appendices section at the end.

12

2.0 Background

2.1 NVIDIA

2.1.1 Overview

NVIDIA, founded in January 1993, is a semiconductor company that produces graphics
processors, wireless communications processors, PC motherboard core logic chipsets, and digital
media player software. The company’s mission is to “build a great company and be the most
important 3D graphics company in the world”. It invented the graphics processing unit (GPU) in
1999, which led the world into the computer graphics computing era. NVIDIA holds more than
2100 patents worldwide and it is one of the most famous companies in Information Technology
industry. [6] [8]

2.1.2 Main Brand

NVIDIA has many notable product families, including:

• Riva TNT – The “Real-time Interactive Video and Animation accelerator” was released
in 1998, which became a milestone product for the NVIDIA era.

• GeForce – The world’s first GPU belonged to the GeForce series. It was a graphics card
series that covered all tiers of PC markets.

• GoForce – The GoForce series were chipsets used mainly in handheld devices. It was
later replaced by the Tegra series.

• nForce – The nForce series was a motherboard chipset created for the AMD
Athlon/Duron CPU.

• Quardro – The Quadro family was a professional graphics solution for high-end
performance and quality. It aimed at accelerating Computer-Aided Design (CAD) and
digital content creation.

• Tesla – NVIDIA's third brand of GPU was the Tesla family. It was the first dedicated
general purpose GPU. It was designed for highly parallelized general processing
necessary for supercomputing.

• Tegra – The Tegra family, launched in 2008, was a system-on-a-chip (SoC) built for
mobile devices. The Tegra 3 became the first CPU with quad cores, which aided in
increased performance and power management. [9]

13

2.1.3 Historical Events

• 1993 – NVIDIA is founded by Jen-Hsun Huang, Chris Malachowsky and Chris Priem
• 1995 – NVIDIA launches its first product, NV1
• 1997 – RIVA 128 is launched; one million units are sold in the first 4 months
• 1999 – NVIDIA invents the GPU
• 2000 – NVIDIA acquires the graphics pioneer 3dfx
• 2001 – NVIDIA enters the integrated graphics market with nForce
• 2004 – The Scalable Link Interface (SLI) is launched
• 2005 – NVIDIA develops the processor for Play Station 3
• 2006 – CUDA architecture is unveiled
• 2008 – NVIDIA launches the Tegra mobile processor
• 2010 – NVIDIA builds the world’s fastest supercomputer [7]

2.2 Tegra Processors

2.2.1 Introduction

Tegra is a system-on-a-chip (SoC) CPU produced by NVIDIA. It is the world’s first
mobile super CPU with dual and quad cores. These cores allow it to handle multitasking fluently.
The Ultra-low power GeForce GPU on Tegra could provide a console-quality gaming and high
definition video playback user experience without compromising battery life. [11]

Our project was based on the hardware of Tegra 2 and Tegra 3. Tegra 2 contains a dual-
core ARM Cortex A9 CPU with up to 1.2GHz frequency, while Tegra 3 is a quad-core CPU with
up to 1.4GHz frequency for each core. Both chips use different CPU structures and the pins
provide varied functionalities. Internal to NVIDIA, Tegra 2 and 3 are referred to as T20 and T30
respectively. [11]

2.2.2 Clock Distribution Network

A clock generator, also known as a clock, is a component of an integrated circuit that
generates oscillating square frequency waves, as depicted in Figure 1. The crest of the wave is
associated with a 1, while the trough of a wave is associated with a 0. This binary representation
allows the circuit to easily understand the signals. The clock cycle, the time between the rising
edges of adjacent periods, generally corresponds to one hardware instruction. Since each clock
controls a different section of a circuit, the clock cycle directly controls the speed at which
instructions are processed in the section. Generally multiple clocks are combined on an
integrated circuit to form a clock distributed network, or clock tree.

14

Figure 1: Clock Generator Signal [13]

A clock tree controls the frequency signals of each individual clock. According to an
article written by Eby Friedman, a Professor of Electrical and Computer Engineering at
University of Rochester, “clock signals are typically loaded with the greatest fanout, travel over
the longest distances, and operate at the highest speeds of any signal, either control or data,
within the entire system” (Friedman). For this reason, clocks generally account for about half of
the power use of the circuit. To help alleviate this power usage, clock trees are set up in such a
way to allow clock gating. Clock gating refers to the process in which individual clocks can be
directly controlled and turned on or off. There is a positive correlation between performance and
power use. Resource intensive applications require higher performance, and as a result, increased
power use. The benefit of clock gating is apprent when the device is in a resouce non-intensive
state, such as an idle state. In this case, a clock tree has the ability to turn off clocks in order to
save power. Thus, it is crucial for the clock tree to balance performance needs with power
management. Clock gating is particularly useful in mobile devices because the battery power
source requires better power management. The Tegra 3 chip makes great use of clock gating. It
employs about 250 different clocks that control all aspects of the chip.

