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Abstract 

 

Drinking water sources are vulnerable to a broad range of contaminant threats. Recent 

U.S. legislation has focused on protecting public health from pathogens while also 

managing disinfection byproducts (DBPs) and organic contaminants. Chlorine is known 

to react with organic matter to form DBPs, thus alternative disinfection schemes are 

desirable.  The goal of our research was to evaluate synergistic inactivation of E. coli 

with chlorine and sonication in a flow through system.  Laboratory experiments were 

conducted to determine the impact of chlorine dose (0 to 1 mg/L), cavitation intensity (90 

to 150 watts) and contact time (0 to 16 minutes) on inactivation. Tests were conducted 

with a probe system and a flow through cavitation device.  Results showed that 

sonication alone was ineffective for the conditions tested.  Sonication applied 

simultaneously with chlorine did not improve inactivation compared to each disinfectant 

alone. 
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1 Introduction 

1.1 Statement of Problem 

Drinking water sources in the United States are vulnerable to contamination from point 

sources (e.g. wastewater treatment plants) and non-point sources (e.g. agricultural 

discharges).  As a result of these waste inputs, pathogenic microorganisms that can cause 

adverse health effects on human beings may be found in drinking water sources.  It is 

therefore important to disinfect waters intended for drinking to prevent negative public 

health effects. 

 

Chlorine is the most widely used disinfectant for drinking in the United States because it 

is a strong disinfectant and is also cost effective and easy to apply.  With proper dosing, 

chlorine is effective at inactivating most microorganisms present in water supplies. 

Chlorine also leaves a disinfectant residual which helps to minimize microbial growth or 

contamination effects in the water distribution system.  However, the disinfection 

effectiveness of chlorine decreases when microorganisms are protected from chlorine 

contact by attachment to other organisms or particulate matter.  Also, some organisms, 

such as Giardia lamblia and Cryptosporidium parvum, are resistant to chlorine 

disinfection.   

 

Another issue with chlorine disinfection is the formation of potentially carcinogenic 

disinfection by-products (DBPs) when free chlorine reacts with natural organic matter.  

Trihalomethanes (THMs) and haloacetic acids (HAAs) are two groups of DBPs formed 
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from chlorine disinfection.  These by-products are regulated by the U.S. Environmental 

Protection Agency (U.S. EPA) under the several DBP Rules which have become more 

stringent in recent years. 

 

Some alternative disinfectants of interests include ozone disinfection, UV irradiation, 

chloramination, or the application of multiple disinfectants.  Ozone is a strong oxidant 

which produces fewer DBPs than chlorine, but must be generated on-site.  UV irradiation 

is effective for inactivation of Giardia lamblia and Cryptosporidium parvum, but 

expensive to retrofit in large plants.  Chloramines are a weaker disinfectant than free 

chlorine.  They are commonly used as a secondary disinfectant because they decay 

slowly and provide adequate protection in distribution systems.  Sonication, applied alone 

or as a synergistic disinfectant, is an alternative that has not received yet sufficient 

analysis to consider use in a full scale flow through system. 

 

Sonication is the application of ultrasonic waves to water.  Sonication may inactivate 

microorganisms by fluid shear caused by velocity gradients in cavitation, but it also 

causes breakup of flocs of bacteria that may make disinfection easier.  This research aims 

at investigating the germicidal effects of  sonication and combined sonication and 

chlorination on E. coli in a custom made bench-scale flow through cavitation system.  

The objective is to provide data on the feasibility of using a similar design at a larger 

scale in a treatment plant in the future. 
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1.2 Objectives 

The main goal of this research was to demonstrate inactivation by sonication in a flow-

through system compared to a batch reactor.  Synergy between chlorine and sonication, 

which has been demonstrated in batch reactors, might allow a treatment plant to use less 

chlorine to achieve the same amount of inactivation if similar synergy could be achieved 

in full-scale, flow through systems.  In order to achieve the goals, the following tasks 

were completed: 

 

1) determine the effects of chlorine alone on the inactivation of E. coli in both static 

and flow through systems; 

2) determine the inactivation of E. coli by sonication alone in both static and flow 

through systems; and  

3) determine the combined effect of simultaneous sonication and chlorination in both 

static and flow through systems. 

 

1.3 Scope of Research 

The sonication experiments were conducted in two laboratories using a sonication probe 

and a custom designed flow through sonication chamber.  All experiments were well 

controlled in the laboratory and were conducted at a starting temperature of 

approximately 22
o
C.  Phosphate buffered saline was used as the water matrix throughout 

the entire experimental plan.  E. coli was enumerated before and after disinfection using 

pour plate and/or spread plate techniques to determine the inactivation achieved by 

sonication. 
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To study the effects of sonication alone, E. coli suspensions were subjected to 

disinfection with either an ultrasonic probe or flow through system.  Power-to-volume 

ratios of 180 W/L to 300 W/L were used, as were sonication times up to 16 minutes.  

Temperature was monitored and controlled if necessary.  The inactivation of E. coli was 

also studied by chlorine disinfection.  This was to allow comparison of inactivation with 

a single disinfectant to inactivation in the combined disinfection experiments.  Various 

chlorine dosages were tested, ranging from 0.4 mg/L to 1.0 mg/L with chlorine contact 

times up to 16 minutes.  Combined application of sonication and chlorination 

experiments were performed to study the possible synergistic effects of sonication.  The 

disinfectants were applied simultaneously.  The experiments were conducted with the 

same variables and parameters as the single inactivation method experiments, and 

variables were the same to allow comparison. 

 

1.4 Overview of Thesis 

Due to the production of undesired halogenated DBPs as a result of chlorination, 

increasingly stringent Disinfectant and Disinfection By-products Rules, and limitations of 

some of the disinfection alternatives, there is a desire to discover another disinfection 

method to reduce DBPs while maintaining disinfection effectiveness.  Limited research 

has been conducted on the effects of sonication on drinking water in a flow-through 

system.  Therefore, the results of this research will provide an overview of ultrasound as 

a disinfectant, whether it is applied alone or combined with chlorine, and if less chlorine 

can be used to achieve the same amount of E. coli inactivation in a flow through system.   
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Followed by this introduction chapter is the literature review, which provides details on 

current drinking water regulations, various disinfectants, ultrasound, and prior sonication 

studies.  The methods chapter immediately following describes the exact practices and 

procedures used in the study.  Then, the results of the experiments are presented and 

analyzed.  This report ends with recommendations for further study. 
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2 Literature Review 

Drinking waters in the United States are regulated by the U.S. Environmental Protection 

Agency (U.S. EPA), which requires different levels of treatment based on water quality 

and source.  Surface water sources must be filtered and disinfected, while groundwater 

sources generally require less treatment because of the protection afforded by the aquifer 

system the water has passed through.  The majority of treatment plants use chlorine for 

disinfection; however, chlorine has several limitations as some pathogens are resistant to 

chlorine and chlorine reacts to form potentially carcinogenic disinfection by-products 

(DBPs).  Therefore, alternative methods of disinfection are of interest to the drinking 

water community. 

 

This chapter introduces relevant drinking water regulations, current disinfection methods, 

and a potential alternative disinfection option:  sonication. 

 

2.1 Drinking Water Regulations 

The U.S. EPA was formed in December of 1970, after being established by President 

Nixon, and is responsible for regulating drinking water quality.  The framework for these 

regulations is provided through the Safe Drinking Water Act (SDWA), which was first 

published in 1975.  Specific regulations are provided for monitoring and treatment of 

surface waters and groundwaters as discussed below. 
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2.1.1 Safe Drinking Water Act 

The Safe Drinking Water Act (SDWA) of 1975 was the first widespread drinking water 

regulation implemented in the United States. The SDWA required the U.S. EPA to 

establish the National Interim Primary Drinking Water Regulations (NIPDWRs). These 

regulations were to contain maximum contaminant levels (MCLs) for a specific set of 

contaminants known to exist at the time and commonly found in drinking waters.  MCLs 

are set to protect public health based on the prevalence and effects of that contaminant 

while also considering the cost and availability of treatment for each contaminant.  MCLs 

are enforceable standards that must be met by water providers. The SDWA also 

mandated that the U.S. EPA establish monitoring practices for treatment plants.  Finally, 

the SDWA contained the mandate that the U.S. EPA evaluate the feasibility and success 

of the NIPDWRs and create the National Primary Drinking Water Regulations 

(NPDWRs).  The NPDWRs are permanent standards that fully take into account cost-

benefit analysis and public comment for determining contaminant limits. 

 

2.1.1.1 1986 Amendments to SDWA 

In 1986, the SDWA was amended in an effort to continue to update drinking water 

standards in the U.S.  The amendments required the EPA to establish 83 MCLs within 

three years and to establish no less than 25 new MCLs every three years following.  Also 

required was the establishment of maximum contaminant level goals (MCLGs).  MCLGs 

take into account only human health effects, instead of being a balance of achievability, 

cost and human health effects.  MCLGs are non-enforceable ideals that the U.S. EPA 

wishes to work toward. 
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2.1.1.2 1996 Amendments to SDWA 

The 1996 amendments to SDWA established the current system that EPA uses to create 

MCLs.  First, contaminant effects are fully considered in an attempt to establish the level 

at which contaminants are harmful to human health.  Next, the proposed standards are 

published and public comments are accepted on the prospective regulations. Only after 

input from the public and professionals in the water industry are the MCLs established.  

New standards were mandated for arsenic and radon, and public water systems were 

required to annually distribute consumer confidence reports (CCRs) to all households 

receiving municipal water. CCRs provide details on the previous year’s testing and water 

quality results and other relevant data about the water being delivered to consumers. 

 

2.1.2 Surface Water Treatment Rule 

The Surface Water Treatment Rule (SWTR) was established in 1989.  It was effective as 

of December 31, 1990 (U.S. EPA 1989a).  This rule applies to all municipal water 

providers that use surface water as a water source.  The U.S. EPA set the maximum 

contaminant level goal (MCLG) to be zero for Giardia lamblia, viruses, and Legionella 

(U.S. EPA 1989a).  Under the SWTR, all water systems that use surface water sources 

are required to provide filtration and disinfection.  A treatment plant may avoid filtration 

by complying with several criteria set up by the U.S. EPA, and these criteria include the 

quality of source water, protection of the watershed, and the ability to meet all 

disinfection requirements. The Surface Water Treatment Rule also requires 99.9% (3 log) 

inactivation or removal of Giardia lamblia cysts and 99.99% (4 log) inactivation or 
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removal of viruses.  In addition, disinfection residuals have to be maintained and 

monitored above a certain concentration in the water distribution system.  The SWTR 

also established requirements for turbidity, and required monitoring of this parameter.  

