

Discriminating Between Splitting and Crossing Targets:
A Radar Tracking Problem

A Major Qualifying Project Report

submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor or Science

by

Christopher J. Cleary

Sara I. Durán

Eric A. Scheid

Date: 10/10/2007

Sponsor: MIT Lincoln Laboratory
Supervisor: Dr. Stephen Weiner

WPI Advisors: Professor Kevin Clements

Professor Germano Iannacchione

Approved for Public Release
07-MDA-3047 (25 JAN 08)

ii

Authorship

This project was certainly a collaborative effort of the team members, however

certain elements of it drew more heavily on our respective disciplines (Physics for Mr.

Scheid, Electrical and Computer Engineering for Mr. Cleary and Ms. Duran). This section

attempts to outline what parts of the project are more specifically related to one

concentration or the other, as well as the primary contributor to each section of the report.

 The majority of the principles described in the background section of our report are

physical in nature; in particular, section 2.1 Radar Basics and section 2.4 Range-Time

Intensity Plots rely heavily on the physics of radar and propagating signals. Physical

principles also guided all the code that was used to simulate the trajectory and radar profiles

of the objects viewed, such as in section 2.2. The quantification of our heuristics in section

3.1.2 and Appendix A were grounded in physical and mathematical concepts. Lastly, section

4.2.2 outlined the physical dependence of the apparent angular and translational rates of

objects on the viewing geometry of the radar.

 This project had a heavy simulation component that relied on Electrical and

Computer Engineering principles. Specifically, the random generation of RTIs required

multiple upgrades to the simulation software provided by Lincoln Laboratory staff. The

specifics of these upgrades are outlined in section 3.2.2 and the code can be found in

Appendix E. Organizing and presenting the data for sections 4.1 and 4.3 required writing

additional MATLAB scripts, an example of which can be found in Appendix F.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

iii

Table of Contents
Authorship ...ii

Table of Figures ... v

Table of Tables ... vi

Abstract ... vii

Executive Summary ... viii

Background and Purpose ... viii

Methodology and Scope .. x

Results and Discussion .. xi

Conclusions and Future Recommendations .. xiv

1. Introduction ... 1

2. Background .. 6

2.1 Radar Basics ... 7

2.2 Simulation Software .. 9

2.2.1 LL6D Trajectory Software ... 9

2.2.2 RFSig ... 10

2.3 Framing the Problem .. 11

2.3.1 Scatterer Definitions .. 11

2.3.2 Scenario Definitions .. 12

2.4 Range-Time Intensity Plots .. 12

2.4.1 Dumbbell RTI .. 13

2.4.2 Reentry Vehicle RTI .. 14

2.4.3 Tank RTI .. 15

2.4.4 Intersection Angle ... 15

3. Methodology .. 17

3.1 Developing heuristics to distinguish a split from a cross 19

3.1.1 Performing exploratory exercises ... 19

3.1.2 Quantifying the heuristics .. 22

3.2 Developing a human decision-making model.. 25

3.2.1 Organizing the Heuristics .. 26

3.2.2 Generating the Range-Time Intensity Plots .. 27

3.3 Demonstrating the Effectiveness of the Human Decision-Making Model 30

4. Results and Discussion .. 33

4.1 Initial System Performance .. 34

4.1.1 Probabilities of Correct Identification with Respect to Bandwidth 36

4.1.2 Probabilities of Correct Identification with Respect to Time 38

4.2 Threshold Optimization .. 40

4.2.1 Faults with Initial System Performance ... 41

4.2.2 Effect of Viewing Geometry on Threshold... 44

4.2.3 Threshold Modification ... 45

4.3 Revised System Performance ... 46

4.3.1 Revised Probabilities of Correct Identification with Respect to Bandwidth 47

4.3.2 Revised Probabilities of Correct Identification with Respect to Time 48

Approved for Public Release
07-MDA-3047 (25 JAN 08)

iv

5. Conclusions and Future Recommendations ... 50

6. Works Cited ... 51

Appendix A: Scatterer Distance Clarification ... 53

Appendix B: Reentry Vehicle XML Code .. 54

Appendix C: Sample Configuration File ... 57

Appendix D: Sample Record File .. 58

Appendix E: MATLAB Code Used For RTI Generation.. 59

E.1 RandRTI.m .. 59

E.2 ll6dMATLABnMQP.m ... 64

E.3 runsimMQP.m ... 69

Appendix F: MATLAB Operating Curve Code Example .. 82

Distribution Statement ... 85

Approved for Public Release
07-MDA-3047 (25 JAN 08)

v

Table of Figures

Figure 1: Rotating Dumbbell Diagram and RTI .. ix

Figure 2: System Performance Given Bandwidth and Intersection Angle xii

Figure 3: Angle versus Probability of Correct Identification for Original System xiii
Figure 4: System Performance Given Bandwidth and Intersection Angle with Revised

Threshold ... xiv

Figure 1-1: Cobra Dane Radar ... 1

Figure 1-2: Rotating Dumbbell Diagram and RTI .. 2

Figure 1-3: Two Crossing Targets .. 3

Figure 1-4: Crossing Targets with Noise .. 4

Figure 1-5: Sample operating curve .. 5

Figure 2-1: Range versus angular resolution ... 8

Figure 2-2: Rotating Dumbbell Diagram and RTI .. 13

Figure 2-3: RV RTI .. 14

Figure 2-4: RV Base Shadowing Nose ... 14

Figure 2-5: Tank RTI .. 15

Figure 2-6: Two-track RTI example ... 16

Figure 3-1: Cross with tumble ... 17

Figure 3-2: Cross without tumble .. 17

Figure 3-3: Split with tumble ... 18

Figure 3-4: Split without tumble .. 18

Figure 3-5: Obscure split versus obvious split .. 20

Figure 3-6: Obscure cross versus obvious cross ... 20

Figure 3-7: Time before rule.. 22

Figure 3-8: Crossing and splitting velocity distributions .. 24

Figure 3-9: Sample operating curve .. 31

Figure 4-1: System Performance Given Bandwidth and Intersection Angle 37

Figure 4-2: Smoothed Curve of System Performance Given Bandwidth 37

Figure 4-3: System Performance Given Time Before and Intersection Angle 38

Figure 4-4: Smoothed Performance Given Time Before and Intersection Angle 39

Figure 4-5: Effect of Width and Time Before Rule on System Accuracy 40

Figure 4-6: Error Rates at Various Thresholds ... 41

Figure 4-7: Distribution of Sample Velocities with Fitted Normal Curves 42

Figure 4-8: Distribution of Velocities for RTI Generation ... 42

Figure 4-9: Effect of Viewing Geometry on Measured Relative Distance 44

Figure 4-10: Relative Distance Error.. 45

Figure 4-11: Identification Error Rate with Possible Thresholds 46

Figure 4-12: Effect of Angle on System Performance ... 47
Figure 4-13: Smoothed Curve of System Performance Given Bandwidth and Intersection

Angle with Revised Threshold... 48
Figure 4-14: Smoothed Curve of System Performance Given Time Before Event and

Intersection Angle with Revised Threshold .. 49

Approved for Public Release
07-MDA-3047 (25 JAN 08)

vi

Table of Tables

Table 3-1: Exercise 1 Results ... 21

Table 3-2: Exercise 2 Results ... 22

Table 3-3: Scenario Templates ... 28

Table 3-4 : Scenario Variables ... 29

Table 4-1: Sample data record ... 34

Table 4-2: Data summary .. 35

Table 4-3: Human Decision-Making Model Performance ... 35

Table 4-4: Statistics for Expected and Actual Data ... 43

Approved for Public Release
07-MDA-3047 (25 JAN 08)

vii

Abstract

It can be difficult to discern between crossing and splitting targets when looking at
radar tracks. Radar tracking problems such as this are important to modern ballistic missile
defense, but parameters such as the radar bandwidth, visibility time, and the relative speed of
the objects can obscure interpretation. A human decision-making model was developed to
aid in interpretation, and 3001 simulated radar tracks were analyzed at MIT-Lincoln
Laboratory using this algorithm. Operating curves were created to describe the model‟s
performance.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

viii

Executive Summary

During World War II, Germany launched the first ballistic missile - the V-2, or

Vergeltungswaffe Zwei 1 - which struck British soil in September of 1944. Shooting down a V-2

after it was in flight was impossible at the time2, making the investigation of missile defense

imperative. The threat has evolved from these ponderous early missiles, to the massive

arsenal of the Soviet Union, to the modern danger of rogue states using small numbers of

intercontinental ballistic missiles. Presently, one particular difficulty is that of tracking

objects of interest. Tracking an object allows the radar operator to see what path it has taken

and predict where it will be in the future – vital to the defense‟s ability to engage the targets.

As the threat complex changes from the initial ballistic missiles to the final cloud of reentry

vehicles, decoys, and debris, the defense can form a better idea of which targets are

dangerous by linking together successive tracks3.

Background and Purpose

To perform any significant analysis of a radar tracking problem, one must first

understand the basic physics behind a radar system and learn how to read radar tracks. A

radar works by sending out a radio signal and counting the time elapsed until it reflects back.

The range to the object can be easily calculated due to the constant speed of electromagnetic

waves. This simple process is then repeated to gain an understanding of the object‟s time

evolving behavior.

The radar tracks show how the objects in question behave over time, and are aptly

called Range-Time Intensity plots. Figure 1 is, like the rest of the radar images in this report,

a simulated RTI. It shows an example plot along with its corresponding physical scenario on

the left for edification purposes (RLOS denotes the radar line of sight).

1 Kaplan, Dr. Laurence M. “Missile Defense: The First Sixty Years”. Missile Defense Agency. 27 September

2006. Accessed September 10, 2007. <http://www.mda.mil/mdalink/pdf/first60.pdf>. Page 1.

2
 Werrel, Kenneth P. “Hitting a Bullet with a Bullet: A History of Ballistic Missile Defense.”

College of Aerospace Doctrine, Research and Education. Air University. Research Paper

2000-02. (2000). Page 2.
3 Weiner, Stephen D. Private conversations.

http://www.mda.mil/mdalink/pdf/first60.pdf

Approved for Public Release
07-MDA-3047 (25 JAN 08)

ix

Many of the objects tracked using these types of plots have angular velocities. In

Figure 1 it can be seen that the relative ranges of the tracks from the two scatterers oscillate

over time; this is a graphical manifestation of the angular motion of the dumbbell. The

periodic nature of the plot is a direct result of measuring the range relative to the object‟s

center of mass.

Radar is typically very good at measuring the range to an object, but a radar‟s angular

resolution is comparatively much poorer. As a result, objects that appear to be crossing or

colliding on a radar track may in actuality be quite separate. One problematic consequence of

this poor angular resolution is the prevalence of crossing events seen on radar tracks. It is of

paramount importance to be able to discern between crossing events and splitting events so

that accurate tracks can be maintained. Although seemingly trivial, the usually stark

differences between a split and a cross can be obscured by many parameters. Most important

to situational clarity – and of particular significance to this project – are the bandwidth of the

radar, the visibility time before the event, and the intersection angle of the two objects in

question as measured on the RTI.

Another aspect of this project involved analyzing the role of the human radar

operator in interpreting RTIs. For many of the tasks crucial to ballistic missile defense

humans are excluded entirely, as they lack the reaction time and multi-tasking ability that is

needed for many operations. On the other hand, humans can provide flexibility in a way that

 Relative Range (m)

T
im

e
 (

s
e
c
)

-4 -3 -2 -1 0 1 2 3 4 5
106

106.5

107

107.5

108

108.5

109

109.5

110

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

a b

a

b

a

b

RLOS

t = 106.5 s

t = 107.0 s

t = 107.5 s

Figure 1: Rotating Dumbbell Diagram and RTI

Approved for Public Release
07-MDA-3047 (25 JAN 08)

x

machines cannot. For example, computers can have great difficulty correctly interpreting

crossing targets in noise, even at high signal to noise ratios, whereas humans have little

difficulty4. Our project tackled a particular radar tracking problem - discerning between

splitting and crossing targets - from the human observer perspective.

Methodology and Scope

This project had three main objectives: to develop a set of heuristics that allow us to

decide whether an event is a split or a cross, to develop a human decision-making model that

codified these heuristics, and to produce operating curves that exhibited the effectiveness of

the human decision-making model. To make the project manageable for a seven week

assignment, we put some constraints on the problem to ease the analysis. There are many

parameters that affect situational clarity, but we decided to focus on only the bandwidth,

visibility time, and intersection angle. Furthermore, we only considered binary interactions,

and modeled the objects involved as identical reentry vehicles. To simplify the statistical

analysis, we constructed every event so that it had to be either a split or a cross (as opposed

to possible situations where both or neither occur).

To generate sample radar tracks for analysis, we wrote a MATLAB program that

randomly generates splitting and crossing events between two objects. The program

randomly chooses one of three distinct bandwidths, and then chooses either a splitting

template or a crossing template. The intersection angle displayed on the RTI – which is also

analogous to the relative speed of the objects - is randomly chosen from the Gaussian

weighted distribution that describes the respective scenario. Finally, to keep the number of

trivial cases low, we limited the visibility time prior to the event to a randomly determined

value between -1.5 and 1.0 seconds.

We then performed some exploratory exercises with these randomly generated radar

tracks. Each of us examined a large set of RTIs, labeled each event as a split or a cross, and

wrote down the reasoning behind our decision. We then compared our decisions with the

actual events logged in a record file produced by the MATLAB program, and took note of

our accuracy. The exercises allowed us to verify that the process was random enough that we

4 Weiner, Stephen D. Private conversations.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

xi

were not recognizing patterns, and that there was an adequate ratio of edge cases to obvious

ones. Additionally, they provided further insight on how each of the observables

(bandwidth, intersection angle, and visibility time) affected our ability to discriminate

between splitting and crossing targets.

 After performing the exploratory exercises we narrowed down our reason pool to

three main rules: the time before rule, the width rule, and the intersection angle rule. The

time before rule delineates the minimum time that one needs to be able to detect two

distinct tracks if given the width of a track and the angle of intersection. The width rule

handles cases where the event can be seen, but the time before rule does not apply. It

suggests that if the track is significantly wider than it should be at t = 0, the event is probably

a cross. If all else fails, the intersection angle rule handles all remaining cases by postulating

that higher intersection angles correspond to crosses while lower ones correspond to splits.

This led directly to the development of a human decision-making model. We ordered

the rules logically, and derived their quantitative analogues so that they were less subjective.

Once we had our standardized human decision-making model, we began applying it to radar

tracks in earnest to provide a substantial sample size for our final analysis. We generated

3001 radar tracks, which gave us many varying combinations of intersection angle,

bandwidth, and time before the event.

Using our decision-making model, we examined the RTIs and documented our

answers in an Excel sheet. We also recorded the specific route used by the human decision-

making model to reach the decision for each RTI. Excel then made it easy to calculate the

overall error rate of our model, and furthermore, the success rate of each individual

heuristic. The next step was to condense this deluge of data into something readable and

presentable. We decided to construct operating curves that show the overall effectiveness of

our human decision-making model.

Results and Discussion

Once we had our final set of data, we wrote a program that condensed it into easy to

read operating curves, as seen in Figure 2.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

xii

It can be seen that the operating curve displays three dimensions of data: intersection

angle on the x-axis, bandwidth on the y-axis, and probability of correct identification on the

color-axis. We used three distinct bandwidths in our RTI generation software, hence the 3

separate rows. To enable calculations of realistic probabilities, we quantized the x-axis;

quantization allowed us to combine the data from different angles in the same

neighborhood, and calculate a probability of correct identification for that specific

neighborhood of angles. This operating curve example related bandwidth to intersection

angle, but we also created a curve relating the time before the event to intersection angle. In

this case, we quantized the time axis for the same reasons as the intersection angle axis.

The operating curve shown in Figure 2 demonstrates probability of correct

interpretation at various levels of intersection angle and bandwidth. Performance increases

with bandwidth and as the angles move away from the threshold, giving near perfect

performance at 1000 MHz bandwidth when the angle is more than 10° above or below the

threshold of 27.9°.

Figure 2: System Performance Given Bandwidth and Intersection Angle

Approved for Public Release
07-MDA-3047 (25 JAN 08)

xiii

Additional analysis of the dataset, presented in Figure 3, showed that the threshold

calculated from the distribution of the variables used to generate the RTIs was not the ideal

threshold. The cause of this discrepancy was the radar viewing geometry, which caused the

apparent angles and velocities to be smaller than their true values. Using the existing dataset,

the group was able to produce statistics to describing the data while taking into account the

viewing geometry used. This resulted in a new calculated threshold, and led to a great

increase in performance.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 10 15 20 25 30

Angle

P
ro

b
a

b
il

it
y

 o
f

C
o

rr
e

c
t

D
e

te
c

ti
o

n

All Rules Angle Rule Only

Figure 3: Angle versus Probability of Correct Identification for Original System

Approved for Public Release
07-MDA-3047 (25 JAN 08)

xiv

 Figure 4 demonstrates system performance using the new threshold. The minimum

level of performance is much higher than that observed in Figure 4. The low-performance

band is shifted to be about the new threshold of 13.9°, and is both narrower and shallower

than that observed with the old threshold, occupying a 12° window and reaching a minimum

value of 60% correct detections. For angles of less than 10°, the performance improves as

bandwidth increases, although this seems to be reversed for angles near the new threshold.