2.2.3 Pin Multiplexer

Tegra 3 devices provide a large number of pins to communicate with other hardware.
Among all of these pins, 244 input/output pins could be used as either general-purpose
input/output (GPIO) or special function input/output (SFIO). A general-purpose pin is a generic
pin whose behavior is controlled by software, while a special function pin is a pin whose
function is pre-defined in the hardware. On a Tegra 3 chip, each SFIO pin has 4 different
possible pre-defined functions.

To control these pins, Tegra 3 applies a multiplexing logic design. Figure 2 shows the
logic gates associated with a pin.

CONFIDENTIAL MATERIAL

Figure 2: GPIO/SFIO Pin Multiplexing Architecture [10]

15

The gates represented in the figure control the function of a pin. By changing the value of the
gate input, the output will change accordingly, thereby changing the function of the pin.
Programmatically, we can change the input by writing values to the address of some registers in
the operating system.

2.3 Android OS

Originally, Android Inc. developed the Android OS before Google acquired it. Android is
a product of the Open Handset Alliance, which is a syndicate of open source mobile technologies
and software. There are more than 80 corporations that belong to the Open Handset Alliance
including Google and NVIDIA. [12]

 Android is an open source system designed for mobile devices. Based on a Linux
foundation, the Android platform provides the operating system, middleware, and key
applications. Android is built upon C/C++ libraries and provides a hierarchical structure
including the Linux kernel, Libraries, the Application Framework, and Applications. The Linux
kernel contains all of the drivers and power management policies for the devices. The Libraries
contain OpenGL ES for 3D graphics and SQLite for database support among other things. The
Application Framework provides several managers for resources, notifications, and locations.
Lastly, the Application level provides the high level applications including the phone and web
browser. One key component of Android is the Dalvik Virtual Machine, which is a process
virtual machine designed to efficiently handle process control and multitasking. [2]

 Android has gone through several version iterations including Android 2.3 Gingerbread,
Android 3.2 Honeycomb, and more recently, Android 4.0 Ice Cream Sandwich. Each release
provided several enhancements, including changes to their shell command syntax. For this
reason, we needed to adjust our software to be compatible with all versions.

2.4 Device Input/Output

There are several methods of communication available to send commands to the Android
OS and the hardware. The Pinmux utility was required to support the following connection
types:

Android	 Debug	 Bridge/	 Universal	 Serial	 Bus	
Android Debug Bridge (ADB) is a command line tool included in the Android Software

Development Kit (SDK). It is used for communicating with an Android emulator instance or
android devices. To use ADB, the device has to be connected to the development computer with
a Universal Serial Bus (USB) connection. We were able to install packages, launch applications,
and send various commands through ADB. [1]

16

PySerial	 /	 Recommended	 Standard	 232	 Port	
Recommended Standard 232 (RS-232) Port is usually a 25 pin blue port. We were able to

use this port to receive kernel messages directly from the connected Android device. We could
also send commands to its shell and receive output. In order to perform these operations in an
easier way, we applied a Python module called PySerial. This module encapsulates the access to
the serial port. It provides backend support on multiple platforms. [14]

GFShell	 /	 Joint	 Test	 Action	 Group	
Joint Test Action Group (JTAG) is commonly known as an IC debug port. The port is

used for testing the circuit boards. Using JTAG, we were able to read and write values to the
registers on the Tegra CPU without the aid of the operating system. GFShell is the corresponding
Windows software used for controlling JTAG connections. [5]

17

3.0 Methodology

3.1 Clock Tree Sanity Tool

The Clock Tree Sanity Tool is used for regression testing and debugging. It is an
NVIDIA-internal utility used by Quality Assurance and Software Engineers. At a basic level, the
tool compares a base clock tree with a sample clock tree taken from a device and it outputs clock
attributes that mismatch. The base clock tree is known as the Golden Base Tree and it is the ideal
clock tree which is used as a reference. A warnings file may be input, containing all attributes
that the user wants the script to ignore. If such clock attributes mismatch, the script throws a
warning rather than a failure. A separate script is run to parse the warning file.

Before we began our project, NVIDIA engineers had developed a basic implementation

of the tool; however it was unstable and missing key features. This implementation had the
capability to accept and parse a warnings file. It was also capable of gathering one clock tree
sample from the device using an ADB/USB connection. However, due to the sensitive nature of
the clocks, extra power use as a result of the USB connection changed clock values and produced
false negatives. Moreover, gathering one sample was error prone as the clocks are unstable and
are subject to random fluctuations, which must be ignored. The script stored all clock trees as a
tree list structure. This structure was impractical because it relied on the organization of the clock
tree, which varies. The base implementation was able to traverse the base tree list and sample
tree list and output fields that mismatched. Our project modified and extended this tool to fix
such defects and implement new features.

3.1.1 Requirements

 There were four main categories for the initial requirements including portability,
flexibility, ease of use, and maintainability.

Portability: The tool needed to be portable and have the ability to run on two different systems.
It needed to be able to run on Gerrit Virtual Submit (GVS), a build system. It also needed to run
as a standalone tool in a Linux environment.

Flexibility: The tool needed to be developed in such a way to easily allow changes, including
changes to input parameters, input files, and output structure to fit the needs of the user.