For systems that practice conventional or direct filtration, turbidity measurements are 

required to be less than 0.5 Nephelometric Turbidity Units (NTU) in at least 95% of 

samples taken monthly and must not exceed 5 NTU as a maximum (U.S. EPA 1989a). 

Also established was a series of “credits” for practices other than inactivation that 

provide removal of regulated pathogens.  These credits were a straightforward way of 

calculating the actual log-inactivation required by disinfection. 

 

2.1.2.1 Interim Enhanced Surface Water Treatment Rule 

In 1998, the Interim Enhanced Surface Water Treatment Rule (IESWTR) was 

promulgated to improve control of Cryptosporidium in surface waters.  Cryptosporidium 

had emerged as pathogen especially resistant to chlorine disinfection.  In 1993, an 

outbreak of Cryptosporidium in Milwaukee, Wisconsin, left over 100 people dead and 

over 1 million sick.  While the source of the pathogen was never officially identified, an 

extensive rain event in the area created high turbidity levels in the raw water.  This 

resulted in suboptimal coagulation although the plant was meeting current U. S. EPA 

requirements (MWH 2005).  Based on concerns with Cryptosporidium, the IESWTR 

required a 2-log reduction in Cryptosporidium.  The rule also required more specific 

monitoring of each filter in a treatment system to make sure all water was being treated 

adequately, rather than monitoring just the blended water after filtration.  The maximum 

effluent turbidity from conventional and direct filtration was set at 0.3 NTU in a 
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minimum of 95% of samples taken each month, and the maximum allowable turbidity 

was set at 1 NTU (U.S. EPA 1998a).   This regulation applied only to surface water 

systems serving more than 10,000 people (U.S. EPA 1998a). 

 

2.1.2.2 Long Term 1 Enhanced Surface Water Treatment Rule 

The Long Term 1 Enhanced Surface Water Treatment Rule (LT1) was published in 2002.  

The rule mandated that all surface water systems, including those serving less than 

10,000 people, comply with the terms of IESWTR (U.S. EPA 2002). 

 

2.1.2.3 Long Term 2 Enhanced Surface Water Treatment Rule 

The Long Term 2 Enhanced Surface Water Treatment Rule (LT2), similarly to IESWTR 

and LT1, was established to further control Cryptosporidium in drinking water. In order 

to protect against possible future outbreaks, the LT2 requires monitoring of source waters 

for Cryptosporidium.  Based on levels detected, systems may be required to meet higher 

levels of inactivation and removal than the LT1 previously required.   Through the LT2, 

the U.S. EPA established a “toolbox” of options for controlling Cryptosporidium, 

including protecting the source water area, improving filtering, and adding UV or ozone 

disinfection.  For smaller systems, however, many of these options are prohibited by 

monetary limitations (U.S. EPA 2006b).   
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2.1.3 Groundwater Regulations 

The final Groundwater Rule was published in 2006.  The rule requires sanitary surveys to 

identify systems and areas which are influenced by surface water or have other 

questionable sources, and can therefore contain more pollutants or microorganisms than 

typical groundwaters.  Systems that were deemed to be at risk are required to provide 4-

log inactivation of viruses  (U.S. EPA 2006a). 

 

2.1.4 Regulations for All Public Water Systems 

In addition to the rules above that apply specifically to municipal water systems using 

either a surface or groundwater source, there are is a significant set of U.S. EPA 

regulations that apply to all drinking waters, regardless of source. 

 

2.1.4.1 Total Coliform Rule 

The Total Coliform Rule was published in final form in late 1989 and became effective in 

at the end of 1990.  The rule requires that all water systems sample for coliforms based 

on the population they serve.  For example, systems which serve fewer than 1000 people 

may test once a month, systems with 50,000 or more customers test 60 times per month 

and those with at least 2.5 million customers test at least 420 times per month (U.S. EPA 

1989b).  Coliforms are not pathogenic organisms, but their presence in water indicates 

that other pathogenic organisms may be present (MWH 2005).  Because disease 

outbreaks have occurred with very low levels of coliforms detected (MWH 2005), the 

U.S. EPA set the MCLG for total coliforms at 0, and set a legally binding limit of 

positive coliforms in less than 5% of samples taken  (U.S. EPA 1989b). 
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2.1.4.2 Stage 1 Disinfectants and Disinfection By-Products Rule  

Disinfection by-products (DBPs) are potentially carcinogenic compounds created when 

disinfection chemicals react with natural organic matter present in source waters.  In 

order to protect the public from disinfection by-products, the U.S. EPA established the 

Stage 1 Disinfectants and Disinfection By-Products (Stage 1 DBP Rule) in 1998. The rule 

only applied to surface water systems and groundwater systems found to be under the 

direct influence of surface water, because these sources typically contain enough organic 

matter to cause DBP production (MWH 2005).  Larger systems (10,000 or more served) 

were required to become compliant by January 1, 2002.  Systems serving fewer than 

10,000 people and groundwater systems under the influence of surface waters must 

comply with the Stage 1 DBPR requirements by January 1, 2004.  The rule established 

the maximum residual disinfectant level goals (MRDLGs) and the maximum residual 

disinfectant levels (MRDLs) for chlorine, chloramine, and chlorine dioxide (U.S. EPA 

1998b). 

 

Also included in the Stage 1 D/DBP Rule are a set of maximum contaminant level goals 

(MCLGs) and maximum contaminant levels (MCLs) to limit the production of 

disinfection by-products, such as total trihalomethanes (TTHMs), five haloacetic acid 

compounds (HAA5), chlorite, and bromate (U.S. EPA 1989b).  TTHMs include 

chloroform, bromodichloromethane, dibromochloromethane, and bromoform.  An MCL 

was set for HAA5 (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, 

monobromoacetic acid, and dibromoacetic acid), while MCLGs are provided for 
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dichloroacetic acid and trichloroacetic acid.  Both the MCLGs and the MCLs are listed in 

Table 2-1. It should be noted that the regulation allowed averaging of DBPs  measured at 

different locations in the distribution system to occur. If DBP levels were high in one area 

of a distribution system, the system could remain in compliance if other areas were low 

enough that the average values were in compliance. 

 

Table 2-1:  Stage 1 DBPR MCLs and MCLGs (U.S. EPA 1998) 

 

Disinfection by-products MCL (mg/L) MCLG (mg/L) 

Total trihalomethanes (TTHM) 0.080 Not applicable 

     Chloroform  0 

     Bromodichloromethane  0 

     Dibromochloromethane  0.06 

     Bromoform  0 

Haloacetic acids (five) (HAA5) 0.060 Not applicable 

     Dichloroacetic acid  0 

     Trichloroacetic acid  0.3 

Chlorite 1.0 0.8 

Bromate 0.010 0 

 

 

In an effort to further control DBPs, the U.S. EPA also regulated organics in water. This 

part of the rule requires some municipal systems to remove a higher percentage of total 

organic carbon depending on the source water concentration of TOC and alkalinity.  The 

U.S. EPA did not specify how this removal needed to be accomplished. 

 

2.1.4.3 Stage 2 Disinfectants and Disinfection By-Products Rule 

The Stage 2 Disinfectants and Disinfection By-Products Rule built on the standards and 

goals outlined in the Stage 1 D/DBP Rule.  While the MCLs did not change, the manner 

in which DBP concentrations were measured and calculated became stricter.  First, 
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sample locations had to be established at points in the distribution system where DBP 

levels were highest.  Second, running annual averages (RAAs) for the entire system were 

no longer adequate for compliance.  Instead, RAAs for each sample location were 

required for compliance.  The new regulations make compliance more difficult for public 

water systems, as small areas of high DBP concentrations can be caused by features in 

distribution systems such as low flow areas and dead ends (U.S. EPA 1998b). 

 

2.1.5 Regulation Summary 

Compliance with the above regulations can be difficult for water systems because the 

methods for solving problems under the regulations sometimes conflict.  For instance, 

with systems using chlorine for disinfection, DBPs are lowered (to comply with the Stage 

2 D/DBP Rule) most easily by reducing chlorine concentration.  However, inactivation 

required by the LT2 is achieved most easily by adding more chlorine.  Because of these 

conflicts that exist, there is interest in finding alternative disinfectants that would allow 

compliance with all regulations (MWH 2005). 

 

2.2 Disinfection 

Chlorine is the most common disinfectant used in the United States, with over 90 percent 

of current U.S. water supplies using it as all or part of their disinfection process (NDWC 

1996), but other methods, such as ozone and UV light are also used.  Chlorine 

disinfection can be achieved with gaseous chlorine, sodium hypochlorite, and calcium 

hypochlorite.  Other disinfectants used in the United States include chlorine dioxide, 
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ozone and UV light.  The following sections discuss the application and effectiveness of 

each of these disinfectants. 

 

2.2.1 Chlorine 

Chlorine is the most widely used disinfectant in the U.S.  In 1908, the Jersey City Water 

Works began the first use of chlorine as a large scale disinfectant in the United States 

(NDWC 1996).  Today, a large percentage of treatment plants use chlorine for primary or 

secondary disinfection (MWH 2005). 

 

Chlorine is economical, and there is significant operator experience with chlorine 

chemicals, making it an attractive option for disinfection.  Chlorine effectively inactivates 

a wide variety of waterborne pathogens (HDR Engineering 2001).  It also removes some 

unpleasant tastes and odors from surface waters with high algal concentrations and it 

reduces coloration due to organic compounds in water (NDWC 1996).  It is somewhat 

effective against viruses (including inactivations over 2 log), and Giardia (when 

inactivations of less than 2 log are necessary), but not as effective against 

Cryptosporidium or Giardia when more than 2 log inactivation is necessary (HDR 

Engineering 2001).  Lastly, chlorine remains in the water in residual concentrations, for 

secondary disinfection in the distribution system.  However, chlorine also has drawbacks.  

First, chlorine reacts with organic compounds in water to form carcinogenic disinfection 

byproducts, including THMs and HAAs as described in Section 2.1.4.2.  Second, the safe 

transport and storage of certain types of chlorine, especially chlorine gas, prior to 

treatment can present problems.  Lastly, some pathogens are resistant to chlorine 



 

16 

 

disinfection.  These include Cryptosporidium parvum and Giardia lamblia, which require 

high doses (greater than 5.0 mg/L) of chlorine for inactivation. 

