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Authorship 
 

This project was certainly a collaborative effort of the team members, however 

certain elements of it drew more heavily on our respective disciplines (Physics for Mr. 

Scheid, Electrical and Computer Engineering for Mr. Cleary and Ms. Duran). This section 

attempts to outline what parts of the project are more specifically related to one 

concentration or the other, as well as the primary contributor to each section of the report. 

 The majority of the principles described in the background section of our report are 

physical in nature; in particular, section 2.1 Radar Basics and section 2.4 Range-Time 

Intensity Plots rely heavily on the physics of radar and propagating signals. Physical 

principles also guided all the code that was used to simulate the trajectory and radar profiles 

of the objects viewed, such as in section 2.2. The quantification of our heuristics in section 

3.1.2 and Appendix A were grounded in physical and mathematical concepts. Lastly, section 

4.2.2 outlined the physical dependence of the apparent angular and translational rates of 

objects on the viewing geometry of the radar. 

 This project had a heavy simulation component that relied on Electrical and 

Computer Engineering principles. Specifically, the random generation of RTIs required 

multiple upgrades to the simulation software provided by Lincoln Laboratory staff. The 

specifics of these upgrades are outlined in section 3.2.2 and the code can be found in 

Appendix E. Organizing and presenting the data for sections 4.1 and 4.3 required writing 

additional MATLAB scripts, an example of which can be found in Appendix F.  
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Abstract 
 

It can be difficult to discern between crossing and splitting targets when looking at 
radar tracks. Radar tracking problems such as this are important to modern ballistic missile 
defense, but parameters such as the radar bandwidth, visibility time, and the relative speed of 
the objects can obscure interpretation. A human decision-making model was developed to 
aid in interpretation, and 3001 simulated radar tracks were analyzed at MIT-Lincoln 
Laboratory using this algorithm. Operating curves were created to describe the model‟s 
performance. 
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Executive Summary 

 
During World War II, Germany launched the first ballistic missile - the V-2, or 

Vergeltungswaffe Zwei 1 - which struck British soil in September of 1944. Shooting down a V-2 

after it was in flight was impossible at the time2, making the investigation of missile defense 

imperative. The threat has evolved from these ponderous early missiles, to the massive 

arsenal of the Soviet Union, to the modern danger of rogue states using small numbers of 

intercontinental ballistic missiles. Presently, one particular difficulty is that of tracking 

objects of interest. Tracking an object allows the radar operator to see what path it has taken 

and predict where it will be in the future – vital to the defense‟s ability to engage the targets. 

As the threat complex changes from the initial ballistic missiles to the final cloud of reentry 

vehicles, decoys, and debris, the defense can form a better idea of which targets are 

dangerous by linking together successive tracks3. 

Background and Purpose 

To perform any significant analysis of a radar tracking problem, one must first 

understand the basic physics behind a radar system and learn how to read radar tracks. A 

radar works by sending out a radio signal and counting the time elapsed until it reflects back. 

The range to the object can be easily calculated due to the constant speed of electromagnetic 

waves. This simple process is then repeated to gain an understanding of the object‟s time 

evolving behavior.  

The radar tracks show how the objects in question behave over time, and are aptly 

called Range-Time Intensity plots. Figure 1 is, like the rest of the radar images in this report, 

a simulated RTI. It shows an example plot along with its corresponding physical scenario on 

the left for edification purposes (RLOS denotes the radar line of sight). 

                                                
1 Kaplan, Dr. Laurence M. “Missile Defense: The First Sixty Years”. Missile Defense Agency. 27 September 

2006. Accessed September 10, 2007. <http://www.mda.mil/mdalink/pdf/first60.pdf>. Page 1. 

2
 Werrel, Kenneth P. “Hitting a Bullet with a Bullet: A History of Ballistic Missile Defense.” 

College of Aerospace Doctrine, Research and Education. Air University. Research Paper 

2000-02. (2000). Page 2. 
3 Weiner, Stephen D. Private conversations. 

http://www.mda.mil/mdalink/pdf/first60.pdf
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Many of the objects tracked using these types of plots have angular velocities. In 

Figure 1 it can be seen that the relative ranges of the tracks from the two scatterers oscillate 

over time; this is a graphical manifestation of the angular motion of the dumbbell. The 

periodic nature of the plot is a direct result of measuring the range relative to the object‟s 

center of mass.  

Radar is typically very good at measuring the range to an object, but a radar‟s angular 

resolution is comparatively much poorer. As a result, objects that appear to be crossing or 

colliding on a radar track may in actuality be quite separate. One problematic consequence of 

this poor angular resolution is the prevalence of crossing events seen on radar tracks. It is of 

paramount importance to be able to discern between crossing events and splitting events so 

that accurate tracks can be maintained. Although seemingly trivial, the usually stark 

differences between a split and a cross can be obscured by many parameters. Most important 

to situational clarity – and of particular significance to this project – are the bandwidth of the 

radar, the visibility time before the event, and the intersection angle of the two objects in 

question as measured on the RTI. 

Another aspect of this project involved analyzing the role of the human radar 

operator in interpreting RTIs. For many of the tasks crucial to ballistic missile defense 

humans are excluded entirely, as they lack the reaction time and multi-tasking ability that is 

needed for many operations. On the other hand, humans can provide flexibility in a way that 
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Figure 1: Rotating Dumbbell Diagram and RTI 
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machines cannot. For example, computers can have great difficulty correctly interpreting 

crossing targets in noise, even at high signal to noise ratios, whereas humans have little 

difficulty4. Our project tackled a particular radar tracking problem - discerning between 

splitting and crossing targets - from the human observer perspective. 

 

Methodology and Scope 

This project had three main objectives: to develop a set of heuristics that allow us to 

decide whether an event is a split or a cross, to develop a human decision-making model that 

codified these heuristics, and to produce operating curves that exhibited the effectiveness of 

the human decision-making model. To make the project manageable for a seven week 

assignment, we put some constraints on the problem to ease the analysis. There are many 

parameters that affect situational clarity, but we decided to focus on only the bandwidth, 

visibility time, and intersection angle. Furthermore, we only considered binary interactions, 

and modeled the objects involved as identical reentry vehicles. To simplify the statistical 

analysis, we constructed every event so that it had to be either a split or a cross (as opposed 

to possible situations where both or neither occur). 

To generate sample radar tracks for analysis, we wrote a MATLAB program that 

randomly generates splitting and crossing events between two objects. The program 

randomly chooses one of three distinct bandwidths, and then chooses either a splitting 

template or a crossing template. The intersection angle displayed on the RTI – which is also 

analogous to the relative speed of the objects - is randomly chosen from the Gaussian 

weighted distribution that describes the respective scenario. Finally, to keep the number of 

trivial cases low, we limited the visibility time prior to the event to a randomly determined 

value between -1.5 and 1.0 seconds. 

We then performed some exploratory exercises with these randomly generated radar 

tracks. Each of us examined a large set of RTIs, labeled each event as a split or a cross, and 

wrote down the reasoning behind our decision. We then compared our decisions with the 

actual events logged in a record file produced by the MATLAB program, and took note of 

our accuracy. The exercises allowed us to verify that the process was random enough that we 

                                                
4 Weiner, Stephen D. Private conversations. 
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were not recognizing patterns, and that there was an adequate ratio of edge cases to obvious 

ones. Additionally, they provided further insight on how each of the observables 

(bandwidth, intersection angle, and visibility time) affected our ability to discriminate 

between splitting and crossing targets. 

 After performing the exploratory exercises we narrowed down our reason pool to 

three main rules: the time before rule, the width rule, and the intersection angle rule. The 

time before rule delineates the minimum time that one needs to be able to detect two 

distinct tracks if given the width of a track and the angle of intersection. The width rule 

handles cases where the event can be seen, but the time before rule does not apply. It 

suggests that if the track is significantly wider than it should be at t = 0, the event is probably 

a cross. If all else fails, the intersection angle rule handles all remaining cases by postulating 

that higher intersection angles correspond to crosses while lower ones correspond to splits. 

This led directly to the development of a human decision-making model. We ordered 

the rules logically, and derived their quantitative analogues so that they were less subjective. 

Once we had our standardized human decision-making model, we began applying it to radar 

tracks in earnest to provide a substantial sample size for our final analysis. We generated 

3001 radar tracks, which gave us many varying combinations of intersection angle, 

bandwidth, and time before the event. 

Using our decision-making model, we examined the RTIs and documented our 

answers in an Excel sheet. We also recorded the specific route used by the human decision-

making model to reach the decision for each RTI. Excel then made it easy to calculate the 

overall error rate of our model, and furthermore, the success rate of each individual 

heuristic. The next step was to condense this deluge of data into something readable and 

presentable. We decided to construct operating curves that show the overall effectiveness of 

our human decision-making model. 

 

Results and Discussion 

Once we had our final set of data, we wrote a program that condensed it into easy to 

read operating curves, as seen in Figure 2. 
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It can be seen that the operating curve displays three dimensions of data: intersection 

angle on the x-axis, bandwidth on the y-axis, and probability of correct identification on the 

color-axis. We used three distinct bandwidths in our RTI generation software, hence the 3 

separate rows. To enable calculations of realistic probabilities, we quantized the x-axis; 

quantization allowed us to combine the data from different angles in the same 

neighborhood, and calculate a probability of correct identification for that specific 

neighborhood of angles. This operating curve example related bandwidth to intersection 

angle, but we also created a curve relating the time before the event to intersection angle. In 

this case, we quantized the time axis for the same reasons as the intersection angle axis. 

The operating curve shown in Figure 2 demonstrates probability of correct 

interpretation at various levels of intersection angle and bandwidth. Performance increases 

with bandwidth and as the angles move away from the threshold, giving near perfect 

performance at 1000 MHz bandwidth when the angle is more than 10° above or below the 

threshold of 27.9°. 

 

Figure 2: System Performance Given Bandwidth and Intersection Angle 
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Additional analysis of the dataset, presented in Figure 3, showed that the threshold 

calculated from the distribution of the variables used to generate the RTIs was not the ideal 

threshold. The cause of this discrepancy was the radar viewing geometry, which caused the 

apparent angles and velocities to be smaller than their true values. Using the existing dataset, 

the group was able to produce statistics to describing the data while taking into account the 

viewing geometry used. This resulted in a new calculated threshold, and led to a great 

increase in performance. 
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Figure 3: Angle versus Probability of Correct Identification for Original System 
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 Figure 4 demonstrates system performance using the new threshold. The minimum 

level of performance is much higher than that observed in Figure 4. The low-performance 

band is shifted to be about the new threshold of 13.9°, and is both narrower and shallower 

than that observed with the old threshold, occupying a 12° window and reaching a minimum 

value of 60% correct detections. For angles of less than 10°, the performance improves as 

bandwidth increases, although this seems to be reversed for angles near the new threshold. 

For larger angles, performance is excellent for all bandwidths. 

Conclusions and Future Recommendations 

 The project team found that our human decision-making model performed well, 

exhibiting a 15% error rate while examining mostly difficult edge cases. We succeeded in 

both modeling and improving system performance using simulated data. The conclusion of 

our project leaves open several possibilities for further research; for example, research could 

be conducted using parameter values derived from actual test data, or into developing an 

entirely automated system

 

Figure 4: System Performance Given Bandwidth and Intersection Angle with Revised Threshold 
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1. Introduction 
 

During World War II, Germany launched the first ballistic missile, the V-2 or 

Vergeltungswaffe Zwei (Kaplan 1), which struck British soil in September of 1944. Shooting 

down a V-2 after it was in flight was impossible at the time (Werrel 2), making the 

investigation of missile defense imperative. This effort can be divided into two phases, 

according to the method used to intercept a threat: the nuclear warhead era and the non-

nuclear era. Destroying incoming threats by detonating a nuclear warhead in their vicinity 

was the defense modus operandi from 1946 until 1983 (Weiner), when the Reagan 

administration started the Strategic Defense Initiative (SDI) (United States Department of 

Defense). The objective of this program necessitated the development of non-nuclear 

interceptors. The goal was to have the interceptors physically impact the incoming missiles, 

that is, to “hit a bullet with a bullet”. 

Obtaining and interpreting information is one of the greatest difficulties in ballistic 

missile defense. The defender may have to track thousands of objects, hundreds of 

kilometers away, with only a handful of sensors, and come to a decision on what objects are 

threats in minutes. One particular difficulty is that of tracking objects of interest. Tracking an 

object allows the radar operator to see what path an object has taken and predict where it 

will be in the future – vital to the defense‟s ability to engage the targets. As the threat 

complex changes from the initial ballistic missiles to the final cloud of reentry vehicles, 

decoys, and debris, the defense can form a better idea of which targets are dangerous by 

linking together successive tracks (Weiner).  

The defense‟s ability to track is 

limited in several ways. Many sensors may 

only be able to maintain a certain number of 

tracks at once. This problem can be 

exacerbated by the offense‟s use of decoys 

(Weiner and Rocklin, 73-74). The quality of 

the track is also limited by how long the 

defender has observed the object and how 

often external objects interfere with the track (Weiner). Performance limitations in the 

 

Figure 1-1: Cobra Dane Radar 
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sensors available will also affect the quality of the tracks by limiting the information 

available. For example, Cobra Dane (seen in Figure 1-1) is one of the key sensors in the 

National Missile Defense system, and is an L-band radar operating at 200 MHz bandwidth 

(Amoozegar 6) that produces narrowband images which cannot provide detailed information 

on the objects tracked (Raytheon).  

To perform any significant analysis of a radar tracking problem, one must first 

understand the basic physics behind a radar system and learn how to read radar tracks. A 

radar works by sending out a radio signal and counting the time elapsed until it reflects back. 

The distance to the object can then be easily calculated. This simple process is then repeated 

again and again to gain an understanding of the object‟s time evolving behavior. The radar 

tracks we analyze show how the objects in question behave over time; this concept can be 

seen in Figure 1-2, along with an illustration of the physical situation on the left (RLOS 

denotes the radar line of sight).  

This radar track is of a single object with two highly reflective returns. The range 

(relative to the center of the object) of each return as viewed by the radar is measured along 

the x-axis. Time and power are measured along the y-axis and the color axis respectively. It 

can be seen that the motion of the object is periodic; this is a common feature of radar 

tracks since most objects have a constant angular velocity. 
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Figure 1-2: Rotating Dumbbell Diagram and RTI 
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The radar track depicted in Figure 1-3 is quite clear, and there is little doubt as to 

what is happening to the object in question. However, there are many parameters that affect 

the clarity of radar tracks. The most important of these for our research are the following: 

bandwidth, relative velocity of the objects, and the visibility time before and after multi-

object events (see Figure 1-3). In this figure, the tracks from two objects are intersecting, but 

it is unclear whether they have split from a common object or are merely crossing. The low 

bandwidth and small visibility time before the event obscure the true nature of the objects‟ 

behaviors. It is important to correctly identify an event as a split or a cross, and to make 

decisions of this nature one must understand the observables and known parameters 

associated with each event.  

 

Figure 1-3: Two Crossing Targets 
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The role that humans should play in a ballistic missile defense system is a topic of 

great importance to system designers, but it is not one which has been thoroughly explored. 

For many of the tasks vital to BMD humans are excluded entirely, as they lack the reaction 

time and multi-tasking ability that is vital for many operations. However, humans bring many 

important capabilities into a BMD system. Humans provide flexibility in a way that machines 

cannot; they have the ability to adapt rapidly to changing or unexpected circumstances, and 

an intuition which can help guide decisions made on incomplete or even insufficient 

information (Hawley 7). For example, computers can have great difficulty correctly 

interpreting crossing targets in noise, even at high signal to noise ratios, while humans have 

little difficulty (Spence). An example of a situation of this nature can be seen in Figure 1-4. 

Further study is required, however, to identify other areas of BMD in which humans can 

perform well, and to provide detailed models of this performance. 

