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Abstract  

This project extends a course trajectory planner that facilitates optimal course planning for 

WPI students by minimizing the number of credits needed to finish their programs of study, while 

secondarily maximizing agency and flexibility. Student body coverage was expanded to 

approximately 62.9% of the undergraduate population and 35.3% of the graduate population by 

adding new majors, double majors, and master’s programs, and a user interface was developed to 

increase accessibility. A variety of experiments were performed to test different use cases, and the 

foundation was laid for future support for combined bachelor’s/master’s degrees, in addition to 

other future extensions that incorporate time-sensitive scheduling data and user feedback. The 

advancements made in this MQP have the potential to help students avoid spending more in tuition 

on extra courses. 
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1 Introduction  

With college education becoming an increasingly prevalent requirement to get a full-time 

job [1], universities nationwide are seeing a large influx of new students [2]. This increase in 

demand for a college education is partly responsible for the rapid growth of tuition costs, which 

continue to hit record highs year after year [3]. Every credit a student takes represents a financial 

cost, and every excess credit a student takes that is not part of an optimal “trajectory” (schedule of 

future courses to take to meet graduation requirements) adds an unneeded expense to payments on 

already record-high tuition. According to a July 2017 study done by “Completing College 

America”, students completing a four-year degree take an average of 13.5 more credits than 

necessary [4]. While a university may offer financial aid to help offset some of the cost of tuition, 

students who need additional time to graduate place their four-year scholarships in jeopardy, 

meaning those students and their families may need to pay most of if not all of the price of those 

credits completely by themselves. The increased financial difficulty for students graduating late 

includes more than just paying for additional credits, however. Students who graduate late are 

ineligible to begin working with the rest of their graduating class, and as such miss earning a full-

time-level income for the time they must remain in school. All-in-all, these factors combine to 

create a total estimated cost of $88,000 for delaying graduation from four to five years [5]. 

Additionally, even after controlling for institutional and demographic factors, students who 

graduate late are more prone to experience stunted mid-career salaries [6].  

One of the main contributors to delays in graduation is students creating poor schedules 

with more courses than necessary for graduation [7]. Resources detailing degree requirements can 

be confusing and scattered [7], and academic advisors may be limited in their ability to assist due 

to a lack of tools that help them determine a student’s best path to graduation from where they are. 
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While course schedule optimization is not a new concept, students at Worcester Polytechnic 

Institute (WPI) face somewhat of a unique challenge that thus far scheduling optimization 

literature has failed to address - a four-term schedule. Instead of the typical “two-semester-per-

year" structure featured by most four-year universities, WPI structures the majority of its 

undergraduate courses to each run in one “term,” or half a semester (about seven weeks). A student 

will typically take three courses per term for a total of 12 courses per year, meaning there are many 

more possibilities for both the courses a student can take and the terms during which a student can 

take those courses. Other confounding variables such as course offering patterns and off-campus 

projects further complicate the scheduling problem, while the lack of firm prerequisites increases 

the number of possible schedules. Mental health is of immense importance to students, faculty, 

and staff alike on WPI’s campus, and the sheer number of possibilities of feasible schedules can 

create mental strain and stress for many.  

These difficulties with scheduling courses along with the sizeable benefits of graduating 

on time prove the need for a course scheduling optimization tool tailored to WPI’s unique course 

offering style. WPI’s current course registration system is Workday, which contains a degree audit 

tool accessible to students. While the degree audit system has some utility, there are also a number 

of inaccuracies, so the Registrar’s office must perform manual checks of every student’s degree 

audit before graduation. The accumulation of all of these challenges leads students to either 

manually chart their way by heuristically finding a better path, or simply taking other classes that 

are ultimately unnecessary.  

Presenting students and advisors with a student’s optimal path to graduation (with the 

fewest number of additional credits) given the number and types of credits they have already 

earned in addition to other possible paths for them to compare gives students more control of their 
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four-year college plans and can help take some of the strain off academic advising resources. A 

course schedule optimization tool can offer considerable benefits to the mental well-being of 

students by alleviating stress. Laying out a student’s entire trajectory can drastically reduce the 

mental strain of trying to craft schedules for years in advance, and presenting multiple feasible 

trajectories can eliminate the stress of creating multiple backup plans in case they do not get into 

a course on registration day. Furthermore, the definition of an “optimal” trajectory can be tailored 

to each individual student. For example, if many trajectories allow a student to graduate in the 

same amount of time, the student has the flexibility to choose the trajectory with the most courses 

of interest, the courses with the least amount of work outside the classroom, etc. In addition to 

benefits for students and advisors, an optimal scheduling tool can help the university free up space 

in classes for students who need those classes to graduate, and it allows the university to show 

prospective students that, should they choose to attend, they will be in full control of their 

scheduling education.  

This project extends functionality for an existing course optimization tool tailored 

specifically to WPI’s unique requirements. The existing mixed-integer linear optimization model 

served as a fully functional and efficient schedule generation tool that let students perform degree 

audits themselves and perform “what-if” analysis on future courses of interest. However, as the 

initial prototype was the product of an initial MQP, the scope of the prototype was incredibly 

limited – it only served two majors (as well as their double-major combination), and it could not 

correctly handle any independent study credits the student may have. Additionally, there was not 

an easy way for students to interact with the tool – the program ran solely on the command line, 

and each course a student had taken would have to be manually entered. We have expanded the 

tool’s scope to include a variety of the most popular majors, double majors, and master’s programs 
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at WPI. We have also created an interactive online user interface, where students can directly 

upload their taken courses and provide information about their independent study credits (if any), 

so those credits fit properly in their schedule. 

In this report, expansions to utility and extensions to functionality and usability of a student 

trajectory optimization model are developed. After a review of the structure of WPI’s degree 

programs and of trajectory optimization models developed for other universities, we explain the 

implementation of the existing mathematical model developed for WPI students and highlight the 

changes we made to that implementation to more robustly handle edge-case scenarios that may be 

encountered. We then define the scope of the additional programs we sought to implement to 

increase the tool’s utility amongst the student body, and we showcase the improved, partially 

automated methodology we developed to implement them. Additional functionality is created in 

the form of a new degree program framework for master’s degrees, and usability is expanded 

considerably with the creation of an online user interface for the model. We show how the creation 

of an online user interface allowed us to develop methodology for the handling of credits earned 

from independent study projects, and we highlight how this methodology can be expanded to 

handle other edge-cases within a degree. We then design, run, and analyze the results of several 

experiments which showcase the robustness of the model. Finally, the tool’s current limitations 

are discussed, and future work to overcome challenges and to further improve functionality, utility, 

and usability of the model is outlined.  
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2 Background  

In this section, we discuss the intricacies of course scheduling at WPI and how courses can 

be double counted between degrees. Additionally, we discuss other research that has been done in 

the area of course selection optimization. 

 

2.1 The WPI Plan  

Course scheduling at WPI is notoriously challenging because of the WPI Plan. The WPI 

Plan was designed under the principles of accountability and flexibility [8]. Rather than following 

a strict curriculum, students are given the freedom to explore courses that interest them and partake 

in project-based learning [9]. There are still core requirements for each major, as well as a series 

of university-wide requirements. All students must complete six courses in the humanities, 

satisfying depth (9 credits), breadth (3 credits), elective (3 credits), and capstone (3 credits) 

requirements [10]. Additionally, all students must complete an interdisciplinary Interactive 

Qualifying Project (IQP), typically during junior year, and a major-specific Major Qualifying 

Project (MQP), which is a senior capstone project. The university provides each major with a 

tracking sheet that displays these requirements. For an example tracking sheet, see Appendix A.  

What makes the WPI Plan so challenging to schedule for, however, is the term system. 

Unlike most major universities, which organize their schedules into two 14-week semesters, WPI 

organizes its calendar into four 7-week terms. Students at other universities schedule 5-6 classes 

per semester, while WPI students schedule 3 classes per term. Although the term system increases 

flexibility, it also increases the number of course offering patterns that can occur, and with it, the 

number of feasible schedules. Some courses are offered as infrequently as one term every other 

year, while others have multiple sections every term. This can make planning quite difficult. 
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The WPI Plan also does not make use of firm prerequisites. While courses may have a 

recommended background consisting of courses and skills that would be helpful background 

knowledge, these are not required to be followed. This further increases the number of possible 

schedules a student can make, but many of these schedules would set the student up to struggle 

academically.  

All of these features of the WPI Plan give students more options for courses to take in 

addition to more flexibility. However, the tradeoff of having few fixed degree requirements, four 

terms per year, and a lack of firm prerequisites, is that too much choice can be stress-inducing. 

When major requirements are only offered in one term, or certain upper-level electives are offered 

every other year, students need to know years ahead of time to plan their schedules around this. 

This is why a course-planning optimization tool would be especially beneficial for students in this 

system. 