For larger angles, performance is excellent for all bandwidths.

Conclusions and Future Recommendations

 The project team found that our human decision-making model performed well,

exhibiting a 15% error rate while examining mostly difficult edge cases. We succeeded in

both modeling and improving system performance using simulated data. The conclusion of

our project leaves open several possibilities for further research; for example, research could

be conducted using parameter values derived from actual test data, or into developing an

entirely automated system

Figure 4: System Performance Given Bandwidth and Intersection Angle with Revised Threshold

Approved for Public Release
07-MDA-3047 (25 JAN 08)

1

1. Introduction

During World War II, Germany launched the first ballistic missile, the V-2 or

Vergeltungswaffe Zwei (Kaplan 1), which struck British soil in September of 1944. Shooting

down a V-2 after it was in flight was impossible at the time (Werrel 2), making the

investigation of missile defense imperative. This effort can be divided into two phases,

according to the method used to intercept a threat: the nuclear warhead era and the non-

nuclear era. Destroying incoming threats by detonating a nuclear warhead in their vicinity

was the defense modus operandi from 1946 until 1983 (Weiner), when the Reagan

administration started the Strategic Defense Initiative (SDI) (United States Department of

Defense). The objective of this program necessitated the development of non-nuclear

interceptors. The goal was to have the interceptors physically impact the incoming missiles,

that is, to “hit a bullet with a bullet”.

Obtaining and interpreting information is one of the greatest difficulties in ballistic

missile defense. The defender may have to track thousands of objects, hundreds of

kilometers away, with only a handful of sensors, and come to a decision on what objects are

threats in minutes. One particular difficulty is that of tracking objects of interest. Tracking an

object allows the radar operator to see what path an object has taken and predict where it

will be in the future – vital to the defense‟s ability to engage the targets. As the threat

complex changes from the initial ballistic missiles to the final cloud of reentry vehicles,

decoys, and debris, the defense can form a better idea of which targets are dangerous by

linking together successive tracks (Weiner).

The defense‟s ability to track is

limited in several ways. Many sensors may

only be able to maintain a certain number of

tracks at once. This problem can be

exacerbated by the offense‟s use of decoys

(Weiner and Rocklin, 73-74). The quality of

the track is also limited by how long the

defender has observed the object and how

often external objects interfere with the track (Weiner). Performance limitations in the

Figure 1-1: Cobra Dane Radar

Approved for Public Release
07-MDA-3047 (25 JAN 08)

2

sensors available will also affect the quality of the tracks by limiting the information

available. For example, Cobra Dane (seen in Figure 1-1) is one of the key sensors in the

National Missile Defense system, and is an L-band radar operating at 200 MHz bandwidth

(Amoozegar 6) that produces narrowband images which cannot provide detailed information

on the objects tracked (Raytheon).

To perform any significant analysis of a radar tracking problem, one must first

understand the basic physics behind a radar system and learn how to read radar tracks. A

radar works by sending out a radio signal and counting the time elapsed until it reflects back.

The distance to the object can then be easily calculated. This simple process is then repeated

again and again to gain an understanding of the object‟s time evolving behavior. The radar

tracks we analyze show how the objects in question behave over time; this concept can be

seen in Figure 1-2, along with an illustration of the physical situation on the left (RLOS

denotes the radar line of sight).

This radar track is of a single object with two highly reflective returns. The range

(relative to the center of the object) of each return as viewed by the radar is measured along

the x-axis. Time and power are measured along the y-axis and the color axis respectively. It

can be seen that the motion of the object is periodic; this is a common feature of radar

tracks since most objects have a constant angular velocity.

 Relative Range (m)

T
im

e
 (

s
e
c
)

-4 -3 -2 -1 0 1 2 3 4 5
106

106.5

107

107.5

108

108.5

109

109.5

110

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

a b

a

b

a

b

RLOS

t = 106.5 s

t = 107.0 s

t = 107.5 s

Figure 1-2: Rotating Dumbbell Diagram and RTI

Approved for Public Release
07-MDA-3047 (25 JAN 08)

3

The radar track depicted in Figure 1-3 is quite clear, and there is little doubt as to

what is happening to the object in question. However, there are many parameters that affect

the clarity of radar tracks. The most important of these for our research are the following:

bandwidth, relative velocity of the objects, and the visibility time before and after multi-

object events (see Figure 1-3). In this figure, the tracks from two objects are intersecting, but

it is unclear whether they have split from a common object or are merely crossing. The low

bandwidth and small visibility time before the event obscure the true nature of the objects‟

behaviors. It is important to correctly identify an event as a split or a cross, and to make

decisions of this nature one must understand the observables and known parameters

associated with each event.

Figure 1-3: Two Crossing Targets

Approved for Public Release
07-MDA-3047 (25 JAN 08)

4

The role that humans should play in a ballistic missile defense system is a topic of

great importance to system designers, but it is not one which has been thoroughly explored.

For many of the tasks vital to BMD humans are excluded entirely, as they lack the reaction

time and multi-tasking ability that is vital for many operations. However, humans bring many

important capabilities into a BMD system. Humans provide flexibility in a way that machines

cannot; they have the ability to adapt rapidly to changing or unexpected circumstances, and

an intuition which can help guide decisions made on incomplete or even insufficient

information (Hawley 7). For example, computers can have great difficulty correctly

interpreting crossing targets in noise, even at high signal to noise ratios, while humans have

little difficulty (Spence). An example of a situation of this nature can be seen in Figure 1-4.

Further study is required, however, to identify other areas of BMD in which humans can

perform well, and to provide detailed models of this performance.

Our project focuses on a very specific problem: the discrimination between splitting

and crossing targets. Our goal is to develop a series of operating curves that model the

discrimination performance and the probability of correct identification. In order to arrive at

Figure 1-4: Crossing Targets with Noise

Approved for Public Release
07-MDA-3047 (25 JAN 08)

5

the operating curves we must first translate the mental process humans go through to

identify these events into a set of heuristics. These will then be organized to form a human

decision-making model that will be applied to a large sample of randomly-generated radar

tracking images. We will record the accuracy obtained using the model; that is, to determine

the probability of correct identification with respect to different parameters such as

bandwidth, time before and after the event, relative speed. This information will be

presented in the form of quantized operating curves (see Figure 1-5). Although our problem

is a very concrete one, we hope that our methodology can be extrapolated to other specific

problems. Each small problem solved is a step along the way towards a successful ballistic

missile defense system. The ballistic missile defense problem is one that cannot be solved

without working “from the bottom up”.

Figure 1-5: Sample operating curve

Approved for Public Release
07-MDA-3047 (25 JAN 08)

6

2. Background

It is important when interpreting radar measurements to discern where different

objects originate from. Our project deals with a specific problem of this nature: analyzing the

tracks of two objects that are close to each other. This task is complicated by the prevalence

of imperfect tracks – for example, a track that starts only a second before an event, or is

obscured by noise. Our project seeks to develop heuristics that humans can use when

analyzing these types of problems.

While most of the air defense effort is automated, this does not eliminate the need

for a human element in decision making.

 The utility of automating the engagement process was dramatically demonstrated
with the success of the Patriot system in countering the Iraqi tactical ballistic missile (TBM)
threat during Operation Desert Storm and most recently during Operation Iraqi Freedom
(OIF). In both Gulf wars, TBMs were successfully engaged by Patriot employed in a fully
automatic, operator-monitored mode. The down side of these successes was an unacceptable
number of fratricidal engagements attributable to track misclassification problems,
particularly during OIF. (Hawley, Mares and Giammanco 2)

Our project tackles a particular radar tracking problem - discerning between splitting

and crossing targets- from the human observer perspective. Our hope is that our decision-

making model will be able to tackle situations that may be challenging for a computer

algorithm to correctly interpret (Spence). In order to fully understand the problem at hand

one must first understand the principles of radar tracking.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

7

Radar Basics

Radar is an acronym that stands for Radio Detection and Ranging. Radar is used to

determine the presence of an object, its distance from the radar and its speed. The basic

concept has been around for over a century. Christian Hulsmeyer saw a practical implication

in Heinrich Hertz‟s work in the late 1800s, and built a rudimentary radar system in 1904 that

could detect ships hidden by fog. However, it was not until the genesis of air warfare years

later that radar became the widely researched application that is today (Skolnik 14-15).

The principles of radar imaging are fairly simple to explain, especially with the usual

scenario where the transmitter and the receiver share the same antenna. The transmitter will

send out a radio wave pulse toward the target in question, the pulse will then reflect off of

the object, and return at a lesser power back to the receiver. The range to an object is simple

to formulize since radio waves are a form of electromagnetic radiation, and travel at the

speed of light. Thus the range to a target can be calculated as expressed in Equation 2-1,

where c is the speed of light and t is the time elapsed between the pulse emission and its

reception.

2

ct
R 

2-1

The factor of two accounts for the fact that the pulse must travel to and from the target

before it is measured.

 Due to the fact that the power of the radio signal has usually decreased significantly

when it is received, another important characteristic of any radar is its maximum radar range.

This is determined mostly by properties of the radar itself, and is given by Equation 2-2,

where P is the transmitted power (W), G is the gain of the antenna, A is the effective

aperture of the antenna (m2), σ is the radar cross section of the target (m2), and S is the

minimum detectable signal of the radar (W) (Skolnik 30).

4
max

8 S

PGA
R






2-2

This equation is an oversimplification of a typical situation, but can generally give an

approximation of the maximum range, and more importantly instructs the radar user on

Approved for Public Release
07-MDA-3047 (25 JAN 08)

8

various parameters that affect maximum range. A more sophisticated analysis of the radar

equation would have to be handled probabilistically by taking into account the possibility of

false alarm (Skolnik 31).

 Another interesting feature of radar is its

relatively poor angular resolution. Radar is very

good at measuring range to an object, due to the

constant speed at which electromagnetic

radiation travels, but comparatively much poorer

at measuring its angle in the sky. As a result,

there is always a thin pancake region within

which the object could be. A key implication of

this is that objects that seem right next to each

other on a radar image may actually be quite

separate spatially (Weiner).

Radar beamwidth is defined as “the

lateral dimension (in angle) of the principal lobe (main lobe or main beam) of an antenna

pattern” (Toomay and Hannen 247). The beamwidth determines an antenna‟s resolution cell,

that is, the area of the circle in Figure 2-1. Without the use of multiple radar beams or

multiple sweeps we cannot be sure of where in that angle cell a point scatterer is. Angular

accuracy δθ , when using multiple beams or sweeps, is determined by Equation 2-3. (Toomay

and Hannen 115), where θ3dB is the 3dB bandwidth and S/N is the signal to noise ratio.

N

S

dB

2

3 

2-3

 Equation 2-3 only holds true when there is only one object in the angular cell. When

there is more than object in an angle cell, as is the case for our project, the two unresolved

targets can interfere and appear to be one and the same. The ability to resolve the two

targets is directly related to the resolution size (Weiner).

Figure 2-1: Range versus angular resolution

Approved for Public Release
07-MDA-3047 (25 JAN 08)

9

Simulation Software

 Our project team used two radar simulation packages while performing our research.

One was used as provided, while the other required extensive modification to suit our needs.

These simulation packages are outlined in the subsequent sections.

LL6D Trajectory Software

 The LL6D (Lincoln Laboratory Six Degrees of Freedom) simulation software is used

to create the environments observed by the radar. LL6D is a tool designed for the simulation

of ballistic missile threats, and is optimized for quick processing at the expense of simulation

detail (Iamaio, 5). The simulation is implemented in Java, but can be interacted with using

MATLAB scripts written by Lincoln Laboratory staff and modified by the project team.

LL6D runs off of configuration files (further detailed in the Scenario Definitions

section) which describe the objects that will take part in the scenario, and what actions they

perform or are performed on them. The code behind LL6D was used as-is, however, we

developed additional tools to improve its usefulness, which are described in the

Methodology section. LL6D creates trajectory files detailing the motion of the simulated

objects using twenty-two different measures. The position and velocity information is

recorded in Earth-Centered Inertial coordinates, the angular rates in radians/sec, and the

angular position in Earth-Centered Inertial coordinate unit vector component format. Time

history files are simpler files, containing the position of the objects in Azimuth, Elevation,

and Range coordinates relative to a specified sensor with the angular position in degrees.

It is important to note that LL6D does not perform true six-degrees of freedom

simulations, but instead performs 3+3 degrees of freedom simulations. Linear position and

velocity calculations are performed independently of those for angular position and velocity.

This allows complex situations to be modeled quickly on average desktop computers.

Furthermore, this is a reasonable simplification, since the objects used in our simulations are

modeled as rigid bodies. The problem of modeling the motion of any rigid object outside the

atmosphere can always be split into two easier problems; one can solve for the translational

motion of the center of mass independently of the angular motion of the object around its

center of mass, and vice versa. This is shown succinctly in Equation 2-4,

Approved for Public Release
07-MDA-3047 (25 JAN 08)

10

 rrPRL   m

2-4

where L is the total angular momentum of the object as defined by the distance of the center

of mass from the origin (R), the linear momentum of the center of mass (P), and the

summation of the angular momenta ( rr  m) of each discrete point on the body with

respect to the center of mass. The first term in Equation 2-4 models the translational motion

of the center of mass from a point of reference, while the second term models the angular

rotation of points on the body around the center of mass (Taylor 367-369). LL6D calculates

these two components separately when it performs simulations. The center of mass of a

body can be easily calculated using Equation 2-5, where M denotes the total mass of the

body, and rm denotes the masses and positions relative to the origin for each discrete

point of the body (Taylor 367).

 rR m
M

1

2-5

RFSig

 The RFSig (Radio Frequency Signature) software package consists of a MATLAB

driver program and extensive Java libraries for high fidelity radar simulation. RFSig performs

algorithms in both the time and frequency domains. It is capable of generating plots using all

combinations of range, Doppler, and time (Carpenter and Cebula 1). RFSig interfaces closely

with LL6D; it combines the trajectory or time history files generated by LL6D with APSM

(Augmented Point Scatterer Model) files for each object and a simulated radar - with

parameters defined by the user - to produce the desired plots.

APSM files define the reflective characteristics of an object, and are further explained

in the Scatterer Definitions section. This software suite was heavily modified by the project

team during our summer internship; our goal was to make it more streamlined and user

friendly. We designed and implemented a graphical user interface and added supplementary

functionality, such as the ability to save and load settings without requiring additional copies

of the main program.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

11

Framing the Problem

 The analysis we are performing is not taken from actual radar data; we are merely

trying to interpret simulations that model possible scenarios. This requires the writing of

scatterer definition files to model the geometries of the objects we are observing, and

scenario definition files that describe the actual events unfolding.

Scatterer Definitions

Objects are modeled as rigid wireframes in xml files (see Appendix B: Reentry

Vehicle XML Code) according to the Augmented Point Scatterer Model, with scattering

points that the radio signal reflects off of. The geometries and relative positions of these

scattering points are detailed in the file, so the geometry of objects can be easily edited.

Furthermore, one can control the strength return from each scatterer, the angular range for

which each scatterer is visible, and how sharp the power drop-off outside that range is. This

is a useful feature that becomes more evident in the Range-Time Intensity Plots section.

The simulation package we are using contains various scattering models. The

dumbbell is the simplest object, composed of two point scatterers separated by a fixed

distance. Although it is instructive when learning the essentials of scenario interpretation, it

is not very useful when it comes to modeling realistic scenarios. The tank and reentry vehicle

(RV) scatterer models are more geometrically complicated and better suited for this purpose.

There are several types of scattering points used in these xml files: point scatterer,

slipping, specular, and cavity returns. Point scatterers are rather self explanatory; a point

scatterer is a salient zero-dimensional feature that simply reflects the radio signal back to the

antenna at reduced power. Physical examples of point scatterers include the nose of a cone,

antennae, and the tips of wings. Slipping returns behave similar to point scatterers, but they

are not fixed to a point on the object. Slipping returns are usually found on curved surfaces,

such as the side of a cylinder. As the cylinder spins, the slipping return “moves” in the

opposite direction so that it always faces the radar.

Specular returns typically characterize any flat surface on the object. This return is

only seen when the surface is near perpendicular to the radar line of sight; at this time it

sends back a very strong return. Cavity returns model any openings or depressions that may

exist on the object. When the radio signal enters a cavity, it bounces off the walls of the

Approved for Public Release
07-MDA-3047 (25 JAN 08)

12

cavity, and returns a rather chaotic signal. This generates noise on the radar tracks that is

directly proportional to the depth of the cavity.

Scenario Definitions

The scenarios we use are defined with the use of configuration files. These are text

files that outline the objects involved and the events that are enacted upon them (see

Appendix C: Sample Configuration File). Various parameters such as the objects‟ masses,

moments of inertia, and the gravity model are outlined. The time at which each event occurs

and what objects are affected are also recorded in the configuration file.

