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Abstract

Wireless capsule endoscope (WCE) has become one of the most popular inspection de-

vices which provides visual investigation of entire gastrointestinal (GI) tract. While

the other traditional (wired) endoscopic devices are usually used for colon and stom-

ach inspection. Locating abnormalities such as tumors, polyps and bleedings with wire-

connected endoscope in GI tract is simple as long as we could measure the length of

the wires inside human body. When WCE is applied, however, this becomes a critical

challenge of examination since there is no wires connected to WCE while physicians

need to find the exact locations of WCE to identify the position of abnormalities. To lo-

cate the WCE accurately, methods have come up in last decade including time of arrival

(TOA) based methods, received signal strength (RSS) based methods, phase difference of

arrival (PDOA) based methods, electromagnetic methods and video-based tracking meth-

ods, etc.. In this thesis, the accuracy of TOA, PDOA and video based localization methods

are analyzed. (1) We propose a novel video-based tracking technique based on maximum

mutual information, which provides a more accurate measurement of the displacement

and rotation of the WCE inside the large intestine. (2) We derive the Cramer-Rao lower

bound (CRLB) of TOA ranging using a single tone inside homogeneous tissues to ex-

amine the accuracy of three TOA ranging techniques. Then we compare the accuracy

of these ranging techniques in non-homogeneous tissues with that in homogeneous tis-

sues. (3) We also apply PDOA based ranging technique exploiting phase difference of

two signals. Since the phase difference is taken into consideration, the ranging ambiguity

of single tone is eliminated. We evaluate the accuracy of the proposed PDOA ranging

technique and compare with that of TOA techniques.
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Chapter 1

Introduction

In recent years, the rasing standardization of wireless body area networks (WBAN), IEEE

802.15.6 [1], aiming at providing a low power, short range and reliable wireless communi-

cation [2], brings new inspirations to health care [3]. Wireless capsule endoscope (WCE)

is one of the most popular applications related to health care in WBAN. WCE is a swal-

lowable medical device at pill size that carries a light source and camera as well as RF

components. The WCE is first swallowed by a patient and then keeps taking pictures

while travelling through the patient’s gastrointestinal (GI) tract. At the same time, WCE

transmits images outside the body which can be downloaded to help with the examination

of GI tract. By reviewing the received images, physicians could detect the abnormalities

and determine the severeness of those abnormalities.

1.1 Motivation

Even though the WCE indeed helps physicians detect the type and size of abnormalities

[4], it does not prove sufficient knowledge about the exact location of abnormalities in

the GI tract [5]. Different from wired endoscopy, wireless capsule endoscopy does not
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have the wire connecting to exterior equipments, which makes it difficult to estimate the

location. Thus, the accuracy needed for locating abnormalities inside GI tract becomes a

critical and urgent issue [6].

To meet the challenges, some of the researchers proposed video aided WCE track-

ing algorithms to help physicians determine how the WCE moves inside small intes-

tine [7] [8] [9]. Since little work has been done in large intestine, and the existing tracking

algorithms in small intestine can not be utilized for the large intestine, an algorithm that

helps tracking the WCE inside large intestine with high accuracy and stability is required.

Besides the video-aided motion tracking, time of arrival (TOA) localization is another

way to locate the WCE. There is significant work using TOA-based technologies for lo-

calization inside the small intestine [10] [11] which applies first peak detection algorithm

for the localization of WCE. More complex techniques used for estimating TOA, on the

other hand, can potentially improve the performance of TOA localization, such as detec-

tion of all peaks, and etc.. Thus, test and analysis of these TOA estimation methods may

help with the accuracy of TOA-based localization.

Further more, phase difference of arrival (PDOA) was designate for RFID indoor lo-

calization [12], but this technique can potentially be applied to localization inside human

body. Since PDOA utilizes the difference of frequencies, it helps eliminate the ambigu-

ity in WBAN, of which the TOA-based methods are not capable. Thus, investigation of

PDOA localization is also important.

1.2 Contributions of the thesis

Being motivated by the description and to meet the above challenges, we propose a novel

algorithm to improve the accuracy of WCE motion tracking and we also investigate TOA

and PDOA methods to find out how we could make the in-body ranging more accurate,
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both in homogeneous tissue and non-homogeneous tissues. The contributions of this

thesis with three research directions in WCE localization are:

(a) Design of a novel approach to improve the accuracy as well as the stability of visual

motion tracking of WCE inside the large intestine. Evaluation of our novel approach

shows that the performance of our algorithm is capable to find the rotation angle and

relative displacement of the WCE with acceptable errors throughout the entire process.

Compared with other approaches, our approach also shows stable performance under all

tested conditions. Detailed contribution to video motion tracking is reflected in:

1. Mingda Zhou, Guanqun Bao, and Kaveh Pahlavan. ”Measurement of motion

detection of Wireless Capsule Endoscope inside large intestine.” Engineering in Medicine

and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE.

