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Abstract

In this paper, the “crack derivatives”, which defined to be the limits of the blow-up sequences,
are formulated and studied. Both quasi-static fracture evolution and dynamic fracture evolution
are included. For quasi-static fracture evolution, the crack derivatives are proven to exist and
globally minimize the energy functional on domain with arbitrary growing cracks. For dynamic
fracture evolution, the crack derivatives are proven to be solutions of the wave equations on
domain with arbitrary growing locally connected cracks.
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1 Preliminary Knowledge and Previous Results

1.1 Griffith’s criterion in Fracture Mechanics

Since the early work of Griffith, in most models for crack prediction, the propagation of a crack is
considered to be driven by the energy release rate along the surface area of the crack.
Consider the propagation of a quasi-static crack in a brittle material body Ω ⊂ RN , we define:
Γ ⊂ Ω is a crack set satisfying HN−1

loc (Γ) <∞; u ∈ SBV (Ω) is the displacement.
For each such pair (u,Γ), Eel = 1

2

´
Ω\Γ ρ∇u · ∇udx is the elastic energy of the displacement field u.

We will always set ρ ≡ 1 for simplification.
Griffith’s criterion states that a crack can grow if

Gc ≤ −
δEel(u,Γ)

δH(Γ)
(1.1)

where Gc is the fracture toughness, and − ∂
∂H(Γ)Eel(u,Γ) is the energy release rate. We set Gc ≡ 1

for simplification.

1.2 Global and Local

Following Griffith’s work, mathematical models for quasi-static fracture evolution have been de-
veloped based on global minimization. More precisely, if we define E = Eel + GcH(Γ) to be the
free energy of the elastic body, then the minimizer of E will satisfy Griffith’s criterion. However,
the reverse is not necessarily true, because Griffith’s criterion is local. So a local minimizer is able
to keep the crack stable. In other words, a global minimizer of the free energy function E is not
necessarily to be a solution of quasi-static fracture evolution. Global minimization differs from
local minimization for the reason that the global minimality holds for all v in the same functional
space as u, and the local minimality holds for all v close enough to u. If a local minimization
problem can be transformed to a global minimization problem, then the analysis developed for
global minimization problems can be used for solving local minimization problems.

1.3 From Quasi-static to Dynamic

Quasi-static models, which are based on a limit case in which systems are always at equilibrium, are
easier to understand and developed, but they are unphysical unless strong constraints are assumed
to ensure systems to stay at equilibrium. As a result, dynamic models are needed to be introduced
in order to get physical solutions.
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2 Quasi-static Fracture Evolution

2.1 General Theory

The following lemmas from [3], will be used later.

Lemma 1. Let {un}: Ω→ R be a sequence in Lp(Ω), 1 ≤ p <∞, such that un → u a.e. on Ω and
∀n, ‖un‖ is bounded, where C is a constant. Then u ∈ Lp(Ω) and un ⇀ u in Lp(Ω).

Lemma 2. (products of weak-strong converging sequences)
Let 1 < p <∞, un: Ω→ R be a sequence in Lp(Ω), and u ∈ Lp(Ω). Let vn: Ω→ R be a sequence
in Lp

∗
(Ω). Suppose un ⇀ u in Lp(Ω) and vn → v in Lp

∗
(Ω). Then unvn ⇀ uv in L1(Ω).

Lemma 3. Let un: Ω→ R be a sequence in L1(Ω). Suppose un → u a.e. on Ω and un is bounded
in Lp for some p > 1. Then un → u in L1(Ω).

Lemma 4. (Radon-Riesz property)
Suppose that (X, ‖·‖) is a normed space. We say that X has the Radon-Riesz property if whenever
{xn} is a sequence in the space and x is a member of X such that {xn} converges weakly to x and
continuity of norm, then {xn} converges to x in the norm.

Lemma 5. Let Ω ⊂ Rn and U ⊂ L1(Ω) be a family of integrable functions. If |Ω| < ∞ and U is
bounded in L1(Ω), then U is equiintegrable if and only if

U ⊂ {u ∈ L1(Ω) :

ˆ
Ω

Ψ(|u|)dx ≤ 1} (2.1)

for some increasing function Ψ: [0,∞)→ [0,∞] satisfying

lim
v→∞

Ψ(v)

v
→∞. (2.2)

Lemma 6. (Radon-Nikodỳm decomposition theorem)
Let µ be a σ − finite positive measure and ν a real measure satisfying ν � µ. Then there is a
unique pair of real measures νa, νs such that νa � µ, νs ⊥ µ and ν = νa + νs.

Lemma 7. (Calderon-Zygmund)
Any function u ∈ [BV (Ω)]m is approximately differentiable at HN a.e. of Ω. The approximate
differential ∇u is the density of the absolute continuous part of Du with respect to HN .

Lemma 8. (Weak lower semicontinuity of convex functions)
If Ψ: R→ R is convex and un ⇀ u in L1, then

ˆ
Ψ(u)dx ≤ lim inf

n→∞

ˆ
Ψ(un)dx (2.3)

If Ψ: R→ R is concave and un ⇀ u in L1, then

ˆ
Ψ(u)dx ≥ lim sup

n→∞

ˆ
Ψ(un)dx (2.4)

Some definitions about BV functions from [7] are stated here.
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Definition 1. Let u ∈ [L1
loc(Ω)]m. u has an approximate limit at x0 ∈ Ω if there exists z ∈ Rm

such that

lim
ρ→

 
B(x0,ρ)

|u(y)− z|dy = 0. (2.5)

Then the set Su of points where this property does not hold is called the approximate discontinuity
set. For any x0 ∈ Ω\Su the vector z is called the approximate limit of u at x0 and denoted by
ũ(x0).