One can chose from a wide variety of events to implement, from simple

modifications of an object‟s angular velocities to complex ballistic missile guidance

algorithms. LL6D is written such that it can read in these configuration files for a simulation

as long as they are written following the guidelines in the LL6D manual. The events most

important to us are “DeployVehicle” events, which outline the characteristics of a splitting

event. We also make extensive use of “setState” events, which enable editing of the objects‟

velocities; this is useful when characterizing a crossing event.

Range-Time Intensity Plots

 There are many types of images that can be generated using the data supplied by a

radar. For the purposes of our project we will be studying Range-Time Intensity plots

(RTIs). The analysis of RTIs comprises the bulk of our work, so we must have a thorough

understanding of how to read them. RTIs illustrate how the different scattering points on

objects move over time. Often this motion is periodic because the object in question has

some rotational velocity, also known as the object‟s tumble rate.

 As can be seen in Figure 2-2, relative range is shown on the x-axis. This range is the

distance to the radar relative to the observed object‟s center of rotation. Time is shown on

the y-axis, and is measured in seconds since the start of the simulation. The intensity of the

return is shown using a color axis, and is measured in decibels relative to a square meter

(dBsm).

Approved for Public Release
07-MDA-3047 (25 JAN 08)

13

Dumbbell RTI

 The dumbbell scattering model is composed of two scattering returns attached by a

rigid, non-reflective rod. Figure 2-2 shows a simple example of what the RTI would look like

for a tumbling dumbbell. The physical scenario is illustrated to the left of the RTI; the

position of the dumbbell is shown with relation to the radar line of sight (RLOS) at three

different times.

At t = 106.5 s, the dumbbell is perpendicular to the RLOS. Consequently, scatterers

a and b are equidistant from the radar, causing their respective scatterer tracks to overlap in

the corresponding RTI (the center of rotation has no radar track since it is not a scatterer). A

minor aside: in truth the scatterers are slightly further away than the center of rotation, but

this distance is negligible for the usual case where the dumbbells are very short in

comparison to the much larger distance to the radar antenna (see Appendix A: Scatterer

Distance Clarification).

At time t = 107 s, scatterer a is further away from the radar than scatterer b due to

the tumbling nature of the dumbbell. This results in a positive relative range for a and a

negative relative range for b. At time t = 107.5 s, the dumbbell has tumbled 90 degrees and is

aligned parallel to the RLOS. Thus scatterer a has reached its apex and is the furthest it will

be from the radar with respect to the center of rotation. On the other hand, scatterer b is at

 Relative Range (m)

T
im

e
 (

s
e
c
)

-4 -3 -2 -1 0 1 2 3 4 5
106

106.5

107

107.5

108

108.5

109

109.5

110

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

a b

a

b

a

b

RLOS

t = 106.5 s

t = 107.0 s

t = 107.5 s

Figure 2-2: Rotating Dumbbell Diagram and RTI

Approved for Public Release
07-MDA-3047 (25 JAN 08)

14

its nadir and is the closest it will be to the radar with respect to the center of rotation. This is

shown on the RTI by the two very separate tracks.

Reentry Vehicle RTI

 The RV scattering model used for our simulations assumes a solid cone-shaped

object with no cavities. It has returns at the base and the nose. Figure 2-3 depicts an RTI of

an RV tumbling nose over base with its center axis parallel to the RLOS. Between t = 109 s,

and t= 110 s, it can be seen that one of the tracks on the RTI disappears. This is due to a

phenomenon called shadowing. If the RLOS is perpendicular to the base, as shown in Figure

2-4, the radar cannot see the nose and thus its track disappears from the RTI. This is logical

since the base shadows the nose from the sight of the radar (Weiner). This is also the raison

d‟être for controlling the angular visibility of objects in the APSM files (as described in the

Scatterer Definitions section).

Relative Range (m)

T
im

e
 (

s
e
c
)

-4 -3 -2 -1 0 1 2 3 4 5
106

106.5

107

107.5

108

108.5

109

109.5

110

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

 Figure 2-3: RV RTI

RLOS

Figure 2-4: RV Base

Shadowing Nose

Approved for Public Release
07-MDA-3047 (25 JAN 08)

15

Tank RTI

The tank scattering model is

cylindrically shaped and has openings

at both ends. The openings are

referred to as cavity returns. Figure

2-5 depicts an RTI of a tank tumbling

end over end with its center axis

parallel to the RLOS. The noisy

returns seen in the RTI are a result of

the radar signal entering these cavities,

bouncing around inside, and returning

chaotically (Weiner). One of the ends

has a deeper cavity than the other,

resulting in different cavity return levels depending on the orientation of the tank. Although

less apparent than the RV, shadowing can also be seen on the tank RTI at t ≈ 106.3s and at

t ≈ 108.7 s.

Intersection Angle

 The slope of a radar track on an RTI is a graphical representation of its

corresponding scatterer‟s velocity relative to the center of the tracked object. This is a

reasonable conclusion, considering the x-axis is measured in meters and the y-axis is

measured in seconds. The slope of a track is intrinsically equal to its rise divided by its run,

and is measured in seconds per meter. It is then clear that low magnitude slopes correspond

to high relative velocities, since fewer seconds would elapse per meter traveled. Similarly,

high magnitude slopes indicate low relative velocities, as more seconds would elapse per

meter traveled. Positive slopes indicate that the scatterer is moving away from the radar

antenna; comparably, negative slopes imply that the scatterer is moving closer to the radar

antenna.

Relative Range (m)
T

im
e
 (

s
e
c
)

-4 -3 -2 -1 0 1 2 3 4 5
106

106.5

107

107.5

108

108.5

109

109.5

110

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 2-5: Tank RTI

Approved for Public Release
07-MDA-3047 (25 JAN 08)

16

 Intersection angle is

directly related to speed, and this

characteristic of RTIs is

particularly pertinent to our

project. In our simulations we

always track two objects and

center the RTI on one of them.

This results in an RTI that looks

similar to Figure 2-6. The relative

speed of one object is held

constant at zero, and the relative

speed of the other object is represented by its intersection angle with the track of the

normalized object. When the relative speeds are low, the intersection angle is small, and this

can make differentiating between crosses and splits more difficult. Conversely, if the relative

speed is large, the intersection angle is big, and this can simplify the process of discerning

between crosses and splits.

Figure 2-6: Two-track RTI example

Approved for Public Release
07-MDA-3047 (25 JAN 08)

17

3. Methodology

The three main objectives of our project are as follows:

 To develop a set of heuristics that will allow us to decide whether an event is a cross

or a split.

 To develop a human decision-making model that codifies these heuristics.

 To produce operating curves that exhibit the effectiveness of the human decision-

making model.

Due to time constraints and the fact that we could not access real radar data we had to

reduce the scope of our project by limiting the number of cases we modeled and by making

certain assumptions. The program we wrote to randomize the RTI generation process

chooses between four scenario templates: a cross with or without tumble (see Figure 3-1 and

Figure 3-2), or a split with or without tumble (see Figure 3-3 Figure 3-4).

Figure 3-1: Cross with tumble

Figure 3-2: Cross without tumble

Approved for Public Release
07-MDA-3047 (25 JAN 08)

18

Additionally, we track only two objects at any given time; these objects are modeled as

identical RVs. Each Monte Carlo simulation corresponded to a specific bandwidth, relative

velocity and observation time before and after the event.

For the purposes of our project we are assuming crosses happen between targets that

originate from a common object, and thus their relative speed is smaller than it would be if

they were completely unrelated. However, splitting speeds are even smaller because the

objects are separating under small forces generated by springs or small thrusters right around

the time we start tracking them. We also assumed that the spread of crossing velocities

would, for the most part, be wider than the spread of splitting velocities. Both the splitting

and the crossing speeds were approximated because we do not have access to statistical data

associated with these variables.

Most of the RTIs we generated were edge cases with respect to the time before the

event. It is easier to maintain a track than to start one, therefore it is logical to assume we

would have more time after the event than before it. We are also focusing on edge cases

because they are non-trivial to interpret.

Figure 3-3: Split with tumble

Figure 3-4: Split without tumble

Approved for Public Release
07-MDA-3047 (25 JAN 08)

19

Developing heuristics to distinguish a split from a cross

 Before we could translate our mental discrimination process into a human decision-

making model we had to develop a set of heuristics that would allow us to distinguish

between a cross and a split. In order to do this we had to identify parameters that we (the

supposed radar operators) would know, and could thus base our heuristics on. The first of

these parameters is the radar‟s bandwidth, a known technical specification. The other two

parameters are the speed/intersection angle of the tracked objects, and time before/after the

event, both of which can be estimated from the RTI.

Performing exploratory exercises

Once the relevant parameters were identified, we performed two sets of exploratory

exercises. Each of us examined large sets of randomly generated RTIs, labeled each as a split

or a cross, and wrote down the reasoning behind our decision. We then compared our

decisions with the actual events, logged in a record file produced by the RTI generation

program, and took note of our accuracy. The exercises allowed us to characterize our RTI

generation program (see section 0), that is, to verify that the process was random enough

that we were not recognizing patterns and that there was an adequate ratio of edge cases to

obvious ones. Additionally, they provided an indication of how each of the observables

(bandwidth, speed/intersection angle and time before/after) affected our ability to

discriminate between splitting and crossing targets.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

20

Exercise 1

The purpose of the first exercise was for each of us to independently examine large

sets of RTIs and to determine, each using our own method, whether we were looking at a

split or a cross. The overall false identification rate was 14%. For the purposes of illustrating

the nature of this exercise, let us discuss one team member‟s approach. He examined a set of

129 RTIs. A list of reasons used to determine the nature of the event as well as the error

rates for each reason can be seen in Table 3-1. It was clear from this set that there were too

many obvious cases. To provide an example of what we considered obvious, Figure 3-5 and

Figure 3-6 show non-obvious cases on the left and obvious cases on the right.

Figure 3-5: Obscure split versus obvious split

Figure 3-6: Obscure cross versus obvious cross

Approved for Public Release
07-MDA-3047 (25 JAN 08)

21

These figures also convey how changing the bandwidth and the time before the event can

greatly affect the ease of interpretation.

The program was changed to emphasize difficult cases: the percentage of obvious

cases was decreased from approximately 50% to about 30%. This first exploratory exercise

also gave us a feel for how each of us was making decisions, and made it easier for us to

standardize a system of decision labeling that we used in the next exploratory exercise.

Exercise 2

 For this exercise, we used a more standardized approach; we all used the same

labeling system for our decisions. This exercise resulted if further refinement of the

parameters of our simulations, and illustrated the need for normal distributions of crosses

and splits. With the uniform distributions we initially used, it was too easy to tell if an event

was a cross because any event above a certain intersection angle was always a cross. Gaussian

distributions remove this certainty and more accurately reflect the physical situation. After

this exercise, we organized our rules into more rigid heuristics and set the foundation what

would eventually become our human decision-making model. The results of this exercise can

be seen in Table 3-2. It should be reemphasized that the data from these exercises was not

Reason % of decisions

affected

% Error rate Number of false

identifications

Obvious 50.39 4.62 3

Tumble of second object

originates at event

6.20 25.00 2

Large intersection angle

(cross)

5.43 0.00 0

Small intersection angle

(split)

22.40 20.69 6

Blind guess 2.33 33.00 1

Other 12.40 25.00 4

TOTAL 100.00 12.4 16

Table 3-1: Exercise 1 Results

Approved for Public Release
07-MDA-3047 (25 JAN 08)

22

used at all in our final analysis; these exercises merely helped us hone the methodology and

heuristics that would be used to analyze our ultimate data set.

Quantifying the heuristics

After performing the exploratory exercises we narrowed down our reason pool to

three rules. In order to apply these rules in a systematic fashion, we first needed to quantify

them. How we attached numbers to each of the heuristics is explained in subsequent

sections.

Time before rule

 As previously explained, most of the

RTIs we generated are edge cases with respect

to the time before the event. We determined

that two objects can be resolved before an event

occurs if their tracks are at least L (the width of

the largest track) apart. The time before the

event and this minimum separation distance

form a right angle (see Figure 3-7). Since the

intersection angle can be calculated from the

RTI, we can use trigonometry to determine tsep,

the minimum time needed in order to resolve

two objects before the event (see Equation 3-1).

Reason % of decision
affected

% Error rate Number of false
identifications

Time Before 32.64 2.11 3

Large intersection angle
(cross)

8.74 0.00 0

Small intersection angle
(split)

47.13 32.68 67

Size of track 10.57 19.57 9

Other 0.46 100.00 2

Table 3-2: Exercise 2 Results

L

θ

tsep

Signals + noise

T
im

e

Range

L

θ

tsep

Signals + noise

T
im

e

Range

Figure 3-7: Time before rule

Approved for Public Release
07-MDA-3047 (25 JAN 08)

23

s

m

mL
stsep

1

1
)tan(

][
][







3-1

 The magnitude of the ratio of the opposite side L over the adjacent side tsep is equal

to tan(θ). Since this is not a standard x versus y graph, but rather an x versus time graph, the

units are carried by a constant 1m/1s.

Width rule

 When the time before the event was greater than zero but smaller than tsep we used

the width rule when applicable. If the track before the event had a width equal to L (the

width of the central track) it suggested the presence of only one object before the event, and

therefore we labeled it a split. If the track before the event had a width greater than L,

indicating multiple objects before the event, we determined the event to be a cross. If we felt

that the case was too ambiguous, we did not use this rule.

Intersection angle rule

 As previously discussed, the angle at which two objects intersect on an RTI is

directly related to their relative speeds. As explained in section 3.1.1, we assumed the

crossing velocities to have a wider spread than the splitting velocities. Our original system

randomly chose these velocities from a uniform distribution. Crossing velocities ranged from

0.1 m/s to 6 m/s while splitting velocities spread from 0.1 m/s to 3 m/s. To minimize the

error rate we set the decision threshold at the intersection of both distributions; this meant

that if the angle rule was applied, any intersection of greater than 3 m/s was classified as a

cross, while intersections of less than 3 m/s were labeled splits. In doing this we obtained a

0% false cross rate and a 50% false split rate, for a total error rate of 25% when using the

angle rule.

 In order for our program to better reflect reality we changed these distributions from

uniform to Gaussian. The normal distributions were characterized by the following means

and standard deviations:

 Vcross~μ=5 m/s, σ=2 m/s

Approved for Public Release
07-MDA-3047 (25 JAN 08)

24

 Vsplit~μ=3 m/s, σ=1 m/s

Keep in mind that a generic normal distribution is characterized by Equation 3-2.

2

2

2

)(

2

1










x

eP

3-2

Figure 3-8: Crossing and splitting velocity distributions

 For the derivation of the optimum threshold as seen in Figure 3-8, refer to

Equations 3-3, 3-4 and 3-5. The optimum threshold is the one that produces the lowest error

rate.

)
2

1
(

2

1

2

1

2

1

2

)3(

8

)5(

2

)(

2

)(

2

2

2

2

2

2

2

dxedxe

dxedxeSplitFalseCrossFalseRateError

xx

ux

s

ux

c

s

S

c

c





 







 


























3-3

Approved for Public Release
07-MDA-3047 (25 JAN 08)

25

22

2

2

2

2

23

2

2

4

25

4

2

2

)3(

8

)5(

4.2.

)
2

1
(

2

1
)min(





































 









 










ee

dxedxe
dx

d
RateErrorThreshold

xx

 3-4

s
mRateError

dx

d
Zeros 237.4))((

3-5

At this threshold, when using only the intersection angle rule, the expected total

error rate was 22.97%. The false split error rate was 35.14% and the false cross error rate

was 10.8%. This assumed an equal likelihood of splits and crosses.

 Since intersection angle is more easily observed on an RTI than relative velocity, we

converted the velocity threshold of τ=4.237 m/s to an equivalent intersection angle

threshold τangle of 27.9 degrees (see Equation 3-6).









































 9.27

10

10
80

37.42

arctanarctan

s

s
m

m

scaletime

time

scalerange

dist

angle

3-6

 Most applications of the intersection angle rule were for cases when there was no

time before the event. The time at which the event occurred was calculated by backtracking

the paths followed by the objects on the RTI.

Developing a human decision-making model

Two issues we encountered while performing our simulations were the bias and error

introduced by using humans to conduct the RTI analysis. In nearly all real radar systems

computers are used to perform the bulk of the analysis as they can operate faster and more

consistently than humans. This comes at a cost, however, in development time. Computer

Approved for Public Release
07-MDA-3047 (25 JAN 08)

26

algorithms that guide correct interpretation of data from complex sensors such as radars

require thousands of man-hours to write and test. Thus, with our time constraints making a

computer-based interpretation system unachievable, we designed our procedure and tools to

be as efficient and consistent as possible while guarding against human biases.

