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Abstract

Audio-based shape recognition is often used in robotics and navigation. With the popularity of in-ear
earphones and tiny robots and drones with low-power microphones, we see an opportunity where acoustic
sensing can be used to monitor small enclosed spaces, e.g., ear canals, pipes, and machinery, for human,
infrastructure, and machine health monitoring. This paper studies the opportunity of using acoustic sensing
to identify and monitor various small hollow objects from the inside. We propose an algorithm that fuses
signal processing and machine learning techniques to distinguish between three shapes and assess the health
of the shapes.

The results show that under ideal conditions, audio can distinguish between three shapes with 90%
accuracy, and distinguish between three shapes under non-ideal conditions(different heights, background
noises, and setups) with 70% accuracy. We further determine shape deformation with 100% accuracy and
identify the side of the deformation with 90% accuracy. Our results demonstrate that as individual features
acoustic Loudness, power Spectrogram, mel Spectrogram, and spectral Entropy have great results. However
the best combination of features is zero crossing rate, Acoustic Loudness, and mel Spectrogram. Additionally
decreasing the number of microphones decreases the accuracy of the experiments. Furthermore, attempting
localization techniques in small hollow areas to determine the height of the shape is difficult due to sound
reflection and refractions. Localization through triangulation yields results with a high variance, while
localization through a gradient boosted machine requires a large dataset.
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Executive Summary

Wireless earbuds, widely used for entertainment purposes, have untapped potential in various applications,
including health monitoring and ear authentication. This project investigates the feasibility of using mi-
crophone arrays for understanding the characteristics of small enclosed structures, with the long-term goal
of making in-ear modeling more accessible and passive, potentially replacing or assisting devices that mea-
sure the inner ear’s shape and detect potential ear ailments. Moreover, such acoustic-based monitoring of
small enclosed structures opens a new direction of utilizing small robots[13] and insect drones[16] to monitor
machines, infrastructures, and environment.

We conduct a series of experiments to empirically analyze the potential of using a microphone
array to detect the shape, health, and depth of small enclosed objects. We test over 20 acoustic features and
narrowed them down to 5 features that achieves the best results. We also observe that combining the audio
features with the best individual performances does not necessarily produce the most accurate results across
all experiments. The results from multiple features are in the figure below.

Figure 1: Results from feature combination

We also notice that the number of microphones significantly affects performance. In general, in-
creasing the number of microphones increases the accuracy of the results, although the difference between
using four and two microphones is not substantial. Analysis of the confusion matrices show that changing
the number of microphones not only impacts the experiment’s accuracy but also the manner in which errors
occur. For instance, having more microphones reduces the number of ways errors occur.

Finally, we look into localizing the reflected acoustic signals to determine the shape parameters,
e.g., the height of the cube, for 3D modeling. We implement two localization techniques, triangulation and
Gradient Boosted Machine(GBM), and observe that neither method yields a satisfactory performance.

The impact of wireless earbuds on healthcare and industrial inspection is quite notable. This study
highlights that these small devices have the capacity to change how we detect and prevent inner ear issues,
as well as maintain the health of important structures in hard-to-reach areas. With the help of wireless
connectivity and advanced sensors, the opportunities for improving our understanding of the world around
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us are considerable. As we keep gathering data and refining this technology, it might become a useful tool
for supporting human health and safety in both medicine and industry. The potential for audio sensors to
influence the future is indeed impressive.
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1 Introduction

Wireless earbuds have become a staple in everyday life. Young adults used headphones(including earbuds)

for an average of 1.54 hours per day in 2011[40]. Furthermore, in 2016, 77% of US adults used earbuds and

headphones. This percentage is continually growing [30]. Currently, 87% of the people who use earbuds use

them to listen to music, and 49% of people use them to watch movies or TV shows [30]. However, earbuds

can be used for much more than entertainment.

Previous works show that the multiple modalities of sensors used in earbuds, e.g., multiple micro-

phones, motion sensors, and wireless radios, present the potential of using earbuds in various applications.

These multimodal measurements can be used for diverse health applications such as step counting [3], speaker

recognition[2], and breathing detection[4]. Health applications are one of the most promising aspects of these

earbuds due to their passive health monitoring capabilities. For instance, a temperature measurement in

the ear can be used to determine if someone is ill, or a heartbeat sensor can be placed in the ear to ac-

curately measure a heartbeat[3]. Although these applications are promising, they only demonstrate the

beginning of what can be done. These measurements can be used in more complicated applications such

as ear authentication purposes[27], in-ear fluid measurement [8], eating habit detection[1] and even ear-wax

detection[8].

Inner ear modeling is often crucial to detect and assessing ear infections. An ear model can diagnose

visual ear infections such as otitis externa, serous otitis media, and acute mastoiditis[39]. Current state-of-

the-art techniques for ear modeling include expensive equipment and require experts to use them. The most

user-friendly and portable solution is Otoscan [38] which includes a probe with tiny cameras to make a 3D

ear model. We wonder if the earbuds have the potential to assist or even replace devices that measure the

inner ear’s shape and detect potential ear ailments.

Though audio-based 3D modeling is not new, they are often done in a large space for Room Impulse

Response (RIR) detection, room reconstruction, or large object/shape reconstruction [41]. Few works have

explored audio-based reconstruction for small enclosed spaces[11]. However, none of these works focus on

shape deformation in small spaces. Ultrasonic and infrasonic sounds can be used for modeling. However,

ultrasonic frequencies are above the range of human hearing (typically above 20 kHz), while infrasonic

frequencies are below the range of human hearing (below 20 Hz). For this reason, it is crucial to focus on

the audible range, generally between 20 Hz and 20 kHz, to ensure safety and minimize potential harm[19].

To satisfy the bigger goal of making in-ear modeling more accessible and passive, this project
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explores the feasibility of using a microphone array to understand the characteristics of small enclosed

structures. We study whether audible acoustic signals can detect an object’s shape, health, and depth if the

speaker and mic are placed inside the hollow object. We use a microphone array to get the audio response

from different directions and model the responses to identify the object’s properties. This technology can

be applied to the human ear as well as factories, pipes, tunnels, and other structures to obtain health and

maintenance information.

In this project, we show the potential of audio object classification by answering the following

questions.

1. Can audible signal identify the shape of a small enclosed structure?

2. If variation in the structure parameter, e.g., height and materials, and various background noise is

introduced, how does the shape identification get affected?

3. Can audible signal identify the shape correctly if the structure deforms? Can it differentiate between

healthy and unhealthy (deformed) objects?

4. Is it possible to identify the location of the deformation?

5. Can intrinsic parameters of the object’s shape, e.g., height, be estimated?

The findings indicate that in ideal conditions, audio can differentiate between three shapes with

90% accuracy, and under non-ideal conditions (varying heights, background noises, and setups), the accu-

racy is 70%. Moreover, shape deformation can be determined with 100% accuracy, and the side of the

deformation can be identified with 90% accuracy. The results reveal that individual features such as acoustic

loudness, power spectrogram, mel spectrogram, and spectral entropy yield excellent outcomes. However, the

most effective combination of features includes zero crossing rate, acoustic loudness, and mel spectrogram.

Reducing the number of microphones also decreases the accuracy of the experiments. Furthermore, applying

localization techniques in small hollow spaces to ascertain the height of the shape is challenging due to

sound reflection and refraction. Localization via triangulation produces results with high variance, while

localization using a gradient boosted machine necessitates a large data set.

