
Project Number: MQP-CEW-0703

Parsing and Analyzing Log Files

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Christopher S. Henning

Christian A. Roy

Date: May 10, 2007

Professor Craig E. Wills, Major Advisor

Abstract

In many large-scale software and hardware systems, log files provide a crucial
source of information to aid in debugging. However, when the system is
complex these log files may be difficult to read. Often, entries are irrelevant,
and combining and correlating different logs is difficult. In this project, we
develop a tool to make a class of logs more useful to Cisco Systems. The
tool filters log events based on specified information, as well as displays logs
together for correlation.

Contents

1 Introduction 4

1.1 Problem . 4
1.2 Requirements . 5
1.3 Solution Approach . 5
1.4 Road Map . 5

2 Background 7

2.1 Regular Expressions . 7
2.2 Language Choices . 8

2.2.1 C . 8
2.2.2 Java . 8
2.2.3 Perl . 8
2.2.4 Python . 8
2.2.5 Ruby . 9
2.2.6 Language Choice . 9

2.3 Tools . 9
2.3.1 Concurrent Versioning System 10
2.3.2 Sourceforge . 10
2.3.3 Eclipse . 10
2.3.4 Vim . 10

2.4 Summary . 11

3 The Problem 12

3.1 Cisco’s Log Files . 12
3.2 Sample Log Files . 12
3.3 Objective . 13
3.4 Summary . 14

4 Our Solution 15

4.1 Our Proposal . 15
4.1.1 Parsing . 15
4.1.2 Filtering . 16
4.1.3 Merging . 16
4.1.4 Summary . 16

4.2 Actual Solution . 16

1

4.2.1 Prototyping . 16
4.2.2 Design . 18
4.2.3 Implementation . 19
4.2.4 Summary . 23

4.3 In-depth Parsing . 23
4.3.1 Parsing CTI logs . 23
4.3.2 Parsing OPC logs . 24

4.4 Feedback . 25
4.5 Problems with Our Solution 26
4.6 Summary . 26

5 System in Action 28

5.1 Command-Line Interface . 28
5.1.1 Batch Mode . 28
5.1.2 Interactive Mode . 29

5.2 Graphical User Interface . 29
5.3 Summary . 30

6 Call Flow Tool 31

6.1 User Interface . 31
6.2 Extensibility . 32
6.3 Comparison . 33
6.4 Summary . 33

7 Final Thoughts 34

7.1 Accomplishments . 34
7.2 Future Work . 35
7.3 Conclusion . 35
7.4 Acknowledgements . 35

2

List of Figures

3.1 Cisco Server Setup . 13
3.2 CTI Server Log . 13
3.3 OPC Server Log . 14

4.1 UML Class Diagram of Our Solution 20

5.1 Command-Line Batch Mode 28
5.2 Command-Line Interactive Mode 29
5.3 Screenshot of our GUI . 30

6.1 Call Flow User Interface . 31
6.2 Overview of the XML format 32
6.3 In-depth look at the XML format 32

3

Chapter 1

Introduction

Cisco Systems, Inc. provides a variety of networking and communication
services, tools, and products that are widely used in the corporate world.
These tools can differ widely in scope and purpose, but Cisco maintains
support for them. Many times, providing this support can be expensive in
both man-hours and money.

One of the products Cisco provides is a complex call-routing system to
enterprise customers. This system enables companies to quickly and easily
route calls to their correct destination, taking into account such factors as
call center location, department, agent language, agent skill areas, and more.
The system consists of several parts, including routers and various types of
servers.

1.1 Problem

When something goes wrong, be it a call routed to the wrong place, a call
taking too long to be taken care of, an agent not being logged in or out
properly, or any number of problems, the main tool for finding the problem
are the logs files generated by each piece of equipment. These files can
be humongous and unwieldy, and are unfortunately not standardized with
each other or even within a particular log. In addition, the devices can be
configured to log with variable verbosity, so not all log files are generated
equally. As such, it is often difficult to trace through the logs and find the
problem. Cisco employees would usually start with the entire log file and
remove irrelevant lines by hand, or sometimes start with a simple search for
relevant lines (using grep, a common Unix text-searching tool, for example)
and go from there. This approach, however, is time-consuming and can get
confusing and hard to handle. In addition, when it is necessary to trace
through multiple log files (as it often is), it becomes even more difficult
to manage in a time-effective manner. The problem is that previously, no
comprehensive tool has existed to make this job easier.

4

1.2 Requirements

Any solution we designed needed to meet several primary requirements in
order to be of use to Cisco. Foremost, any software designed needed to be
able to be run on Microsoft Windows. This was important because the most
common operating system for Cisco employee’s is Microsoft Windows. As
such, it would be unusable to our target user base if it would not run on
Windows. However, as some of Cisco’s employees use alternate operating
systems such as Unix or Mac OS X, cross-platform support was desirable if
possible.

The second requirement was that it needed to use the existing log file
formats. Since information in log files is generated at multiple points from
many products, it was not feasible to propose a complete change of the
format, though minor changes to specific event types were possible.

The third and final requirement was that it must be easily extended and
modifiable. Although there are only four major log file formats currently,
these formats may change in the future. Also likely, a new component or
server type may be added that also needs to be included in the tool. As
such, it is important that the tool be easy for others to change after we have
finished the project and are no longer available.

1.3 Solution Approach

In approaching the problem our first task was to study the log files to try and
understand the difficulties in parsing them. We began by watching a Cisco
employee run through the hand parsing of some sample log files created.
After we had a rough understanding of the log file, we decided to prototype
a tool in Perl so as to test our knowledge. When this worked, we migrated
to creating a solution in Java.

The primary reason we decided on this route was that while Java provides
many advantages to long-term software projects, it can also be more difficult
to accomplish certain tasks with it. By prototyping a tool, we could quickly
see what assumptions we made were correct and which were not. Once we
had that knowledge, it would then be an easier task to implement it in Java.
In other words, we prototyped in a language that allows fast, flexible devel-
opment so we could work out the conceptual problems before implementing
a solution in a language that provides more extensibility to a constructed
solution.

1.4 Road Map

This report provides more details about the background of the problem, what
we used to tackle it, and what design decisions we made. In Chapter 2 we
describe specific background knowledge necessary for the rest of the report.