Our project focuses on a very specific problem: the discrimination between splitting 

and crossing targets. Our goal is to develop a series of operating curves that model the 

discrimination performance and the probability of correct identification. In order to arrive at 

 

Figure 1-4: Crossing Targets with Noise 
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the operating curves we must first translate the mental process humans go through to 

identify these events into a set of heuristics. These will then be organized to form a human 

decision-making model that will be applied to a large sample of randomly-generated radar 

tracking images. We will record the accuracy obtained using the model; that is, to determine 

the probability of correct identification with respect to different parameters such as 

bandwidth, time before and after the event, relative speed. This information will be 

presented in the form of quantized operating curves (see Figure 1-5). Although our problem 

is a very concrete one, we hope that our methodology can be extrapolated to other specific 

problems. Each small problem solved is a step along the way towards a successful ballistic 

missile defense system. The ballistic missile defense problem is one that cannot be solved 

without working “from the bottom up”.  

 

 

 

 

 

Figure 1-5: Sample operating curve 
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2. Background 
 

It is important when interpreting radar measurements to discern where different 

objects originate from. Our project deals with a specific problem of this nature: analyzing the 

tracks of two objects that are close to each other. This task is complicated by the prevalence 

of imperfect tracks – for example, a track that starts only a second before an event, or is 

obscured by noise. Our project seeks to develop heuristics that humans can use when 

analyzing these types of problems. 

While most of the air defense effort is automated, this does not eliminate the need 

for a human element in decision making.  

 

 The utility of automating the engagement process was dramatically demonstrated 
with the success of the Patriot system in countering the Iraqi tactical ballistic missile (TBM) 
threat during Operation Desert Storm and most recently during Operation Iraqi Freedom 
(OIF). In both Gulf wars, TBMs were successfully engaged by Patriot employed in a fully 
automatic, operator-monitored mode. The down side of these successes was an unacceptable 
number of fratricidal engagements attributable to track misclassification problems, 
particularly during OIF. (Hawley, Mares and Giammanco 2) 

 

Our project tackles a particular radar tracking problem - discerning between splitting 

and crossing targets- from the human observer perspective. Our hope is that our decision-

making model will be able to tackle situations that may be challenging for a computer 

algorithm to correctly interpret (Spence). In order to fully understand the problem at hand 

one must first understand the principles of radar tracking. 
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Radar Basics 

Radar is an acronym that stands for Radio Detection and Ranging. Radar is used to 

determine the presence of an object, its distance from the radar and its speed. The basic 

concept has been around for over a century. Christian Hulsmeyer saw a practical implication 

in Heinrich Hertz‟s work in the late 1800s, and built a rudimentary radar system in 1904 that 

could detect ships hidden by fog. However, it was not until the genesis of air warfare years 

later that radar became the widely researched application that is today (Skolnik 14-15).  

The principles of radar imaging are fairly simple to explain, especially with the usual 

scenario where the transmitter and the receiver share the same antenna. The transmitter will 

send out a radio wave pulse toward the target in question, the pulse will then reflect off of 

the object, and return at a lesser power back to the receiver. The range to an object is simple 

to formulize since radio waves are a form of electromagnetic radiation, and travel at the 

speed of light. Thus the range to a target can be calculated as expressed in Equation 2-1, 

where c is the speed of light and t is the time elapsed between the pulse emission and its 

reception. 

2

ct
R   

2-1 

The factor of two accounts for the fact that the pulse must travel to and from the target 

before it is measured. 

 Due to the fact that the power of the radio signal has usually decreased significantly 

when it is received, another important characteristic of any radar is its maximum radar range. 

This is determined mostly by properties of the radar itself, and is given by Equation 2-2, 

where P is the transmitted power (W), G is the gain of the antenna, A is the effective 

aperture of the antenna (m2), σ is the radar cross section of the target (m2), and S is the 

minimum detectable signal of the radar (W) (Skolnik 30). 
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This equation is an oversimplification of a typical situation, but can generally give an 

approximation of the maximum range, and more importantly instructs the radar user on 
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various parameters that affect maximum range. A more sophisticated analysis of the radar 

equation would have to be handled probabilistically by taking into account the possibility of 

false alarm (Skolnik 31). 

 Another interesting feature of radar is its 

relatively poor angular resolution. Radar is very 

good at measuring range to an object, due to the 

constant speed at which electromagnetic 

radiation travels, but comparatively much poorer 

at measuring its angle in the sky. As a result, 

there is always a thin pancake region within 

which the object could be. A key implication of 

this is that objects that seem right next to each 

other on a radar image may actually be quite 

separate spatially (Weiner). 

 

Radar beamwidth is defined as “the 

lateral dimension (in angle) of the principal lobe (main lobe or main beam) of an antenna 

pattern” (Toomay and Hannen 247). The beamwidth determines an antenna‟s resolution cell, 

that is, the area of the circle in Figure 2-1. Without the use of multiple radar beams or 

multiple sweeps we cannot be sure of where in that angle cell a point scatterer is. Angular 

accuracy δθ , when using multiple beams or sweeps, is determined by Equation 2-3. (Toomay 

and Hannen 115), where θ3dB is the 3dB bandwidth and S/N is the signal to noise ratio.  
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 Equation 2-3 only holds true when there is only one object in the angular cell. When 

there is more than object in an angle cell, as is the case for our project, the two unresolved 

targets can interfere and appear to be one and the same. The ability to resolve the two 

targets is directly related to the resolution size (Weiner). 

 

Figure 2-1: Range versus angular resolution 
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Simulation Software 

 Our project team used two radar simulation packages while performing our research. 

One was used as provided, while the other required extensive modification to suit our needs. 

These simulation packages are outlined in the subsequent sections. 

LL6D Trajectory Software 

 The LL6D (Lincoln Laboratory Six Degrees of Freedom) simulation software is used 

to create the environments observed by the radar. LL6D is a tool designed for the simulation 

of ballistic missile threats, and is optimized for quick processing at the expense of simulation 

detail (Iamaio, 5). The simulation is implemented in Java, but can be interacted with using 

MATLAB scripts written by Lincoln Laboratory staff and modified by the project team.  

LL6D runs off of configuration files (further detailed in the Scenario Definitions 

section) which describe the objects that will take part in the scenario, and what actions they 

perform or are performed on them. The code behind LL6D was used as-is, however, we 

developed additional tools to improve its usefulness, which are described in the 

Methodology section. LL6D creates trajectory files detailing the motion of the simulated 

objects using twenty-two different measures. The position and velocity information is 

recorded in Earth-Centered Inertial coordinates, the angular rates in radians/sec, and the 

angular position in Earth-Centered Inertial coordinate unit vector component format. Time 

history files are simpler files, containing the position of the objects in Azimuth, Elevation, 

and Range coordinates relative to a specified sensor with the angular position in degrees. 

It is important to note that LL6D does not perform true six-degrees of freedom 

simulations, but instead performs 3+3 degrees of freedom simulations. Linear position and 

velocity calculations are performed independently of those for angular position and velocity. 

This allows complex situations to be modeled quickly on average desktop computers. 

Furthermore, this is a reasonable simplification, since the objects used in our simulations are 

modeled as rigid bodies. The problem of modeling the motion of any rigid object outside the 

atmosphere can always be split into two easier problems; one can solve for the translational 

motion of the center of mass independently of the angular motion of the object around its 

center of mass, and vice versa. This is shown succinctly in Equation 2-4, 
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 rrPRL   m  

2-4 

where L is the total angular momentum of the object as defined by the distance of the center 

of mass from the origin (R), the linear momentum of the center of mass (P), and the 

summation of the angular momenta (  rr  m ) of each discrete point on the body with 

respect to the center of mass. The first term in Equation 2-4 models the translational motion 

of the center of mass from a point of reference, while the second term models the angular 

rotation of points on the body around the center of mass (Taylor 367-369). LL6D calculates 

these two components separately when it performs simulations. The center of mass of a 

body can be easily calculated using Equation 2-5, where M denotes the total mass of the 

body, and rm  denotes the masses and positions relative to the origin for each discrete 

point of the body (Taylor 367). 

 rR m
M

1
 

2-5 

 

RFSig 

 
 The RFSig (Radio Frequency Signature) software package consists of a MATLAB 

driver program and extensive Java libraries for high fidelity radar simulation. RFSig performs 

algorithms in both the time and frequency domains. It is capable of generating plots using all 

combinations of range, Doppler, and time (Carpenter and Cebula 1). RFSig interfaces closely 

with LL6D; it combines the trajectory or time history files generated by LL6D with APSM 

(Augmented Point Scatterer Model) files for each object and a simulated radar - with 

parameters defined by the user - to produce the desired plots.  

APSM files define the reflective characteristics of an object, and are further explained 

in the Scatterer Definitions section. This software suite was heavily modified by the project 

team during our summer internship; our goal was to make it more streamlined and user 

friendly. We designed and implemented a graphical user interface and added supplementary 

functionality, such as the ability to save and load settings without requiring additional copies 

of the main program. 
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Framing the Problem 

 The analysis we are performing is not taken from actual radar data; we are merely 

trying to interpret simulations that model possible scenarios. This requires the writing of 

scatterer definition files to model the geometries of the objects we are observing, and 

scenario definition files that describe the actual events unfolding. 

Scatterer Definitions  

Objects are modeled as rigid wireframes in xml files (see Appendix B: Reentry 

Vehicle XML Code) according to the Augmented Point Scatterer Model, with scattering 

points that the radio signal reflects off of. The geometries and relative positions of these 

scattering points are detailed in the file, so the geometry of objects can be easily edited. 

Furthermore, one can control the strength return from each scatterer, the angular range for 

which each scatterer is visible, and how sharp the power drop-off outside that range is. This 

is a useful feature that becomes more evident in the Range-Time Intensity Plots section. 

The simulation package we are using contains various scattering models. The 

dumbbell is the simplest object, composed of two point scatterers separated by a fixed 

distance. Although it is instructive when learning the essentials of scenario interpretation, it 

is not very useful when it comes to modeling realistic scenarios. The tank and reentry vehicle 

(RV) scatterer models are more geometrically complicated and better suited for this purpose.  

There are several types of scattering points used in these xml files: point scatterer, 

slipping, specular, and cavity returns. Point scatterers are rather self explanatory; a point 

scatterer is a salient zero-dimensional feature that simply reflects the radio signal back to the 

antenna at reduced power. Physical examples of point scatterers include the nose of a cone, 

antennae, and the tips of wings. Slipping returns behave similar to point scatterers, but they 

are not fixed to a point on the object. Slipping returns are usually found on curved surfaces, 

such as the side of a cylinder. As the cylinder spins, the slipping return “moves” in the 

opposite direction so that it always faces the radar. 

Specular returns typically characterize any flat surface on the object. This return is 

only seen when the surface is near perpendicular to the radar line of sight; at this time it 

sends back a very strong return. Cavity returns model any openings or depressions that may 

exist on the object. When the radio signal enters a cavity, it bounces off the walls of the 
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cavity, and returns a rather chaotic signal. This generates noise on the radar tracks that is 

directly proportional to the depth of the cavity. 

  

Scenario Definitions 

 
The scenarios we use are defined with the use of configuration files. These are text 

files that outline the objects involved and the events that are enacted upon them (see 

Appendix C: Sample Configuration File). Various parameters such as the objects‟ masses, 

moments of inertia, and the gravity model are outlined. The time at which each event occurs 

and what objects are affected are also recorded in the configuration file. 

One can chose from a wide variety of events to implement, from simple 

modifications of an object‟s angular velocities to complex ballistic missile guidance 

algorithms. LL6D is written such that it can read in these configuration files for a simulation 

as long as they are written following the guidelines in the LL6D manual. The events most 

important to us are “DeployVehicle” events, which outline the characteristics of a splitting 

event. We also make extensive use of “setState” events, which enable editing of the objects‟ 

velocities; this is useful when characterizing a crossing event. 

Range-Time Intensity Plots 

 There are many types of images that can be generated using the data supplied by a 

radar. For the purposes of our project we will be studying Range-Time Intensity plots 

(RTIs). The analysis of RTIs comprises the bulk of our work, so we must have a thorough 

understanding of how to read them. RTIs illustrate how the different scattering points on 

objects move over time. Often this motion is periodic because the object in question has 

some rotational velocity, also known as the object‟s tumble rate.  

 As can be seen in Figure 2-2, relative range is shown on the x-axis. This range is the 

distance to the radar relative to the observed object‟s center of rotation. Time is shown on 

the y-axis, and is measured in seconds since the start of the simulation. The intensity of the 

return is shown using a color axis, and is measured in decibels relative to a square meter 

(dBsm).  
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Dumbbell RTI 

 The dumbbell scattering model is composed of two scattering returns attached by a 

rigid, non-reflective rod. Figure 2-2 shows a simple example of what the RTI would look like 

for a tumbling dumbbell. The physical scenario is illustrated to the left of the RTI; the 

position of the dumbbell is shown with relation to the radar line of sight (RLOS) at three 

different times.  

At t = 106.5 s, the dumbbell is perpendicular to the RLOS. Consequently, scatterers 

a and b are equidistant from the radar, causing their respective scatterer tracks to overlap in 

the corresponding RTI (the center of rotation has no radar track since it is not a scatterer). A 

minor aside: in truth the scatterers are slightly further away than the center of rotation, but 

this distance is negligible for the usual case where the dumbbells are very short in 

comparison to the much larger distance to the radar antenna (see Appendix A: Scatterer 

Distance Clarification). 

At time t = 107 s, scatterer a is further away from the radar than scatterer b due to 

the tumbling nature of the dumbbell. This results in a positive relative range for a and a 

negative relative range for b. At time t = 107.5 s, the dumbbell has tumbled 90 degrees and is 

aligned parallel to the RLOS. Thus scatterer a has reached its apex and is the furthest it will 

be from the radar with respect to the center of rotation. On the other hand, scatterer b is at 
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Figure 2-2: Rotating Dumbbell Diagram and RTI 
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its nadir and is the closest it will be to the radar with respect to the center of rotation. This is 

shown on the RTI by the two very separate tracks. 

Reentry Vehicle RTI 

 The RV scattering model used for our simulations assumes a solid cone-shaped 

object with no cavities. It has returns at the base and the nose. Figure 2-3 depicts an RTI of 

an RV tumbling nose over base with its center axis parallel to the RLOS. Between t = 109 s, 

and t= 110 s, it can be seen that one of the tracks on the RTI disappears. This is due to a 

phenomenon called shadowing. If the RLOS is perpendicular to the base, as shown in Figure 

2-4, the radar cannot see the nose and thus its track disappears from the RTI. This is logical 

since the base shadows the nose from the sight of the radar (Weiner). This is also the raison 

d‟être for controlling the angular visibility of objects in the APSM files (as described in the 

Scatterer Definitions section). 
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        Figure 2-3: RV RTI 
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Tank RTI 

The tank scattering model is 

cylindrically shaped and has openings 

at both ends. The openings are 

referred to as cavity returns. Figure 

2-5 depicts an RTI of a tank tumbling 

end over end with its center axis 

parallel to the RLOS. The noisy 

returns seen in the RTI are a result of 

the radar signal entering these cavities, 

bouncing around inside, and returning 

chaotically (Weiner). One of the ends 

has a deeper cavity than the other, 

resulting in different cavity return levels depending on the orientation of the tank. Although 

less apparent than the RV, shadowing can also be seen on the tank RTI at t ≈ 106.3s and at  

t ≈ 108.7 s. 

Intersection Angle 

 The slope of a radar track on an RTI is a graphical representation of its 

corresponding scatterer‟s velocity relative to the center of the tracked object. This is a 

reasonable conclusion, considering the x-axis is measured in meters and the y-axis is 

measured in seconds. The slope of a track is intrinsically equal to its rise divided by its run, 

and is measured in seconds per meter. It is then clear that low magnitude slopes correspond 

to high relative velocities, since fewer seconds would elapse per meter traveled. Similarly, 

high magnitude slopes indicate low relative velocities, as more seconds would elapse per 

meter traveled. Positive slopes indicate that the scatterer is moving away from the radar 

antenna; comparably, negative slopes imply that the scatterer is moving closer to the radar 

antenna. 
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Figure 2-5: Tank RTI 
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 Intersection angle is 

directly related to speed, and this 

characteristic of RTIs is 

particularly pertinent to our 

project. In our simulations we 

always track two objects and 

center the RTI on one of them. 

