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ABSTRACT 

This project successfully implements a triple modular redundant system on an Altera 

field-programmable gate array, FPGA, development board for General Dynamics C4 Systems.  

The system implements a simple counting program simultaneously on three Altera Nios II soft 

IP-core CPUs; and has an error detecting voting scheme to catch errors, disable faulty CPUs, 

pass through good signals between the CPUs and the peripherals, and reset the system if it is 

compromised.  
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EXECUTIVE SUMMARY 

The project goal was to create a triple modular redundant system using three Altera Nios 

II soft IP-cores on a FPGA development board for General Dynamics C4 Systems at its 

Needham, Massachusetts location.  The system needed to be implemented in lockstep so that a 

voting scheme can catch errors from the redundant CPUs, disable the CPU with the errors, and 

only pass through good signals from the remaining CPUs. 

After receiving the FPGA development kit from Altera, its functionality was tested with a 

simple logic design.  After the success of this simple hardware counter design, an Altera tutorial, 

Nios II Hardware Development Tutorial, was used to implement a basic Nios II system in the 

FPGA.  It was then decided that the tutorial would be used as the basis of for the triple modular 

redundant system design. 

Before working on adding the addition CPUs and the voting scheme, the debug module 

needed to be removed from the Nios II, since the development tools cannot setup the system to 

debug, or program, multiple CPUs simultaneously.  Instead, the program needed to be added to 

the hardware design, by converting it into a hex file.  Using a hex file allowed the program to 

begin running as soon as the system started. 

With a test of using a hex file in the tutorial system, next the voting scheme and lockstep 

needed to be added.  Two lockstep bridges were added to the system, one to handle the Nios II's 

data master, and one for the instruction master.  The system went through several failed designs 

with varying numbers of CPUs and both a single on-chip RAM, and two dedicated to the data 

and instructions respectively. 

Finally, to resolve dual RAM and memory addressing issues, the memory was 

permanently restored to a single on-chip RAM and the lockstep bridges were combined into a 



vii 

 

single unified lockstep bridge.  With the issues resolved, the voting scheme and error detection 

was implemented for two CPUs.  After the error detection circuit was designed and implemented 

it needed to be tested, by forcing errors. 

Initially, the injected errors caused simulated CPU errors.  After getting the simulated 

error to be detected, and the 'faulty' CPU disabled, real errors were injected into the CPUs.  With 

some difficulty the detection of real errors and disabling of CPUs worked with some reset issues. 

Finally, the third and final CPU was added to the system for full triple modular 

redundancy, and the voting scheme and error detection where modified to accommodate the new 

situation.  This system worked, but had some peculiar reset issues.  The reset issues were 

eventually resolved, including the one that occurred when the internal reset was added to the 

error detection design. 

The triple modular redundant system, with a voting scheme and error detection in 

lockstep, reached its goal.  However, the system is not perfect, and there are step which can be 

taken to improve upon the system. 



 

 

1. FRAMING THE PROBLEM 

1.1 INTRODUCTION 

This Major Qualifying Project, MQP, was conducted off campus at the sponsor General 

Dynamics C4 Systems' Needham, Massachusetts facilities.  The MQP team was a single 

individual, who commuted to C4 Systems every day during the B Term 2011.  At GDC4S, the 

workstation was a cubicle within an unclassified section of one of the facility's buildings. 

Along with Professor Sunar, there were two GDC4S advisors Brendon Chetwynd and 

Gerardo Orlando.  Brendon and Gerardo brainstormed the initial project suggestion.  The general 

objective was to create a triple modular redundant system which used soft IP-cores in lockstep.  

This topic was suggested due to the MQP team's interest in pursuing a hardware project using a 

field-programmable gate array, FPGA, development board.  Depending on how the project 

progressed there was flexibility in the object, as well as potential additional objectives, which 

included adding Linux to the system. 

Motivation for this project came from multiple places.  For the MQP team, motivation 

came from wanting to work on a digital hardware project, preferably one which used a FPGA 

development board and either the hardware description language VHDL or Verilog.  As for 

General Dynamics C4 Systems, very little is known about its motivation.  It was indicated that 

Brendon and Gerardo were interested in seeing a system such as this one implemented entirely 

on a FPGA.  Also, it was noted that neither of them had experience with Altera's current 

development environment, so they were using this project as a test of the tools.  It is possible that 

this project has some direct correlation to a current or future GDC4S project, but since both 

Brendon and Gerardo work in a classified department it was never indicated that this project had 

any connections to current or future C4 Systems products. 



2 

 

1.2 PROJECT GOALS 

This project had a number of goals and aspirations, all of which were flexible objectives 

based on how likely they were to be accomplished by a one person team who had to learn about 

the development environment, traverse unforeseen pitfalls, and other variables in seven weeks.  

The main objective was to create a triple modular redundant system which used soft IP-cores in 

lockstep on a FPGA development board.  The hope was that the final system, at the end of B 

Term 2011, would have the system up to this main objective, but it was understood that 

depending on various circumstances that the system may not reach this objective.  Additional 

goals included the potential of running Linux in the system and/or getting to the point where the 

system can correct itself.  
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2. BACKGROUND INFORMATION 

2.1 FIELD-PROGRAMMABLE GATE ARRAY 

A field-programmable gate array, FPGA, is an array of logic gates which can be 

programmed to alter their connections to create various logic designs.  A FPGA provides a 

powerful development platform which allows designers to 'program' hardware in hardware 

description languages, HDLs, such as VHDL and Verilog, and realize the designs by 

programming the FPGA on its development board.  Programming FPGAs on development 

boards allows for quick modification and corrections to a logic design, making FPGAs an ideal 

development platform. 

2.2 SOFT IP-CORES 

Soft IP-cores are microprocessor architectures coded in a hardware description language 

for use in a FPGA.  Such cores allow designers more flexibility than physical CPUs.  Unlike 

their physical counterparts, soft IP-cores can be integrated directly into designs instead of having 

to send signals in and out of the FPGA to communicate with the external chip, which can 

potentially lead to signal delays.  Also, depending on the intellectual property, IP, license one has 

with the soft IP-core's developer the core can be customized to varying degrees to fit the varying 

needs to the system, which can include access to the core's source code. 

2.3 TRIPLE MODULAR REDUNDANCY 

Triple modular redundancy, TMR, is a simple method for trying to improve the reliability 

of a system built out of low reliability components.  TMR uses a simple majority rule, two to one 

majority, to decide if a given copy of the triplicate component or system has an error.  In the case 

of this project, the CPU is the triple modular redundant component of the overall system. 
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2.4 LOCKSTEP 

Being in lockstep is about synchronicity.  All of the components need to be synced.  

Lockstep is achieved by clocking the actions of the components, and by advancing all 

components at the same step in the overall assignment that they are performing.  In particular, 

any simultaneously running redundant components, such as triple modular redundant CPUs, 

need to be set up so that they are performing the exact same task synchronously in lockstep. 

2.5 GENERAL DYNAMICS C4 SYSTEMS 

General Dynamics C4 Systems, GDC4S, is a subdivision of General Dynamics which is a 

"leading provider of network-centric solutions" [1].  Those "leadership credentials come from 

applying world-class capabilities to create high-value, low risk solutions for use on land, at or 

under the sea, in the air and in space" [1].  Most of GDC4S's contracts are with government and 

defense customers. 