IEEE, 2014.

(b) Investigation of the accuracy of TOA-based ranging methods, including detection

of the first peak, detection of all peaks and the generalized cross correlation coefficients.

We compare their performance using finite difference time domain (FDTD) simulation

in both homogeneous and non-homogeneous tissue with full body phantom. Analysis of

the impact of non-homogeneity on the accuracy of TOA-based ranging methods are also

performed. Detailed contribution to TOA-based ranging is reflected in:

2. Mingda Zhou and Kaveh Pahlavan, On the Accuracy of In-body TOA Ranging

Inside the Gastrointestinal Tract Using Carrier Frequency, Wireless Telecommunication

Symposium 2015, NYC, USA, April 15-17, 2015.

(c) Applying PDOA ranging method to in-body localization to expand the maximum

ranging distance and analyze the performance of PDOA both with simulations and real

measurements. We show that PDOA-based ranging does expand the maximum ranging

distance, without obvious decrease of ranging accuracy. Detailed contribution to PDOA-
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based ranging is reflected in:

3. Yongtao Ma, Mingda Zhou, Research of Phase of Arrival Based Ranging in Body

Area Networks and Its Channel Modeling, Journal of Selected Area in Communication,

IEEE, under review

Some other specific contributions of mine in this area are reflected by the list of pub-

lications below:

1. Mingda Zhou, Guanqun Bao, Yishuang geng, Bader Alkandari and Xiaoxi Li.

”Polyp detection and radius measurement in small intestine using video capsule en-

doscopy.” Biomedical Engineering and Informatics (BMEI), 2014 7th International Con-

ference on. IEEE, 2014.

2. Guanqun Bao, Liang Mi, Yishuang Geng, Mingda Zhou and Kaveh Pahlavan, ”A

Video-based Speed Estimation Technique for Localizing the Wireless Capsule Endoscope

inside Gastrointestinal Tract,” the 36th Annual International Conference of the IEEE En-

gineering in Medicine and Biology Society (EMBC’14), Chicago, USA, August 26-30,

2014.

3. Dan Liu, Mingda Zhou, Yishuang Geng, Kaveh Pahlavan, Power Efficient Relay

Networking for BANs in Non-Homogeneous Enviroment, IEEE WoWMoM, Bostong, USA,

June 15-17, 2015, under review

1.3 Outline of This Thesis

This thesis primarily focus on the accuracy of WCE ranging and tracking using techniques

including TOA based, PDOA based and visual motion tracking methods. We also derive

the CRLB for TOA and PDOA ranging errors as the guideline of performance evaluation.

The rest of this thesis is as follows: in Chapter 2, we present an overview of relevant
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researches in WCE localization, including literature review in recent year and basic in-

troduction of different kinds of localization techniques. In Chapter 3 we propose a new

visual tracking algorithm for WCE localization whose performance evaluation shows its

advantages over other algorithms. In Chapter 4, the CRLB of TOA ranging errors using

carrier frequency is calculated and we examined the ranging errors both in homogeneous

tissue and non-homogeneous tissues. Chapter 5 is composed in a quite similar way to

that of Chapter 4, the PDOA using two tones signal is introduced to investigate how accu-

rate this ranging method could be. CRLB of two tones POA based ranging errors is also

calculated and compared with our results. We finally conclude our work and present the

future direction of our research in Chapter 6.
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Chapter 2

Overview of WCE Localization

2.1 Introduction

In this chapter we discuss the background of WCE, publications in WCE localization and

some WCE localization methods. First, the basic information of WCE - the advantages

and why the market demands WCE localization service - is stressed. Then we briefly

investigate previous related publications in WCE localization, with different localization

methods. After that, we review several fundamental localization techniques that form the

basis of related publications, including TOA based , RSS based, PDOA based localization

and video aided motion tracking. Analysis of advantages and disadvantages of these

techniques are also posted in this chapter.

2.2 Development of Wireless Capsule Endoscope

Around twenty decades ago, Philip Bozzini made the first prototype of endoscope [13],

however applying endoscopy on human body inspection was prohibited by the govern-

ment until the year 1853 and it developed at an amazingly high speed from then on [14].
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The birth of rod lens in the year 1960 led the shape and functions of the endoscope to

becoming similar to that of today’s [15], as shown in Figure 2.1.

Figure 2.1: Wired endoscope

Figure 2.2: Structure of wireless endoscope

Though traditional endoscopy provides physicians with the chances to examine in-

terior tissues of human body [16] [17], this technology causes pain and embarrassment

to patients since insertion of a meter long wire could probably result in uncomfortable-

ness [18] and invasion in human body [19] [20]. These disadvantages and our unlimited
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thoughts bring out the birth of wireless capsule endoscope [21]. Wireless capsule endo-

scope is designed to be a pill size, swallowable and indigestible device (the overall and

interior structure of WCE is shown in Figure 2.2) [22]. Since wireless capsule endoscope

is equipped with one or more cameras taking photos while going through the gastroin-

testinal (GI) tract [23], it is also called video capsule endoscope [24].