 
2.2 Double Counting  

Developing a tool that can optimally sort courses being used to fulfill requirements is 

difficult, but this task becomes increasingly difficult for double majors. Double majors are possible 

due to the principle of double counting, in which one course may be used to satisfy either the same 

or two different requirements between degrees. For example, a WPI computer science and data 

science double major could double count ECON 1110 (Introduction to Microeconomics) towards 

the social science and policy studies requirement in both degrees. That same student could also 

double count CS 2223 (Algorithms), which is a mandatory course for data science, but a computer 

science elective.  
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In addition to double majors, WPI also offers a unique B.S./M.S. program that helps 

students graduate faster. In this program, students can take certain 4000-level undergraduate 

courses and graduate courses that double count towards both degrees. In most programs, up to 

40% of the MS degree can be fulfilled by these courses. This 40% is equivalent to 12 graduate 

credits in most programs, which at $1610 per credit in 2023-24, adds up to $19,320 saved through 

optimal double counting [11]. Only a select few courses can be double counted, some of which are 

offered only in one term during alternate years, so planning should be done well in advance. The 

double counting system is further complicated by the fact that one graduate class and one 

undergraduate class do not carry the same type of credits. In most departments, a class taken at the 

graduate level is worth 3 graduate credits, which is equivalent to 4.5 undergraduate credits. Most 

of these classes are semester length, while a select few, such as OIE 559, follow this credit 

distribution pattern over just one term. Then there are departments, most prominently Aerospace 

Engineering, that offer graduate classes worth only 2 graduate credits in one term. The Aerospace 

B.S./M.S. program still requires 30 graduate credits for the master’s degree, but students can only 

double count 8 graduate credits [17]. Keeping track of these different conversion systems across 

different departments makes WPI’s double counting system very complex. Students can also be 

both double majors and B.S./M.S. students at the same time, but no triple counting is allowed. This 

system is complicated for students to understand and plan for, so a tool that helps solve this 

problem would be beneficial. 

Academic advising is a helpful resource for students looking to double major or participate 

in a B.S./M.S. program, as advisors are generally capable of filling out tracking sheets and making 

sure students are on track. However, most advisors are not databases for class offering patterns 

and requirements, and they have more pressing tasks - such as teaching classes, doing research, 
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and helping students during office hours - to do instead of studying the course catalog. Students 

should not have to be that knowledgeable either just to graduate in an optimal timeframe. An 

optimization tool can help fill in these knowledge gaps and make generating a long-term feasible 

schedule much easier.  

 

2.3 Other Trajectory Optimization Tools  

Developing a trajectory optimization tool in itself is not a novel idea. There are a number 

of other papers that have been published on the subject, each design with its own strengths and 

weaknesses. Morrow, Hurson, and Sarvestani developed PERCEPOLIS, an “educational 

cyberinfrastructure that facilitates identification of a personalized education plan tailored to a 

student’s interests, conformant with all curricular mandates, and with consideration of the target 

graduation date” [12]. The tool has the potential to be a helpful tool for college students, but it was 

tested on a very small problem that does not compare to the scale and complexity of WPI’s.  

In “A Mathematical Modeling Approach to University Course Planning,” Khamechian and 

Petering take a different approach - aiming to minimize semesters needed for degree completion 

instead of total number of courses. This model considers the scheduling patterns of courses and 

adheres to prerequisites when creating a recommended course plan for students to follow [13]. 

This model was tested on the University of Wisconsin-Milwaukee’s Industrial Engineering 

curriculum. One limitation of the model is how it handles broader requirements such as humanities 

and social science. At UW-Milwaukee, these requirements can be filled by many different 

electives, most of which have no prerequisites. Therefore, this model would not translate well to 

WPI mainly because of the complexity of the humanities requirement (with depth, breadth, 

capstone, and elective sub-requirements) and the crucial placement of one social science class, ID 
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2050. This class must be taken the term before a student leaves for IQP if they are assigned to an 

off-campus IQP center [14].  

Wu and Havens also attempted to tackle this problem in a similar way in their paper 

“Modelling and Academic Curriculum Plan as a Mixed-Initiative Constraint Satisfaction 

Problem.” This model is broken down into two stages, a backtrack-based systematic search method 

and a systematic local search method [15]. The first produces an initial solution and the user 

provides recommendations to help construct the final plan in the second. This algorithm is a bit 

dated, as it was published in 2005, so newer advancements have been made. 

One such advancement was made in Olabuyami’s “Application of Optimization Methods 

for Bachelor’s Degree Planning.” This model identifies the minimum number of credits needed 

for certain degrees with the university coursework at Southern Methodist University [16]. One 

unique thing about it is that it can optimally handle double majors. This paper demonstrates results 

for a management science degree paired with an economics degree. It also explores double 

counting courses for a 4+1 Bachelor’s/Master’s engineering program, which is similar to the 

B.S./M.S. Program at WPI. However, this model would not scale well in our case. In Olabuyami’s 

work, credits appear to be weighted the same at the undergraduate and graduate levels, so double 

counting only requires constraints to be modified [16]. This model also does not represent solutions 

as sets, so it does not accurately present the student with choices they may have.  

All of these papers approach the course scheduling problem in different ways and do 

important work in the area of course scheduling and student trajectory optimization. However, 

none of them can be directly extended to address the complexities of planning WPI student 

trajectories, so a new approach is necessary. 
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3 Methods 

In this section, we discuss the mathematical foundation for our tool, the scope of the 

project, the process of adding new programs to the tool, and various features of the implementation. 

 

3.1 The WPI Student Trajectory Optimizer 

In Academic Year ’22-’23, a WPI Math and OIE double major named Lindsey Fletcher did 

an MQP report with Professor Andrew Trapp that developed a course schedule optimization tool 

that uses integer linear programming to optimally create student trajectories that adhere to WPI’s 

requirements. While Fletcher’s work only contained the hand-coded requirements for the Math 

and Industrial Engineering (OIE) majors as well as the Math and OIE double major, her model 

implementation is tailored specifically to WPI’s courses and requirements and serves as an 

essential basis for our work [18]. 

 

3.1.1 Requirements  

Fletcher created a framework for representing degree programs comprised of three major 

elements – requirements, super-requirements, and buckets (or collections). A requirement is simply 

a set of courses from which a student must take a certain number of credits to graduate. While 

multiple requirements may contain the same course in their sets of courses, a course may be applied 

to at most one requirement – in other words, if a student takes a course to fill a requirement, that 

course may not be used to fill any other requirement within the same major. For example, a Data 

Science major at WPI has a Mathematical Science requirement of 15 credits. Calculus III (MA 

1023) and Calculus IV (MA 1024) can count towards that requirement or the 36-credit Disciplinary 
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Electives requirement, but not both. If a student is a double major, a course may be used to fill one 

requirement in each major simultaneously (where applicable). This is referred to as double-

counting. 

 Super-requirements refer to both “checkboxes” that may be filled by the courses taken 

across multiple requirements (indicating you must take “at least” a certain number of a certain type 

of credits) as well as major-wide “rules” that must be followed by all applicable requirements 

(indicating you may take “at most” a certain number of a certain type of credits). These are referred 

to as Type 1 super-requirements. For example, Data Science students at WPI must take at least 12 

credits of 4000-level (or higher) courses related to their major, although they may choose to apply 

these credits to any combination of their Disciplinary Elective, Computer Science, and 

Mathematical Science requirements. As long as 12 or more 4000-level credits are taken between 

these three requirements, the super-requirement (“checkbox”) is fulfilled. Additionally, Data 

Science students may take at most 3 credits of 1000-Level Computer Science regardless of which 

requirement they satisfy with that course. This super-requirement represents a “rule” that within 

all requirements that accept 1000-Level Computer Science courses, no more than 3 credits may be 

present.  

There are also Type 2 super-requirements. These generally reflect depth requirements 

where there are sub lists of courses that meet a requirement. The student must take a certain number 

of credits from one of the sub lists. Take for example, the Basic Science requirement for Computer 

Science students. There are four basic science departments - Biology, Chemistry, Geology, and 

Physics – and a student must take 9 credits worth of courses. To satisfy the depth super-

requirement, the student must take 6 credits worth of courses from one department. The most 

prominent other example of these super-requirements is the humanities requirement, which is 
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required for all majors, but outside of that, they are somewhat rare. For an example of requirement 

and super-requirement structure, see Appendix B. 

 

3.1.2 Buckets  

Buckets (or collections) represent courses that fill a certain set of requirements and super-

requirements. For example, courses that could be used to fill a Data Science student’s Disciplinary 

Elective, Computer Science, or Mathematical Science requirements will be in one bucket together, 

while courses that may only fill the Disciplinary Elective or Computer Science (but not the 

Mathematical Science) requirements will be in another bucket together. While the buckets can be 

generated purely from the requirements and super-requirements and contain no new information, 

they offer some advantages to the model. By grouping courses that fill common requirements and 

super-requirements together, a single optimal solution can actually be a set of solutions. For 

example, if the model determines a student needs to take a course that exactly fills the Computer 

Science requirement and the 4000-Level super-requirement, it can present the user with the list of 

courses in the Computer-Science-and-4000-Level bucket in the solution instead of choosing just 

one course from that collection and filling it in for the user. This gives students choice in how they 

wish to go about completing their remaining degree requirements while still having the optimally 

fewest number of additional credits necessary for graduation.  