2.6 ALTERA CORPORATION 

Altera provides custom logic solutions for "customers in a wide variety of industries, 

including automotive, broadcast, computer and storage, consumer, industrial, medical, military, 

test and measurement, wireless, and wireline" [2].  It also offers "fully integrated software 

development tools, versatile embedded processors, optimized intellectual property (IP) cores, 

reference designs examples, and a variety of development kits" [2]. 

2.6.1 NIOS II 

The Altera Nios II is a 32-bit soft IP-core embedded processor for use in Altera FPGAs 

and ASICs.  This processor comes in versions, economy Nios II/e, standard Nios II/s, and fast 

Nios II/f.  Both the Nios II/s and Nios II/f were used in developing the system.  The final design 
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features the high performance Nios II/f, which has the potential to run some versions of Linux 

[3] [4]. 

2.6.2 QUARTUS II 

Quartus II is an Altera development environment used to design and synthesize logic 

designs for Altera FPGAs and other programmable devices.  While Quartus II is the main design 

environment, it employs a suite of included programs and tools, such as Qsys, Eclipse, and 

SignalTap [5]: 

Qsys is a GUI-based program which allows the user to interconnect system components 

together and optimizes their connections.  It also allows for the modification of some 

components such as the Nios II processor and the generation and addition of custom user created 

components [5]. 

Eclipse is a software development program, and this particular version of Eclipse has 

been customized by Altera to include Nios II development tools. 

SignalTap is a tool used to study signals of a running logic design.  It is used to capture 

signal values at and around a given trigger signal.  The captured data can be used to prove the 

signal behavior properly, or discover the location and source of an error.  
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3. TACKLING THE PROBLEM 

3.1 TESTING THE BOARD 

The work truly began after receiving the Altera Embedded Systems Development Kit, 

Cyclone III Edition, see Figure 3.1, beginning with a simple test to see if the development board 

worked.  The design is based on a simple VHDL design from an ECE 3810 lab.  This design 

takes the 50MHz system clock and builds a one hertz clock from it.  A counter counts from 0 to 

15 and resets to 0 based upon the one hertz clock.  The counter's current value is displayed on the 

system's LEDs in binary.  Since there are eight LEDs on the board, and the counted value only 

uses four bits, the LEDs were setup to display the counter's value twice.  In addition, at any 

point, if the push button designated as the reset was triggered the counter reset to 0 until the push 

button was released allowing the counter to continue counting up from 0. 

 

Figure 3.1:  Altera Embedded Systems Development Kit, Cyclone III Edition [6] 

Implementing this counter on the newly installed development board, for reasons 

unknown, did not appear to work, yet the LEDs were all lit up.  As it turns out, it worked fine.  

As it turns out the push buttons on the development board were active low not active high.  If 
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one pushed down the push button designated as the reset for the system, the LEDs went through 

a count sequence.  To fix this issue one simply had to replace the '1' for reset in the code for '0' 

and the reset worked fine.  Apparently the LEDs had a similar situation.  The reason why they 

had all been lit up was because the system was in a constant state of reset, and in reset the 

counter restarts at zero; and therefore all of the LEDs were set to low.  Since low is active and 

high is not the code had all of the LED's binary inverted.  After changing all of the '1's to '0's and 

vice versa, the system worked as had initially been envisioned. 

3.2 TUTORIAL 

After checking that the board was functional, the next step was to create a design which 

used a single soft IP-core microprocessor, in particular a version of Altera's Nios II 

microprocessor.  Altera has a tutorial called Nios II Hardware Development Tutorial, see Figure 

3.2.  The tutorial shows how to make a simple Nios II microprocessor system in hardware and 

how to add some simple software to run upon it.  Using a Nios II, on-chip memory, the system 

clock, JTAG UART, system clock timer, system ID, and the LEDs along with supplied C code, 

the tutorial's system created a software based counter, similar to the hardware count used to test 

the board.  This counter counts from 0 to 255.  While counting, the eight LEDs display the 

binary value of the current count, and the console of Eclipse displays the results simultaneously 

in hexadecimal, 00 to ff.  Also, at the beginning of each iteration of the count a border of 

asterisks surround some text announcing the programs intent is printed in the console, which is 

subsequently followed by the printing of the hexadecimal values.  For aesthetic purposes, a tilde, 

'~,' was added to the beginning of the line of C code which controls the values sent to the LED.  

The tilde inverted the value so that the active low LEDs lit up for '1's instead of '0's. 
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Figure 3.2:  Nios II Hardware Development Tutorial System 

3.3 DETERMINING SYSTEM REQUIREMENTS 

With the tutorial's single CPU system functional, the next step was creating a redundant 

system.  In the multiple CPU system, all of the CPUs talk to the same peripherals; but since each 

peripheral can only handle being the slave to one master, an intermediary component is needed 

to mediate communications between the slaves, peripherals, and the multiple masters, CPUs.  

Such an intermediary component does not exist in the standard Altera libraries, so a custom 

component would be necessary to accomplish the task. 

It was determined that the best course of action would be to start with setting up the full 

triple CPU system, but running it as though it was only the single CPU tutorial.  The full system 



9 

 

would be setup with the three identical CPUs, all of the necessary peripherals, and whatever 

custom components which were needed to implement the lockstep.  Initially, the custom 

components would be setup as a pass-through for the instruction and data masters of the first 

CPU, with the other two CPUs disabled, placing them into a constant wait state using the 

waitrequest signals.  Once it was confirmed that the signals of the first CPU went through, 

the second CPU would be enabled and a form of the lockstep voting scheme would be 

implemented.  Subsequently, with two CPUs working the third would be added and the voting 

scheme would be updated.  In both of these multiple CPU systems, one, or more, push buttons 

would be tasked with injecting errors into the data or instruction masters of the CPUs to simulate 

actual errors and the voting schemes reaction. 

3.4 HEX FILE 

Qsys does not allow for the simultaneous debugging of multiple microprocessors, 

therefore none of the three CPUs were setup with a debug module.  With the removal of the 

debug module from the microprocessors' design, it was decided that it would be best if Eclipse 

was not needed to install the software on the hardware design.  To accomplish such a task the 

programming was saved as a hex file.  Hex files are files that use hexadecimal values to initialize 

memory components.  If the hex file has executable code initialized, the system will 

automatically start running it at start up instead of having to wait for the software to be 

downloaded manually via Eclipse. 

After creating the hex file for the tutorial system, and adding it to the hardware design, 

the FPGA was programmed with the new system design with this preinstalled software.  At first 

the system failed to work, which was due to an aspect of the tutorial.  Now that the software was 

not being downloaded from Eclipse, the program was not using Eclipse's console to display the 
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welcome message and count.  Not being connected to the console was a problem because the 

BSP, Board Support Package, was setup to utilize reduced device drivers; meaning that the 

program would remain paused until it recognized that it was connected to all of its necessary 

components, which included a console.  There were two options to easily work around this 

problem, either change the BSP setting so that the program could run without the use of a 

console or to open up a console elsewhere.  The latter option was chosen.  Using the Nios II 

11.0sp1 Command Shell one can open up a console, or terminal, and the program ran as it had 

before, but this time it worked independent of Eclipse. 