Figure 2.3: The procedure of wireless capsule endoscopy: (a) swallow WCE, going
through GI tract and transmitting images; (b) outside receivers receives images and trans-
fers those pictures to medical workstation; (c) physicians take over the medical reviews
and make decisions

First presented by Given Imaging, Yokneam, Israel in the year 2000, wireless capsule

endoscope provide a noninvasive way to examine the GI tract of the human body [25].

Soon in 2001, US Food and Drug Administration cleared the electronic capsule which is

designed to provide images of the GI tract [26]. The procedure of GI tract examination

is given briefly here: A patient first swallow an active WCE, then the WCE start taking

photos at a rate 2 frames/second during its journey in the GI tract including esophagus,

stomach, small intestine and large intestine. After the entire process of digestion, the
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WCE is passively expelled from human body. During its journey in the GI tract, a WCE

keeps taking photos and transmitting them to outside receivers. Then, the pictures taken

inside GI tract will be sent for clinical review. This procedure is shown in Figure 2.3.

However, the power consumption of camera and RF components is relatively high

which makes general WCE lifetime limited to 8-12 hours [27]. Thus, WCE are gradually

subdivided for more specific areas such as small intestine [28], large intestine [29]and

etc. Now we can find the WCE from different companies, which are available in different

types and functions. Table 2.1 shows several kinds of WCE from different companies

with their properties [30] [31].

Table 2.1: Different WCE with their properties

Brand Size (mm) Frame rate Battery life
Pillcam SB2 11×26 2 8 hours

Pillcam COLON 11.6×31.5 up to 35 10 hours
EndoCapsule 11×26 2 8 hours

2.3 Literature review of WCE Localization

Wireless Capsule Endoscope (WCE) is a swallowable device at the size of a pill and

is equipped with one or two miniature cameras [32], going through the GI tract within

typically 5-8 hours [33]. During the journey inside GI tract, it takes dozens of thousands

of images with a frame rate varies from 2 to 8 frames per second which enables those

frames perform as a real video. After this step, the images taken inside GI tract could

then be downloaded to a mass storage device and physicians could go through the entire

video and diagnose diseases in GI tract [34].

Before the birth of wireless capsule endoscopy, colonoscopy had been dominating the

market for more than 50 years from the early 20th century. Though the colonoscopy is
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now still the predominant way to conduct gastrointestinal (GI) tract, it is not capable to

provide inspection inside small intestine. Moreover, comparing to colonoscopy, WCE

provides a much more non-invasive, comfortable and non-embarrassing way to inspect

patients’ GI tract [35]. while taking pictures inside GI tract at a relatively high rate, WCE

could record the images of abnormality and diseases and finally help doctors come up

with appropriate treatment [36].

As a critical component of capsule endoscopic examination, physicians need to know

the precise position of the endoscopic capsule in order to identify the position of detected

intestinal abnormalities and diseases. To accurately localize the WCE, variety of local-

ization techniques have been applied, including time of arrival (TOA) based methods,

received signal strength (RSS) based methods, video based methods, video-aided hybrid

localization methods,magnetic field methods and etc.

In [37], the authors discussed the possibility of RF localization of WCE, they stressed

that is could be very difficult for physicians to localize the WCE using RF signals because

of the complicated environment inside human body. To solve this, they designed a cyber

physical system (CPS) for visualization of interior of human body to assist in their exper-

iments. With the assistance of CPS, the challenges of WCE localization could be mainly

elaborated in three aspects: modeling of WCE Movements inside GI tract, modeling of

the wideband RF propagation in human body, design of algorithms for WCE localization.

To meet these challenges, the authors set up a test bed and exploited a simulation software

SEMCAD X to validate the their design and numerical calculation.

As one of the related project in [37], the bound of RSS localization inside human

body is discussed as well as the accuracy in [38]. In this paper, simulations are conducted

along with different power gradient in different organs such as stomach, small intestine

and large intestine. The authors verified that 50mm average localization error is achievable

in human GI tract. Meanwhile, they investigated the impact of number and topology of
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sensors on localization accuracy.

Besides the RSS based localization, some papers are published on TOA based WCE

localization [39] [11]. For TOA based localization of WCE, the main challenge is that

human body is a mass body with dozens of organs. Thus, two directions in TOA based

localization of WCE gradually arise: homogeneous tissue and heterogeneous tissue. For

homogeneous tissue, it is easier for researchers to conduct experiments and simulations

while less resembles real human body. For heterogeneous tissue, it is especially difficult

for researchers to find the trace of signals.

