

 2

INTRODUCTION .. 4

BACKGROUND .. 5

1.0 Accessibility ... 5

2.0 Compa5bility ... 6

3.0 Current Technology in Use ... 6

4.0 Java, JavaFX ... 7

5.0 Mobile Development ... 7

SOFTWARE REQUIREMENT SPECIFICATIONS (SRS) ... 8

1.0. INTRODUCTION .. 8

1.1. Purpose ... 8

1.2. Scope of Project .. 8

1.3. Glossary .. 9

1.4. Document Overview ... 9

2.0. OVERALL DESCRIPTION .. 10

2.1. System Environment ... 10

2.2. Func5onal Requirements Specifica5on ... 10

2.3. User Characteris5cs .. 18

2.4. Non-Func5onal Requirements .. 18

3.0. REQUIREMENTS SPECIFICATION ... 19

3.1. External Interface(s) ... 19

3.2. Func5onal Requirements .. 19

3.3. Detailed Non-Func5onal Requirements .. 22

IMPLEMENTATION .. 23

1.0 DESKTOP APPLICATION ... 23

1.1 Front-End ... 23

 3

1.2 Server/Backend .. 24

2.0 MOBILE APPLICATION ... 25

DISCUSSION ... 27

CONCLUSION .. 30

APPENDICES ... 31

REFERENCES ... 36

 4

Introduction

 In a recent survey, 50% of Americans utilize subtitles to watch content most of the time,

while 55% believe that content has become harder to hear and understand.1 Although this survey

specifically inquiries about Streaming and Cable programming, it exemplifies the trend of

subtitle usage among the American population. Many complaints arise from poor audio mixing,

dark scenes, and an overall inability to focus. In this study, many pointed out that subtitles were a

way of focusing on the plot and improving their overall experience.

 On a non-convenience side, subtitles offer people with hearing impairments to enjoy

content. Theaters allow for an encompassing experience of screen and sound, and with

impairments or poor sound, the experience is immensely impacted. Creating a system to allow

subtitle usage can greatly improve the access of theatres and the overall experience for all.

 The purpose of this project is to develop a system that allows individuals to enjoy

subtitles in Movie Theaters. This project will be a combination of a desktop app and mobile

application. The Extra Ears system is to aid in the accessibility of movie theaters for

theatergoers. The system will be designed to allow end users to receive subtitles on their mobile

devices during a film, improving the experience for the hearing impaired and/or users who just

enjoy subtitles. By creating an easy-to-use system, Extra Ears can make movies more accessible

to all individuals.

1 Zajechowski, “Survey: Why America is obsessed with subtitles.”

 5

Background

1.0 Accessibility

The first key aspect of any successful software product is accessibility. Traditionally, it is

defined as something easily reached or used.2 In the case of software, it’s imperative to allow

people of all backgrounds to utilize the technology being provided. W3C denotes accessibility as

being “…essential for developers and organizations that want to create high quality websites and

web tools, and not exclude people from using their products and services.”3 Furthermore, the

United Nations imposes Article 9, stating that individuals with disabilities have the right to

partake in all aspects of life, including “…information, communications and other services.”4 In

an age with increased digitalization, it is imperative that software is designed with all people in

mind. In the case of movie theaters, many have been slow to adapt, and with widely

acknowledged sound and screen issues, the bar of accessibility will keep raising without active

involvement.

 In the context of Extra Ears, one of the main goals is to make theaters more accessible to

all. By providing an easy to use, simple to understand client-side application, Extra Ears can be a

perfect solution to movie theater accessibility.

2 Merriam Webster, “Accessible.”
3 W3C, “Accessibility.”
4 United Nations, “Article 9 – Accessibility.”

 6

2.0 Compatibility

As the number of mobile device options for consumers to choose from increases, it is

becoming increasingly more important that mobile applications can work on different platforms.

To accommodate as many potential users as possible, the Extra Ears mobile application utilizes

the React Native framework to ensure simple compatibility with both iOS and Android platforms

using a single codebase. The framework also provides native-like performance and UI/UX

features as well as many libraries that run smoothly on both platforms. By leveraging the power

of React Native, the app is easily available to a wider audience without sacrificing performance,

function, or usability.