Using buckets also drastically reduces the complexity of the model. Instead of having 

binary variables representing whether or not a course is being used to fill a requirement or super-

requirement (meaning one variable per course, per requirement and super-requirement that course 

can fill), we can instead represent our decisions as how many courses from a certain collection will 

be used to fill each requirement. This grouping considerably reduces the number of decision 
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variables the model has, which offers large performance benefits in solve time. For a more detailed 

explanation on the creation and use of buckets, see Fletcher’s report [18]. For an example of a 

bucket sheet, see Appendix C.  

 

3.1.3 Model Overview  

Fletcher’s model consists of two stages, each of which has a different objective. In stage I, 

the model seeks to minimize the number of additional credits the student must take to graduate. In 

stage II, the model seeks to maximize the sum of the “choice weights” the user gives to each course 

without exceeding the minimum number of additional credits for graduation it found in stage I. 

“Choice weights” are designed to represent a student's preferences regarding which courses they 

would like to take. Currently, students do not actually have control over the choice weights, and 

they are instead set by us in a way that maximizes student choice in the model output, though we 

would like to give users more control in the future. In Fletcher’s model, choice weights are 

assigned to buckets, although they could be extended to apply to individual courses. These choice 

weights are integer constants that have a lower bound of the number of courses in the bucket and 

no upper bound. The higher a bucket’s choice weight, the more likely it appears in the output. 

Because the stage II solve may not exceed the number of additional credits found in stage I, a 

student’s preferences may not always be reflected in the final solve should they require a non-

optimal number of credits to be taken.  

 

3.1.4 Penalizing Overflow  

Our contributions consisted of identifying and resolving an important limitation of the 

output of Fletcher’s model. The problem was that if a student had taken more courses than 
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necessary, overflow courses would sometimes not get sorted into the unused courses section. If 

these courses were eligible to fill a requirement, they would get output in that section. This was a 

problem because it could have falsely led students into believing that they were using those extra 

courses to meet degree requirements, when in reality they are just unused credits.  

It may seem like a strange edge case for someone who has already met all degree 

requirements to be using the tool, but it has other implications. It is specifically an issue for 

students whose program combinations are not represented by the tool. Take for example, a Data 

Science student with a minor in Mathematical Sciences. The minor needs 18 credits of math 

courses, and 9 of them can be double counted towards the major. Assume the student has taken 

courses that can only count towards the mathematical sciences requirement in the Data Science 

degree and no others within that program. Suppose the student has taken 7 total math courses – 2 

courses counting towards just the major, 2 for just the minor, and 3 to double count for both. The 

math requirement for the major needs 5 courses. So ideally, only five math courses should show 

up under that requirement, and the other two should appear in unused courses. This way, it is clear 

to the student that those two classes are not being counted towards their major and are free to be 

used for their minor. If all 7 courses appeared in the math section, it would not be clear what is 

actually needed for the major. This issue would also affect students doing B.S./M.S. degrees in 

addition to minors. It was also important to fix for single and double majors so that they understand 

the degree requirements and are not confused by the extra courses in the output. 

Understanding the following sets, parameters, and variables is necessary to understand the 

changes we made to Fletcher’s model. All definitions were first defined in Fletcher’s work, except 

for the variable zr that we created to represent the number of overflow credits assigned to 

requirement r and the variable s, which is set equal to the first objective.  
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Sets  

P  Set of programs being evaluated, indexed by p 

M  Set of buckets, indexed by m 

Rp  Set of requirements r that apply to program p 

 

Parameters  

a(m)  Number of credits for any course in bucket m 

b(r)  Number of credits needed to satisfy requirement r 

G(m) Choice weight assigned to bucket m 

e Small multiplier to reward overflow 

s*  Optimal value of the stage I solve 

 

Variables  

ym  Total number of untaken courses assigned from bucket m 

zr  Number of overflow credits assigned to requirement r 

s Continuous variable that represents the sum of the additional credits needed and 

the overflow penalties (if any) 

 

 Fletcher’s stage I objective aims to minimize the sum of the products of the number of 

credits per course in each bucket and the number of untaken courses in each bucket. Our objective 

keeps that structure but adds an additional sum - the product of zr and a small multiplier e,  which 

we set at 0.01. What this does is reward the model for declaring courses as overflow when possible. 

When we output the results of the solve to the user, we round down to not include any weight from 

zr in the calculation of credits needed.  
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Fletcher Kimball and Suyer 

𝑚𝑖𝑛 $ 𝛼(𝑚)𝑦!
!	∈	$

 min 𝑠 =	 $ 𝛼(𝑚)𝑦! +	 $ 𝜀 ∗ 𝑧%
%	∈	&!!	∈	$

,

𝜀 > 0 

 

The stage II objective, where the goal is to maximize user choice through the sum product 

of choice weights and untaken, remains unchanged in our updated model. The mathematical 

function can be viewed below.   

max $ Γ(𝑚)𝑦!
!	∈	$

 

 However, in Fletcher’s model, there is a constraint that gets added in stage II to enforce 

that the maximum number of untaken credits should not exceed the total calculated in stage I. To 

get that number to match our stage I solve, we have to incorporate zr. So, we add that same sum 

product from the stage I objective into this constraint and set the value equal to s*. The reason our 

modified constraint is satisfied only at equality is because we need to enforce the same amount of 

overflow courses in the stage II solve. Otherwise, to maximize the choice weights present in the 

solve, the solver will try to select all applicable courses to a requirement. Note that Fletcher’s z* is 

equivalent to our s* in the formulations below. 

 
Fletcher Kimball and Suyer 

$ 𝛼(𝑚)𝑦!
!	∈	$

≤	𝑧∗ $ 𝛼(𝑚)𝑦! +	 $ 𝜀 ∗ 𝑧%
%	∈	&!	!	∈	$

=	𝑠∗, 𝜀 > 0 

 

 There is one additional constraint present in both stages of the solve that required the 

addition of zr. This constraint exists to enforce that the necessary number of credits get applied to 

each requirement. For all requirements that apply to the entered programs, it checks that the sum 
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across all buckets of the number of credits for a course in bucket m multiplied by the total number 

of courses from bucket m getting applied to requirement r is at least the required minimum. In our 

case, we do not want it to exceed the required minimum, but we do need it to be possible in case a 

student has already taken a combination of courses that somehow forces extra credits to be needed. 

We subtract the overflow courses from the sum, and this ensures that any credits that can be 

designated as overflow do get designated as overflow.  

 

Fletcher Kimball and Suyer 

$ 𝛼(𝑚)𝑥!,% ≥ 	𝛽(𝑟),
!	∈	$"

 

∀	𝑝 ∈ 𝑃, ∀	𝑟 ∈ 𝑅) 

$ 𝛼(𝑚)𝑥!,% − 𝑧% = 	𝛽(𝑟),
!	∈	$"

 

∀	𝑝 ∈ 𝑃, ∀	𝑟 ∈ 𝑅) 

 

 Only the objective functions, the stage II constraint, and the requirement constraint are 

discussed in this section as that is where modifications were made. The complete models can be 

viewed in Appendix D (Stage I) and Appendix E (Stage II).    

 

3.2 Scope of Implementation 

While developing the tool to support every student at WPI would be ideal, the manual setup 

required for every major and double major combination, as well as every master’s program and 

B.S./M.S. combination exceeded the timeframe of this project. As a result, we had to narrow the 

scope. We selected a set of programs that serve a large percentage of the WPI student population 

while demonstrating the full capabilities of the optimization tool. WPI’s enrollment data for fall 

of 2023 (shown below in Figure 1) helped us identify the most popular majors [19]. By selecting 

six of the seven most popular undergraduate majors (Computer Science, Mechanical Engineering, 
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Biomedical Engineering, Robotics Engineering, Electrical and Computer Engineering, and Data 

Science), we can at least partially serve approximately 62.9% of the undergraduate population, as 

it is not clear how many of these students are double majors. This data also provides no insight 

into which double majors are the most popular, so we focused on implementing two combinations 

of these six that have similar content overlap, which we have seen to be common in our experiences 

(Computer Science/Data Science and Biomedical Engineering/Mechanical Engineering).  

 

 

Figure 1 – Undergraduate Major Distribution [19] 

Using data from the same source, we identified the three most popular graduate degrees 

(Robotics Engineering, Computer Science, and Data Science) and decided to implement those. By 

doing so, the tool can service approximately 35.3% of the graduate student population. We 

additionally wanted to implement a few B.S./M.S. programs, but we could not successfully 

implement within the timeframe of our project. Our attempt is discussed in greater detail in 

Appendix G, however. Successful implementation of these 11 programs will serve as a solid proof 

of concept for possible future adoption and expansion of the optimization tool.  
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Figure 2 – Graduate Program Distribution [19] 

 

3.3 Creation of New Programs  
 

Adding a new program to the tool is a long process that is somewhat automatable, but still 

requires significant manual editing and testing. The process primarily involves collecting data (the 

requirements, super-requirements, and courses that satisfy them), sorting the acquired courses into 

buckets, and testing the output to ensure the user receives as much choice as possible and edge 

cases produce valid results.  