Organizing the Heuristics

The heuristics developed in section 0 provided several methods of interpreting RTIs,

with varying degrees of accuracy and applicability. To optimize the heuristics they were

organized for accuracy and efficiency. The two deterministic heuristics - Time Before and

Width - are applied first. If either of these rules was applied, then the correct answer was

guaranteed, excepting the small chance of operator error. Time Before was performed prior

to Width because it was quicker to apply and less susceptible to operator error. The Angle

rule was applied last for two reasons. First, it is probabilistic, and has a certain percentage of

error even when applied correctly. Second, in contrast to the previous two heuristics, it can

be applied to all RTIs. The resulting instruction set is shown below:

I. Time/Angle rule

a. If tb>= tsep
i. If ntrack=2 then CROSS
ii. If ntrack=1 then SPLIT
iii. If inconclusive, skip to II

b. If 0< tb < tsep skip to II
c. Else skip to III

II. Width rule
d. If w(t=0) > L then CROSS
e. If w(t=0) ≤ L then SPLIT
f. If inconclusive, skip to III

III. Angle rule
g. If θ > τ then CROSS
h. Else SPLIT

The first version of this instruction set was tested by the team on 200 RTIs, which

exposed several minor issues mostly related to language ambiguities that caused correct rules

to be skipped. Following revision, an additional test was conducted using the instruction set

presented in this report on another 200 RTIs. These tests presented error rates of 9.5% and

12%, a significant improvement over the results obtained prior to the creation of a

standardized instruction set (Exercise 1 and Exercise 2 in section 0). An additional

Approved for Public Release
07-MDA-3047 (25 JAN 08)

27

contributor to the decrease in error during these tests was the introduction of automation

for certain interpretation tasks, such as measuring the intersection angle and time before the

event. Automating these tasks with Matlab greatly improved interpretation accuracy while

also decreasing the amount of time required to examine each RTI.

Generating the Range-Time Intensity Plots

To generate curves illustrating the performance of our heuristics, a large sample size

was necessary. As the project team did not possess the necessary security clearances, use of

real data was not an option, so simulated RTIs needed to be used. The simulated RTI

generation process - as implemented using the original Lincoln Laboratory software - was

cumbersome and slow, requiring in excess of five minutes per RTI, all of it demanding the

presence of a human operator. Applying these heuristics many times to a small set of RTIs

would introduce the potential for heavy bias, as the nuances of each RTI would sink into the

observer, such that correctly identifying the event occurring in the RTI would depend on

factors that a realistic observer would not have available. Thus, the project team needed to

develop a system for rapidly generating large numbers of RTIs with varying parameters.

The new and improved RTI generation system was implemented as a MATLAB

program split into three primary script files: RandRTI.m, LL6DMatlabnMQP.m, and

RunsimMQP.m. The code for these scripts can be found in Appendix E: MATLAB Code

Used For RTI Generation. The first script, RandRTI, was written from scratch. This file

contains the code that controls the simulation, allowing the user to set the values for fixed

variables and the bounds for random variables, as well as indicate what directories the

program will use. RandRTI contains code for each template scenario used by the project.

These templates are LL6D configuration files (see Appendix C: Sample Configuration File)

which have been written to describe a particular event, but with holes for certain randomized

variables. After completing its initial tasks, the program enters a loop, with the number of

iterations equal to the number of RTIs that will be generated. The first action performed in

the loop is to randomly choose one of the templates.

In addition to the template specific variables, each template is also subject to

variation in bandwidth and the amount of time visible before and after the event. The

scenario variables are shown in Table 3-4. The templates are described in Table 3-3.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

28

ID Name Description Template-Specific Variables

1 CrossL Cross, second object moving to the

left

Relative Velocity

Starting Distance

2 Split Split, second object moving to the

right

Split Time

Split Velocity

3 CrossTumbleL Cross with tumbling objects,

second object moving to the left

Relative Velocity

Starting Distance

Tumble Rate for each object

4 SplitTumble Split with tumbling objects, second

object moving to the right

Split Time

Split Velocity

Tumble Rate for each object

5 CrossR Cross, second object moving to the

right

Relative Velocity

Starting Distance

6 CrosSTumbleR Cross with tumbling objects,

second object moving to the right

Relative Velocity

Starting Distance

Tumble Rate for each object

7 MQPSplit(-V) Split, second object moving to the

left

Split Time

Split Velocity

8 MQPSplitTumble(-V) Split with tumbling objects, second

object moving to the left

Split Time

Split Velocity

Tumble Rate for each object

Table 3-3: Scenario Templates

Approved for Public Release
07-MDA-3047 (25 JAN 08)

29

Variable Distribution Description

Bandwidth Discrete: 100, 500, 1000 (MHz) Radar Bandwidth

Time Before Uniform: -1.5 to 1 (s) Time Before Event

Time After Uniform: 5 to 15 (s) Time After Event

Relative Velocity Normal: μ=5, σ=2 (m/s) Closing Velocity of Crossing

Objects

Starting Distance Uniform: 2 to 15 (m) Starting separation for

crossing objects

Split Time Uniform: 20 to 150 (s) Time of separation for

splitting objects

Split Velocity Normal: μ=3, σ=1 (m/s) Separation velocity for

splitting objects

Tumble Rate Uniform: .1 to 2 (Hz) Rate at which objects spin

about their center point

Table 3-4 : Scenario Variables

The velocity distributions were modeled as normal distributions to account for the

fact that most objects originating from the same object would have similar relative velocities.

The bandwidth was randomly chosen from a set of three possibilities; this allowed us to see

how our results would change if a radar with a different bandwidth was used. The other

variables were chosen at random from uniform distributions within certain imposed limits.

The limits were chosen so as to avoid having a plethora of trivial cases, hence the Time

Before parameter has a very narrow range to choose from.

Once the program generated the random values for the selected template, it

performed three tasks. First, it wrote the results of the randomizations to a record file, which

allowed us to go back and find out the parameters that generated any given scenario. Second,

it wrote the actual configuration file, formatted to be read in by LL6D. Third, it began

execution of the LL6DmatlabnMQP script.

LL6DmatlabnMQP is a modified version of a script originally written by Lincoln

Laboratory staff. Its original function was to produce time history or trajectory files for a

given configuration file. To make the program perform as we needed, we changed it in

several ways. The first was to alter the way the program performed input and output to suit

the needs of runsimMQP, the third script. This primarily involved setting up specific file

Approved for Public Release
07-MDA-3047 (25 JAN 08)

30

paths and changing how output files were named. The second change was to add

calculations that would automate some of the RTI interpretation. The program calculates the

distance between the two objects at the end of the timescale and uses the result, along with

the dimensions of the RTI, to calculate the intersection angle as it is displayed on the screen.

These calculations are then returned to RandRTI, which reformats them and feeds them into

runsimMQP.

RunsimMQP is another program which was not originally written by the project

team, but was modified first during the team‟s summer internship at Lincoln Laboratory and

then further during the course of the project. This program is intended to combine time

history files describing a physical situation with scatterer files describing the radar cross

section of each object to produce an RTI. The modified version changes the file creation

string to include information that assisted in our RTI interpretation. The filename contains

the bandwidth, time before, time needed before (calculated using the method in section 0),

object width, and intersection angle. Having this data immediately viewable while looking at

the RTI greatly improved accuracy and decreased time needed to view each one.

Demonstrating the Effectiveness of the Human Decision-Making Model

Once we developed our human decision-making model, the next step was to test its

effectiveness. We generated and analyzed 3001 RTIs. This gave us a large sample size and

many varying combinations of intersection angle, bandwidth, and time before the event. A

larger sample size with even more RTIs would have been better for statistical analysis, but

time constraints required us to limit it.

Using our decision-making model, we examined the RTIs and documented our

answers in an Excel sheet. We also recorded the specific route used by the human decision-

making model to reach the decision for each RTI. Excel then made it easy to calculate the

overall error rate of our human decision making model, and furthermore, the level of

accuracy of each individual heuristic in the model. The next step was to condense this deluge

of data into something readable and presentable. We decided to construct operating curves

that show the overall effectiveness of our human decision-making model. An example

operating curve of this nature can be seen in Figure 3-9

Approved for Public Release
07-MDA-3047 (25 JAN 08)

31

It can be seen that the operating curve displays three dimensions of data: intersection

angle on the x-axis, bandwidth on the y-axis, and probability of correct identification on the

color-axis. We used three distinct bandwidths in our RTI generation software, hence the 3

separate rows. To enable calculations of realistic probabilities, we quantized the x-axis. Since

our software randomly generates the intersection angle, it was highly unlikely that any angles

would be repeated on multiple RTIs. Quantization allowed us to combine the data from

different angles in the same neighborhood, and calculate a probability of correct

identification for that specific neighborhood of angles.

The probability is illustrated by the color of the cell; darker shades correspond to

higher probabilities. It is logical that the lowest probability of correct identification is near

0.50, since one can always randomly guess if the event is a cross or a split. This operating

curve example relates bandwidth to intersection angle, but we also created a curve relating

the time before the event to intersection angle. In this case, we quantized the time axis for

the same reasons as the intersection angle axis.

Figure 3-9: Sample operating curve

Approved for Public Release
07-MDA-3047 (25 JAN 08)

32

If we could display the probability of correct identification with respect to time

before the event, bandwidth and angle on a four dimensional graph the operating curve

would probably be smoother and easier to understand.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

33

4. Results and Discussion

In order to achieve the major goal of this project we had to first accomplish a series

of intermediary tasks. First we wrote a program to randomly generate RTIs and we

performed exploratory exercises to quantify our heuristics. The results of these exercises,

together with observation and research allowed us to quantify the heuristics. Most

importantly we were able to organize them logically into the human decision-making model

shown below. The bold italicized numbers were used to identify at what point in the model

we stopped and made our decision when analyzing a given RTI.

I. Time/Angle rule
a. If tb ≥ tsep

i. If ntrack=2 then CROSS
ii. If ntrack=1 then SPLIT
iii. If inconclusive, skip to II

b. If 0< tb < tsep skip to II
c. Else skip to III

II. Width rule
a. If w(t=0) > L then CROSS
b. If w(t=0) ≤ L then SPLIT
c. If inconclusive, skip to III

III. Angle rule
a. If θ > τ then CROSS
b. Else SPLIT

These subtasks and their outcomes are presented in the Methodology because they guided

the development the project. Each minor outcome was used as stepping stone to reach the

next accomplishment. This process culminated with the creation of the set of operating

curves that describe our human decision-making model.

In our final round of testing we examined 3001 RTIs and tabulated the data in Excel

spreadsheets similar to Table 4-1.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

34

Decision Reason Angle Bandwidth Time

Before

True Label

S 6 7.812 1000 -.017 C

S 6 3.681 100 .391 S

C 3 39.607 500 .106 C

S 2 19.563 500 .601 S

Table 4-1: Sample data record

We recorded the decision made and the reason behind it, that is, at what point we

stopped at in the human decision-making model. To allow more complex analysis of our key

discrimination parameters we also recorded the intersection angle, bandwidth, and time

before the event for each RTI. Our RTI generation software prints a record file (see

Appendix D: Sample Record File) that includes the details of each RTI. Looking at this we

were able to record each event‟s true nature and therefore calculate our accuracy. The Excel

spreadsheet was imported into MATLAB to produce operating curves that illustrate the

probability of correct detection for different values of angle, bandwidth, and time before the

event.

Initial System Performance

Once our data was recorded in the Excel spreadsheet we were able to characterize

our system‟s performance in different ways. Table 4-2 presents a brief summary of our data -

number of samples and error rates according to the nature of the event. Table 4-3 is more

detailed and breaks down the number of samples and error rates according to what rule was

used to identify the event. We consider the mistakes made using the time before and width

rules human error and those made using the angle rule probabilistic error.

As can be seen below, the initial system performance indicated areas for

improvement. These improvements were made and the revised system performance can be

seen in section 0.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

35

In order to produce our initial curves we used the angle threshold of θt= 27.9°

calculated in section 0. This meant that anytime we used the angle rule to make a decision,

we simply labeled the RTI a cross if the intersection angle was greater than this threshold,

and a split if it was less than this threshold. To calculate this angle we minimized the error

rate function (see Equations 3-3, 3-4 and 3-5). The physical analogue of this function is the

sum of false splits and false crosses. We calculated the error rates at this threshold, assuming

an equal likelihood of a split and cross and the application of only the angle rule. Our overall

error rate should have been 22.97%, our false split error 35.14% and our false cross error

10.80%. Applying the human decision making model, the angle rule in conjunction with the

Number of

samples Percent Of Total

Samples 3001 100.00%

Correct 2537 84.54%

Errors 464 15.46%

Cross 1409 46.95%

Splits 1591 53.02%

False Split 409 21.01%

False Cross 54 5.12%

Table 4-2: Data summary

 Time Before Rules Width Rules Angle Rules

Reason
(See Human Decision-Making Model) 1 2 3 4 5 6

Number of Samples 581 457 179 228 296 1259

Percent of Total 19.36% 15.23% 5.96% 7.60% 9.86% 41.95%

Combined Number of Samples 1038 407 1555

Combined Percent of Total 34.59% 13.56% 51.82%

Number of Errors 44 27 393

Error Rate When Rule Used 4.24% 6.63% 25.27%

Percent of Total Error 9.48% 5.82% 84.70%

Table 4-3: Human Decision-Making Model Performance

Approved for Public Release
07-MDA-3047 (25 JAN 08)

36

time before rule and the width rule, resulted in a significant reduction of these error rates

(see Table 4-2).

We created the curves in subsequent sections to graphically characterize our system‟s

performance. The two main relations we modeled were bandwidth versus angle and time

versus angle.

Probabilities of Correct Identification with Respect to Bandwidth

We wrote a MATLAB program (see Appendix F: MATLAB Operating Curve Code

Example) that could both read in the Excel spreadsheets we recorded our data in and

produce a variety of operating curves. The first one we will discuss is Figure 4-1, which

illustrates the effect of bandwidth and intersection angle on the probability of correct

identification.

The MATLAB program we wrote to build the operating curves strives to maintain

statistical significance by ensuring that each angular neighborhood had 120 data points

(distributed among the three bandwidths). As a consequence of this, and the fact that the

angles were chosen from a Gaussian distribution (see Section 0), the width of each angular

neighborhood varies.

It can be seen that the darker neighborhoods correspond to higher probabilities of

correct decision-making for their respective parameters. However, aside from seeing a sharp

drop-off in probability near the threshold, not much information can be gleaned from Figure

4-1. To make the operating curve more readable we smoothed it by using a five point

moving average – taking the mean of the probability of correct detection in one

neighborhood and that of the two neighborhoods on either side of it (see Figure 4-2).

Approved for Public Release
07-MDA-3047 (25 JAN 08)

37

 Figure 4-1: System Performance Given Bandwidth and Intersection Angle

Figure 4-2: Smoothed Curve of System Performance Given Bandwidth
and Intersection Angle

Approved for Public Release
07-MDA-3047 (25 JAN 08)

38

Figure 4-2 is a lot more readable. One can clearly see that the probability of correct

identification is poorest at the threshold, which is logical because that is the angle where the

likelihood of having a split and the likelihood of having a cross are equal. Therefore the

probability should be slightly better than a coin flip, assuming that the non-angle rules are

able to correctly identify some that the angle rule would have misinterpreted.

 As expected, the probability of correct identification approaches unity at very high

and low angles of intersection because it unlikely to have a cross at low angles or a split at

high angles.

Probabilities of Correct Identification with Respect to Time

The operating curve for time versus angle was constructed a little differently. Our

simulation did not have discrete times to choose from as was the case of bandwidth. Since

the time distribution was uniform, we had to quantize the y-axis to allow the calculation of

probabilities. The unsmoothed and smoothed versions of these curves can be seen in Figure

4-3 and Figure 4-4 respectively.

Again, there is a sharp decrease in probability of correct identification near the angle

threshold when there is not sufficient time after the event to interpret the situation.

Figure 4-3: System Performance Given Time Before and Intersection Angle

Approved for Public Release
07-MDA-3047 (25 JAN 08)

39

Figure 4-4: Smoothed Performance Given Time Before and Intersection Angle

Approved for Public Release
07-MDA-3047 (25 JAN 08)

40

Threshold Optimization

After building the data set and observing system performance, the group examined

what effect varying the threshold would have on the error rates. First, the data set was

manipulated to determine the effect the first two rules, Time Before and Width, had on

interpretation accuracy. This can be seen in Figure 4-5.

Two important conclusions can be drawn from this result. First, the human decision-

making model consistently out-performs an interpretation system that uses only the

probabilistic elements. Second, and much more interesting, the threshold for the „All Rules‟

curve that yields the highest probability of correct detection, 13.9 degrees, is far from our

calculated threshold, 27.9 degrees. To confirm this we examined the components of the

error rate, false-cross and false-split, as the threshold was moved. This can be seen in Figure

4-6.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 10 15 20 25 30

Threshold Angle

P
ro

b
a
b

il
it

y
 o

f
C

o
rr

e
c
t

D
e
te

c
ti

o
n

All Rules Angle Rule Only

Figure 4-5: Effect of Width and Time Before Rule on System Accuracy

Approved for Public Release
07-MDA-3047 (25 JAN 08)

41

This second analysis confirms the results of the first: the ideal threshold is different

from the calculated threshold.

Faults with Initial System Performance

Further investigation revealed that the system was performing worse than the

theoretical maximum of error at and around the threshold; it was performing worse than

random guessing. To determine the cause of this poor performance, we examined the

distribution of the apparent speed on the RTIs we observed and compared it to the

distribution used to generate the RTIs. These can be seen in Figure 4-7 and Figure 4-8,

respectively.