Phase difference of Arrival (PDOA), however, grows to be one of the emerging lo-

calization techniques recently [40]. In the past, PDOA was considered as one of the

improper localization techniques in BAN localization because of its ambiguity. But for

in-body circumstances, the range between transmitter and receiver could be within several

centimeters, which gives the possibility of using PDOA.

Meanwhile, video-aided localization becomes more and more popular due to the de-

velopment of image processing technology. Also, the birth of cyber-physical system

makes it possible to track the motion of WCE [41] [42]. In this thesis, the video-aided lo-

calization will also be discussed to investigate the accuracy of this localization technique.

2.4 Related localization techniques

2.4.1 TOA based localization

TOA based localization techniques are well-known because of their high accuracy com-

pared to RSS based localization techniques [43]. The time of arrival is measured based

on the time of travelling of RF signals between transmitter and receiver among which the

location of receiver is usually unknown. TOA ranging distance could be obtained by the

product of signal propagation velocity and the measured time of arrival:
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DTOA = tmeasured ∗ cεr (2.1)

where cεr denotes the velocity of RF signals in specific medium.

Figure 2.4: Electrical properties for human body

However, since human body consists of heterogeneous tissues with different electrical

properties such as relative permittivity and conductivity (shown in Figure 2.4) [44], the

RF signal travels with different speed through different organs [45].

These variations in the speed become the main source of ranging error in ToA based

localization inside the human body. Moreover, since localization resolution in and around

real human bodies is usually within a range from centimeters to decimeters, highly accu-

rate synchronization requirement is necessary which indicates an TOA error less than 1ns.

Time difference of arrival (TDOA), a closely related localization approach, could help fix

this drawback. For TDOA, two or more reference nodes are allocated to measure the re-

ceived signals [46]. After collecting the arrival time of received signals, time difference
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is derived by doing a simple substraction. The difficulties of applying TDOA techniques

are synchronization requirement and cooperation among all allocated nodes [47].

2.4.2 RSS based localization

RSS, sometimes also expressed as RSSI, is an indication of the power level being received

by the antenna. When the circumstance of radio channels are known, we can build a model

of the relationship between RSS and distance [48]. For RSS based WCE localization,

the path-loss model plays an important role since all localization algorithms lay their

foundations on the model to acquire the results. In order to improve positioning accuracy,

it is necessary to develop an enough accurate in-body to surface path-loss model. In

reference [49], the path-loss model in human body is given and validated, which is also

shown in Table 2.2. This empirical model is supported by National Institute of Standards

and Technology (NIST) and now is adopted by the IEEE group of 802.15.6 [50].

Table 2.2: Statistical parameters of implant to body surface path-loss model

Implant to body P(d0)/dB α σ /dB
deep tissue 47.14 4.26 7.85
near surface 49.81 4.22 6.81

Considering that RSS based WCE localization techniques are based on the general

fact that the closer the receiver is located to the transmitter, the stronger signal the re-

ceiver receives, the relationship between the RSS and the distance between transmitter

and receiver can be expressed by the path-loss model below:

RSS = Pt −P(d0)−10αlg(
d
d0

)+S(d > d0) (2.2)

where Pt is the transmitting power, P(d0) is the path-loss at a certain distance from

transmitter, i.e., d0 = 50mm, α is the power gradient from in-body tissue to body surface
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and S denotes the shadow fading that performs a Gaussian distribution. Thus, from Equa-

tion 2.2, the RSS is roughly related to the distance between transmitter and receiver and

the distance could be calculated if Pt is known. Figure 2.5 shows the relationship between

path-loss (dB) and distance (mm) without counting in the shadow fading.

Figure 2.5: In-body to surface path-loss model

2.4.3 POA based localization

Phase of arrival gains its popularity in recent years because of the spread of Radio-

frequency Identification (RFID) [51]. Now Phase Difference of Arrival (PDOA), the

localization technique that develops from POA, is also considered feasible to be applied

in BAN localization though POA based WCE localization is still facing some vital chal-

lenges such as phase ambiguity and phase bias when penetrating different medium. As-

sume that we have two RF signals at different operation frequencies f1 and f2, then we

have

ϕ1 = 2π(
d f1

c
−n) (2.3)
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ϕ2 = 2π(
d f2

c
−n) (2.4)

where d is the distance between transmitter and receiver, c is the speed of light in

specific medium and n gives the phase ambiguity. From Equation 2.3 and 2.4, we can

derive the expression of d as below:

d =
c

2π
ϕ2 −ϕ1

f2 − f1
=

c
2π

2π( f2 − f1)τ
f2 − f1

= c · τ (2.5)

Thus, with calculated d in Equation 2.5, we can estimate the performance of PDOA

based WCE localization.