The literature review section discusses prior work on 3D model generation, 3D modeling for health-

care, and microphone array-based direction and distance estimations. In the system section, we introduce

the hardware system we used to perform the experiment. This includes hardware selection, microphone

selection, processor selection, speaker selection, and the programming environment.
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In the Methodology section, many signal characteristics are explored. The primary four signal

characteristics to achieve our goals are – frequency response (magnitude and phase), zero crossing rate,

spectral centroid, and acoustic loudness. These characteristics are determined by analyzing the MEMS

microphone signals in MATLAB. These characteristics and many more then become input parameters to

a Discriminant Analysis machine learning classifier. Furthermore, localization techniques are used to learn

about the shape’s dimensions. These methods include triangulation and a Gradient Boosted Machine (GBM).

Next, the dataset section outlines the data being used and the set ups for the different experiments.

In the results section, we mainly focused on 3 points, which are Limiting signal features, limiting

the number of microphones, and localization. Within the initial two subcategories, four tests are conducted.

The first test aims to differentiate among the three shapes (cube, triangular prism, and sphere) under perfect

conditions (identical setup). The second test involves distinguishing between the shapes when positioned at

varying heights and in an environment with diverse background noises. The third test seeks to differentiate

between an obstructed and non-obstructed cube (covering shaped corners and faces with aluminum). The

last test attempts to identify the location of an obstruction on a cube (left, right, back, or front). After the

results, limitations and future areas of research are discussed.

2 Literature Review and Background Study

This section describes the existing works on 3D model generation using different sensors, audio-based local-

ization, and earphone-based health applications.

2.1 3D model Generation

3D model generation creates a three-dimensional digital representation of an object, structure, or

environment using computer software or hardware tools. 3D reconstruction is commonly used for mapping

the environment using sensors like lidar, sonar, or cameras. The recent development of 3D reconstruction

has moved the application to the human body and human-face reconstruction for Augmented Reality and

Virtual Reality applications [44]. Furthermore, 3D reconstruction is commonly used in health applications

to model body parts and diagnose diseases.

3D model generation is often done through a point cloud. A point cloud is a collection of discrete

data points in space. Each data point has a location coordinate. Together, the data points can form a 3D

model. An example of this process is shown in the following figure. There are many ways to gather this data
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and create a 3D model[53].

Figure 2: Point cloud from a laser scanner[53]

Camera-Based 3D modeling. Both single and stereo cameras have been used to make a 3D model of the

environment. Multi-view stereo-based 3D reconstruction exploits multiple 2D views of a scene. However, this

approach requires several processing steps, including feature matching, camera calibration, and triangulation,

to estimate the 3D geometry of an object or scene[49]. One study proposes an algorithm that uses multi-

view stereo to reconstruct a dense 3D scene[20]. Another study,Glimpse.3D, provides a multimodal solution

for reconstructing sparse 3D scenes using body-worn stereo cameras[15]. Such 3D reconstruction methods

have numerous applications, including robotics, computer graphics, virtual reality, and medical imaging [20].

However, these techniques require specialized equipment and may not be applicable in all industrial scenarios.

Lidar-Based 3D modeling. Lidar is another common tool for 3D reconstruction [42]. Lidars eject pulses

of light, which get reflected by the object’s surface, resulting in the depth information used to create models.

Lidar utilizes a rotating system with multiple lasers shooting out light at a high rate. Schwarz et al [42]. use

this depth information to create an accurate 3D model of the world. The downside of lidar is that it requires

rotation to receive distance data from different angles. For this reason, lidar cannot be used in applications

that prevent rotation.

Audio-Based 3D modeling. The sonarVisualizer F3D-S [24] is primarily used in water to create a 3D

representation of ultrasound or sonar data. The product allows the user to see a 3D model of the sonar

information while showing depth lines and different viewing angles. Though sonar is an excellent choice for

underwater applications, they are highly inefficient in the air for two reasons – (1) the density of water is
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significantly greater than the density of air, and (2) sound travels faster in water than in air. Besides, sonar

can potentially hurt human ears, making it unideal for applications involving humans[6].

Thermal Camera-Based Modeling. Thermal cameras are often used to generate 3D models of various

objects, especially living parts [45, 6] or active machinery. However, these cameras are required to be in very

close proximity to the object, e.g., 95 cm [6]. Moreover, this approach cannot model objects without any

thermal signature.

2.2 3D Model for Healthcare

3D models are increasingly used in healthcare for various applications, including surgical planning,

medical training, and patient education.

Human Body-Part Modeling. Several previous works have developed 3D models of human body parts

using a thermal camera. Despite being popular for anatomical modeling, thermal cameras are not a good

solution for modeling inner-ear. These cameras are often larger and require rotational movement [9], which

is impossible in this scenario.

Teeth Modeling. There are two traditional methods used for modeling teeth. The first method is a

physical dental method. Physical models are tangible representations of a patient’s teeth, usually made from

materials like plaster or resin. These models can be created using traditional dental impressions or by 3D

printing[54]. The second method is Digital 3D modeling. Digital 3D modeling uses a intraoral scanner to

capture the shape and position of the teeth and generates a 3D digital model. This method is non-invasive,

fast, and accurate[55]. A digital 3D model can also be created using cone-beam computed tomography. This

imaging technique provides a detailed 3D images of teeth, bone, and soft tissues, which can be used to create

accurate digital teeth models[56].

Inner-Ear Modeling. Generating 3D models of the inner ears of humans is extremely useful for diagnosing

ear diseases. In the hospital, doctors generally model the inner ear by using a CT scan or an MRI. These scans

are then used to create a physical model.[57]. If a 3D model is not necessary a doctor can use an otoscope

to look into a patients ear. One of the smallest digital 3D ear scanners is Otoscan [38] which uses tracking

cameras, ring lasers, and a trigger button to create a 3D ear model. The sophisticated procedure to insert the

probe inside the user’s ear demands use by trained operators only. The operator begins by setting the depth

gauge and follows with a Canal ring, Pinna line, and Concha ring scan. This information collaboratively

creates the 3d ear model [38]. Although the product can make an accurate 3D model, it requires an expert

operator and is fairly expensive($12,500 capital investment and $1250 annual subscription). Therefore, this
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is not a suitable solution outside the four walls of the hospital.

2.3 Microphone Array-based Direction and Distance Estimation

As rotating microphone and speaker is infeasible for a tiny enclosed structure like an in-ear applica-

tion and surely is unfeasible for a sophisticated structure like a human ear, we explore the rich literature of

microphone-array-based direction and distance estimation, which can be the base of generating a 3D model.

We specifically look into the Direction of Arrival estimation, Beamforming, and Distance Estimation.

Direction of Arrival (DOA) Estimation. In essence, Direction of Arrival (DoA) refers to determining

the spatial direction of an incoming signal or wavefront relative to a reference point or coordinate system.

This information can be used to identify the position of the signal’s source or to improve the reception quality

of the signal by adjusting the receiver’s orientation or beam pattern[58]. An illustration of DOA is in the

following figure.

Figure 3: Direction of arrival illustration[59]

The most popular approach to estimate the direction of an arrived audio signal is MUltiple SIgnal

Classification (MUSIC). The MUSIC algorithm estimates the Direction of Arrival (DOA) of audio signals

using sensor arrays. It involves data collection, covariance matrix estimation, eigenvalue decomposition,

and calculation of the MUSIC spectrum. By exploiting orthogonality between signal and noise subspaces

and analyzing peaks in the MUSIC spectrum, the algorithm identifies the estimated DOAs of the audio

sources[58].