Ease of Use: The tool must be user-friendly, simple, and quick. The output must be clear and
informative.

Maintainability: The tool must be extensible and accommodate for future changes. The source
code must contain accurate and useful documentation and there must be a corresponding wiki
and README.

 From a high level standpoint, the existing implementation included a basic structure and
some useful Python code. The warnings file and warnings parser only required minor alterations.
In order to decrease false negatives, the script needed to gather multiple samples. The mode was
calculated from these samples in order to ignore negligible clock fluctuations. We converted the

18

connection type to a RS232 serial connection from an ADB/USB connection, which altered
clock attributes. We converted the mechanism for storing the clock trees to an ordered dictionary
tree rather than a tree list in order to increase stability. An ordered dictionary tree does not
depend on organization of the tree, as objects are accessed via a key-value pair. Lastly, we added
new functionality to allow the device to be tested under several use cases, including audio and
video playback, as well a game state. Such use cases were required because the clock trees differ
based on the processes running and the power use of the device.

3.1.3 Usage

The usage instructions for the tool are as follows:

clockTree_parser.py

usage: clockTree_parser.py [-h] [-warningFilename]
 baseFilename interval repeat {os_idle, video, audio, game}

Clock Distributed Network Power Sanity Tool

positional arguments:
 baseFilename golden base clock tree used as point of reference
 interval time interval between which each sample is pulled from the device
 repeat how many samples are pulled from the device (mode is calculated)
 {os_idle, video, audio}
 state of the device based on use case

optional arguments:
 -h, --help show this help message and exit
 -w warningFilename
 file containing list of exceptions/warnings for certain clocks

Example: ./clockTree_parser.py baseClockTree 0.1 20 os_idle –w warningsFile
 ./clockTree_parser.py -h

warnings_parser.py

usage: warnings_parser.py [-h] warningFilename

Warning File Parser

positional arguments:
 warningFilename file containing the list of exceptions/warning for certain clocks

optional arguments:
 -h, --help show this message and exit

19

Example: ./warnings_parser.py warningsFile
 ./warnings_parser -h

3.1.4 Input

The script allows two files to be input, including the Golden Base Tree file and the
warnings file. The Golden Base Tree will be in the same tree format as exists on the device, but
with ideal clocks. Figure 3 illustrates a portion of a clock tree:

Confidential Material

Figure 3: Sample Clock Tree

This clock tree includes the name of the clock along with several attributes including the clock
state, ref, div, and rate. The asterisk symbol before the name states that the clock has not changed
from its initialized value. An exclamation point symbol before the name alerts that the clock has
run over its maximum frequency. The dollar sign symbol specifies that the clock is in a sleep
state. The state field specifies whether the clock is currently on or off. Also, the rate states the
frequency that the clock is currently running (this is only true for clocks that are in the on state).
Each base attribute value is compared to the corresponding sample clock attribute value.
However, in the case where the state is off, other values such as the ref, div, and rate are ignored.

The warnings file allows the user to specify clocks and clock attributes that should be
ignored. Even when comparing the mode of several clock tree samples to the base, some clocks
are still unstable and outliers cannot be ignored. In this case, the clock should be added to the
warnings file. The warning file has a specific format that is parsed when the tool is run. The
warnings file is an optional parameter. Figure 4 demonstrates an example warning file.

#[clock_name]
#state <ignore> ---> ignore the state while error checking
#ref {+,-}<variance> ---> specify the tolerance range for ref
#rate <min rate> <max rate> ---> specify the min/max rate
#<ignore> ---> ignore the attribute specifications for this clock
#completely
#Note: isInitial, isMax, isAsleep, div, sharedRate, vddVolt van only be
#set to ignore

[pll_p]
state ignore
ref +-1

[cclk_lp]
rate 102000000 204000000

[i2c3]
Ignore

Figure 4: Sample Clock Tree Warning File

20

In this example, there are three clocks. In the first clock, the state is ignored and the ref
attribute is given a tolerance of plus or minus one. The second clock specifies the maximum and
minimum value for the rate attribute. The third clock is completely ignored, including all
attributes. If any of these aforementioned attributes are mismatched, the script will output a
warning instead of a failure.

3.1.5 Output

 Output was required to be clean and informative. It specifies the failed clock name, the
mismatched attribute along with sample value and base value, and the immediate tree hierarchy
of the failed clock. Figure 5 depicts the desired output:

FAILURE: cpu
 Test Image Value: ref: [7]
 Expected Value: ref: [8]
clk_m
 pll_e
 pll_p
 cclk_lp
 cpu_lp
 cpu

WARNING: i2c1
 Test Image Value: state: [‘on’]
 Expected Value: state: [‘off’]
clk_m
 i2c1

Figure 5: Sample Clock Tree Output

In this example, the first clock throws a failure and the second clock merely throws a warning.
The name of the clock is given as well as the expected and sample value of the mismatched clock
attribute.