This results in an RTI that looks 

similar to Figure 2-6. The relative 

speed of one object is held 

constant at zero, and the relative 

speed of the other object is represented by its intersection angle with the track of the 

normalized object. When the relative speeds are low, the intersection angle is small, and this 

can make differentiating between crosses and splits more difficult. Conversely, if the relative 

speed is large, the intersection angle is big, and this can simplify the process of discerning 

between crosses and splits. 

 

 

Figure 2-6: Two-track RTI example 
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3. Methodology 
 

The three main objectives of our project are as follows: 

 To develop a set of heuristics that will allow us to decide whether an event is a cross 

or a split. 

 To develop a human decision-making model that codifies these heuristics. 

 To produce operating curves that exhibit the effectiveness of the human decision-

making model. 

Due to time constraints and the fact that we could not access real radar data we had to 

reduce the scope of our project by limiting the number of cases we modeled and by making 

certain assumptions. The program we wrote to randomize the RTI generation process 

chooses between four scenario templates: a cross with or without tumble (see Figure 3-1 and 

Figure 3-2), or a split with or without tumble (see Figure 3-3 Figure 3-4).  

 

 

 

 

 

 

 
 

Figure 3-1: Cross with tumble  
 

Figure 3-2: Cross without tumble 



Approved for Public Release 
07-MDA-3047 (25 JAN 08) 

18 

 

 

Additionally, we track only two objects at any given time; these objects are modeled as 

identical RVs. Each Monte Carlo simulation corresponded to a specific bandwidth, relative 

velocity and observation time before and after the event.  

For the purposes of our project we are assuming crosses happen between targets that 

originate from a common object, and thus their relative speed is smaller than it would be if 

they were completely unrelated. However, splitting speeds are even smaller because the 

objects are separating under small forces generated by springs or small thrusters right around 

the time we start tracking them. We also assumed that the spread of crossing velocities 

would, for the most part, be wider than the spread of splitting velocities. Both the splitting 

and the crossing speeds were approximated because we do not have access to statistical data 

associated with these variables.  

Most of the RTIs we generated were edge cases with respect to the time before the 

event. It is easier to maintain a track than to start one, therefore it is logical to assume we 

would have more time after the event than before it. We are also focusing on edge cases 

because they are non-trivial to interpret.  

 

 

 

 

 
 

Figure 3-3: Split with tumble  
 

Figure 3-4: Split without tumble 
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Developing heuristics to distinguish a split from a cross 

 
 Before we could translate our mental discrimination process into a human decision-

making model we had to develop a set of heuristics that would allow us to distinguish 

between a cross and a split. In order to do this we had to identify parameters that we (the 

supposed radar operators) would know, and could thus base our heuristics on. The first of 

these parameters is the radar‟s bandwidth, a known technical specification. The other two 

parameters are the speed/intersection angle of the tracked objects, and time before/after the 

event, both of which can be estimated from the RTI.  

 

Performing exploratory exercises 

Once the relevant parameters were identified, we performed two sets of exploratory 

exercises. Each of us examined large sets of randomly generated RTIs, labeled each as a split 

or a cross, and wrote down the reasoning behind our decision. We then compared our 

decisions with the actual events, logged in a record file produced by the RTI generation 

program, and took note of our accuracy. The exercises allowed us to characterize our RTI 

generation program (see section 0), that is, to verify that the process was random enough 

that we were not recognizing patterns and that there was an adequate ratio of edge cases to 

obvious ones. Additionally, they provided an indication of how each of the observables 

(bandwidth, speed/intersection angle and time before/after) affected our ability to 

discriminate between splitting and crossing targets. 
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Exercise 1  

The purpose of the first exercise was for each of us to independently examine large 

sets of RTIs and to determine, each using our own method, whether we were looking at a 

split or a cross. The overall false identification rate was 14%. For the purposes of illustrating 

the nature of this exercise, let us discuss one team member‟s approach. He examined a set of 

129 RTIs. A list of reasons used to determine the nature of the event as well as the error 

rates for each reason can be seen in Table 3-1. It was clear from this set that there were too 

many obvious cases. To provide an example of what we considered obvious, Figure 3-5 and 

Figure 3-6 show non-obvious cases on the left and obvious cases on the right. 

 

Figure 3-5: Obscure split versus obvious split 

 

Figure 3-6: Obscure cross versus obvious cross 
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These figures also convey how changing the bandwidth and the time before the event can 

greatly affect the ease of interpretation. 

The program was changed to emphasize difficult cases: the percentage of obvious 

cases was decreased from approximately 50% to about 30%. This first exploratory exercise 

also gave us a feel for how each of us was making decisions, and made it easier for us to 

standardize a system of decision labeling that we used in the next exploratory exercise.  

 

 

 

Exercise 2 

 For this exercise, we used a more standardized approach; we all used the same 

labeling system for our decisions. This exercise resulted if further refinement of the 

parameters of our simulations, and illustrated the need for normal distributions of crosses 

and splits. With the uniform distributions we initially used, it was too easy to tell if an event 

was a cross because any event above a certain intersection angle was always a cross. Gaussian 

distributions remove this certainty and more accurately reflect the physical situation. After 

this exercise, we organized our rules into more rigid heuristics and set the foundation what 

would eventually become our human decision-making model. The results of this exercise can 

be seen in Table 3-2. It should be reemphasized that the data from these exercises was not 

Reason % of decisions 

affected 

% Error rate Number of false 

identifications 

Obvious 50.39 4.62 3 

Tumble of second object 

originates at event 

6.20 25.00 2 

Large intersection angle 

(cross) 

5.43 0.00 0 

Small intersection angle 

(split) 

22.40 20.69 6 

Blind guess 2.33 33.00 1 

Other 12.40 25.00 4 

TOTAL 100.00 12.4 16 

Table 3-1: Exercise 1 Results 
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used at all in our final analysis; these exercises merely helped us hone the methodology and 

heuristics that would be used to analyze our ultimate data set. 

 

 

 

 

Quantifying the heuristics 

After performing the exploratory exercises we narrowed down our reason pool to 

three rules. In order to apply these rules in a systematic fashion, we first needed to quantify 

them. How we attached numbers to each of the heuristics is explained in subsequent 

sections. 

 

Time before rule 

 As previously explained, most of the 

RTIs we generated are edge cases with respect 

to the time before the event. We determined 

that two objects can be resolved before an event 

occurs if their tracks are at least L (the width of 

the largest track) apart. The time before the 

event and this minimum separation distance 

form a right angle (see Figure 3-7). Since the 

intersection angle can be calculated from the 

RTI, we can use trigonometry to determine tsep, 

the minimum time needed in order to resolve 

two objects before the event (see Equation 3-1). 

Reason % of decision 
affected 

% Error rate Number of false 
identifications 

Time Before 32.64 2.11 3 

Large intersection angle  
(cross) 

8.74 0.00 0 

Small intersection angle 
(split) 

47.13 32.68 67 

Size of track 10.57 19.57 9 

Other 0.46 100.00 2 

Table 3-2: Exercise 2 Results 
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Figure 3-7: Time before rule 
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3-1 

 The magnitude of the ratio of the opposite side L over the adjacent side tsep is equal 

to tan(θ). Since this is not a standard x versus y graph, but rather an x versus time graph, the 

units are carried by a constant 1m/1s.  

 

Width rule  

 When the time before the event was greater than zero but smaller than tsep we used 

the width rule when applicable. If the track before the event had a width equal to L (the 

width of the central track) it suggested the presence of only one object before the event, and 

therefore we labeled it a split. If the track before the event had a width greater than L, 

indicating multiple objects before the event, we determined the event to be a cross. If we felt 

that the case was too ambiguous, we did not use this rule.  

 

 

Intersection angle rule 

 As previously discussed, the angle at which two objects intersect on an RTI is 

directly related to their relative speeds. As explained in section 3.1.1, we assumed the 

crossing velocities to have a wider spread than the splitting velocities. Our original system 

randomly chose these velocities from a uniform distribution. Crossing velocities ranged from 

0.1 m/s to 6 m/s while splitting velocities spread from 0.1 m/s to 3 m/s. To minimize the 

error rate we set the decision threshold at the intersection of both distributions; this meant 

that if the angle rule was applied, any intersection of greater than 3 m/s was classified as a 

cross, while intersections of less than 3 m/s were labeled splits. In doing this we obtained a 

0% false cross rate and a 50% false split rate, for a total error rate of 25% when using the 

angle rule.  

 In order for our program to better reflect reality we changed these distributions from 

uniform to Gaussian. The normal distributions were characterized by the following means 

and standard deviations: 

 Vcross~μ=5 m/s, σ=2 m/s 
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 Vsplit~μ=3 m/s, σ=1 m/s 

Keep in mind that a generic normal distribution is characterized by Equation 3-2. 
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Figure 3-8: Crossing and splitting velocity distributions 

 For the derivation of the optimum threshold as seen in Figure 3-8, refer to 

Equations 3-3, 3-4 and 3-5. The optimum threshold is the one that produces the lowest error 

rate. 
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At this threshold, when using only the intersection angle rule, the expected total 

error rate was 22.97%. The false split error rate was 35.14% and the false cross error rate 

was 10.8%. This assumed an equal likelihood of splits and crosses. 

 Since intersection angle is more easily observed on an RTI than relative velocity, we 

converted the velocity threshold of τ=4.237 m/s to an equivalent intersection angle 

threshold τangle of 27.9 degrees (see Equation 3-6). 
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 Most applications of the intersection angle rule were for cases when there was no 

time before the event. The time at which the event occurred was calculated by backtracking 

the paths followed by the objects on the RTI. 

 

Developing a human decision-making model 

 
Two issues we encountered while performing our simulations were the bias and error 

introduced by using humans to conduct the RTI analysis. In nearly all real radar systems 

computers are used to perform the bulk of the analysis as they can operate faster and more 

consistently than humans. This comes at a cost, however, in development time. Computer 
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algorithms that guide correct interpretation of data from complex sensors such as radars 

require thousands of man-hours to write and test. Thus, with our time constraints making a 

computer-based interpretation system unachievable, we designed our procedure and tools to 

be as efficient and consistent as possible while guarding against human biases. 

 

Organizing the Heuristics 

The heuristics developed in section 0 provided several methods of interpreting RTIs, 

with varying degrees of accuracy and applicability. To optimize the heuristics they were 

organized for accuracy and efficiency. The two deterministic heuristics - Time Before and 

Width - are applied first. If either of these rules was applied, then the correct answer was 

guaranteed, excepting the small chance of operator error. Time Before was performed prior 

to Width because it was quicker to apply and less susceptible to operator error. The Angle 

rule was applied last for two reasons. First, it is probabilistic, and has a certain percentage of 

error even when applied correctly. Second, in contrast to the previous two heuristics, it can 

be applied to all RTIs. The resulting instruction set is shown below: 

 
I. Time/Angle rule 

a. If tb>= tsep 
i. If ntrack=2 then CROSS  
ii. If ntrack=1 then SPLIT  
iii. If inconclusive, skip to II 

b. If 0< tb < tsep skip to II 
c. Else skip to III 

II. Width rule 
d. If w(t=0) > L then CROSS 
e. If w(t=0) ≤ L then SPLIT 
f. If inconclusive, skip to III 

III. Angle rule 
g. If θ > τ then CROSS  
h. Else SPLIT 
 

The first version of this instruction set was tested by the team on 200 RTIs, which 

exposed several minor issues mostly related to language ambiguities that caused correct rules 

to be skipped. Following revision, an additional test was conducted using the instruction set 

presented in this report on another 200 RTIs. These tests presented error rates of 9.5% and 

12%, a significant improvement over the results obtained prior to the creation of a 

standardized instruction set (Exercise 1 and Exercise 2 in section 0). An additional 
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contributor to the decrease in error during these tests was the introduction of automation 

for certain interpretation tasks, such as measuring the intersection angle and time before the 

event. Automating these tasks with Matlab greatly improved interpretation accuracy while 

also decreasing the amount of time required to examine each RTI. 

Generating the Range-Time Intensity Plots 

To generate curves illustrating the performance of our heuristics, a large sample size 

was necessary. As the project team did not possess the necessary security clearances, use of 

real data was not an option, so simulated RTIs needed to be used. The simulated RTI 

generation process - as implemented using the original Lincoln Laboratory software - was 

cumbersome and slow, requiring in excess of five minutes per RTI, all of it demanding the 

presence of a human operator. Applying these heuristics many times to a small set of RTIs 

would introduce the potential for heavy bias, as the nuances of each RTI would sink into the 

observer, such that correctly identifying the event occurring in the RTI would depend on 

factors that a realistic observer would not have available. Thus, the project team needed to 

develop a system for rapidly generating large numbers of RTIs with varying parameters. 

The new and improved RTI generation system was implemented as a MATLAB 

program split into three primary script files: RandRTI.m, LL6DMatlabnMQP.m, and 

RunsimMQP.m. The code for these scripts can be found in Appendix E: MATLAB Code 

Used For RTI Generation. The first script, RandRTI, was written from scratch. This file 

contains the code that controls the simulation, allowing the user to set the values for fixed 

variables and the bounds for random variables, as well as indicate what directories the 

program will use. RandRTI contains code for each template scenario used by the project. 

These templates are LL6D configuration files (see Appendix C: Sample Configuration File) 

which have been written to describe a particular event, but with holes for certain randomized 

variables. After completing its initial tasks, the program enters a loop, with the number of 

iterations equal to the number of RTIs that will be generated. The first action performed in 

the loop is to randomly choose one of the templates.  

In addition to the template specific variables, each template is also subject to 

variation in bandwidth and the amount of time visible before and after the event. The 

scenario variables are shown in Table 3-4. The templates are described in Table 3-3.  

 



Approved for Public Release 
07-MDA-3047 (25 JAN 08) 

28 

ID Name Description Template-Specific Variables 

1 CrossL Cross, second object moving to the 

left 

Relative Velocity 

Starting Distance 

2 Split Split, second object moving to the 

right 

Split Time 

Split Velocity 

3 CrossTumbleL Cross with tumbling objects, 

second object moving to the left 

Relative Velocity 

Starting Distance 

Tumble Rate for each object 

4 SplitTumble Split with tumbling objects, second 

object moving to the right 

Split Time 

Split Velocity 

Tumble Rate for each object 

5 CrossR Cross, second object moving to the 

right 

Relative Velocity 

Starting Distance 

6 CrosSTumbleR Cross with tumbling objects, 

second object moving to the right 

Relative Velocity 

Starting Distance 

Tumble Rate for each object 

7 MQPSplit(-V) Split, second object moving to the 

left 

Split Time 

Split Velocity 

8 MQPSplitTumble(-V) Split with tumbling objects, second 

object moving to the left 

Split Time 

Split Velocity 

Tumble Rate for each object 

Table 3-3: Scenario Templates 
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Variable Distribution Description 

Bandwidth Discrete: 100, 500, 1000 (MHz) Radar Bandwidth 

Time Before Uniform: -1.5 to 1 (s) Time Before Event 

Time After Uniform: 5 to 15 (s) Time After Event 

Relative Velocity Normal: μ=5, σ=2 (m/s) Closing Velocity of Crossing 

Objects 

Starting Distance Uniform: 2 to 15 (m) Starting separation for 

crossing objects 

Split Time Uniform: 20 to 150 (s) Time of separation for 

splitting objects 

Split Velocity Normal: μ=3, σ=1 (m/s) Separation velocity for 

splitting objects 

Tumble Rate Uniform: .1 to 2 (Hz) Rate at which objects spin 

about their center point 

Table 3-4 : Scenario Variables 

 
 

The velocity distributions were modeled as normal distributions to account for the 

fact that most objects originating from the same object would have similar relative velocities. 

The bandwidth was randomly chosen from a set of three possibilities; this allowed us to see 

how our results would change if a radar with a different bandwidth was used. The other 

variables were chosen at random from uniform distributions within certain imposed limits. 

The limits were chosen so as to avoid having a plethora of trivial cases, hence the Time 

Before parameter has a very narrow range to choose from. 