However, traditional 2D MUSIC algorithms fix the azimuth or the elevation and then look for

the other without taking source directions into account. To address this shortcoming, a fast 2D MUSIC

algorithm is developed that only requires three rounds of search to do simultaneous azimuth and elevation

searches (henceforth referred to as AESS) [23]. AESS first performs a circle search to identify the general
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source directions. Based on these approximations, a subsequent search is started along numerous straight

lines. Each source’s 2D Direction of Arrival (DOA) is then calculated by searching several tiny concentric

circles. AESS does not fix any azimuth and elevation parameters, unlike the 2D MUSIC algorithm. The

spectrum search over the angular field of vision is avoided since each search’s neighboring point has a distinct

azimuth and elevation. Therefore, azimuth and elevation are simultaneously searched to ensure the search

path is limited.

Previous work [7] on DOA estimation have shown good performance when the source is far from the

microphone array (e.g., over 400m) but the performance degrades with lower SNR. Moreover, very few works

have focused on enclosed space which has a lot of multipath. Thus, we see a need explore this unexplored

space.

Beamforming. Beamforming,as shown in the figure below, is a signal processing technique used in sensor

arrays (e.g., antennas or microphones) to direct the reception or transmission of signals in specific direc-

tions. By adjusting the weights and phases of the signals received or transmitted by each sensor, the array

can create a focused beam that enhances the desired signal and suppresses interference or noise from other

directions[60]. Researchers treat the Microphone array as a multiple-input multiple-output system and study

Figure 4: Beamforming illustration[61]

its signal-enhancement performance. Previous work [34] has developed a generic framework for evaluating

the performance of beamforming algorithms. First, they create the impulse responses of acoustic MIMO

channels. Next, the authors examine the performance limits of beamforming with respect to speech dere-

verberation and interference suppression. This involves looking at the constraints for the length of the

7



beamforming filter. Then they study the relationship between beamforming and the multiple-input/output

inverse theorem (MINT). Finally, the paper addresses the fundamental connections between various classical

beamforming approaches and outlines the conditions that must be met for those techniques to function from

a channel condition standpoint. Current beamforming approaches face challenges such as computational

complexity, calibration errors, mutual coupling, limited resolution, difficulties with wideband signals, sensi-

tivity to environmental factors, computational latency, and source localization errors. These shortcomings

can affect performance and robustness in various applications, and ongoing research aims to address and

mitigate these issues.

Distance Estimation. Distance estimation refers to the process of determining the distance between two

objects or points. In the context of signal processing and communication systems, it typically involves

estimating the distance between a transmitter (source) and a receiver (sensor) based on the properties of

the transmitted signal and the received signal[62]. Various audio features change depending on the distance

between the sound source and the receiver providing the opportunity to estimate the distance between

a microphone and a sound source. However, the way the features change depends on the setup of the

microphone as well as the environment. To address this challenge machine learning approaches [50, 52] are

used to find the distance between a microphone and a sound source. However, training a machine learning

model requires collecting data which is often scarce. Therefore, few works use self-induced noise methods [51].

To illustrate, Calkins et al. [51] use the noise of a vehicle during normal operation as a base to estimate

the distance of the vehicle from an unknown object. Even with these new approaches, the effects of the

environment, microphone setup, and speaker setup remain a concern.

2.4 Earable bases Sensing

Sensing done through microphones and speakers has many applications that can be applied to

humans for verification and health purposes. ”Earable” is a term used to describe wearable devices that are

designed to be worn on or around the ear, typically to track various physiological and environmental data

such as heart rate, body temperature, blood pressure, the shape of the ear canal, and ambient noise levels.

Earable as Authenticator. Biometric authentication based on human ears has been mostly discussed in

the context of image recognition. A promising approach to in-ear authentication is based on the unique

acoustic characteristics of individual ear canals [27, 21].

EarEcho [27] is a wearable authentication device that users can easily use and conveniently access.

EarEcho takes advantage of the unique shape of the human ear canal. A chirp signal is emitted from a
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Product Size Creates a model Modality Accessibility Price
Otoscan Large Yes No Light $12,500

3d sonar visualizer Large Yes Sound No $1k-10k
Mapping the world in 3d Large Yes Light No $5-30/acre

Table 1: Existing Products

speaker and when a signal is received back, it is analyzed and classified using a Support Vector Machine

classifier to authenticate the user. The shortcoming is that a low-frequency sinusoidal tone is used, which

is painful to hear. Mahto et al. [21] propose a unique biometric authentication method that exploits the

acoustic characteristics of human ears and achieves an EER of less than 1%. However, the audible sound

signals used in this method are noticeable and may often interrupt user activities during authentication.

Therefore, Xie et al.[47] attempt to overcome this problem by employing inaudible sound signals to

achieve silent authentication so that repetitive and continuous authentication will not irritate or interrupt

the user. The authors investigate novel biometric traits based on dental occlusion and discover that the bone-

conducted sound of dental occlusion recorded in the canals of the ears contains distinctive characteristics

of various bones and teeth. This inspired the authors to develop the new identification system TeethPass,

which collects occlusal noises in binaural canals using headphones. To identify bone-conducted noises, they

develop an event detection technique based on spectrum variance and double thresholds. After filtering out

motion noises from the sounds using time-frequency analysis, three distinct user characteristics are derived:

bone structure, occlusal position, and occlusal sound. Finally, the authors create a Siamese network based

on incremental learning to build the classifier.

Earable for Monitoring Health. Sensors near the ear can be used to monitor many characteristics relating

to health. This includes step counting, breath detection, heartbeat measurements, ear-wax detection, blood

flow, and in-ear fluid monitoring[3]. As an example, the blood flow signal generated by a heartbeat can be

captured using a flexible low-noise photoplethysmography (PPG) sensor that can be attached to the skin

behind the ear[3], or the presence of liquid in the middle ear can be found using a speaker and microphone

to generate and detect sound waves that penetrate the ear canal.[8].

While researching our earbud design, we encountered several products related to our goal. Each

one with different advantages and disadvantages. Table1 demonstrates some broad details about existing

products.
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3 System Design

This section delves into the intricacies of the system design, touching upon the experiments, equipment

setup, design choices, hardware comparisons, and the coding environment.

For acoustic monitoring, we use a speaker and microphone array where the speaker plays audible

sounds inside the structure, e.g., ear. This sound is then reflected and refracted by different surfaces inside

the structure, and the microphone array captures the original, reflected, and refracted signals. These reflected

and refracted signals embed the characteristics of the structure, which can be used for 3D reconstruction

or structure health monitoring. We envision that signal processing and machine learning algorithms have

the potential to extract such information from the received signal at the microphone array. To evaluate

our hypothesis, we develop a proof of concept focusing on small encloses structured of various shapes. The

target objects (shapes and materials), data collection hardware, environment condition (i.e., background

noise), and procedure are described in this section.

Small space acoustic monitoring can be difficult for several reasons. One of the main challenges

is the presence of reflections and reverberation. In a small space, sound waves can bounce off surfaces,

creating multiple reflections and reverberations that can be difficult to distinguish from the original sound.

Furthermore, nearby sources of sound can interfere with the monitoring process, which can include sounds

from adjacent rooms, people talking or moving nearby, and other sources that can make it difficult to

distinguish the sounds of interest[63]. The traditional size of space in acoustic imaging can vary depending

on the applications. However, acoustic imaging is typically used for imaging objects or structures that are

larger than a few centimeters and smaller than several meters in size[64]. The limitations in resolution and

frequency range make it challenging to accurately analyze objects that are smaller than a few centimeters

in size. Additionally, hollow areas are prone to sound reflections making small hollow areas a distinct issue

for acoustic imaging. As a results, alternative imaging methods, such as optical, are often used for study of

smaller objects[64]. Through our evaluation, we aim to answer the following questions.