5

In Chapter 3, we describe the problem we were trying to solve in more detail,
and in Chapter 4 we describe our proposed solution, our actual solution, and
the difference between them. In Chapter 5, we give a glimpse of our tool
in action. Chapter 6 describes an alternate solution to the problem, the
Call Flow Tool developed by a different branch of Cisco during the course
of our project. Chapter 6 also compares our solution and the Call Flow
Tool, including our recommendations on where to focus future work. In our
final chapter, Chapter 7, we discuss final thoughts regarding the project.
These thoughts include our accomplishments, future work to be done, and a
concluding note on the project as a whole. Finally, we end by acknowledging
all those who helped us with this project.

6

Chapter 2

Background

In this chapter, we discuss all the background knowledge required in the rest
of the report. This includes information on regular expressions, an important
tool used when parsing text, as well as the rationale behind which languages
we used. Finally, it also includes the various tools we used while developing
our solution.

2.1 Regular Expressions

One of the most crucial tools we use in parsing the log files is regular expres-
sions. Regular expressions provide an extensive way to describe a pattern
of text, including the ability to extract information from that text. One of
the most popular forms of regular expressions are known as Perl Compatible
regular expressions, as they are based off Perl’s implementation.

A simple example of a Perl compatible regular expression would be ‘bar’,
which would match the words ‘bar’ and ‘foobar’, since both contain bar. It is
also possible to match the beginning and ending of a string via the characters
‘^’ and ‘$’ respectively. In this case, the regular expression ‘^bar$’ would
only match the word ‘bar’.

Regular expressions can be further extended with character classes. In
this case, one may specify a set of characters that are acceptable to match.
To further our earlier example, the regular expression ‘^[b|c]ar$’ would
match both the words ‘bar’ and ‘car’. Finally, it is possible to extract in-
formation from the captured string as well. In order to do this, you simply
enclose the part of the expression to extract in parenthesis. In our exam-
ple, the regular expression ‘^([b|c])ar$’ would match the words ‘bar’ and
‘car’, capturing and extracting the character ‘b’ or ‘c’, respectively. Further
information on regular expressions can be found at “http://www.regular-
expressions.info”[1].

7

2.2 Language Choices

When developing a software solution, one of the most important choices
one makes is the language to use. For our solution, we considered several
languages. Of these languages, the primary candidates were C, Perl, Java,
Python, and Ruby.

2.2.1 C

C is a systems programming language originally developed by Dennis Ritchie
at Bell Labs between 1969 and 1973[3]. It provides low level access to the
underlying hardware of a computer, giving access to memory via pointers.
With an extensive library of functions, C and its derivative C++ are two of
the most widely used languages on the planet.

2.2.2 Java

Java was created by Sun Microsystems in the early 1990s[2]. Borrowing
heavily from C syntax, it is a wholly object-oriented language. A primary
distinction between it and C/C++ is that it compiles down to byte code,
which then runs in a virtual machine. As such, Java aims to be platform
agnostic, with the motto “Write Once, Run Anywhere”. It also comes with
a full library of built-in class and functionally, including two frameworks for
building GUIs, AWT and Swing.

2.2.3 Perl

Perl was created by Larry Wall and was first released in 1987[6]. It began
primarily as a scripting language useful for manipulating text files, such as
those commonly found in Unix configuration/administration. It was quickly
adopted by many system administrators as the language of choice for these
tasks, and eventually evolved into a type of swiss army knife of programming
languages. It provides built in support for regular expressions, and a clean
syntax for using them natively.

2.2.4 Python

Python was created by Guido van Rossum in 1991[7]. It aims to be a multi-
paradigm, general purpose scripting language. Its primary goal is to promote
program legibility, in that it embraces the concept that programs are written
for people to understand first, computers to understand second. While it has
support for regular expressions, there is not the same level of syntactic sugar
for use as there is in Perl.

8

2.2.5 Ruby

Ruby is the most recently developed of the languages we considered. It
was first released to the public in 1995, after several years development by
Yukihiro Matsumoto[8]. It is a purely object-oriented language that also
supports multiple programming paradigms. Unfortunately, its performance
is the slowest of all languages considered. However, it has similar regular
expression support as Perl, including the same clean syntax for using them.

2.2.6 Language Choice

Our conclusion was to use both Perl and Java for our project. Since C can
have portability issues across platforms, we decided that it was probably not
the best choice. Java, espousing the “Write Once, Run Anywhere” philos-
ophy, neatly solves this problem and makes for a good option. However,
most scripting languages (of which Perl, Python, and Ruby are all members
of) also run cross-platform with little difficulty. The main advantage Java
has over these languages is that it has a built-in library for GUI applications.
Since our client is looking for a tool that will be easily usable and understood,
a GUI is the ideal choice of interface.

However, scripting languages allow for more rapid development, some-
thing we definitely wanted to take advantage of given the time constraints
of our project. To this end, we decided to use a scripting language to pro-
totype our overall design and architecture. The options for this scripting
language were Perl, Python, and Ruby. Since we had already determined
that our final program would be done in Java, we knew we would be lever-
aging object-oriented programming, so Ruby and Python were both good
choices for their clean object support. However, our experience with these
was less than that of Perl and since the point was to rapidly prototype, we de-
cided that implementing in Perl and then moving to Java and a more object
oriented style would be faster than learning a new language. Additionally,
since much of our work would be parsing text files, Perl’s regular expression
support was ideal, and while Ruby has similar syntax for regular expressions,
it was the language we had the least familiarity with.

2.3 Tools

In any software project, a number of tools are used to make the task more
manageable. These tools can range from simple editors to complicated Inte-
grated Development Environments (IDEs). A brief summary of the tools we
used follows.

9

2.3.1 Concurrent Versioning System

Every software project inevitably will have one or more (more likely a lot
more) bugs in it as it is being developed. In addition, when development
is done by several people, it can be difficult to coordinate who is working
on what section, and even more difficult to merge changes made back into a
central file that everyone has a copy of.