2.4.4 Video based motion tracking

Wireless capsule endoscope is usually equipped with at least one camera to provide visual

inspection of the GI tract and the photos taken by the camera could be exploited not only

to inspect GI tract but also to track the movement of WCE [52]. With the development

of camera’s capability in recent years, motion tracking using video images becomes more

and more popular. To track the movement of WCE, at least two kinds of video metrics

are required: displacement and rotation. Displacement distance in real world could be

reflected by the scaling of view in video images and rotation angle could be estimated

by measuring the rotation of view. Thus, we can tell the movement of WCE between

consecutive frames by emulating the scaling and rotation angle [53].

According to Shannon’s information entropy, the more similar two images are, the

more mutual information they have [54]. Thus, if we iteratively change the rotation and

scaling coefficients and find the maximum mutual information, we can finally acquire the

displacement and rotation angle [55]. Equation 2.6 shows the way of calculating mutual

information.
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I(X ,Y ) = ∑
x∈X ,y∈Y

p(x,y)log(
p(x,y)

p(x)p(y)
) (2.6)

Where X and Y are two images, p(x) denotes the distribution function of gray levels

at a specific pixel and p(x,y) denotes the joint distribution function of gray levels.
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Chapter 3

Accuracy of motion tracking of WCE

inside large intestine

3.1 Introduction

During the past few years, many attempts have been made to develop accurate localiza-

tion techniques for the WCE [37]. However, none of the existing localization methods

is able to provide accurate position information of the endoscopic capsule due to non-

homogeneous body tissues and un-uniformly distributed organs [56]. To complement the

existing wireless localization infrastructures, researchers are investigating using compute

vision techniques to track the motion of the video capsule [57]. Two of the most popu-

lar computer vision based motion tracking methods are scale-invariant feature transform

(SIFT) [41, 58] and speeded up robust features (SURF) [59]. Both of them are usually

formed in four steps: set up scale spaces, extract local features, generate descriptors uti-

lizing surrounding pixels and map corresponding feature points [60].

Local features perform robustly when analyzing images taken inside the small intes-

tine, at least in the upper small intestine [58]. However, things are different when WCE
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goes into large intestine where local features are not as clear as those in the small intestine

and the peristalsis slows down which can be observed clearly from the video taken inside

large intestine. Meanwhile, with higher frame rate [61], successive images perform more

globally, resembling real video rather than individual images.

In this chapter, we propose a novel approach estimating the orientation and displace-

ment of the track of WCE in large intestine, only based on the information extracted from

consecutive frames taken by WCE. This approach proceeds in four steps: (1) Apply low-

pass filter on input images to smooth them, eliminating the noises and preparing for the

next steps. (2) Calculate mutual information (MI) between input images [62], record the

maximum MI and corresponding parameters such as orientation and scale. (3) Estimate

the rotation and relative displacement of WCE according to calculated orientation and

scale. (4) Performance evaluation. The main contribution of this chapter is that we in-

troduce a more global solution to analyze the relative displacement and rotation of WCE

with better performance than that of feature based applications proposed in [9, 59, 63].

Also, our approach is the measurement of WCE in large intestine while most of the re-

lated works are designed for WCE in small intestine. Moreover, this approach is much

easier to be applied due to its higher linearity and stability.

The rest of this chapter is organized as follows: Section II includes details about

the image analysis algorithm applied to WCE images. In section III, we talk about the

experimental results and analytical comparison with other algorithms to validate the per-

formance of our approach. Finally, in section IV, conclusion is drawn.

3.2 METHODOLOGY

Our approach basically consists of 4 steps: Pre-processing, mutual information calcu-

lation, parameter searching and performance evaluation. (a) Low-pass 2-D Butterworth
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filter are implemented to eliminate the noises and guarantee the quality of the third step.

(b) After the pre-processing, we calculate the mutual information of pairs of images. The

more similar two images have, the more mutual information value is calculated. (c) Via

searching the maximum mutual information and corresponding parameters such as scales

and angles, rotation and relative displacement can be discovered so that we could tell

the motion of WCE. (d) In the process of searching and performance evaluation, bicubic

interpolation is frequently engaged, which can delicately help reconstruct float images.

3.2.1 Pre-processing

When the WCE passes through the large intestine, it takes images and transmits them to

sensor array located outside the human body, but noises may be generated and shown in

images.

Then after extraction of images from the signals sent by WCE, we transform those

images into frequency domain and then apply a low-pass 2-D Butterworth filter on each

frame to filter the noise (e.g. pepper or Gaussian) [64]. This step effectively guarantees

the results of analysis to be robust enough. Define W as pass band and n to be order of

the 2-D filter. Then the 2-D Butterworth filter can be described as

G2(w) = |H(w)|2 = 1
1+( w

wc
)2n

(3.1)

Following Equation 3.1, 2-D IFFT is applied to transform frames back to time domain

[65]. Figure 1(a) shows one of the frames with pepper noise and (b) is filtered by Butter-

worth filter.