Once the program generated the random values for the selected template, it 

performed three tasks. First, it wrote the results of the randomizations to a record file, which 

allowed us to go back and find out the parameters that generated any given scenario. Second, 

it wrote the actual configuration file, formatted to be read in by LL6D. Third, it began 

execution of the LL6DmatlabnMQP script. 

LL6DmatlabnMQP is a modified version of a script originally written by Lincoln 

Laboratory staff. Its original function was to produce time history or trajectory files for a 

given configuration file. To make the program perform as we needed, we changed it in 

several ways. The first was to alter the way the program performed input and output to suit 

the needs of runsimMQP, the third script. This primarily involved setting up specific file 
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paths and changing how output files were named. The second change was to add 

calculations that would automate some of the RTI interpretation. The program calculates the 

distance between the two objects at the end of the timescale and uses the result, along with 

the dimensions of the RTI, to calculate the intersection angle as it is displayed on the screen. 

These calculations are then returned to RandRTI, which reformats them and feeds them into 

runsimMQP. 

RunsimMQP is another program which was not originally written by the project 

team, but was modified first during the team‟s summer internship at Lincoln Laboratory and 

then further during the course of the project. This program is intended to combine time 

history files describing a physical situation with scatterer files describing the radar cross 

section of each object to produce an RTI. The modified version changes the file creation 

string to include information that assisted in our RTI interpretation. The filename contains 

the bandwidth, time before, time needed before (calculated using the method in section 0), 

object width, and intersection angle. Having this data immediately viewable while looking at 

the RTI greatly improved accuracy and decreased time needed to view each one. 

 

Demonstrating the Effectiveness of the Human Decision-Making Model 

Once we developed our human decision-making model, the next step was to test its 

effectiveness. We generated and analyzed 3001 RTIs. This gave us a large sample size and 

many varying combinations of intersection angle, bandwidth, and time before the event. A 

larger sample size with even more RTIs would have been better for statistical analysis, but 

time constraints required us to limit it.  

Using our decision-making model, we examined the RTIs and documented our 

answers in an Excel sheet. We also recorded the specific route used by the human decision-

making model to reach the decision for each RTI. Excel then made it easy to calculate the 

overall error rate of our human decision making model, and furthermore, the level of 

accuracy of each individual heuristic in the model. The next step was to condense this deluge 

of data into something readable and presentable. We decided to construct operating curves 

that show the overall effectiveness of our human decision-making model. An example 

operating curve of this nature can be seen in Figure 3-9 

 



Approved for Public Release 
07-MDA-3047 (25 JAN 08) 

31 

 

It can be seen that the operating curve displays three dimensions of data: intersection 

angle on the x-axis, bandwidth on the y-axis, and probability of correct identification on the 

color-axis. We used three distinct bandwidths in our RTI generation software, hence the 3 

separate rows. To enable calculations of realistic probabilities, we quantized the x-axis. Since 

our software randomly generates the intersection angle, it was highly unlikely that any angles 

would be repeated on multiple RTIs. Quantization allowed us to combine the data from 

different angles in the same neighborhood, and calculate a probability of correct 

identification for that specific neighborhood of angles.  

The probability is illustrated by the color of the cell; darker shades correspond to 

higher probabilities. It is logical that the lowest probability of correct identification is near 

0.50, since one can always randomly guess if the event is a cross or a split. This operating 

curve example relates bandwidth to intersection angle, but we also created a curve relating 

the time before the event to intersection angle. In this case, we quantized the time axis for 

the same reasons as the intersection angle axis. 

 

Figure 3-9: Sample operating curve 
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If we could display the probability of correct identification with respect to time 

before the event, bandwidth and angle on a four dimensional graph the operating curve 

would probably be smoother and easier to understand. 
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4. Results and Discussion  

In order to achieve the major goal of this project we had to first accomplish a series 

of intermediary tasks. First we wrote a program to randomly generate RTIs and we 

performed exploratory exercises to quantify our heuristics. The results of these exercises, 

together with observation and research allowed us to quantify the heuristics. Most 

importantly we were able to organize them logically into the human decision-making model 

shown below. The bold italicized numbers were used to identify at what point in the model 

we stopped and made our decision when analyzing a given RTI. 

 

I. Time/Angle rule 
a. If tb ≥  tsep 

i. If ntrack=2 then CROSS  
ii. If ntrack=1 then SPLIT  
iii. If inconclusive, skip to II 

b. If 0< tb < tsep skip to II 
c. Else skip to III 

II. Width rule 
a. If w(t=0) > L then CROSS 
b. If w(t=0) ≤ L then SPLIT 
c. If inconclusive, skip to III 

III. Angle rule 
a. If θ > τ then CROSS  
b. Else SPLIT 

 

These subtasks and their outcomes are presented in the Methodology because they guided 

the development the project. Each minor outcome was used as stepping stone to reach the 

next accomplishment. This process culminated with the creation of the set of operating 

curves that describe our human decision-making model.  

In our final round of testing we examined 3001 RTIs and tabulated the data in Excel 

spreadsheets similar to Table 4-1.  

 

 

 

 

 



Approved for Public Release 
07-MDA-3047 (25 JAN 08) 

34 

Decision Reason Angle Bandwidth Time 

Before 

True Label 

S 6 7.812 1000 -.017 C 

S 6 3.681 100 .391 S 

C 3 39.607 500 .106 C 

S 2 19.563 500 .601 S 

Table 4-1: Sample data record 

 

We recorded the decision made and the reason behind it, that is, at what point we 

stopped at in the human decision-making model. To allow more complex analysis of our key 

discrimination parameters we also recorded the intersection angle, bandwidth, and time 

before the event for each RTI. Our RTI generation software prints a record file (see 

Appendix D: Sample Record File) that includes the details of each RTI. Looking at this we 

were able to record each event‟s true nature and therefore calculate our accuracy. The Excel 

spreadsheet was imported into MATLAB to produce operating curves that illustrate the 

probability of correct detection for different values of angle, bandwidth, and time before the 

event. 

Initial System Performance 

Once our data was recorded in the Excel spreadsheet we were able to characterize 

our system‟s performance in different ways. Table 4-2 presents a brief summary of our data -

number of samples and error rates according to the nature of the event. Table 4-3 is more 

detailed and breaks down the number of samples and error rates according to what rule was 

used to identify the event. We consider the mistakes made using the time before and width 

rules human error and those made using the angle rule probabilistic error.  

As can be seen below, the initial system performance  indicated areas for 

improvement. These improvements were made and the revised system performance can be 

seen in section 0. 
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In order to produce our initial curves we used the angle threshold of θt= 27.9° 

calculated in section 0. This meant that anytime we used the angle rule to make a decision, 

we simply labeled the RTI a cross if the intersection angle was greater than this threshold, 

and a split if it was less than this threshold. To calculate this angle we minimized the error 

rate function (see Equations 3-3, 3-4 and 3-5). The physical analogue of this function is the 

sum of false splits and false crosses. We calculated the error rates at this threshold, assuming 

an equal likelihood of a split and cross and the application of only the angle rule. Our overall 

error rate should have been 22.97%, our false split error 35.14% and our false cross error 

10.80%. Applying the human decision making model, the angle rule in conjunction with the 

 
Number of 

samples Percent Of Total 

Samples 3001 100.00% 

Correct 2537 84.54% 

Errors 464 15.46% 

Cross 1409 46.95% 

Splits 1591 53.02% 

False Split 409 21.01% 

False Cross 54 5.12% 

Table 4-2: Data summary 

 Time Before Rules Width Rules Angle Rules 

Reason 
(See Human Decision-Making Model) 1 2 3 4 5 6 

Number of Samples 581 457 179 228 296 1259 

Percent of Total 19.36% 15.23% 5.96% 7.60% 9.86% 41.95% 

Combined Number of Samples 1038 407 1555 

Combined Percent of Total 34.59% 13.56% 51.82% 

Number of Errors 44 27 393 

Error Rate When Rule Used 4.24% 6.63% 25.27% 

Percent of Total Error 9.48% 5.82% 84.70% 

Table 4-3: Human Decision-Making Model Performance 
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time before rule and the width rule, resulted in a significant reduction of these error rates 

(see Table 4-2).  

We created the curves in subsequent sections to graphically characterize our system‟s 

performance. The two main relations we modeled were bandwidth versus angle and time 

versus angle. 

Probabilities of Correct Identification with Respect to Bandwidth  

We wrote a MATLAB program (see Appendix F: MATLAB Operating Curve Code 

Example) that could both read in the Excel spreadsheets we recorded our data in and 

produce a variety of operating curves. The first one we will discuss is Figure 4-1, which 

illustrates the effect of bandwidth and intersection angle on the probability of correct 

identification. 

The MATLAB program we wrote to build the operating curves strives to maintain 

statistical significance by ensuring that each angular neighborhood had 120 data points 

(distributed among the three bandwidths). As a consequence of this, and the fact that the 

angles were chosen from a Gaussian distribution (see Section 0), the width of each angular 

neighborhood varies. 

It can be seen that the darker neighborhoods correspond to higher probabilities of 

correct decision-making for their respective parameters. However, aside from seeing a sharp 

drop-off in probability near the threshold, not much information can be gleaned from Figure 

4-1. To make the operating curve more readable we smoothed it by using a five point 

moving average – taking the mean of the probability of correct detection in one 

neighborhood and that of the two neighborhoods on either side of it (see Figure 4-2).  
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        Figure 4-1: System Performance Given Bandwidth and Intersection Angle 

 

Figure 4-2: Smoothed Curve of System Performance Given Bandwidth 
and Intersection Angle 
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Figure 4-2 is a lot more readable. One can clearly see that the probability of correct 

identification is poorest at the threshold, which is logical because that is the angle where the 

likelihood of having a split and the likelihood of having a cross are equal. Therefore the 

probability should be slightly better than a coin flip, assuming that the non-angle rules are 

able to correctly identify some that the angle rule would have misinterpreted. 

 As expected, the probability of correct identification approaches unity at very high 

and low angles of intersection because it unlikely to have a cross at low angles or a split at 

high angles. 

 

Probabilities of Correct Identification with Respect to Time  

The operating curve for time versus angle was constructed a little differently. Our 

simulation did not have discrete times to choose from as was the case of bandwidth. Since 

the time distribution was uniform, we had to quantize the y-axis to allow the calculation of 

probabilities. The unsmoothed and smoothed versions of these curves can be seen in Figure 

4-3 and Figure 4-4 respectively. 

Again, there is a sharp decrease in probability of correct identification near the angle 

threshold when there is not sufficient time after the event to interpret the situation.  

 

 

Figure 4-3: System Performance Given Time Before and Intersection Angle 
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Figure 4-4: Smoothed Performance Given Time Before and Intersection Angle 
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Threshold Optimization 

After building the data set and observing system performance, the group examined 

what effect varying the threshold would have on the error rates. First, the data set was 

manipulated to determine the effect the first two rules, Time Before and Width, had on 

interpretation accuracy. This can be seen in Figure 4-5. 

 

Two important conclusions can be drawn from this result. First, the human decision-

making model consistently out-performs an interpretation system that uses only the 

probabilistic elements. Second, and much more interesting, the threshold for the „All Rules‟ 

curve that yields the highest probability of correct detection, 13.9 degrees, is far from our 

calculated threshold, 27.9 degrees. To confirm this we examined the components of the 

error rate, false-cross and false-split, as the threshold was moved. This can be seen in Figure 

4-6. 
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Figure 4-5: Effect of Width and Time Before Rule on System Accuracy 
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This second analysis confirms the results of the first: the ideal threshold is different 

from the calculated threshold.  

Faults with Initial System Performance 

Further investigation revealed that the system was performing worse than the 

theoretical maximum of error at and around the threshold; it was performing worse than 

random guessing. To determine the cause of this poor performance, we examined the 

distribution of the apparent speed on the RTIs we observed and compared it to the 

distribution used to generate the RTIs. These can be seen in Figure 4-7 and Figure 4-8, 

respectively. 
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Figure 4-6: Error Rates at Various Thresholds 
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Figure 4-7: Distribution of Sample Velocities with Fitted Normal Curves 

 

Figure 4-8:  Distribution of Velocities for RTI Generation 
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The distribution for the actual data is significantly different than we expected. The 

statistics for the actual and expected data are shown in Table 4-4.  

 
 

Data Split Mean Split Standard 
Deviation 

Cross Mean Cross Standard 
Deviation 

Expected 3.000 1.000 5.000 2.000 

Actual 1.222 .769 4.235 1.4328 
Table 4-4: Statistics for Expected and Actual Data 

 
The distributions for both crosses and splits in the actual data have lower means and 

standard deviations than the distribution used to create the RTIs. This explains the optimal 

threshold being much lower than the calculated threshold. 
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Effect of Viewing Geometry on Threshold 

The cause of this error is due to the difference between the real and apparent relative 

distances of the objects. For example, see Figure 4-10. dA-B represents the actual distance 

between the two observed objects. dA and dB are the measured distances of the two objects. 

From the radar‟s point of view, the relative distance is dB-dA, which is less than dA-B. 

 

 The degree to which this affects the observations depends on the physical position 

of the objects. If the objects are collinear with the bore sight of the radar, the measured 

relative distance is equal to the actual relative distance. If the second object is not located 

along the same line as the first point, but in the same plane (the plane being formed by the 

elevation sweep of the radar), the relative distance is dA-Bcosθ, as shown in Figure 4-10. 

 
Figure 4-9: Effect of Viewing Geometry on 

Measured Relative Distance 
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When the two objects are not coplanar – as is likely the case in most of the RTIs we 

observed – the relationship between physical distance and apparent distance becomes more 

complicated, including the difference in azimuth that the radar must sweep to see both 

objects. The end result of these viewing geometry issues is that the velocities we have 

observed have been consistently smaller than those expected, but the relationship between 

the actual and expected velocities is not linear. 

 

Threshold Modification 

Given the nonlinear relationship between the parameters used to generate the 

scenario and the observed values, the simplest way to determine the new threshold was to 

find the value which gave us the lowest error. The error rates for all rules and for the angle 

rule only are presented in Figure 4-11.  

 
Figure 4-10: Relative Distance Error 

dA-B 

    A     B 
θ 

Radar Lines of Sight 
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For our revised threshold we chose 13.9 degrees, as it gives the lowest error rate 

using all rules and is also close to the angle rule only threshold.  

 

Revised System Performance  

Given the revised threshold, we recalculated the operating curves. Exploring the 

effect of angle on the probability of correct identification, shown in Figure 4-12, we see 

performance nearly always over 90%, with an expected sharp decrease about the threshold. 
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Figure 4-11: Identification Error Rate with Possible Thresholds 
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Revised Probabilities of Correct Identification with Respect to Bandwidth  

The operating curves presenting system performance with the revised threshold 

show significant improvements in probability of correct RTI interpretation over those using 

the original calculated threshold. In Figure 4-13, which displays performance at various 

bandwidths and intersection angles, system performance is consistently high (over 90% 

correct identifications) at all bandwidths when the angle is greater than 24°. Performance is 

also high, though more bandwidth dependant, at lower angles (below 10°). In between 10° 

and 24°, close to the threshold, performance dips reaching a minimum of approximately 

65% correct identifications. 

 

 

Figure 4-12: Effect of Angle on System Performance 
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Revised Probabilities of Correct Identification with Respect to Time  

The operating curve presented in Figure 4-14, which displays system performance 

versus time before the event and intersection angle with the revised threshold, exhibits 

similar improvements to those detailed in section 0. The new threshold has the band of poor 

performance transferred to the angle band of 10° to 24°. However, even in this angle band, 

performance is consistently higher than it was close to the threshold in the original operating 

curves. 