1. Can audible signal identify the shape of a small enclosed structure?

2. If variation in the structure parameter, e.g., height and materials, and various background noise is

introduced, how does the shape identification get affected?

3. Can audible signal identify the shape correctly if the structure deforms? Can it differentiate between

healthy and unhealthy (deformed) objects?
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4. Is it possible to identify the location of the deformation?

5. Can intrinsic parameters of the object’s shape, e.g., height, be estimated?

3.1 System Design Requirement

To determine and design the data collection platform for our application, we first identify the

requirements the hardware needs to satisfy.

Figure 5: Different Frequency and reflection points on a surface[12]

Q1. What should be the characteristics of the transmitted audible signal?

As our long-term goal is to use the proposed system for smaller structures like a human ear, we use

this as the condition for determining the requirements. Although the ear can perceive frequencies between

20Hz and 20KHz, the spatial resolution of the ear canal when using a frequency below 9KHz can be very

limited[12]. Thus, the microphone must have a frequency range including values greater than 9KHz to

achieve good resolution of the human ear canal. As shown in Figure 5, an increase in frequency results in a

smaller surface reflection. Thus, we use a 10 kHz square wave that can properly be reflected by surfaces with

an area less than 8mm. Since the shapes being used in the experiments will have dimensions at least 10 times

bigger than 8mm, 10KHz is more than sufficient. A 10 kHz square wave sound signal with a wavelength of

approximately 3.4 cm can be properly reflected by surfaces with an area less than 8 mm. This is because the

wave can diffract around surfaces that are smaller than its wavelength, allowing it to reflect off of surfaces

that are much smaller than the wavelength of the wave itself.

Q2. What should be the minimum distance between the microphones in the microphone array?
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For a Microphone array that has a sampling rate of 44.1kHz. The minimum distance required based

on the equation below. The speed of sound is 340ms−1.

V = f × λ (1)

d =
λ

2
(2)

V = 2× f × d (3)

d =
V

2f
(4)

As a result, we can get a distance of 0.385cm

d =
340ms−1

2× 44100
= 0.385cm (5)

Q3. How many microphones are required at a minimum?

Though most embedded and tiny microphones are omnidirectional, a microphone array of multiple

omnidirectional array can receive and process sounds from different directions using algorithms like beam-

forming. In general more microphones provides more accurate results. The minimum number of microphones

needed to perform beamforming and obtain directional information is 2. However, a two-microphone array

has limitations in terms of understanding the degree of arrival of sound. In order to solve this issue, micro-

phone arrays with three or more microphones are typically required[65]. For these reasons, this project uses

a four microphone array.

Q4. Which microcontroller can support the needed sampling rate and microphone array?

The choice of MCU is based on the specific requirements needed, including the amount of data,

baud rate, number of microphones, and frequency range. The MCU must have a slot for a sim card in

order to ensure space for all the data. Furthermore, a high baud rate is needed to provide a high quality

and fidelity of the audio signal. The MCU must also be able to support four microphones that sample over

20KHz in order to support the 10KHz audio being played from the speaker. In this project, we use a 44.1KHz

sampling because it meets the sampling requirements and is standard for WAV audio files.

Q5. What is the size of the system?

Sampling at 44.1KHz, a squared microphone array has to be at least 0.385cm by 0.385cm and must
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have room for a central speaker. However, in this proof of concept phase, we are using a larger system.

The system in this project(microcontroller, microphone array, and speaker) is 8.5cm by 6.5cm. This is much

larger than the smallest possible system.

3.2 System Design Choices

We perform a value analysis to determine the system components that meet the system design

requirements.

Microphone Selection. Table 2 compares a wide range of microphones to identify the optimal candidate.

We extensively study the resources on this topic available on the internet. We mostly focus on Micro-

electromechanical systems (MEMS) microphones. MEMS constitute the technology of microscopic devices,

particularly the ones with moving parts, and are based on components of 1 and 100 micrometers in size.

Thus, most MEMS devices range in size between 20µm to 1mm. A MEMS microphone is an electro-acoustic

transducer with a sensor (MEMS) and an application-specific integrated circuit (ASIC) in a single package.

The sensor converts variable sound pressure to capacitance variations that the ASIC transforms into analog

or digital output.

Instead of choosing individual microphones and developing the board ourselves, we choose the

Seeed studio ReSpeaker microphone array. Besides having the largest frequency range in a relatively small

footprint, ReSpeaker has integrated data multichannel support using AC108, which has highly integrated

quad-channel ADC with I2S/TDM output transition and can seamlessly integrate with many processing

units. The Seeed studio Reaspeaker squared 4 mic array uses 4 analog microphones, the distance between

each microphone is around 65mm. It features 12 GPIO pins, including 6 digital pins and 6 analog pins.

The Reaspeaker connects to a host device via either a USB or I2S interface. While the UART protocol

typically employs a specific baud rate for transmitting data bit by byte, both USB and I2S diverge from

this approach. USB, a digital communication standard, facilitates high-speed data transfer, while I2S is a

protocol specifically designed for the transmission of digital audio data. Utilizing packet-based data transfer,

USB and I2S transfer data in chunks rather than bit by bit. As a result, The Reaspeaker does not have a

specific baud rate.

Processor Selection. The integral component of this system is a microcontroller, the system’s brain. The

microcontroller must be compatible with the speaker, support the data transfer rate to collect data from the

microphone array, and can support a high sampling rate. Table 3 compares several of the shelf microcon-

trollers. We choose Raspberry Pi 4 model B for developing this system for two reasons – (1) the processing
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Microphone Digital/Analog Frequency(Hz) Size of module Number of mics SNR(dbA) Sensitivity Mono/Stereo
I2S-SPH0645LM4H-B Digital 64KHz 16.7x 12.7x 1.8 mm 1 65dB(A) -26dBFS Mono
SPH8878LR5H-1 Analog 80KHz 13.97x10.16mm 1 66dBV/Pa -44dBV/Pa Mono
ReSpeaker 4-Mic Array Analog 96KHz 65mm x65mm x9mm 4 59dB(A) -22dBFS Mono and Stereo
ReSpeaker Mic Array -
Far-field w/ 7 PDM
Microphones

Digital 32KHz 148mm x100mm x32mm 7 61dB -26dBFS Mono and Stereo

UMA-8-SP USB
mic array

Digital 48KHz
90 mm diameter
20mm height(with LED)

8 64 dB -29dB Stereo

Table 2: Microphone Comparison

performance and data transfer rate of Raspberry Pi are sufficient for this system, and (2) ReSpeaker is exclu-

sively designed for Raspberry Pi that allows us to utilize the built-in software for synchronized multichannel

data collection. Additionally, the architecture of the Raspberry Pi is ARM Cortex-A72, it has 26 GPIO

pins, and has 8GB of RAM.

Microcontrollers Architecture Supports over 44.1kHz GPIO Pins DAC ADC RAM Size Flash Size
Cortex M0 Armv6-M Yes 20 YES NO 92kb 256kb
Cortex M4 Armv7-M Yes 25 Two(A0 and A1) 8 Analog Pin 192kb 512kb
Raspberry Pi ARM Cortex-A72 Yes 26 No No 8GB microSD card Storage
Arduino Uno R3 ATMega328P Yes 14 Analog input Digital input 512B SRAM 16 KB ISP Flash
Bela Yes 28

Table 3: Processor Comparison

Figure 6: Speaker Picture

Speaker Selection. We choose a basic earbud speaker, Airpods Pro (shown in Figure 6), for three reasons –

(1) it is small enough to fita small structure like human ear, (2)it is capable of playing audio at 15 KHz, which

is higher than our desired 10 KHz, (3) has a good dynamic range, and (4) is widely available. Therefore, we

can satisfy the size and dynamic range requirements.