3.1.6 Project Deliverables

Over the course of the development process, we completed several iterations with three
main core deliverables. Core Deliverable 1 required enhancements to fix errors with the
preliminary implementation. We upgraded the script to Python 2.7 and updated command line
argument passing and validation. We converted the tree list structure into a more robust ordered
dictionary tree structure for storing clock trees. Also, we consolidated, refactored, and
documented existing code.

Core Deliverable 2 required the reduction of false negatives when comparing the base

tree to the sample. We developed a method of gathering multiple clock tree samples and
calculating the mode of such samples. This prevented false negatives due to negligible clock
fluctuations. Other featured added include random intervals between samples and enhanced
output.

21

Core Deliverable 3 required the addition of use cases and integration with GVS. The
group added several use cases to the script including an idle state, audio and video playback, and
a game state. In order to achieve GVS integration, the group needed to convert from an
ADB/USB connection to a RS232 serial connection. This also prevented false negatives due to
the effect of the USB connection on the clocks. Aside from core deliverables, a final iteration
required the addition of README files, wiki pages, and code documentation.

3.2 Pinmux Tester Tool

Pinmux Tester is a tool used for debugging and testing Pinmux (PM) configurations. Its
intended users would be the Hardware Team, Software Team, and Software Quality Assurance
Team of NVIDIA.

At a basic level, the tool accepts PM configurations from a plaintext CSV file or

interactive command line and then performs actions based on the information. A set of rules
based on the target chip confirms the accuracy of the supplied PM configuration. The tool has
the functionality to either compare a list of PMs with sample values taken from the device or
write PM values directly to the device according to the configuration file. These two actions are
performed in certain power state use cases, such as OSIdle, display-off, and audio playback.

3.2.1 Requirements

There are four main categories for the initial requirements including portability,
flexibility, ease of use, and maintainability. The tool needs to be usable on Windows, Linux, or
Mac. Also, the utility must support all three chips (T20, T30 and T33) and be extensible for
future chips. Meanwhile, it must be flexible enough to use multiple means of communicating
with the target devices: RS232 serial connection, android debug bridge (ADB), or JTAG via
GFShell. The tool must be easy and quick to use. The output must be clear and appropriate with
different verbosity levels specified by the user. For maintainability, the tool must be well
documented, through code comments and a wiki. The documentation should provide enough
insight to aid new engineers who continue to develop the utility.

3.2.2 High-Level Design

From a high level view, the tool was implemented in Python 2.7. User input is in the form
of a Comma-Separate Value (CSV) file or interactive shell-like command line. Input data is
checked based on the target device. An ADB or serial connection enters the system into desired
power states. The reg_dump tool performs register read/writes.

3.2.3 Usage

The usage instructions for the tool are as follows:

Usage: PMTester [OPTIONS]…

-f <file> Input file, in CSV format

22

-o <file> Target log file; default is stdout
-v [0-2] Specify verbosity; default is 1

0: Success/failure
1: Show which Pinmux names lead to errors
2: Show which Pinmux names lead to errors and reason:

illegal values, failed writes, etc.
--debug Show debug messages
-i Interactive mode
-d Double check writes. Performs a read after write to verify

write was successful.
-r Process and validate input, but do not perform any actions on

target
-c [T20, T30, T33] Select target chip
-a [gb, hc, ics] Select Android version. Used for any OS-specific settings,

such as app launch commands.
--serial [device] Communication to target will be done over RS232. Default

device: /dev/ttyUSB0
--adb [serial #] Communication to target will be done over ADB. By default,

no serial # is used (only 1 device connected).
--info [string] Print Pinmux info for the selected chip and quit. If no string

is supplied, information about all available Pinmux will be
printed. Information includes register name, address (base
and offset), reset value

-h, --help Display this message and quit.

3.2.4 Input

 Input is accepted as a CSV file or via command line during interactive mode. If
ambiguity exists in partial register names, an error is reported.

Pinmux Name
The full name of a PM, for example, looks like "PINMUX_AUX_GPIO_PV3_0", which

maps to a four bytes address 0x70003064. Acceptable input would be one of the following: full
name, a unique partial name in between two underscores in the full name, full address with or
without starting “0x” or last four digit of the hex address.

Pinmux Value
 PM values are one byte on T30 and T33 chips, while the values are four bytes on T20
chips. Each bit of the values defines either a default value or user input. The name of the bits that
need to be given from user input are PM, PUPD, TRISTATE, E_INPUT and LOCK. For
example, if the PM value is 3 for a certain Pinmux, the first two digits of its value would be
0b11.

Power State
 There are eight possible power states including:

• OSIdle: System idle state with the screen turned on

23

• OSidle_Display_Off : System idle state with screen turned off
• LP1: Specific hardware setting when OS is in suspension
• 3D: UnrealEngine 3 3D scene is playing
• VIDEO: mp4 video is playing
• AUDIO: mp3 music is playing
• WEB: Web browser is opened and a webpage is loaded
• RIPTIDE: Riptide game is running

CSV File
 CSV files are parsed serially (no rearrangement of data will occur). Each input line
translates into internal commands, which issue chronologically. CSV input comments start with
‘#’. In addition, special comment, such as ‘#!WAIT’, will cause the utility to pause before
continuing to issue the remaining commands. These special comments can be used if the user
wishes to manually interact with the system before running the rest of the commands. The
comment ‘#!CLEAN’ causes the system to reset to the OSIdle mode and the ‘#!REBOOT’
command restarts the system.