In order to solve these problems, the concept of version control came
about. Concurrent Versioning System (CVS) is one implementation of a ver-
sion control system[5]. It allows several developers to ‘check out’ a software
project, make changes, and then ‘commit’ them back to the central repos-
itory. At this point, all other developers can ‘update’ their version of the
code and CVS will automatically merge all changes. If two developers were
working on the exact same section, when the second developer updates he
will be notified of the conflicting changes and asked what to do about them.

2.3.2 Sourceforge

While CVS provides a way for teams to maintain code versions, it does not
provide any way for teams to communicate beyond that. There is no concept
of assigning tasks, releasing code builds, or just simple communication. To
this end, Sourceforge exists[9]. Sourceforge is designed to make it easy for
teams to develop and release software. It includes support for either CVS or
Subversion (SVN) version control, as well as forums and a wiki.

2.3.3 Eclipse

Eclipse is an open source IDE originally created to ease Java development.
It features syntax highlighting, auto-completion, a graphical debugger, and
integrated CVS support[4]. It has a sophisticated plug-in system, which
provide everything from support for other languages to GUI builders. While
these plug-ins do provide support for other languages, Eclipse remains best
at developing Java projects. As such, it was the primary tool used to develop
the final version of our software solution.

2.3.4 Vim

Vim is a modal code editor designed for editing source code in a minimalist
environment[10]. It can be run either at a command line or via a GUI,
allowing people to edit in a variety of environments. It is a cross-platform
editor, but remains most popular on Unix systems. While it has less features
than Eclipse, notably no built-in debugging or CVS management, it has
excellent syntax highlighting capabilities and was the primary tool used to
develop the original Perl prototype of our solution.

10

2.4 Summary

To summarize, many decisions were made before we started serious develop-
ment on our project. The first of these decisions was which language to use
during development. We decided to prototype a solution in Perl to take ad-
vantage of its rapid development capabilities, as well as its strong and clean
support for regular expressions. However, we also decided that our final tool
should be implemented in Java for strong extensibility, and cross-platform
and GUI support.

In addition to the decisions regarding language, we also chose several tools
to help with regards to this project. These tools included version control
systems, project management systems, and editors. Without these it would
have been difficult to have developed our solution.

11

Chapter 3

The Problem

In this chapter, we discuss the problem we attempted to solve in more detail.
It includes samples of the log files we worked with, as well as details on
exactly why a tool is necessary to solve this problem.

3.1 Cisco’s Log Files

For our project, we were mainly concerned with four log file types: Original
Point Code (OPC) and Computer Telephony Integration (CTI), the two most
important, and Protocol Independent Multicast (PIM) and JTAPI Gateway
(JGW). The final part of the system is the Cisco CallManager (CCM), though
we did not work with it at all. Both hardware and software products are a
part of this system, and usually each part has a duplicate for redundancy.
Each of these parts perform diverse actions as they work with each other to
route calls, and each generates a log file detailing the actions it takes as its
part of the process. Depending on the volume of calls and the particular
setup, a certain piece of equipment may generate dozens of lines per second
in its log. A diagram of the server configuration can be seen in Figure 3.1,
however for our project the overall connection between components was less
important than the log files themselves.

3.2 Sample Log Files

Figures 3.2 and 3.3 are samples of the log files we worked with. Figure 3.2 is
the beginning of a CTI server log, and Figure 3.3 is the beginning of an OPC
log. Both of them have lines that continue a ways off to the right, but for
size and readability reasons the screen shots were cut off at 80 characters.

12

O P C C T I

P I M

J T A P I

C C M

Figure 3.1: Cisco Server Setup

Figure 3.2: CTI Server Log

3.3 Objective

As is the case with any product, problems with Cisco’s systems crop up in
regular use. A number of problems might occur; for example, a call might
be incorrectly routed to an agent that does not speak the right language,
or that is on a lunch break. Or an agent might not be logged in and out
correctly, leading to payment problems. Or, a call might just take too long
to be processed, delivered, and answered, meaning there is a decrease in
the quality of service the company using Cisco’s products provides to its
customers.

As mentioned, Cisco’s systems consist of a myriad of parts that work
together and generate log files as they work. The files vary in verbosity
and size, and there are a number of them. Each piece writes its own file
in its own nonstandard way, too. And each device is highly configurable;
any number of settings may be changed. But these files are where technical

13

Figure 3.3: OPC Server Log

support personnel must go if they want to prevent problems such as the
above from happening again. Due to the aforementioned reasons, finding
the problem and why it occurred can be time-consuming and difficult. The
support person must manually go through each log file, tracing calls and
agents, and correlating events between different logs. They must also try to
get a handle on the sheer amount of data the log files each present. Needless
to say, working with the logs is often too much for a human to easily or
quickly do.

To aid in finding problems, Cisco employees would often turn to grep, a
tool for matching text lines to patterns. This approach may work, but even
grep is limited at pulling out multi-line events, which most log types feature.
Another tool Cisco employees would use is Notepad, or any other text editor.
They would go through and manually remove any line that was irrelevant to
the problem. These methods, of course, are time-consuming and prone to
error.

So, the task of wading through the log files is monumental, and the tools to
help this task are inadequate. Their problem is that solving some customers’
problems is too hard to do quickly. Cisco envisioned our project as a way
to make their lives easier. They desired a comprehensive tool, smarter than
grep and quicker to use than Notepad.

3.4 Summary

Cisco’s system includes different parts, all producing separate log files. These
log files lack consistency amongst each other or event themselves. Currently,
using these log files to troubleshoot problems is a time consuming process
involving the manual filtration of irrelevant events. Cisco desires a compre-
hensive tool in order to reduce the time spent working with these log files.

14

Chapter 4

Our Solution

Once we had a strong understanding of the problem before us, we had a
better idea of how to go about solving it. In this section, we discuss our
original proposed solution, our actual solution and the reason they differ. In
addition, we discuss the changes made to our tool due to feedback from Cisco
employees. We also take an in-depth look at programmatically parsing these
log files.

4.1 Our Proposal

Our original goal for accomplishing our task was to create a multi-phased
project, with each phase having a separate deliverable. These phases were
broken up into three primary parts, those parts being the act of parsing the
log files separately, filtering the parsed events, and finally merging the results
into some form of display that would highlight the source of the problems.