 

Chlorine can be applied to drinking water in three ways:  gaseous chlorine, sodium 

hypochlorite, and calcium hypochlorite.  Chlorine gas reacts in water to form free Cl2  and 

hypochlorus acid (HOCl), as shown in Reaction 1.  Sodium hypochlorite forms 

hypochlorus acid when added to  water, as shown in Reaction 2.  Calcium hypochlorate 

dissolved in water also produces HOCl, as shown in Reaction 3.  Additonally, HOCl 

undergoes acid-base reactions to form hypochlorite ion, as shown in Reaction 4.  This 

reaction will not proceed at all at a pH of 6.5 or less, and it will proceed fully at 8.5 or 

more.  Because hypochlorus acid is a far superior disinfectant, chlorination is 

substantially more effective at a lower pH (MWH 2005). 

−+
++→+ ClHHOClOHgCl 22 )(    (Reaction 1) 

−+
++→+ OHNaHOClOHNaOCl 2   (Reaction 2) 

−+
++→+ OHCaHOClOHOClCa 222)( 2

22  (Reaction 3) 

−+
+↔ OClHHOCl      (Reaction 4) 

 

2.2.2 Chloramines 

Chloramines are compounds that are formed when ammonia reacts with dissolved 

chlorine.  Chloromines can take three forms:  mono (Reaction 7) and di (Reaction 8) 

chloramines and nitrogen trichloride (Reaction 9).  Reactions 5 through 9 show how 

chloramines are formed.   



 

17 

 

  ��� + ��� → ���� + �� + ��	   (Reaction 5) 

  ���� ↔ ���	 + ��     (Reaction 6) 

  ��� + ���� → ����� + ���   (Reaction 7) 

  ����� + ���� → ����� + ���   (Reaction 8) 

  ����� + ���� → ����� + ���   (Reaction 9) 

 

Chloramines were found to be effective as a secondary disinfectant because they are 

more stable than chlorine and remain in the distribution systems longer.  However, 

chloromines are weaker than chlorine and would require large contact times or doses for 

primary disinfection (U.S. EPA 1999).  Chloramines are as much as 100 times less 

effective than chlorine at low pHs, so they are rarely used as a primary disinfectant 

(MWH 2005). 

 

When compared to free chlorine or chlorine dioxide, chloramines form fewer DBPs 

because they do not react as easily with organic compounds found in source water.  

Additionally, chloramines must be produced at the point of use, requiring more operator 

training and skill to use (U.S. EPA 1999).  Another consideration is that significant safety 

procedures are necessary for facilities using chloramines because toxic gas is created 

when chlorine and ammonia are allowed to mix (HDR Engineering 2001). 

 

2.2.3 Ozone 

Ozone is one of the strongest oxidants available for use in water treatment.  It is usually 

generated on-site, through an energy intensive process that converts pure oxygen gas to 
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ozone as shown in Reaction 10.  The resulting gas is bubbled through the treated water in 

a contact tank that maximizes contact time (HDR Engineering 2001).  After the gas 

passes through water in the treatment plant, it must go through an ozone destructor so that 

ozone is not released into the atmosphere (MWH 2005).   

  32 23 OO →       (Reaction 10) 

One notable advantage of ozone is that because it is generated on-site, the need for 

transportation and storage of large amounts of a toxic substance is mitigated.  Ozone 

produces fewer THMs and HAAs than traditional chlorine methods. However, it does 

produce some of the same DBPs produced by chlorine (aldehydes) and some unique to 

ozone treatment, such as bromate (���
	, which is regulated under the Stage 1 D/DBP 

rule), aldoketoacids and carboxylic acids (MWH 2005).  Ozone is acceptable for 

inactivations of viruses, Giardia, and Cryptosporidium over a 2 log kill.  It may be used 

in both small and large treatment systems, but does require very skilled operators because 

the gas must be generated, used and destroyed onsite(HDR Engineering 2001). 

 

2.2.4 Ultraviolet Radiation 

Ultraviolet radiation (UV) is a non-chemical method of disinfection.  UV inactivates 

microorganisms though a unique process:  organisms absorb the radiation and a 

photochemical reaction that occurs damages vital components of the cells, leaving them 

either dead or unable to reproduce.  In addition to its effectiveness, one of the most 

attractive attributes of UV treatment is that it does not produce any known DBPs.   
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Earlier research in the 1990’s indicated that UV was ineffective against certain 

microorganisms, especially Cryptosporidium parvum and Giardia lamblia.  However, it 

was later determined that the methods used to determine the viability were inadequate.  

Subsequently, Bukhari et al. (2000) showed that UV is very effective against 

Cryptosporidium parvum, and Shin et al. (2000) showed that low pressure UV systems 

are very effective for inactivation of Giardia lambia at cost effective dosages. However, 

it can be expensive to retrofit large water treatment systems with UV because of the 

significant construction costs involved (MWH 2005).  The operator skill required for UV 

systems medium (HDR Engineering 2001). 

 

2.3 Sonication 

Sonication is the process of applying sound waves at ultrasonic frequencies to water in an 

effort to inactivate microorganisms in that water.   Sonication has been evaluated as a 

sole disinfectant, and also in conjunction with other disinfectants to enhance inactivation. 

 

2.3.1 Sonication Alone 

Several hypotheses exist for the inactivation mechanisms of sonication.  Blume et al 

(2002) hypothesized that inactivation is a combination of shear forces caused by velocity 

gradients, breakdown of cell walls, and increasing vulnerability of pathogens by breaking 

up flocs or breaking microorganisms off particles to which they have attached.  

Additionally, free radicals and hydrogen peroxide produced when cells are exposed to  

sonication are potentially “cytotoxic and mutagenic” (Riesz and Misik 1999). 
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Clasen and Sobatta (1994) evaluated the  inactivation of the microorganisms 

Artemiasalina and Cyclops nauplii by sonication applied at 22 kHz. Artemiasalina and C. 

nauplii concentrations were reduced by 40 to 60% in four seconds, and significantly more 

kill was observed as time was increased.  The authors also showed that, because “from 20 

kHz onwards the cavitation threshold increases with the transmitted frequency,” 

application of ultrasound close to the 20 kHz frequency was most effective in causing 

cavitation.   

 

Blume et al. (2002) evaluated ultrasound for inactivation of both E. coli and fecal 

streptococci organisms in wastewater.  0.9 and 2.9 log inactivation was achieved for E. 

coli and fecal streptococci, respectively.  However, very long treatment times and high 

treatment intensities were required to accomplish this (see Figure 2-1).  Therefore, this 

study demonstrated that sonication alone is not adequate as a solitary disinfectant from an 

economical standpoint  (Blume, Martinez and Uwe 2002).  

 

More recently, the inactivation of the protozoan pathogen Cryptosporidium parvum and 

Giardia lablia by sonication has been studied (Graczyk, et al. 2008).  Ultrasound 

disintegration treatment was carried out on sewage sludge for 10 to 20 minutes.  The 

concentration of Cryptosporidium oocysts were reduced from 13.5 oocysts/g to non-

detectable levels for all treatment conditions tested, except for 10 minutes at 8 mm.  

Giardia cysts were reduced from 27.3 cysts/g to non-detectable levels for the higher 

amplitudes. 
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Figure 2-1:  Inactivation on E. coli and fecal streptococci by sonication (Blume, Martinez and Uwe 2002) 

 

 

2.3.2 Sonication with Ozone 

The addition of sonication to ozonation creates a significant synergistic effect in the 

inactivation of microorganisms.  Burleson et al. (1975) demonstrated a synergistic effect 

with combined sonication and ozonation for the inactivation of several microorganisms, 

including multiple viruses and bacteria.  Four scenarios were evaluated: ozone treatment 

alone, sonication alone, simultaneous sonication and ozone treatment, and sonication 

with oxygenation (to demonstrate the synergistic effect was due to ozone, not just 

aeration).  All tests were conducted with the microorganisms suspended in phosphate 

buffer solution (PBS) and also secondary effluent.  Sonication and sonication with 

oxygenation showed no significant inactivation with treatment times up to 10 minutes.  
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When suspended in PBS, all types of bacteria tested were completely inactivated when 

exposed to ozone contact or simultaneous application of ozone and ultrasound for 15 

minutes. Longer contacts times were necessary when bacteria were suspended in 

secondary effluent which the authors noted was more representative of real-world 

applications.  A synergistic effect was noted for combined treatment.  (Burleson, Murray 

and Pollard 1975) 

 

Additional studies on E. coli inactivation have confirmed the synergistic effects of 

combined ozone and sonication.  Dahi et al. (1976) quantified the inactivation of E. coli 

for three treatment scenarios: ozone alone, sonication followed by ozone treatment, and 

simultaneous ozone treatment with sonication.  A sonic probe system was used with an 

output power of 160 W and an ultrasonic wave frequency of 20 kHz.  Experiments were 

conducted in three different media:  (1) redistilled water (treated with potassium 

permanganate, made isotonic and buffered with phosphate), (2) sterilized secondary 

effluent from a wastewater treatment plant, (3) diluted sterilized secondary effluent.  The 

disinfection time was held constant.  Results show that ozone treatment alone provided 

the least inactivation of E. coli.   Sonication pretreatment with ozonation directly after 

was more effective at disinfecting E. coli than simultaneous application of ozone and 

ultrasound. Both combined treatment scenarios were more effective than sonication or 

ozonation alone.  It was shown that ultrasonic waves enhanced microbial inactivation 

with ozone and also chemical oxidation processes caused by the free radicals generated 

from the decomposition of ozone.  When the aeration constant (KLa) was calculated from 

the experimental data, it showed an increase of 15 – 45% after sonication.  While 



 

23 

 

inactivation still could be enhanced through the mechanical pathways discussed in 

Section 2.3.1, the implication of this data is that inactivation was also aided by the 

enhancement of the ozone transfer to liquid. 

 

2.3.3 Sonication with Ultraviolet Light 

Sonication is shown to have similar synergistic effects when applied in conjunction with 

ultraviolet light.  Data in UV studies show that long contact times are necessary for 

inactivation through sonication only, and that these contact times make sonication 

ineffective alone (Blume, Martinez and Uwe 2002).  However, because of the marked 

effect that particle size has on UV treatment, treatment of wastewater with sonication 

combined with UV treatment shows an 0.8 to 1.2 order of magnitude increase in 

inactivation of microorganisms when compared to treatment by UV light alone (Blume, 

Martinez and Uwe 2002).  In addition, the use of combined UV and ultrasound increased 

the overall inactivation for a given amount of energy, thereby allowing for equal 

disinfection at a lower cost (Blume, Martinez and Uwe 2002). 