 
Figure 4-13: Smoothed Curve of System Performance Given Bandwidth and Intersection Angle with 

Revised Threshold 



Approved for Public Release 
07-MDA-3047 (25 JAN 08) 

49 

 
Figure 4-14: Smoothed Curve of System Performance Given Time Before Event and Intersection 

Angle with Revised Threshold 
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5. Conclusions and Future Recommendations 

The evaluation of our human decision-making model demonstrates that it enhanced 

our ability to correctly interpret crosses and splits with limited information. By implementing 

a decision-making model mixing both deterministic and probabilistic rules, we consistently 

out-performed a solely probabilistic interpretation method. Our analysis found that 

probability of correct detection was highest when the bandwidth was large, the time before 

the event was substantial, and the relative velocities of the objects was extreme (either very 

high or very low). Human error had a small effect on our end results, affecting fewer than 

3% of interpretations. 

The conclusion of our research leaves open several avenues for additional learning. 

One variable we would have liked to examine was viewing geometry. Variations in viewing 

geometry can greatly affect the resulting RTIs, though its effect on our ability to correctly 

discriminate between splits and crosses is unknown. Another possible follow-up to our 

research would be to examine scenarios of higher complexity, such as those using multiple 

objects following more complex motions. The research would be further improved were it 

conducted using parameters – cross and split velocities, especially - derived from real data 

rather than best guesses. Finally, the research could be extended by focusing on either the 

human or machine elements. Research into the effect of the human element could be done 

by examining error rates across various operators and attempting to minimize or even 

eliminate human error; for the machine element, it could be through development of a fully 

automated algorithm for performing cross/split discrimination. 
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Appendix A: Scatterer Distance Clarification 

As previously mentioned, the range in 

an RTI is measured with respect to the center of 

rotation of the object. In Figure A-1 both 

scatterers and the center of rotation appear to 

be the same distance away, d’, from the radar 

when in fact the scatterers are slightly further 

away at a distance d. 

Since d‟ is much larger than s, the 

separation between the centres of the spheres at 

either end of the dumbbell, the difference 

between d’ and d is negligible. The relationship 

between these two distances is derived using the 

Pythagorean Theorem in Equation A- 1. 
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 For example, for a dumbbell with s = 4m and d’ =100,000m the difference between 

d and d’ is 2∙10-5meters using Equation A- 2. 
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Figure A- 1: Distances from Radar to Object 
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Appendix B: Reentry Vehicle XML Code  
 

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?> 

<RFmodel> 

 <Format Version="3.0"/> 

 <Name>Basic RV</Name> 

 <Background> 

  <Author>Cebula</Author> 

  <Version>1.0</Version> 

  <Date>15 October 2002</Date> 

  <Verification>Eyeball comparison to S/X band static 

patterns</Verification> 

  <Description>This is a model of a simple cone using a 

collection of point scatterers</Description> 

 </Background> 

 <Band>S C X</Band> 

 <Requirements> 

  pointResponse 

 </Requirements> 

 <Center> 

  <Position Axial="0.0" OffAxis="0.0" Roll="0.0"/> 

 </Center> 

 <Components> 

  <Group Name="nose" Hidden="false"> 

   <Component Class="mitll.rcssim.BasicScatterer" 

ID="1"> 

    <Type>nose</Type> 

    <Response>pointResponse</Response> 

    <Comment>Simple nose scatterer @ -

20dBsm</Comment> 

    <PP>0.1 0.0</PP> 

    <OP>0.001 0.001</OP> 

    <Position Axial="1.0" OffAxis="0.0"/> 

    <Radius>0.05</Radius> 

    <Aspects>0 100 7</Aspects> 

    <Rolls>0 360 7</Rolls> 

   </Component> 

  </Group> 

  <Group Name="specular" Hidden="false"> 

   <Component Class="mitll.rcssim.BasicScatterer" 

ID="2a"> 

    <Type>slipping</Type> 

    <Response>pointResponse</Response> 

    <Comment>Narrow, strong peak specular</Comment> 

    <PP>10.0 0.0</PP> 

    <OP>5.0 0.01</OP> 

    <Position Axial="0.0" OffAxis="0.33"/> 

    <Aspects>70.3 70.5 0.3</Aspects> 

    <Rolls>0 360 0.3</Rolls> 

   </Component> 

   <Component Class="mitll.rcssim.BasicScatterer" 

ID="2b"> 

    <Type>slipping</Type> 

    <Response>pointResponse</Response> 
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    <PP>0.5 0.0</PP> 

    <OP>0.6 0.1</OP> 

    <Position Axial="0.0" OffAxis="0.33"/> 

    <Aspects>68 76 3.2</Aspects> 

    <Rolls>0 360 3.2</Rolls> 

   </Component> 

  </Group> 

  <Group Name="base" Hidden="false"> 

   <Component Class="mitll.rcssim.BasicScatterer" 

ID="3"> 

    <Type>slipping</Type> 

    <Response>pointResponse</Response> 

    <PP>1.0 0.0</PP> 

    <OP>0.5 0.0</OP> 

    <Position Axial="-0.8" OffAxis="0.5"/> 

    <Aspects>150 180 3</Aspects> 

    <Rolls>0 360 3</Rolls> 

   </Component> 

   <Component Class="mitll.rcssim.BasicScatterer" 

ID="4"> 

    <Type>backslipping</Type> 

    <Response>pointResponse</Response> 

    <PP>0.1 0.0</PP> 

    <OP>0.05 0.0</OP> 

    <Position Axial="-0.8" OffAxis="0.5"/> 

    <Aspects>150 180 3</Aspects> 

    <Rolls>0 360 3</Rolls> 

   </Component> 

   <Component Class="mitll.rcssim.BasicScatterer" 

ID="5"> 

    <Type>fixed</Type> 

    <Response>pointResponse</Response> 

    <PP>0.3 0.1</PP> 

    <OP>0.1 0.1</OP> 

    <Position Axial="-0.7" OffAxis="0.2" 

Roll="30"/> 

    <Aspects>130 180 5</Aspects> 

    <Rolls>0 360 5</Rolls> 

   </Component> 

   <Component Class="mitll.rcssim.BasicScatterer" 

ID="6"> 

    <Type>slipping</Type> 

    <Response>pointResponse</Response> 

    <PP>0.04 0</PP> 

    <OP>0.03 0</OP> 

    <Position Axial="-0.8" OffAxis="0.5"/> 

    <Aspects>0 130 7</Aspects> 

    <Rolls>0 360 7</Rolls> 

   </Component> 

   <Component Class="mitll.rcssim.BasicScatterer" 

ID="2a"> 

    <Type>slipping</Type> 

    <Response>pointResponse</Response> 

    <Comment>Narrow, strong peak specular</Comment> 

    <PP>10.0 0.0</PP> 

    <OP>5.0 0.01</OP> 

    <Position Axial="-0.7" OffAxis="0.0"/> 
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    <Aspects>179.7 180.0 0.3</Aspects> 

    <Rolls>0 360 0.3</Rolls> 

   </Component>    

  </Group> 

 </Components> 

</RFmodel> 
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Appendix C: Sample Configuration File  
 

# 

# Model1Test1718.cfg 

# 

VerbosityLevel = Silent 

Verbosity Stream =  

BinaryOutput = false 

DragEffectsOn = true 

WriteBirthSamples = true 

WriteDeathSamples = true 

PrintEventSummary = true 

GravityModel = GravityJGM3 4 4 

FileNameSuffix =  

TrajWriteForObjects = all 

TrajectoryFileDir = TrajectoryFiles 

 

_OBJECTS 

1   RV1          11.0     56.0      56.0        0.234 0.0   0.0    

0.001 700 

2   RV2          11.0     56.0      56.0        0.234 0.0   0.0    

0.001 700 

_END_OBJECTS 

 

# 

 

_EVENTS 

1 DataRate 0.0 0.1 

2 SetState 1 0.0 6678137.0 0.0 0.0 0.0 0.0 2000.0 

3 SetState 2 0.0 6678137.0 3.458 0.0 0.0 -4.211 2000.0 

4 SetRates 1 0 0 1.817 0 

5 SetRates 2 10 0 1.098 0 

_END_EVENTS 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix D: Sample Record File 
 

1. Split   DepTime:  79.3408  DepVel:  2.56744  Angle:  7.77827 SepVel:  1.09657 Bwdth:   1000 

2. Split-V   DepTime:  115.967  DepVel: -1.33442  Angle:  3.58323 SepVel:  0.467833 Bwdth:    100 

3. SplitTumble  DepTime:  27.5259  DepVel:  3.12533  Tmbl1:  0.770449  Tmbl2:  1.64502 Angle:  8.80514

 SepVel:  1.40003 Bwdth:    100 

4. Split   DepTime:  45.8459  DepVel:  3.28768  Angle:  12.5155 SepVel:  1.36135 Bwdth:    100 

5. CrossTumbleR  VelY:     7.29294  DistY:  -6.3058  Tmbl1:  1.09779  Tmbl2:  0.48503 Angle:  39.0288

 SepVel:  6.14787 Bwdth:    100 

6. Split-V   DepTime:  85.3657  DepVel: -4.19092  Angle:  13.7193 SepVel:  1.54913 Bwdth:   1000 

7. SplitTumble  DepTime:  59.3594  DepVel:  4.18916  Tmbl1:  1.12918  Tmbl2:  0.386659 Angle:  3.09961

 SepVel:  0.353462 Bwdth:   1000 

8. SplitTumble  DepTime:  136.97  DepVel:  2.96237  Tmbl1:  1.6611  Tmbl2:  1.32533 Angle:  5.40343

 SepVel:  0.834971 Bwdth:   1000 

9. CrossTumbleR  VelY:     4.34542  DistY:  -9.64083  Tmbl1:  0.687651  Tmbl2:  1.69314 Angle:  26.9434

 SepVel:  3.47531 Bwdth:   1000 

10. CrossTumbleL  VelY:    -4.65072  DistY:   10.077  Tmbll:  1.61016  Tmbl2:  1.918 Angle:  26.1443

 SepVel:  4.12691 Bwdth:    500 

11. SplitTumble-V  DepTime:  133.846  DepVel: -2.81329  Tmbl1:  1.50088  Tmbl2:  0.359386 Angle:  8.62391

 SepVel:  1.0555 Bwdth:    500 

12. SplitTumble-V  DepTime:  80.9992  DepVel: -3.72579  Tmbl1:  0.223084  Tmbl2:  1.97784 Angle:  14.2975

 SepVel:  1.60956 Bwdth:    100 

13. SplitTumble  DepTime:  95.3749  DepVel:  2.41168  Tmbl1:  1.54469  Tmbl2:  1.10666 Angle:  8.65242

 SepVel:  1.15797 Bwdth:    500 

14. Split   DepTime:  93.8177  DepVel:  5.18319  Angle:  15.0427 SepVel:  1.97677 Bwdth:    500 

15. CrossL   VelY:    -5.27279  DistY:   13.3668  Angle:  29.656 SepVel:  4.56688 Bwdth:   1000 

16. Split-V   DepTime:  84.7805  DepVel: -3.11393  Angle:  8.53249 SepVel:  1.36479 Bwdth:    100 

17. CrossTumbleR  VelY:     2.86646  DistY:  -9.15216  Tmbl1:  0.6091  Tmbl2:  0.935856 Angle:  18.0116

 SepVel:  2.36862 Bwdth:    100
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Appendix E: MATLAB Code Used For RTI Generation 

E.1 RandRTI.m 

function RandRTI(numIters,recordName,isUniform,clearFiles) 

 

if nargin==2 

    isUniform = 0; 

    clearFiles = 0; 

end 

 

if nargin==3 

    clearFiles = 0; 

end 

 

tic 

 

cd('C:\Program Files\MATLAB\R2006b\work\'); 

 

addpath([pwd '\RFSIG2\']); 

addpath([pwd '\RFSIG2\src\']); 

 

mkdir([pwd '\RFSIG2\output\MQP\' recordName '\']) 

 

recfid=fopen([recordName '.txt'],'wt'); 

 

numTemplates = 8; 

iter = 1; 

 

if clearFiles 

    delete([pwd '\RFSIG2\output\MQP\' recordName '\*.jpg']); 

end 

 

%%% Template Variables 

%% All Cases 

BandwidthVals = [100,500,1000];% 100 500 1000 

BandwidthLs = [100,1;500,.2;1000,.1]; 

TimePre = [-1.5,1]; 

TimePost = [5,15]; 

SensorPosLat = [0,0]; 

SensorPosLong = [5, 5]; 

sensorPos = zeros(2,1); 

%% Case 1: MQPCross (L) 

C1_Name = 'CrossL'; 

C1_LIM_VelY = [-6,-.1]; %-.275,-.1 

C1_LIM_DistY = [2, 15]; %5,15 

C1_LIM_VelY_N = [-5,2]; 

%% Case 2: MQPSplit 

C2_Name = 'Split'; 

C2_LIM_DepTime = [20, 150]; 

C2_LIM_DepVel = [.1, 3]; %.1,1 

C2_LIM_DepVel_N = [3,1]; 

%% Case 3: MQPCrossTumble (L) 

C3_Name = 'CrossTumbleL'; 
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C3_LIM_VelY = C1_LIM_VelY; 

C3_LIM_VelY_N = C1_LIM_VelY_N; 

C3_LIM_DistY = C1_LIM_DistY; 

C3_LIM_Tumble = [.1, 2]; 

%% Case 4: MQPSplitTumble 

C4_Name = 'SplitTumble'; 

C4_LIM_DepTime = C2_LIM_DepTime; 

C4_LIM_DepVel = C2_LIM_DepVel; 

C4_LIM_DepVel_N = C2_LIM_DepVel_N; 

C4_LIM_Tumble = C3_LIM_Tumble; 

%% Case 5: MQPCross (R) 

C5_Name = 'CrossR'; 

C5_LIM_VelY = [.1,6]; %.1,.275 

C5_LIM_VelY_N = -1.*C1_LIM_VelY_N; 

C5_LIM_DistY = [-30, -2]; %-15,-5 

%% Case 6: MQPCrossTumble (R) 

C6_Name = 'CrossTumbleR'; 

C6_LIM_VelY = C5_LIM_VelY; 

C6_LIM_VelY_N = -1.*C1_LIM_VelY_N; 

C6_LIM_DistY = C5_LIM_DistY; 

C6_LIM_Tumble = C3_LIM_Tumble; 

%% Case 7: MQPSplit (-V) 

C7_Name = 'Split-V'; 

C7_LIM_DepTime = C2_LIM_DepTime; 

C7_LIM_DepVel = [-3,-.1]; %-1,-.1 

C7_LIM_DepVel_N = -1*C2_LIM_DepVel_N; 

%% Case 8: MQPSplitTumble (-V) 

C8_Name = 'SplitTumble-V'; 

C8_LIM_DepTime = C2_LIM_DepTime; 

C8_LIM_DepVel = C7_LIM_DepVel; 

C8_LIM_DepVel_N = -1*C2_LIM_DepVel_N; 

C8_LIM_Tumble = C3_LIM_Tumble; 

%% Main Loop 

while iter <= numIters 

     

    cfgFile = [recordName num2str(iter)]; 

     

    rTemp = ceil(length(BandwidthVals)*rand(1)); 

    Bandwidth = BandwidthVals(rTemp); 

     

    rTemp = ceil(numTemplates*rand(1)); 

    writeCFGHeader(cfgFile); 

 

    %interceptAngle = 0; 

     

%    rTemp = [1, 1, 2, 2]; 

%    rTemp = rTemp(iter); 

     

    tOffStart = randbound(TimePre); 

    tOffEnd = randbound(TimePost); 

     

    rScale = 80 * ((tOffEnd)/10) 

     

    sensorPos(1) = randbound(SensorPosLat); 

    sensorPos(2) = randbound(SensorPosLong); 

     

    switch rTemp 
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        case{1} %Cross 

            if(isUniform) 

                C1_VelY = randbound(C1_LIM_VelY); 

            else 

                C1_VelY = randgauss(C1_LIM_VelY_N); 

            end 

            C1_DistY = randbound(C1_LIM_DistY); 

            intersectTime = abs(C1_DistY / C1_VelY); 

            writeEventsCross(cfgFile,C1_DistY,C1_VelY); 