System Overview. The Reaspeaker and Raspberry Pi are connected via I2S pins on the Pi. The connection

between Reaspeaker and Raspberry pi is shown in Figure7 and listed below.
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Figure 7: Circuit Diagram of Reaspeaker

• I2S Data: GPIO 20 (Pin 38) on the Raspberry Pi

• I2S BCLK (Bit Clock): GPIO 18 (Pin 12) on the Raspberry Pi

• I2S LRCLK (Left/Right Clock): GPIO 19 (Pin 35) on the Raspberry Pi

• I2S MCLK (Master Clock): GPIO 12 (Pin 32) on the Raspberry Pi

• LED Data (for the programmable RGB LED ring): GPIO 5 (Pin 29) on the Raspberry Pi

During the installation of the most recent Raspberry Pi OS, we face several challenges, such as

black screens while recording and unforeseen interruptions while configuring the required environments. To

overcome these issues, we chose to utilize a 2021 version of the Raspberry Pi OS. Additionally, we employ

Audacity to capture audio data for subsequent analysis. Moreover, we have incorporate the ODAS (Open

embeddeD Audition System) Studio, a tool commonly employed for sound source localization, tracking,

and separation tasks. However, we discover that its application is significantly constrained within confined

spaces, such as the 80mm x 80mm 3D-printed structure we utilize in our case Figure8.

Programming Environment. The programming environment for our project utilizes Python and an

Integrated Development Environment (IDE) on the Raspberry Pi. We have installed the 32-bit Raspberry

Pi OS, which includes the Python IDE, onto an SD card. The Raspberry Pi is powered through a USB-C

port, and the display output is facilitated by a Micro HDMI port. To record the audio reflections from each

shape on the Raspberry Pi, we employ Audacity, a versatile audio recording and editing software. The audio

data captured by the four microphones is then uploaded to MATLAB, a powerful computational software,
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for processing and analysis of the reflection signal data. This comprehensive approach enables us to study

the audio properties of the shapes in a systematic and accurate manner.

Figure 8: 3D Printed Objects
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4 Methodology

This section analyzes the potential of different acoustic features and signal characteristics for (i) detecting

different shapes, (ii) identifying any deformation, and (iii) localizing the deformed sides. A block diagram is

shown in the following figure.
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Figure 9: Block Diagram

4.1 Acoustic Features Calculation

We analyze 20 different acoustic features. The Significant 15 features are – (i) frequency response,

(ii) zero crossing rate, (iii) acoustic loudness, (iv) Mel spectrogram, (v) spectral centroid, (vi) spectral en-

tropy, (vii) spectral decrease, (viii) spectral spread, (ix) spectral roll-off point, (x)spectral skewness, (xi)

spectral flux, (xii) spectral flatness, (xiii) spectral kurtosis, (xiv) gamma-tone cepstral coefficient, (xv) har-

monic ratio, and (xvi) power spectrogram. Following is the description of different features.

Frequency Response (FR). Frequency response is a system characteristic that describes how it reacts to

different input frequencies. In the context of audio, signal processing, frequency response is used to assess the

performance and behavior of a sound across a range of frequencies[66]. The frequency response aims to ob-

serve frequency changes due to different reflections and refractions and gain insight into which audio features

can best differentiate between small hollow areas. The first step in finding the frequency response is to collect

time-domain audio signals from the four microphone channels. Next, various signal processing techniques are
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performed to extract the frequency response. One of the methods is the Fast Fourier Transform(FFT)[67].

FFT offers significant advantages regarding computational efficiency, applicability, and frequency resolution.

However, it also has limitations, such as reduced time-frequency resolution for non-stationary signals, sensi-

tivity to noise, and issues related to leakage and spectral smearing[67]. Another technique used to capture

the frequency response is the mel Spectrogram. Mel Spectrograms offer several advantages over the FFT,

including better alignment with human perception, improved frequency discrimination, and noise reduction.

However, also comes with some disadvantages, such as reduced frequency and time resolution and sensitivity

to windowing and other parameters[69].

Zero Crossing Rate (ZCR). The zero crossing rate (ZCR) is a measure of the number of times that the

amplitude of a signal changes from positive to negative (or vice versa) over a given period [46]. The ZCR is

calculated by counting the number of times the signal crosses the zero amplitude line within a fixed window

of time and then normalizing the count by the length of the window. ZCR is a standard tool to differentiate

between audio signals. The ZCR is defined by the following equation below[46].

Z(i) =
1

2WL

WL∑
n=1

|sgn[xi(n)]− sgn[xi(n− 1)]| (6)

Acoustic Loudness (AL). Acoustic loudness measures perceived sound pressure [33]. Acoustic loudness

is measured in sones, a useful tool for distinguishing signal sound pressure differences.

Mel Spectrogram (Mel-Spec). Mel Spectogrm is a way of finding the frequency response of a signal on

the mel-scale. Notably, the mel-scale closely mimics human perception, providing an accurate representation

of the frequencies humans perceive[71].

Spectral Centroid (SCentroid). The spectral centroid [36] measures the center of mass of the frequency

components of a signal. We calculate it by taking the weighted mean of the frequencies present in the signal,

with the weighting applied based on the amplitude of each frequency. The spectral centroid can represent

the ”brightness” or ”tonality” of a signal. The following equation defines the spectral centroid.

Ci =

∑WfL
k=1 kXi(k)∑WfL
k=1 Xi(k)

(7)

Spectral Entropy (SEntropy). Spectral Entropy is a measure of a signals power distribution[72].

Spectral Decrease (SDecrease).

Spectral Decrease is a method of measuring the decrease of a spectrum while highlighting the slope
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of the lower frequencies present in the signal[73].

Spectral Spread (SSpread). Spectral Spread denotes the average deviation of the rate-map from the

signals centroid[74].

Spectral Roll-Off Point (SRP). The Spectral Roll-Off Point of a signal is the point at which 85% of the

power is at lower frequencies. This measures the right-skewedness of the power spectrum[74].

Spectral Skewness (SSkew).

Spectral Skweness is a measure of the location of the concentration of spectral energy with respect

to the spectral center[74].

Spectral Flux (SFlux). Spectral Flux measures the rate at which the power spectrum changes[70].

Spectral Flatness (SFlat). Spectral Flatness quantifies how close a sound is to being a pure tone or

noise[68].

Spectral Kurtosis (SKurt). Spectral Kurtosis indicates the non stationary or non-Gaussian behavior of

a signal in the frequency domain[75].

Gamma Tone Cepstral Coefficients (GTCC). GTCC are a set of features extracted from audio that

describe the spectral shape of a signal. GTCC is commonly used for audio recognition tasks[76].

Harmonic Ratio (HR). Harmonic Ratio is a ratio used to distinguish periodic audio and non periodic

audio. This is done by comparing the harmonic portion of audio to the total energy of the audio[74].

Power Spectrum (PowerS). The power Spectrum indicates the magnitude of the different frequencies

that make up the entire signal[77].