3.0 Current Technology in Use

 Currently, theaters around the United States have been slow to adapt to new accessibility

requirements. AMC Theaters, one of the U. S’s largest theaters, has begun offering closed

captioning at certain showtimes.5 Although it provides a minor solution for hearing impaired

clients or individuals who enjoy subtitles, it vastly limits the freedom of people to choose when

to visit the theaters or what films they’d enjoy seeing. Apart from designated screen times, some

devices/tools exist to provide the closed captioning functionality to patrons. Some theaters offer

utilities like mirror captions, special smart glasses or small devices that can be held.6

 Although there are solutions that provide subtitling and closed captioning services for

patrons, there doesn’t exist an easy to use, hassle free solution.

5 NPR, “The world's largest movie theater chain is adding open captions at 240 U.S. locations.”
6 Circle Translations, “What is Closed Captioning in Movie Theatres & How It Works.”

 7

4.0 Java, JavaFX

 For developing a desktop application as well as prototype infrastructure, there are a

multitude of libraries, languages, and software available. For this software, the team decided to

utilize Java and JavaFX for the desktop side of the application. Java has a multitude of

advantages over other languages such as being object oriented and being platform independent.7

Furthermore, Java holds a plethora of libraries vital to large scale applications, such as

networking and UI development tools.

 To develop a front-end of the application, JavaFX will be vital to integrating it into the

backend of our application. JavaFX is highly customizable and intuitive, with even more

libraries and easy integration into existing Java code.

5.0 Mobile Development

When developing a mobile application, there are a multitude of languages and

frameworks to choose from, however, React Native is one of the best choices for the Extra Ears

system. The React Native framework provides clear benefits over other languages and

frameworks, including an extensive library support and excellent cross-platform compatibility.

React Native is also very intuitive, as it is written very similarly to popular languages, and

customizable to allow developers to seamlessly integrate their app with other software and the

app's backend. This creates a very cohesive development experience and a great user experience.

React Native provides everything developers need to quickly build excellent apps for both iOS

and Android platforms, which is why it was used for the development of the Extra Ears mobile

application.

7 IBM, “Advantages of Java.”

 8

Software Requirement Specifications (SRS)

1.0. Introduction

1.1. Purpose

 The purpose of this Software Requirements Specification (SRS) document is to provide a

description of the Extra Ears System. It aims to explain the purpose of the system, proposed

features, and potential constraints. This document is intended for stakeholders and Extra Ears

system developers.

1.2. Scope of Project

 This software will be a combination of a desktop app and mobile application. The Extra

Ears system is to aid in the accessibility of movie theaters for theatergoers. The system will be

designed to allow end users to receive synced subtitles on their mobile devices during a film,

improving the experience for the hearing impaired and users who just enjoy subtitles. By

creating an easy-to-use system, Extra Ears can make movies more accessible to all individuals.

 Specifically, this system has two major components – a mobile application and a desktop

command and control program. The desktop side will allow movie administrators to relay movie

information to connected mobile devices, while the mobile application will play time-synced

subtitles. The system will also allow for timing management and language options.

 9

1.3. Glossary

Term Definition

Accessibility The practice of making software/environments open and usable

by all potential users.

Active Movie Movie that is currently being managed by an administrator and

being shown in a theater.

Administrator Person managing the desktop-side application for controlling a

selected movie.

End-User Movie-going customer and user of mobile application.

Stakeholder Any person with an interest in this project who is not a

developer.

Software Requirement

Specification

A document that describes the functions of a software system

and its purpose and goals.

1.4. Document Overview

 The next section of this document gives a general overview of the functionality of the

Extra Ears system. It describes general requirements to establish background for the technical

necessities of the product.

 The third section, 3.0. Requirements Specification of this document is for developers and

outlines technical details of the Extra Ears system.

 Both sections 2.0 and 3.0 describe the Extra Ears System as a whole, with specific

sections on both the mobile application side, and the desktop command and control side.

 18

2.3. User Characteristics

 The End-User is expected to have access to a mobile device with WiFi capability.

Furthermore, they’ll need to install the Extra Ears app to have access to the system.

 The Administrator is expected to be trained on the system and have access to the Extra

Ears desktop application.

2.4. Non-Functional Requirements

 The Extra Ears system will compose of two parts: A desktop application and a mobile

application. Both are expected to have access to a high-speed local network.

The machine used to host the Desktop command and control software is ultimately

determined by the theater but must support connections to multiple network devices

simultaneously. The strength of the connection/reliability is up to the strength of the local-area

network (LAN).

The mobile device must be able to run React Native applications. With proper

programming, the Extra Ears application will be able to run on both iOS and Android devices.8

8 React Native, “Platform Specific Code.”

 19

3.0. Requirements Specification

3.1. External Interface(s)

 For the Extra Ears system, the only link to an external system is the Movie Database.