The primary rationale behind this approach was the limited time frame
we had to work on this project. With only seven weeks to work, it was
important that we break the problem down into sub-problems so that even if
the whole project was unable to be completed, there would still be something
to show for our work.

4.1.1 Parsing

In our proposed solution, parsing was the phase we scheduled the least
amount of time for. The primary goal of this phase was to transform the
different log files into a common format, that could then be easily filtered
and merged. The primary idea for accomplishing this was to devise a new log
file format to use as an intermediate step. In this case, we would transform
the given log files to our new formats for easier merging and filtering.

15

4.1.2 Filtering

Filtering was the second primary phase of our proposed project. In this
phase, we would take the new files created using our common format and filter
them according to user input specifications. These specifications included
filtering based on agent ID, call ID, or time frame.

4.1.3 Merging

Merging was the part of our project where we intended to spend the most
time. In this phase, we would design a means to show the results of scanning
several log files in a way that would highlight potential problems. Different
means of doing this were considered, including time-based ladder diagrams,
the showing of filtered output side by side, and also simply showing the
output of all the parsed files in one list, sorted by time.

4.1.4 Summary

Our proposed solution was to have three core phases. These phases would be:
parsing the files to a common format, filtering the files for relevant data, and
then displaying this data to the user in some way. These phases were designed
to be independent, so that if the project as a whole could not be completed
there would still be a product of some use in alleviating the problem.

4.2 Actual Solution

While our proposal highlighted the three distinct parts of parsing log files,
it took a somewhat idealized view of separation. When we actually began
to implement our prototype, we noticed that their was a significant amount
of overlap between the stages. In the end, our project became component
based. Instead of separate phases, we had separate components in one co-
hesive application. We will begin by discussing the implementation of our
prototype, followed by the design of our actual solution. While this may
seem somewhat backward as normally design comes before implementation,
one of the main reasons we prototyped was so that our actual result could
influence our final design.

4.2.1 Prototyping

The first stage of code in our project was to prototype a solution in Perl. In
this prototype, we would not care about efficiency or extensibility; the main
purpose of it was to test that we could, in fact, parse the logs. However,
since we were only prototyping, we did not want to spend the time required
to parse all of the log file formats. For our prototype, we decided to focus
specifically on CTI server logs. The reason we chose these logs was that they

16

had a clear, guaranteed line break between every event. This delimiter made
it easier for us to tell when one event ended and another began.

Approach

Even though this was just a prototype, we did have a definite approach.
Early on, we realised that it was difficult for two people to work on writing
code to parse the exact same log file. Even though CVS would, for the most
part, merge changes for us, the main problem we ran into was trying to avoid
the duplication of work. Since we were, whereever possible, trying to write
code that could parse more than one event we would constantly need to check
to make sure we were not stepping on each others toes.

In order to prevent this problem, we decided to separate tasks. However,
the question came of where to separate the tasks. Since our primary purpose
at this stage was to be parsing in a log file and transforming it to a common
format, there did not seem to be much overlap. It was at this point that
we realised if we came up with a standardized internal format for logfile
events, we would be able to work on both filtering, parsing, and even possibly
merging concurrently.

Problems

After we decided to separate tasks, the only problem left was what internal
structure to use for log file events. Since we were using Perl and dealing
primarily with key value pairs, we decided to use Perl’s built-in hashes. These
hashes allow you to store a value to be referenced by a specific key, so it was
an obvious choice given the problem. However, this did not quite solve all
of our problems. Since the log file events were not consistent even across
the same log file, certain values may not be associated with the exact same
key across all entries. A perfect example of this in CTI logs is the extension
number of the phone being called. In some events, it is referred to as ‘device’
and in others it is referred to as ‘ext’.

Since filtering relies on being able to get common data from events, this
was a major problem. In order to solve it, we decided to create a set of
specific keys to index for these values. A simple example is that for any
given event, its extension may be extracted via using the ‘extension’ key,
regardless of whether it is also stored internally as ‘ext’ or ‘device’.

An additional problem we had was the representation of time. For our
project, knowing precisely when an event occurred was important. The log
files can be configured to report each event’s time to either the second or
millisecond level, but we needed some way to store the time consistently for
each object. Since speed was the primary point of our prototype, we did
not want to spend too much time on devising a way to convert the times
from any given input format to our own format, so we used what has become
a somewhat standard way of representing time, we stored the number of

17

seconds since the ‘epoch’, midnight on January 1, 1970.
The problem with this approach is that it defined as the number of sec-

onds since the epoch, but we need to support millisecond granularity. If we
have that information, we can not simply discard it. However, all of Perl’s
built-in libraries expected seconds, so we could not modify that. In the end,
we decided that the best course of action was to add the milliseconds as a
fractional representation of the distance to the next second. While this re-
sulted in some additional computational complexity regarding floating point
numbers instead of integers, we decided it was a fair trade off considering we
were not worried about efficiency at this stage.

After we had worked out these problems, work went quickly and we were
able to complete our prototype in a timely manner.

4.2.2 Design

After our prototype was complete, we moved on to looking at how we could
use what we learned for our final tool. In this case, we were also looking into
how we could extend our Perl solution into one that takes advantage of some
of Java’s features, such as strong object orientation. However, we also had to
compensate for the fact that Perl is a weakly typed language, meaning that
variables can hold any type of data and it will try to figure out what type it
is from the context. In Perl, using the string ”2” in a mathematical setting
would not result in an error, as it would attempt to convert it into a number
for us.

Since the modifications to our proposal had worked out well with our
Perl prototype, we decided to continue with a component-based model. In
this model there would be a core framework that would use components to
compute the result necessary for the other components. Fortunately, object-
oriented programming is well equipped to handle this type of design. For
our project, we developed four major parts. These parts are Events, Parsers,
Filters, and User Interfaces. The merging portion of our original proposal
was moved into the user interface, so as to allow different merging styles and
specific interfaces to work with them.

Events

One of the core components of our design was the concept of an Event. An
event represents a single action in a log file. In some log files, this corresponds
to a single line, where in others a single event may span multiple lines. An
event, much like in our prototype, must store certain specific data. It must
store the exact string from the log file, as well as have separate specific fields
for Call ID, Agent ID, and Extension, if the event is related to any of these
three fields in any way. In addition, it must also store the time the event
happened at, as well as provide a method that allows the Event to be printed

18

out as a string (possibly in a neater format than the string it was created
from).