3.5 ADDING LOCKSTEP COMPONENTS 

With the hex file working on the single CPU tutorial's system, the next step was to 

actually add the additional CPUs and the custom components.  Using parts from a sample design 

thrown together by the Altera Embedded Specialist assisting with the project, an initial design 

was setup.  This design used two custom components, data_lockstep and instruction_lockstep, 

and two 20 kilobyte on-chip RAM, name data_ram and instruction_ram.  Each lockstep custom 

component had three slaves for three CPUs' data or instruction masters, respectively, and one 

master to connect to the peripherals.  The data_ram and instruction_ram are slaves to their 

namesake lockstep components. 

When compiling the software in Eclipse, an error occurred informing that 

instruction_ram needed another 31,916 bytes.  Modifying the instruction_ram to 60 kilobytes 

removed the error and allowed the software to fully compile.  This request for a larger capacity 

for the instruction_ram was rather odd since the tutorial's single on-chip RAM was a total of 20 

kilobytes; and the selection of 20 kilobytes for both the data_ram and instruction_ram was to 

make sure each was of a sufficient capacity. 



11 

 

However, while the software compiled and the hex file was added to the design, the 

system would not run, even with an open terminal.  To resolve this issue, the system was rebuilt 

from scratch.  The system was rebuilt to match the original tutorial system, but with some minor 

modifications.  This system used the Nios II/f, with a debug module, from the custom component 

sample, instead of the Nios II/s of the tutorial.  The system was first run by downloading the 

software through Eclipse, and then by running it from a hex file.  Both of these methods worked 

correctly. 

3.6 REMOVING THE DEBUG MODULE 

The next step was to remove the debug module and run the system again, before adding 

the additional CPUs and the lockstep bridges.  Running this system caused a break vector 

memory error, because the CPU's break vector was still pointing to the nonexistent debug 

module.  Setting the break vector memory option to onchip_mem.s1 resolved this issue and 

allowed the system to run without a debug module. 

3.7 CHANGES TO CREATE A MULTIPLE CPU SYSTEM 

With a working debug module free single CPU system, the next step was to add the 

lockstep bridges and additional CPUs.  Problems occurred at this point.  Several system 

variations were tested.  These designs included the data and instruction lockstep bridges with 

respective RAM, with one on-chip RAM, see Figure 3.3, with three CPUs with both one and two 

RAM, and even a single CPU setup with the dual RAM design.  None of these systems worked, 

which lead to the belief that a problem lay with both the lockstep bridges and the two RAM 

setup. 



12 

 

 

Figure 3.3:  Dual Lockstep System with Single CPU and RAM 

As a temporary step, the lockstep bridges were replaced with the standard pipeline 

bridges in the single CPU, single RAM design, which simply passed through the CPU's data and 

instruction master to the peripherals.  This design worked, so the two RAM design was 

implemented, and a correction for the lockstep bridges was found shortly thereafter.  The line of 
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Verilog code which passed the slave address through as the master address needed to concatenate 

with the slave address with 2'b00. 

This correction was followed by the addition of a second CPU was added to the system.  

This second CPU wanted to look at the instruction lockstep for its reset, exception, and break 

vectors instead of the on-chip RAM, which it refused to recognize.  As it turns out the reason for 

this was a parameter called "bridgesToMaster" was missing from two of the slave interfaces in 

the component's TCL file. 

3.8 UNIFYING THE MEMORY ADDRESS SPAN 

During this time there was discussion and difficulty with regards to the address spans of 

the data and instructions in the RAM.  The addresses of different slaves cannot be mapped to the 

same address bits.  To resolve the addressing issues, it was suggested to connect the data and 

instruction masters of the Nios II to different slaves on the same component, which would allow 

the system to allow them to share the same base address, thus unifying the address ranges. 

As a result of this addressing solution, a few things happened to the RAM design and the 

lockstep bridges.  Up until this point, throughout the various designs, the on-chip RAM 

alternated between one on-chip RAM and two, one for data and the other for instructions.  

Moving forward, the on-chip RAM was only one component, see Figure 3.4. 
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Figure 3.4:  Unified Lockstep Bridge System 

The lockstep bridges had a more drastic change.  To accommodate the requirements of 

the unified addressing both the data and instruction masters of a given CPU needed to be slaves 

to the same component.  This requirement meant that to facilitate the comparison of data and 

instruction masters from the various CPUs, they all needed to be in the same lockstep bridge 

custom component.  Therefore, the data and instruction lockstep bridges were replaced with a 
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single unified lockstep bridge.  The unified lockstep bridge was setup to support up to six slaves, 

three data and three instruction masters from Nios II CPUs, and two masters, data and 

instruction.  Also, the master and slave addresses were made symmetric, which removed the 

need for the concatenated shifting. 

3.9 ADDING THE RESET SOURCE 

Implementation of the unified lockstep design, with two disabled CPUs, and just passing 

through the working CPU's masters worked.  This test allowed for the first steps toward a voting 

scheme in lockstep to be created.  Following the test, the second CPU was enabled and a clocked 

comparison of the instruction masters was setup. 

At this time, an internal reset was added to the system.  The idea was to allow the voting 

scheme to autonomously reset the system when the redundancy becomes completely 

compromised.  A reset_source was added to the unified lockstep component, and was 

connected to all of the resets of the system's components.  Now, the push button and the voting 

scheme would be able to reset the system. 

The code controlling the reset signal from the voting scheme had some issues.  When the 

system started up it initially went into a sort of perpetual reset state.  It turned out that there was 

a problem with the instruction master address comparison.  The addresses were comparing when 

the system started up, but the comparator needed to be comparing the addresses only when they 

are being read.  Even with this fix, there were issues with the reset.  Since fixing the reset was 

taking a while, it was decided that the internal reset would be postponed, and fully implementing 

the voting scheme would be given priority.  
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3.10 ADDING THE DATA CONDITIONS 

Returning to the voting scheme, the first step was to add data master comparison 

conditions.  Both the instruction and data conditions were compared in the same condition 

statement.  There were concerns about whether putting all of these comparisons in the same 

statement would cause problems.  It was determined that the statement was not big enough to be 

a concern, and that pipelining of the equation would not be necessary. 

3.11 ERROR INJECTION 

After adding the data conditions to the comparison equation, the next step was to make 

sure that the code worked.  To test this error detection code, some modifications to the unified 

lockstep bridge's needed to be added.  First, some method of alerting the user that an error 

occurred needed to be added.  Since the autonomous reset was still disabled, resetting the system 

at the error was not an option.  What was done instead was adding a source, which was 

connected to an LED.  The idea was that when an error was detected that the LED would light up 

to alert the user.  Since all of the eight usable LEDs where initially setup to display the value that 

the counting software was up to, one of these LEDs, specifically the least significant bit LED, 

needed to be commandeered to implement this design. 