Definition 2. Let u ∈ [Lloc(Ω)]m and let x0 ∈ Ω\Su; we say that u is approximately differentiable
at x if there exists an linear operator L such that

lim
ρ→0

 
B(x0,ρ)

|u(y)− ũ(x0)− L(y − x0)|
ρ

dy = 0 (2.6)

If u is approximately differentiable at x, the operator L is called the approximated differential of u
at x0 and denoted by ∇u(x0).

Definition 3. BV (Ω) is the space of all scalar functions with bounded variation on Ω, whose weak
derivative Du is a finite Radon measure.

Definition 4. SBV (Ω) is the space of special functions with bounded variation, the subspace of
BV (Ω) without Cantor part, Dcu = 0.
Specificly,

Du = ∇uLn + (u+ − u−)νuHn−1bSu (2.7)

where Su is Borel and νu is the normal to Su.

Definition 5. (SBV convergence)
Let {un} be a sequence of functions in SBV (Ω), and

1. ∇un ⇀ ∇u in L1(Ω)

2. un → u in L1(Ω)

3. un
∗
⇀ u in L∞(Ω)

4. |u+
n − u−n |νunHN−1bSun

∗
⇀ |u+ − u−|νuHN−1bSu as measures.

Then up to subsequences, {un} weakly* converges in BV (Ω) to a function u ∈ SBV (Ω).

For quasi-static fracture evolution, the total energy

ˆ
Ω
|∇u(t)|2dx+H1(Γ(t)) (2.8)

must be unilaterally minimized, among {u(t) ∈ SBV (Ω) : u(t) = g(t)}, where g ∈ L∞loc([0,∞);L∞(∂Ω)∩
W 1,1
loc ([0,∞);H1(∂Ω)). The unilateral minimalilty requires that when there is an energy cost for

crack propagation, there is no energy reduction if at some time later, though the discontinuity of
the displacement may disappear.Γ(t) = ∪0≤s≤tSu(s). This property requires

EelΩ(u(t)) ≤ EelΩ(v) +HN−1(Sv\Γ(t)) (2.9)

where u(t) and v are in SBV (Ω).
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Definition 6. (Global minimizer)
A pair (u(t),Γ(t)) is a global minimizer if u(t) ∈ SBVloc(R2), H1

loc(Γ(t)) < ∞, and, for all R >
0, if v ∈ SBVloc(R2) and H1

loc(C) < ∞ with u(t) = v and Γ(t) = C outside B(0, R), then
EB(0,2R)(u(t),Γ(t)) ≤ EB(0,2R)(v, C).

Lemma 9. The elastic energy is lower semicontinuous with respect to SBV convergence.

Eel(u) ≤ lim inf
n→∞

Eel(un) (2.10)

However, because of the unilateral property of the crack set,

lim
n→∞

Hn−1(Sv\Sun) ≤ Hn−1(Sv\Su) (2.11)

is not necessarily true, so we need the jump transfer theorem to alter v, creating vn such that

Eel(vn)→ Eel(v) (2.12)

and
lim
n→∞

Hn−1(Svn\Sun) ≤ Hn−1(Sv\Su). (2.13)

Given (u,Γ), such that, ∀t ∈ [0, T ], (u(t0 + t),Γ(t0 + t)) unilaterally minimizes the given energy
functional on the domain Ω, subject to its Dirichlet data on the boundary, for x0 ∈ Γ(t0), a blow-up
sequence at the point (x0, t0), is defined as

uε(x+ x0, t+ t0) = ε−
1
2 [u((εx+ x0), (εt+ t0))− ũ(x0, t0 + εt)] (2.14)

Γε(t0 + t) =
1

ε
Γ(t0 + εt). (2.15)

More about the blow-up technique can be found in [8], [9], [2].
The definition gives that

ˆ
B(x0,r)

|∇uε(x, t0 + t)|2 dx =
1

ε

ˆ
B(x0,εr)

|∇u(x, εt+ t0)|2 dx (2.16)

1

ε
H1(Γ(εt+ t0)

⋂
B(x0, εr)) = H1(Γε(t0 + t)

⋂
B(x0, r)) (2.17)

Therefore, for all t ∈ [0, T ], there is a relation between the original functional EB(x0,εr) and the
blow-up functional EB(x0,r) at time (t+ t0):

H1(Γ(t0+εt)
⋂
B(0, εr))+

ˆ
B(x0,εr)

|∇u(t0+εt)|2 dx = ε(H1(Γε(t+t0)
⋂
B(x0, r)+

ˆ
B(x0,r)

|∇uε(t0+t)|2 dx)

(2.18)
In other words, ∀t ∈ [0, T ] and for any positive ε, whenever (u(t0 + εt),Γ(t0 + εt)) unilaterally
minimizes EB(0,εr), (uε(t + t0),Γε(t0 + t)) unilaterally minimizes EB(0, r) subject to its Dirichlet
data on ∂B(x0, εr).
The following theorem from [6] is recalled for proving the unilateral minimality of the blow-up limit.