 

3.3.1 Data Acquisition 

To get our 11 chosen programs implemented, the first step was acquiring data. Information 

about the requirements, super-requirements, and the courses that fill them was gathered primarily 

using the 2023-24 WPI undergraduate and graduate catalogs, and it was supplemented by the WPI 
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tracking sheets for students entering in 2023 [20, 21, 22]. There are minor differences between 

tracking sheets and catalogs of the last few years, such as slightly different sets of courses being 

applicable to certain requirements or differing amounts of credits needed for electives. We used 

the most recent version of the tracking sheet to service the largest possible number of students, as 

students are free to switch to any tracking sheet that was implemented after they enrolled.  

These catalogs and tracking sheets also contain various errors and inconsistencies relating 

to course data, which added to the difficulty in its curation. New courses are also always being 

added that have yet to make it into the catalog, so the optimization tool can never be completely 

up to date. However, we attempted to make it as accurate as possible with the available data. 

Requirements, super-requirements, and the courses that fill them were compiled manually into an 

Excel sheet. What constitutes a requirement and super-requirement is also not defined by WPI, so 

we must develop that hierarchical structure separately for each program. We generally follow the 

outline of the tracking sheets, with sections of the sheet that have numbered slots for courses 

becoming requirements, and any additional text instructions becoming super-requirements. There 

are many exceptions to this, however, so we have to edit the structure until we are sure that all 

rules of the tracking sheets and catalog are being enforced.  

 

3.3.2 Bucket Scraper 

For the optimization tool to work, these courses have to be sorted into buckets (also called 

collections), which are specific to every program combination. Manually sorting courses into 

buckets is tedious and inefficient, so we developed a bucket-creating python script. The script 

identifies the desired program combination, then looks through the requirements and super-

requirements that apply to that combination. It finds the list of courses that fill each requirement 
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and sorts the courses by the set of requirements and super-requirements they fill. This leaves us 

with buckets containing unique sets of courses that map to unique sets of requirements. For 

program combinations that contain data for both graduate and undergraduate classes, buckets are 

manually divided by credit amount. In these instances, it is the combination of courses and credits 

that uniquely maps to the set of requirements.  

Buckets are identified with a unique bucket key, which serves as a selection ID in the 

model, and a text description that gets output to the user. Both of these are created manually. While 

the creation of the bucket key is unimportant and could be automated in the future, creation of the 

description is very important to the success of the tool. We use these descriptions to give the user 

as much choice as possible when selecting courses, so we as the creators have to try to imagine 

situations where these buckets will appear in the output and generate descriptions accordingly. 

Buckets that contain only a few courses for one or two requirements will have more specific 

descriptions. Take for example, a Computer Science major who needs a course to fill a spot in the 

math requirement and the probability super-requirement. The bucket that maps to this set of 

requirements contains two courses, MA 2621 and MA 2631, so the user must take one of the two. 

In this case the bucket description is very specific – “Probability – MA 2621 OR MA 2631.” On 

the other hand, buckets that are larger or can be used to satisfy more requirements need much 

broader descriptions, such as “Math Electives” or “Basic Science or Engineering.”  

While this system generally works well, it is not perfect. There are plenty of cases where a 

bucket description needs to be narrow for one student’s case yet would be better being broad in 

another. Take the science depth super-requirement for the Computer Science major. Students are 

required to take three basic science courses to fill the science requirement, and two of them must 

be in the same discipline to fulfill the depth super-requirement. For a student using our tool who 
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is just starting at WPI, it would be better if the bucket description read “Basic science electives – 

BB, CH, PH, GE,” as they can take any science courses within those four departments. But for a 

student who has already taken a chemistry course (CH) and a physics course (PH), the output needs 

to reflect that their third science course must be in one of those two disciplines. So, the bucket that 

gets recommended will either say “Chemistry” or “Physics”, as both buckets are equally valid in 

this case. But the student just starting at WPI may get recommended three chemistry classes, when 

there are viable alternative schedules that contain no chemistry classes. While not ideal, this 

situation is a better alternative than leaving those buckets broad and having a student take a science 

class from three different departments, as this would leave the super-requirement unfulfilled and 

require them to take an extra course. So, while bucket descriptions can artificially restrict choice, 

they can lead to invalid courses being taken if they are too broad. For this reason, it is important 

that we pass some responsibility to the user to make sure they understand the limitations of the 

tool and can interpret the rules of the tracking sheets for themselves. For an example of the results 

of bucket creation, see Appendix C.  

 

3.4 M.S. Implementation 

While Fletcher’s implementation provided support for single and double majors, it did not 

include support for master’s programs. Master’s programs are of course fundamentally different 

from undergraduate programs in many ways. They do not share university requirements like 

undergraduate majors do (humanities, social science, IQP, MQP, and PE). Even though most 

programs require some kind of thesis or capstone, each program handles this differently. There are 

also no true free electives in most graduate programs. Undergraduate free electives enable students 

to take any course offered, but graduate free electives are instead generally limited to the discipline 
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of the program and are specifically defined in the catalog. Another big difference is the total 

number of credits of graduate programs. They generally require 30 graduate credits, which in most 

cases converts to 45 undergraduate credits as opposed to the standard 135 for undergraduate 

majors.  

There were some significant edits needed in the source code to account for the differences 

between undergraduate and graduate programs. We first needed to implement a check to determine 

whether the user’s entered program was a bachelor’s or a master’s, and then with this information, 

we excluded master’s programs from university requirements, changed the total number of credits 

needed, removed free electives, and modified various calculations in the code to change the way 

the remaining credits are calculated.  

  The way requirements and super-requirements are set up for these programs is also very 

different. We implemented the undergraduate programs with a combination of many requirements 

and super-requirements. We had to implement our selected M.S. programs, however, with only 

one requirement, that being the 45 total credits needed. All additional rules are coded in as super-

requirements. The reason for this is because of the B.S./M.S. program. Take the Data Science 

program as an example. A student needs 4.5 credits in the area of Data Analytics and Mining, and 

one of the courses in that area is CS 539 – Machine Learning [23]. This is a graduate course worth 

4.5 credits, but there is also an undergraduate 3 credit version of this machine learning course – 

CS 4342. A B.S./M.S. student could double count the three-credit undergraduate version towards 

both degrees and still fulfill the Data Analytics and Mining requirement. For this reason, it is 

implemented as a super-requirement, requiring at least 3 credits, instead of exactly 4.5. Aside from 

providing flexibility for B.S./M.S. students in the future, this structure also provides flexibility in 

the number of electives for students on the thesis and non-thesis tracks.  
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3.5 Online User Interface  

We wanted to make the model as accessible and user-friendly for students as possible so 

students can generate multiple “what-if” trajectories quickly in addition to the optimal trajectory 

for their current stage in their trajectory. This meant we did not want students to have to download 

our model and its dependencies to run it on the command line - instead, we developed a web-based 

user interface to serve as a user-friendly model frontend, which is shown below in Figure 3. 

 

 

Figure 3 – Web User Interface for the Course Schedule Optimization Tool 

 The interface collects information from the user using HTML5 form elements (dropdown 

menus, file uploads, and free-text fields) and passes it to a backend built using Flask, which is a 

framework for web app development in Python [24]. The interface uses Flask to handle HTTP 

requests (i.e. the user’s input), process the user’s input to be passed to the backend Python model, 

and generate dynamic HTML content after receiving a solution from the model. CSS and/or 

JavaScript elements can be added in future versions of the interface to make it more visually 

appealing and to make its contents easier to understand and interact with. More text will also be 

added to provide additional detail on the usage of the interface, how the backend model functions, 
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and the ways students can generate “what-if” trajectories containing hypothetical majors and taken 

courses.  

To collect information about the user’s degree program, the interface has dropdowns that 

contain each bachelor’s and master’s program we have implemented. Users can select a single 

major, double major, or master’s degree program to generate a trajectory. Support is limited to the 

implemented double major combinations and does not include B.S./M.S. at this time. If the user 

enters a combination that is unsupported, or a malformed combination of supported majors (i.e. 

both majors are the same, or there is a second major selected without a primary major selected, 

etc.), the Instructions field at the bottom of the page will populate with a message informing users 

how to fix their input. Figures 4 and 5 below show the dropdowns in the degree program input 

section and the welcoming directions initially shown in the Instructions section before the user 

makes an unsupported or malformed input.  

 

 

Figure 4 – Degree Program Input Section of the Online User Interface 

 

 

Figure 5 – Instructions Section of the Online User Interface with Welcoming Instructions 

To collect information about the courses the user has taken, the site has a free-text field 

where courses can be entered in addition to a field where an Academic Progress Excel sheet from 

Workday, WPI’s chosen course registration and degree auditing system, can be conveniently 
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uploaded. This Academic Progress sheet contains each course the student has earned credit for and 

each course the student is currently registered to take. Students can easily download this sheet 

from their Workday student portals and upload it unedited to the user interface, which will prompt 

a Python script on the backend to scrape the file and extract the courses in a format the model can 

parse. Personal identifying information is not included anywhere in the file or filename, and the 

only sensitive information included in this file is the grades the student earned in each course and 

their cumulative GPA, but protecting student privacy is still important. To do so, the only 

information we access in the file are the names of the courses, and the file is deleted from the 

server as soon as all courses from it are parsed. In addition to uploading their Academic Progress, 

students can still use the free-text course field to add potential courses they are interested in taking 

(that would not appear in their Academic Progress), and the model will treat them as taken. 