Consequently, the filtered frame is obviously more smooth and is better for statistical

analysis.
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frames back to time domain.  

 
Fig. 2 (a) Frame with salt & pepper noise (b) Frame applied Butterworth 

filter. 
Figure 3.1: (a) Frame with salt and pepper noise (b) Frame applied Butterworth filter.

3.2.2 Mutual Information Calculation

Intuitively, the more same information two images numerically obtain, the more similar

two images are. Shannons information theory lays the theoretical foundation for the hy-

pothesis [66]. Formally, the mutual information of two images X and Y can be defined

as:

I(X ,Y ) = ∑
x∈X ,y∈Y

p(x,y)log(
p(x,y)

p(x)p(y)
) (3.2)

where p(x) and p(y) are marginal probability distribution functions of gray scales in im-

ages X and Y respectively. Eq.2 can be equivalently expressed as

I(X ,Y ) = H(X)+H(Y )−H(X ∪Y ) (3.3)

XY represents the gray scale mapping matrix of image X and Y [67]. H(X) in Equation

3.3 is the Shannon entropy of image X which can be expressed as

H(X) = ∑
x∈X

p(x)log(p(x)) (3.4)

As can be observed from Equation 3.2 to Equation 3.4, the mutual information provides

a global view of similarity via statistical analysis, which is supposed to be more effective

on global scale.
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3.2.3 Fibonacci Searching Technique

Since the mutual information only reflects the similarity of two frames, a searching tech-

nique is required to find the maximum mutual information and the corresponding defor-

mation. Fibonacci searching technique is a robust iterative method for searching extreme

value to achieve this goal [68], performing better and is less time consuming than binary

searching technique [69]. Figure 3.2 is given as the flow chart of Fibonacci searching

technique.
Fibonacci searching technique. 

 
Fig.3 Flow chart of Fibonacci searching technique 

Figure 3.2: Flow chart of Fibonacci searching technique

To insure the outcomes of Fibonacci searching technique, the threshold should be

small enough (e.g. 0.005). In addition, Butterworth filters smoothing effect [70] prevents

the searching procedure from being stuck in a short interval with violent jitters.

3.2.4 Bicubic Interpolation

Since the float frame needs to be iteratively deformed to discover the maximum mutual

information with reference frame, the new gray scales of pixels in float frame could be

calculated by bicubic interpolation with higher accuracy [71]. Define f(i+u,j+v) as the
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corresponding gray scale in reference frame of a pixel from float frame where i+ u and

j+ v are the corresponding coordinate. Then it can be written as:

f (i+u, j+ v) = A⃗∗ B⃗∗C⃗ (3.5)

A⃗ = [S(u+1) S(u) S(u−1) S(u−2)] (3.6)

B⃗ =

 f (i−1, j−1) f (i−1, j) f (i−1, j+1) f (i−1, j+2)
f (i, j−1) f (i, j) f (i, j+1) f (i, j+2)

f (i+1, j−1) f (i+1, j) f (i+1, j+1) f (i+1, j+2)
f (i+2, j−1) f (i+2, j) f (i+2, j+1) f (i+2, j+2)

 (3.7)

C⃗ = [S(v+1) S(v) S(v−1) S(v−2)]T (3.8)

where S(x) is the primary function representing weights of pixels which is given by:

S(x) =


|x|3 −2|x|2 +1 |x|< 1

−|x|3 +5|x|2 −8|x|+4 1 ≤ |x|< 2

0 2 ≤ |x|

(3.9)

Thus, the deformed frame can be reconstructed pixel by pixel smoothly.

3.3 RESULTS AND ANALYSIS

Our approach is evaluated based on 119 consecutive WCE video frames, each with 531*531

pixels resolution donated by Given Imaging.

Because of the shortage of ground truth data set to compare with, the only way is

using rotation transformations and scale simulations which are also adopted by [59].
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Table 3.1: Estimation of Relative Displacement

Actual scale
Calculated displacement

error
Calculated displacement

error in [6]
Calculated displacement

error in [7]
0.2 0.0194 Large error 0.13
0.3 0.0313 13.3085 -
0.4 0.0079 0.0193 0.12
0.6 0.0031 0.0005 0.02
0.8 0.0026 0.0004 0.17
1.2 0.0011 0.0005 -
1.4 0.0013 0.0004 -
1.6 0.0016 0.0007 -
1.8 0.0097 0.0007 -
2.0 0.0009 0.0005 0.19
2.5 0.0026 0.0010 -
3.0 0.0005 0.0016 0.37

3.3.1 Orientation

Nine rotation angles from 5 to 45 with a step of 5are tested in this chapter (shown in Figure