 

2.3.4 Sonication with Chlorine 

The most important and relevant effects to the research presented here is the advantages 

of using combined chlorine disinfection and sonication.  As discussed above, recent 

regulations pose a challenge for drinking water treatment plants that rely on chlorine 

because of mandates to increase disinfection (when source water is poor) and 

simultaneously reduce DBP levels.  Sonication may serve to alleviate these issues as 
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combined treatment with sonication and chlorine improves inactivation compared to the 

additive effects of the individual disinfectants. 

 

Duckhouse et al. (2004), studied the inactivation of E. coli treated with simultaneous 

sonication and chlorination (using sodium hypochlorite) and pre-treatment with 

sonication before a period of chlorination. All experiments were conducted at 20℃.  The 

article lacks information on exact chlorine dose and focuses on the comparisons shown 

between the different applications of sonication and chlorination.  Sonication dose 

information is included in the article, and two scenarios were used:  1.22 watts of power 

applied at 850 kHz for a total intensity of 0.029 watts per square centimeter, and 22.34 

watts applied at 20 kHz for a total intensity of 16.92 watts per square centimeter 

(Duckhouse, et al. 2004). 

 

Figure 2-2 shows results of E. coli inactivation using a 20 kHz frequency.  The control 

case (chlorine only) resulted in 2.5 log inactivation of E. coli with a 5 minute contact 

time.  Pretreatment with sonication was ineffective in reducing inactivation levels to 1-

log kill for 1 minute presonication and 1.7 log kill for 5 minute presonication.  

Simultaneous treatment showed enhanced inactivation.  A five-minute simultaneous 

treatment resulted in 4.5 log reduction of E. coli, about 1.5 log better than the chlorine 

alone. A one-minute pretreatment showed nearly 5.0 log reduction overall, an increase of 

4.5 log over chlorine alone (Duckhouse, et al. 2004). 
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Figure 2-2:  Chlorine inactivation of E. coli with pre- and simultaneous sonication at 20 kHz (Duckhouse, et al. 

2004) 

 

Combined sonication and chlorination was also studied at 850 kHz (see Figure 2-3). 

Results were dissimilar to the results at 20 kHz.  At 850 kHz, simultaneous treatment 

resulted in poorer inactivation of E. coli compared to chlorine alone.  In contrast, 

pretreatment with 850 kHz sonication showed similar inactivation levels to 20 kHz 

simultaneous sonication.  

 

While inactivation results are quite similar for one minute of simultaneous treatment at 

20 kHz and one minute of pre-treatment at 850 kHz, the viability of both of these options 

is quite different.  The power applied in both situations was not the same:  only 1.22 

watts were used at 850 kHz and 22.43 watts were applied at 20 kHz.  Given this 

information, Duckhouse et al. concluded that the best option for sonication was one-

minute pretreatment at 850 kHz. 
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Figure 2-3:  Chlorine inactivation of E. coli with pre- and simultaneous sonication for 1 minute (Duckhouse, et 

al. 2004) 

 

Earlier work by Phull et al. (1997) had also demonstrated a synergistic effect between 

sonication and chlorination.  E. coli suspended in both saline solution and raw stream 

water were used for comparison in their experiments.  After 5 minutes of treatment time, 

1 mg/L chlorine inactivated 43% of the bacteria in the stream water and sonication alone 

inactivated 19% of the same bacteria.  When sonication was applied followed by 

chlorination, 86% inactivation of bacteria was achieved.  After 20 minutes, 100% 

inactivation of bacteria was achieved with the application of combined sonication and 

chlorination.  Their research also indicated that increasing the sonication power from 12 

watts/cm
2
 squared to 21 watts/cm

2
 increased the bacterial kill by 40% for a 5 minute 

treatment time in the presence of chlorine.  Frequency also affected the percent 

inactivation of bacteria.  Using the same amount of power, they concluded that higher 
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ultrasonic wave frequency (800 kHz) was more effective than low frequency (25 kHz).  

With 1 minute of sonication followed by 5 minutes chlorine contact time and under the 

same sonication power, 75% of the bacteria survived after treatment at 25 kHz while only 

20% survived at 800 kHz.  These data suggested that sonication followed by chlorination 

is a better choice than chlorination followed by sonication, because the latter scenario 

causes a degassing effect, leading to lower chlorine concentrations (Phull, et al. 1997). 

 

2.3.5 Sonication Summary 

Preliminary research has demonstrated the possible synergistic effects of sonication and 

chlorination.  For application to full-scale water treatment plants, a flow through 

sonication system is needed.  The bench scale setup built for this project is the next step 

in developing sonication technology for use in drinking water treatment.  The results of 

this research are of interest to the water treatment community because the need exists for 

alternative disinfection schemes that allow for adequate disinfection to comply the LT2 

Rule while also lowering the levels of DBPs in finished waters.  This research was 

undertaken to further evaluate sonication due to limited research on sonication as a 

potential alternative disinfectant. 
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3 Methods 

The goals of this research were to determine the inactivation of E. coli by sonication 

alone and by the combination of sonication and chlorination in a bench-scale flow 

through cavitation system.  A series of experiments were designed and conducted to 

achieve these goals.  This chapter begins with an overview of the experimental plan for 

evaluating inactivation of E. coli.  This is followed by the experimental procedures and 

finally, the analytical methods. 

 

3.1 Experimental Design 

Two sonication systems were used in the research:  a probe system and a flow through 

system.  The probe system was a Misonix system, which is shown in Figure 3-1.  Prior 

research had demonstrated the effectiveness of the probe system in conjunction with low 

dose chlorination for the inactivation of E. coli and MS2 coliphage (Plummer and Long 

2005).  Thus, this system was used as a comparison to the newly designed flow through 

system. 

 

The flow through cavitation system, shown in Figure 3-2, was designed and constructed 

by Harris Acoustics Products Corporation, East Walpole, Massachusetts.  The sonication 

chamber consisted of a stainless-steel sonication chamber with 12 transducers mounted 

on the underside.  A peristaltic pump circulated the test water through the system, which 

included sterile, chlorine demand free Tygon 3603 tubing and a custom copper heat-

exchanging coil, which was placed in an ice bath to control temperature.  Temperature 
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was monitored via a temperature probe mounted in the circulation system just after the 

sonication chamber. 

 

 

Figure 3-1:  Misonix probe sonication system 

 

The disinfection experiments conducted in this research consisted of four major 

categories: chlorination alone, sonication alone, the combination of chlorination and 

sonication, and control experiments.  The disinfectants for the combined chlorination and 

sonication experiments were applied simultaneously.  For experiments with extended 

sonication times, the temperature was controlled via the cooling coil to prevent the 

confounding impacts of heating on the inactivation of E. coli.  All experiments were 

conducted in phosphate buffered saline (PBS) with a known starting concentration of E. 

coli.  Table 3-1 summarizes all experiment parameters used in this research.  
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Figure 3-2:  Harris Acoustic Products flow through sonication system 

 

 

Table 3-1: Experimental variables 

 

Parameter 

Range of Variable 

Chlorine Only Sonication Only 
Chlorine and 

Sonication 

Chlorine Dose 

(mg/L) 
0.4-1.0 NA 0.4-1.0 

Sonication Time 

(min) 
NA 0-16 0-16 

Temp (℃) 22-23 Controlled below 25 Controlled below 25 

NA – Not Applicable 

 

Chlorine only and sonication only experiments were used to quantify inactivation of E. 

coli by the individual treatment techniques.  These results were compared to results from 
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simultaneous chlorination and sonication experiments to determine if a synergistic effect 

occurred. Control experiments provided a baseline comparison to demonstrate any other 

pathways in the system that may cause removal or inactivation of microorganisms.  

Based on preliminary experiments, chlorine doses of 0.4 to 1 mg/L were chosen.  

Chlorine doses greater than 1 mg/L inactivated E. coli to undetectable counts; lower 

chlorine doses did not provide any significant inactivation.  Based on these 

considerations, a chlorine dose of 0.6 mg/L was determined to be the most suitable 

concentration among the tested doses.   

 

For sonication, contact times of up to 16 minutes were tested with samples taken at 

several intervals during exposure.  For the probe system, treatment times were equal to 

actual times.  For the flow through system, the volume of the cavitation chamber was 400 

mL and approximately 100 mL of the sample was contained in the tubing and coil.  

Water in the tubing and coil is not exposed to sonication.  Therefore, circulation times 

were longer than the treatment times to account for the time spent in the tubing and coil.  

Table 3-2 shows the actual circulation times used in the experiments, and the 

corresponding treatment times achieved.  In the results section, times are presented as 

treatment times. 

 

Control and chlorine only experiments were conducted at room temperature.  For 

experiments with the probe system, experiments were started at room temperature (22
o
C) 

and monitored through treatment.  For experiments with the flow through system, 
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temperature was controlled to between 20
o
C and 25

o
C by immersing the copper coil in an 

ice bath.   

 

Table 3-2:  Treatment and circulation times in flow through system 

 

Actual Circulation 

Time (min:sec) 

Treatment Time in 

Chamber (min:sec) 

1:16 1:00 

2:32 2:00 

5:04 4:00 

10:08 8:00 

20:16 16:00 

 

 

A portion of the experiments were conducted at Worcester Polytechnic Institute (WPI) in 

Worcester, Massachusetts, and a portion at Tufts University Cummings School of 

Veterinary Medicine (Tufts) in North Grafton, Massachusetts.  All experiments at WPI 

used E. coli as the test organism.  Experiments at Tufts were conducted with E. coli, 

Cryptosporidium parvum and Bacillus subtilis.  This thesis is focused on E. coli results, 

using data from both university laboratories. 

 



 

33 

 

3.2 Experimental Procedures 

This section describes in detail the preparations and procedures for all experiments.  First, 

preparation of E. coli is discussed.  Then, methods for chlorination alone, sonication 

alone, and combined sonication and chlorination experiments with the probe system are 

provided.  Control experiments are discussed, and lastly, the methods for the flow 

through system are detailed. 

 

3.2.1 E. coli Preparation 

For each experiment performed, E. coli was grown in nutrient broth, centrifuged to 

decant the broth, and resuspended in phosphate buffered saline (PBS) or chlorine demand 

free (CDF) PBS.  Then, a certain volume of the resuspended E. coli was added to the 

experimental water (CDF PBS) to obtain the desired starting concentration of 3 x 

10
7
cfu/mL.  