Parsers

Parsers are the components that, when given a log file, produce a list of
Events. This is where most of the work is done, and also where most of the
extendability comes into play. As long as there is a parser to take a log file
and turn it into a list of events, then that log file is supported by our tool.
This will be covered more in-depth in a later section.

Filters

Filters are what are responsible for taking a list of Events and trimming that
list down to only relevent ones. They provide the ‘core’ component of our
project, as the different User Interfaces interact with them directly (and no
other component). For our project, the Filter was able to filter based on
either Call ID or Agent ID, as well as on time.

User Interfaces

The final major component of our project is the User Interface. Since this is
completely separated from the filtering and parsing of Events, it is possible
to create generic user interfaces that work with any log file there is a parser
for. For our tool, we designed two primary interfaces, one graphical and the
other console based.

Summary

Due to a highly compartmentalized design, we were able to work on indepen-
dent pieces of the project without worrying about interfering with each others
work. In addition, this compartmentalized design makes it relatively easy to
add support for new log file formats, since all that is needed is the crafting
of a new Parser. It is likewise easy to build specialized User Interfaces for a
given task, since they just interact directly with a Filter.

4.2.3 Implementation

As mentioned in the Design section, for our final implementation we went
with a modular approach. In order to do this, we took advantage of several of
Java’s features, such as inheritance and implicit casting. Since our solution
was designed to be modular, any individual piece could easily be replaced by
another with similar functionality. In order to explain the pieces we created
and the way they interact, we reference the UML diagram in Figure 4.1.
We work from the bottom of the diagram towards the top, starting with
LogEvent and moving through Parser, Filter, and finally the Interfaces.

19

L o g E v e n t

C T I E v e n t

O P C E v e n t

P a r s e r

C T I p a r s e r

+ p a r s e F i l e (f i l e n a m e : S t r i n g) : b o o l e a n

O P C p a r s e r

+ p a r s e F i l e (f i l e n a m e : S t r i n g) : b o o l e a n

F i l t e r E v e n t s

L o g D a t e E x c e p t i o n

L o g D a t e

G U I S c a n n e r

+ m a i n (a r g s : S t r i n g []) : v o i d

G U I
C L I S c a n n e r

+ m a i n (a r g s : S t r i n g []) : v o i d

Figure 4.1: UML Class Diagram of Our Solution

20

Events

In our Design section, we spoke about the concept of an Event. For our
actual implementation, we created a new superclass designed to store all the
information we associate with an event, appropriately naming it LogEvent.
This superclass contains fields for various data including name, agent ID, call
ID, and extension number. It also includes a HashMap of all the ‘key=value’
pairs in the event. In addition, it includes data about the time the event
occurred at. Since storing this data was such a problem in our prototype,
we were careful to design our own consistent means of storing this data. To
that end, we created the LogDate class.

The LogDate class is responsible for storing the time an event occurred
at, as well as provide an easier way to print out that time in a consistent
manner. In addition to this, it provided an easy way to parse a variety
of timestamp formats into one format, via differing constructors. This, of
course, leads to the possibility of being requested to create a LogDate from
a non-supported timestamp format. To cover this eventuality, we created a
LogDateException to be thrown if this was attempted.

This LogEvent was intended primarily as a base class to be extended off
of for individual log file events. In our project, we extended this for two
separate log files, the OPC and CTI logs. While the base class stores most
of the data necessary for any event, subclassing provides an opportunity to
modify the string representation of the event depending on the class, and
this is primarily what we used it for.

Parsers

Moving upward from LogEvent in our diagram is the Parser. As in our
Design section, the Parser is primarily concerned with taking a log file and
transforming it into a list of LogEvents. Once again, the Parser class is
intended as a base class to be extended off of. However, unlike our LogEvent,
the Parser class is abstract. This means that if someone wants to use it, he
must subclass it and implement any methods specified but not provided in
the base class. In Parser, this primary method was called parseFile.

The Parser section is where the extensibility for new log file formats comes
into play. In order to add support for a new format, all that is necessary is
the creation of a new subclass to parse it. In this subclass, all that needs to
be done is to create a new constructor and write a custom parseFile method.
Unfortunately, this parseFile method can be complicated.

In order to write the parseFile method, an in-depth knowledge of the
log file to be parsed is necessary. The parseFile method is responsible for
transforming the given log file into a list of Events, and so this method must
perform the difficult task of extracting the data from the different lines of
the log file. In addition, it must take care to make sure the mandatory fields
used for filtering are set in the LogEvent if at all possible. This is to simplify

21

the task of filtering events after the file has been parsed. For our project,
we created two Parsers, one for OPC logs and the other for CTI logs. Our
experiences with parsing these logs can be found in the later section “In-depth
Parsing”.

Filtering

Continuing with our diagram, the next component is the Filter. As men-
tioned in Design, once data has been parsed out of a log file, it is up to the
filter to decide what to keep and what not to keep. Given a list of all events,
along with the type and value of an identification number and a range of
time, the filter goes through and constructs a list of only the relevant events.
If the filter is given a filename instead of a list of LogEvents, it can create
the appropriate parser in order to create the list and continue filtering from
there.

In order to filter the list of LogEvents once it has them, it uses the special
fields defined in the LogEvent classed, namely the Agent ID, Call ID, Ex-
tension Number, and timestamp. This is, at first glance, a relatively simple
task. It merely has to go through the list and discard any event not in the
time range, or that does not contain the specific value we are looking for.

Unfortunately, it frequently is not that simple. Often times, events are
related but not directly. As an example, in the CTI server logs, an event
rarely if ever contains both an Agent ID and a Call ID, so getting information
on all calls taken by a specific Agent is difficult. Fortunately, they are related
by extension number, but this is not enough information to use in a single
pass system. In order to allow these kinds of difficult relationships, we allow
the user to set what we called the search depth.

The search depth is basically how many passes through the list the tool
will go trying to relate events. For example, on the first pass through, we
may learn that the given Agent took calls on a specific Extension. If we only
do this one pass before filtering, we can then keep all events that have either
the Agent ID or the Extension number. If we do two passes through, we may
learn about a Call ID associated with that Extension number, and we can
then keep those events as well.