It was decided that to test the error detection circuit an error would be injected into the 

system.  Specifically, the error was going to be added to the writedata signal of data slave 1, 

or the data master from the second CPU.  The writedata signal was chosen because it would 

result in a simulated error.  What is meant by simulated, is that the signal is modified by the error 

injection after it leaves the CPU and the error is detected by the code and removed before the 

peripherals.  Thus, the CPU would never know of the error. 
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To 'inject' an error, the system needed to allow the user to manually manipulate the 

signal.  This manipulation was achieved by adding a sink to the unified lockstep.  The sink was 

connected to the signal coming from one of the currently unused push buttons.  When the push 

button was pressed, the corresponding code caused an error in the writedata signal.  Initially, 

the error was adding one to the signal, but it was shortly changed to the more dramatic error of 

inverting the signal.  It must be noted that since the writedata signal is an input port of the 

unified lockstep bridge, it itself cannot be manipulated, but instead a new signal internal to the 

lockstep bridge was created, manipulated, and used in the comparison. 

Initially, the writedata error detection did not seem to work, as the LED never lit up 

when the error was injected.  The always statement which controlled the error detection went 

through a few iterations, which did not work successfully, until it was decided that it would be 

better to use a ternary operation.  With the help of the Altera Field Applications Engineer, the 

writedata error injection and detection became functional.  In this current system, when an 

error was detected the LED lit up and stays on, until the system is reset. 

3.12 READDATA ERROR INJECTION 

Following the success of the writedata error injection, the next step was to inject an 

error in the readdata signal instead.  A readdata error is a much more substantial error.  

The signal readdata is an output signal unlike writedata which is an input signal in the 

unified lockstep.  What this difference means is that an error in the readdata signal is sent 

directly to the CPU, and subsequently corrupts any number of the signals it send back to the 

lockstep bridge.  Unlike the writedata error injection, the readdata error injection is 

overall a better test for the voting scheme. 
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The readdata error injection worked, with a slight problem.  After detecting the error, 

the LED lit up just as it did in the writedata design, yet the LED in this case would only turn 

off if the FPGA board was reprogrammed or turned off.  This problem was resolved by making 

sure the branchPredicitonType parameter for the CPUs in the Qsys file were set to "Static" 

instead of "Automatic".  To make this correction required opening the .qsys file in a text editor 

outside of Qsys, finding the branchPredicitonType parameters, and correcting the parameters for 

the second and third CPU.  The correction partially corrected the problem.  Now, instead of 

needing to reprogram the board to clear the LED, it could be done by resetting the system.  

Unfortunately, the clearing of the LED required resetting the system twice.  While this issue 

needed a resolution, it gave the system the overall functionality needed to start working on 

adding the third CPU to the voting scheme design. 

3.13 ADDING THE THIRD CPU 

After enabling the third CPU, by reengaging waitrequest, the addition of the third 

CPU was implemented in the voting scheme.  Adding the CPU required new code, but luckily 

most of the existing voting scheme remained as a basis.  However, before the code could be 

written two steps needed to be taken.  First, the error injection was disabled allowing the focus to 

be solely on obtaining a triple modular redundant CPU system up and running.  Second, the plan 

for the behavior of the system needed to be worked out.  Work on the idea for how this triple 

CPU system would work had been developing in the background while working on the previous 

system iterations. 

When looking at comparing two CPUs the code was rather straightforward; simply check 

to see if there was a difference between the various corresponding signals and send an alert to the 

user, such as a lit LED and disabled CPUs.  Much of this idea can be used in the three CPU 
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system.  While it is possible to compare three of each signal, one from each CPU, together and 

find out if they vary, a problem arises if one wishes to remove the faulty CPU from the system.  

By comparing all the signals together, it is not possible to tell which CPU has the problem.  To 

resolve this issue three iterations to the signal error_detected, which was used in the dual 

CPU system, were implemented.  Each copy of error_detected compared two CPUs, CPUs 

0 and 1, CPUs 1 and 2, and CPUs 0 and 2.  If CPU 0 had an error, both 

error_detected01and error_detected02 would find a difference.  Also, if any one of 

the error_detected signals was triggered, the LED which indicated an error would light up 

and remain lit. 

An always statement would then look at these signals, and if two of them had been 

triggered, it would then activate the corresponding signal called disabled#.  This disable 

signal would remain active until the system resets, and in that time it would disable its 

corresponding CPU and remove all of the CPU's signals from being ANDed or ORed with the 

correctly working signals from the other CPUs being passed through the voting scheme. 

Disabling a CPU turned the system into a two CPU system, which the user will be able to 

visually identify by the lit LED.  It is important the code would be able to have the dual CPU 

system run with any of the two CPUs, since any one of the three could be the first to be disabled.  

Also, additional precautions needed to be taken for when an error occurred in this system.  In the 

disable always statement, the condition was added to make sure that both CPUs were disabled, 

therefore making it impossible for a single CPU system to run. 

Following the plan, the scheme was setup and worked correctly.  Some of the signals, 

such as the disable signals needed to be registers.  Additionally, the conditions on the disable 

statement were replaced with a clock edge trigger, and the fact that ternary condition statements 
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could be nested was learned.  The nesting of ternary conditions was very helpful in organizing 

and implementing the signal control always statement, which disables the CPUs and removes 

disabled signals from being passed through. 

3.14 ERROR INJECTION IN THE THREE CPU SYSTEM 

With a working triple CPU system, error injection could be reinstated.  However, the 

error injection needed to be modified.  Two additional sinks were added to the unified lockstep 

bridge, and connected to the two remaining push buttons.  Each of the three push buttons, now 

associated with error injection, caused an error in the corresponding CPU's readdata signals. 

Along with setting up the error injection, a new reset issue occurred.  When the system 

reset after the second error detection, the restored system began with the error LED lit, and a 

CPU disabled.  The CPU which was disabled was the CPU which had the first error injected.  

This problem was not exclusive to a given CPU.  It did not matter which CPU had an error 

injected first and second, the system would always reset with an already disabled CPU, which 

had had the initial error. 

3.15 RESOLVING THE LED/RESET ISSUE 

The code was determined to be sound, which meant that the source of the reset problem 

was in an unanticipated behavior of the Nios II CPUs.  After deciding it seemed to be a problem 

with the Nios II CPUs' behavior, a series of SignalTap tests were run to try and determine what 

exactly was the source of the problem.  As it turns out, the SignalTap tests ended up showing that 

the CPUs were starting up identically when they are coming out of reset.  Thus, the error occurs 

after the CPUs begin executing the software.  With this knowledge the trigger was set to the 

error_detected signal which would activate shortly after reset.  The change of the trigger 

uncovered a writedata mismatch.  A second test at this trigger was also taken where the 
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trigger was at the end of the data capture, and the results along with several of the software files 

were passed on to the Altera Embedded Specialist. 

While waiting for feedback, the internal reset was added back into the system, and added 

a new twist to the problem.  When the system reset after the second error detection, the restored 

system began with the error LED lit, and a CPU disabled, just like before.  But this time, the 

CPU which was disabled was the CPU which had the second error injected.  Besides this 

'transfer,' the problem persisted as before.  Because this problem further complicated matters, the 

reset code was again disabled. 

The Altera Embedded Specialist found the potential source of the problem.  The problem 

was the Nios II's registers.  When the Nios II startup code runs it does not initialize the registers 

to a known value.  Usually, this lack of initialization is not relevant, but since these particular 

Nios II CPUs are synchronized having stale data in the registers contaminating the write data bus 

is a problem which the design cannot afford. 