Similarly, if students wish to remove a course from their Academic Progress (perhaps they are 

anticipating receiving no credit for a course they are presently taking or are unsure about their 

future registrations), there is a separate free-text field for them to enter those courses. Figure 6 

shows the course entry/upload section of the interface, which has instructions specifying the format 

for free-text course entries, tips on how the free-text fields can be used, and a button for the user 

to submit their input once they have finished. 
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Figure 6 – Course Entry/Upload Section of the Online User Interface 

To begin, users first input information about the degree program for which they would like 

to generate a trajectory and then input or upload the courses they have taken. After selecting their 

degree program, users will then need to specify what courses they have taken. They can do so by 

manually inputting taken courses into the free-text field following the specified format and/or 

uploading their Academic Progress file from Workday. After a user submits their degree program 

of interest and their taken courses, the model runs on the backend and creates a text output with 

the optimized trajectory that is displayed to the user on a separate Results page. The output shows 

the student the total number of credits in their selected program and a breakdown of their broad 

categories, how many total credits they have taken, how many of those credits could be applied to 

their program, and how many were excess. Below that are some statistics about the runtimes of 

both stages of the model, and an explanation of which courses have been taken and which are 

prescribed by the model. The output then breaks down each requirement in the degree program, 

starting with requirements for all undergraduate majors (unless a master’s degree program was 

selected) and then continuing to requirements specific to the selected program. The output also 

lists the courses that could not be applied to the program. Figure 7 shows the Results page with 

the text output of an undergraduate Computer Science major who has not yet taken any courses. 

The output on the Results page is in a single column, but the layouts of the visuals of the Results 

page will be condensed in this report to save space. 
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Figure 7 – Results Page of the Online User Interface 

 

3.6 Independent Studies 

 In addition to credits earned through normal, scheduled courses at WPI, students also have 

the opportunity to work on independent study projects (ISPs) that are approved and advised by a 

professor. These projects can vary in credit amounts and can fill different requirements and/or 

super-requirements on a degree. For our model, this means that two different independent studies 

with the same course code can be meant to be applied to a degree in completely different ways. 

Independent study credits are especially common amongst B.S./M.S. students, as it is common 

practice for professors teaching double-countable undergraduate classes to offer extra master’s-

level credit in exchange for completing additional coursework during or shortly after the 
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conclusion of the course. Should a student complete this coursework, the extra credit will be 

applied to their degree in the form of an independent study. Completing this coursework for 

double-countable courses can potentially give B.S./M.S. students enough credits to safely omit 

entire classes from their future schedules, meaning B.S./M.S. students are highly incentivized to 

pursue these extra credit options. As such, many B.S./M.S. students will have at least one 

independent study applied to their degrees from these double-countable courses. Being able to 

handle these credits in our model is critical functionality necessary to support B.S./M.S. programs 

in the future. 

Even outside of the B.S./M.S. case, independent studies are not uncommon, so it is 

imperative to the accuracy of our tool that we not only apply these credits to their degree, but that 

we also understand exactly how and where in their schedule the student intends to apply those 

credits. Fortunately, before getting approved for an ISP, students must fill out a form provided by 

the Registrar to provide details about the intended application of those credits on their degree. This 

means a student should already know where and how they want their credits applied by the time 

they would appear in their Academic Progress Report. By designing a form with fields that are 

almost identical to those found on the form provided by the Registrar, we can accurately apply 

independent study credits in exactly the way the student intends, even if they have multiple ISPs 

with the same name. 

To correctly apply ISP credits to a student’s degree, we need that student to provide four 

pieces of information for each ISP they have in their course input – the required course in their 

degree these ISP credits are being directly substituted for (if applicable), the number of credits the 

ISP is worth, the degree requirement these ISP credits are being applied to (if any), and any degree 

super-requirements these ISP credits are being applied to. To collect this information, we created 
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an online form that the user of the online interface will be prompted to fill out for each ISP detected 

in their taken courses. The form indicates which ISP the user is currently providing information 

for, and it reminds the user that they should have the information to fill out the form on-hand since 

they were approved for the ISP by the Registrar. The form is comprised of a free-text field for the 

substituting course code (if applicable), a numeric field for the number of credits the ISP is worth, 

a dropdown box for which (singular) requirement the ISP is being applied to (if any), and a 

checkbox for any super-requirements the ISP is being applied to. The form page is reloaded for 

each ISP in the user’s taken courses after the response for the previous ISP is stored. The ISP’s 

course code is not needed for application of the credits to the degree, meaning ISPs with the same 

course code can be stored separately and applied to the degree in different ways. Figure 8 shows 

the online ISP form a user is redirected to upon detection of at least one ISP in their taken courses. 

 

 

Figure 8 – Independent Study Form Example 

 Handling this information in the model depends on the information the user submitted. All 

ISP course codes are dropped from the taken courses before solving (as not to suggest to the model 

that the course is a three-credit free elective), but if the ISP credits are being directly substituted 

for a required course, the course code the user provided is appended to the list of taken courses. If 

this is not the case, the specific degree requirements and super-requirements the user indicated 
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have their total required credits subtracted by the number of credits the ISP is worth. This 

effectively applies the ISP directly to the degree in the correct place before the model generates an 

optimal trajectory with the remaining taken courses – reducing the number of credits required for 

these requirements and super-requirements allows the model to assign fewer credits to them in the 

same way that the normal application of taken courses to those requirements and super-

requirements does. 

The one exception to this is Type I super-requirements with an upper bound or “at most” 

designation. If for example, a student can take at most 3 credits from a bucket, and they take a 3 

credit ISP that serves as an equivalent for one of those courses, we do not want that super-

requirement to disappear. We still want to enforce that a student can take no more courses from 

that bucket. So instead, we change the upper bound to 0 (or more generally subtract the taken ISP 

credits from the original super-requirement credit total) and leave the super-requirement in place.  

The main issue with this current setup is that after the solve has been performed, it may not 

be clear to the user where certain independent study credits got applied if they accidentally applied 

too many to a single requirement. Even if they were correctly applied to a super-requirement, the 

student may be confused because super-requirements are not displayed in the output and are 

instead only coded into the model. In the future, we would like to leave the user output notes to 

remind them where the ISP credits got applied. These output notes could also have additional 

features, such as reminding students of various choices for their depth requirements. 
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4. Experiments and Results 

 To demonstrate how the model generates trajectories for different degree types and handles 

edge cases, we have devised a set of experiments on example students at different points in their 

academic programs. We will be varying the degree program of choice and the courses taken from 

student to student to showcase a variety of possible inputs to the model. 

 

4.1 Experimental Setup 

The model retrieves the data for each degree program from two JSON files stored locally. 

All code for the model is written in Python, and the Python Linear Programming (PuLP) library is 

used to build and solve the model. The solver used by our PuLP implementation is the COIN-OR 

Branch and Cut (CBC) mixed-integer linear program solver developed by the COIN-OR project 

[25]. To run each experiment, we will be using the online user interface, which uses the Flask 

framework to connect the HTML frontend to the Python backend. We will primarily be using the 

manual course entry feature to create our experiments, although an Academic Progress Report 

serves as a basis for the experiment with Student B.  

 

4.2 Experiments on Example Student Schedules 

 We will perform experiments on three sets of example students – single-major 

undergraduate students, double-major undergraduate students, and master’s students. While our 

aim is to showcase the robustness of the model including its resilience to error in edge-case 

scenarios, our experiments will not repeat the same exact edge-case premise between sets of 

students. For example, once we conduct an experiment to show the effect of our overflow penalty 
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modification on a single-major undergraduate student, we will not run experiments for the sole 

purpose of demonstrating this effect on double-major undergraduate students and master’s 

students. The model’s implementation, adjustments, and edge-case logic remain consistent for all 

degree program types. 

 To begin our experiments, we will first examine a variety of example schedules that 

showcase different points in a single-major undergraduate trajectory, along with some edge cases 

that may occur. We will introduce example students, explain where they are in their trajectory, and 

analyze how well the model handled their specific input.  

 

4.2.1 Experiment A – Common Use 

 Student A is an undergraduate Computer Science student who has completed some 

requirements, made progress towards completing other requirements, and has not yet started some 

requirements. This student has not inadvertently exceeded the number of credits that can be applied 

to any one requirement, and they do not have any independent study credits. Additionally, they 

have not made any errors in their degree program selection and course inputs when using the user 

interface. This student represents the case we expect to be most common among users of the model. 