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35

Threshold Angle

P
ro

b
a
b

il
it

y
 o

f
E

rr
o

r

False Cross

False Split

Figure 4-6: Error Rates at Various Thresholds

Approved for Public Release
07-MDA-3047 (25 JAN 08)

42

Figure 4-7: Distribution of Sample Velocities with Fitted Normal Curves

Figure 4-8: Distribution of Velocities for RTI Generation

Approved for Public Release
07-MDA-3047 (25 JAN 08)

43

The distribution for the actual data is significantly different than we expected. The

statistics for the actual and expected data are shown in Table 4-4.

Data Split Mean Split Standard
Deviation

Cross Mean Cross Standard
Deviation

Expected 3.000 1.000 5.000 2.000

Actual 1.222 .769 4.235 1.4328
Table 4-4: Statistics for Expected and Actual Data

The distributions for both crosses and splits in the actual data have lower means and

standard deviations than the distribution used to create the RTIs. This explains the optimal

threshold being much lower than the calculated threshold.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

44

Effect of Viewing Geometry on Threshold

The cause of this error is due to the difference between the real and apparent relative

distances of the objects. For example, see Figure 4-10. dA-B represents the actual distance

between the two observed objects. dA and dB are the measured distances of the two objects.

From the radar‟s point of view, the relative distance is dB-dA, which is less than dA-B.

 The degree to which this affects the observations depends on the physical position

of the objects. If the objects are collinear with the bore sight of the radar, the measured

relative distance is equal to the actual relative distance. If the second object is not located

along the same line as the first point, but in the same plane (the plane being formed by the

elevation sweep of the radar), the relative distance is dA-Bcosθ, as shown in Figure 4-10.

Figure 4-9: Effect of Viewing Geometry on

Measured Relative Distance

Approved for Public Release
07-MDA-3047 (25 JAN 08)

45

When the two objects are not coplanar – as is likely the case in most of the RTIs we

observed – the relationship between physical distance and apparent distance becomes more

complicated, including the difference in azimuth that the radar must sweep to see both

objects. The end result of these viewing geometry issues is that the velocities we have

observed have been consistently smaller than those expected, but the relationship between

the actual and expected velocities is not linear.

Threshold Modification

Given the nonlinear relationship between the parameters used to generate the

scenario and the observed values, the simplest way to determine the new threshold was to

find the value which gave us the lowest error. The error rates for all rules and for the angle

rule only are presented in Figure 4-11.

Figure 4-10: Relative Distance Error

dA-B

 A B
θ

Radar Lines of Sight

Approved for Public Release
07-MDA-3047 (25 JAN 08)

46

For our revised threshold we chose 13.9 degrees, as it gives the lowest error rate

using all rules and is also close to the angle rule only threshold.

Revised System Performance

Given the revised threshold, we recalculated the operating curves. Exploring the

effect of angle on the probability of correct identification, shown in Figure 4-12, we see

performance nearly always over 90%, with an expected sharp decrease about the threshold.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35

Angle

P
ro

b
a

b
il

it
y

 o
f

E
rr

o
r

All Rules Angle Rule Only

13.3, .0639 13.9, .0639

14.5, .0913

Figure 4-11: Identification Error Rate with Possible Thresholds

Approved for Public Release
07-MDA-3047 (25 JAN 08)

47

Revised Probabilities of Correct Identification with Respect to Bandwidth

The operating curves presenting system performance with the revised threshold

show significant improvements in probability of correct RTI interpretation over those using

the original calculated threshold. In Figure 4-13, which displays performance at various

bandwidths and intersection angles, system performance is consistently high (over 90%

correct identifications) at all bandwidths when the angle is greater than 24°. Performance is

also high, though more bandwidth dependant, at lower angles (below 10°). In between 10°

and 24°, close to the threshold, performance dips reaching a minimum of approximately

65% correct identifications.

Figure 4-12: Effect of Angle on System Performance

Approved for Public Release
07-MDA-3047 (25 JAN 08)

48

Revised Probabilities of Correct Identification with Respect to Time

The operating curve presented in Figure 4-14, which displays system performance

versus time before the event and intersection angle with the revised threshold, exhibits

similar improvements to those detailed in section 0. The new threshold has the band of poor

performance transferred to the angle band of 10° to 24°. However, even in this angle band,

performance is consistently higher than it was close to the threshold in the original operating

curves.

Figure 4-13: Smoothed Curve of System Performance Given Bandwidth and Intersection Angle with

Revised Threshold

Approved for Public Release
07-MDA-3047 (25 JAN 08)

49

Figure 4-14: Smoothed Curve of System Performance Given Time Before Event and Intersection

Angle with Revised Threshold

Approved for Public Release
07-MDA-3047 (25 JAN 08)

50

5. Conclusions and Future Recommendations

The evaluation of our human decision-making model demonstrates that it enhanced

our ability to correctly interpret crosses and splits with limited information. By implementing

a decision-making model mixing both deterministic and probabilistic rules, we consistently

out-performed a solely probabilistic interpretation method. Our analysis found that

probability of correct detection was highest when the bandwidth was large, the time before

the event was substantial, and the relative velocities of the objects was extreme (either very

high or very low). Human error had a small effect on our end results, affecting fewer than

3% of interpretations.

The conclusion of our research leaves open several avenues for additional learning.

One variable we would have liked to examine was viewing geometry. Variations in viewing

geometry can greatly affect the resulting RTIs, though its effect on our ability to correctly

discriminate between splits and crosses is unknown. Another possible follow-up to our

research would be to examine scenarios of higher complexity, such as those using multiple

objects following more complex motions. The research would be further improved were it

conducted using parameters – cross and split velocities, especially - derived from real data

rather than best guesses. Finally, the research could be extended by focusing on either the

human or machine elements. Research into the effect of the human element could be done

by examining error rates across various operators and attempting to minimize or even

eliminate human error; for the machine element, it could be through development of a fully

automated algorithm for performing cross/split discrimination.

Approved for Public Release
07-MDA-3047 (25 JAN 08)

51

6. Works Cited

Amoozegar, Farid, Vahraz Jamnejad, Timothy Pham, and Robert Cesarone. “Trends in

Development of Broad-Band Phased Arrays for Space Applications”. IEEE Explore.

Volume 3-1414. Paper 1335. Accessed September 18, 2007.

<http://ieeexplore.ieee.org/iel5/8735/27685/01235257.pdf?arnumber=1235257>

Carpenter, M., and D. Cebula. “MATLAB Radar Scene Generation Toolbox”.

September 30, 2004.

Hawley, John K., Anna L. Mares, and Cheryl A. Giammanco. “The Human Side of

Automation: Lessons for Air Defense Command and Control”. March 2005.

Iamaio, Nathaniel. “LL6D V2.4: User Manual”. November 2, 2004.

Kaplan, Dr. Laurence M. “Missile Defense: The First Sixty Years”. Missile Defense Agency.

27 September 2006. Accessed September 10, 2007.

<http://www.mda.mil/mdalink/pdf/first60.pdf>

Missile Defense Agency (MDA). “History of Ballistic Missile Defense.”

<http://www.mda.mil/mdalink/html/history.html>

Raytheon. Products and Services. < http://www.raytheon.com/products/cobra_dane/>

Accessed September 10, 2007.

Skolnik, Merrill L. Introduction to Radar Systems 3rd. New York, NY: Tata McGraw-Hill,

2001.

Spence, Lee. Private conversations.

http://ieeexplore.ieee.org/iel5/8735/27685/01235257.pdf?arnumber=1235257
http://www.mda.mil/mdalink/pdf/first60.pdf
http://www.mda.mil/mdalink/html/history.html
http://www.raytheon.com/products/cobra_dane/

Approved for Public Release
07-MDA-3047 (25 JAN 08)

52

Taylor, John R. Classical Mechanics. Sausalito, CA: University Science Books, 2005.

Toomay, J.C., and Paul J. Hannen. Radar Principles for the Non-specialist 3rd. Raleigh, NC:

SciTech Publishing Inc, 2004.

United States Department of Defense.”History of the Missile Defense Organization”.

Accessed September 18, 2007.

<http://www.defenselink.mil/specials/missiledefense/history.html>

Weiner, Stephen D. Private conversations.

Weiner, Stephen D and Sol M. Rocklin. “Discrimination Performance Requirements for

Ballistic Missile Defense.” The Lincoln Laboratory Journal. 7.1. (1994)

Werrel, Kenneth P. “Hitting a Bullet with a Bullet: A History of Ballistic Missile Defense.”

College of Aerospace Doctrine, Research and Education. Air University. Research

Paper 2000-02. (2000)

http://www.defenselink.mil/specials/missiledefense/history.html

Approved for Public Release
07-MDA-3047 (25 JAN 08)

53

Appendix A: Scatterer Distance Clarification

As previously mentioned, the range in

an RTI is measured with respect to the center of

rotation of the object. In Figure A-1 both

scatterers and the center of rotation appear to

be the same distance away, d’, from the radar

when in fact the scatterers are slightly further

away at a distance d.

Since d‟ is much larger than s, the

separation between the centres of the spheres at

either end of the dumbbell, the difference

between d’ and d is negligible. The relationship

between these two distances is derived using the

Pythagorean Theorem in Equation A- 1.

2

2

2
' 










s
dd

A- 1

 For example, for a dumbbell with s = 4m and d’ =100,000m the difference between

d and d’ is 2∙10-5meters using Equation A- 2.

  mdd 5

2
25 102100

2

4
10' 










A- 2

d’

d s/2
d’

d s/2

Figure A- 1: Distances from Radar to Object

Approved for Public Release
07-MDA-3047 (25 JAN 08)

54

Appendix B: Reentry Vehicle XML Code

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<RFmodel>

 <Format Version="3.0"/>

 <Name>Basic RV</Name>

 <Background>

 <Author>Cebula</Author>

 <Version>1.0</Version>

 <Date>15 October 2002</Date>

 <Verification>Eyeball comparison to S/X band static

patterns</Verification>

 <Description>This is a model of a simple cone using a

collection of point scatterers</Description>

 </Background>

 <Band>S C X</Band>

 <Requirements>

 pointResponse

 </Requirements>

 <Center>

 <Position Axial="0.0" OffAxis="0.0" Roll="0.0"/>

 </Center>

 <Components>

 <Group Name="nose" Hidden="false">

 <Component Class="mitll.rcssim.BasicScatterer"

ID="1">

 <Type>nose</Type>

 <Response>pointResponse</Response>

 <Comment>Simple nose scatterer @ -

20dBsm</Comment>

 <PP>0.1 0.0</PP>

 <OP>0.001 0.001</OP>

 <Position Axial="1.0" OffAxis="0.0"/>

 <Radius>0.05</Radius>

 <Aspects>0 100 7</Aspects>

 <Rolls>0 360 7</Rolls>

 </Component>

 </Group>

 <Group Name="specular" Hidden="false">

 <Component Class="mitll.rcssim.BasicScatterer"

ID="2a">

 <Type>slipping</Type>

 <Response>pointResponse</Response>

 <Comment>Narrow, strong peak specular</Comment>

 <PP>10.0 0.0</PP>

 <OP>5.0 0.01</OP>

 <Position Axial="0.0" OffAxis="0.33"/>

 <Aspects>70.3 70.5 0.3</Aspects>

 <Rolls>0 360 0.3</Rolls>

 </Component>

 <Component Class="mitll.rcssim.BasicScatterer"

ID="2b">

 <Type>slipping</Type>

 <Response>pointResponse</Response>

Approved for Public Release
07-MDA-3047 (25 JAN 08)

55

 <PP>0.5 0.0</PP>

 <OP>0.6 0.1</OP>

 <Position Axial="0.0" OffAxis="0.33"/>

 <Aspects>68 76 3.2</Aspects>

 <Rolls>0 360 3.2</Rolls>

 </Component>

 </Group>

 <Group Name="base" Hidden="false">

 <Component Class="mitll.rcssim.BasicScatterer"

ID="3">

 <Type>slipping</Type>

 <Response>pointResponse</Response>

 <PP>1.0 0.0</PP>

 <OP>0.5 0.0</OP>

 <Position Axial="-0.8" OffAxis="0.5"/>

 <Aspects>150 180 3</Aspects>

 <Rolls>0 360 3</Rolls>

 </Component>

 <Component Class="mitll.rcssim.BasicScatterer"

ID="4">

 <Type>backslipping</Type>

 <Response>pointResponse</Response>

 <PP>0.1 0.0</PP>

 <OP>0.05 0.0</OP>

 <Position Axial="-0.8" OffAxis="0.5"/>

 <Aspects>150 180 3</Aspects>

 <Rolls>0 360 3</Rolls>

 </Component>

 <Component Class="mitll.rcssim.BasicScatterer"

ID="5">

 <Type>fixed</Type>

 <Response>pointResponse</Response>

 <PP>0.3 0.1</PP>

 <OP>0.1 0.1</OP>

 <Position Axial="-0.7" OffAxis="0.2"

Roll="30"/>

 <Aspects>130 180 5</Aspects>

 <Rolls>0 360 5</Rolls>

 </Component>

 <Component Class="mitll.rcssim.BasicScatterer"

ID="6">

 <Type>slipping</Type>

 <Response>pointResponse</Response>

 <PP>0.04 0</PP>

 <OP>0.03 0</OP>

 <Position Axial="-0.8" OffAxis="0.5"/>

 <Aspects>0 130 7</Aspects>

 <Rolls>0 360 7</Rolls>

 </Component>

 <Component Class="mitll.rcssim.BasicScatterer"

ID="2a">

 <Type>slipping</Type>

 <Response>pointResponse</Response>

 <Comment>Narrow, strong peak specular</Comment>

 <PP>10.0 0.0</PP>

 <OP>5.0 0.01</OP>

 <Position Axial="-0.7" OffAxis="0.0"/>

Approved for Public Release
07-MDA-3047 (25 JAN 08)

56

 <Aspects>179.7 180.0 0.3</Aspects>

 <Rolls>0 360 0.3</Rolls>

 </Component>

 </Group>

 </Components>

</RFmodel>

Approved for Public Release
07-MDA-3047 (25 JAN 08)

57

Appendix C: Sample Configuration File

Model1Test1718.cfg

VerbosityLevel = Silent

Verbosity Stream =

BinaryOutput = false

DragEffectsOn = true

WriteBirthSamples = true

WriteDeathSamples = true

PrintEventSummary = true

GravityModel = GravityJGM3 4 4

FileNameSuffix =

TrajWriteForObjects = all

TrajectoryFileDir = TrajectoryFiles

_OBJECTS

1 RV1 11.0 56.0 56.0 0.234 0.0 0.0

0.001 700

2 RV2 11.0 56.0 56.0 0.234 0.0 0.0

0.001 700

_END_OBJECTS

_EVENTS

1 DataRate 0.0 0.1

2 SetState 1 0.0 6678137.0 0.0 0.0 0.0 0.0 2000.0

3 SetState 2 0.0 6678137.0 3.458 0.0 0.0 -4.211 2000.0

4 SetRates 1 0 0 1.817 0

5 SetRates 2 10 0 1.098 0

_END_EVENTS

Appendix D: Sample Record File

1. Split DepTime: 79.3408 DepVel: 2.56744 Angle: 7.77827 SepVel: 1.09657 Bwdth: 1000

2. Split-V DepTime: 115.967 DepVel: -1.33442 Angle: 3.58323 SepVel: 0.467833 Bwdth: 100

3. SplitTumble DepTime: 27.5259 DepVel: 3.12533 Tmbl1: 0.770449 Tmbl2: 1.64502 Angle: 8.80514

 SepVel: 1.40003 Bwdth: 100

4. Split DepTime: 45.8459 DepVel: 3.28768 Angle: 12.5155 SepVel: 1.36135 Bwdth: 100

5. CrossTumbleR VelY: 7.29294 DistY: -6.3058 Tmbl1: 1.09779 Tmbl2: 0.48503 Angle: 39.0288

 SepVel: 6.14787 Bwdth: 100

6. Split-V DepTime: 85.3657 DepVel: -4.19092 Angle: 13.7193 SepVel: 1.54913 Bwdth: 1000

7. SplitTumble DepTime: 59.3594 DepVel: 4.18916 Tmbl1: 1.12918 Tmbl2: 0.386659 Angle: 3.09961

 SepVel: 0.353462 Bwdth: 1000

8. SplitTumble DepTime: 136.97 DepVel: 2.96237 Tmbl1: 1.6611 Tmbl2: 1.32533 Angle: 5.40343

 SepVel: 0.834971 Bwdth: 1000

9. CrossTumbleR VelY: 4.34542 DistY: -9.64083 Tmbl1: 0.687651 Tmbl2: 1.69314 Angle: 26.9434

 SepVel: 3.47531 Bwdth: 1000

10. CrossTumbleL VelY: -4.65072 DistY: 10.077 Tmbll: 1.61016 Tmbl2: 1.918 Angle: 26.1443

 SepVel: 4.12691 Bwdth: 500

11. SplitTumble-V DepTime: 133.846 DepVel: -2.81329 Tmbl1: 1.50088 Tmbl2: 0.359386 Angle: 8.62391

 SepVel: 1.0555 Bwdth: 500

12. SplitTumble-V DepTime: 80.9992 DepVel: -3.72579 Tmbl1: 0.223084 Tmbl2: 1.97784 Angle: 14.2975

 SepVel: 1.60956 Bwdth: 100

13. SplitTumble DepTime: 95.3749 DepVel: 2.41168 Tmbl1: 1.54469 Tmbl2: 1.10666 Angle: 8.65242

 SepVel: 1.15797 Bwdth: 500

14. Split DepTime: 93.8177 DepVel: 5.18319 Angle: 15.0427 SepVel: 1.97677 Bwdth: 500

15. CrossL VelY: -5.27279 DistY: 13.3668 Angle: 29.656 SepVel: 4.56688 Bwdth: 1000

16. Split-V DepTime: 84.7805 DepVel: -3.11393 Angle: 8.53249 SepVel: 1.36479 Bwdth: 100

17. CrossTumbleR VelY: 2.86646 DistY: -9.15216 Tmbl1: 0.6091 Tmbl2: 0.935856 Angle: 18.0116

 SepVel: 2.36862 Bwdth: 100

Approved for Public Release
07-MDA-3047 (25 JAN 08)