To solve this problem a modified version of the crt0.S, a file from the BSP directory, was 

used in place of the version that Eclipse generates when creating the BSP.  The modification of 

crt0.S has the start up code set all of the registers to zero after the cache initializations and before 

the stack is initialized.  This simple solution worked, but it requires the person regenerating the 

software to be very careful not to rebuild the BSP after adding the modified crt0.S. 

Rebuilding the BSP always rebuilds the crt0.S, which effectively removes the modified 

crt0.S code.  After adding the modified crt0.S to the proper directory, it was very important to 

then clean, not rebuild, the BSP project, clean the application project, and then build the 

application project.  Once the project was built, the crt0.S and objdump needed to be checked to 
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make sure that the modified code was in both.  If the code was there, then the hex file could be 

generated. 

3.16 REINSTATING THE INTERNAL RESET 

This correction worked, which meant that the autonomous internal reset could be added 

back in again.  Unfortunately, adding the reset code restored the error, even when the software 

was regenerated again.  It was suggested that this latest problem could be due to the human 

factor in the reset.  Modifying the reset trigger condition to include the sink signals, so that the 

reset could not begin while one of the error injection push buttons was being pressed was the 

solution. 

3.17 DEBOUNCE CIRCUIT 

While this system works perfectly well, it is still possible to obtain the error.  However, 

the error is not very common, and when it occurs it can be cleared in one or two resets, three 

maximum.  This occasional problem was believed to be due to jitter in the signal from the push 

button, and a debounce circuit should resolve the issue.  Unfortunately, the debounce circuit 

never became functional, and was disabled in the final system design.  
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4. FURTHER ENHANCEMENTS 

4.1 DEBOUNCE CIRCUIT 

While the current triple modular redundant design is functional, there is certainly room 

for improvements and additions from a subsequent Major Qualifying Project, MQP, team, if 

General Dynamics C4 Systems wishes to continue this project.  First of which, would be to 

correct the remaining occasional reset issue.  Whether this correction would be in the form of a 

debounce circuit, similar to the nonfunctional code currently in the unified lockstep bridge, or 

another previously unconsidered option is left to be seen. 

4.2 CLOCK SKEW AND INTERRUPTS 

Another concern that was brought up while working on the system was that of clock 

skew and the possible need to lockstep the interrupts.  Nothing was done about clock skew or the 

interrupts because neither became an issue.  It is possible however that depending on where this 

project may lead, a future MQP will need to deal with either clock skew or the need to lockstep 

interrupts, or possibly both. 

4.3 INTELLIGENT DESIGN 

While concerns such as the debounce circuit, clock skew, and trying to lockstep the 

interrupts are important to keep in mind, and will possibly need to be addressed, the next step in 

this project should most likely be adding some form of intelligence to the system.  As it is now, 

the system is rather naïve and trusts its voting scheme too much.  The problem is that the system 

is unaware that there is a difference between an error and a difference. 

The system is setup to detect errors, but in actuality it can only detect differences.  This 

distinction is why the system must be reset every time the dual CPU system shows an 'error.'  
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When comparing signals from two CPUs, it is impossible for the voting scheme to determine 

which, if either, is functioning correctly. 

The triple modular redundant system has a better chance of finding which CPU has an 

error, but it is simply trusting that a basic two to one majority rule indicates that the single 

different CPU is in 'error.'  It is theoretically possible that two CPUs simultaneously fault in the 

exact same way, resulting in the majority being in error, and the minority which will be disabled 

being the only CPU that is functioning properly.  Also, two CPUs could simultaneously fault in 

two different ways causing differences between all three CPUs.  In this situation the system will 

reset. 

Therefore the next step should be to make the system intelligent enough to determine 

which CPU actually has an error.  How to accomplish this task would be up to those working on 

the next MQP, but it was mentioned that it might be possible by having an addition Nios II CPU 

governing the voting scheme, which knew what the signals were supposed to be.  It is possible 

that such a governing CPU could in actuality be another system of CPUs, even a system of CPUs 

comparing the comparisons of multiple triple modular redundant systems, which are all in 

lockstep. 

A further development of improving the systems intelligence is the idea of adding the 

ability for the system to fix the CPU(s) in error and restore the triple modular redundancy 

without resetting the system.  This self correction would require a further understanding of the 

functioning of the Nios II to correct it while the system is running.  It seems that such a design 

would require the system to be paused to make the correction.  
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4.4 LINUX 

Another possible next step that was discussed since the beginning of the project, which 

may or may not come before or after improving the systems intelligence, is an interest in have 

the three CPUs run a version of Linux in lockstep.  To run Linux, each CPU will need a memory 

management unit, MMU, which can easily be added in Qsys.  Along with the addition of MMUs, 

the systems voting scheme will most likely need to be modified to accommodate the complexity 

of running an operating system as complex as Linux and keeping it in lockstep.  
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6. APPENDICES 

APPENDIX A.  UNIFIED_LOCKSTEP.V 

// Generated by Rodney Frazer 

// Edited and Modified by Gary Katzoff 

 

module unified_lockstep 

#( 

    parameter ADDR_WIDTH = 8 

)(  

    input  wire                         clk,                   // clock.clk 

    input  wire                         reset,                 // reset.reset 

 

    input  wire  [( ADDR_WIDTH - 1 ):0] avs_ds0_address,       //   ds0.address 

    input  wire                         avs_ds0_read,          //      .read 

    output wire                  [31:0] avs_ds0_readdata,      //      .readdata 

    input  wire                         avs_ds0_write,         //      .write 

    input  wire                  [31:0] avs_ds0_writedata,     //      .writedata 

    output wire                         avs_ds0_readdatavalid, //      .readdatavalid 

    output reg                          avs_ds0_waitrequest,   //      .waitrequest 

    input  wire                   [3:0] avs_ds0_byteenable,    //      .byteenable 

     

    input  wire  [( ADDR_WIDTH - 1 ):0] avs_is0_address,       //   is0.address 

    input  wire                         avs_is0_read,          //      .read 

    output wire                  [31:0] avs_is0_readdata,      //      .readdata 

    output wire                         avs_is0_readdatavalid, //      .readdatavalid 

    output reg                          avs_is0_waitrequest,   //      .waitrequest 

 

    input  wire  [( ADDR_WIDTH - 1 ):0] avs_ds1_address,       //   ds1.address 

    input  wire                         avs_ds1_read,          //      .read 

    output wire                  [31:0] avs_ds1_readdata,      //      .readdata 

    input  wire                         avs_ds1_write,         //      .write 

    input  wire                  [31:0] avs_ds1_writedata,     //      .writedata 

    output wire                         avs_ds1_readdatavalid, //      .readdatavalid 

    output reg                          avs_ds1_waitrequest,   //      .waitrequest 

    input  wire                   [3:0] avs_ds1_byteenable,    //      .byteenable 

      

    input  wire  [( ADDR_WIDTH - 1 ):0] avs_is1_address,       //   is1.address 

    input  wire                         avs_is1_read,          //      .read 

    output wire                  [31:0] avs_is1_readdata,      //      .readdata 

    output wire                         avs_is1_readdatavalid, //      .readdatavalid 

    output reg                          avs_is1_waitrequest,   //      .waitrequest 

 