As such, we expect the model to generate an optimal trajectory for this student without additional 

user input or edge-case handling required. Figure 9 shows the list of courses Student A has input 

as taken and where they get placed in the optimal trajectory. For comparison, an undergraduate 

Computer Science schedule for a student who has not taken any courses can be seen in Figure 7 in 

Section 3.5. 
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Figure 9 – Experiment A Results 

 
4.2.2 Experiment B – Overflow Prevention 

Student B is an undergraduate Data Science student whose taken credits and remaining 

needed credits exceed the normal 135 credits, but still has requirements left to complete. This 

student has exceeded the required number of credits for a few of the requirements in their degree 

program. In this case, we expect the model to assign three of the excess courses as standard free 

electives, and to assign the rest as not used instead of assigning them to requirements because of 

the overflow penalty. Figure 10 shows a few sections of Student B’s results.  
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Figure 10 – Experiment B Results 

 In Student B’s case, they will have 147 credits by the time they complete their degree. The 

Entrepreneurship and Innovation Requirement is still unsatisfied, but they have taken four extra 

courses that show up as unused. It is evident from the “Not Used” section that Student B has taken 

more courses than necessary for the Social Science Requirement. It only needs 6 credits, but the 

student has taken 12 credits. Six of these credits correctly appear under the Social Science 

Requirement, three of these credits appear under free electives (PSY 1400) and the remaining three 

appear as overflow in the not used section (ECON 1110), as the objective function incentivized. 

This is the correct output in this scenario. Student B also has other unused courses that apply to 

different requirements, and these courses have correctly been designated as overflow as well. 

 

4.2.3 Experiment C – Input Error  

Student C is an undergraduate Computer Science student who has made several errors in 

their model input. In the user interface, this student first forgot to select a major, so they receive 

an error message (shown in Figure 11) informing them to select a primary major.  
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Figure 11 – Experiment C Results – No Major Selected 

Student C then attempts to fix this error, but they accidentally select Computer Science as 

their secondary major without choosing a primary major. Because they are still missing a primary 

major, they receive the same error message. To try to fix this, Student C selects Computer Science 

as the primary major, but forgets to deselect it as the secondary major. They receive a new error 

message, shown in Figure 12.  

 

 

 
Figure 12 – Experiment C Results – Same Major Selected Twice 
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Notice that Student C has also listed a course twice in the input and has entered a course in 

the incorrect format. Listing the same course twice and entering a course for removal are already 

handled intrinsically by the model and user interface. The model creates variables using the course 

code as a unique identifier for each, so if a course is listed twice, it instantiates a variable for that 

course and then immediately overwrites that blank instantiation with a new instantiation of a 

variable with the same name. The user interface cannot process incorrect course formatting at this 

time, however, so Student C receives the error message shown below in Figure 13.  

 
 

 
 

Figure 13 – Experiment C Results – Taken Course in Invalid Format 

Furthermore, this student has indicated that they wish to remove a course from their 

Academic Progress, even though no file was uploaded. The user interface requires an Academic 

Progress file to be uploaded before removing courses from the taken courses list, because if no file 

is uploaded, this means the user is solely entering their taken courses manually, which means the 

user can simply omit any courses they would wish to delete from their entry. The tool correctly 
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catches Student C’s errors and provides helpful instructions so that the student understands how 

to fix the input.  

 
 
4.2.4 Experiment D – Independent Studies 

Student D is an undergraduate Computer Science student who has completed four three-

credit independent study projects, two of which have the same course code. The student enters that 

they would like to count nine of these credits towards the Science and Engineering requirement, 

even though it only requires six credits to be completed. The student intends to count the other 

three credits towards the Statistics requirement. Figure 14 shows the free elective and Computer 

Science sections of Student D’s output trajectory.  

 

 

Figure 14 – Experiment D Results 
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In Student D’s results, we observe that the model has assigned six of the Science and 

Engineering credits to that requirement, which removes it from the model entirely. Also notice that 

the model did not ignore the extra three ISP credits, even though they cannot be assigned to that 

requirement. We have no other information regarding which requirements these credits can be 

assigned to, so the model adds them to the degree as a free elective and reduces the number of 

credits in the free elective output from 9 to 6. The model also correctly assigned three ISP credits 

to the three-credit Statistics requirement and removed it from the output.  

 

4.2.5 Experiment E – Double Major  

Student E is an undergraduate Math + Operations and Industrial Engineering double major 

who has completed some requirements, made progress towards completing other requirements, 

and has not yet started some requirements. Like Student A, Student E has not inadvertently 

exceeded the number of credits that can be applied to any one requirement, and they do not have 

any independent study credits. Additionally, they have not made any errors in their degree program 

selection and course inputs when using the user interface. Student E also has not taken any courses 

that interfere with the optimal overlapping of credits between both majors. This student represents 

the case we expect to be most common among users of the model with double majors. Figure 15 

shows Student E’s output trajectory.  
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Figure 15 – Experiment E Results 

 We observe that the model correctly calculated the minimum total number of credits 

needed to complete the double major with courses that optimally fill the requirements of both 

degrees at once, and because all of Student E’s taken courses coincide with this calculated optimal 

overlapping, their output trajectory does not exceed the minimum total credits needed. 

 

4.2.6 Experiment F – Suboptimal Double Major  

 Student F is an undergraduate Math and Operations and Industrial Engineering double 

major who has completed some requirements, made progress towards completing other 

requirements, and has not yet started some requirements. Like Students A and E, Student F has not 

inadvertently exceeded the number of credits that can be applied to any one requirement, and they 
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do not have any independent study credits. Additionally, they have not made any errors in their 

degree program selection and course inputs when using the user interface. However, unlike Student 

E, Student F has taken a course that does not overlap between both majors in a slot where 

overlapping is necessary to achieve the optimal minimum number of credits for the program. 

Specifically, the Math + Operations and Industrial Engineering double major can be completed in 

as little as 147 credits if the student does not take courses that only can be applied to one of the 

majors and not the other. For example, Biology courses are applicable to the Math major, but not 

Operations and Industrial Engineering (outside of a free elective, of which none are available in a 

double major). Student F has taken one Biology course, but to optimally overlap between both 

majors, they should have taken a Chemistry or Physics course instead, since that could be applied 

to the Science requirements of both majors at once. Figure X shows Student F’s taken courses 

(which are the same as Student A’s) and their output trajectory. 
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Figure 16 – Experiment F Results  

In Student F’s output trajectory, we see that two Chemistry courses and one Physics course 

are still required for the Operations and Industrial Engineering major, since the taken Biology 

course could not be applied to it along with the Math major. We also observe that Student F’s 45 

applied taken credits plus the 105 credits remaining in the degree total 150 credits to complete the 

degree, meaning the suboptimal three-credit Biology course has extended the length of the 

program by three credits.  

 



   
 

  49 
 

4.2.7 Experiment G – Master’s Student 

Student G is a master’s-level Computer Science student who has completed some 

requirements, made progress towards completing other requirements, and has not yet started some 

requirements. Like Students A, E, and F, Student G has not inadvertently exceeded the number of 

credits that can be applied to any one requirement, and they do not have any independent study 

credits. Additionally, they have not made any errors in their degree program selection and course 

inputs when using the user interface. This student represents the case we expect to be most 

common among users of the model pursuing master’s degrees. Figure 17 below shows the results 

for Student G’s degree optimization.  

 

 

Figure 17 – Experiment G Results 
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We can see that the output for a master’s program does not contain the shared requirements 

across undergraduate degrees, and that the total number of credits has been reduced to 45. In 

Student G’s case, we can see that they have so far completed 9 out of the 45 credits needed for the 

degree. For Student G’s specific program (M.S. in Computer Science), the output also makes it 

clear that the student has the option to follow a thesis or non-thesis path for their degree (students 

generally decide by the end of their first semester). This makes it easier on our end to implement 

master’s programs, as we do not have to split the different tracks many of them offer into different 

programs. Additionally, the output helps Student G recognize that they should be taking a course 

to fill each of the Algorithms, Systems or Networks, and Theory super-requirements.  
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5. Conclusion  

 In this section, we discuss the overall successes of the project while addressing the 

limitations it currently faces. Additionally, we detail our ideas for future extensions. 

 

5.1 Discussion  

This project expanded the functionality, utility, and usability of an existing WPI course 

optimization tool. We expanded the set of degree programs for which the model can generate 

trajectories, focusing on the ones that service the largest number of students, and extended the 

source code to handle master’s programs. We also made it easier to add support for more programs 

in the future by automating part of the process of bucket creation and detailing the process behind 

adding a new program. Our mathematical model, which extends Fletcher’s work, provides as much 

choice to the user as possible and penalizes adding too many credits to a requirement so that users 

can better understand the degree requirements. In combination with our online user interface, the 

model successfully handles a variety of use cases, as evidenced through our experiments 

representing students at different points in their academic careers. With the independent study form 

and built in detection for common user errors, the tool is quite robust and can handle a variety of 

edge cases. Of course, there are almost certainly edge cases we have not considered, and there are 

numerous limitations of the model that we already recognize as such, including the limited scope, 

display of only a single optimal solution, lack of cross restrictions (discussed further in Appendix 

F), and some missing edge cases for the humanities requirement.  