            [interceptAngle,seperationVel] = 

ll6dMATLABnMQP(intersectTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rSca

le); 

            fprintf(recfid,'%g. %s \t\t%s:    % 6.6g \t%s:  % 6.6g 

\t%s: % 6.6g\t%s: % 6.6g\t%s: % 

6.6g\n',iter,C1_Name,'VelY',C1_VelY,'DistY',C1_DistY,'Angle',interceptA

ngle,'SepVel',seperationVel,'Bwdth',Bandwidth); 

        case{2} %Split 

            if(isUniform) 

                C2_DepVel = randbound(C2_LIM_DepVel); 

            else 

                C2_DepVel = randgauss(C2_LIM_DepVel_N); 

            end 

            C2_DepTime = randbound(C2_LIM_DepTime); 

            intersectTime = C2_DepTime; 

            writeEventsSplit(cfgFile,C2_DepTime,C2_DepVel); 

            [interceptAngle,seperationVel] = 

ll6dMATLABnMQP(C2_DepTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rScale)

; 

            fprintf(recfid,'%g. %s \t\t%s: % 6.6g \t%s: % 6.6g \t%s: % 

6.6g\t%s: % 6.6g\t%s: % 

6.6g\n',iter,C2_Name,'DepTime',C2_DepTime,'DepVel',C2_DepVel,'Angle',in

terceptAngle,'SepVel',seperationVel,'Bwdth',Bandwidth); 

        case{3} %Cross w/ Tumble 

            if(isUniform) 

                C3_VelY = randbound(C3_LIM_VelY); 

            else 

                C3_VelY = randgauss(C3_LIM_VelY_N); 

            end 

            C3_DistY = randbound(C3_LIM_DistY); 

            intersectTime = abs(C3_DistY / C3_VelY); 

            C3_Tumble1 = randbound(C3_LIM_Tumble); 

            C3_Tumble2 = randbound(C3_LIM_Tumble); 

            

writeEventsCrossTumble(cfgFile,C3_DistY,C3_VelY,C3_Tumble1,C3_Tumble2); 

            [interceptAngle,seperationVel] = 

ll6dMATLABnMQP(intersectTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rSca

le); 

            fprintf(recfid,'%g. %s \t%s:    % 6.6g \t%s:  % 6.6g \t%s: 

% 6.6g \t%s: % 6.6g\t%s: % 6.6g\t%s: % 6.6g\t%s: % 

6.6g\n',iter,C3_Name,'VelY',C3_VelY,'DistY',C3_DistY,'Tmbll',C3_Tumble1

,'Tmbl2',C3_Tumble2,'Angle',interceptAngle,'SepVel',seperationVel,'Bwdt

h',Bandwidth); 

        case{4} %Split w/ Tumble 

            C4_DepTime = randbound(C4_LIM_DepTime); 

            if(isUniform) 

                C4_DepVel = randbound(C4_LIM_DepVel); 

            else 
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                C4_DepVel = randgauss(C4_LIM_DepVel_N); 

            end 

            intersectTime = C4_DepTime; 

            C4_Tumble1 = randbound(C4_LIM_Tumble); 

            C4_Tumble2 = randbound(C4_LIM_Tumble); 

            

writeEventsSplitTumble(cfgFile,C4_DepTime,C4_DepVel,C4_Tumble1,C4_Tumbl

e2); 

            [interceptAngle,seperationVel] = 

ll6dMATLABnMQP(C4_DepTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rScale)

; 

            fprintf(recfid,'%g. %s \t%s: % 6.6g \t%s: % 6.6g \t%s: % 

6.6g \t%s: % 6.6g\t%s: % 6.6g\t%s: % 6.6g\t%s: % 

6.6g\n',iter,C4_Name,'DepTime',C4_DepTime,'DepVel',C4_DepVel,'Tmbl1',C4

_Tumble1,'Tmbl2',C4_Tumble2,'Angle',interceptAngle,'SepVel',seperationV

el,'Bwdth',Bandwidth); 

        case{5} %Cross 

            if(isUniform) 

                C5_VelY = randbound(C5_LIM_VelY); 

            else 

                C5_VelY = randgauss(C5_LIM_VelY_N); 

            end             

            C5_DistY = randbound(C5_LIM_DistY); 

            intersectTime = abs(C5_DistY / C5_VelY); 

            writeEventsCross(cfgFile,C5_DistY,C5_VelY); 

            [interceptAngle,seperationVel] = 

ll6dMATLABnMQP(intersectTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rSca

le); 

            fprintf(recfid,'%g. %s \t\t%s:    % 6.6g \t%s:  % 6.6g 

\t%s: % 6.6g\t%s: % 6.6g\t%s: % 

6.6g\n',iter,C5_Name,'VelY',C5_VelY,'DistY',C5_DistY,'Angle',interceptA

ngle,'SepVel',seperationVel,'Bwdth',Bandwidth);             

        case{6} %Cross w/ Tumble 

            if(isUniform) 

                C6_VelY = randbound(C6_LIM_VelY); 

            else 

                C6_VelY = randgauss(C6_LIM_VelY_N); 

            end 

            C6_DistY = randbound(C6_LIM_DistY); 

            intersectTime = abs(C6_DistY / C6_VelY); 

            C6_Tumble1 = randbound(C6_LIM_Tumble); 

            C6_Tumble2 = randbound(C6_LIM_Tumble); 

            

writeEventsCrossTumble(cfgFile,C6_DistY,C6_VelY,C6_Tumble1,C6_Tumble2); 

            [interceptAngle,seperationVel] = 

ll6dMATLABnMQP(intersectTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rSca

le); 

            fprintf(recfid,'%g. %s \t%s:    % 6.6g \t%s:  % 6.6g \t%s: 

% 6.6g \t%s: % 6.6g\t%s: % 6.6g\t%s: % 6.6g\t%s: % 

6.6g\n',iter,C6_Name,'VelY',C6_VelY,'DistY',C6_DistY,'Tmbl1',C6_Tumble1

,'Tmbl2',C6_Tumble2,'Angle',interceptAngle,'SepVel',seperationVel,'Bwdt

h',Bandwidth);             

        case{7} %Split % Intersect time = DepTime 

            C7_DepTime = randbound(C7_LIM_DepTime); 

            if(isUniform) 

                C7_DepVel = randbound(C7_LIM_DepVel); 

            else 
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                C7_DepVel = randgauss(C7_LIM_DepVel_N); 

            end 

            intersectTime = C7_DepTime; 

            writeEventsSplit(cfgFile,C7_DepTime,C7_DepVel); 

            [interceptAngle,seperationVel] = 

ll6dMATLABnMQP(C7_DepTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rScale)

; 

            fprintf(recfid,'%g. %s \t\t%s: % 6.6g \t%s: % 6.6g \t%s: % 

6.6g\t%s: % 6.6g\t%s: % 

6.6g\n',iter,C7_Name,'DepTime',C7_DepTime,'DepVel',C7_DepVel,'Angle',in

terceptAngle,'SepVel',seperationVel,'Bwdth',Bandwidth);             

        case{8} %Split w/ Tumble 

            C8_DepTime = randbound(C8_LIM_DepTime); 

            if(isUniform) 

                C8_DepVel = randbound(C8_LIM_DepVel); 

            else 

                C8_DepVel = randgauss(C8_LIM_DepVel_N); 

            end 

            intersectTime = C8_DepTime; 

            C8_Tumble1 = randbound(C8_LIM_Tumble); 

            C8_Tumble2 = randbound(C8_LIM_Tumble); 

            

writeEventsSplitTumble(cfgFile,C8_DepTime,C8_DepVel,C8_Tumble1,C8_Tumbl

e2); 

            [interceptAngle,seperationVel] = 

ll6dMATLABnMQP(C8_DepTime,cfgFile,[tOffStart,tOffEnd],sensorPos,rScale)

; 

            fprintf(recfid,'%g. %s \t%s: % 6.6g \t%s: % 6.6g \t%s: % 

6.6g \t%s: % 6.6g\t%s: % 6.6g\t%s: % 6.6g\t%s: % 

6.6g\n',iter,C8_Name,'DepTime',C8_DepTime,'DepVel',C8_DepVel,'Tmbl1',C8

_Tumble1,'Tmbl2',C8_Tumble2,'Angle',interceptAngle,'SepVel',seperationV

el,'Bwdth',Bandwidth);             

        otherwise 

            disp(['Case error, rTemp = ' num2str(rTemp)]) 

    end 

     

    load('C:\program files\MATLAB\R2006b\work\RFSIG2\MQP.mat'); 

    guioutput.record = recordName; 

    guioutput.ident = cfgFile; 

    guioutput.WBinfo.bandwidthMHz = Bandwidth; 

    guioutput.time.start = intersectTime + tOffStart; 

    if guioutput.time.start < 0 

        guioutput.time.start = 0; 

    end 

    guioutput.time.end = intersectTime + tOffEnd; 

    guioutput.WBinfo.maxrange = rScale; 

    guioutput.angle = interceptAngle; 

    guioutput.BWTable = BandwidthLs; 

    guioutput.eventTime = intersectTime; 

    save('C:\program 

files\MATLAB\R2006b\work\RFSIG2\MQP.mat','guioutput'); 

     

    cleansingleMQP; 

    cd('C:\Program Files\MATLAB\R2006b\work\'); 

    iter = iter + 1; 

     

    delete([cfgFile '.cfg']); 
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end 

 

toc 

 

E.2 ll6dMATLABnMQP.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

%   UNCLASSIFIED 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%   

%   LL6dMATLAB.m 

% 

%   Basic calculation of random generating threat variations for 

analysis 

% 

%   version 0  :  MATLABClientCode.m  N. Iamaio June 28, 2004 

%   version 0.1:  LL6DMATLAB.m  B.Tipton June 29,2004 

%        Added more comments and time history functions 

% 

%   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%   BEFORE USING THIS CODE IN MATLAB VERIFY YOU HAVE INSTALLED LL6D 

%   CORRECTLY 

%    1)  downloaded and installed LL6D libraries according to 

README.txt 

%    2)  Created a "classpath.txt" file in a directory in which this 

%        MATLAB is running.  Inside the classpath.txt are lines with 

the 

%        paths to all the LL6D libraries. 

%    3)  Run MATLAB in the same directory as the classpath.txt 

%     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 

%  I)  Create the trajectories 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 

  

% 

%   I.1 Create flight manager object 

%       The second argument is the LL6D threat configuration file 

%       The third argument is 0 for write to file or 1 for buffer 

output to memory 

%       Be sure to watch memory usage when buffering memory, 

trajectories can 

%       10s of megabytes. 

% 

%flightMgr = javaObject('timehistory.FlightManager',... 

%    'Single.cfg'); 
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function 

[sepAng,sepVel]=ll6dMATLABnMQP(intersectTime,config,timeRange,sensorPos

,rScale) 

 

%Globals 

global randGen; 

global props; 

global jnull; 

global sensor; 

global NBinfo; 

global WBinfo; 

 

%Filename and path definitions 

%Program will create and look for trajectory and time history files in 

the 

%data folder, which must be a subdir of the working directory. 

%Config, scatterer file, and APSM file must be in the working 

directory. 

wkDir                       = 'C:\Program Files\MATLAB\R2006b\work\'; 

dataDir                     = 'TrajectoryFiles\'; 

%scenarioName                = 'MQPSplitTumble'; 

objNames                    = {'RV1','RV2'};  

scattererFiles              = {'basicrv.xml','basicrv.xml'}; %should be 

an xml file 

alignIndex                  = 1; %Index of object to align on 

apsmFile                    = 'SimdefXML.properties'; %properties file 

name 

range_scale                 = 200; %specifies how wide or narrow of a 

range you want the rti to cover 

gen_files                   = 1; 

gen_rti                     = 0; 

cfgIsBinary                 = 0; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cfgFile                     = [config '.cfg'];  

outputDir                   = 'RFSIG2\trajectories\RandRTI'; 

 

%%%%%%%%%%% DEFINE RTI DURATION 

rti_time=100:.25:101; 

 

%or if you want an automatically set time window, just uncomment the 

%getTimeLimits line before the call to form_rti 

 

num_objects                 = length(objNames); 

%arr_ind                     = 1:num_objects; 

 

trajobj                     = cell(num_objects,1); 

thf                         = cell(num_objects,1); 

trks                        = cell(num_objects,1); 

 

props                       = java.util.Properties; 

jnull                       = props.get('Junk'); 

rfsig_dir                   = '.\'; 

 

radar.f0                    = 10;         % Center frequency (GHz) 

radar.bw                    = 300;       % Bandwidth (MHz) 
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radar.rw                    = range_scale;% Range window (m) for 

combined response from all objects 

radar.rg                    = .1;        % Range gate spacing (m) 

radar.brf                   = 1;          % Burst frequency (hz) 

radar.prf                   = 100;        % Instantaneous PRF (Hz) 

within each burst 

radar.t_burst               = 1;          % Time duration (s) of each 

burst 

radar.t_offset              = 100;        % Time offset (s) of each 

burst 

radar.n_p_burst             = radar.prf;  % Total number of bursts in 

each pulse 

radar.n_p_int               = 1;   

 

WBinfo.responseFilename     = [rfsig_dir,'exresp_taylor.txt']; 

WBinfo.respTab              = 

javaObject('mitll.rcssim.ResponseTable',WBinfo.responseFilename); 

WBinfo.maxrange             = radar.rw; 

%WBinfo.snroff               = [-15 -12]; 

WBinfo.snroff               = [-50 -50]; 

WBinfo.pulsetimes           = 250; 

isWB                        = true; 

WBinfo.rangeGateSize        = radar.rg; 

WBinfo.bandwidthMHz         = radar.bw; 

WBinfo.freqGHz              = radar.f0; 

WBinfo.windowDefinition     = 'taylor 40 6'; 

WBinfo.noiseFloor           = -60; 

WBinfo.pol                  = 'PP'; 

WBinfo.polarization         = WBinfo.pol; 

 

NBinfo.rangeGateSize        = radar.rg; 

NBinfo.bandwidthMHz         = radar.bw; 

NBinfo.freqGHz              = radar.f0; 

NBinfo.polarization         = WBinfo.pol; 

NBinfo.windowDefinition     = 'taylor 40 6'; 

 

scenario.random_seed        = sum(100*clock); 

scenario.random_seed        = 1; 

 

randSeed                    = scenario.random_seed; 

randGen                     = javaObject('java.util.Random',randSeed); 

 

if gen_files 

    !del/Q TrajectoryFiles 

    FILEBUFFERMODE=0; 

    flightMgr = javaObject('timehistory.FlightManager',... 

        cfgFile,FILEBUFFERMODE); 

 

    flightMgr.runSim;  

end 

 

% 

% I.5 Retrieve the output.  These are trajectories 

% 

%      trajarray is an Java array Object of type java.util.Arraylist 

%      Retrieve an individual trajectory with the syntax 

traj=trajarray.get(#); 
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%      Remember Java uses "C" style array indexing.  The first object 

has 

%       index 0! This is opposed to MATLAB which indexes from 1. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%% UPDATE FILENAME/FILEPATH TO FIT CURRENT 

OBJECT 

trajio = mitll.sixd.TrajectoryIO; 

iter=1; 

if cfgIsBinary 

    while(iter<=length(objNames)) 

        trajobj(iter) = trajio.readBin([wkDir dataDir objNames{iter} 

'.bin']); 

        iter = iter+1; 

    end 

else 

    while(iter<=length(objNames)) 

        trajobj(iter) = trajio.readAscii([wkDir dataDir objNames{iter} 

'.dat']); 

        iter = iter+1; 

    end 

end 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

%  II) "TimeHistory" Coversion. 

%     Convert the Truth Trajectory in ECI coordinates to sensor/radar 

%     reference frame measurements (range, azimuth, elevation).  Also, 

%     make basic calculations of radar coverage with respect to 

%     Field-of-View and a very basic "noise floor" calculation  

%  (  Noise Floor is defined as the negative SNR on a 0dBsm object.  

%     e.g. use as SNR in dB = RCS - NoiseFloor  

%     where  NoiseFloor= 40log10(Range) - SNR_REFERENCE.  See Below) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

  

% 

%  II.1 Define the sensor 

% 

sensor = javaObject('mitll.sixd.SensorInfo'); 

sensor.m_name='Bogus Radar'; 

% place radar at latitude, longitude, altitude = 33 deg, 130 deg, 0m 

%      (somewhere around Japan?) 