    input  wire  [( ADDR_WIDTH - 1 ):0] avs_ds2_address,       //   ds2.address 

    input  wire                         avs_ds2_read,          //      .read 

    output wire                  [31:0] avs_ds2_readdata,      //      .readdata 

    input  wire                         avs_ds2_write,         //      .write 

    input  wire                  [31:0] avs_ds2_writedata,     //      .writedata 

    output wire                         avs_ds2_readdatavalid, //      .readdatavalid 

    output reg                          avs_ds2_waitrequest,   //      .waitrequest 

    input  wire                   [3:0] avs_ds2_byteenable,    //      .byteenable 

     

    input  wire  [( ADDR_WIDTH - 1 ):0] avs_is2_address,       //   is2.address 

    input  wire                         avs_is2_read,          //      .read 

    output wire                  [31:0] avs_is2_readdata,      //      .readdata 

    output wire                         avs_is2_readdatavalid, //      .readdatavalid 

    output reg                          avs_is2_waitrequest,   //      .waitrequest 

 

    output reg   [( ADDR_WIDTH - 1 ):0] avm_dm0_address,       //   dm0.address 

    output reg                          avm_dm0_read,          //      .read 

    input  wire                         avm_dm0_waitrequest,   //      .waitrequest 

    input  wire                  [31:0] avm_dm0_readdata,      //      .readdata 

    output reg                          avm_dm0_write,         //      .write 

    output reg                   [31:0] avm_dm0_writedata,     //      .writedata 

    input  wire                         avm_dm0_readdatavalid, //      .readdatavalid 

    output reg                    [3:0] avm_dm0_byteenable,    //      .byteenable 
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    output reg   [( ADDR_WIDTH - 1 ):0] avm_im0_address,       //   im0.address 

    output reg                          avm_im0_read,          //      .read 

    input  wire                         avm_im0_waitrequest,   //      .waitrequest 

    input  wire                  [31:0] avm_im0_readdata,      //      .readdata 

    input  wire                         avm_im0_readdatavalid, //      .readdatavalid 

    //Ports added by Gary Katzoff 

    input  wire                         asi_sink0_data,        // sink0.data 

    input  wire                         asi_sink1_data,        // sink1.data 

    input  wire                         asi_sink2_data,        // sink2.data 

    output wire                         aso_source0_data,      // source0.data 

 

    output reg                          reset_source           // reset_source.reset 

//Please note that originally all ports were wires. 

); 

// Some iterations of old code are commented out to show the original code of the file, 

// or other options for what one can do.  It should all be labelled accordingly. 

 

// 

// data bridge 

// 

 

// these signals are simply passed thru from the master interface to the slave interfaces 

//assign avs_ds0_waitrequest = avm_dm0_waitrequest;//Original 

//assign avs_ds0_readdata = avm_dm0_readdata;//Original 

assign avs_ds0_readdata = asi_sink0_data ? avm_dm0_readdata : ~avm_dm0_readdata;//Readdata error 

injection 

//assign avs_ds0_readdata = button0 ? avm_dm0_readdata : ~avm_dm0_readdata;//Debounce circuit 

version 

assign avs_ds0_readdatavalid = avm_dm0_readdatavalid; 

//assign avs_ds1_waitrequest = avm_dm0_waitrequest;//Original 

//assign avs_ds1_waitrequest = 1'b1;//Used to disable cpu_1 while testing the one CPU system 

//assign avs_ds1_readdata = avm_dm0_readdata;//Original 

assign avs_ds1_readdata = asi_sink1_data ? avm_dm0_readdata : ~avm_dm0_readdata;//Readdata error 

injection 

//assign avs_ds1_readdata = button1 ? avm_dm0_readdata : ~avm_dm0_readdata;//Debounce circuit 

version 

assign avs_ds1_readdatavalid = avm_dm0_readdatavalid; 

//assign avs_ds2_waitrequest = avm_dm0_waitrequest;//Original 

//assign avs_ds2_waitrequest = 1'b1;//Used to disable cpu_2 while testing the one and two CPU 

systems 

//assign avs_ds2_readdata = avm_dm0_readdata;//Original 

assign avs_ds2_readdata = asi_sink2_data ? avm_dm0_readdata : ~avm_dm0_readdata;//Readdata error 

injection 

//assign avs_ds2_readdata = button2 ? avm_dm0_readdata : ~avm_dm0_readdata;//Debounce circuit 

version 

assign avs_ds2_readdatavalid = avm_dm0_readdatavalid; 

 

//// these signals should be compared for proper lock step operation 

////assign avm_dm0_writedata = avs_ds0_writedata | avs_ds1_writedata | 

avs_ds2_writedata;//Original 

//assign avm_dm0_writedata = avs_ds0_writedata;//Used testing the one and two CPU systems 

////assign avm_dm0_address = avs_ds0_address | avs_ds1_address | avs_ds2_address;//Original 

//assign avm_dm0_address = avs_ds0_address;//Used testing the one and two CPU systems 

////assign avm_dm0_write = avs_ds0_write & avs_ds1_write & avs_ds2_write;//Original 

//assign avm_dm0_write = avs_ds0_write;//Used testing the one and two CPU systems 

////assign avm_dm0_read = avs_ds0_read & avs_ds1_read & avs_ds2_read;//Original 

//assign avm_dm0_read = avs_ds0_read;//Used testing the one and two CPU systems 

////assign avm_dm0_byteenable = avs_ds0_byteenable | avs_ds1_byteenable | 

avs_ds2_byteenable;//Original 

//assign avm_dm0_byteenable = avs_ds0_byteenable;//Used testing the one and two CPU systems 

 

 

// 

// instruction bridge 

// 

 

// these signals are simply passed thru from the master interface to the slave interfaces 

//assign avs_is0_waitrequest = avm_im0_waitrequest;//Original 

assign avs_is0_readdata = avm_im0_readdata; 

assign avs_is0_readdatavalid = avm_im0_readdatavalid; 

//assign avs_is1_waitrequest = avm_im0_waitrequest;//Original 
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//assign avs_is1_waitrequest = 1'b1;//Used to disable cpu_1 while testing the one CPU system 

assign avs_is1_readdata = avm_im0_readdata; 

assign avs_is1_readdatavalid = avm_im0_readdatavalid; 

//assign avs_is2_waitrequest = avm_im0_waitrequest;//Original 

//assign avs_is2_waitrequest = 1'b1;//Used to disable cpu_2 while testing the one and two CPU 

systems 

assign avs_is2_readdata = avm_im0_readdata; 

assign avs_is2_readdatavalid = avm_im0_readdatavalid; 

 

//// these signals should be compared for proper lock step operation 

////assign avm_im0_address = avs_is0_address | avs_is1_address | avs_is2_address;//Original 

//assign avm_im0_address = avs_is0_address;//Used while testing the one and two CPU systems 

////assign avm_im0_read = avs_is0_read & avs_is1_read & avs_is2_read;//Original 

//assign avm_im0_read = avs_is0_read;//Used while testing the one and two CPU systems 

 

//// Writedata Error Injector 

//wire [31:0] ds1_writedata;//A variable was needed in the writedata error injection design,  

//because the writedata signals are inputs and cannot be modified directly. 