This database will contain relevant information about available films for the Extra Ears system.

For the system, the data fields of interest will be Movie Name, Movie ID, subtitle reference and

time information.

3.2. Functional Requirements

3.2.1. End-User Functional Requirements

Connect to Movie

Use Case Name Connect to Movie

Xref Section 2.2.1

Trigger The End-User selects which theater they’re in.

Precondition The End-User has installed the mobile app and connected to the local

network.

Basic Path 1. The End-User connects via the 2.2.1 Connect to Movie use case.

2. The End-User is connected to the Extra Ears system and waits for

the administrator.

Post Condition The End-User waits for the movie to begin.

Exception

Paths

Failed Connection to the Extra Ears system.

Adjust Timings

Use Case Name Adjust Timings

Xref Section 2.2.1

Trigger The End-User taps the screen to open controls or moves to portrait

orientation.

 20

Precondition The End-User has connected to the System and a Movie is playing.

Basic Path 1. The End-User connects to an active movie.

2. End-User taps screen OR moves device to portrait orientation.

3. The End-User can alter the timing of subtitle playback.

Post Condition The local playback is altered.

Exception

Paths

Extra Ears system disconnection/connection failure.

Play/Pause Subtitles

Use Case Name Play/Pause Subtitles

Xref Section 2.2.1

Trigger The End-User taps the screen to open controls or moves to portrait

orientation.

Precondition The End-User has connected to the System and a Movie is playing.

Basic Path 1. The End-User taps the screen to open playback controls.

2. The user can select the play/pause button to stop playback of

subtitles.

Post Condition The playback has been stopped/started.

Exception

Paths

Lost connection/failed connection to system.

3.2.2. Administrator Functional Requirements

Select Movie

Use Case

Name

Select Movie

Xref Section 2.2.2

Trigger The Administrator selects the theater to begin system setup.

Precondition The Administrator has access to the Extra Ears system.

 21

Basic Path 1. The Administrator selects the correct theater.

2. The Administrator selects the Movie selection tool.

3. The Administrator selects the correct movie from the database and

loads required content.

Post Condition The system queues the movie data to be processed.

Exception

Paths

Connection error to the movie database.

Manage Playback

Use Case Name Manage Playback

Xref Section 2.2.2

Trigger The Administrator selects any of the playback tools on the UI.

Precondition The system has a movie playing.

Basic Path 1. The administrator can alter timing.

2. The administrator can start/stop subtitle playback for users.

Post Condition The playback was altered.

Exception Paths Lost connection to devices.

Manage Devices

Use Case Name Manage Devices

Xref Section 2.2.2

Trigger The Administrator enters the Manage Devices area of the UI.

Precondition The system has end-user devices connected.

Basic Path 1. The Administrator enters the Manage Devices area of the UI.

2. The Administrator can remove/check the status of connected

devices.

Post Condition Connection of devices has been checked or devices removed from system.

Exception

Paths

Connection error to connected End-User devices.

 22

3.3. Detailed Non-Functional Requirements

3.3.1. Security

 The Movie Database server will have restricted write/delete access to prevent

unauthorized editing of Movie information. The only services using the Movie Database server

will be the Extra Ears system with read access granted to it. The PC that runs the Extra Ears

system will have its own security. Only a trained Administrator will have access to the machine

and Extra Ears software.

 The connection between Extra Ears command and control system and mobile devices will

be limited on the application layer. Furthermore, the mobile application will only need access to

discover devices on the local network and will not require any elevated privileges.

 23

Implementation

 This section details the technology used, processes and workflow of the entire system.

Both the desktop application, server, and mobile implementation are discussed below.

1.0 Desktop Application

1.1 Front-End

 As mentioned in the background, we chose to utilize JavaFX for our frontend. Utilizing

IntelliJ IDEA and Scene builder, we created an easy to use and understand front end (Appendix

A). To further the look and feel of the application, we also chose MaterialFX, which provides

material design components to JavaFX.9 On our interface, the administrator is presented with a

main screen, containing three main parts: a theater list, currently managed movie, and connected

devices. Theaters can be added via the backend, and they will populate on the main screen.

Furthermore, the main screen displays current timing, selected subtitles, and allows for the admin

to generate tickets to use for connecting to the Extra Ears service.