It is important to note that we do these passes before any other filtering
is done. This does result in a performance sacrifice, especially with large log
files, but we determined it was better to make this sacrifice then to possibly
miss out on a connection from an event that would have been filtered.

User Interfaces

The final section of our diagram is dedicated to the user interfaces. These
interfaces are responsible for taking input from the user, giving this infor-
mation to the filter, and displaying the resulting list of LogEvents in an
intelligent manner.

22

In our project two interfaces were created, with three modes total. Each
mode was created for a different purpose. The first interface created was the
command line interface. This was designed to run in a console or terminal,
and provide output directly back to the screen. This interface has two modes,
the batch mode and the interactive mode. The primary difference between
these modes is that batch mode was designed for a single scan, where in-
teractive mode was designed to be more of an exploratory environment. In
batch mode, you set parameters as command line arguments, the tool runs,
and then results are displayed. However, in interactive mode, you are given a
prompt where you can set parameters. After initiating a scan, the results are
displayed and you go back to the prompt, where you can change parameters
until you get the output desired.

The second interface created was an interactive graphical user interface
(GUI). It offers the same functionality as the interactive command-line mode,
allowing the user to input specific parameters and see the output of the scan.
However, it also adds additional functionality, such as allowing the user to
scan more than one file at a time. In addition, it allows the user to directly
remove events from the list displayed, as well as save the list to a file.

4.2.4 Summary

Our actual solution differed greatly from our original proposal. While the
separation of the project into three parts was maintained, the phasing of
implementation was not. Due to insight gained during prototyping, we were
able to greatly simplify our design and implementation for the final result,
creating a modular and extensible tool.

4.3 In-depth Parsing

While we discussed Parsing earlier in our Actual Solution section, that was
mainly intended as an overview of the parser component, not our experience
with actually parsing the log files. A more in depth look at the parsing of
the two logs were worked with is contained in this section for anyone wishing
to know what pitfalls to look out for.

4.3.1 Parsing CTI logs

Our primary means of parsing CTI logs was through regular expressions.
Thankfully, in CTI logs there are a few consistencies that make parsing this
log easier than the OPC logs we worked with. Determining where an event
starts, its name, and its timestamp can be obtained with one regular expres-
sion. After that, determining what subsequent lines belong to the same event
is also easy. Once this knowledge is obtained, parsing out the “key=value”

23

pairs can be done with a separate (and complicated) regular expression. Some
of the key points we came across when parsing CTI logs are as follows:

• The date is on lines of the form: Events from March 13, 2007:

• All lines start with a timestamp (which can have ms), the server name,
and the server type, e.g. 11:45:00 cg1A-ctisvr

• Events may span multiple lines; different events are separated by a
blank line

• After the timestamp and server info, there will be either Trace: or
SESSION X: where X is a number. Normally, we do not care about
session-level messages.

• On a line that begins an event, after the time, server info, and Trace: is
the event name. Sometimes after the name is - , sometimes : , and
sometimes there is a value in parentheses you might care about, e.g in.
11:46:33 cg1A-ctisvr Trace: CSTA_PRIVATE (RTP_STARTED_IND)

• Subsequent event lines have a group of spaces after the Trace:, then
any number of key=value pairs.

– Keys never have spaces in their names.

– Values may be blank

– Some values have spaces in them! e.g.:

RouterCallKey=148359 40305115

• Calls and agents are related by extensions. No event has both a call
ID and agent ID in it, but many have an agent and an extension, or a
call and an extension.

• Most values that are call IDs are of the form id.ext(s) e.g.:

callID=22541571.250007(s)

4.3.2 Parsing OPC logs

Parsing OPC server logs is more complicated than parsing CTI logs be-
cause there are more inconsistencies. Determining where an event starts and
what subsequent lines belong to it, along with getting the event name, can
still be done with a (complicated) regular expression, however parsing the
“key=value” pairs is made more difficult by the fact that the values may
contain spaces or be enclosed in parentheses. We found that, while it was
likely still possible to build a regular expression to do this, it was simpler to
separate the strings based on spaces, then reconstruct information based on
those tokens. As with CTI logs, the following are some of the key points we
discovered in parsing these log files.

24

• The date (which may change) is on lines like:

Events from March 13, 2007:

• Events may span multiple lines. Most of the time, only the first line
contains a timestamp, however some events’ inner lines have the normal
header (next three items), then more than one space, and then more
key=value pairs.

• Time stamps are of the form 11:45:16; milliseconds are possible

• After the timestamp is the server name and the type: 11:45:16 pg1A-opc

• After the server info is “Trace:” - 11:45:16 pg1A-opc Trace:

• After Trace: is the event name, e.g.:

DEVICE_TARGET_PRE_CALL_IND (DATA PENDING)

– You may care about the values in parentheses

– Event names do not contain spaces, but the string in parentheses
might

• Most event names are delineated from the rest of the info by a - , but
some are by ::

• After the marker in the previous item, key=value pairs ensue.

– Keys may not contain spaces

– Values may be null

– Values may contain spaces! e.g.: SkillGroupNum=1374 (0x55E)

– Some values are in parentheses, but there are additional key=value
pairs inside them, e.g.:

clearedCall=(CallID=4 Device= Type=Static)

• Call IDs and agent IDs are directly related in at least one event.

4.4 Feedback

As we worked on our project, we sent progress updates to our supervisor at
Cisco, Rajendra Joshi, approximately once a week. When we started having
working builds, we included those as well, requesting feedback regarding and
changes or problems with our tool. The feedback was mostly positive, with
some minor requests to include support for different events in a specified log

25

file. In addition, we also received feedback regarding new features to add, as
well as a few bugs to fix.

One of the primary forms of feedback we received was in the form of a new
log file to work with. Up until that point, we had been working with sample
log files provided by our supervisor, but shortly after we released our first
major build we were informed that it did not work on this specific log file.
Upon further research we discovered that the problem was caused for two
reasons. The primary reason was that a specific event type had a different
format than the one in our sample logs. After fixing this, however, we ran
into a larger problem which was that the Java Virtual Machine(JVM) was
running out of memory. In order to fix this problem, we had to pass specific
arguments to the JVM before running our tool. To simplify this process for
the end user, we created a batch file that can be used to run our tool with
appropriate settings.