Even with these limitations, we still believe in the educational value of our tool as a 

supplement to academic advising and the incomplete Workday degree auditing system. We also 

still believe that the potential for a “what-if” analysis is very valuable for helping students 
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(especially double majors) deal with the complexities of the WPI plan and that our tool has the 

potential to save unnecessary tuition expenses by reducing the extra courses they take. Because 

the tool is only intended to be a supplement to the already available resources, it is important that 

the users understand its limitations and be able to interpret the rules of the tracking sheets for 

themselves. There are also many possible future extensions that could increase the serviceability 

of the tool, with the most prominent being the addition of B.S./M.S. programs; we also have other 

ideas worth future consideration, including the incorporation of time-sensitive scheduling data, an 

AI chatbot to help increase user choice, and stochastic scheduling models.  

 

5.2 Limitations  
 

While we believe our optimization tool is of value to the WPI student population, we 

acknowledge that there are a number of limitations. The first and most obvious would be the 

limited scope. With only the most popular majors and a select few popular master’s programs and 

double majors, it does not service the entire student population. There is also no current support 

for minors or B.S./M.S. programs, though we do plan to add this in the future.  

The optimization tool also requires periodic maintenance to stay relevant. Degree programs 

can change between academic years, as new classes get added and requirements are altered. This 

means the tool may require significant updates, depending on how much is changed between years, 

to be an accurate tool for the students using it. 

The other big limitation is that the solution presented to the user is a single credit 

minimizing solution. The bucket system is designed to make the user aware of the choices they 

have, but even that does not capture all of the choices the user has. It is therefore critical to the 

success of our optimization tool that users understand this concept. Additionally, some users may 
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be unhappy with the large amount of choice provided in the output. There are likely some who 

wish we would give them a strict schedule to follow to reduce the amount of time spent on schedule 

planning.  

We also understand that the tool is more helpful for double majors trying to figure out the 

minimum number of credits that need to be taken to finish both degrees, than it is for single majors 

who just want to fill out the tracking sheet. The tool also helps users gain a broad understanding 

of what to take but provides no guidance on when to take the recommended courses. Incorporating 

scheduling data in some capacity in the future would certainly improve the tool. 

There are also some technical limitations present in the model that exist because of the 

complexity of the data. Small things such as the university residency requirement, the limit on AP 

credits that can be applied to the Humanities requirement, and the ability to override the 

Humanities Capstone by taking six foreign language classes are absent. And although WPI does 

not have strict pre-requisite requirements at the undergraduate level, there are recommended 

background courses, yet our recommendations do not account for this in any way. Our model also 

does not enforce cross restrictions, which occur when courses with different codes cannot both be 

taken by the same student for credit. This has much bigger implications for the future of our tool, 

which is why Appendix F is devoted to further explanation of this topic. Our tool was designed as 

a supplement to academic advising and student understanding of degree requirements. We 

developed it with the intention of helping students save money and time, and in spite of its 

limitations, it can still accomplish that goal. 

With all these limitations, our tool cannot serve as a substitute for academic advising or for 

student understanding of degree requirements, but rather a supplement that can make scheduling 

easier and potentially help students save money and time. 
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5.3 Future Work  

The first extension of this project will likely be to implement B.S./M.S. programs, since 

planning the two degrees simultaneously and optimizing the double counting between them is a 

difficult task for students. Our original target scope for this project included the implementation 

of two of these programs – one with matching undergraduate and graduate programs (Data Science 

B.S./M.S.) and one without (Computer Science B.S./Data Science M.S.). Unfortunately, 

implementing these proved to be much more challenging and time-consuming than we had initially 

accounted for. A more detailed explanation of our approach can be found in Appendix F.  

Aside from adding support for B.S./M.S. programs, there are numerous other additions that 

could improve the project in the future. The most obvious would be expanding the scope – adding 

more majors and double majors, master’s programs, and minors to service more of the WPI student 

body. We could also implement tracking sheets from different years instead of only using the most 

recent, to ensure students of all grade levels can use the tool.  

It would also be good to give more choice to the user, perhaps by allowing them to set 

multipliers on the choice weights that influence bucket selection. As an example, a Data Science 

student could indicate that they do not like computer science classes and would prefer to take math 

and business electives where possible. We could then increase the choice weights on those buckets 

so the student gets recommended more classes they would be interested in. Another way to increase 

user influence on the results would be to process user text data. Users could communicate with a 

pre-trained AI that asks questions about what types of courses they would like to take. The AI 

could also use the courses the student has taken and the grades the student received to make 

additional recommendations on what courses students should take within the selected buckets.  
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To improve recommendations further, we could also incorporate WPI OSCAR data. This 

data is collected from voluntary student course report surveys that are sent out near the end of each 

term, and it serves as a gauge of course quality and difficulty. The surveys ask students to rate the 

course and the professor from 1-5 on various metrics such as overall quality, amount learned, and 

amount of homework [26]. We could use this to influence bucket selection, perhaps by computing 

an average difficulty rating for each bucket and using that as a tiebreaker when two buckets are 

equally valid in a solution. This data does suffer from participation bias, but there are many ways 

it could help further develop the optimization tool down the line.  

Another extension of the project would be to further develop the user interface. With more 

time, we could better customize the output that is displayed to the user, such as providing 

information about specific cross restrictions the user should watch out for based on their taken 

courses. It would also help the user understand the limitations of the model if we could develop a 

way to indicate where there is room for more choice in their schedule, potentially highlighting 

buckets that could be replaced by others. Another important addition would be a channel for user 

feedback. This would help us identify missing courses or bugs in the code, as well as which 

program combinations people want to see implemented. It would also be helpful to hear about 

what specific aspects of the tool are most useful to people. If it helps double majoring students 

optimize double counting more than any other students, we could use that feedback to implement 

more double majors that students request.  

Much further down the road, there might be some way to incorporate time sensitive data 

into the optimization tool. Using historical course offering data, we could develop a stochastic 

probability-based model that checks the feasibility of finishing the courses you have left within a 

designated amount of time successfully. This would help address one of the main limitations of 
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the tool, as we could then help students know both what to take and when to take it. There are 

many possibilities for the future of this course optimization tool, and its potential to help the WPI 

community is exciting.   
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Appendices 

Appendix A – Data Science B.S. Tracking Sheet 

 
Figure 18 – Data Science B.S. Tracking Sheet 2027 [22]  
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Appendix B – Data Science Major Requirements Sheet 
 

 
Figure 19 – Data Science Major Requirements Input Sheet 

 

 
Figure 20 – Data Science Major Super-Requirements Input Sheet 
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Appendix C – Data Science Major Bucket Sheet 
 

 
Figure 21 – Data Science Major Bucket Sheet 

  



   
 

  60 
 

Appendix D – Stage I Complete Mathematical Model  

 The majority of this model comes from Lindsey Fletcher’s “Guiding Course Selection via 

Degree Evaluation Optimization” paper [18]. Our modifications referenced in section 3.1.4 are 

reflected in the formulation below. The suggested value for e is 0.01.  

 

Sets  

P  Set of programs being evaluated, indexed by p 

Rp  Set of requirements r that apply to program p 

M  Set of buckets, indexed by m 

Mr  Set of buckets m that can be applied to requirement r 

Rm  Set of requirements that courses from bucket m can be applied to 

Umax  Set of Type I super-requirements u with an upper bound 

Umin  Set of Type 1 super-requirements u with a lower bound 

Mu Set of buckets m to which super-requirement u can be applied 

Ru Set of requirements to which super-requirement u can be applied 

W Set of Type 2 super-requirements w 

Vw Set of subsets v such that Type 2 super-requirement w is satisfied if sufficient 

credits have been taken from a single subset v Î Vw  

Mv Set of all buckets m such that m is a subset of v 

Rw Set of requirements to which Type 2 super-requirement w can be applied 
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Parameters  

a(m) Number of credits for any course in bucket m 

b(r)  Number of credits needed for requirement r 

µ(u)  Credit upper or lower bound for a Type 1 super-requirement w 

µ(w) Credit lower bound for any subset v that satisfies Type 2 super-requirement w 

T(m) Number of courses already taken from bucket m 

g(m) Total number of courses in bucket m 

e Small multiplier to reward overflow 

 
Variables  

xm,r  Integer variable that represents the number of courses from bucket m to 

requirement r 

ym  Integer variable that represents only the untaken courses from bucket m 

assigned to any requirement 

qv,w   Binary variable that takes the value 1 if enough credits have been selected from 

subset v for Type 2 super-requirement w and 0 otherwise 

zr  Continuous variable that represents the number of overflow credits assigned to 

requirement r 

s Continuous variable that represents the sum of the additional credits needed and 

the overflow penalties (if any) 

 
 
 
Objective:  
 

min 𝑠 = $ 𝛼(𝑚)𝑦! +	 $ 𝜀 ∗ 𝑧%
%	∈	&!!	∈	$

, 𝜀 > 0 

 
Subject to: 

$ 𝑥!,% 	≤ 	 𝑦! + 𝑇(𝑚), ∀𝑝	 ∈ 𝑃, ∀𝑚	 ∈ 𝑀	
%	∈	&#∩	&!
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$ 𝛼(𝑚)𝑥!,% − 𝑧% = 	𝛽(𝑟), ∀	𝑝 ∈ 𝑃, ∀	𝑟 ∈ 𝑅)
!	∈	$"

 