4.2 Acoustic Features Selection.

By analyzing both the frequency and time responses of the recorded audio signals, we identify signal

characteristics that appear to be dependent on the shape of the objects. After pinpointing these shape-related

characteristics, we extract specific audio features that quantify these attributes, enabling a more accurate

assessment of the relationship between the signal and the object’s shape. Once these individual audio features

are found they are tested to see which ones produce the most accurate results. The ones that individually

work best are combined to attempt to increase the accuracy of the results. However, combining the best

individual features does not always increase the accuracy and therefore random combinations are also tried.
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4.3 Shape Identifier

A shape identifier is developed using a discriminant machine learning classifier to determine the

shape of an object based on extracted audio features. Discriminant Analysis classifiers are a family of

machine learning algorithms. The main goal of this method is to find combinations of features that best

separate the groups, maximizing the differences between them while minimizing the variance within each

group. There are two primary types of Discriminant Analysis Classification: Linear Discriminant Analysis

(LDA) and Quadratic Discriminant Analysis (QDA). QDA does not assume equal covariance matrices for the

groups. Instead, it allows for different covariance matrices and fits a quadratic decision boundary between the

groups. We use a QDA which can be more flexible than LDA but may require more data to provide accurate

estimates of the covariance matrices. They are particularly useful for classification tasks and dimensionality

reduction. The classifiers input is individual audio features and combinations of audio features, and the

output is the predicted shape(cube, pyramid, or sphere) Figure8. In this case the best feature combination

under ideal and unideal conditions is Zero Crossing Rate, Acoustic Loudness, and GTCC.

4.4 Deformation Detector

A deformation detection system has been designed using the same discriminative machine learning

classifier as the Shape Identifier, which discerns whether a shape is healthy or obstructed by analyzing

extracted audio features. The classifier processes individual audio features and their combinations as input

and generates an output indicating whether the shape is healthy or obstructed, as illustrated in Figure10.

Notably, when using the Mel Spectrogram as a standalone input feature, the classifier achieved remarkably

high accuracy.

4.5 Deformation Localizer

A deformation localizer is developed in the same manner as the Deformation Detector to identify

which side of a shape (left, right, back, or front) is obstructed based on extracted audio features. The

classifier’s input consists of individual audio features and various combinations thereof, while the output

predicts the deformation’s location (left, right, back, or front), as depicted in Figure11. In this scenario,

the optimal feature combination includes Zero Crossing Rate, Acoustic Loudness, and Spectral Entropy.
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4.6 Shape Dimension Estimator

Utilizing height measurements alongside the shape identifier can facilitate the creation of a 3D

model. Once the shape is identified using the estimator, height information can be combined with other

dimensions to generate a 3D representation of the shape. For instance, if the estimator determines the shape

to be a cube, the height can be used to define its proportions. This approach can be applied to various

shapes, creating detailed three-dimensional representations.

A shape dimension estimator is developed using two different approaches to identify the height of

the object based on extracted audio features. The first approach is triangulation and the second approach

is a Gradient Boosted Machine (GBM). Triangulation is performed by combining time difference of arrival

(TDOA) and direction of arrival (DOA) to estimate the height of the shapes. Through the process of

triangulation, we notice that the cube and sphere display the most accurate results, while the pyramid

demonstrates a considerably larger variation. This inconsistency can be ascribed to the fluctuations present

in the pyramid’s top surface, which add greater complexity and influence the model’s capacity to generate

accurate predictions for this particular shape, as illustrated in Figure19. A Gradient Boosting Machine

(GBM) is also employed to estimate the height of an object by leveraging extracted audio features. The

model’s input is acoustic Loudness, while the output predicts the numerical value corresponding to the

object’s height. By utilizing the powerful ensemble learning technique of GBM, the model effectively captures

complex relationships between acoustic Loudness and the target height, as depicted in. In this project the

accuracy of the GBM is limited due to a small data set.

We perform sound localization through the use of time of arrival, direction of arrival, triangulation,

and a Gradient Boosted Machine. Together these elements provide information on the location of the sound

source(ideally the sound source is the sound reflected from the top of the 3D shape). The goal of this

technique is to obtain information on the height of the shape. For the simple shapes used in this proof

of concept, just knowing the height can be used to create a 3D plot of the shape, however many more

parameters are needed to plot a 3D ear.

Time Difference of Arrival.

Time Difference of Arrival, is a method of estimating distance. The distance is calculated by

measuring the difference in time it takes for a signal to reach different microphones. A common way the

time difference is found is through the use of cross correlation functions. The delay corresponding to the

peak value of the cross correlation function is used as an estimate for the delay between functions.[18]
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Direction of Arrival Estimate and triangulation.

The Direction of arrival estimates(DOA) denote the direction from which sound waves arrive at

the microphone. The result of direction of arrival estimates is the direction the sound waves are relative

to the microphone array[48]. The estimations are done by utilizing the phase information obtained by the

microphone separation inside the array[7]. For every two microphones one direction of arrival is found using

the equation shown below. In the equation is the direction of arrival v is the speed of sound, is the time

difference of arrival, d is the distance between the two microphones being used, R is the average distance

between the sound source and microphones, and is the wavelength. When multiple directions are found,

trigonometry is used to calculate the location of the sound source.[18]

φ = cos−1 ∗ (v ∗ τ
d

, forR > λ) (8)

Many of these localization techniques rely on a clear sound source and are performed in large

spaces with minimal sound reflections and refractions. These conditions do not exist in our applications and

therefore are susceptible to inaccurate results.

Gradient Boosted Machine.

Another localization technique used is a Gradient Boosted Machine(GBM). GBM is a machine

learning technique that creates a strong learner by combining weak learners. It belongs to the category of

boosting algorithms that correct errors made by previous models through sequentially adding new models.

It is effective and robust for classification problems[22]. The training data used in the GBM was the acoustic

loudness when sound was played at different distances from the microphone array. The testing data was

the acoustic loudness measured when sound was being played inside of the shapes. Similar to the other

localization technique(DOA) this method was implemented in an unideal scenario. For one the training data

was collected without a shape over the microphones, additionally there was background noise while data was

being collected.

5 Dataset

This section outlines a study that examines the impact of small hollow areas on audio features using 3D-

printed objects of various shapes. We choose three shapes with diverse top surfaces to test the system’s

ability to identify shapes, and deformations, and predict the location of the deformation. The section also

explores the robustness of the shape differentiation algorithms by altering the base height of the objects.
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We collect a total of 210 samples (14 samples for each shape and each task). Each sample is 8 seconds long

and consists of 4 WAV files, one for each microphone. The data collected is divided into training and testing

sets, and the accuracy of the machine learning models is evaluated through 5 cross-validations.

Details about different environmental noise, room size, and other sources are to be provided in the

”Noisy Environment” section. The study collects an unspecified number of samples for each class and divided

the data into training (80%) and testing sets. The machine learning models are trained on the training set

and tested using the test dataset. The accuracy is reported using cross-validation.

5.1 Target Object Design

We design a group of 3D objects with Solidwork and printed them using a lulzbot TAZ 6 3D printer.

These objects are made of ABS plastic and are approximately 3.5 x 3.5 x 3.5 inches. We select three distinct

hollow shapes for our study: a cube, a pyramid, and a sphere (Figure8). The reasoning behind choosing

these shapes is the diversity of their top surfaces. The cube has a flat top, the pyramid has a pointed top,

and the sphere has a rounded top. This variation allows us to investigate the effects of different surface

properties on the audio reflections. Additionally, these objects are easy to reproduce, making them practical

choices for consistent experimentation.

The deformations are done by blocking a certain part of the cube with tin foil. An example of

this is shown in Figure10. In addition to generally deforming the shape, specific sides(left, right, back, and

front) of the cube are deformed. This is shown in Figure11. The generally obstructed shapes are used to

see if our system can distinguish between a healthy and non healthy cube, and the side obstructed shapes

are used to see if our system can predict the location of deformation.