 

%%%%% 'Perfect' radar - 36 

sensor.m_location=javaObject('mitll.metric.LatLonAltPoint', 

sensorPos(1), sensorPos(2), 0.0 ); 

sensor.m_elevLow = 1;  % 1 deg min elevation 

sensor.m_elevHigh=90;  % 80 deg max elevation 

sensor.m_elev0 = 40;   % sensor array, with boresight at 40 deg from 

horizontal 

sensor.m_elevKValue = 2; % ave. scanloss exponent.  Scanloss(dB)= -

10log10( cos(theta)^K) 

sensor.m_azimLow = 0;  % min azimuth 

sensor.m_azimHigh = 360;  % max azimuth 
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sensor.m_azim0=0;  % sensor array facing north. Note 0/360 wrapping 

accounted for. 

sensor.m_azimKValue=2; % ave. scanloss exponent for azimuth. 

sensor.m_SNR_REF=-350; % factor accounting for sensor power, area etc. 

                       % Noise floor is calculated with this offset via 

                       %  NoiseFloor=-40log10 (Range) - SNR_REFERENCE 

                       % Note:  -350 is for a ridiculously powerful 

radar  

 

                        

% 

% II.2  Calculate what this sensor sees of the LL6D trajectories 

% 

traj2th=javaObject('mitll.sixd.Trajectory2TimeHistory'); 

  

iter=1; 

while(iter<=length(trajobj)) 

    thf(iter) = javaMethod('generate',traj2th, trajobj{iter}, sensor); 

    iter = iter+1; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

iter=1; 

thfio = mitll.sixd.TimeHistoryFileIO; 

while(iter<=length(thf)) 

    thfio.writeAscii(thf{iter},[dataDir objNames{iter} '_THF.dat']); 

    iter = iter+1; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

%  III) "GenSig" Coversion. 

%     Convert radar observations into a "TrackedObjectLL6dGenSig" class 

%     which uses the Augmented Point Scatterer Model (APSM) to produce 

%     radar signatures and pulse-by-pulse data products (RTI,DTI,RDI, 

etc). 

%      

%    

%  NOTE: Code only works if rfsig/mitll/APSM are distributed in 

addition to 

%         LL6D 

% 

%   This section still under construction.  --June 29, 2004 BT 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

 

%Copy moves THF files to appropriate place for SIMGUI 

copyfile([wkDir dataDir '*thf.dat'],[wkDir outputDir]) 

 

props=javaObject('java.util.Properties'); 

iter = 1; 

 

while(iter<=length(trajobj)) 

    trks{iter} = create_track([wkDir outputDir '\' objNames{iter} 

'_THF.dat'],0,[wkDir scattererFiles{iter}],[wkDir 

apsmFile],objNames(iter),objNames(iter),'b--',props); 
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    iter = iter+1; 

end 

 

sepDist = abs((trks{2}.getRanges(intersectTime+timeRange(2),0)-

trks{1}.getRanges(intersectTime+timeRange(2),0))); 

sepAng = atand( (sepDist*1000/rScale) / (timeRange(2)/(timeRange(2)-

timeRange(1))) );% * ((timeRange(2)-timeRange(1))/10) )%/timeRange(2)) 

sepVel = 1000*sepDist/(timeRange(2)-timeRange(1)); 

% 

%  III.3  Form a range-time-intensity plot 

%   (form_rti from rfsig) 

 

 

%timetemp = trk.getTimeLimits; 

%rti_time = timetemp(1):(timetemp(2)-timetemp(1))./1000:timetemp(2); 

 

if gen_rti 

    rti_out=form_rti_backup(rti_time,trks,isWB,trks{alignIndex},250,[-

15 -12],radar.rw,true,WBinfo.noiseFloor,0); 

  

% RTI Plotter 

 

    figure; 

    plotrti(rti_out.amps,rti_out.r,rti_out.t); 

 

end 

 

 

 

'RTI completed.' %#ok<NOPRT> 

 

E.3 runsimMQP.m 

function [] = runsim(guiinput) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% 

%% runsim.m: Driver for RFSIG generation 

%% 

%% Driver program that generates radar data using APSM scatterer files 

and LL6D 

%% time history files. 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% runsim.m: modified version of testsim.m, changed to work with the 

GUI 

%% as input. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% 

%% $Id: testsim.m,v 1.6 2005/05/25 19:15:16 bkate Exp $ 

%% 

%% AUTHOR: David Cebula 

%%         MIT LINCOLN LABORATORY 

%%         April 7, 2003 

%% 

%% Copyright (c) 2005 MIT/Lincoln Laboratory. 

%% All Rights Reserved. 

%% 

%% THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF 

%% MIT/Lincoln Laboratory. The copyright notice does 

%% not evidence any actual or intended publication of  

%% such source code. 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

 

javaaddpath([pwd '/jars/mitll_external-3.1.2.jar']); 

javaaddpath([pwd '/jars/jnl.jar']); 

 

global DIR_ROOT; 

global jnull; 

global props; 

global NBinfo; 

global WBinfo; 

global pcparams; 

global randGen; 

 

%% create java null 

props = javaObject('java.util.Properties'); 

jnull = props.get('Junk'); 

 

%% make a directory root 

DIR_ROOT = [pwd '/']; 

addpath src; 

 

time = guiinput.time; 

ts = time.start:time.step:time.end; 

 

%% Pulls structs out of input var 

WBinfo = guiinput.WBinfo; 

NBinfo = guiinput.NBinfo; 

DTIinfo = guiinput.DTIinfo; 

IMinfo = guiinput.IMinfo; 

NBIMinfo = guiinput.NBIMinfo; 

WBIMinfo = guiinput.WBIMinfo; 

pcparams = guiinput.pcparams; 

opts = guiinput.opts; 

defComplex = guiinput.defComplex; 

staticRange = guiinput.staticRange; 

 

record = guiinput.record; 

cfgFile = guiinput.ident; 
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randSeed = 1; 

randGen = javaObject('java.util.Random',randSeed); 

props.put('RandomGenerator',randGen); 

 

%% Sets up default file paths and makes neccessary formatting changes 

if guiinput.defaultFilepaths 

  defComplex.thfloc = [DIR_ROOT 'trajectories/' defComplex.cfgFile]; 

  defComplex.apsmdefloc = [DIR_ROOT 'simdefAPSM.properties']; 

  defComplex.scattdefloc = [DIR_ROOT 'targets/']; 

  WBinfo.responseFilename = [DIR_ROOT 

'targets/responses/exresp_taylor.txt']; 

  opts.saveLoc = regexprep([DIR_ROOT 'output\MQP\' record 

'\'],'\','/'); 

  %% saveLoc character replacement neccessary to avoid errors in 

sprintf 

else 

  defComplex.thfloc = [defComplex.thfloc defComplex.cfgFile]; 

  opts.saveLoc = regexprep(opts.saveLoc,'\','/'); 

  %% saveLoc character replacement neccessary to avoid errors in 

sprintf 

end 

 

WBinfo.respTab = 

javaObject('mitll.rcssim.ResponseTable',WBinfo.responseFilename); 

 

%% Generates tracks as mitll.architecture.ITrackedObjects 

trks = gen_tracks(defComplex); % 

trkAlign = trks{defComplex.trkAlign};  

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%% Computation and Output 

%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% open file to facilitate output 

if opts.saveEMF 

    fout = fopen([opts.saveLoc 'hdrALL.txt'], 'wt'); 

    fprintf(fout,'%.1f - %.1f\n', min(ts), max(ts)); 

    fprintf(fout,'define_complex.m runsim.m\n'); 

end 

 

 

%% Show tracks 

if opts.showRanges 

     

    figure; 

    hold on; 

    ranges0 = trkAlign.getRanges(ts,0); 

     

    for k=1:length(trks) 

        trk = trks{k}; 

        rs = trk.getRanges(ts,0); 

        iix = find(rs > 0); 

        plot(rs(iix)-ranges0(iix),ts(iix),char(trk.getPlotStyle)); 

    end 

 

    xlabel('Range (km)'); 

    ylabel('Time (s)'); 
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    fmakep5; 

     

    if opts.saveEMF   

        str = ['print -dmeta ' '''' opts.saveLoc '''' 'range.emf']; 

        eval(str); 

        fprintf(fout,'range.emf Relative Ranges\n'); 

    end 

     

    if opts.saveIMG 

        str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc 

'''' '%s_range_%04.3f-%04.3f.' opts.imgXtn], cfgFile,ts(1), 

ts(length(ts))) 

        eval(str); 

    end 

end 

 

%% WB RTI - Combo 

if opts.showWBRTI 

     

    if opts.returnAmps 

        [amps,xs] = 

form_rti_F(ts,trks,true,trkAlign,WBinfo.snroff,WBinfo.maxrange,true,WBi

nfo.noiseFloor); 

        pows = 20*log10(abs(amps)); 

    else 

        [pows,xs] = 

form_rti_F(ts,trks,true,trkAlign,WBinfo.snroff,WBinfo.maxrange,false,WB

info.noiseFloor); 

    end 

 

    timeScale = 0:time.step:length(ts); 

    timeScale = timeScale.*time.step; 

    figure; 

    imagesc(xs,timeScale,pows,[-40 30]); 

    axis xy; 

    axis square; 

    colorbar; 

    xlabel('Range (m)'); 

    ylabel('Time (s)'); 

    fmakep5; 

     

    if opts.saveEMF 

        str = ['print -dmeta ' '''' opts.saveLoc '''' 

'wb_combo_rti.emf']; 

        eval(str); 

        fprintf(fout,'wb_combo_rti.emf Wideband RTI\n'); 

    end 

 

%%MQP Output Vars 

angle = guiinput.angle; 

Ls = guiinput.BWTable; 

obsL = 

interp1q(Ls(1:size(Ls,1),1),Ls(1:size(Ls,1),2),WBinfo.bandwidthMHz); 

obsTime = quant((obsL/tand(angle))*length(timeScale)/length(xs),.2); 

if obsTime == 0 

    obsTime = .2; 

end 



Approved for Public Release 
07-MDA-3047 (25 JAN 08) 

73 

eventTime = guiinput.eventTime; 

 

    if opts.saveIMG 

        str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc 

'''' '%s_BW%04.3f_AN%04.3f_OT%04.3f_L%04.3f_TB%04.3f.' opts.imgXtn], 

cfgFile, WBinfo.bandwidthMHz, angle, obsTime, obsL, eventTime-

time.start) 

        eval(str); 

    end 

end 

 

pause(1); 

 

%% NB RTI - Combo 

if opts.showNBRTI 

    

    if opts.returnAmps 

        [amps,xs] = 

form_rti_F(ts,trks,false,trkAlign,NBinfo.snroff,NBinfo.maxrange,true,NB

info.noiseFloor); 

        pows = 20*log10(abs(amps)); 

    else 

        [pows,xs] = 

form_rti_F(ts,trks,false,trkAlign,NBinfo.snroff,NBinfo.maxrange,false,N

Binfo.noiseFloor); 

    end 

 

    figure; 

    imagesc(xs,ts,pows,[-40 30]); 

    axis xy; 

    colorbar; 

    xlabel('Range (m)'); 

    ylabel('Time (s)'); 

    fmakep5; 

             

    if opts.saveEMF 

        str = ['print -dmeta ' '''' opts.saveLoc '''' 

'nb_combo_rti.emf']; 

        eval(str); 

        fprintf(fout,'nb_combo_rti.emf Narrowband RTI\n'); 

    end 

     

    if opts.saveIMG 

        str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc 

'''' 'nb_combo_rti_%04.3f-%04.3f.' opts.imgXtn], ts(1), 

ts(length(ts))); 

        eval(str); 

    end 

end 

 

 

%% WB RTI - singles 

if opts.showWBRTIsing 

     

    for k=1:length(trks) 

     

        trk = trks{k}; 
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        name = char(trk.getIdentifier); 

         

        if opts.returnAmps 

            [amps,xs] = 

form_rti_sing(ts,trk,true,WBinfo.snroff,true,WBinfo.noiseFloor); 

            pows = 20*log10(abs(amps)); 

        else 

            [pows,xs] = 

form_rti_sing(ts,trk,true,WBinfo.snroff,false,WBinfo.noiseFloor); 

        end 

 

        figure; 

        imagesc(xs,ts,pows,[-40 30]); 

        axis xy; 

        colorbar; 

        xlabel('Range (m)'); 

        ylabel('Time (s)'); 

        title(sprintf('Object = %s', name)); 

        fmakep5; 

         

        if opts.saveEMF 

            fnam = sprintf('wb_rti_%s.emf', name); 

            str = sprintf(['print -dmeta ' '''' opts.saveLoc '''' 

'%s'],fnam); 

            eval(str); 

            fprintf(fout,'%s Wideband RTI; ID = %s\n', fnam, name); 

        end 

         

        if opts.saveIMG 

            str = sprintf(['print -d' opts.imgType ' ' '''' 

opts.saveLoc '''' 'wb_rti_%s_%04.3f-%04.3f.' opts.imgXtn], name, ts(1), 

ts(length(ts))); 

            eval(str); 

        end 

    end 

end 

 

 

%% NB RTI - singles 

if opts.showNBRTIsing 

     

    for k=1:length(trks) 

     

        trk = trks{k}; 

        name = char(trk.getIdentifier); 

        if opts.returnAmps 

            amps = 

form_rti_sing(ts,trk,false,NBinfo.snroff,true,NBinfo.noiseFloor); 

            pows = 20*log10(abs(amps)); 

        else 

            pows = 

form_rti_sing(ts,trk,false,NBinfo.snroff,false,NBinfo.noiseFloor); 

        end 

 

        figure; 

        plot(ts,pows,char(trk.getPlotStyle)); 

        axis xy; 
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        colorbar; 

        ylabel('RCS (dBsm)'); 

        xlabel('Time (s)'); 

        title(sprintf('Object = %s', name)); 

        fmakep5; 

         

        if opts.saveEMF    

            fnam = sprintf('nb_rti_%s.emf', name); 

            str = sprintf(['print -dmeta ' '''' opts.saveLoc '''' 

'%s'],fnam); 

            eval(str); 

            fprintf(fout,'%s Narrowband RCS History; ID = %s\n', fnam, 

name); 

        end 

         

        if opts.saveIMG 

            str = sprintf(['print -d' opts.imgType ' ' '''' 

opts.saveLoc '''' 'nb_rti_%s_%04.3f-%04.3f.' opts.imgXtn], name, ts(1), 

ts(length(ts))); 

            eval(str); 

        end 

    end 

end 

 

 

%% Combined DTI 

if opts.showDTI 

     

    if opts.returnAmps 

        [amps,fs] = 

form_dti_mult(ts,trks,trkAlign,DTIinfo.prf,DTIinfo.npuls,DTIinfo.snroff

,DTIinfo.maxrange,true,DTIinfo.noiseFloor); 

        pows = 20*log10(abs(amps)); 

    else 

        [pows,fs] = 

form_dti_mult(ts,trks,trkAlign,DTIinfo.prf,DTIinfo.npuls,DTIinfo.snroff

,DTIinfo.maxrange,false,DTIinfo.noiseFloor); 

    end 

 

    figure; 

    imagesc(fs,ts,pows,[-40 30]); 

    axis xy; 

    colorbar; 

    xlabel('Frequency (Hz)'); 

    ylabel('Time (s)'); 

    fmakep5; 

     

    if opts.saveEMF     

        str = ['print -dmeta ' '''' opts.saveLoc '''' 'dti_combo.emf']; 

        eval(str); 

        fprintf(fout,'dti_combo.emf Combined DTI\n'); 

    end 

     

    if opts.saveIMG 

        str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc 

'''' 'dti_combo_%04.3f-%04.3f.' opts.imgXtn], ts(1), ts(length(ts))); 

        eval(str); 
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    end 

end 

 

 

%% DTI - singles 

if opts.showDTIsing 

     

    for k=1:length(trks) 