59

Appendix E: MATLAB Code Used For RTI Generation

E.1 RandRTI.m

function RandRTI(numIters,recordName,isUniform,clearFiles)

if nargin==2

 isUniform = 0;

 clearFiles = 0;

end

if nargin==3

 clearFiles = 0;

end

tic

cd('C:\Program Files\MATLAB\R2006b\work\');

addpath([pwd '\RFSIG2\']);

addpath([pwd '\RFSIG2\src\']);

mkdir([pwd '\RFSIG2\output\MQP\' recordName '\'])

recfid=fopen([recordName '.txt'],'wt');

numTemplates = 8;

iter = 1;

if clearFiles

 delete([pwd '\RFSIG2\output\MQP\' recordName '*.jpg']);

end

%%% Template Variables

%% All Cases

BandwidthVals = [100,500,1000];% 100 500 1000

BandwidthLs = [100,1;500,.2;1000,.1];

TimePre = [-1.5,1];

TimePost = [5,15];

SensorPosLat = [0,0];

SensorPosLong = [5, 5];

sensorPos = zeros(2,1);

%% Case 1: MQPCross (L)

C1_Name = 'CrossL';

C1_LIM_VelY = [-6,-.1]; %-.275,-.1

C1_LIM_DistY = [2, 15]; %5,15

C1_LIM_VelY_N = [-5,2];

%% Case 2: MQPSplit

C2_Name = 'Split';

C2_LIM_DepTime = [20, 150];

C2_LIM_DepVel = [.1, 3]; %.1,1

C2_LIM_DepVel_N = [3,1];

%% Case 3: MQPCrossTumble (L)

C3_Name = 'CrossTumbleL';

Approved for Public Release
07-MDA-3047 (25 JAN 08)

60

C3_LIM_VelY = C1_LIM_VelY;

C3_LIM_VelY_N = C1_LIM_VelY_N;

C3_LIM_DistY = C1_LIM_DistY;

C3_LIM_Tumble = [.1, 2];

%% Case 4: MQPSplitTumble

C4_Name = 'SplitTumble';

C4_LIM_DepTime = C2_LIM_DepTime;

C4_LIM_DepVel = C2_LIM_DepVel;

C4_LIM_DepVel_N = C2_LIM_DepVel_N;

C4_LIM_Tumble = C3_LIM_Tumble;

%% Case 5: MQPCross (R)

C5_Name = 'CrossR';

C5_LIM_VelY = [.1,6]; %.1,.275

C5_LIM_VelY_N = -1.*C1_LIM_VelY_N;

C5_LIM_DistY = [-30, -2]; %-15,-5

%% Case 6: MQPCrossTumble (R)

C6_Name = 'CrossTumbleR';

C6_LIM_VelY = C5_LIM_VelY;

C6_LIM_VelY_N = -1.*C1_LIM_VelY_N;

C6_LIM_DistY = C5_LIM_DistY;

C6_LIM_Tumble = C3_LIM_Tumble;

%% Case 7: MQPSplit (-V)

C7_Name = 'Split-V';

C7_LIM_DepTime = C2_LIM_DepTime;

C7_LIM_DepVel = [-3,-.1]; %-1,-.1

C7_LIM_DepVel_N = -1*C2_LIM_DepVel_N;

%% Case 8: MQPSplitTumble (-V)

C8_Name = 'SplitTumble-V';

C8_LIM_DepTime = C2_LIM_DepTime;

C8_LIM_DepVel = C7_LIM_DepVel;

C8_LIM_DepVel_N = -1*C2_LIM_DepVel_N;

C8_LIM_Tumble = C3_LIM_Tumble;

%% Main Loop

while iter <= numIters

 cfgFile = [recordName num2str(iter)];

 rTemp = ceil(length(BandwidthVals)*rand(1));

 Bandwidth = BandwidthVals(rTemp);

 rTemp = ceil(numTemplates*rand(1));

 writeCFGHeader(cfgFile);

 %interceptAngle = 0;

% rTemp = [1, 1, 2, 2];

% rTemp = rTemp(iter);

 tOffStart = randbound(TimePre);

 tOffEnd = randbound(TimePost);

 rScale = 80 * ((tOffEnd)/10)

 sensorPos(1) = randbound(SensorPosLat);

 sensorPos(2) = randbound(SensorPosLong);

 switch rTemp

Approved for Public Release
07-MDA-3047 (25 JAN 08)

61

 case{1} %Cross

 if(isUniform)

 C1_VelY = randbound(C1_LIM_VelY);

 else

 C1_VelY = randgauss(C1_LIM_VelY_N);

 end

 C1_DistY = randbound(C1_LIM_DistY);

 intersectTime = abs(C1_DistY / C1_VelY);

 writeEventsCross(cfgFile,C1_DistY,C1_VelY);

 [interceptAngle,seperationVel] =

ll6dMATLABnMQP(intersectTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rSca

le);

 fprintf(recfid,'%g. %s \t\t%s: % 6.6g \t%s: % 6.6g

\t%s: % 6.6g\t%s: % 6.6g\t%s: %

6.6g\n',iter,C1_Name,'VelY',C1_VelY,'DistY',C1_DistY,'Angle',interceptA

ngle,'SepVel',seperationVel,'Bwdth',Bandwidth);

 case{2} %Split

 if(isUniform)

 C2_DepVel = randbound(C2_LIM_DepVel);

 else

 C2_DepVel = randgauss(C2_LIM_DepVel_N);

 end

 C2_DepTime = randbound(C2_LIM_DepTime);

 intersectTime = C2_DepTime;

 writeEventsSplit(cfgFile,C2_DepTime,C2_DepVel);

 [interceptAngle,seperationVel] =

ll6dMATLABnMQP(C2_DepTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rScale)

;

 fprintf(recfid,'%g. %s \t\t%s: % 6.6g \t%s: % 6.6g \t%s: %

6.6g\t%s: % 6.6g\t%s: %

6.6g\n',iter,C2_Name,'DepTime',C2_DepTime,'DepVel',C2_DepVel,'Angle',in

terceptAngle,'SepVel',seperationVel,'Bwdth',Bandwidth);

 case{3} %Cross w/ Tumble

 if(isUniform)

 C3_VelY = randbound(C3_LIM_VelY);

 else

 C3_VelY = randgauss(C3_LIM_VelY_N);

 end

 C3_DistY = randbound(C3_LIM_DistY);

 intersectTime = abs(C3_DistY / C3_VelY);

 C3_Tumble1 = randbound(C3_LIM_Tumble);

 C3_Tumble2 = randbound(C3_LIM_Tumble);

writeEventsCrossTumble(cfgFile,C3_DistY,C3_VelY,C3_Tumble1,C3_Tumble2);

 [interceptAngle,seperationVel] =

ll6dMATLABnMQP(intersectTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rSca

le);

 fprintf(recfid,'%g. %s \t%s: % 6.6g \t%s: % 6.6g \t%s:

% 6.6g \t%s: % 6.6g\t%s: % 6.6g\t%s: % 6.6g\t%s: %

6.6g\n',iter,C3_Name,'VelY',C3_VelY,'DistY',C3_DistY,'Tmbll',C3_Tumble1

,'Tmbl2',C3_Tumble2,'Angle',interceptAngle,'SepVel',seperationVel,'Bwdt

h',Bandwidth);

 case{4} %Split w/ Tumble

 C4_DepTime = randbound(C4_LIM_DepTime);

 if(isUniform)

 C4_DepVel = randbound(C4_LIM_DepVel);

 else

Approved for Public Release
07-MDA-3047 (25 JAN 08)

62

 C4_DepVel = randgauss(C4_LIM_DepVel_N);

 end

 intersectTime = C4_DepTime;

 C4_Tumble1 = randbound(C4_LIM_Tumble);

 C4_Tumble2 = randbound(C4_LIM_Tumble);

writeEventsSplitTumble(cfgFile,C4_DepTime,C4_DepVel,C4_Tumble1,C4_Tumbl

e2);

 [interceptAngle,seperationVel] =

ll6dMATLABnMQP(C4_DepTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rScale)

;

 fprintf(recfid,'%g. %s \t%s: % 6.6g \t%s: % 6.6g \t%s: %

6.6g \t%s: % 6.6g\t%s: % 6.6g\t%s: % 6.6g\t%s: %

6.6g\n',iter,C4_Name,'DepTime',C4_DepTime,'DepVel',C4_DepVel,'Tmbl1',C4

_Tumble1,'Tmbl2',C4_Tumble2,'Angle',interceptAngle,'SepVel',seperationV

el,'Bwdth',Bandwidth);

 case{5} %Cross

 if(isUniform)

 C5_VelY = randbound(C5_LIM_VelY);

 else

 C5_VelY = randgauss(C5_LIM_VelY_N);

 end

 C5_DistY = randbound(C5_LIM_DistY);

 intersectTime = abs(C5_DistY / C5_VelY);

 writeEventsCross(cfgFile,C5_DistY,C5_VelY);

 [interceptAngle,seperationVel] =

ll6dMATLABnMQP(intersectTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rSca

le);

 fprintf(recfid,'%g. %s \t\t%s: % 6.6g \t%s: % 6.6g

\t%s: % 6.6g\t%s: % 6.6g\t%s: %

6.6g\n',iter,C5_Name,'VelY',C5_VelY,'DistY',C5_DistY,'Angle',interceptA

ngle,'SepVel',seperationVel,'Bwdth',Bandwidth);

 case{6} %Cross w/ Tumble

 if(isUniform)

 C6_VelY = randbound(C6_LIM_VelY);

 else

 C6_VelY = randgauss(C6_LIM_VelY_N);

 end

 C6_DistY = randbound(C6_LIM_DistY);

 intersectTime = abs(C6_DistY / C6_VelY);

 C6_Tumble1 = randbound(C6_LIM_Tumble);

 C6_Tumble2 = randbound(C6_LIM_Tumble);

writeEventsCrossTumble(cfgFile,C6_DistY,C6_VelY,C6_Tumble1,C6_Tumble2);

 [interceptAngle,seperationVel] =

ll6dMATLABnMQP(intersectTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rSca

le);

 fprintf(recfid,'%g. %s \t%s: % 6.6g \t%s: % 6.6g \t%s:

% 6.6g \t%s: % 6.6g\t%s: % 6.6g\t%s: % 6.6g\t%s: %

6.6g\n',iter,C6_Name,'VelY',C6_VelY,'DistY',C6_DistY,'Tmbl1',C6_Tumble1

,'Tmbl2',C6_Tumble2,'Angle',interceptAngle,'SepVel',seperationVel,'Bwdt

h',Bandwidth);

 case{7} %Split % Intersect time = DepTime

 C7_DepTime = randbound(C7_LIM_DepTime);

 if(isUniform)

 C7_DepVel = randbound(C7_LIM_DepVel);

 else

Approved for Public Release
07-MDA-3047 (25 JAN 08)

63

 C7_DepVel = randgauss(C7_LIM_DepVel_N);

 end

 intersectTime = C7_DepTime;

 writeEventsSplit(cfgFile,C7_DepTime,C7_DepVel);

 [interceptAngle,seperationVel] =

ll6dMATLABnMQP(C7_DepTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rScale)

;

 fprintf(recfid,'%g. %s \t\t%s: % 6.6g \t%s: % 6.6g \t%s: %

6.6g\t%s: % 6.6g\t%s: %

6.6g\n',iter,C7_Name,'DepTime',C7_DepTime,'DepVel',C7_DepVel,'Angle',in

terceptAngle,'SepVel',seperationVel,'Bwdth',Bandwidth);

 case{8} %Split w/ Tumble

 C8_DepTime = randbound(C8_LIM_DepTime);

 if(isUniform)

 C8_DepVel = randbound(C8_LIM_DepVel);

 else

 C8_DepVel = randgauss(C8_LIM_DepVel_N);

 end

 intersectTime = C8_DepTime;

 C8_Tumble1 = randbound(C8_LIM_Tumble);

 C8_Tumble2 = randbound(C8_LIM_Tumble);

writeEventsSplitTumble(cfgFile,C8_DepTime,C8_DepVel,C8_Tumble1,C8_Tumbl

e2);

 [interceptAngle,seperationVel] =

ll6dMATLABnMQP(C8_DepTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rScale)

;

 fprintf(recfid,'%g. %s \t%s: % 6.6g \t%s: % 6.6g \t%s: %

6.6g \t%s: % 6.6g\t%s: % 6.6g\t%s: % 6.6g\t%s: %

6.6g\n',iter,C8_Name,'DepTime',C8_DepTime,'DepVel',C8_DepVel,'Tmbl1',C8

_Tumble1,'Tmbl2',C8_Tumble2,'Angle',interceptAngle,'SepVel',seperationV

el,'Bwdth',Bandwidth);

 otherwise

 disp(['Case error, rTemp = ' num2str(rTemp)])

 end

 load('C:\program files\MATLAB\R2006b\work\RFSIG2\MQP.mat');

 guioutput.record = recordName;

 guioutput.ident = cfgFile;

 guioutput.WBinfo.bandwidthMHz = Bandwidth;

 guioutput.time.start = intersectTime + tOffStart;

 if guioutput.time.start < 0

 guioutput.time.start = 0;

 end

 guioutput.time.end = intersectTime + tOffEnd;

 guioutput.WBinfo.maxrange = rScale;

 guioutput.angle = interceptAngle;

 guioutput.BWTable = BandwidthLs;

 guioutput.eventTime = intersectTime;

 save('C:\program

files\MATLAB\R2006b\work\RFSIG2\MQP.mat','guioutput');

 cleansingleMQP;

 cd('C:\Program Files\MATLAB\R2006b\work\');

 iter = iter + 1;

 delete([cfgFile '.cfg']);

Approved for Public Release
07-MDA-3047 (25 JAN 08)

64

end

toc

E.2 ll6dMATLABnMQP.m

%%%

%%%%%%%%

% UNCLASSIFIED

%%%

%%%%%%%%

% LL6dMATLAB.m

%

% Basic calculation of random generating threat variations for

analysis

%

% version 0 : MATLABClientCode.m N. Iamaio June 28, 2004

% version 0.1: LL6DMATLAB.m B.Tipton June 29,2004

% Added more comments and time history functions

%

% +++

% BEFORE USING THIS CODE IN MATLAB VERIFY YOU HAVE INSTALLED LL6D

% CORRECTLY

% 1) downloaded and installed LL6D libraries according to

README.txt

% 2) Created a "classpath.txt" file in a directory in which this

% MATLAB is running. Inside the classpath.txt are lines with

the

% paths to all the LL6D libraries.

% 3) Run MATLAB in the same directory as the classpath.txt

%

%%%

%%%%%%%%

%%%

%%%%%%%%

%%%

%%%%%%%%%

% I) Create the trajectories

%%%

%%%%%%%%%

%

% I.1 Create flight manager object

% The second argument is the LL6D threat configuration file

% The third argument is 0 for write to file or 1 for buffer

output to memory

% Be sure to watch memory usage when buffering memory,

trajectories can

% 10s of megabytes.

%

%flightMgr = javaObject('timehistory.FlightManager',...

% 'Single.cfg');

Approved for Public Release
07-MDA-3047 (25 JAN 08)

65

function

[sepAng,sepVel]=ll6dMATLABnMQP(intersectTime,config,timeRange,sensorPos

,rScale)

%Globals

global randGen;

global props;

global jnull;

global sensor;

global NBinfo;

global WBinfo;

%Filename and path definitions

%Program will create and look for trajectory and time history files in

the

%data folder, which must be a subdir of the working directory.