 CSV fields include:

• PM name
• PM value (PM, PUPD, TRISTATE, E_INPUT, LOCK)
• Action (read/write/double check write)
• Power State
• Power State detail (video/audio playback files)

CSV file example:

Figure 6: Sample Pinmux CSV File

Corresponding actions:

1. When the program starts, it initializes itself, parses the file, validates, and opens a
connection to target.

2. For the first Pinmux, HDMI_CEC, the program enters target into OSIdle. It reads
PINMUX_AUX_HDMI_CEC_0 and updates PM, TRISTATE, E_INPUT, and LOCK
bits to specified values. It writes a new value to PINMUX_AUX_HDMI_CEC_0. If
applicable, it reads the same register and compares the result to the expected value.

3. For second Pinmux at 0x7000E41C, the program starts the media player and plays
up_h264_1080_10M.mp4. It reads APBDEV_PMC_DPD_PADS_ORIDE_0 and
compares the result to expected values.

4. The program pauses execution and waits for user input to continue at the “#!WAIT”
command

5. For Pinmux, CLK_32K, the program enters target into OSIdle. Similar to step 1, it reads
PINMUX_AUX_CLK_32K_OUT_0 and updates the specified values. If applicable, it
reads the same register and compares the result to 0x00000014.

24

Interactive Mode
Interactive mode offers a quick and convenient way of running quick tests. The interface

is similar to a command line debugger, such as GDB.

 Supported command:

r <addr> - Read
w <addr> <value> - Write
d <addr> <value> - Double check write
chip <T20|T30|T33> - Change rules/settings
find <name|address> - Looking for register address by partial name, e.g.
 find clk
 find 314c
 find 7000314c
state <usecase> [<file>]
 - Change power state, supports following use case:
 OSIDLE, OSIDLE_DISPLAY_OFF,

 UE3, RIPTIDE, WEB, LP1
 AUDIO (need file path), VIDEO (need file path)
shell <command> - Execute command on android shell
q, quit - Quit

3.2.5 Output

There are three output verbosity levels. Level 0 displays only a “success” or “failure”.
Level 1 displays PM names that lead to errors. Level 2 displays PM names that lead to errors and
the reason for the error, such as illegal values or failed writes.

3.2.6 Project Deliverables

The project splits into several core deliverables, including:

Core Deliverable 1:

• CSV parser
• Command line interface

Core Deliverable 2:
• Parse internal data
• Set use cases on OS
• Apply register read/write commands to devices through reg_dump based on

RS232 and USB connection

Optional Deliverable 1

• Allow PM read/writes to be done through GFShell rather than through reg_dump

25

Optional Deliverable 2:
• Interactive mode, which is a working front-end interactive command line

interface that is able to parse user input into internal data

26

4.0 Results & Conclusion

 Overall, our project was successful. We were able to meet all requirements and deliver
both test utilities ahead of schedule.

Clock Tree Sanity Tool

 The Clock Tree Sanity Tool project lifecycle consisted of three core deliverables along
with an iteration of cleanup and documentation. Each core deliverable was followed by a short
testing phase, which provided valuable feedback on the tool. This feedback was used to make
slight modifications to requirements when necessary.

 The first core deliverable required us to fix errors in the preliminary version of the tool.
We focused on refactoring and consolidating. We upgraded to Python 2.7 and updated the input
arguments and validation. We were able to merge several functions together, while removing
functions that were unnecessary. In preparation for the second core deliverable, we updated the
structure used to hold the clock tree samples to an ordered dictionary tree for greater robustness.

 The second core deliverable involved more dramatic changes. A single clock tree sample
proved to be ineffective as clocks are not completely stable and are known to have random
fluctuations. Our solution was to add functionality to gather multiple samples. The samples were
stored in a ‘master tree’. This master tree was an ordered dictionary tree that combined all
samples into one tree structure. The master tree was converted into a mode tree, where the mode
was calculated for each clock attribute. The mode best represented the values of the sample by
removing outliers. The mode tree was compared to the golden base tree and mismatched
attributes were printed as output. Feedback from the testing phase led us to update the output to
increase readability.

 The final core deliverable required us to add different use cases. The utility had to be
upgraded to send device commands using an RS-232 connection. These commands included
installing the use case applications, running the applications, and gathering clock samples from
the device. Several new use cases were added including audio and video playback, as well as
camera and game usage. These use case applications had been built previously by the Software
Quality Assurance team for use with power regression testing. At the end of the iteration, the
testing phase involved integration with the GVS build system.