     

        trk = trks{k}; 

        name = char(trk.getIdentifier); 

         

        if opts.returnAmps 

            [amps,fs] = 

form_dti_sing(ts,trk,DTIinfo.prf,DTIinfo.npuls,DTIinfo.snroff,true,DTIi

nfo.noiseFloor); 

            pows = 20*log10(abs(amps)); 

        else 

            [pows,fs] = 

form_dti_sing(ts,trk,DTIinfo.prf,DTIinfo.npuls,DTIinfo.snroff,false,DTI

info.noiseFloor); 

        end 

 

        figure; 

        imagesc(fs,ts,pows,[-40 30]); 

        axis xy; 

        colorbar; 

        xlabel('Frequency (Hz)'); 

        ylabel('Time (s)'); 

        title(sprintf('Object = %s', name)); 

        fmakep5; 

         

        if opts.saveEMF 

            fnam = sprintf('dti_%s.emf', name); 

            str = sprintf(['print -dmeta ' '''' opts.saveLoc '''' 

'%s'],fnam); 

            eval(str); 

            fprintf(fout,'%s DTI; ID = %s\n', fnam, name); 

        end 

         

        if opts.saveIMG 

            str = sprintf(['print -d' opts.imgType ' ' '''' 

opts.saveLoc '''' 'dti_%s_%04.3f-%04.3f.' opts.imgXtn], name, ts(1), 

ts(length(ts))); 

            eval(str); 

        end 

    end 

end 

 

 

%% Single range doppler images 

if opts.showSingRDImages 

     

    for itrk = 1:length(trks); 

     

        if (IMinfo.makeplot ~= -99) 
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            iix = find(itrk == IMinfo.makeplot); 

             

            if length(iix) < 1 

                continue; 

            end 

        end 

 

        trk = trks{itrk}; 

        name = char(trk.getIdentifier); 

         

        if opts.saveAVI 

            fname = sprintf([opts.saveLoc 'rd_img_%s_%04.3f-

%04.3f.avi'], name, ts(1), ts(length(ts))); 

            aviobj = avifile(fname,'FPS',10); 

            aviobj.quality = 100; 

        end 

 

        for k=1:length(ts) 

             

            t = ts(k); 

            imparms = trk.getImageParameters(t, 0.05, 1.0); 

            IMinfo.prf = imparms(1); 

             

            if (IMinfo.prf < 20) 

                IMinfo.prf = 20; 

            end 

 

            IMinfo.npuls = ceil(imparms(2)*IMinfo.prf); 

            IMinfo.snroff = 90 - 10*log10(IMinfo.npuls); 

            asp = imparms(3); 

             

            if opts.returnAmps 

                [amps,xs,fs] = 

form_image_sing(t,trk,IMinfo.prf,IMinfo.npuls,IMinfo.snroff,true,IMinfo

.noiseFloor); 

                pows = 20*log10(abs(amps)); 

            else 

                [pows,xs,fs] = 

form_image_sing(t,trk,IMinfo.prf,IMinfo.npuls,IMinfo.snroff,false,IMinf

o.noiseFloor); 

            end 

 

            fig = figure(99); 

            set(fig,'DoubleBuffer','on'); 

            imagesc(fs,xs,pows,[-40 30]); 

            axis xy; 

            colorbar; 

            xlabel('Frequency (Hz)'); 

            ylabel('Range (m)'); 

            vv = axis; 

            str = sprintf('PRF = %.0f Hz; N = 

%d',IMinfo.prf,IMinfo.npuls); 

            ss=text(0.98*vv(1)+0.02*vv(2),0.95*vv(3)+0.05*vv(4),str); 

            set(ss,'Color',[1 1 1]); 

            title(sprintf('Object = %s; Time = %.3f; Aspect = 

%.0f',char(trk.getIdentifier),t,asp)); 

            fmakep5; 
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            if opts.saveIMG 

                str = sprintf(['print -d' opts.imgType ' ' '''' 

opts.saveLoc '''' 'rd_img_%s_%04.3f.' opts.imgXtn], name, t); 

                eval(str); 

            else 

                pause(0.1); 

            end 

 

            if opts.saveAVI 

                set(fig,'Color',[1 1 1]); 

                aviobj = addframe(aviobj,fig); 

            end 

        end 

 

        if opts.saveAVI 

            aviobj = close(aviobj); 

        end 

    end 

end 

 

 

%% Combined NB images 

if opts.showMultNBImages 

     

    if opts.saveAVI 

        fname = sprintf([opts.saveLoc 'nb_combo_img_%04.3f-

%04.3f.avi'], ts(1), ts(length(ts))); 

        aviobj = avifile(fname,'FPS',10); 

        aviobj.quality = 100; 

    end 

 

    for k=1:length(ts) 

         

        t = ts(k); 

         

        if opts.returnAmps 

            [amps,xs,fs] = 

form_image_mult_F(t,trks,false,trkAlign,NBIMinfo.prf,NBIMinfo.npuls,NBI

Minfo.snroff,NBIMinfo.maxrange,true,NBIMinfo.noiseFloor); 

            pows = 20*log10(abs(amps)); 

        else 

            [pows,xs,fs] = 

form_image_mult_F(t,trks,false,trkAlign,NBIMinfo.prf,NBIMinfo.npuls,NBI

Minfo.snroff,NBIMinfo.maxrange,false,NBIMinfo.noiseFloor); 

        end 

 

        fig = figure(100); 

        set(fig,'DoubleBuffer','on'); 

        imagesc(fs,xs,pows,[-40 30]); 

        axis xy; 

        colorbar; 

        xlabel('Frequency (Hz)'); 

        ylabel('Range (m)'); 

        title(sprintf('Time = %.3f',t)); 

        fmakep5; 
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        if opts.saveIMG 

          str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc 

'''' 'nb_combo_img_%04.3f.' opts.imgXtn], t);          

          eval(str); 

        else 

            pause(0.1); 

        end 

 

        if opts.saveAVI 

            set(fig,'Color',[1 1 1]); 

            aviobj = addframe(aviobj,fig); 

        end 

    end 

 

    if opts.saveAVI 

        aviobj = close(aviobj); 

    end 

end 

 

 

%% Combined WB images 

if opts.showMultWBImages     

     

    if opts.saveAVI 

        fname = sprintf([opts.saveLoc 'wb_combo_img_%04.3f-

%04.3f.avi'], ts(1), ts(length(ts))); 

        aviobj = avifile(fname,'FPS',10); 

        aviobj.quality = 100; 

    end 

 

    for k=1:length(ts) 

     

        t = ts(k); 

         

        if opts.returnAmps 

            [amps,xs,fs] = 

form_image_mult_F(t,trks,true,trkAlign,WBIMinfo.prf,WBIMinfo.npuls,WBIM

info.snroff,WBIMinfo.maxrange,true,WBIMinfo.noiseFloor); 

            pows = 20*log10(abs(amps)); 

        else 

            [pows,xs,fs] = 

form_image_mult_F(t,trks,true,trkAlign,WBIMinfo.prf,WBIMinfo.npuls,WBIM

info.snroff,WBIMinfo.maxrange,false,WBIMinfo.noiseFloor); 

        end 

 

        fig = figure(101); 

        set(fig,'DoubleBuffer','on'); 

        imagesc(fs,xs,pows,[-40 30]); 

        axis xy; 

        colorbar; 

        xlabel('Frequency (Hz)'); 

        ylabel('Range (m)'); 

        title(sprintf('Time = %.3f',t)); 

        fmakep5; 

         

       if opts.saveIMG 
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          str = sprintf(['print -d' opts.imgType ' ' '''' opts.saveLoc 

'''' 'wb_combo_img_%04.3f.' opts.imgXtn], t);          

          eval(str); 

        else 

            pause(0.1); 

        end 

 

        if opts.saveAVI 

            set(fig,'Color',[1 1 1]); 

            aviobj = addframe(aviobj,fig); 

        end 

    end 

 

    if opts.saveAVI 

        aviobj = close(aviobj); 

    end 

end 

 

if opts.saveEMF 

    fclose(fout); 

end 

 

%% Static Range RTI - singles 

if opts.showStaticRangeRTI 

     

    

staticRangeTHF(time.start,time.step,time.end,staticRange.range,staticRa

nge.aspect,staticRange.orientation,staticRange.period,staticRange.noise

Floor) 

     

    for k=1:length(trks) 

         

        tempComplex = struct('thfloc',[pwd 

'\sim_gui\settings\'],'apsmdefloc',defComplex.apsmdefloc,'scattdefloc',

defComplex.scattdefloc,'identList',{defComplex.identList(k)},'graphList

',{defComplex.graphList(k)},'typeList',{defComplex.typeList(k)},'scattL

ist',{defComplex.scattList(k)},'isBinary',0,'cfgFile','','sufext','_THF

.dat'); 

        tempComplex.objNameList=cellstr('staticrange'); 

         

        trktemp = gen_tracks(tempComplex); 

        trk = trktemp{1}; 

                 

        name = char(trk.getIdentifier); 

         

        if opts.returnAmps 

            [amps,xs] = 

form_rti_sing(ts,trk,true,staticRange.snroff,true,staticRange.noiseFloo

r); 

            pows = 20*log10(abs(amps)); 

        else 

            [pows,xs] = 

form_rti_sing(ts,trk,true,staticRange.snroff,false,staticRange.noiseFlo

or); 

        end 

 

        figure; 
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        imagesc(xs,ts,pows,[-40 30]); 

        axis xy; 

        colorbar; 

        xlabel('Range (m)'); 

        ylabel('Time (s)'); 

        title(sprintf('Object = %s', name)); 

        fmakep5; 

         

        if opts.saveEMF 

            fnam = sprintf('wb_rti_%s.emf', name); 

            str = sprintf(['print -dmeta ' '''' opts.saveLoc '''' 

'%s'],fnam); 

            eval(str); 

            fprintf(fout,'%s Static Range RTI; ID = %s\n', fnam, name); 

        end 

         

        if opts.saveIMG 

            str = sprintf(['print -d' opts.imgType ' ' '''' 

opts.saveLoc '''' 'sr_rti_%s_%04.3f-%04.3f.' opts.imgXtn], name, ts(1), 

ts(length(ts))); 

            eval(str); 

        end 

    end 

end 

 

%msgbox('Simulation complete.'); 

 

% $Log: testsim.m,v $ 

% Revision 1.6  2005/05/25 19:15:16  bkate 

% updated method for loading classes and libraries 

% 

% Revision 1.5  2005/05/25 17:13:09  bkate 

% made MATLAB 6 friendly 

% 

% Revision 1.4  2005/05/25 11:38:19  bkate 

% modified path to mitll jar 

% 

% Revision 1.3  2005/05/24 19:47:56  bkate 

% updated for re-distribution 

% 

% Revision 1.2  2004/08/04 19:41:22  npiamaio 

% added and addpath command to specifiy the src dir.  These files 

should not 

% be modified.  They serve as an example as to how to call teh code.  

If new 

% client code is written and the author thinks it useful for others 

check 

% those in. 

% 

% Revision 1.1  2004/08/04 19:10:38  npiamaio 

% initial 

% 
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Appendix F: MATLAB Operating Curve Code Example 
 
%%% Operating Curve: Bandwidth, Revised Threshold 
xlsFile = 'C:\Documents and Settings\chris\My Documents\final.xls'; 
samples = 120; 

  
bwvals = [100 500 1000]; 
tbquants = 4; 

  
[angles,blah1,blah2]=xlsread(xlsFile,'Raw Data','C2:C5000'); 

%#ok<NASGU> 
[bwith,blah1,blah2]=xlsread(xlsFile,'Raw Data','D2:D5000'); %#ok<NASGU> 
[tbefore,blah1,blah2]=xlsread(xlsFile,'Raw Data','E2:E5000'); 

%#ok<NASGU> 
[correct,blah1,blah2]=xlsread(xlsFile,'Angle2','I2:I5000'); 

  
clear blah1 
clear blah2 

  
data=[angles bwith tbefore correct]; 
data=sortrows(data); 
%[angles,i]=sort(angles); 
ind = 1:samples:size(data,1); 
ind = ind(1:end-1); 
limits = ((data(ind+samples/2,1))); 
limits(end)=limits(end)+1; 

  
j=1; 
bwout = cell(3,length(limits)-1); 
sampSize = zeros(3,length(limits)-1); 
while j<=length(bwvals) 
    i=1; 
    bwtest = bwvals(j); 
    a=find(data(1:end,2)==bwtest); 
    while i<=length(limits)-1 
        b=find(limits(i)<=data(a,1) & data(a,1)<limits(i+1)); 
        bwout{j,i}=data(a(b),1:4); 
        sampSize(j,i)=length(b); 
        i=i+1; 
    end 
    j=j+1; 
end 

  
bwlevel = zeros(3,100*length(limits)-1); 
bwlevel2 = zeros(3,length(limits)-1); 
j=1; 
while j<=length(bwvals) 
    i=1; 
    loc = 1; 
    while i<=length(limits)-1 
%        k=1; 
%        while k<=size(bwout{j,i},1); 
        k=size(bwout{j,i},1); 
        scale = floor((limits(i+1)-limits(i))*100); 
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        if k>0 
            bwlevel(j,loc:loc+scale)=sum(bwout{j,i}(1:k,4))/k; 
            bwlevel2(j,i)=sum(bwout{j,i}(1:k,4))/k; 
            loc=loc+scale+1; 
        end 
        i=i+1; 
    end 
    j=j+1; 
end 

  
load OperatingCurveColormap; 

  
i=1; 
finalout = zeros(length(bwvals),100*length(limits)-1); 
movAve = 2; 
while i<=length(bwvals) 
    j=1; 
    loc = 1; 
    while j<=length(limits)-1 
        a=j-movAve; 
        b=j+movAve; 
        scale = floor((limits(j+1)-limits(j))*100); 
        if a<=0 
           a=1; 
        end 
        if b>length(bwlevel2) 
            b=length(bwlevel2); 
        end 
        finalout(i,loc:loc+scale) = mean(bwlevel2(i,a:b)); 
        j=j+1; 
        loc = loc + scale; 
    end 
    i=i+1; 
end 

  

  
figure 
hold on; 
imagesc(limits,1:length(bwvals),bwlevel,[.5,1]); 
colormap(mycmap); 
colorbar; 
axis([limits(1) limits(end)-.5 .5 length(bwvals)+.5]); 
set(gca,'ytick',[1 2 3],'yticklabel',{'100';'500';'1000'}) 
xlabel('Angle (Deg)','FontSize',16); 
ylabel('Bandwidth (MHz)','FontSize',16); 
fmakep5; 
hold off; 

  
figure 
hold on; 
imagesc(limits,1:length(bwvals),bwlevel,[.75,1]); 
colormap(mycmap); 
colorbar; 
axis([limits(1) limits(end)-.5 .5 length(bwvals)+.5]); 
set(gca,'ytick',[1 2 3],'yticklabel',{'100';'500';'1000'}) 
xlabel('Angle (Deg)','FontSize',16); 
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ylabel('Bandwidth (MHz)','FontSize',16); 
fmakep5; 
hold off; 

  
figure 
hold on; 
imagesc(limits,1:length(bwvals),finalout,[.5,1]); 
colormap(mycmap); 
colorbar; 
axis([limits(1) limits(end)-.5 .5 length(bwvals)+.5]); 
set(gca,'ytick',[1 2 3],'yticklabel',{'100';'500';'1000'}) 
xlabel('Angle (Deg)','FontSize',16); 
ylabel('Bandwidth (MHz)','FontSize',16); 
fmakep5; 
hold off; 

  
figure 
hold on; 
imagesc(limits,1:length(bwvals),finalout,[.75,1]); 
colormap(mycmap); 
colorbar; 
axis([limits(1) limits(end)-.5 .5 length(bwvals)+.5]); 
set(gca,'ytick',[1 2 3],'yticklabel',{'100';'500';'1000'}) 
xlabel('Angle (Deg)','FontSize',16); 
ylabel('Bandwidth (MHz)','FontSize',16); 
fmakep5; 
hold off; 
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