3.3) and obtained results are shown in Table 1. This table indicates a stable performance

and relatively low error throughout all the tested angles while those outcomes from [?,59]

acquire larger errors following the increases of rotation angle.
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Figure 3.3: An example of tested frames, 9 rotation angles from 5 to 45 in different
resolutions
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To be more directly, we plot the statistical analysis in Figure 4 from which severe error

ratios can be observed in other approaches when the rotation angle is equal or higher than

30.
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Figure 3.4: Compared experimental results of rotation estimation

3.3.2 Relative Displacement
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Figure 3.5: Compared experimental results of displacement estimation

In this chapter, we test 12 different scale values varying from 0.2 to 3.0, part of which

is shown in Fig. 5. To transform the results from scale values to relative displacement

in order to measure the motion tracking of WCE, the displacement estimation method

according to projective transformation in [59] is introduced.
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introduced. 

 
Fig. 7 An example of frames in difference scales: 0.2, 0.3, 0.4, 0.6 and 0.8

As can be seen in table 2, estimated displacement 

Actual 

scale 

Calculated 

displacement 

Calculated 

displacement 

Calculated 

displacement 

0.2 0.0194  Large error 0.13

0.3 0.0313 13.3085  - 

0.4 0.0079 0.0193 0.12

0.6 0.0031 0.0005 0.02

0.8 0.0026 0.0004 0.17

1.2 0.0011 0.0005 - 

1.4 0.0013 0.0004 - 

1.6 0.0016 0.0007 - 

1.8 0.0097 0.0007 - 

2.0 0.0009 0.0005 0.19

2.5 0.0026 0.0010 - 

3.0 0.0005 0.0016 0.37

Figure 3.6: An example of frames in difference scales: 0.2, 0.3, 0.4, 0.6 and 0.8

As can be seen in Table 2, estimated displacement errors stay in the same magnitude

when our approach is applied while the errors in [59] are unacceptably large when actual

scale values are relatively small and decrease alone with the augment of actual scale. On

the other hand, the calculated errors in [63] are about 10 times larger through the proce-

dure of estimation. Figure 3.6 shows the overall performance quality of 3 approaches.

3.4 CONCLUSIONS

In this chapter, we proposed a novel approach to measure the motion tracking of WCE

inside the large intestine. We applied maximum mutual information theory as theoretical

support and Fibonacci technique as searching technique so that the measurements focus

more on global information of frames. The major contribution of our research is that we

utilize the global statistical information of frames rather than local features to measure

the motion of WCE and achieve a higher accuracy and stability.
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Chapter 4

Accuracy of TOA ranging inside human

body using single tone carrier frequency

4.1 INTRODUCTION

The WCE is first swallowed by a patient, then it keeps transmitting signals from inside

human body to sensors outside, as shown in Figure 4.1. Thus, the WCE could be lo-

calized by analyzing the transmitted signals and received signals. To accurately localize

the WCE, variety of localization techniques have been applied, including time of arrival

(TOA) based methods [72], received signal strength (RSS) based methods [38], video

based methods [58], hybrid localization methods [73] and etc.

Among all these approaches for localization inside GI tract, TOA is one of the most

prevalent ones. In [37] and [74], TOA based localization methods are investigated to

acquire accurate localization results. Also, a number of studies have been conducted to

acquire higher accuracy of in-body TOA localization. However, because of the difficulties

of conducting experiments inside real body including non-homogeneous environment and

inhibition of experiments inside human body, FDTD simulation is now the most efficient
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Figure 4.1: Working process of WCE

way. For instance, [10] and [11] applied TOA based localization methods to in-body

localization and FDTD simulations are employed in both articles.

In this chapter we apply TOA estimation methods using 402MHz carrier frequency

signals instead of wideband signals and analyze their accuracy thus there won’t be am-

biguity and the implementation could be much easier. With 402MHz carrier frequency

within the bandwidth of BAN regulated by Federal Communication Commission (FCC)

and average permittivity of 27.9 in torso part, the wavelength is λ = 141.28mm which

could cover the entire GI tract so that we can localize the WCE without any ambiguity.

We also utilize the same simulation platform SEMCAD X which is also adopted in and

validated by [11].

The rest of this chapter is organized as follows: In section II, the Cramer-Rao lower

bound (CRLB) of TOA ranging using single tone signals inside homogeneous tissue is

calculated as a guideline for the optimal performance of our approach. In section III we

introduce our TOA based ranging methods and the simulation environment we accom-

modate. In section IV, we compare the results of TOA based ranging methods both in

homogeneous and non-homogeneous tissues and analyze the source of error. Finally in
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section V we draw the conclusion of this chapter.