Theorem 2.1. let Ω be a bounded open domain and {un} ⊂ SBV (Ω) be such that |∇un| weakly
converges in L1(Ω) and un → u in L1(Ω), there u ∈ SBV (Ω) with HN−1(Su) < ∞, there exists a
sequence {φn} ⊂ SBV (Ω) such that φn → φ in L1(Ω), ∇φn → ∇φ in Lp, where 1 ≤ p < ∞ and
HN−1([Sφn\Sun ]\[Sφ\Su])→ 0.
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Theorem 2.2. The blow-up limit at (x0, t0) exists, and ∀t ∈ [0, T ], (u0(t0 + t),Γ0(t0 + t)) is a
unilateral global minimizer of the functional

ˆ
R2

|∇u|2dx+H1(Γ) (2.19)

We know that

uε(x+ x0, t0 + t) = ε−
1
2 [u(εx+ x0, εt+ t0)− ũ(x0, t0 + εt)] (2.20)

∇uε(x+ x0, t0 + t) = ε−
1
2∇u(εx+ x0, εt+ t0) (2.21)

For R > 0, as ε→ 0
uε(t+ t0)→ 0 a.e. on B(x0, R) (2.22)

uε(t+ t0) is uniformly bounded in L∞(B(x0, R)) (2.23)

∇uε(t0 + t) is uniformly bounded in L1(B(x0, R)) (2.24)

|uε+(t0 + t)− uε−(t0 + t)|νuε(t0+t)H1
locbSuε(t0+t)

∗
⇀

|u0+(t0 + t)− u0−(t0 + t)|νu0(t0+t)H1
locbSu0(t0+t) as measures (2.25)

So {uε(t0 + t)} converges to u0(t0 + t) in SBVloc(R2).
In order to prove the blow-up limit is a global minimizer, we need to construct a competitor and
prove by contradiction using the result HN−1([Sφε\Suε(t0+εt)]\[Sφ0\Su0 ])→ 0 from Theorem 2.2.
For a better geometrical understanding of this process, we will prove a special case in the following
section.

2.2 A Special Case

Lemma 10. (Golab’s theorem)
Let {Γε} be a sequence of 1 dimensional connected sets in R2 which converges to Γ0 in the Hausdorff
metric. Then Γ0 is connected and

H1(Γ0 ∩O) ≤ lim inf
ε→0

H1(Γε ∩O) (2.26)

for every open set O ⊂ R2.

Classically, we assume the crack set is a C1,1 curve, give a special case, show how to construct
a blow-up sequence and prove that a limit of the sequence exists and is a minimizer of the blow-up
energy functional.
Considering the domain (Ω ⊂ R2, [0, T ]) with Γ(t) ⊂ Ω, where Γ(t) is a C1,1 curve, we have

lim
r→0

H1(Γ(T ) ∩B(x0, r))

2r
=

1

2
for cracktips (2.27)

lim
r→0

H1(Γ(T ) ∩B(x0, r))

2r
<∞ for almost every x ∈ Γ (2.28)

Theorem 2.3. The convergence of {Γε(t0 + t)} to Γ0(t0 + t).
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Proof. For all 0 < R, the closed ball B(x0, R) is compact. The compactness of the Hausdorff metric
for subsets of a closed ball gives that there exists Γ0(t0 + t) and a subsequence {Γεk(t0 + t)} ⊂
{Γε(t0 + t)} such that Γεk(t0 + t) ∩ B(x0, R) converges to Γ0(t0 + t) ∩ B(x0, R) in the Hausdorff
metric. Since {Γε(t0 + t) ∩ B(x0, R)} is a sequence of 1 dimensional connected sets in R2 which
converges to Γ0 ∩B(x0, R) in the Hausdorff metric, by Golab’s theorem, we have

H1(Γ0(t0 + t) ∩B(x0, R)) ≤ lim inf
ε→0

H1(Γε(t0 + t) ∩B(x0, R)). (2.29)

Lemma 11. H1(Γ(t0 + t)
⋂
B(x, r)) +

´
B(x,r) |∇u(t0 + t)|2 dx ≤ Cr.

Theorem 2.4. The convergence of {uε(t0 + t)} to u0(t0 + t).

Proof. We notice that H1(Γ(t0+t)
⋂
B(x, r))+

´
B(x,r) |∇u(t0+t)|2 dx ≤ Cr. The SBV compactness

gives that the sequence {uε(t0 + t)} converges to a function u0(t0 + t) in H1
loc(R2).

Proof. It is sufficient to prove H1(Γ(t0 + t)
⋂
B(x, r)) ≤ C1r < ∞ and

´
B(x,r) |∇u(t0 + t)|2 dx ≤

C2r.

The following two lemmas from [11] will be used later.

Lemma 12. (Poincaré inequality)
For each 1 ≤ p < n, there exists a constant C, depending on p and n such that

(

 
B(x0,r)

|f(y)−
 
B(x0,r)

f(z)dz|p∗dy)1/p∗ ≤ Cr(
 
B(x0,r)

|Df |pdy)1/p (2.30)

for all B(x0, r) ⊂ Rn, f ∈W 1,p(B(x0, r)).

Lemma 13. (Urysohn’s lemma)
Suppose X is a locally compact Hausdorff space, V is open in X, K ⊂ V , and K is compact. Then
there exists an f ∈ Cc(X), 0 ≤ f < 1 such that the support of f lies in V and f(x) = 1 for all
x ∈ K.

Lemma 14. The blow-up transformation is conformal.

Proof. Obvious.

Theorem 2.5. The blow-up limit is a solution of the blow-up quasi-static fracture evolution.