 To have users connect, the administrator can generate a QR code, from the Generate

Ticket button. The UI dynamically generates the ticket, based on the current network conditions

(Appendix B, C). The admin can also export the generated ticket to the local machine, allowing

for later use. Once users scan the generated QR code, they will automatically connect and appear

on the right-hand side.

 For managing subtitles, the application provides two main features: movie/subtitle

selection, and timing management. Pressing the Movie Management button, administrators can

9 https://github.com/palexdev/MaterialFX

 24

set the active movie and corresponding subtitle. At the center of the screen, the box art is

displayed, with current timestamps and play-pause and skip functionality.

1.2 Server/Backend

 One of the biggest tasks was managing performance. For the front end, server, and

connected clients, we designed and implemented a multithreaded application. Upon startup, the

application splits into two threads: an application thread, and a server/backend thread. The server

binds to the host machine’s IP address as well as a designated port.10 This is to ensure neither

process within the application will ‘hang’ if they start processing data. For managing client

performance, each connected client is designated to its own thread, and will be paused and

resumed accordingly.

 When the app is launched, the server binds to a port, and begins waiting for clients. Once

a client scans the QR and successfully enters the Extra Ears mobile application, the server

instantiates a DataInputStream and DataOutputStream for easily reading sent/received data from

the socket. The server instantiates a ClientHandler, and passes in data streams, socket

information and associated device identifiers. Next, the server designates the connected client to

a ClientHandler class and network operations continue.

 Due to the socket.io-client library we utilized in the mobile application, the server must

first read for an HTTP upgrade header and respond. This is to ensure that the WebSocket used on

the client side can read binary data and keep the socket open. Once this process completed, the

server sends the selected subtitle file to the client and begins waiting for further commands. Now

10 In our testing we used port 3542.

 25

that a client is connected, the server can begin sending timing information and play/pause codes

instructions.

2.0 Mobile Application

As mentioned in the background, our mobile application was written entirely in React

Native. Using Visual Studio Code and the Expo CLI, we created a very clean and easy-to-use

mobile application (Appendix D). In addition to the React Native framework and the extensive

supply of packages and libraries it provides, the Expo CLI played a key role in the development

of the Extra Ears mobile application. Not only does the inclusion of the Expo CLI provide even

more libraries and features, but it also adds a native logging system and creates a very simple

interface for testing the app natively, or through an emulator, on both iOS and Android devices

(Appendix E).

To ensure that the application connects to the correct WebSocket, we used the Expo CLI’s

expo-barcode-scanner to scan the QR code created by the server which contains the WebSocket’s

host and port (Appendix F). Custom styling was also used to remove the QR reader from the

user’s view to ensure a quick, clean, and simple user experience (Appendix D).

To connect to the server’s WebSocket, we used the socket.io-client library, which allows

developers to easily implement various types of socket clients and automatically connect to the

server. In our implementation, the client first establishes a connection with the server and sends

an HTTP upgrade request. Then, it waits for and processes the incoming SRT file and waits for

play/pause commands from the server.

To create intuitive navigation controls and seamless flow between pages, we chose React

Native’s Native-Stack-Navigator library, which provides a way to transition between screens

 26

where each new screen is placed on top of a stack. The application will automatically navigate to

the subtitle display page once the theater’s QR code is scanned, and a back button is placed on

the top of the subtitle display page to allow the user to navigate back and scan another theater’s

QR code.

To display the movie’s subtitles, we used React Native’s react-native-video and react-

native-subtitles packages. The react-native-video package provides a way to create instances of

and customize each platform’s native video player to play a chosen video, or in our case display

a black image for the duration of the subtitles. The react-native-subtitles package can be paired

with the react-native-video package to overlay subtitles from a .SRT or .VTT file onto the video

and provides many options to customize the appearance of the subtitles. We use the react-native-

subtitles package to display the .SRT sent to the client device from the server (Appendix G).

 27

Discussion

The Extra Ears system works and achieves our goal of making movie theaters more

accessible to all. We successfully created a prototype application which allows theaters and

clients smoothy receive subtitles for any movie they attend. Utilizing an easy-to-understand

administrator console and intuitive mobile application, the team was ecstatic and proud of the

prototype we created.

On the desktop/server side, the Extra Ears system performs very well. During testing, the

team was able to accommodate 10+ connected devices, and with a dedicated application and

server split, as well as code optimizations, the system can easily be expanded to encompass

multiple theaters and hundreds of clients. To improve the overall performance, design and

functionality of the system, there are two main areas of focus: the backbone and the database.