%Config, scatterer file, and APSM file must be in the working

directory.

wkDir = 'C:\Program Files\MATLAB\R2006b\work\';

dataDir = 'TrajectoryFiles\';

%scenarioName = 'MQPSplitTumble';

objNames = {'RV1','RV2'};

scattererFiles = {'basicrv.xml','basicrv.xml'}; %should be

an xml file

alignIndex = 1; %Index of object to align on

apsmFile = 'SimdefXML.properties'; %properties file

name

range_scale = 200; %specifies how wide or narrow of a

range you want the rti to cover

gen_files = 1;

gen_rti = 0;

cfgIsBinary = 0;

%%%

cfgFile = [config '.cfg'];

outputDir = 'RFSIG2\trajectories\RandRTI';

%%%%%%%%%%% DEFINE RTI DURATION

rti_time=100:.25:101;

%or if you want an automatically set time window, just uncomment the

%getTimeLimits line before the call to form_rti

num_objects = length(objNames);

%arr_ind = 1:num_objects;

trajobj = cell(num_objects,1);

thf = cell(num_objects,1);

trks = cell(num_objects,1);

props = java.util.Properties;

jnull = props.get('Junk');

rfsig_dir = '.\';

radar.f0 = 10; % Center frequency (GHz)

radar.bw = 300; % Bandwidth (MHz)

Approved for Public Release
07-MDA-3047 (25 JAN 08)

66

radar.rw = range_scale;% Range window (m) for

combined response from all objects

radar.rg = .1; % Range gate spacing (m)

radar.brf = 1; % Burst frequency (hz)

radar.prf = 100; % Instantaneous PRF (Hz)

within each burst

radar.t_burst = 1; % Time duration (s) of each

burst

radar.t_offset = 100; % Time offset (s) of each

burst

radar.n_p_burst = radar.prf; % Total number of bursts in

each pulse

radar.n_p_int = 1;

WBinfo.responseFilename = [rfsig_dir,'exresp_taylor.txt'];

WBinfo.respTab =

javaObject('mitll.rcssim.ResponseTable',WBinfo.responseFilename);

WBinfo.maxrange = radar.rw;

%WBinfo.snroff = [-15 -12];

WBinfo.snroff = [-50 -50];

WBinfo.pulsetimes = 250;

isWB = true;

WBinfo.rangeGateSize = radar.rg;

WBinfo.bandwidthMHz = radar.bw;

WBinfo.freqGHz = radar.f0;

WBinfo.windowDefinition = 'taylor 40 6';

WBinfo.noiseFloor = -60;

WBinfo.pol = 'PP';

WBinfo.polarization = WBinfo.pol;

NBinfo.rangeGateSize = radar.rg;

NBinfo.bandwidthMHz = radar.bw;

NBinfo.freqGHz = radar.f0;

NBinfo.polarization = WBinfo.pol;

NBinfo.windowDefinition = 'taylor 40 6';

scenario.random_seed = sum(100*clock);

scenario.random_seed = 1;

randSeed = scenario.random_seed;

randGen = javaObject('java.util.Random',randSeed);

if gen_files

 !del/Q TrajectoryFiles

 FILEBUFFERMODE=0;

 flightMgr = javaObject('timehistory.FlightManager',...

 cfgFile,FILEBUFFERMODE);

 flightMgr.runSim;

end

%

% I.5 Retrieve the output. These are trajectories

%

% trajarray is an Java array Object of type java.util.Arraylist

% Retrieve an individual trajectory with the syntax

traj=trajarray.get(#);

Approved for Public Release
07-MDA-3047 (25 JAN 08)

67

% Remember Java uses "C" style array indexing. The first object

has

% index 0! This is opposed to MATLAB which indexes from 1.

%%%%%%%%%%%%%%%%%%%%%%%%%%% UPDATE FILENAME/FILEPATH TO FIT CURRENT

OBJECT

trajio = mitll.sixd.TrajectoryIO;

iter=1;

if cfgIsBinary

 while(iter<=length(objNames))

 trajobj(iter) = trajio.readBin([wkDir dataDir objNames{iter}

'.bin']);

 iter = iter+1;

 end

else

 while(iter<=length(objNames))

 trajobj(iter) = trajio.readAscii([wkDir dataDir objNames{iter}

'.dat']);

 iter = iter+1;

 end

end

%%%

%%%%%%%%

% II) "TimeHistory" Coversion.

% Convert the Truth Trajectory in ECI coordinates to sensor/radar

% reference frame measurements (range, azimuth, elevation). Also,

% make basic calculations of radar coverage with respect to

% Field-of-View and a very basic "noise floor" calculation

% (Noise Floor is defined as the negative SNR on a 0dBsm object.

% e.g. use as SNR in dB = RCS - NoiseFloor

% where NoiseFloor= 40log10(Range) - SNR_REFERENCE. See Below)

%%%

%%%%%%%%

%

% II.1 Define the sensor

%

sensor = javaObject('mitll.sixd.SensorInfo');

sensor.m_name='Bogus Radar';

% place radar at latitude, longitude, altitude = 33 deg, 130 deg, 0m

% (somewhere around Japan?)

%%%%% 'Perfect' radar - 36

sensor.m_location=javaObject('mitll.metric.LatLonAltPoint',

sensorPos(1), sensorPos(2), 0.0);

sensor.m_elevLow = 1; % 1 deg min elevation

sensor.m_elevHigh=90; % 80 deg max elevation

sensor.m_elev0 = 40; % sensor array, with boresight at 40 deg from

horizontal

sensor.m_elevKValue = 2; % ave. scanloss exponent. Scanloss(dB)= -

10log10(cos(theta)^K)

sensor.m_azimLow = 0; % min azimuth

sensor.m_azimHigh = 360; % max azimuth

Approved for Public Release
07-MDA-3047 (25 JAN 08)

68

sensor.m_azim0=0; % sensor array facing north. Note 0/360 wrapping

accounted for.

sensor.m_azimKValue=2; % ave. scanloss exponent for azimuth.

sensor.m_SNR_REF=-350; % factor accounting for sensor power, area etc.

 % Noise floor is calculated with this offset via

 % NoiseFloor=-40log10 (Range) - SNR_REFERENCE

 % Note: -350 is for a ridiculously powerful

radar

%

% II.2 Calculate what this sensor sees of the LL6D trajectories

%

traj2th=javaObject('mitll.sixd.Trajectory2TimeHistory');

iter=1;

while(iter<=length(trajobj))

 thf(iter) = javaMethod('generate',traj2th, trajobj{iter}, sensor);

 iter = iter+1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

iter=1;

thfio = mitll.sixd.TimeHistoryFileIO;

while(iter<=length(thf))

 thfio.writeAscii(thf{iter},[dataDir objNames{iter} '_THF.dat']);

 iter = iter+1;

end

%%%

%%%%%%%%

% III) "GenSig" Coversion.

% Convert radar observations into a "TrackedObjectLL6dGenSig" class

% which uses the Augmented Point Scatterer Model (APSM) to produce

% radar signatures and pulse-by-pulse data products (RTI,DTI,RDI,

etc).

%

%

% NOTE: Code only works if rfsig/mitll/APSM are distributed in

addition to

% LL6D

%

% This section still under construction. --June 29, 2004 BT

%

%%%

%%%%%%%%

%Copy moves THF files to appropriate place for SIMGUI

copyfile([wkDir dataDir '*thf.dat'],[wkDir outputDir])

props=javaObject('java.util.Properties');

iter = 1;

while(iter<=length(trajobj))

 trks{iter} = create_track([wkDir outputDir '\' objNames{iter}

'_THF.dat'],0,[wkDir scattererFiles{iter}],[wkDir

apsmFile],objNames(iter),objNames(iter),'b--',props);

Approved for Public Release
07-MDA-3047 (25 JAN 08)

69

 iter = iter+1;

end

sepDist = abs((trks{2}.getRanges(intersectTime+timeRange(2),0)-

trks{1}.getRanges(intersectTime+timeRange(2),0)));

sepAng = atand((sepDist*1000/rScale) / (timeRange(2)/(timeRange(2)-

timeRange(1))));% * ((timeRange(2)-timeRange(1))/10))%/timeRange(2))

sepVel = 1000*sepDist/(timeRange(2)-timeRange(1));

%

% III.3 Form a range-time-intensity plot

% (form_rti from rfsig)

%timetemp = trk.getTimeLimits;

%rti_time = timetemp(1):(timetemp(2)-timetemp(1))./1000:timetemp(2);

if gen_rti

 rti_out=form_rti_backup(rti_time,trks,isWB,trks{alignIndex},250,[-

15 -12],radar.rw,true,WBinfo.noiseFloor,0);

% RTI Plotter

 figure;

 plotrti(rti_out.amps,rti_out.r,rti_out.t);

end

'RTI completed.' %#ok<NOPRT>

E.3 runsimMQP.m

function [] = runsim(guiinput)

%%%

%%%%

%%

%% runsim.m: Driver for RFSIG generation

%%

%% Driver program that generates radar data using APSM scatterer files

and LL6D

%% time history files.

%%

%%%

%%%%

%%%

%%%%

%% runsim.m: modified version of testsim.m, changed to work with the

GUI

%% as input.

%%%

%%%%

Approved for Public Release
07-MDA-3047 (25 JAN 08)

70

%%%

%%%%

%%

%% $Id: testsim.m,v 1.6 2005/05/25 19:15:16 bkate Exp $

%%

%% AUTHOR: David Cebula

%% MIT LINCOLN LABORATORY

%% April 7, 2003

%%

%% Copyright (c) 2005 MIT/Lincoln Laboratory.

%% All Rights Reserved.

%%

%% THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF

%% MIT/Lincoln Laboratory. The copyright notice does

%% not evidence any actual or intended publication of

%% such source code.

%%

%%%

%%%%

javaaddpath([pwd '/jars/mitll_external-3.1.2.jar']);

javaaddpath([pwd '/jars/jnl.jar']);

global DIR_ROOT;

global jnull;

global props;

global NBinfo;

global WBinfo;

global pcparams;

global randGen;

%% create java null

props = javaObject('java.util.Properties');

jnull = props.get('Junk');

%% make a directory root

DIR_ROOT = [pwd '/'];

addpath src;

time = guiinput.time;

ts = time.start:time.step:time.end;

%% Pulls structs out of input var

WBinfo = guiinput.WBinfo;

NBinfo = guiinput.NBinfo;

DTIinfo = guiinput.DTIinfo;

IMinfo = guiinput.IMinfo;

NBIMinfo = guiinput.NBIMinfo;

WBIMinfo = guiinput.WBIMinfo;

pcparams = guiinput.pcparams;

opts = guiinput.opts;

defComplex = guiinput.defComplex;

staticRange = guiinput.staticRange;

record = guiinput.record;

cfgFile = guiinput.ident;

Approved for Public Release
07-MDA-3047 (25 JAN 08)

71

randSeed = 1;

randGen = javaObject('java.util.Random',randSeed);

props.put('RandomGenerator',randGen);

%% Sets up default file paths and makes neccessary formatting changes

if guiinput.defaultFilepaths

 defComplex.thfloc = [DIR_ROOT 'trajectories/' defComplex.cfgFile];

 defComplex.apsmdefloc = [DIR_ROOT 'simdefAPSM.properties'];

 defComplex.scattdefloc = [DIR_ROOT 'targets/'];

 WBinfo.responseFilename = [DIR_ROOT

'targets/responses/exresp_taylor.txt'];

 opts.saveLoc = regexprep([DIR_ROOT 'output\MQP\' record

'\'],'\','/');

 %% saveLoc character replacement neccessary to avoid errors in

sprintf

else

 defComplex.thfloc = [defComplex.thfloc defComplex.cfgFile];

 opts.saveLoc = regexprep(opts.saveLoc,'\','/');

 %% saveLoc character replacement neccessary to avoid errors in

sprintf

end

WBinfo.respTab =

javaObject('mitll.rcssim.ResponseTable',WBinfo.responseFilename);

%% Generates tracks as mitll.architecture.ITrackedObjects

trks = gen_tracks(defComplex); %

trkAlign = trks{defComplex.trkAlign};

%%%%%%%%%%%%%%%%%%%%%%%%%% Computation and Output

%%%%%%%%%%%%%%%%%%%%%%%%%

%% open file to facilitate output

if opts.saveEMF

 fout = fopen([opts.saveLoc 'hdrALL.txt'], 'wt');

 fprintf(fout,'%.1f - %.1f\n', min(ts), max(ts));

 fprintf(fout,'define_complex.m runsim.m\n');

end

%% Show tracks

if opts.showRanges

 figure;

 hold on;

 ranges0 = trkAlign.getRanges(ts,0);

 for k=1:length(trks)

 trk = trks{k};

 rs = trk.getRanges(ts,0);

 iix = find(rs > 0);

 plot(rs(iix)-ranges0(iix),ts(iix),char(trk.getPlotStyle));

 end

 xlabel('Range (km)');

 ylabel('Time (s)');

Approved for Public Release
07-MDA-3047 (25 JAN 08)

72

 fmakep5;

 if opts.saveEMF

 str = ['print -dmeta ' '''' opts.saveLoc '''' 'range.emf'];

 eval(str);

 fprintf(fout,'range.emf Relative Ranges\n');

 end

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc

'''' '%s_range_%04.3f-%04.3f.' opts.imgXtn], cfgFile,ts(1),

ts(length(ts)))

 eval(str);

 end

end

%% WB RTI - Combo

if opts.showWBRTI

 if opts.returnAmps

 [amps,xs] =

form_rti_F(ts,trks,true,trkAlign,WBinfo.snroff,WBinfo.maxrange,true,WBi

nfo.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 [pows,xs] =

form_rti_F(ts,trks,true,trkAlign,WBinfo.snroff,WBinfo.maxrange,false,WB

info.noiseFloor);

 end

 timeScale = 0:time.step:length(ts);

 timeScale = timeScale.*time.step;

 figure;

 imagesc(xs,timeScale,pows,[-40 30]);

 axis xy;

 axis square;

 colorbar;

 xlabel('Range (m)');

 ylabel('Time (s)');

 fmakep5;

 if opts.saveEMF

 str = ['print -dmeta ' '''' opts.saveLoc ''''

'wb_combo_rti.emf'];

 eval(str);

 fprintf(fout,'wb_combo_rti.emf Wideband RTI\n');

 end

%%MQP Output Vars

angle = guiinput.angle;

Ls = guiinput.BWTable;

obsL =

interp1q(Ls(1:size(Ls,1),1),Ls(1:size(Ls,1),2),WBinfo.bandwidthMHz);

obsTime = quant((obsL/tand(angle))*length(timeScale)/length(xs),.2);

if obsTime == 0

 obsTime = .2;

end

Approved for Public Release
07-MDA-3047 (25 JAN 08)

73

eventTime = guiinput.eventTime;

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc

'''' '%s_BW%04.3f_AN%04.3f_OT%04.3f_L%04.3f_TB%04.3f.' opts.imgXtn],

cfgFile, WBinfo.bandwidthMHz, angle, obsTime, obsL, eventTime-

time.start)

 eval(str);

 end

end

pause(1);

%% NB RTI - Combo

if opts.showNBRTI

 if opts.returnAmps

 [amps,xs] =

form_rti_F(ts,trks,false,trkAlign,NBinfo.snroff,NBinfo.maxrange,true,NB

info.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 [pows,xs] =

form_rti_F(ts,trks,false,trkAlign,NBinfo.snroff,NBinfo.maxrange,false,N

Binfo.noiseFloor);

 end

 figure;

 imagesc(xs,ts,pows,[-40 30]);

 axis xy;

 colorbar;

 xlabel('Range (m)');

 ylabel('Time (s)');

 fmakep5;

 if opts.saveEMF

 str = ['print -dmeta ' '''' opts.saveLoc ''''

'nb_combo_rti.emf'];

 eval(str);

 fprintf(fout,'nb_combo_rti.emf Narrowband RTI\n');

 end

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc

'''' 'nb_combo_rti_%04.3f-%04.3f.' opts.imgXtn], ts(1),

ts(length(ts)));

 eval(str);

 end

end

%% WB RTI - singles

if opts.showWBRTIsing

 for k=1:length(trks)

 trk = trks{k};

Approved for Public Release
07-MDA-3047 (25 JAN 08)

74

 name = char(trk.getIdentifier);

 if opts.returnAmps

 [amps,xs] =

form_rti_sing(ts,trk,true,WBinfo.snroff,true,WBinfo.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 [pows,xs] =

form_rti_sing(ts,trk,true,WBinfo.snroff,false,WBinfo.noiseFloor);

 end

 figure;

 imagesc(xs,ts,pows,[-40 30]);

 axis xy;

 colorbar;

 xlabel('Range (m)');

 ylabel('Time (s)');

 title(sprintf('Object = %s', name));

 fmakep5;

 if opts.saveEMF

 fnam = sprintf('wb_rti_%s.emf', name);

 str = sprintf(['print -dmeta ' '''' opts.saveLoc ''''

'%s'],fnam);

 eval(str);

 fprintf(fout,'%s Wideband RTI; ID = %s\n', fnam, name);

 end

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' ''''

opts.saveLoc '''' 'wb_rti_%s_%04.3f-%04.3f.' opts.imgXtn], name, ts(1),

ts(length(ts)));

 eval(str);

 end

 end

end

%% NB RTI - singles

if opts.showNBRTIsing

 for k=1:length(trks)

 trk = trks{k};

 name = char(trk.getIdentifier);

 if opts.returnAmps

 amps =

form_rti_sing(ts,trk,false,NBinfo.snroff,true,NBinfo.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 pows =

form_rti_sing(ts,trk,false,NBinfo.snroff,false,NBinfo.noiseFloor);

 end

 figure;

 plot(ts,pows,char(trk.getPlotStyle));

 axis xy;