Proof. We suppose that at some time t0 + t, (u0(t+ t0),Γ0(t+ t0)) is not a global minimizer of the
blow-up limit energy functional. Then we choose r > 0, a pair (u′0,Γ′0) such that

1. u′0 = u0(t0 + t) on R2\B(x0, r/2)

2. Γ′0 = Γ0(t0 + t) on R2\B(x0, r/2)

3. EB(x0,r)(u
′0,Γ′0) < EB(x0,r)(u

0(t0 + t),Γ0(t0 + t))
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which means that (u0(t0 + t),Γ0(t0 + t)) is not a global minimizer of the functional.
Γ0(t0 +t)∩B(x0, r) is one segment here since Γ(t0 +t) is a C1,1 curve. We know the blow-up process
is conformal. So we choose an arbitrary small angle θ at the center of B(x0, r), such that Γ0(t0 + t)
bisects θ.
By choosing θ, we can have

Crθ < EB(x0,r)(u
0(t0 + t),Γ0(t0 + t))− EB(x0,r)(u

′0,Γ′0), (2.31)

where C is a constant.
Suppose that the sequence (uε(t0+t),Γε(t0+t)) converges to (u0(t0+t),Γ0(t0+t)). We want to con-
struct a corresponding sequence (u′ε,Γ′ε) converging to (u′0,Γ′0) and show that under the assump-
tion “(u0(t0+t),Γ0(t0+t)) is not a global minimizer of the functional”, EB(x0,r)(u

′ε,Γ′ε) is necessarily
smaller than EB(x0,r)(u

ε(t0+t),Γε(t0+t)), which contradicts the minimality of (uε(t0+t),Γε(t0+t)).
We choose

Γ′ε = (Γε(t0 + t)\B(x0, r/2)) ∪Arc(θr/2) ∪ (Γ′0 ∪B(x0, r/2)) (2.32)

Then we see that

H1(Γ′ε) = H1(Γε(t0 + t)\B(x0, r/2)) + rθ/2 +H1(Γ0(t0 + t) ∪B(x0, r/2)) (2.33)

So
H1(Γ′ε)−H1(Γε(t0 + t)) = r

∑
i

θi/2 +H1((Γ′0\Γ0(t0 + t)) ∩B(x0, r/2)) (2.34)

At this step we see

EB(x0,r)(u
ε(t0 + t),Γε(t0 + t))− EB(x0,r)(u

′ε,Γ′ε)

= H1((Γ0(t0 + t)\Γ′0) ∩B(x0, r/2))− rθ/2 +

ˆ
B(x0,r)

|∇uε(t0 + t)|2 −
ˆ
B(x0,r)

|∇u′ε|2

> −
ˆ
B(x0,r)

|∇u0(t0 + t)|2 +

ˆ
B(x0,r)

|∇u′0|2 +

ˆ
B(x0,r)

|∇uε(t0 + t)|2 −
ˆ
B(x0,r)

|∇u′ε|2 + (C − 1

2
)rθ

(2.35)

By choosing ε even smaller, we have

EB(x0,r)(u
ε(t0 + t),Γε(t0 + t))− EBr(u′ε,Γ′ε) > (C − 1)rθ+

ˆ
B(x0,r)

|∇u′0|2 −
ˆ
B(x0,r)

|∇u′ε|2 (2.36)

Then we choose

u′ε =

{
u′0 + e in B(x0, r/2)\Γ′0

uε(t0 + t) otherwise
(2.37)

where e is “ein bein” with suitable properties, such that

ˆ
B(x0,r)

|∇u′ε|2 →
ˆ
B(x0,r)

|∇u′0|2 (2.38)
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In order to find a suitable e, we consider

ˆ
B(x0,r)

|∇u′ε|2

=

ˆ
B(x0,r/2)

|∇u′ε|2 +

ˆ
(B(x0,r)\(B(x0,r/2)

|∇u′ε|2

≤
ˆ
B(x0,r/2)

|∇u′0|2 +

ˆ
B(x0,r/2)

|∇e|2 +

ˆ
B(x0,r)\B(x0,r)

|∇uε(t0 + t)|2 (2.39)

Firstly, we only need to care about the continuity on ∂B(x0, r/2). By Urysohn’s lemma, we can
define a continuous function φ such that

φ =


1 on a compact set near the ends of Arc
1 on ∂B(x0, r/2)\Arc
0 on an open set around the middle part of Arc crossing Γ′0.

(2.40)

Then consider the normal direction ofB(x0, r/2), we define a continuous function ψ such that

ψ =

{
1 on a compact set near ∂B(x0, r/2)
0 on an open set around the center of B(x0, r/2)

(2.41)

Defining e = φψ(uε − u0), we conclude that if we choose every needed small quantity to be
rmini{θi/2}, we can get

EB(x0,r)(u
ε(t0 + t),Γε(t0 + t))− EB(x0,r)(u

′ε,Γ′ε) > (C − 3/2)rθ (2.42)

So as long as θ is selected such that C ≥ 3/2, there is a contradiction.