////always @ (posedge clk)//initial design 

////begin 

////  if (asi_sink0_data == 1'b0) 

////     ds1_writedata = ~avs_ds1_writedata; 

////  else 

////     ds1_writedata = avs_ds1_writedata; 

////end 

// 

//assign ds1_writedata = asi_sink0_data ? avs_ds1_writedata : ~avs_ds1_writedata;//Version 2, 

does not have a clocking issue 

 

//Error/Difference Detector 

//wire error_detected;//Detects an error/difference between cpu_0 and cpu_1 slave input signals 

////Original fullfledged detector; error_detected01,02, and 12 are based off this design. 

//assign error_detected = ((avs_is0_read != avs_is1_read) ||  

//                      (avs_is0_read && (avs_is0_address != avs_is1_address)) ||  

//                      (avs_ds0_read != avs_ds1_read) || (avs_ds0_write != avs_ds1_write) ||  

//                      ((avs_ds0_read || avs_ds0_write) && (avs_ds0_address != avs_ds1_address))  

//                      || ((avs_ds0_read || avs_ds0_write) && (avs_ds0_byteenable != 

avs_ds1_byteenable))  

//                      || (avs_ds0_write && (avs_ds0_writedata != avs_ds1_writedata))); 

 

//always @ (posedge clk)//Original Two CPU Design 

//begin 

//  if (reset) 

//     begin 

//        aso_source0_data = 1'b1; 

//        reset_source <= 1'b0; 

//     end 

//  else 

//     begin//Several conditions were tried, and worked, but the complexity increased and then 

error_detected was created. 

////         if (~(asi_sink0_data & ~(avs_is0_address == avs_is1_address)))//Original 

////         if ((asi_sink0_data == 1'b0) || (avs_is0_address != avs_is1_address))//Same, yet 

different 

////         if (( asi_sink0_data == 1'b0 ) || (avs_is0_read != avs_is1_read))//Testing reads 

////         if ((asi_sink0_data == 1'b0) || (avs_is0_read != avs_is1_read) ||  

////         (avs_is0_read && (avs_is0_address != avs_is1_address)))//Combined the two 

////         if (/*(asi_sink0_data == 1'b0) || */(avs_is0_read != avs_is1_read) ||  

////         (avs_is0_read && (avs_is0_address != avs_is1_address)) ||  

////         (avs_ds0_read != avs_ds1_read) || (avs_ds0_write != avs_ds1_write) ||  

////         ((avs_ds0_read || avs_ds0_write) && (avs_ds0_address != avs_ds1_address))  

////         || ((avs_ds0_read || avs_ds0_write) && (avs_ds0_byteenable != avs_ds1_byteenable))  

////         || (avs_ds0_write && (avs_ds0_writedata != ds1_writedata)))//Full implementation of 

the original error_detected 

////            //code with the push button condition commented out to test the error injection 

methods. 

//        if(error_detected)//Same and the last design, but much easier to read. 

//           begin 

//              aso_source0_data = 1'b0; 

////               reset_source <= 1'b1;//Active reset; disabled to test error injection 

//              reset_source <= 1'b0;//SWITCH ME BACK!!!! 

//           end 
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//        else 

//           begin 

////               aso_source0_data = 1'b1; 

//              aso_source0_data = aso_source0_data; 

//              reset_source <= 1'b0; 

//           end 

//     end 

//end 

//assign aso_source0_data = reset ? 1'b1 : (error_detected ? 1'b0 : 

aso_source0_data);//Simplified LED controls. 

//Since the reset was disabled the only thing the code above was doing was controlling the LED, 

which this imbedded ternary statement does, 

// without being clocked. 

wire error_detected01;//Detects an error/difference between cpu_0 and cpu_1 slave input signals 

assign error_detected01 = ((avs_is0_read != avs_is1_read) ||  

                        (avs_is0_read && (avs_is0_address != avs_is1_address)) ||  

                        (avs_ds0_read != avs_ds1_read) || (avs_ds0_write != avs_ds1_write) ||  

                        ((avs_ds0_read || avs_ds0_write) && (avs_ds0_address != avs_ds1_address))  

                        || ((avs_ds0_read || avs_ds0_write) && (avs_ds0_byteenable != 

avs_ds1_byteenable))  

                        || (avs_ds0_write && (avs_ds0_writedata != avs_ds1_writedata))); 

 

wire error_detected02;//Detects an error/difference between cpu_0 and cpu_2 slave input signals 

assign error_detected02 = ((avs_is0_read != avs_is2_read) ||  

                         (avs_is0_read && (avs_is0_address != avs_is2_address)) ||  

                         (avs_ds0_read != avs_ds2_read) || (avs_ds0_write != avs_ds2_write) ||  

                         ((avs_ds0_read || avs_ds0_write) && (avs_ds0_address != 

avs_ds2_address))  

                         || ((avs_ds0_read || avs_ds0_write) && (avs_ds0_byteenable != 

avs_ds2_byteenable))  

                         || (avs_ds0_write && (avs_ds0_writedata != avs_ds2_writedata))); 

 

wire error_detected12;//Detects an error/difference between cpu_1 and cpu_2 slave input signals 

assign error_detected12 = ((avs_is2_read != avs_is1_read) ||  

                         (avs_is2_read && (avs_is2_address != avs_is1_address)) ||  

                         (avs_ds2_read != avs_ds1_read) || (avs_ds2_write != avs_ds1_write) ||  

                         ((avs_ds2_read || avs_ds2_write) && (avs_ds2_address != 

avs_ds1_address))  

                         || ((avs_ds2_read || avs_ds2_write) && (avs_ds2_byteenable != 

avs_ds1_byteenable))  

                         || (avs_ds2_write && (avs_ds2_writedata != avs_ds1_writedata))); 

 

reg disabled0;//Indicates if cpu_0 is disabled 

reg disabled1;//Indicates if cpu_1 is disabled 

reg disabled2;//Indicates if cpu_2 is disabled 

 

//Disable 

always @ (posedge clk) 

begin 

   if (reset)//Resets the disables to allow the CPUs to run  

      begin 

         disabled0 = 1'b0; 

         disabled1 = 1'b0; 

         disabled2 = 1'b0; 

      end 

   else 

      begin 

         if(error_detected01||error_detected02||error_detected12) 

            begin 

               disabled0 = ((error_detected01 == 1'b1) &&  

               (error_detected02 == 1'b1)) ? 1'b1 : disabled0;//Sets disable0 high if cpu_0 

differs from cpu_1 and cpu_2 

               disabled1 = ((error_detected01 == 1'b1) &&  

               (error_detected12 == 1'b1)) ? 1'b1 : disabled1;//Sets disable0 high if cpu_1 

differs from cpu_0 and cpu_2 

               disabled2 = ((error_detected12 == 1'b1) &&  

               (error_detected02 == 1'b1)) ? 1'b1 : disabled2;//Sets disable0 high if cpu_2 

differs from cpu_0 and cpu_1 

            end 

         else 
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            begin//The system is one designed to work with three or two operational CPU, so if a 

second CPU fails and is diasbled the third must be disabled as well 

               disabled0 = ((disabled1 == 1'b1) && (disabled2 == 1'b1)) ? 1'b1 : disabled0;//If 

cpu_1 and cpu_2 are disabled cpu_0 is disabled as well 

               disabled1 = ((disabled0 == 1'b1) && (disabled2 == 1'b1)) ? 1'b1 : disabled1;//If 

cpu_0 and cpu_2 are disabled cpu_1 is disabled as well 

               disabled2 = ((disabled0 == 1'b1) && (disabled1 == 1'b1)) ? 1'b1 : disabled2;//If 

cpu_0 and cpu_1 are disabled cpu_2 is disabled as well 

            end 

      end 

end 

 