Approved for Public Release
07-MDA-3047 (25 JAN 08)

75

 colorbar;

 ylabel('RCS (dBsm)');

 xlabel('Time (s)');

 title(sprintf('Object = %s', name));

 fmakep5;

 if opts.saveEMF

 fnam = sprintf('nb_rti_%s.emf', name);

 str = sprintf(['print -dmeta ' '''' opts.saveLoc ''''

'%s'],fnam);

 eval(str);

 fprintf(fout,'%s Narrowband RCS History; ID = %s\n', fnam,

name);

 end

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' ''''

opts.saveLoc '''' 'nb_rti_%s_%04.3f-%04.3f.' opts.imgXtn], name, ts(1),

ts(length(ts)));

 eval(str);

 end

 end

end

%% Combined DTI

if opts.showDTI

 if opts.returnAmps

 [amps,fs] =

form_dti_mult(ts,trks,trkAlign,DTIinfo.prf,DTIinfo.npuls,DTIinfo.snroff

,DTIinfo.maxrange,true,DTIinfo.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 [pows,fs] =

form_dti_mult(ts,trks,trkAlign,DTIinfo.prf,DTIinfo.npuls,DTIinfo.snroff

,DTIinfo.maxrange,false,DTIinfo.noiseFloor);

 end

 figure;

 imagesc(fs,ts,pows,[-40 30]);

 axis xy;

 colorbar;

 xlabel('Frequency (Hz)');

 ylabel('Time (s)');

 fmakep5;

 if opts.saveEMF

 str = ['print -dmeta ' '''' opts.saveLoc '''' 'dti_combo.emf'];

 eval(str);

 fprintf(fout,'dti_combo.emf Combined DTI\n');

 end

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc

'''' 'dti_combo_%04.3f-%04.3f.' opts.imgXtn], ts(1), ts(length(ts)));

 eval(str);

Approved for Public Release
07-MDA-3047 (25 JAN 08)

76

 end

end

%% DTI - singles

if opts.showDTIsing

 for k=1:length(trks)

 trk = trks{k};

 name = char(trk.getIdentifier);

 if opts.returnAmps

 [amps,fs] =

form_dti_sing(ts,trk,DTIinfo.prf,DTIinfo.npuls,DTIinfo.snroff,true,DTIi

nfo.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 [pows,fs] =

form_dti_sing(ts,trk,DTIinfo.prf,DTIinfo.npuls,DTIinfo.snroff,false,DTI

info.noiseFloor);

 end

 figure;

 imagesc(fs,ts,pows,[-40 30]);

 axis xy;

 colorbar;

 xlabel('Frequency (Hz)');

 ylabel('Time (s)');

 title(sprintf('Object = %s', name));

 fmakep5;

 if opts.saveEMF

 fnam = sprintf('dti_%s.emf', name);

 str = sprintf(['print -dmeta ' '''' opts.saveLoc ''''

'%s'],fnam);

 eval(str);

 fprintf(fout,'%s DTI; ID = %s\n', fnam, name);

 end

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' ''''

opts.saveLoc '''' 'dti_%s_%04.3f-%04.3f.' opts.imgXtn], name, ts(1),

ts(length(ts)));

 eval(str);

 end

 end

end

%% Single range doppler images

if opts.showSingRDImages

 for itrk = 1:length(trks);

 if (IMinfo.makeplot ~= -99)

Approved for Public Release
07-MDA-3047 (25 JAN 08)

77

 iix = find(itrk == IMinfo.makeplot);

 if length(iix) < 1

 continue;

 end

 end

 trk = trks{itrk};

 name = char(trk.getIdentifier);

 if opts.saveAVI

 fname = sprintf([opts.saveLoc 'rd_img_%s_%04.3f-

%04.3f.avi'], name, ts(1), ts(length(ts)));

 aviobj = avifile(fname,'FPS',10);

 aviobj.quality = 100;

 end

 for k=1:length(ts)

 t = ts(k);

 imparms = trk.getImageParameters(t, 0.05, 1.0);

 IMinfo.prf = imparms(1);

 if (IMinfo.prf < 20)

 IMinfo.prf = 20;

 end

 IMinfo.npuls = ceil(imparms(2)*IMinfo.prf);

 IMinfo.snroff = 90 - 10*log10(IMinfo.npuls);

 asp = imparms(3);

 if opts.returnAmps

 [amps,xs,fs] =

form_image_sing(t,trk,IMinfo.prf,IMinfo.npuls,IMinfo.snroff,true,IMinfo

.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 [pows,xs,fs] =

form_image_sing(t,trk,IMinfo.prf,IMinfo.npuls,IMinfo.snroff,false,IMinf

o.noiseFloor);

 end

 fig = figure(99);

 set(fig,'DoubleBuffer','on');

 imagesc(fs,xs,pows,[-40 30]);

 axis xy;

 colorbar;

 xlabel('Frequency (Hz)');

 ylabel('Range (m)');

 vv = axis;

 str = sprintf('PRF = %.0f Hz; N =

%d',IMinfo.prf,IMinfo.npuls);

 ss=text(0.98*vv(1)+0.02*vv(2),0.95*vv(3)+0.05*vv(4),str);

 set(ss,'Color',[1 1 1]);

 title(sprintf('Object = %s; Time = %.3f; Aspect =

%.0f',char(trk.getIdentifier),t,asp));

 fmakep5;

Approved for Public Release
07-MDA-3047 (25 JAN 08)

78

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' ''''

opts.saveLoc '''' 'rd_img_%s_%04.3f.' opts.imgXtn], name, t);

 eval(str);

 else

 pause(0.1);

 end

 if opts.saveAVI

 set(fig,'Color',[1 1 1]);

 aviobj = addframe(aviobj,fig);

 end

 end

 if opts.saveAVI

 aviobj = close(aviobj);

 end

 end

end

%% Combined NB images

if opts.showMultNBImages

 if opts.saveAVI

 fname = sprintf([opts.saveLoc 'nb_combo_img_%04.3f-

%04.3f.avi'], ts(1), ts(length(ts)));

 aviobj = avifile(fname,'FPS',10);

 aviobj.quality = 100;

 end

 for k=1:length(ts)

 t = ts(k);

 if opts.returnAmps

 [amps,xs,fs] =

form_image_mult_F(t,trks,false,trkAlign,NBIMinfo.prf,NBIMinfo.npuls,NBI

Minfo.snroff,NBIMinfo.maxrange,true,NBIMinfo.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 [pows,xs,fs] =

form_image_mult_F(t,trks,false,trkAlign,NBIMinfo.prf,NBIMinfo.npuls,NBI

Minfo.snroff,NBIMinfo.maxrange,false,NBIMinfo.noiseFloor);

 end

 fig = figure(100);

 set(fig,'DoubleBuffer','on');

 imagesc(fs,xs,pows,[-40 30]);

 axis xy;

 colorbar;

 xlabel('Frequency (Hz)');

 ylabel('Range (m)');

 title(sprintf('Time = %.3f',t));

 fmakep5;

Approved for Public Release
07-MDA-3047 (25 JAN 08)

79

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc

'''' 'nb_combo_img_%04.3f.' opts.imgXtn], t);

 eval(str);

 else

 pause(0.1);

 end

 if opts.saveAVI

 set(fig,'Color',[1 1 1]);

 aviobj = addframe(aviobj,fig);

 end

 end

 if opts.saveAVI

 aviobj = close(aviobj);

 end

end

%% Combined WB images

if opts.showMultWBImages

 if opts.saveAVI

 fname = sprintf([opts.saveLoc 'wb_combo_img_%04.3f-

%04.3f.avi'], ts(1), ts(length(ts)));

 aviobj = avifile(fname,'FPS',10);

 aviobj.quality = 100;

 end

 for k=1:length(ts)

 t = ts(k);

 if opts.returnAmps

 [amps,xs,fs] =

form_image_mult_F(t,trks,true,trkAlign,WBIMinfo.prf,WBIMinfo.npuls,WBIM

info.snroff,WBIMinfo.maxrange,true,WBIMinfo.noiseFloor);

 pows = 20*log10(abs(amps));

 else

 [pows,xs,fs] =

form_image_mult_F(t,trks,true,trkAlign,WBIMinfo.prf,WBIMinfo.npuls,WBIM

info.snroff,WBIMinfo.maxrange,false,WBIMinfo.noiseFloor);

 end

 fig = figure(101);

 set(fig,'DoubleBuffer','on');

 imagesc(fs,xs,pows,[-40 30]);

 axis xy;

 colorbar;

 xlabel('Frequency (Hz)');

 ylabel('Range (m)');

 title(sprintf('Time = %.3f',t));

 fmakep5;

 if opts.saveIMG

Approved for Public Release
07-MDA-3047 (25 JAN 08)

80

 str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc

'''' 'wb_combo_img_%04.3f.' opts.imgXtn], t);

 eval(str);

 else

 pause(0.1);

 end

 if opts.saveAVI

 set(fig,'Color',[1 1 1]);

 aviobj = addframe(aviobj,fig);

 end

 end

 if opts.saveAVI

 aviobj = close(aviobj);

 end

end

if opts.saveEMF

 fclose(fout);

end

%% Static Range RTI - singles

if opts.showStaticRangeRTI

staticRangeTHF(time.start,time.step,time.end,staticRange.range,staticRa

nge.aspect,staticRange.orientation,staticRange.period,staticRange.noise

Floor)

 for k=1:length(trks)

 tempComplex = struct('thfloc',[pwd

'\sim_gui\settings\'],'apsmdefloc',defComplex.apsmdefloc,'scattdefloc',

defComplex.scattdefloc,'identList',{defComplex.identList(k)},'graphList

',{defComplex.graphList(k)},'typeList',{defComplex.typeList(k)},'scattL

ist',{defComplex.scattList(k)},'isBinary',0,'cfgFile','','sufext','_THF

.dat');

 tempComplex.objNameList=cellstr('staticrange');

 trktemp = gen_tracks(tempComplex);

 trk = trktemp{1};

 name = char(trk.getIdentifier);

 if opts.returnAmps

 [amps,xs] =

form_rti_sing(ts,trk,true,staticRange.snroff,true,staticRange.noiseFloo

r);

 pows = 20*log10(abs(amps));

 else

 [pows,xs] =

form_rti_sing(ts,trk,true,staticRange.snroff,false,staticRange.noiseFlo

or);

 end

 figure;

Approved for Public Release
07-MDA-3047 (25 JAN 08)

81

 imagesc(xs,ts,pows,[-40 30]);

 axis xy;

 colorbar;

 xlabel('Range (m)');

 ylabel('Time (s)');

 title(sprintf('Object = %s', name));

 fmakep5;

 if opts.saveEMF

 fnam = sprintf('wb_rti_%s.emf', name);

 str = sprintf(['print -dmeta ' '''' opts.saveLoc ''''

'%s'],fnam);

 eval(str);

 fprintf(fout,'%s Static Range RTI; ID = %s\n', fnam, name);

 end

 if opts.saveIMG

 str = sprintf(['print -d' opts.imgType ' ' ''''

opts.saveLoc '''' 'sr_rti_%s_%04.3f-%04.3f.' opts.imgXtn], name, ts(1),

ts(length(ts)));

 eval(str);

 end

 end

end

%msgbox('Simulation complete.');

% $Log: testsim.m,v $

% Revision 1.6 2005/05/25 19:15:16 bkate

% updated method for loading classes and libraries

%

% Revision 1.5 2005/05/25 17:13:09 bkate

% made MATLAB 6 friendly

%

% Revision 1.4 2005/05/25 11:38:19 bkate

% modified path to mitll jar

%

% Revision 1.3 2005/05/24 19:47:56 bkate

% updated for re-distribution

%

% Revision 1.2 2004/08/04 19:41:22 npiamaio

% added and addpath command to specifiy the src dir. These files

should not

% be modified. They serve as an example as to how to call teh code.

If new

% client code is written and the author thinks it useful for others

check

% those in.

%

% Revision 1.1 2004/08/04 19:10:38 npiamaio

% initial

%

Approved for Public Release
07-MDA-3047 (25 JAN 08)

82

Appendix F: MATLAB Operating Curve Code Example

%%% Operating Curve: Bandwidth, Revised Threshold
xlsFile = 'C:\Documents and Settings\chris\My Documents\final.xls';
samples = 120;

bwvals = [100 500 1000];
tbquants = 4;

[angles,blah1,blah2]=xlsread(xlsFile,'Raw Data','C2:C5000');

%#ok<NASGU>
[bwith,blah1,blah2]=xlsread(xlsFile,'Raw Data','D2:D5000'); %#ok<NASGU>
[tbefore,blah1,blah2]=xlsread(xlsFile,'Raw Data','E2:E5000');

%#ok<NASGU>
[correct,blah1,blah2]=xlsread(xlsFile,'Angle2','I2:I5000');

clear blah1
clear blah2

data=[angles bwith tbefore correct];
data=sortrows(data);
%[angles,i]=sort(angles);
ind = 1:samples:size(data,1);
ind = ind(1:end-1);
limits = ((data(ind+samples/2,1)));
limits(end)=limits(end)+1;

j=1;
bwout = cell(3,length(limits)-1);
sampSize = zeros(3,length(limits)-1);
while j<=length(bwvals)
 i=1;
 bwtest = bwvals(j);
 a=find(data(1:end,2)==bwtest);
 while i<=length(limits)-1
 b=find(limits(i)<=data(a,1) & data(a,1)<limits(i+1));
 bwout{j,i}=data(a(b),1:4);
 sampSize(j,i)=length(b);
 i=i+1;
 end
 j=j+1;
end

bwlevel = zeros(3,100*length(limits)-1);
bwlevel2 = zeros(3,length(limits)-1);
j=1;
while j<=length(bwvals)
 i=1;
 loc = 1;
 while i<=length(limits)-1
% k=1;
% while k<=size(bwout{j,i},1);
 k=size(bwout{j,i},1);
 scale = floor((limits(i+1)-limits(i))*100);

Approved for Public Release
07-MDA-3047 (25 JAN 08)

83

 if k>0
 bwlevel(j,loc:loc+scale)=sum(bwout{j,i}(1:k,4))/k;
 bwlevel2(j,i)=sum(bwout{j,i}(1:k,4))/k;
 loc=loc+scale+1;
 end
 i=i+1;
 end
 j=j+1;
end

load OperatingCurveColormap;

i=1;
finalout = zeros(length(bwvals),100*length(limits)-1);
movAve = 2;
while i<=length(bwvals)
 j=1;
 loc = 1;
 while j<=length(limits)-1
 a=j-movAve;
 b=j+movAve;
 scale = floor((limits(j+1)-limits(j))*100);
 if a<=0
 a=1;
 end
 if b>length(bwlevel2)
 b=length(bwlevel2);
 end
 finalout(i,loc:loc+scale) = mean(bwlevel2(i,a:b));
 j=j+1;
 loc = loc + scale;
 end
 i=i+1;
end

figure
hold on;
imagesc(limits,1:length(bwvals),bwlevel,[.5,1]);
colormap(mycmap);
colorbar;
axis([limits(1) limits(end)-.5 .5 length(bwvals)+.5]);
set(gca,'ytick',[1 2 3],'yticklabel',{'100';'500';'1000'})
xlabel('Angle (Deg)','FontSize',16);
ylabel('Bandwidth (MHz)','FontSize',16);
fmakep5;
hold off;

figure
hold on;
imagesc(limits,1:length(bwvals),bwlevel,[.75,1]);
colormap(mycmap);
colorbar;
axis([limits(1) limits(end)-.5 .5 length(bwvals)+.5]);
set(gca,'ytick',[1 2 3],'yticklabel',{'100';'500';'1000'})
xlabel('Angle (Deg)','FontSize',16);

Approved for Public Release
07-MDA-3047 (25 JAN 08)

84

ylabel('Bandwidth (MHz)','FontSize',16);
fmakep5;
hold off;

figure
hold on;
imagesc(limits,1:length(bwvals),finalout,[.5,1]);
colormap(mycmap);
colorbar;
axis([limits(1) limits(end)-.5 .5 length(bwvals)+.5]);
set(gca,'ytick',[1 2 3],'yticklabel',{'100';'500';'1000'})
xlabel('Angle (Deg)','FontSize',16);
ylabel('Bandwidth (MHz)','FontSize',16);
fmakep5;
hold off;

figure
hold on;
imagesc(limits,1:length(bwvals),finalout,[.75,1]);
colormap(mycmap);
colorbar;
axis([limits(1) limits(end)-.5 .5 length(bwvals)+.5]);
set(gca,'ytick',[1 2 3],'yticklabel',{'100';'500';'1000'})
xlabel('Angle (Deg)','FontSize',16);
ylabel('Bandwidth (MHz)','FontSize',16);
fmakep5;
hold off;

Approved for Public Release
07-MDA-3047 (25 JAN 08)

85

Distribution Statement
A. Approved for public release; distribution is unlimited.