Therefore, {(uε(t0 + t),Γε(t0 + t))} converges to a blow-up limit (u0(t0 + t),Γ0(t0 + t)) almost
everywhere on [0, T ]. Given the boundedness properties of {(uε(t0 + t),Γε(t0 + t))}, we can deduce
that the blow-up limit is a solution of the blow-up quasi-static fracture evolution.
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3 Dynamic Fracture Evolution

3.1 PDEs and Calculus of Variations

Finding the stationary points of a given action functional is an old problem in calculus of variations.
The wide application of Hamilton’s principle in physics, especially, in classical mechnics, since
Newton and Bernoulli, abstract physics problems to variational problems.
Great achievements have been made by Euler, Lagrange and others in solving variational problems.
One of the most important tool used in the classical method introduced by them, is the Euler-
Lagrange equation, which reduces the problem to one involving differential equations. The idea
to compute the corresponding Euler-Lagrange equations for a given variational problem by the
classical techniques is:

1. Compute the differential of the given functional.

2. Find the corresponding Euler-Lagrange equations.

3. Solve the partial differential equations.

Hamilton, Jacobi and others have developed the classical methods in order to simplify the calcu-
lation, but solving complicated partial differential equations is always a big difficulty. Relying on
functional analysis and measure theory, direct methods were introduced by Hilbert and others to
solve a given variational problem or differential equations. The idea to solve a given variational
problem by a direct method is:

1. Construct a sequence of solutions.

2. Prove the existence of a limit of the sequence.

3. Prove the limit is a solution of the given problem.

The equivalence between finding the stationary points of a functional and solving the corresponding
Euler-Lagrange equations is well known in the classical sense. However, given an action functional,
it is not necessary to assume the involving functions to be smooth, which means a stationary point
may not be a solution of the corresponding Euler-Lagrange equations in the classical sense. That
is why the theory is generalized to the distribution theory. More about the distribution theory can
be found in [11].

3.2 Dynamic Fracture

From now on, we assume that crack sets are locally connected.

Lemma 15. If a set Γ is an union of finite many connected sets or local connected sets, then for
every point x ∈ Γ, we can find R > 0 such that B(x,R) ∩ Γ is connected.

The following lemma is from [4]

Lemma 16. If Γ is a connected set in R2, then H1(Γ) = H1(Γ̄).

Definition 7. Let X and Y be non-empty subsets of a metric space. The Hausdorff metric
dH(X,Y ) is defined as

dH(X,Y ) := max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}. (3.1)

Meng Zhu 9 Crack Derivatives



Some definitions from [7] are stated here.

Definition 8. (Upper and lower approximate limits)
Let u: Ω → R be a Borel function and x ∈ Ω̄ a point where the lower density of Ω is strictly
positive; the upper and lower approximate limits of u at x are defined by

u∨(x) := inf{t ∈ R̄ : lim
ρ→0

ρ−N |{u > t} ∩B(x, ρ)| = 0} (3.2)

u∧(x) := sup{t ∈ R̄ : lim
ρ→0

ρ−N |{u < t} ∩B(x, ρ)| = 0}. (3.3)

If u∨(x) = u∧(x), then we call their value the weak approximate limit of u at x, denoted by ũ∗(x).
The set Su∗ of points where this property does not hold is called the weak approximate discontinuity
set.

Definition 9. (Weak approximate jump set)
Let u: Ω→ R be a Borel function. J∗u ⊂ Ω is a weak approximate jump set, if for any point x ∈ J∗u,
there exist a, b ∈ R̄ with a > b and a unit vector v ∈ RN such that, the weak approximate limit
of u restricted to {y ∈ Ω : 〈y − x, v〉 > 0} is a and the weak approximate limit of u restricted to
{y ∈ Ω : 〈y − x, v〉 < 0} is b.

Definition 10. (Weak approximate differentiability)
Let u: Ω→ R be a Borel function. u is weakly approximately differentiable at a point x if ũ∗(x) ∈ R
and there exists a linear operator L: RN → R such that for any ε > 0 the set

{y ∈ Ω\{x} :
|u(y)− ũ∗(x)− L(y − x)|

|y − x|
> ε} (3.4)

has density 0 at x; in this case we set ∇∗u(x) = L.

Definition 11. GSBV functions can appears as limits of sequences of SBV functions when no
bound on the L∞ norm is imposed. Let Ω be an open set of RN ; we say that a function u: Ω→ Rm
is a GSBV function if ∀φ ∈ C1(Rm) with the support of ∇φ compact, the composition φ◦u belongs
to SBVloc(Ω).

Theorem 3.1. (GSBV compactness)
Let ψ: [0,∞) → [0,∞] and θ: (0,∞) → (0,∞] be lower semicontinuous increasing functions
satisfying

lim
t→∞

ψ(t)

t
=∞, lim

t→0

θ(t)

t
=∞ (3.5)

and let g: [0,∞)→ [0,∞] be an increasing function satisfying

lim
t→∞

g(t)→∞ (3.6)

Let {un} ⊂ GSBV be such that

sup
n
{
ˆ

Ω
[ψ(|∇∗un|) + g(|un|)]dx+

ˆ
J∗un

θ(u∨n − u∧n)dHN−1} <∞ (3.7)

Then, there exist a subsequence {un} and a function u ∈ GSBV (Ω) such that un → u LN − a.e.
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in Ω and ∇∗un ⇀ ∇∗u in L1 locally. Moreover, if φ is convex and θ is concave, we have

ˆ
Ω
φ(|∇∗u|) ≤ lim inf

n→∞

ˆ
Ω
φ(|∇∗un|dx, (3.8)

ˆ
J∗u

θ(uvee − u∧)dHN−1 ≤ lim inf
n→∞

ˆ
J∗un

θ(u∨n − u∧n)dHN−1. (3.9)

We will work with the GSBV 2
2 space defined in [5].