Figure 10: Obstructed cube
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Figure 11: Side Obstructed cube

Since the base of all three shapes is square, multiple 3D printed extension of the base are made

to alter the height of the shapes ( Figure12). This is used to vary the height by up to 60mm. The varied

heights are used to test the robustness of the shape differentiation algorithms.

Figure 12: 3D Printed elevation

5.2 Audio Signal

As the dimensions of the shapes involved in the experiments are at least 10 times larger than

8mm, a 10kHz frequency is deemed adequate. A square wave sound signal of 10kHz has a wavelength of

approximately 3.4 cm, which can effectively reflect off surfaces with an area smaller than 8 mm. This is

possible because the wave can diffract around surfaces that are smaller than its own wavelength, enabling it

to reflect off surfaces considerably smaller than the wave’s actual wavelength.
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5.3 Noisy Environment

The presence of background noise and variations in shape size can considerably affect the recorded

audio signals, resulting in a marked decrease in the accuracy of the model’s predictions. These external

factors introduce further complexities and challenges for the classifier, complicating the accurate identification

of patterns and relationships between the audio features and the target outcomes. This experiment was

conducted in an uncontrolled environment where people were moving and various noise sources were present,

adding to the background noise. These sources include computer fans, air conditioners, human voices, and

buzzing sounds from electronic devices. The dynamic nature of the environment, combined with these noise

sources, increases the difficulty in isolating the desired signal for accurate classification, posing additional

challenges for the model in discerning the relevant information.

5.4 Data Distribution

Around 210 total audio files are collected and divided into 4 classes(each with around 50 audio

files) to be used in different experiments. We split the data into two sets – (i) training and (ii) testing.

We randomly choose 80% samples for the training set on which we train the machine learning models and

we test the machine learning model with the test dataset. We perform 5-fold cross-validation to report the

accuracy.

6 Results

This section provides an in-depth analysis of the features and algorithms shown in the previous section.

6.1 Performance of Shape Identification

First, we analyze the performance of the shape detection module that distinguishes between small

hollow areas of three different shapes – cube, triangular prism, and sphere. We consider two different scenarios

for this evaluation – ideal condition and unideal condition. Under the ideal condition, the experimental setup

and the environment remains the same for both the training and testing scenario. In the unideal condition,

we introduce noises as described in the previous section and change the height of the test objects. Moreover,

the environment of training and testing are different to test the robustness of the proposed system.

Figure 13 shows that when using a single feature Power Spectrum (Power) and Acoustic Loudness
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Figure 13: Classification accuracy of shape identification, deformation detection, and deformation localization
with individual of acoustic features.

(AL) achieve the highest accuracy of 86.6% in identifying shapes. These features are effective because vari-

ations in shape can alter the reverb and sound reflections, which have a direct impact on Acoustic Loudness

and Power Spectrum. However, Spectral Kurtosis and Spectral Roll-Off Point achieve lower performance

(33.33%) due to the signals having comparable power spectrum distributions, making it challenging to dif-

ferentiate between them.

In the unideal condition, Acoustic Loudness achieves the highest accuracy of 66.67%, which is 20%

less than that of the ideal condition using the same feature. However, Power Spectrum’s performance has

more accuracy drop (26.67%), indicating the lack of robustness of the feature. Interestingly, the Spectral

Roll-Off Point and Spectral Kurtosis have higher accuracy in an unideal scenario compared to an ideal

scenario. But as both results are below 50%, we discard these features. Besides these two features, all

features experience a drop in accuracy in the unideal scenario.

Next, we combine multiple of these acoustic features to improve the identifiers’ performance. Fig-

ure 14 shows that in an ideal scenario the highest accuracy is 90% achieved with the following 8 feature
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Figure 14: Classification accuracy of shape identification, deformation detection, and deformation localization
with combinations of acoustic features.

combinations: [ZCR, AL,SCentroid], [ZCR, AL, GTCC ], [ZCR, AL, SSkew], [ZCR, AL, PowerS], [ZCR, AL,

SEntropy], [ZCR, AL, Mel-Spec], [AL, Mel-Spec], [ZCR, AL]. However, under unideal conditions, the highest

accuracy is 70%, achieved with ZCR, AL, and GTCC. This combination of features works best under ideal

and unideal conditions, making it the overall best for shape identification. Combining features increases the

accuracy of both the ideal shape identification and the nonideal shape identification by approximately 3%.

6.2 Performance of Deformation Detection

In Figure 13, Mel Spectrogram, Spectral Spread, Spectral Roll-Off Point, Harmonic Ratio have

more than 80% accuracy in differentiating between a perfect and deformed shape. However, Mel Spec-

trogram achieves 100% accuracy because it accurately captures the 20Hz-20KHz changes caused by the

shape deformities. Notice that though Acoustic Loudness achieves the overall best performance in shape

identification, it performs poorly (55%) when detecting deformation.

Figure 14 shows that 3 combinations of features achieve 100% accuracy: [ZCR, AL, Mel-Spec], [AL,

Mel-Spec], [ZCR, Mel-Spec].

All three of these combinations contain Mel-Spec, which achieves 100% accuracy on its own. The
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worst feature combination for deformation detection is ZCR, AL, SFlat achieving 65% accuracy. This is 5%

higher than SFlats individual deformation detection accuracy.

6.3 Performance of Deformation Localization

We look into the performance of the deformation localizer which detects whether the deformation

happened on the left, right, back, or front of a cube. Figure 13 shows that Spectral Entropy and Acoustic

Loudness achieve the highest accuracy (75%) for this four-class classification while Spectral Decrease achieves

only 10% accuracy, implying that deformation does not have a large impact on the slope of the lower

frequencies in the audio signals.

The best combination of features(ZCR, AL, and SEntropy) 14 increases the accuracy to 90%. This

is 15% higher than the individual accuracy’s of SEntropy and AL. ZCR, AL, and Harmonic Ratio obtain a

slightly lower accuracy (85%) which is interesting given that Harmonic Ratios individual accuracy is only

60%. ZCR, AL, and SEntropy result in a higher accuracy than the other combinations and therefore should

be used for deformation localization. Although this combination of features performs best for deformation

localization and ideal shape identification, it does not perform best for non ideal shape identification and

deformation detection. This implies that ZCR, AL, and SEntropy are more sensitive to side obstructions

and ideal shape changes than general obstructions and non ideal shape changes.

Figure 15: Effect of the number of microphones of performance.

28



6.4 Effect of Number of Microphones

To understand the relationship between the number of microphones and the performance, we an-

alyze the performance of shape identification, deformation detection, and deformation localization using a

combination feature – Zero Crossing Rate (ZCR) and Acoustic Loudness (AL). We consider this combination

of features because - It shows a stable results for both individual feature and multiple features in accurately

identifying the shape, detecting deformation, and localizing deformation. Figure 15 shows that performance

drops with the number of microphones. While deformation localization remains relatively unaffected by

the number of microphones used, shape identification experiences the most significant performance decrease

in non ideal scenarios. Interestingly, our results also show that the number of microphones has a varying

impact on different experiments. For instance, we observed a 10% increase in performance between one to

two microphones, but no significant improvement between two to four microphones. These findings suggest

that the optimal number of microphones required may depend on the specific application and use case. In

some scenarios, two microphones may be sufficient to achieve optimal performance, while in others, a greater

number may be required.
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Figure 16: Confusion matrices for a single microphone setup using two features for shape identification in an
ideal scenario (Top Left), shape identification in an unideal scenario(Bottom Left), deformation detection
(Top Right), and deformation localization (Bottom Right).
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Figure 17: Confusion matrices for a two-microphone setup using two features for shape identification in an
ideal scenario (Top Left), shape identification in an unideal scenario(Bottom Left), deformation detection
(Top Right), and deformation localization (Bottom Right).
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Figure 18: Confusion matrices for a four-microphone setup using two features for shape identification in an
ideal scenario (Top Left), shape identification in an unideal scenario(Bottom Left), deformation detection
(Top Right), and deformation localization (Bottom Right).