 Upon successful runs on the GVS build system, the final iteration called for code
documentation, README file, and a wiki page. Throughout the project, we kept good practice
of documenting code. Thus, we only needed to build a README file and a wiki page. We also
had to update the warning file to include hotplug deviations, clocks that are so unstable that even
the mode of multiple samples may be incorrect. Such clock attributes must be ignored and have
warnings thrown instead of errors in the event of a mismatch. Following these changes, we
submitted the utility for final code review.

27

Pinmux Utility

The Pinmux Utility consisted of two main parts: the front-end (core deliverable 1) and the
back-end (core deliverable 2). The front-end deliverable required processing and saving user
input as internal data while the back-end deliverable required the procedure of operation on
Android system and devices. As the two parts were closely related to each other, we decided to
apply an agile development process. We began by building a minimal workable module for both
parts and then by adding the required functionality iteratively. Using this method, we were able
to test the complete utility whenever a small piece of work was finished.

 The front-end deliverable required us to handle program parameters (flags), parse a CSV
input file, and save the parsed information as internal data. In Python, program parameters are
commonly handled by the “optparse” module. However, after researching, we found that this
module had been recently upgraded and renamed “argparse”. The functionality of the “argparse”
module was greatly improved to include better parameter validation and parameter management.
The disadvantage of this upgrade was its incompatibility with Python versions lower than 2.7.
Therefore, we were required to upgrade our test environment to Python 2.7. In addition, to parse
the CSV file, we chose to use another Python module, “CSVReader”. Considering the fact that
the CSV input file might be very long, we parsed the file one line at a time in order to reduce the
memory used. We tested the front-end and it worked well.

The back-end deliverable was far more complicated. We needed to set the Android OS
into different power states and also operate the registers via different connection types. The
strategy we used was to modularize each of the above functions. We tried to minimize the data
sharing between these modules in order to reduce their influence on one another. Thus, any
changes to a module would not be able to break another module accidentally. Each connection
type had its own module and each power state had its own module. At the end of the project, we
carefully tested all the modules to ensure compatibility with the front-end.

We performed several demos, as well as a final presentation, to our team. Throughout the

project, we also communicated with other teams in the company and gained a lot of assistance
and professional feedback. Based on the feedback, we improved our utility greatly. Finally, the
code was peer reviewed and we submitted it to the company repository.

28

References

[1] Android.com. Android Debug Bridge

[2] Google Inc. Android Developers

[3] Myers, Glenford J. The Art of Software Testing 1979

[4] National Institute of Standards and Technology. Software Errors Cost U.S. Economy $59.5 Billion Annually

 2002

[5] Nelson Chow. GFShell Introduction 2012

[6] NVIDIA. History

[7] NVIDIA. NVIDIA History - A Timeline of Innovation

[8] NVIDIA. NVIDIA Overview - Vision, innovation and market leadership

[9] NVIDIA. Products

[10] NVIDIA. TECHNICAL REFERENCE MANUALNVIDIA TEGRA 3HD Mobile Processors 2012

[11] NVIDIA. Tegra 2 And Tegra 3 Super Processors - Do more with multi-core processor performance 2012

[12] Open Handset Alliance. Android Overview

[13] Phillips, W. D. Design Electronics 1999

[14] pySerial. pySerial Overview

[15] Three Rivers Technologies. Automated Testing Case Study

29

Appendices

Appendix A: Clock Tree Sanity Tool Usage

clockTree_parser.py

usage: clockTree_parser.py [-h] [-warningFilename]
 baseFilename interval repeat {os_idle, video, audio, game}

Clock Distributed Network Power Sanity Tool

positional arguments:
 baseFilename golden base clock tree used as point of reference
 interval time interval between which each sample is pulled from the device
 repeat how many samples are pulled from the device (mode is calculated)
 {os_idle, video, audio}
 state of the device based on use case

optional arguments:
 -h, --help show this help message and exit
 -w warningFilename
 file containing list of exceptions/warnings for certain clocks

Example: ./clockTree_parser.py baseClockTree 0.1 20 os_idle –w warningsFile
 ./clockTree_parser.py -h

warnings_parser.py

usage: warnings_parser.py [-h] warningFilename

Warning File Parser

positional arguments:
 warningFilename file containing the list of exceptions/warning for certain clocks

optional arguments:
 -h, --help show this message and exit

Example: ./warnings_parser.py warningsFile
 ./warnings_parser -h

30

Appendix B: Clock Tree Sanity Tool Warnings File

#[clock_name]
#state <ignore> ---> ignore the state while error checking
#ref {+,-}<variance> ---> specify the tolerance range for ref
#rate <min rate> <max rate> ---> specify the min/max rate
#<ignore> ---> ignore the attribute specifications for this clock #completely
#Note: isInitial, isMax, isAsleep, div, sharedRate, vddVolt can only be set to ignore

[pll_p]
state ignore
ref +-1

[cclk_lp]
rate 102000000 204000000

[i2c3]
Ignore

31

Appendix C: Clock Tree Sanity Tool Output

FAILURE: cpu
 Test Image Value: ref: [7]
 Expected Value: ref: [8]
clk_m
 pll_e
 pll_p
 cclk_lp
 cpu_lp
 cpu