Definition 12.

GSBV 2
2 (Ω,Γ) := {v ∈ GSBV (Ω) ∩ L2(Ω) : ∇ ∈ L2(Ω;RN ), Sv ⊂ Γ} (3.10)

The inner product space GSBV 2
2 (Ω,Γ) is a Hilbert space. Moreover, if Γ is closed in Ω, then

GSBV 2
2 (Ω,Γ) coincides with H1(Ω\Γ).

Definition 13. Let Ω be a bounded open set in R2. The capacity of a set O of Ω is defined as

cap(O,Ω) = inf
u∈UΩ

O

ˆ
Ω
|∇u|2dx, (3.11)

where UΩ
O is the set of all functions u ∈ H1

0 (Ω) such that u ≥ 1 a.e. in a neighborhood of O. And
a property is true quasi− everywhere on a set if it holds on it except on a set of capacity 0.

A solution of the dynamic crack growth problem is a weak solution of

ü(t)−∆u(t) = 0 (3.12)

in the form
〈ü(t), φ〉GSBV 2

2 (Ω,Γ(t)) + 〈∇u(t),∇φ〉 = 0 (3.13)

for all t ∈ [0, T ] and all φ ∈ GSBV 2
2 (Ω,Γ(t)) with supp(φ) ⊂⊂ Ω.

Theorem 3.2. The differential operator δ and the weak Laplace operator acting on the classical
elastic energy functional EelΩ =

´
1
2∇u ·∇udx, with u, v ∈ H1(Ω), are equivalent. Moreover, if u is

twice differentiable, then the differential operator δ and the Laplacian operator ∆ are equivalent.

Proof.

δEelΩ(u, v) = lim
t→0

1

2t

ˆ
Ω

(∇(u+ tv) · ∇(u+ v)−∇u · ∇u) dx (3.14)

Apply Lebesgue’s dominated convergence theorem to the equation.

δEelΩ(u, v) =

ˆ
Ω
∇u · ∇v dx (3.15)

We conclude that u is the solution of the weak Laplace equation ∇u∇φ = 0 ∀φ on Ω if and only if
the differential of the given elastic energy functional δEel =

´
1
2∇u · ∇udx is zero for u ∈ H1(Ω).

If u is twice differential, then integrating by parts, we have ∆uφ = 0 ∀φ on Ω, which means ∆u = 0
on Ω.

Given a weak solution of the given wave equation, (u,Γ), with the domain (Ω, [0, T ]), we can
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choose a blow-up sequence at (x0, t0){
uε(x0 + x, t0 + t) := ε−

1
2 [u(x0 + εx, t0 + εt)− ũ(x0 + εx, t0 + εt)]

Γε(t0 + t) = ε−1Γ(t0 + εt)
(3.16)

Considering the domain (Ω ⊂ R2, [0, T ]) with Γ ⊂ Ω, where Γ is of finite many connected compo-
nents, we have

lim sup
r→0

H1(Γ(T ) ∩B(x0, r))

2r
=

1

2
for cracktips (3.17)

lim sup
r→0

H1(Γ(T ) ∩B(x0, r))

2r
<∞ for almost every x ∈ Γ (3.18)

Theorem 3.3. The convergence of {Γε(t0 + t)} to Γ0(t0 + t).

Proof. For all 0 < R, the closed ball B(x0, R) is compact. The compactness of the Hausdorff
metric for subsets of a closed ball gives that there exists Γ0(t0 + t) ∩ B(x0, R) and a subsequence
{Γεk(t0 + t)} ⊂ {Γε(t0 + t)} such that Γεk ∩ B(x0, R) converges to Γ0 ∩ B(x0, R) in the Hausdorff
metric. By the Golab’s theorem, we conclude that

H1(Γ0(t0 + t) ∩B(x0, R)) ≤ lim inf
ε→0

H1(Γε(t0 + t) ∩B(x0, R)). (3.19)

To prove the strong convergences of the test functions, firstly we will follow the argument in [4]
to construct a sequence of harmonic conjugates and prove the convergence of the sequence.

Definition 14. (Harmonic conjugate)
Let R be to the operator which transfer (x, y) to (−y, x). For a function u ∈ GSBV 2

2 (Ω,Γ),
v ∈ H1(Ω) which satisfies ∇v = R(∇∗u) is called a harmonic conjugate of u ∈ GSBV 2

2 (Ω,Γ).

Theorem 3.4. Let Γ be a connected set in Ω ⊂ R2 and let u ∈ GSBV 2
2 (Ω,Γ) be a solution of

ˆ
Ω\Γ
∇u∇z dx = 0, ∀z ∈ GSBV 2

2 (Ω,Γ) with supp(z) ⊂⊂ Ω (3.20)

Then there exists a function v ∈ H1(Ω) which is a harmonic conjugate of u. v is constant q.e. on
Γ.