$ $ 𝛼(𝑚)𝑥!,%
%∈	&#∩	&$

≤ 	𝜇(𝑢), ∀	𝑢 ∈ 𝑈!+,
!	∈	$$

 

$ $ 𝛼(𝑚)𝑥!,%
%∈	&#∩	&$

≥ 	𝜇(𝑢), ∀	𝑢 ∈ 𝑈!-.
!	∈	$$

 

$ $ 𝛼(𝑚)𝑥!,%
%∈	&%∩	&#

≥ 	𝜇(𝑢)𝑞/,0 , ∀	𝑣 ∈ 𝑉/ ,
!	∈	$&

						∀	𝑤 ∈ 𝑊 

$ 𝑞/,0 	≥ 1, ∀	𝑤	 ∈ 𝑊
0	∈	1%

 

𝑥!,% 	 ∈ {0, 1, … , 𝛾(𝑚)}								∀	𝑚	 ∈ 𝑀, ∀	𝑟	 ∈ 𝑅 

𝑦! 	 ∈ {0, 1, … , 𝛾(𝑚) − 𝑇(𝑚)}								∀	𝑚	 ∈ 𝑀 

𝑞/,0 	 ∈ {0, 1}							∀		𝑣 ∈ 	𝑉/ , ∀	𝑤 ∈ 𝑊 
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Appendix E – Stage II Complete Mathematical Model 
 

The stage II formulation includes two additional parameters. All sets, parameters, and 

variables from stage I are still used here. All constraints from the stage I model are also still 

necessary for this stage. 

 
Parameters  

G(m) Choice weight assigned to every course in bucket m 

s* Minimum number of untaken credits necessary to complete all requirements; 

takes the value of the stage I objective 

 

Objective:  
max $ Γ(𝑚)𝑦!

!	∈	$

 

 
Subject to:  

$ 𝛼(𝑚)𝑦! +	 $ 𝜀 ∗ 𝑧%
%	∈	&!	!	∈	$

=	𝑠∗ 

 

{𝑆𝑡𝑎𝑔𝑒	𝐼	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠} 
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Appendix F – Cross Restrictions  

The lack of enforcement of cross restrictions in our data, which exist to restrict students 

from taking multiple courses within a defined set, leaves the model with room for error, in some 

cases more than others. Cross restrictions are present across most departments at WPI, and while 

they exist as an efficient way for the school to offer the same content to students in multiple 

departments or in different level programs, they are not well documented and are easily capable of 

confusing students.  

There are two types of cross restrictions that serve different purposes – cross-listed courses 

and restricted pairs. A cross-listed course serves as a way for multiple departments to offer the 

same course content. It is essentially one course that has two or more different course codes. One 

of the most prominent examples in the WPI catalog is Discrete Mathematics. It has both a math 

course code (MA 2201) and a computer science course code (CS 2022), but it is one class that can 

be used to fill either a math or computer science requirement. Students are generally more aware 

that these restrictions exist, as the cross-listed courses have the same name and follow the same 

offering patterns, so enforcing these in the model is less important.  

 A restricted pair consists of two courses that cannot both be taken for credit, but they are 

not the same class. The material covered is similar enough between the two, however, that credit 

cannot be awarded for both of them. Most restricted pairs exist between advanced undergraduate 

courses at the 4000 level and graduate classes. For example, CS 539 and CS 4342 are both machine 

learning, but one is taught at the graduate level across a semester and one at the undergraduate 

level across a term. Courses in a restricted pair may or may not be taught by the same professor, 

but they are generally offered at different times, though there are a select few exceptions where 

the two levels are taught concurrently as one class. The enforcement of restricted pairs is very 
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important for B.S./M.S. programs because students are taking courses at both levels, and although 

these programs are not implemented in the current state of the optimization tool, they are first on 

the list of future extensions. Most restricted pairs are listed on a program’s B.S./M.S. page in the 

catalog, but some are hidden in course descriptions, which means a lot of students do not know 

about them.   

The issue with enforcing both types of cross restrictions is that it significantly restricts user 

choice. Cross restrictions can easily be added to the model using a super-requirement to enforce at 

most 3 or 4.5 credits for each pair of courses. One small issue with this is that super-requirements 

cannot be extended to free electives, so both courses in the restricted pair could technically appear 

in a solution and the student may not realize the solution is invalid. The bigger issue is that adding 

all these super-requirements completely changes the structure of the buckets. Each pair of courses 

ends up in its own bucket, because those two are the only courses that map to that specific cross 

restriction super-requirement. If these buckets get recommended to users, it suggests that there are 

only two courses that could fill that spot on the tracking sheet, when this is likely not the case. 

Even if we lower the choice weights on those buckets so they are only selected when there is no 

alternative, the chosen bucket will still be missing courses that apply to the same main set of 

requirements and super-requirements, limiting user choice anyway.  

For these reasons, we chose not to enforce cross restrictions for our implemented programs. 

Because we are missing these restrictions, it is possible that we recommend users a bucket that 

contains a course they cannot take because they have taken the other half of the pair. We 

unfortunately have to accept this as a limitation of the model and instead make the user responsible 

for being aware of cross restrictions. We still believe giving the user more choice is better than 
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narrowing their view of the courses they can take, even if we must take the chance that users will 

understand the cross restrictions on their own.  
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Appendix G – The B.S./M.S. Challenge 

Even though we were unable to implement any B.S./M.S. programs, we felt it was 

important to include our approach in the paper, firstly because readers may have ideas on how to 

make it work in the future, and secondly that our resources sunk here explain the more limited 

scope of the other programs.  

A B.S./M.S. degree is generally 162 credits, assuming the ability to double count 18 credits 

between both degrees. This poses a unique challenge not seen with the double major, because in 

that case, we aim to double count as many courses as possible between the two. There is not an 

easy way to limit the number of double countable courses within the solver, so the B.S./M.S. 

cannot fundamentally be solved the same way. We cannot treat the B.S. and the M.S. as two 

combined programs solved together, because the solver will double count more courses than are 

allowed. We cannot treat them as two separate programs and solve them separately, because the 

courses recommended may not be the same in both. Yet we also cannot treat it as one single 

program, because we cannot apply the same courses to multiple requirements within the same 

program.  

To try to remedy this, we designed a multi-stage solve where we treat the B.S./M.S. as both 

a single combined program and two separate programs. First, we solve a combined program that 

contains 198 total credits - the 135 credits needed for the bachelor’s, the 45 credits needed for the 

master’s, and the 18 double-countable credits. We treat the 18 double-countable credits as a 

requirement, forcing the solver to either sort taken courses there, or recommend courses that can 

be double counted. To incentivize the solver to sort taken courses into the double count section, 

we added a reward into the objective function. The objective value gets a small bonus if taken 

courses get applied to the double count requirement instead of other applicable requirements.   
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The issue with this first solve is that we have added 18 additional credits to the total instead 

of subtracting them, because these 18 credits are still present in the bachelor’s and the master’s as 

well as having their own requirement. To remedy that, we now take these credits that got placed 

into the double counting requirement (whether already taken or not) and pass them into two 

separate solves.  

First, we take the list of courses passed in as taken, add the recommended double-countable 

courses that have not already been taken, and pass it in to solve just the undergraduate degree. This 

is done to check that the same number of courses appear in the unused section (excluding taken 

graduate courses that can be applied to the master’s). If the same number of unused courses are 

present in the first solve, this means there is at least one solution in which optimally double 

counting all 18 credits is possible. So, we then take any applicable graduate courses that appeared 

in the unused courses section, combine them with the previously chosen double countable courses, 

and use that list to solve just the master’s program. If we do not see any unused courses that were 

not there previously, we have found an optimal solution, and we display output for the bachelor’s 

degree, master’s degree, and this list of double countable courses.  

If we get an unused course that we did not expect in any of the three solves, this means 

there is not room to double count the maximum of 18 courses. Our hope is that most of the users 

of our tool will be early enough in their academic journeys to still optimally double count, but it is 

unrealistic to not expect cases where double counting the maximum number of credits is not 

possible. The reason this idea somewhat works is because most recommended courses exist in 

their own buckets because they are part of restricted pairs. If we did not include the cross-

restrictions, we would be recommending buckets with more than just two courses in them, so our 

idea of passing untaken courses back into the second stage would not work. 
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This is as far as we got in solving the B.S./M.S. problem. We can tell if there is not enough 

room to double count the full 18 credits, but we could not come up with a way to efficiently 

determine exactly how many credits can be double counted. One idea was to do an exhaustive 

recursion where we try to decrease the credits in the double count requirement in intervals of 1.5, 

since this is the difference between an undergraduate class and graduate class. Another idea 

involved removing recommended double countable courses one by one until the number of unused 

courses remains the same between solves. This involved developing an order of importance to 

remove courses that limit user choice before ones that give the user more choice with their 

remaining untaken courses. All of these seemed like they might eventually work, but because they 

relied on recursion, none seemed like a very efficient way to solve the problem. Solving the 

problem of B.S./M.S. (and to a lesser extent minors, since they also have double counting limits) 

is fundamentally different one than that of single and double majors, so the other alternative is to 

consider formulating a new model.  
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