The other primary feedback we received was in requests for functionality.
At the request of one of our contacts at Cisco, Bill Lapp, we implemented
a means to save the output of the GUI interface, as well as the ability to
remove events from the list created by the GUI before saving.

4.5 Problems with Our Solution

As our project only had a limited time frame, our solution is not as complete
as it ideally would be. We did not have time to add certain features or
improve on certain problems, but what it does, it does well (if slowly). Due
to the size of the logs files and the amount of information we store about
them, the memory requirements are high. It takes approximately twice the
amount of memory to store a log file than it takes up on disk. In order to
use this amount of memory in the JVM, we created batch files that pass
arguments in order to tell it to allow us to use more memory. The memory
footprint could be reduced though, for example by not storing the raw parsed
line once the parser is done extracting information. Filtering events is also
somewhat slow, because of the necessity of passing over the list of parsed
events multiple times. This can be reduced by decreasing the search depth.
Past performance problems, there are some features that were planned that
were not implemented. One is the ability to cancel a scan in the middle of
it; currently this is not possible due to our design, but it would be nice to
modify our program to enable this. Another is the graphical display of a
call flow, for example in a ladder diagram. This was a desired feature, but
unfortunately due to time constraints we were unable to accomplish this.

4.6 Summary

In order to solve the problem set before us, we went through several important
steps. First, we created a proposal of how we intended to solve the problem.

26

However, shortly into prototyping we realized that this proposal would not
work, and so modified our project structure. After creating a quick prototype
in Perl, we looked at the lessons we had learned from this and designed a final
solution in Java. Through feedback from employees at Cisco, we refined our
tool to better suit their needs. Unfortunately, there are still some problems
with our solution due to time constraints, the primary problem being that it
does not support ladder diagrams as was originally desired.

27

Chapter 5

System in Action

For this demonstration of the system in action, we will be using the example
CTI server log provided to us. All three user interface modes will be demon-
strated. We will first look for events associated with agent 50005, and then
with call number 22541572.

5.1 Command-Line Interface

5.1.1 Batch Mode

The first interface is the command-line batch mode, in which arguments are
given on the command-line invocation of our project. An example of this
mode (slightly edited for length) can be seen in Figure 5.1. There, the file
“cliscanner.jar” is being run, and given the arguments “-a 50005” for agent
number 50005, and “ctisvr.txt” to give it the example log file. Though only
the beginning of the output is pictured, it can be seen that the agent has been
associated with call number 225415721, and so events related to that call are
also being displayed. If we wanted to, we could specify other parameters on
the command line, such as the start and end times to look between.

>cliscanner.bat -a 50005 ctisvr.txt

03/13/2007 11:45:16:000: AGENT_EVENT: AgentAvailabilityStatus=0

SkillGroupState=BUSY_OTHER SkTgtID=5007 Sig=CTIOSServer

MRDID=1 AgentMode=1 NumTasks=1 ClientStatus=0x1 ICMAgentID=5007

CurLine=-1 Ext=250005 SkGrpID=5000 ID=50005 OverallState=RESERVED

SkGrpNo=0x55e Inst=250005 OverallDuration=0 Reason=0

03/13/2007 11:45:16:000: CALL_RECLASSIFIED: newSource=22541571.250007(s)

oldCallID=4.(s) Periph=5000 newDest=

(etc)

Figure 5.1: Command-Line Batch Mode

28

5.1.2 Interactive Mode

The second available interface is command-line interactive mode. Here, the
user can specify parameters in multiple steps, and also scan multiple times
in one session, perhaps changing values in between scans. An example of
interactive mode can be found in Figure 5.2 (slightly edited for length). Here,
a time frame has been specified, and the program has only displayed related
events in that time frame. Searching for call number 22541572 this time, we
can see that it is also associated with agent 50005, and so events related to
that agent are being displayed. Since the agent took a number of calls in
the example log, but we only wanted to see about call 22541572, specifying a
time frame was one way to narrow down the search. Another way would be
to reduce the search depth so that only events that specifically contain that
call ID are displayed.

Interactive mode!

>call 22541572

>file ctisvr.txt

>start 03/13/2007 11:45:54

>end 03/13/2007 11:46:03

>scan

Scan requested!

03/13/2007 11:45:54:000: CALL_CREATED: Wrapup= Type=1(ACD_IN)

Var1= ECCsize=0 Var2= Var10= Dest= Disposition=0(INVALID)

CallID=22541572.250007(s) Periph=5000 UserToUser=

03/13/2007 11:45:54:000: AGENT_EVENT: AgentAvailabilityStatus=0

SkillGroupState=BUSY_OTHER SkTgtID=5007 Sig=CTIOSServer MRDID=1

AgentMode=1 NumTasks=1 ClientStatus=0x1 ICMAgentID=5007

CurLine=-1 Ext=250005 SkGrpID=5000 ID=50005 OverallState=RESERVED

(etc)

Figure 5.2: Command-Line Interactive Mode

5.2 Graphical User Interface

The final interface developed was the graphical user interface. Using the
power of Java’s Swing library, we created an interactive and graphical method
of using our program. This method is far more powerful than command-line
mode because it allows the parsing and merging of multiple log files, removing
unwanted events from the output text box, and saving of the output to an
external file. It also allows multiple scans and the changing of parameters
in between them, like the interactive CLI mode. This mode is pictured in
Figure 5.3. Here, note that the search depth has been set to 0, meaning that

29

only events that specifically mention the desired call ID are displayed, and
not any events related to any associated agents or phone/device extensions.

Figure 5.3: Screenshot of our GUI

5.3 Summary

We created three different UI modes over the course of the project. Each
offers a different way to parse and view log files. Command-line mode offers
a batch and an interactive mode, and the graphical user interface offers a
more powerful and user-friendly mode.

30

Chapter 6

Call Flow Tool

Towards the end of our project at Cisco systems, we were informed about a
tool recently developed in-house at another department. While development
on the tool had been going on for some time, word had not yet spread about
it.