WARNING: i2c1
 Test Image Value: state: [‘on’]
 Expected Value: state: [‘off’]
clk_m
 i2c1

Missing Clock: cclk_m

32

Appendix D: Clock Tree Sanity Tool Schedule

Timeline Project Stage Details

Day 1-3 Set up environment • Sync and build code
• Acquire permissions, mailing lists,

equipment

Day 4-5 Preliminary research into existing
tool

• Motivation for this project
• Clock Trees

o What are they
o How are they used
o Use case scenarios

• Design concepts

Day 6-10 Core Deliverable 1: Fix initial
errors in the current
implementation and reduce false
negatives

• Understand design implementation
• Fix issues and enhance current

design implementation

Day 10-11

Core Deliverable Test/Feedback • Test tool locally and on GVS build
system

• Make changes according to
feedback from results

Day 12-18 Core Deliverable 2: Gather
multiple samples and take mode
of samples. Reduce false
negatives.

• Gather multiple samples based on
interval and repeat input values

o Add randomization to
interval value

• Take mode of samples
• Compare mode to golden base tree

Day 19-21 Core Deliverable Test/Feedback • Test tool locally and on GVS build
system

• Make changes according to
feedback from results

Day 22-26 Core Deliverable 3: Add
different use cases and convert
from ADB/USB to UART serial
connection.

• Add use cases: idle, audio, video,
game

• Convert from ADB/USB to UART

33

Day 27-28 Core Deliverable Test/Feedback • Test tool locally and on GVS build
system

• Make changes according to
feedback from results

Day 29-34 Add code documentation,
README, and a wiki page.

Consider hotplug deviations,
update warnings file, update base
trees

• Cleanup code, add documentation
• Add README and wiki page
• Consider hotplug deviations

o Update warnings file
• Update base trees for all use cases

Days 35 Finalize • Submit for code review
• Final testing
• Develop presentation/demo

Days 36-38 Spare Time • Spare time for schedule slips or
other assignments

34

Appendix	 E:	 Pinmux	 Tester	 Tool	 Usage	

usage: RegChecker.py [options]...

 -h, --help show this help message and exit

 -f <File> Input file, in CSV format

 -o <File> Target logfile; default is stdout

 -v [0-2] Specify verbosity; default is 1

 0: Succeed/failed

 1: Show which Pinmux names lead to errors

 2: Show which Pinmux names lead to errors and reasons

 --debug Debug mode

 --config [<File>] Import configuration file, default is t30_allregs_config

 -i Interactive mode

 -d Double check writes. Performs a read after write to verify write was successful

 -r Process and validate input, but do not perform any actions on target

 --install Install UE3/Riptide/Media Player application automatically

 -a [gb,hc,ics] Select Android version. Used for any OS-specific settings, such as app launch
commands

 -c [T20,T30,T33] Select target chip

 -g read/write PM through GFShell

 --serial [device] Communication to target will be done over RS232.

 Default device: /dev/ttyUSB0

 --adb [serial #] Communication to target will be done over ADB.

 By default, no serial # is used (only 1 device connected).

35

Appendix	 F:	 Pinmux	 Tester	 Tool	 Interactive	 Mode	 Usage	

ALL <addr> and <value> are hex number that starts with 0x

r <addr> - Read

w <addr> <value> - Write

d <addr> <value> - Double check write

find <name|address> - Looking for register address by partial name, e.g.

 find clk

 find 314c

 find 7000314c

state <usecase> [<file>]

 - Change power state, supports following use case:

 OSIDLE, OSIDLE_DISPLAY_OFF,

 UE3, RIPTIDE, WEB, LP1

 AUDIO (need file path), VIDEO (need file path)

shell <command> - Execute command on android shell

q, quit - Quit

36

Appendix	 G:	 Pinmux	 Tester	 Tool	 CSV	 File	 Example	

@PinmuxName,PM,PUPD,TRISTATE,E_INPUT,OD, LOCK,IO_RESET,Action,Usecase,Info

#!CLEAN

#!wait
SPDIF_OUT,2,3,1,1,1,1,1,R,AUDIO,/data/222.mp3
SPDIF_OUT,2,0,0,0,,0,,R,,
0x70003354,3,0,0,0,,0,,R,,
0x70003354,4,0,0,0,,0,,R,,
0x70003354,1,0,0,0,,0,,R,,

@PinmuxName,PM,PUPD,TRISTATE,E_INPUT,OD, LOCK,IO_RESET,Action,Usecase,Info
#!wait
GPIO_PBB6,0,0,0,0,,0,,R,Video,/data/111.mp4
SDMMC3_DAT5,0,0,0,0,,0,,R,,

@PinmuxName,PM,PUPD,TRISTATE,E_INPUT,OD, LOCK,IO_RESET,Action,Usecase,Info
#!wait
0x70003060,0,0,1,0,,0,,W,osidle_display_off,
GPIO_PBB6,0,0,0,0,,0,,R,,
SDMMC3_DAT5,0,0,1,,,1,,W,RIPTIDE,
0x70003060,0,0,1,,,1,,R,UE3,