Proof. If φ ∈ C∞c (Ω) with supp(φ) ⊂⊂ Ω, we have

ˆ
Ω
∇u∇φ dx =

ˆ
Ω\Γ
∇u∇φdx = 0 (3.21)

which implies that
div(∇u) = 0 on D′(Ω) (3.22)

Consider the function u′ which satisfies that u′ = u on Γ∩ (Ω\Γ̄), there exists v ∈ H1(Ω) such that
∇v = R∇u′ a.e. on Ω.
Because H1(Γ̄\Γ) = 0, so ∇v = R∇∗u a.e. on Ω with ∇v = 0 a.e. on Γ. v is constant q.e. on Γ.
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Theorem 3.5. Let Γ be connected in Ω, and let u ∈ GSBV 2
2 (Ω,Γ). Assume that there exists

v ∈ H1(Ω) with ∇u = R(∇v) a.e. on Ω such that v is constant q.e. on Γ. Then u is a solution of

ˆ
Ω\Γ
∇u∇φ = 0, ∀z ∈ GSBV 2

2 (Ω,Γ) with supp(φ) ⊂⊂ Ω (3.23)

Proof. We can construct a sequence of functions {vn} in C∞(R2) which converges to the extension
of v in H1(R2) such that vn is constant in a neighborhood Un of Γ. For every φ, we have

ˆ
Ω\Γ
R∇vn∇φdx = −

ˆ
Ω\Γ

div(R∇vn)φdx+

ˆ
∂Ω
R∇vnφ = 0 (3.24)

Let n→∞, ˆ
Ω\Γ
R∇v∇φdx =

ˆ
Ω\Γ
∇u∇φ = 0 (3.25)

The following lemma from [1] will be used.

Lemma 17. Let {Kn} be a sequence of non empty closed convex sets and K a non empty closed
convex set in a reflexive Banach space X, then the following statement are equivalent:

1. {Kn} Mosco-converges to K.

2. ∀x ∈ X, projKnx→ projKx in X.

3. ∀x ∈ X, dist(x,Kn)→ dist(x,K).

Theorem 3.6. Let {Γn} be a sequence of connected sets in Ω which converges to Γ∞ in the
Hausdorff metric, and let {vn} be a sequence in H1(Ω) which converges to v∞ weakly in H1(Ω).
Assume that vn = 0 q.e. on Γn. Then v∞ = 0 q.e. on Γ∞.

Proof. We construct extensions of vn and v∞ such that vn, v∞ ∈ H1
0 (Ω′) and vn ⇀ v∞ weakly in

H1(Ω′) .
For every f ∈ L2(Ω′), the solutions φn of the Dirichlet problems

φn ∈ H1
0 (Ω′\Γ̄n), ∆φn = f on Ω′\Γ̄n (3.26)

converge strongly in H1
0 (Ω′) to the solution φ∞ of the Dirichlet problem

φ∞ ∈ H1
0 (Ω′\Γ̄n), ∆z∞ = f on Ω′\Γ̄∞ (3.27)

So we have H1
0 (Ω′\Γ̄n) → H1

0 (Ω′\Γ̄∞) in the sense of Mosco. We conclude that v∞ ∈ H1
0 (Ω′\Γ̄∞)

and v∞ = 0 q.e. on Γ∞.

Theorem 3.7. Let {Γn} be a sequence of connected sets which converges to Γ∞ in the Hausdorff
metric, and let un be a solution of the minimum problem

min
v∈V(φ,Γn)

ˆ
Ω\Γn

|∇v|2dx (3.28)
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and let u∞ be a solution of the minimum problem

min
v∈V(φ,Γ∞)

ˆ
Ω\Γ∞

|∇v|2dx (3.29)

where V(φ,Γ) := {v ∈ GSBV 2
2 (Ω,Γ) : v = φ q.e. on ∂Ω\Γ}.

Proof. Because {un} is bounded in GSBV 2
2 (Ω,Γn), there exists subsequence of {∇un} and a func-

tion u∗ ∈ GSBV 2
2 (Ω,Γ∞) such that ∇un ⇀ ∇u∗ weakly in L2(Ω).

Let vn be a harmonic conjugate of un on Ω, then ∇vn = R∇un a.e. on Ω. We assume that´
Ω vndx = 0.
{∇vn} converges to R∇u∗ weakly in L2(Ω,R2) and by the Poincare inequality {vn} converges to a
function v∞ in H1(Ω) which satisfies ∇v∞ = R∇u∗ a.e. on Ω.
As vn = cn q.e. on Γn for constants cn, using the Poincare inequality again, it follows that vn − cn
is bounded in H1(Ω), hence the sequence {cn} is bounded and therefore, passing to a subsequence,
we have cn → c∞ for a constant c∞ with {vn − cn} converges to v∞ − c∞ weakly in H1(Ω) and
then we have v∞ = c∞ q.e. on Γ∞. So u∗ is a solution of the given minimum problem.
By the uniqueness of the gradients of the solutions, we conclude that ∇u∗ = ∇u∞. As ∇un ⇀ ∇u∞
weakly in L2(Ω;R2) and ‖∇un‖L2 converges to ‖∇u∞‖L2 , we deduce that

∇un → ∇u∞ strongly in L2(Ω;R2) (3.30)

From the GSBV 2
2 compactness, we have un converges to u∞ in measure. By the Poincare inequality,

we have ‖un‖L2 → ‖u∞‖L2 .
So we also have a subsequence {un} such that

un → u∞ strongly in L2(Ω) (3.31)

.