The tool, developed by Jim Brikman, was designed to help the Customer
Voice Portal team in much the same way our tool was supposed to help the
team we were working with. The primary differences between our tool and
his are the user interface and the means of adding support for new log files.

6.1 User Interface

The Call Flow Tool as developed currently has support for timing diagrams
via ladders. It also has a dynamic means of filtering events based on fields
they contain, as well as the ability to parse several log files at once. As
can be seen in Figure 6.1, the ladder diagram is dynamically and generically
generated based on information parsed from the file.

Figure 6.1: Call Flow User Interface

31

6.2 Extensibility

The Call Flow Tool provides support for future changes and log file formats
via XML templates. These templates describe the format of the log file, as
well as specifying the data to extract. Figure 6.2 shows a high level view of
this XML, while Figure 6.3 shows a closer look at some of the work that goes
into extending it.

Figure 6.2: Overview of the XML format

Figure 6.3: In-depth look at the XML format

In addition to support for new log files via XML templates, the Call Flow
Tool also provides support for SCXML automata for analysis. This allows
the tool to be extended to support analysis for many types of log files.

32

6.3 Comparison

The obvious question at this point is whether the Call Flow Tool can be used
to parse the log files we have been working with, and if so how much work
it would take to do so. As mentioned earlier, the Call Flow Tool provides a
means of extending support to new log files via an XML template file.

This template format is a powerful and versatile means of describing the
individual log files. It allows the user to specify exactly what each line of a
log file may look like, including an option to extract specific data for later
use. However, while this is a powerful means of describing data, it does run
into some problems when adapting it for use with the log files we worked
with.

The primary difficulty is that the log files we worked with are, as men-
tioned earlier, non-standard. The fact that they lack standardization even
across similar entry types adds new difficulties in using a tool that captures
based off explicit declarations. This is not to say that it is impossible, merely
that it will be a time-consuming and difficult process.

In spite of these difficulties, the Call Flow Tool does have several advan-
tages over our tool. The primary advantage to the Call Flow Tool is that the
developer is a long-term employee, as opposed to one working only on this
project. That means that Cisco will have continued access to the developer
for support even after we are gone.

Another major advantage is that this tool is already designed for pro-
ducing ladder diagrams representing time flow. As this was the goal for our
project, but something we were unable to complete due to time constraints,
this is a major reason to look into adapting this tool instead of continuing
to extend our own.

6.4 Summary

In conclusion, the Call Flow Tool provides a powerful means of parsing log
files. While there may be some problems adapting it to include support for
the log files we were working with, primarily due to inconsistencies in the log
files themselves, the benefits outweigh the disadvantages of doing so.

33

Chapter 7

Final Thoughts

7.1 Accomplishments

Over the course of the project, many of our goals were accomplished. First,
we produced a working prototype of a CTI log scanner in Perl. This prototype
laid out the framework that we would later use in Java, and let us run into
design and coding issues, allowing our subsequent Java version to be better-
planned. It also let us run into and solve implementation issues, making
future work easier. This Perl deliverable was a fully-functional program that
offered both an interactive and a batch mode interface for scanning CTI
server log files.

Once we were done with the Perl prototype, we moved to Java. Using
what we had learned previously, we were able to start with a better and
smarter design which also used the power of object-oriented Java. In Java, it
was much easier to create a more powerful framework of objects and classes
that would allow easy extension. We first produced a clone of the CTI log
scanner, using what we learned and produced in the Perl version to speed
things along. We then added an OPC log scanner, which was relatively easier
because our design minimized the actual amount of code that was necessary.
At the same time, we also produced a GUI version of the interface, which
provided another way to interact with the program. Once that was done,
we started to focus on improving the output of the program, making it more
usable based on feedback received from Cisco Employees.

Shortly after this point, we were informed about the existence of the Call
Flow Tool, and were asked to investigate whether it was a viable solution. We
did some research on this, including exchanging e-mails with the developer,
and concluded that it should be a viable, if time consuming to implement,
solution to the problem.

34

7.2 Future Work

At this point, future work regarding our project mainly takes the form of
creating differing ways to display the data. In addition to this, parsers do
still need to be created for other log files, particularly for the JGW and
PIM components. There are also a few interface options requested during
our presentation of the project to Cisco, however for the most part interest
seems to be in moving from our work to extending the Call Flow Tool to
meet their needs.

7.3 Conclusion

The tool we created should help in analyzing and troubleshooting the two
log files we worked with. While we did not have time to create any of the
more complicated display options such as a ladder diagram, the creation of
a tool that will automatically search through a series of log files and display
only the relevant entries should provide a substantial boost to productivity.

However, while our tool does serve to reduce the problem, it makes more
sense for Cisco to continue extending and working with the Call Flow Tool
developed in another department. The call flow tool provides an extensible
means of parsing almost any log file via an XML description. In this report,
we have attempted to describe in detail some of the pitfalls that may be run
into while attempting to parse the log files we worked with for precisely this
purpose.

7.4 Acknowledgements

We would like to acknowledge the following people who helped us in com-
pleting this project. They are list in no particular order.

• Professor Craig Wills, for his assistance and guidance throughout the
entirety of this project,

• Professor Gary Pollice, for his assistance in setting up our Sourceforge
project and CVS repository,

• Rajendra Joshi, for managing our project,

• Bill Lapp Jr., for his many contributions and suggestions, as well as his
help in testing our software tool,

• Ellen Garvey, for approving our project, and

• Andrew Socha, for providing a desktop to develop and test on.

35

Bibliography

[1] Goyvaerts, Jan. "The Premier Web Site about Regular Expressions"

http://wwww.regular-expressions.info

[2] Sun Microsystems. "The Source for Java Developers".

http://java.sun.com

[3] "Your resource for C and C++". http://www.cprogramming.com

[4] "The Eclipse Foundation". http://www.eclipse.org

[5] Price, Derek. "An Introduction to CVS". http://www.nongnu.org/cvs

[6] "The Perl Directory". http://www.perl.org

[7] "Python Programming Language -- Official Website".

http://www.python.org

[8] "The Ruby Programming Language". http://www.ruby-lang.org

[9] "Sourceforge.net". http://www.sourceforge.net

[10] "Vim the Editor". http://www.vim.org

36