 

Two days prior to experimentation, two sterile 125-mL Erlenmeyer culture flasks, each 

containing 50 mL of tryptic soy broth, were transferred from the refrigerator to the 

incubator and incubated at 35
o
C overnight.  One day prior to the experiment, E. coli from 

the frozen stock culture was transferred to culture flasks using a wire loop.  The 

inoculated flask was then put on a rotating platform in the incubator at 35
o
C, shaking at a 

constant rate of 100 revolutions per minute (rpm).  The inoculated flask with E. coli was 

allowed to grow in the incubator overnight for 16 – 18 hours.  
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On the day of an experiment, the E. coli culture was centrifuged to remove the broth.  

First, the centrifuge (Marathon 21000R, Fisher Scientific, Pittsburgh, PA) was cooled 

down to 4
o
C.  Then, one of the culture flasks was taken out of the incubator.  The 50 mL 

in the flask was split into two autoclaved centrifuge tubes (Oakridge 50 mL centrifuge 

tubes 3119-0050 PPCO, Nalge Company, Rochester, NY).  The two tubes were then 

centrifuged at 3,650 rpm for 20 minutes at 4
o
C.   

 

After twenty minutes, the broth in one of the tubes was decanted, leaving behind only the 

pellet of E. coli at the bottom of the tube.  The pellet was resuspended in a dilution bottle 

containing 25 mL of 0.01 M CDF PBS.  A small volume of the CDF PBS was poured 

into the centrifuge tube and shaken until the pellet was completely dissolved.  The 

solution was then poured back into the dilution bottle.  The resuspended E. coli was 

either used immediately or stored in the refrigerator for up to three hours until use.  

According to the results from trial experiments, the resuspended E. coli solution had an 

approximate concentration of 4 x 10
9
cfu/mL. 

 

To perform an experiment, a certain volume of resuspended E. coli was spiked into the 

test water (CDF PBS) to achieve the desired initial concentration of E. coli (3 x 

10
7
cfu/mL).  The volume of resuspended E. coli added to the test water was determined 

by Equation 11: 

 

  ������������� ∗ ������������� = ����� ����� ∗ ����� �����   (Equation 11) 
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In this equation, Cresuspension = 4 x 10
9 

cfu/mL, Ctest water = 3 x 10
7
 cfu/mL, and the volume 

of the test water varied for different experimental conditions.  For experiments with the 

probe system, the test water was prepared in an autoclaved, CDF media bottle.   1 mL of 

test water was withdrawn from the media for a pre-disinfection E. coli count.  For 

experiments with the flow through system, the test water was poured into the cavitation 

chamber.  Then, the appropriate volume of resuspended E. coli was added to the 

cavitation chamber.  The system was allowed to circulate for 90 seconds to ensure mixing 

and 1 mL of test water was withdrawn from the center of the cavitation chamber for pre-

disinfection E. coli counts.  The test water was then ready for disinfection experiments. 

 

3.2.2 Experiments with Probe Sonication System 

3.2.2.1 Chlorine Only Experiments 

For each experiment performed, a CDF sterile 1-L media bottle containing 500 mL 

0.01M CDF PBS (test water) was allowed to reach room temperature. Then, 3.75 mL of 

the resuspended E. coli was spiked into the test water.  The bottle was gently inverted to 

mix, then 1 mL was withdrawn and transferred to a sterile dilution test tube containing 9 

mL 0.01M PBS.  The test tube was immediately placed in the refrigerator and was used 

to determine the pre-disinfection E. coli concentration.  

 

Chlorine was applied to the sterile CDF media bottle. The volume of chlorine stock 

solution added was calculated via Equation 12: 

 

  ��  !��"# ∗ ��  !��"# = ����� ����� ∗ ����� ����� (Equation 12) 
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In this equation, Ctest water ranged from 0.4 to 1.0 mg/L and Vtest water was 500 mL.  After 

chlorine was added to achieve the desired dose, the bottle was gently inverted to mix.  

During the reaction period, 1 mL of test water was removed at specified intervals to 

determine the E. coli concentration.  The 1 mL samples of test water were immediately 

quenched after sampling by adding a specified amount of sodium thiosulfate (Na2S2O3) 

solution.  Upon quenching, the post-disinfection water samples were transferred to 

dilution tubes and put in the refrigerator for post-disinfection E. coli enumeration.   

3.2.2.2 Sonication Only and Combined Sonication/Chlorination 

A probe-type sonicator (Sonicator 3000, Misonix Inc., Farmingdale, NY) was used for 

sonication only experiments and combined disinfectants experiments (sonication plus 

chlorination) as a comparison to the flow through system.  The sonicator was set to the 

highest output power intensity of 10.0, which resulted in a power output of approximately 

90 W. This power output along with the volume of test water was used to determine the 

power-to-volume ratio.  Using a 500 mL sample, the power-to-volume ratio tested was 

180 W/L.  The ultrasonic frequency was constant at 20 kHz and could not be altered.  

Since sonication only experiments did not involve chlorine, the PBS and glassware used 

in these experiments were sterile but did not have to be chlorine demand free.  CDF 

materials were used for combined sonication and chlorination experiments. 

 

All sonication only experiments started at room temperature (22 – 23
o
C).  For the 

experiments, 3.75 mL of resuspended E. coli was spiked into a 1 L media bottle 

containing 500 mL of sterile 0.01 M PBS.  Prior to disinfection, 1 mL was removed to 
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determine the pre-disinfection E. coli concentration.  Then, the test water was transferred 

to a 600 mL autoclaved beaker (Kimax #14000).  The sonication probe was placed at the 

center of the beaker and approximately 1 inch below the water surface.  The sonicator 

was started and the output power shown on the screen of the generator was monitored.  

At each specified time interval, temperature was recorded, followed by the removal of 1 

mL of solution for post-disinfection E. coli enumeration.  Sodium thiosulfate was added 

to the post-disinfection samples.  Although the sonication only samples did not have 

chlorine, this step was performed to ensure consistency in sample processing.  For 

sonication and chlorination experiments, the same procedures were used as sonication 

only experiments with one exception:  chlorine was dosed into the beaker at the same 

time that the sonication was started. 

 

3.2.3  Experiments with Flow-through Sonication System 

A sonication system as described in Section 3.1 was used to evaluate the germicidal 

effectiveness of a flow through cavitation device.  The system operated at 25 ± 6% kHz 

and provided up to 150 W of power output, and these parameters were fully adjustable.   

 

Prior to an experiment, the cavitation system was washed twice with sterile distilled 

water.  To wash the system, approximately 500 mL of distilled water was poured into the 

chamber, circulated with the pump at high speed for 60 seconds, and then drained via the 

access port in between the pump and the coil.  This step was repeated twice.  The 

chamber with the transducers was then sprayed with a 50% ethanol solution and allowed 

to dry.  Then, 500 mL of  0.01 M CDF PBS was added to the chamber and the pump 
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turned on to fill the tubing.  The chlorine concentration of the test water was measured 

after 90 seconds of circulation to ensure no residual chlorine was present.  The 

appropriate volume of resuspended E. coli was added to achieve the starting 

concentration and the water was circulated for an additional 90 seconds to ensure a 

uniform distribution of E. coli.  A 1 mL sample was then taken from the center of the 

chamber for pre-disinfection counts. 

 

Next, the appropriate treatment was started:  no treatment for the control experiments, or 

the addition of chlorine and/or the start of sonication for the disinfection experiments.  At 

the times listed in Table 3-2, 1 mL samples were taken from the center of the chamber for 

post-disinfection enumeration of E. coli.  All samples were quenched with sodium 

thiosulfate.  Temperature and power output were monitored for all experiments, and 

temperature was controlled as stated in Section 3.1. 

3.3 Analytical Methods 

3.3.1 Introduction 

Aseptic techniques were applied throughout all experiments, which included the 

culturing, transfer, disinfection, and enumeration of E. coli.  This was done to prevent 

contamination of samples by other microorganisms.  During all transfers, aseptic 

conditions were maintained by working in a clean bench and flaming all open containers.  

All work spaces used in disinfection and enumeration processes were sterilized by 

spraying with 50% ethanol.  In addition, the thermometer and the sonication probe were 

wiped with 50% ethanol.  All glassware, plasticware, and metalware were also sterile.  

Glassware was sterilized by autoclaving (Sterilmatic Sterilizer, Market Forge Industries 
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Inc., Everett, MA).  Pre-sterilized plasticware, including petri dishes and serological 

pipettes of various sizes were purchased.  Finally, all culture media, enumeration media, 

and chemical reagents were sterilized by use of the same autoclave.   

 

3.3.2 E. coli Rehydration 

The E. coli culture was purchased in dehydrated form from the American Type Culture 

Collection (ATCC #11775).  The dehydrated pellet of E. coli was received in a vial.  

First, the cap of the vial was opened by using a flamed tweezer.  Second, 1 mL of tryptic 

soy broth (TSB) from an autoclaved test tube that contained 5 – 6 mL TSB was pipetted 

into the vial to rehydrate the E. coli pellet.  Then, the rehydrated contents were poured 

from the vial back into the test tube, and the test tube was incubated at 35
o
C for 48 hours.  

During the incubation period, 10 mL of 40% glycerol by volume was prepared by 

combining 4 mL of glycerol and 6 mL of E-pure water.  The glycerol was then 

autoclaved.  After the 48-hour incubation, the E. coli culture was transferred into a series 

of sterilized microcentrifuge tubes.  Each tube consisted of 0.5 mL of the E. coli culture 

and 0.5 mL of 40% glycerol.  The 12 microcentrifuge tubes were labeled as EC1 -  EC12.  

All of the vials tubes were frozen in –70
o
C alcohol, and then in a –70

o
C freezer.  The vial 

labeled EC7 was used for this research. 

3.3.3 Enumeration of E. coli 

In the experiments performed at WPI, the pour plate method was used to determine the E. 

coli concentration before and after disinfection.  The samples were diluted to appropriate 

concentrations before plating so as to give countable numbers of E. coli colonies on each 

plate.  At least 3 different dilutions were plated for each sample, with two replicates for 
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each dilution.  A negative control, which consisted of PBS only without E. coli, was 

plated for each sample, and agar only controls were plated for each bottle of agar.  For 

the experiments performed at Tufts University, the spread plate method was used (details 

not provided). 

 

 

3.3.3.1 Dilution Series 

Dilution series were prepared in test tubes with closures.  Each test tube contained 9 mL 

of 0.01 M PBS.  They were autoclaved before use.  When 1 mL of undiluted sample was 

introduced into the first tube, the concentration of the first tube became 10
-1

 (diluted by 

10 times compared to the original concentration).  When 1 mL of sample from the 10
-1

 

tube was transferred to another tube that contained 9 mL of 0.01 M PBS, the 

concentration of the second became 10
-2

.  The diluting process was continued until the 

desired dilution had been reached. 