#!wait
SPDIF_OUT,2,0,0,,,,,R,a,,
0x70003060,2,0,0,,,,,R,WEB,

#!wait
PEX_L0_PRSNT,3,0,0,,,,,R,LP1,
PEX_L0_PRSNT,1,0,0,,,,,R,Video,/data/111.mp4
SDMMC3_DAT5,4,0,0,,,,,R,,

#!CLEAN

37

Appendix	 H:	 Pinmux	 Tester	 Tool	 Output	

6: [SFIO] ***Fail : SPDIF_OUT: R, expect 0x1fe (OD=1 IO_RESET=1 TRISTATE=1
LOCK=1 E_INPUT=1 PUPD=3 PM=2), get 0x00000000 (OD=0 IO_RESET=0 TRISTATE=0
LOCK=0 E_INPUT=0 PUPD=0 PM=0)

7: [SFIO] ***Fail : SPDIF_OUT: R, expect 0x2 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=0 PUPD=0 PM=2), get 0x00000000 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=0 PUPD=0 PM=0)

8: [SFIO] ***Fail : 0x70003354: R, expect 0x3 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=0 PUPD=0 PM=3), get 0x00000000 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=0 PUPD=0 PM=0)

9: ***Fail : 0x70003354: Invalid value

10: [SFIO] ***Fail : 0x70003354: R, expect 0x1 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=0 PUPD=0 PM=1), get 0x00000000 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=0 PUPD=0 PM=0)

14: [SFIO] ***Fail : GPIO_PBB6: R, expect 0x0 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=0 PUPD=0 PM=0), get 0x00000020 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=1 PUPD=0 PM=0)

15: [GPIO] ***Fail : SDMMC3_DAT5: R, expect 0x0 (OD=0 IO_RESET=0 TRISTATE=0
LOCK=0 E_INPUT=0 PUPD=0 PM=0), get 0x0000002a (OD=0 IO_RESET=0 TRISTATE=0
LOCK=0 E_INPUT=1 PUPD=2 PM=2)

19: [SFIO]Succeeded: 0x70003060: W

20: [SFIO] ***Fail : GPIO_PBB6: R, expect 0x0 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=0 PUPD=0 PM=0), get 0x00000020 (OD=0 IO_RESET=0 TRISTATE=0 LOCK=0
E_INPUT=1 PUPD=0 PM=0)

38

Appendix	 I:	 Pinmux	 Tester	 Tool	 Project	 Schedule	

Timeline
(inclusive)

Project Stage Details

Day 1-3 Set up environment Sync & build code, permissions, mailing
lists, equipment, etc.

Day 4 Present Pinmux background,
project outline

What are Pinmux, how are they used,
debugging scenarios, motivation for this
project.

Purpose of this project, design (mostly the
contents of this document). Emphasis on
schedule and deliverables.

Days 5-7 Preliminary research Implementation details, implementation
tools research and learning, Pinmux
research for each chip, Pinmux rules
implementation design. Internal data
representation should be finalized before
development start.

Day 8 Design feedback meeting Meet with sys eng, HW, dev. Demo tool
and gather feedback on design. Adjust
design as needed (may require 1 additional
day)

Days 9-12 Core Deliverable 1: Front-end
and CSV parser

A working front-end command line
interface, able to parse CSV files into
internal data

Days 13-16 Core Deliverable 4: Back-end A working back-end implementation that is
able to take internal data parsed from user
input and generate and apply commands to
target via ADB or UART under specific use
cases

Days 17-20 Optional Deliverable 1:
Rules files and engine

A working, fully implemented API to
validate a set of PM configurations
according to rules files. Rules files are to be
finalized in this deliverable.

39

Days 21-22 Optional Deliverable 2:
GFShell Interface

Allow PM read/writes to be done through
GFShell rather than through reg_dump

Days 23-25 Optional Deliverable 3:
Interactive mode

A working front-end interactive command
line interface, able to parse user input into
internal data

Days 26-27 Dedicated time for testing and
debugging the utility.

At the end of this task, the utility should be
ready for use.

Day 28 Feedback meeting with end
users

Meet with sys eng, HW, dev. Demo tool
and gather feedback. Depending on
feedback, may require additional time to
implement new features or change existing
ones

Days 29-32 Documentation & Check-in This includes finishing up code
commenting; creating/updating a thorough
wiki to be used by both users and
maintainers of this tool; review process for
checking the code in.

Day 33 Wrap up After code review is done, final testing,
wrapping up documentation.

Days 34-35 Presentation (and demo?) Create project presentation, demo, etc.

Days 36-38 Spare time

- OR -

I2C Sysfs interface/utility

Spare time for schedule slips, or to be used
to port QA power state script. In case of the
latter, part of this time will be allocated
before development start on Day 9.

- OR -

Port I2C Sysfs interface/utility from
Motorola Olympus to GB, HC, ICS
branches.

Day 39 Wrap up Last working day wrap up. All scheduled
work must be implemented, tested,
checked-in, and documented by this point.