//Avalon Memory Mapped Signal Control 

always @ (*)//Depending on which CPUs are disabled, some Avalon signals need to be modified 

begin 

   avs_is0_waitrequest = (disabled0) ? 1'b1 : avm_im0_waitrequest;//Sets instruction waitrequest 

active if cpu_0 needs to be disabled 

   avs_is1_waitrequest = (disabled1) ? 1'b1 : avm_im0_waitrequest;//Sets instruction waitrequest 

active if cpu_1 needs to be disabled 

   avs_is2_waitrequest = (disabled2) ? 1'b1 : avm_im0_waitrequest;//Sets instruction waitrequest 

active if cpu_2 needs to be disabled 

   avs_ds0_waitrequest = (disabled0) ? 1'b1 : avm_dm0_waitrequest;//Sets data waitrequest active 

if cpu_0 needs to be disabled 

   avs_ds1_waitrequest = (disabled1) ? 1'b1 : avm_dm0_waitrequest;//Sets data waitrequest active 

if cpu_1 needs to be disabled 

   avs_ds2_waitrequest = (disabled2) ? 1'b1 : avm_dm0_waitrequest;//Sets data waitrequest active 

if cpu_2 needs to be disabled 

   avm_dm0_writedata = (disabled0) ? 

   (avs_ds1_writedata | avs_ds2_writedata) : (disabled1) ? 

   (avs_ds0_writedata | avs_ds2_writedata) : (disabled2) ? 

   (avs_ds0_writedata | avs_ds1_writedata) :  

   (avs_ds0_writedata | avs_ds1_writedata | avs_ds0_writedata);//ORs the active data writedata 

signals 

   avm_dm0_address = (disabled0) ?  

   (avs_ds1_address | avs_ds2_address) : (disabled1) ?  

   (avs_ds0_address | avs_ds2_address) : (disabled2) ?  

   (avs_ds0_address | avs_ds1_address) : 

   (avs_ds0_address | avs_ds1_address | avs_ds2_address);//ORs the active data address signals 

   avm_dm0_write = (disabled0) ? 

   (avs_ds1_write & avs_ds2_write) : (disabled1) ? 

   (avs_ds0_write & avs_ds2_write) : (disabled2) ? 

   (avs_ds0_write & avs_ds1_write) :  

   (avs_ds0_write & avs_ds1_write & avs_ds2_write);//ANDs the active data write signals 

   avm_dm0_read = (disabled0) ? 

   (avs_ds1_read & avs_ds2_read) : (disabled1) ? 

   (avs_ds0_read & avs_ds2_read) : (disabled2) ? 

   (avs_ds0_read & avs_ds1_read) :  

   (avs_ds0_read & avs_ds1_read & avs_ds2_read);//ANDs the active data read signals 

   avm_dm0_byteenable = (disabled0) ? 

   (avs_ds1_byteenable | avs_ds2_byteenable) : (disabled1) ? 

   (avs_ds0_byteenable | avs_ds2_byteenable) : (disabled2) ? 

   (avs_ds0_byteenable | avs_ds1_byteenable) : 

   (avs_ds0_byteenable | avs_ds1_byteenable | avs_ds2_byteenable);//ORs the active data 

byteenable signals 

   avm_im0_address = (disabled0) ? 

   (avs_is1_address | avs_is2_address) : (disabled1) ? 

   (avs_is0_address | avs_is2_address) : (disabled2) ? 

   (avs_is0_address | avs_is1_address) : 

   (avs_is0_address | avs_is1_address | avs_is2_address);//ORs the active instruction address 

signals 

   avm_im0_read = (disabled0) ?  

   (avs_is1_read & avs_is2_read) : (disabled1) ? 

   (avs_is0_read & avs_is2_read) : (disabled2) ? 

   (avs_is0_read & avs_is1_read) : 

   (avs_is0_read & avs_is1_read & avs_is2_read);//ANDs the active instruction read signals 

end 

 

//Error LED 

//Here are two equally viable LED control options.  Each behaves identically, and are completely 

interchangeable. 
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//Both trigger the LED at the first sign of an error and keep the LED on until all errors are 

gone, during reset. 

//assign aso_source0_data = (disabled0||disabled1||disabled2) ? 1'b0 : 1'b1; 

assign aso_source0_data = (error_detected01||error_detected02||error_detected12) ? 1'b0 : 1'b1; 

 

//Reset Control 

always @ (posedge clk)//Globally resets the system if all three CPUs are disabled 

begin 

   if (reset) 

   begin 

         reset_source <= 1'b0; 

      end 

   else 

      begin 

//       if(disabled0 && disabled1 && disabled2)//DO NOT USE IF HUMANS ARE MANUALLY INJECTING 

ERRORS!! Please use the push button conditions below. 

         if(disabled0 && disabled1 && disabled2 && asi_sink0_data && asi_sink1_data && 

asi_sink2_data)//Only resets when the push button are release, 

         //that no errors remain through reset 

//       if(disabled0 && disabled1 && disabled2 && button0 && button1 && button2)//Debounce 

circuit design 

            begin 

               reset_source <= 1'b1;//Sends reset signal 

            end 

         else 

            begin 

               reset_source <= 1'b0; 

            end 

      end 

end 

 

//Debounce Circuit 

 

//reg button0; 

//reg button1; 

//reg button2; 

// 

//reg [15:0] count0; 

//reg [15:0] count1; 

//reg [15:0] count2; 

// 

//always @ (posedge clk) 

//begin 

//  if (asi_sink0_data == 1'b0) 

//  begin 

//    count0 = count0 + 1; 

//    if (count0 == 50000) 

//    begin 

//       button0 = 1'b0; 

//    end 

//    else 

//    begin 

//       button0 = 1'b1; 

//    end 

//  end 

//  else 

//  begin 

//     count0 = 1'b0; 

//     button0 = 1'b1; 

//  end 

//  if (asi_sink1_data == 1'b0) 

//  begin 

//     count1 = count1 + 1; 

//     if (count1 == 50000) 

//     begin 

//        button1 = 1'b0; 

//     end 

//     else 

//     begin 

//        button1 = 1'b1; 

//     end 
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//  end 

//  else 

//  begin 

//     count1 = 1'b0; 

//     button1 = 1'b1; 

//  end 

//  if (asi_sink2_data == 1'b0) 

//  begin 

//     count2 = count2 + 1; 

//     if (count2 == 50000) 

//     begin 

//        button2 = 1'b0; 

//     end 

//     else 

//     begin 

//        button2 = 1'b1; 

//     end 

//  end 

//  else 

//  begin 

//     count2 = 1'b0; 

//     button2 = 1'b1; 

//  end 

//end 

 

endmodule 

 