 

3.3.3.2 Pour Plates 

The procedures for pour plating are described in Standard Methods 9215B (APHA, et al. 

2005).  After the pre- and post-disinfection dilution series were completed, 1 mL of 

sample from each appropriate dilution was pipetted into a 100-mm petri dish.  Two 

replicate plates were prepared for each dilution plus one negative control for each 

experiment.  The most diluted plates were placed in the back of the laminar flow hood 

and the most concentrated in the front.  Approximately 10 – 12 mL of liquid tryptic soy 

agar at 47
o
C was pipetted directly onto the 1-mL sample such that the sample was evenly 
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distributed.  The petri dish was covered and mixed in a figure eight motion.  Then the 

cover was opened slightly and the agar was allowed to solidify for 5 minutes.  All pour 

plates were incubated upside down at 35
o
C for 22 - 24 hours and were counted after the 

incubation period was over.  The ideal range of counts per plate was between 30 and 300.  

The dilution with counts in the ideal range was used to determine the E. coli 

concentration.  If no dilution was in the ideal range, countable plates were used or the 

experiment was repeated.  Log reductions of E. coli for all post disinfection scenarios 

were calculated. 

3.3.4 Chlorine 

Chlorine used in this research was NaOCl purchased from the Fisher Scientific, with a 

concentration of approximately 6% by weight (60 mg/mL).  The bottle of chlorine was 

wrapped with aluminum foil so as to block out light that would cause it to decompose.  

To prevent contamination of the reagent bottle, approximately 35 mL of chlorine stock 

was poured into a 40-mL glass vial wrapped with aluminum foil for everyday use.  

Chlorine in the vial was used and refilled if needed.  Since the concentration of chlorine 

stock applied in the disinfection experiments was small, it was difficult to measure the 

small volume to be added to the test water.  Therefore, chlorine stock solutions of 

approximately 50 mg/L and 500 mg/L were prepared and used as needed to achieve 

desired chlorine concentrations in the test water.  All of the chlorine vials and bottles 

were stored in the refrigerator at 4
o
C.   
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3.3.5 Free and Total Chlorine Concentrations 

All glassware used to determine the concentration of both free and total chlorine, such as 

125 mL Erlenmeyer flasks, 100 mL volumetric flasks, and test tubes, was chlorine 

demand free.  This was done to ensure the chlorine applied would not be consumed by 

organic matter attached to the glass.  CDF glassware was prepared by soaking glassware 

in a 100 mg/L chlorine bath.  Just before use, the glassware was rinsed 3 times with E-

pure water to remove any chlorine remaining on the glass. 

 

3.3.5.1 Free Chlorine Calibration Curve 

A free chlorine calibration curve was used to relate chlorine concentrations to absorbance 

values measured from a spectrophotometer.  Standard Methods 4500-Cl G was used to 

measure both free and total chlorine residuals using the DPD colorimetric method 

(APHA, et al. 2005).  The preparation of a free chlorine calibration curve involved the 

use of spectrophotometer and titration.  The spectrophotometer was set to wavelength of 

515 nm.  Five Erlenmeyer flasks and five volumetric flasks were taken out of the 100 

mg/L chlorine bath and rinsed three times with E-pure water.  The volumetric flasks were 

filled up to the graduation line with CDF E-pure and labeled #1 through 5.  A magnetic 

stir bar was put into each of the Erlenmeyer flasks, followed by adding 5 mL of DPD 

buffer solution and then 5 mL of DPD indicator solution.  By use of a 10-µL syringe 

dedicated for chlorine transfers (Hamilton Series 600/700 Fixed Needle Microliter 

Syringe, Hamilton Company, Reno, Nevada), 2 µL of chlorine stock was transferred into 

the volumetric flask.  The chlorine solution was immediately poured into the Erlenmeyer 

flask containing DPD buffer and indicator solutions and mixed.  The solution turned 
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pink.  A 10-mm spectrophotometer cell was rinsed with the solution and filled with 

solution again, then it was placed in the spectrophotometer (Cary 50 Scan, Varian 

Australia Pty Ltd., Mulgrave, Victoria, Australia) for an absorbance reading.  

 

Immediately after the absorbance value was obtained, the solution in the cell was poured 

back into the Erlenmeyer flask.  The Erlenmeyer flask was placed on a magnetic stirrer 

and then titrated against the FAS solution until the pink color just disappeared as 

described in Method 4500-Cl F of Standard Methods (APHA, et al. 2005).  The burette 

readings before and after titration were recorded and the volume of FAS used was 

determined.   

 

The above processes were repeated for additions of 3, 4, and 5 µL of chlorine to the 

volumetric flasks.  For the first volumetric flask, no chlorine was added and only the 

absorbance reading was taken for this blank solution.  The volume of FAS consumed 

during each titration was used to determine the initial chlorine concentrations in the 

volumetric flasks.  Using Microsoft Excel, a calibration curve was produced by plotting 

the chlorine concentration in the volumetric flasks (mg/L) on the y-axis and absorbance 

values (1/cm) on the x-axis.  Both the equation and the R
2
 value were obtained.  

 

3.3.5.2 Residual Free Chlorine Measurement Using DPD Colorimetric Method 

For selected experiments that involved chlorine during disinfection, the free chlorine 

residual concentration was measured, before and after quenching.  The DPD colorimetric 

method #4500-Cl G in Standard Methods was used to perform this test (APHA, et al. 
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2005).  Test tubes were taken out of the 100 mg/L chlorine bath and rinsed thoroughly 

with E-pure water three times.  Then, 0.5 mL DPD buffer solution, 0.5 mL DPD 

indicator, and 10 mL of sample were added to a test tube in this order.  The tube was then 

gently shaken.  The solution in the tube was poured into a Varian 10-mm rectangular cell, 

rinsed with that solution, and filled again.  The cell was placed into the 

spectrophotometer and the absorbance value was taken.  The concentration of free 

chlorine residual was calculated from the equation of the free chlorine calibration curve.   

 

3.3.5.3 Residual Total Chlorine Measurement Using DPD Colorimetric Method 

In addition to free chlorine residual concentration, the total chlorine residual 

concentration was also measured for selected experiments that applied chlorine as a 

disinfectant, before and after quenching.  The method of measuring total chlorine residual 

was the same as the procedure for measuring free chlorine residuals with the addition of 

0.1001 g KI to every CDF test tube prior to the introduction of DPD buffer and DPD 

indicator solutions.   

 

3.3.5.4 Determination of Chlorine Stock Concentration 

The free chlorine concentration of the 500 mg/L and 50 mg/L chlorine stock solutions 

were checked prior to starting an experiment.  This was to verify the concentration of the 

stock that would be applied to disinfection and to determine the exact amount of chlorine 

stock to add in order to provide the desired chlorine concentration in the test water.  To 

determine the concentration of the 500 mg/L chlorine stock, 1 mL of the chlorine stock 

was added to a CDF volumetric flask using a pipette and brought up to 100 mL with CDF 
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E-pure water.  As described previously, this solution was then poured into an Erlenmeyer 

flask with DPD buffer, DPD indicator, and a stir bar.  The solution was titrated with FAS.  

The free chlorine concentration of the solution is equal (in mg/L) to the volume of FAS 

used (in mL) with this method.  The results were then multiplied by 100 to account for 

dilution.  The same procedure was followed for the 50 mg/L solution, but 10 mL of stock 

was added and brought up to 100 mL, and the results were multiplied by 10 instead of 

100.  These procedures of diluting the stock solution prior to titration were done to ensure 

the volume of FAS used was in the appropriate range (less than 5 mL) per Standard 

Methods. 

 

3.3.6 Reagents and Glasswares 

3.3.6.1 Tryptic Soy Broth 

Tryptic soy broth (TSB) was a nutrient broth for culturing E. coli.  It was prepared as 

indicated by the manufacturer by dissolving the dehydrated tryptic soy broth powder 

(DF0370-17-3, Becton, Dickinson and Company, Sparks, MD) in E-pure water, in the 

ratio of 30 g of powder to 1 L of water.  Fifty mL of TSB was placed into each 125-mL 

culture flask with metal closures.  The culture flasks containing TSB were autoclaved for 

15 minutes at 121
o
C and stored in the refrigerator at 4

o
C for up to 2 weeks.  The evening 

before E. coli inoculation, 2 flasks were transferred from the refrigerator to the 35
o
C 

incubator. 
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3.3.6.2 Tryptic Soy Agar 

Tryptic soy agar (TSA) was a medium for E. coli enumeration before and after 

disinfection.  First, TSB was prepared according to the procedures described in Section 

3.3.6.1.  Second, 15 g of the dehydrated TSA powder (Bacto
TM

 Agar 214010, Dickinson 

and Company, Sparks, MD) was added to each liter of TSB.  Third, the agar was brought 

to boil and then autoclaved for 20 – 30 minutes at 121
o
C, depending on the volume of 

agar being sterilized.  The TSA was kept in the media bottles with screw caps and stored 

in the refrigerator at 4
o
C for up to 3 months.   

 

To prepare pour plates, the TSA was autoclaved again for 15 minutes and kept warm at a 

47
o
C in water bath.  The agar was used within 3 hours for pour plating. 

 

3.3.6.3 Phosphate Buffered Saline 

The 0.1 M PBS stock was prepared by dissolving 80 g NaCl, 2.0 g KH2PO4, 2.0 g KCl, 

and 11.56 g anhydrous Na2HPO4 in E-pure water.  The solution was brought up to 1 L in 

a volumetric flask and stirred using a magnetic stir bar until all solids were completely 

dissolved.  The pH of the PBS was checked to verify that it was between pH 7.2 – 7.4.  If 

not, the pH was adjusted to this range using 0.1 M HCl or 0.1 M NaOH.  The 0.1 M PBS 

stock was autoclaved and stored in media bottles at room temperature.   

 

The 0.1 M PBS stock was diluted 10 times for use as the test water and in dilution tubes 

by combining 1 part of 0.1 M PBS with 9 parts of E-pure water.  The pH of the resulting 

0.01 M PBS was checked to verify it was in the range of 7.2 - 7.4.  The 0.01 M PBS was 



 

47 

 

then divided into various containers, such as media bottles and dilution tubes, and then 

autoclaved.  If they were not used immediately, they were stored in the refrigerator at 4
o
C 

for up to 3 months.  