Theorem 3.8. The convergence of {φε} to φ0

Proof. In a ball B(x0, R), containing the compact support of φ0,we want to construct a collec-
tion, P := {{vε} : vε ∈ GSBV 2

2 (B(x0, R),Γε(t)) and supp(vε) ∈ ε−1Ω} , such that, ∀φ0 ∈
GSBV 2

2 (B(x0, R),Γ0) with compact support, there exists a sequence, {φε} ∈ P satisfying

∇φε → ∇φ0 strongly in L2(B(x0, R)) (3.32)

Since Γ is locally connected, for small enough ε, Γε ∩ B(x0, R) is connected. Let {Ci : Ci ∩ Cj =
φ, if i 6= j} be the collection of the connected components of B(x0, R)\Γ0.
Given δ > 0, we define φε(x) := φ0(x)∀x ∈ Ci\Nδ, where Nδ := {x : d(x,Γ) < δ}.
For the given δ, we define vεδ is a minimizer of

´
Nδ
|∇v|2 with Svεδ ⊂ Γε, then byGSBV 2

2 compactness,

we have v0
δ as a minimizer of

´
Nδ
|∇v|2 with Sv0

δ
⊂ Γ0.

δ can be defined as a function of ε, and δ → 0 as ε→ 0. Then we have

∇vεδ −∇φ0 → ∇v0
δ −∇φ0 → 0 in L2(Nδ) (3.33)

By defining φε := vεδ, and adding all the parts in {Ci} and Nδ together, we conclude that for all
φ0,there exists a sequance{∇φε} converging to ∇φ0 strongly in L2(B(x0, R)).
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Theorem 3.9. The convergence of {uε(t)} to u0(t)

Proof. Fo every t, we have that

sup
ε→0
{
ˆ
B(x0,R)

|∇∗uε(t)|2 +

ˆ
Γε∩B(x0,R)

(uε∨(t)− uε∧(t))} <∞ (3.34)

So by GSBV compactness and L2 compactness, there exists a subsequence uε(t) converging to
u0(t) ∈ GSBV 2

2 (B(x0, R),Γ0).
We have ∇uε(t) is uniformly bounded in L2.
Then, we have üε(t) is uniformly bounded in GSBV 2∗

2 .
Hence we can choose a subsequence, also denoted by {uε} such that

∇uε(t) ⇀ ∇u0(t) in L2 (3.35)

and
üε(t) ⇀ ü0(t) in GSBV 2∗

2 (3.36)

Theorem 3.10. The limit u is a solution of the equation

ü(t)−∆u(t) = 0 (3.37)

satisfying
〈ü0(t), φ0〉+ 〈∇u0(t) · ∇φ0〉 = 0 (3.38)

∀φ0 ∈ GSBV 2
2 (B(x0, R)) with supp(φ0) ⊂⊂ B(x0, R)

Proof. Given u0 and φ0, we choose sequences {uε} such that

∇uε(t) ⇀ ∇u0(t) (3.39)

üε(t) ⇀ ü0(t) (3.40)

and {φε} is defined above.
By the strong convergence of ∇φε, we can choose σ such that

‖∇φε −∇φ0‖L2 ≤ σ (3.41)

and φε = φ0 outside a small neighborhood Nδ(ε) of Γ0(t).
So we have

〈ü0(t), φ0〉GSBV 2
2 (B(x0,R),Γ0(t)) + 〈∇u0(t),∇φ0〉L2 (3.42)

= 〈ü0(t), φ0〉GSBV 2
2 (Nδ(ε),Γ

0(t)) + 〈∇u0(t),∇φ0 −∇φε〉L2 + 〈∇u0(t),∇φε〉L2

≤ 〈ü0(t), φ0〉GSBV 2
2 (Nδ(ε),Γ

0(t)) + σ‖∇u0(t)‖L2 + 〈∇uε(t),∇φε〉L2 + 〈∇u0(t)−∇uε(t),∇φε〉L2

By the weak convergence of ∇uε(t),
ˆ
B((x0,t0),R)

[∇u0(t)−∇uε(t)]∇φε → 0 as ε→ 0 (3.43)
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and choosing δ → 0 as ε→ 0, we have

〈ü0(t), φ0〉GSBV 2
2 (Nδ(ε),Γ

0(t)) → 0 (3.44)

So we conclude that

〈ü0(t), φ0〉GSBV 2
2 (B(x0,R),Γ0(t)) + 〈∇u0(t),∇φ0〉L2 = 0 (3.45)

So the blow-up limit is a weak solution of the wave equation at almost every time t. Given the
boundedness properties of {(uε,Γε)}, we can deduce that the blow-up limit is a weak solution of
the wave equation.

3.3 The Eshelby-Kostrov Property

Given (u,Γ) a solution of the wave equation on Ω, with Dirichlet boundary condition, we can
construct a blow-up sequence of it, at (x0, t0), converging to a limit (u0,Γ0) which is a solution
of the blow-up problem. If Γ(t) is assumed to be a C1,1 curve, then Γ0(t) is a segment. Then the
Eshelby-Kostrov property for the wave equation on the plane can give us more information about
the blow-up limits. Detailed results can be found in [10].
Assume the given solution is (u,Γ), where the crack set Γ(t) is a C1,1 curve in the domain Ω. Then,
the blow-up limit Γ0(t) is a straight line, and the velocity of Γ0(t) is a constant V .
The Eshelby-Kostrov property is an important result showing that there exist functions K1 and
K2 such that

K(t) = K1(λ(t))K2(λ̇(t)) (3.46)

for the function
u0(x, t) ∼ K(t)|x− λ(t)|1/2B(θ, λ̇(t)) (3.47)

as x→ λ(t), satisfying
ü0 −∆u0 = 0 in R2\Γ0(t), t > 0 (3.48)

where
Γ0(t) = {(x1, 0)| −∞ < x1 < λ(t)} (3.49)

For cracks growing at a constant speed, K2(λ̇(t)) is a constant.
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