Figures 16,17 and 18 show the confusion matrices for all the experiments with one, two, and four

microphones, respectively. From these confusion matrices, we see that for non ideal shape identification,

less than four microphones confuse Pyramid with Sphere. This is the main contributor to performance

degradation in this scenario. Moreover, we observe that the number of microphones impacts not only the

accuracy of the experiment but also how the errors occurred. Notably, the number of ways an error occurred

decreased with increased microphones. For instance, shape identification in an ideal scenario confuses Sphere

and Cube with one microphone, but two microphones can eliminate this confusion.
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6.5 Shape Dimension Estimator

First, we use the triangulation method with a 10 sample lag limit to determine the height of different

shapes. Figure 19 shows that triangulation-based height estimation is inconsistent, and the estimation error

varies from -53.72mm to 12.89mm, 26.0326389mm to 738.95mm, and -40.11mm to 190.34mm for the cube,

pyramid, and sphere, respectively. Note that the actual height of each shape is approximately 85mm. We

limit the maximum sample delays between the microphones to minimize this error. Additionally, Figure 19

shows that the average estimation error for the height of the cube is only -9.84mm, while for the sphere, it

increases to 48.96mm. The pyramid’s height estimation is highly inaccurate. This error is due to the special

structure of the top surface.

Figure 19: Performance of the Shape Dimension (Height) Estimator with Triangulation and Sample Delay
Limitation.

However, when the number of lags is not limited to ten and triangulation is performed the results are

imaginary4. This is because finding the delay between microphones through a correlation function produces

wildly varying and often illogical results causing the trigonometry function used to calculate distance to

output imaginary heights. These results indicate that triangulation based on the delay between microphones

is not ideal for this application.

Next, we perform a gradient-boosted machine (GBM)technique that utilizes acoustic Loudness,

to predict the height of the shape. Due to a limited amount of data, this approach could not distinguish

between heights that were not specifically imputed as data. Thus, the GBM always predicted the height of
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Shapes Height(mm)
Cube 1 28.7182333373835 + 0.0487262010197422i
Cube 2 0 + 0.0365403917080402i
Cube 3 0 + 0.0399341621598897i

Pyramid 1 0 + 0.0399999657677704i
Pyramid 2 0 + 0.0360547465672955i
Pyramid 3 0 + 0.0354565634580843i
Sphere 1 0 + 0.0399995682894515i
Sphere 2 0 + 0.0368586158570601i
Sphere 3 0 + 0.0399990640022761i

Table 4: Performance of the Shape Dimension (Height) Estimator with Triangulation only
.

the shapes to be 0.063mm. However, we envision that with more data we can achieve better performance

with this approach because the acoustic loudness recorded by the microphones varied based on the height

of the shape. For instance, an 80mm box resulted in an acoustic Loudness of MIC1=37.1410dB, MIC2=

38.6732dB, MIC3= 36.3973dB, MIC4= 38.94930dB and a lower box(40mm) resulted in an acoustic Loudness

of (MIC1=40.6866dB, MIC2= 41.5314dB, MIC3= 40.8353dB, MIC4= 39.1811dB).
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7 Limitations and Future Work

This section highlights the shortcomings and challenges of the study and presents potential avenues for future

research and improvements.

Limited Characteristics of Objects. This paper mostly focused on three simple shapes – a cube, a

pyramid, and a sphere. However, whether the proposed technique is suitable for more complex shapes is yet

to be explored. Moreover, the objects are 3D printed with ABS plastic and we have used aluminum foils

for creating the deformation. In our future work, we want to explore more complicated shapes and different

materials including wood, steel, and cardboard. This will test the robustness of the proposed algorithm for

complex shapes and materials.

Limited Environment. The experiment utilized a single room with specific dimensions. The room contains

a computer server and an HVAC system, which introduces robust noises, proving beneficial. However,

further experiments and analysis are required to understand the algorithm’s performance in more challenging

situations like larger rooms, outdoor settings, or rooms with more people. In the future, we aim to conduct

these tests and develop the proposed algorithm to be environment invariant.

Dataset Size. This project involves 210 samples, which is a relatively small number. To evaluate the

model’s generalizability, it is important to gather more data in future studies. By creating a more robust

dataset that encompasses various shapes, materials, and environments, as previously mentioned, the model’s

applicability can be further assessed and potentially enhanced.

Limited Acoustic Sound. In this study, we focus solely on using a 10 kHz square wave sound signal.

This frequency can be unpleasant and potentially harmful to the ear. Moving forward, we aim to investi-

gate alternative sound types and frequencies. Additionally, we are interested in exploring the potential of

incorporating music into our approach.

Comparatively Larger Microphone Array. The size of the ReSpeaker is currently not suitable for in-ear

research, necessitating the development of a smaller microphone array to investigate much smaller enclosed

shapes, which would better mimic in-ear studies. This is the primary motivation for creating a more compact

microphone array.

Realtime System. In the current system, there is a two-part process. Data is collected on a Raspberry Pi,

sent to the computer, and subsequently processed. In the future, the goal is to first eliminate the manual

sending. Then, the aim is to shift the computation to the device itself, creating a fully integrated system.
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Shape Dimension Estimation. As shown in Section 6.5, we have not achieved satisfactory performance

in estimating the dimension (height) of the shapes. By obtaining more data, we can enhance the training

of the GBM model, potentially leading to improved performance. The additional data enables the model

to better understand and identify patterns, relationships, and trends within the dataset. As a result, the

model is more likely to generalize well to new, unseen data, offering more accurate and reliable predictions.

The increased volume of data strengthens the model’s foundation, allowing it to adapt and evolve to handle

complex tasks and challenges more effectively. We also plan to explore deep neural networks (DNN) for this

estimation as DNN has shown great performance in many real-world applications. As more data collection

may require large annotation efforts we plan to utilize semi-supervised learning techniques to improve our

performance.

In summary, while the current study provides the foundation for future research in this area, there

is still much work to be done to fully understand the potential of this method for shape identification and

deformation detection.
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8 Conclusion

Through this project it has been shown that audio can be used to differentiate between small hollow shapes.

Although the algorithms had fairly accurate results, they are far from perfect. In order to improve the

results, more audio features could be explored, different machine-learning algorithms could be implemented,

more data could be collected, and improved localization techniques could be applied.

Not only can this technology be applied to earbuds for ear modeling and health purposes, but it

can also be applied to other applications such as aiding in the maintenance of factories(including pipelines

and machinery that is hard for humans to reach) and providing information on the health of structures(such

as bridges and tunnels). For instance, since the shapes used in the experiments are geometric they are

similar to the shape of pipes and other parts used in factories. Thus, playing sounds into these parts can

give an indication of the health of the factory parts and help diagnose problems. Similarly, playing sounds

into structures such as tunnels can be used to determine if the structure is eroding or broken. This project

demonstrates the potential of audio technology to improve various industries beyond ear modeling and health,

making it a promising area for future research and development.
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