 

3.3.6.4 Chlorine Demand Free Phosphate Buffered Saline 

Chlorine demand free (CDF) PBS was used in chlorination only and sonication plus 

chlorination experiments to ensure all of the chlorine applied was used for disinfection 

purposes and not on the reaction of chlorine with other constituents in the water.  CDF 

PBS was made by chlorinating 0.01 M PBS with 5 mg/L chlorine for 24 hours in the dark 

with constant stirring and then dechlorinating by immersing a Pen-Ray UV Pen (34-

0007-01 Lamp 8W germicidal 254 nm G8T5/S, UVP, Upland, CA) into the solution for 

24 hours.  Total chlorine residual was measured using the DPD colorimetric method.  If 

the 0.01 M PBS was free from chlorine, it was then autoclaved and stored tightly capped 

in the refrigerator at 4
o
C.  If chlorine remained, the solution was irradiated with the UV 

pen for another 12 to 24 hours.   

 

3.3.7 Chlorine Demand Free E-pure 

Chlorine demand free E-pure water was used to generate results for free and total 

chlorine calibration curves.  It was also used to check the concentration of the 10% 

chlorine stock prior to performing an experiment.  The methods of making CDF E-pure 

were exactly the same as the methods for CDF PBS, except that E-pure water was used 

instead of 0.01 M PBS.  The CDF E-pure water did not need to be autoclaved but was 

stored in the refrigerator at 4
o
C.   
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3.3.7.1 Chlorine Demand Free Glassware and Tubing 

Chlorine demand free glassware was prepared by soaking glassware, such as Erlenmeyer 

flasks, volumetric flasks, test tubes, milk bottles, and BOD bottles, in a 100 mg/L 

chlorine bath made from bleach.  The glassware were taken out of the chlorine bath just 

before use and rinsed thoroughly at least 5 times with E-pure water.   If necessary, the 

glassware was then autoclaved.  CDF tubing was prepared in the same manner.  The 

tubing was used as part of the flow through sonication system. 

 

3.3.7.2 Dilution Tubes 

Dilution tubes were used in the pre- and post-disinfection dilution series.  Each dilution 

tube consisted of 9 mL of 0.01 M PBS with a metal closure on the tube.  The tubes were 

placed in a test tube rack and autoclaved for 15 minutes at 121
o
C.  They were stored in 

the refrigerator at 4
o
C until use, with a maximum storage time of approximately 2 weeks.   

 

3.3.7.3 Sodium Thiosulphate 

Sodium thiosulfate (Na2S2O3) was used for quenching chlorine so that exact chlorine 

disinfection time could be achieved.  According to Method 9060A in the Standard 

Methods (APHA, et al. 2005), 0.1 mL of a 3% Na2S2O3 neutralizes up to 5 mg/L of 

residual chlorine.  A 3% solution can be prepared by dissolving 3 g of Na2S2O3 in 100 

mL of E-pure water.  Since Na2S2O3•5H2O was used, 4.7069 g was needed to make a 3% 
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solution.  The solution was then autoclaved before use.  Sufficient sodium thiosulfate was 

used to quench all chlorine as outlined by Standard Methods. 

 

3.3.7.4 DPD Indicator Solution 

DPD indicator solution was used to measure free and total chlorine concentrations.  It 

was purchased from a manufacturer (DPD Solution APHA, LabChemInc., Pittsburgh, 

PA).  The shelf life of the DPD indicator solution was 2 months. 

 

3.3.7.5 DPD buffer solution 

DPD buffer solution was used in conjunction with DPD indicator solution for free 

chlorine measurements and total chlorine measurements.  With reference to Method 

4500-Cl F in the Standard Methods (APHA, et al 2005), the solution was prepared by 

dissolving 24 g of anhydrous Na2HPO4 and 46 g of anhydrous KH2PO4 in E-pure water.  

Then it was combined with 100 mL E-pure water in which 800 mg of disodium 

ethylenediaminetetrascetatedihydrate (EDTA) was dissolved.  The entire solution was 

diluted to a total volume of 1 L with E-pure water.  The DPD buffer solution was stored 

in the refrigerator at 4
o
C for up to 3 months.   

 

3.3.7.6 Standard Ferrous Ammonium Sulfate (FAS) Titrant 

The FAS solution served as a titrant to determine free and total chlorine concentrations 

using the titrimetric method.  According to Method 4500-Cl F in the Standard Methods 

(APHA, et al 2005), FAS titrant was made by dissolving 1.106 g of 
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Fe(NH4)2(SO2)4•6H2O in E-pure water that already contained 1 mL of 1 + 3 H2SO4.  The 

mixture was diluted up to 1 L with freshly boiled and cooled E-pure water.  The FAS 

solution was stored in the refrigerator at 4
o
C for up to 1 month. 
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4 Results 

Chapter four presents the results obtained from experiments conducted to determine the 

sole and synergistic effects of sonication on the inactivation of E. coli.  The chapter is 

divided into three sections.  First, experiments conducted with the WPI Misonix probe 

system are presented.  Next, experiments conducted in the Harris Acoustics Products 

Corporation cavitation chamber without circulation are shown. Finally, experiments 

conducted in the cavitation chamber with circulation are presented.  Full experimental 

results are provided in Appendix A of this thesis. 

4.1 Probe System 

Initial experiments were performed with the Misonix probe system with testing 

conducted at Tufts Univeristy.  In order to determine if the vessel in which sonication 

was performed impacted results, experiments were conducted in a 500 mL glass beacker 

and in the Harris cavitation chamber (with no tubing or circulation and using the probe 

for cavitation rather than the transducers).  Temperature was monitored but not controlled 

in all experiments.  The starting temperature ranged from 21 to 23
o
C, and the temperature 

after 4 minutes never exceeded 25
o
C.  Thus, temperature was not a factor in E. coli 

inactivation. 

 

The results for the probe system experiments performed at Tufts University are shown in 

Figure 4-1.  The sonication probe was operated at 90 W, providing 180 W/L of power to 

500 mL samples of experimental water.  Experiments were conducted with sonication 

only, sonication plus chlorine, and chlorine only, using 0.6 mg/L chlorine for all tests 
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with chlorine.  Control experiments were also conducted with no treatment.  The control 

experiment (no treatment) indicated no significant change in E. coli concentration over 

the 4 minute experiment time (log change less than 0.1 log).  Chlorine at 0.6 mg/L 

resulted in a 1.04 to 1.22 log reduction in E. coli concentration with 1 to 4 minutes of 

contact time.  Sonication alone was not effective in inactivating E. coli.  Sonication 

performed in the beaker produced similar results to the control sample, while sonication 

in the cavitation chamber reduced E. coli only 0.21 to 0.37 log with a 1 to 4 minute 

contact time.  Simultaneous sonication and chlorination was less effective than chlorine 

alone.  For example, combined treatment in the chamber resulted in 0.28 log reduction of 

E. coli after 4 minutes, compared to 1.22 log reduction by chlorine alone with the same 

contact time. 

 

 

Figure 4-1:  Log inactivation of E. coli with probe sonication system (performed at Tufts) 
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The data presented in Figure 4-1 contradict results from prior studies discussed in Section 

2.3.4, none of which showed a reduction in the effectiveness of chlorine because of added 

sonication. 

 

Because these results conflicted with established data, experiments were duplicated in the 

WPI environmental engineering laboratory and included chlorination in the CDF beaker 

as well.  Again, temperature remained below levels which could impact inactivation for 

the E. coli (less than 25
o
C in all experiments). 

 

As shown in Figure 4-2, the control experiment showed no significant change in E. coli 

concentration with time.  Sonication only in the beaker or Harris cavitation chamber also 

showed no significant impact on E. coli, with less than 0.1 log reduction at 4 minutes.  In 

both the beaker and the cavitation chamber, chlorine at 0.6 mg/L reduced E. coli 

concentrations by 7-log with 2 minutes of contact time.  When sonication and 

chlorination were applied simultaneously, 7-log reduction was observed after 2 minutes.    

Thus, results were similar for chlorine alone and combined treatment.  While these data 

demonstrate that sonication does not interfere with chlorination, no synergistic impacts 

for combined treatment were observed. 



 

54 

 

 

Figure 4-2:  Log Inactivation of E. coli with Probe Sonication System (performed at WPI) 
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o
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2
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The first set of experiments with the cavitation chamber-based sonication system were 

performed at Tufts University.  Results are shown in Figure 4-3.  The control treatment 

and sonication alone both showed negligible inactivation effects on the E. coli (less than 

0.2 log reduction at 4 minutes).  Chlorine applied at 0.6 mg/L resulted in 0.81 to 1.22 log 

inactivation with 1 to 4 minute contact time.  However, this inactivation is six orders of 

magnitude less than the same treatment tested in the first phase of the experiment using 

the WPI probe system.  The chlorine only results should be comparable for the two 

phases of experimentation.  As seen in earlier results, combined treatment provided 

similar inactivation to treatment with chlorine alone. 

 

 

Figure 4-3:  Log inactivation of E. coli with cavitation chamber system (performed at Tufts) 
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Section 4.1.  Sonication only and no treatment both had negligible effects on the E. coli.  

Chlorination showed substantial log reduction, 5.2 to 7.2 log, during the tests.  Sonication 

and chlorination together resulted in 4.6 to 5.6 log reduction of E. coli. 

 

 

Figure 4-4:  Log inactivation of E. coli with cavitation system (performed at WPI) 
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Results are shown in Figure 4-5.  As shown previously, the control experiment and 

sonication only had no notable effect on the inactivation of E. coli.  Chlorination reduced 

E. coli by 4.5, 3.7 and 3.6 log at 1, 2 and 4 minutes, respectively.  Similarly, combined 

sonication and chlorination resulted in 4.4, 3.5 and 3.1 log inactivation of E. coli for the 

three treatment times.  These results are consistent with prior phases of research, showing 

similar effectiveness of chlorine only and sonication and chlorine combined.  However, 

the actually log reductions in the flow through system were 1.2 to 2.5 log less than in 

non-circulating trials. 

 

 

Figure 4-5:  Log inactivation of E. coli with circulating cavitation system (preformed at WPI) 
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decline in inactivation in the cavitation system when circulation is occurring (as much as 

2-log less with chlorine only, and nearly 3-log less with combined treatment).  

Additionally, both tables show that the effectiveness of treatment is not changed 

significantly (less than 0.5 log) when the reaction vessel is changed from the beaker to 

the cavitation chamber. 