For ensuring maximum performance in a real-world situation, the back end should be written in a

high-performance language like C++ or Rust for maximum control and efficiency. Furthermore,

a designated database that can be dynamically updated with movie info, theaters and subtitle files

is a necessity but out of the scope of this prototype.

During the development of the Extra Ears desktop and mobile applications, we faced a

few difficulties that required us to switch our approach. On the desktop side, originally, the team

was planning to utilize more JavaScript and Electron, but ultimately shifted towards a complete

Java application.11 The team embraced the Java/JavaFX because of advantages stated earlier

(extensive library support and excellent debugging and error handling) and it being the more

comfortable language to work with for us.

11 https://www.electronjs.org/

 28

On the mobile side, we were able to successfully create a minimalistic and intuitive

application that fits the needs of our stakeholders. The application loads and operates very

quickly, functions stably on both iOS and Android, and passed all our usability tests. It is also

able to consistently create a stable connection with the server, receive and process the movie’s

SRT file, and pause/play the subtitles upon the server’s instruction.

One difficulty the team faced was ensuring all of the targeted users could easily use the

application. Along the way, the mobile application went through many different design iterations

that included login screens, extra branding, more colorful graphics, and other clutter that all

distracted from the app’s focus. However, after asking a few potential stakeholders for their

opinions, the team quickly realized that our target demographic prefers simplicity over all else

and the team landed on our current, very minimalistic, mobile design.

The biggest difficulty came about when devising a way to connect the mobile application

to the server. Initially, the team had used React Native’s react-native-tcp-socket package, which

allows developers to create simple TCP client and server sockets. However, this package was

very difficult to integrate and refused to consistently create a stable connection to the server. To

solve this problem, the team decided to switch to the socket.io-client library which perfectly

suited our needs. Then, the team noticed that the server would hang and reject subsequent

connections once the first client had connected. Luckily, the team quickly realized that adding

multithreading to the server, where each thread is designated to handle one client connection,

was a fantastic solution to this problem.

Currently, the Extra Ears desktop and mobile applications are fully functional. However,

the team has noted some changes they would like to make before deeming it production ready.

Most importantly, the team would like to make the mobile application even more accessible by

 29

switching to an automatic location-based connection over Wi-Fi rather than requiring users to

manually scan a QR code. The team would also like to add the ability to stream the movie’s

audio through a Bluetooth connection to hearing aids to assist a wider range of people. Also, the

team would like to provide more controls and customization to our desktop application to allow

theaters to provide a more enjoyable experience for their patrons. And lastly, the team would of

course like to improve the design of both the desktop and mobile applications.

Outside of theaters, this technology has an immense range of uses. Although designed

specifically for theaters, the fundamental idea of synchronous captioning sent right to a mobile

device is immensely applicable. From live events such as concerts, speeches to even classrooms

this kind of technology is under-utilized and easy to introduce. It’s important to expand access to

services to anyone imaginable, which is why the team embraced Extra Ears.

 30

Conclusion

Extra Ears aims to provide an easy-to-use solution for moviegoers with hearing

impairments or those who prefer subtitles. By utilizing Java and JavaFX for the desktop

application, a multithreaded server, and React Native for the mobile application, Extra Ears will

be easily accessible on a wide range of platforms. Overall, the project accomplished the

overarching goal of making the movie theater experience more enjoyable for all. A robust, easy

to understand mobile app with little to no human input makes the client side of the experience a

breeze. The desktop application incorporates an easy to understand and utilize front end,

dynamically generating tickets, and simple movie and timing management. By creating an easy-

to-use system, Extra Ears can make movies and other industries more accessible to all

individuals.

 32

Appendix C: Generate Ticket Code.

 33

Appendix D: React Native Mobile Front End

 34

Appendix E: Expo CLI Command Line Interface

 35

Appendix F: Expo-barcode-scanner Implementation

Appendix G: react-native-video and react-native-subtitles Implementation

 36

References

Merriam-Webster. n.d. accessible. https://www.merriam-webster.com/dictionary/accessible.

React Native. n.d. Platform Specific Code. https://reactnative.dev/docs/platform-specific-code.

United Nations. n.d. Article 9 - Accessibility.

https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-

with-disabilities/article-9-accessibility.html.

W3C. n.d. Accessibility. https://www.w3.org/standards/webdesign/accessibility.

Zajechowski, Matt. 2022. Survey: Why America is obsessed with subtitles. 6 17.

https://preply.com/en/blog/americas-subtitles-use/.