Table 4-1:  Chlorine-only comparison 

 

Chlorine 

(mg/L) Sonicator Sonic Vessel 

% reduction log reduction 

1 min 2 min 4 min 0 1 2 4 

0.6 - Beaker 100 100 100 0 6.54 7.24 5.24 

0.6 - Chamber - Static 100 100 100 0 6.69 7.09 7.09 

0.6 - Chamber - 

Circulation 

100 99.98 99.97 0 4.56 3.65 3.56 

 

Table 4-2:  Chlorination plus sonication comparison 

 

Chlorine 

(mg/L) Sonicator Sonic Vessel 

% reduction log reduction 

1 min 2 min 4 min 0 1 2 4 

0.6 WPI Beaker 100 100 100 0 7.21 7.21 7.21 

0.6 WPI Chamber - Static 99.94 100 100 0 3.21 7.47 6.94 

0.6 Harris Chamber - 

Circulation 

100 99.96 99.92 0 4.37 3.44 3.08 
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5  Recommendations 

More research is required if synergistic disinfection with sonication and chlorine is to be 

considered for application in a water treatment system.  Because of the limited time and 

resources for this study, the following additional work is not feasible for completion as 

part of the data presented here, but has emerged as necessary because of the research 

results. 

i. A sonication system should be designed that allows more flexibility and better 

control of experimental parameters.  The system should include: 

a. Adjustable power output to at least 200W. 

b. Adjustable frequency of sonication (more than +/- 6%) so that multiple 

frequencies can be examined 

c. Removable components which contact experimental water.  Specifically, 

any part of the apparatus which will contact experimental water should be 

chlorine demand free, and autoclaved. 

d. The ability to examine true flow through (point to point) treatment, rather 

than just circulation, to better emulate conditions in a treatment plant. 

ii. The power required to run the sonication equipment should be monitored at all 

times in order to fully evaluate the economic feasibility of using a sonication 

system to achieve synergistic disinfection. 

iii. The increase in temperature caused by sonication should be monitored at all times 

in order to fully evaluate the feasibility of using the sonication system in a 
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drinking water treatment system, where water cannot be provided at raised 

temperatures to consumers. 
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Appendix 1:  Results for Experiments Conducted at WPI 

Exp. Chlorine Sonicator Sonic 

Vessel 

% reduction  log reduction 

( mg/L) 1 min 2 min 4 min 0 1 2 4 

A - WPI 

Probe 

Beaker 28.43 -82.74 -10.15 0 0.15 -0.26 -0.04 

0 0.37 0 0.07 

B 0.6 - Beaker 100 100 100 0 6.54 7.24 5.24 

0 1.4 1.4 1.4 

C 0.6 WPI 

Probe 

Beaker 100 100 100 0 7.21 7.21 7.21 

0 6 6 6 

D - - Trough – 

no tubing 

12.18 24.68 -38.78 0 0.06 0.12 -0.14 

E - WPI 

Probe 

Trough – 

no tubing 

-

161.43 

-3.59 -11.66 0 -0.42 -0.02 -0.05 

F 0.6 - Trough – 

no tubing 

100 100 100 0 6.69 7.09 7.09 

G 0.6 WPI 

Probe 

Trough – 

no tubing 

99.94 100 100 0 3.21 7.47 6.94 

H - Harris Trough - 

no circ 

21.67 16.39 37.22 0 0.11 0.08 0.2 

0 0.3 0.18 0.21 

I 0.6 Harris Trough - 

no circ 

100 100 99.97 0 5.11 4.75 3.6 

0 5.52 5.4 4.52 

J - Harris Trough - 

circulation 

4.98 5.98 28.57 0 0.02 0.03 0.15 

0 0.39 0.46 0.44 

K 0.6 Harris Trough - 

circulation 

100 99.96 99.92 0 4.37 3.44 3.08 

0 5.18 4.08 3.85 

L 0.6 - Trough - 

circulation 

100 99.98 99.97 0 4.56 3.65 3.56 

0 5.82 5.6 4.77 

M - - Trough - 

circulation 

-3.21 -5 -7.5 0 -0.01 -0.02 -0.03 

0 -0.12 0.24 0.24 

 

When two lines of data are presented, the first line represents data from WPI 

enumeration, the second line represents Tufts enumeration. 
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Appendix 2:  Experiments Conducted at Tufts with Tufts E. coli 

Exp Cl2 Sonic Sonic Vessel Time Raw Counts Time = 0 Ave % log 

# (mg/L) (W) (kHz)   (min) 
1.00E-

03 
1.00E-

03 count Conc reduction reduction 

II-53 na na na Trough 0 36 30 3.30E+04 3.30E+04 0.00 0.00 

          1 33 20 3.30E+04 2.65E+04 19.70 0.10 

          2 28 39 3.30E+04 3.35E+04 -1.52 -0.01 

          4 25 49 3.30E+04 3.70E+04 -12.12 -0.05 

II-52 0.6 na na Trough 0 43 32 3.75E+04 3.75E+04 0.00 0.00 

          1 55 52 3.75E+04 5.35E+04 -42.67 -0.15 

          2 44 50 3.75E+04 4.70E+04 -25.33 -0.10 

          4 72 81 3.75E+04 7.65E+04 -104.00 -0.31 

II-58 0.6 na na Beaker 0 44 50 4.70E+04 4.70E+04 0.00 0.00 

          1 24 52 4.70E+04 3.80E+04 19.15 0.09 

          2 42 36 4.70E+04 3.90E+04 17.02 0.08 

          4 20 67 4.70E+04 4.35E+04 7.45 0.03 

II-54 na 90   
Harris in 
trough 0 4 60 3.20E+04 3.20E+04 0.00 0.00 

          1 31 48 3.20E+04 3.95E+04 -23.44 -0.09 

          2 44 44 3.20E+04 4.40E+04 -37.50 -0.14 

          4 25 56 3.20E+04 4.05E+04 -26.56 -0.10 

II-51 na 90   WPI in trough 0 79 84 8.15E+04 8.15E+04 0.00 0.00 

          1 37 68 8.15E+04 5.25E+04 35.58 0.19 

          2 46 68 8.15E+04 5.70E+04 30.06 0.16 

          4 25 22 8.15E+04 2.35E+04 71.17 0.54 

II-57 na 90   WPI in beaker 0 72 50 6.10E+04 6.10E+04 0.00 0.00 

          1 96 56 6.10E+04 7.60E+04 -24.59 -0.10 

          2 60 52 6.10E+04 5.60E+04 8.20 0.04 

          4 37 42 6.10E+04 3.95E+04 35.25 0.19 

II-50 0.6 90   
Harris in 
trough 0 59 98 7.85E+04 7.85E+04 0.00 0.00 

          1 41 41 7.85E+04 4.10E+04 47.77 0.28 

          2 24 42 7.85E+04 3.30E+04 57.96 0.38 

          4 14 39 7.85E+04 2.65E+04 66.24 0.47 

II-55 0.6 90   WPI in trough 0 96 94 9.50E+04 9.50E+04 0.00 0.00 

          1 68 44 9.50E+04 5.60E+04 41.05 0.23 

          2 25 21 9.50E+04 2.30E+04 75.79 0.62 

          4 16 13 9.50E+04 1.45E+04 84.74 0.82 

II-56 0.6 90   WPI in beaker 0 40 48 4.40E+04 4.40E+04 0.00 0.00 

          1 62 60 4.40E+04 6.10E+04 -38.64 -0.14 

          2 44 50 4.40E+04 4.70E+04 -6.82 -0.03 

          4 36 22 4.40E+04 2.90E+04 34.09 0.18 
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Appendix 3:  Experiments Conducted at Tufts with WPI E. coli 

Exp Cl2 Sonic Sonic Vessel Time Raw Counts Time = 0 Ave % log 

# (mg/L) (W) (kHz)   (min) 
1.00E-

03 
1.00E-

03 count Conc reduction reduction 

II-67 na na na Trough 0 56 40 4.80E+04 4.80E+04 0.00 0.00 

          1 70 40 4.80E+04 5.50E+04 -14.58 -0.06 

          2 60 64 4.80E+04 6.20E+04 -29.17 -0.11 

          4 80 40 4.80E+04 6.00E+04 -25.00 -0.10 

II-66 0.6 na na Trough 0 58 60 5.90E+04 5.90E+04 0.00 0.00 

          1 6 1 5.90E+04 3.50E+03 94.07 1.23 

          2 13 5 5.90E+04 9.00E+03 84.75 0.82 

          4 4 8 5.90E+04 6.00E+03 89.83 0.99 

II-59 0.6 na na Beaker 0 256 280 2.68E+05 2.68E+05 0.00 0.00 

          1 26 5 2.68E+05 1.55E+04 94.22 1.24 

          2 24 24 2.68E+05 2.40E+04 91.04 1.05 

          4 22 18 2.68E+05 2.00E+04 92.54 1.13 

II-65 na 90   
Harris in 
trough 0 88 60 7.40E+04 7.40E+04 0.00 0.00 

          1 100 64 7.40E+04 8.20E+04 -10.81 -0.04 

          2 78 45 7.40E+04 6.15E+04 16.89 0.08 

          4 52 56 7.40E+04 5.40E+04 27.03 0.14 

II-64 na 90   
WPI in 
trough 0 180 300 2.40E+05 2.40E+05 0.00 0.00 

          1 36 250 2.40E+05 1.43E+05 40.42 0.22 

          2 32 250 2.40E+05 1.41E+05 41.25 0.23 

          4 26 190 2.40E+05 1.08E+05 55.00 0.35 

II-60 na 90   
WPI in 
beaker 0 200 144 1.72E+05 1.72E+05 0.00 0.00 

          1 200 120 1.72E+05 1.60E+05 6.98 0.03 

          2 300 260 1.72E+05 2.80E+05 -62.79 -0.21 

          4 300 110 1.72E+05 2.05E+05 -19.19 -0.08 

II-63 0.6 90   
Harris in 
trough 0 200 200 2.00E+05 2.00E+05 0.00 0.00 

          1 21 21 2.00E+05 2.10E+04 89.50 0.98 

          2 24 27 2.00E+05 2.55E+04 87.25 0.89 

          4 16 7 2.00E+05 1.15E+04 94.25 1.24 

II-62 0.6 90   
WPI in 
trough 0 360 390 3.75E+05 3.75E+05 0.00 0.00 

          1 200 200 3.75E+05 2.00E+05 46.67 0.27 

          2 150 200 3.75E+05 1.75E+05 53.33 0.33 

          4 280 108 3.75E+05 1.94E+05 48.27 0.29 

II-61 0.6 90   
WPI in 
beaker 0 108 250 1.79E+05 1.79E+05 0.00 0.00 

          1 96 96 1.79E+05 9.60E+04 46.37 0.27 

          2 86 101 1.79E+05 9.35E+04 47.77 0.28 

          4 48 84 1.79E+05 6.60E+04 63.13 0.43 

 