4.2 THE CRLB OF TOA RANGING INSIDE HOMO-

GENEOUS TISSUE

Cramer-Rao Lower Bound, known as a lower bound for error estimation which usually

indicate the limit of square of estimated errors [75],is one of the most effective ways to

evaluate the performance of TOA ranging methods [76]. Define the waveform observation

as:

r(t) = s(t − τ)+η(t − τ) (4.1)

Then to estimate the delay τ with two sided additive Gaussian noise (AWGN) with

spectral height N0
2 = σ2 [77], the maximum likelihood function could be expressed as

[78]:

f (o|τ) =
K

∏
k=1

{
1√

2πσ
e−

[rk−sk(τ)]
2

2σ2

}
(4.2)

where r denotes r(t) and s(τ) denotes s(t − τ). Thus the likelihood function in log

form is:

L(o|τ) = ln[ f (o|τ)] =

ln(
K

∏
k=1

1√
2πσ

)+
K

∑
k=1

{
− 1

N0
[rk − sk(τ)]2

} (4.3)

Then by applying Eq.4 and Eq.5 we obtain the second derivative of Eq.3:
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∂L(o|τ)
∂τ

=
2

N0

K

∑
k=1

{
[rk − sk(τ)]

∂ sk(τ)
∂τ

}
(4.4)

∂ 2L(o|τ)
∂τ2 =

2
N0

K

∑
k=1

{
[rk − sk(τ)]

∂ 2sk(τ)
∂τ2 − [

∂ sk(τ)
∂τ

]2
}

(4.5)

Considering the fact that η(t − τ) is a two sided AWGN, we have E[rk − sk(τ)] =

E[η(t − τ)] = 0. Meanwhile, since η(t − τ) is a random variable independent from both

rk and sk(τ), E{[rk − sk(τ)]
∂ 2sk(τ)

∂τ2 } = E{η(t − τ)∂ 2sk(τ)
∂τ2 } = 0. From the definition of

waveform observation we also have E[sk(τ)] = sk(τ)

Therefore, the Fisher information matrix could be written as:

F =−E[
∂ 2L(o|τ)

∂τ2 ] =− 2
N0

K

∑
k=1

{
−[

∂ sk(τ)
∂τ

]2
}

(4.6)

Letting K → ∞, Eq.6 turns from discrete version into continuous version:

F =−E[
∂ 2L(o|τ)

∂τ2 ] =
2

N0

∫
T0

[
∂ s(τ)

∂τ
]2 (4.7)

where T0 is the observation time.

To acquire a more specific CRLB of TOA using sinusoidal carrier frequency signal

with limited observation time, we define

s(τ) = s(t − τ) = Acos[wc(t − τ)] (4.8)

Then to obtain the same result in Eq.7, we must calculate the square of first derivative

of s(τ):

∂ s(τ)
∂τ

= Awcsin[wc(t − τ)] (4.9)
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[
∂ s(τ)

∂τ
]2 = A2w2

csin2[wc(t − τ)]

=
1
2

A2w2
c{1− cos[2wc(t − τ)]}

(4.10)

Define Iτ(t,τ)|T0
0 =

∫
T0
[∂ s(τ)

∂τ ]2dt, Is(t)|T0
0 =

∫
T0
[s(t)]2dt then we have:

Iτ(t,τ)|T0
0 = {1

2
A2w2

ct − 1
4

A2wcsin[2wc(t − τ)]}|T0
0 (4.11)

Is(t)|T0
0 =

A2sin2twc +2twc

4wc
|T0
0 = Es (4.12)

where Es is the energy of time-limited single tone signal.

Meantime, with fixed SNR, we could derive the expression of N0. In [79], the SNR is

written as:

SNR =
Ps

Pn
=

Es/T0

N0W
(4.13)

where W represents the system bandwidth.

Thus N0 could be presented as:

N0 =
Ps

Pn
=

Es/T0

SNR ·W
(4.14)

Taking Eq.7-14 as a whole, we consequently come to the final expression of Fisher

information matrix:

32



F =−E[
∂ 2L(o|τ)

∂τ2 ] =
2

N0

∫
T0

[
∂ s(τ)

∂τ
]2

=
2SNR ·WT0Iτ(t,τ)|T0

0

Is(t)|T0
0

(4.15)

The CRLB of TOA using carrier frequency is shown in Eq.16, which is the inverse of

the Fisher information matrix [78] in Eq.15:

σ2
τ = F−1 =

Is(t)|T0
0

2SNR ·WT0Iτ(t,τ)|T0
0

(4.16)

Taking homogeneous tissue with permittivity εr and speed of light C into considera-

tion, the bound for TOA ranging error should be:

σd =
c√
εr

F−1 (4.17)

4.3 SIMULATION ENVIRONMENT AND METHOD-

OLOGY FOR TOA BASED RANGING

4.3.1 Simulation Environment

To examine the performance of our TOA based methods, the simulations are carried out

by SEMCAD X, a finite difference time domain (FDTD) based simulation platform pro-

vided by SPEAG, Swiss. SEMCAD X performs faster FDTD simulations when compar-

ing with other simulation software while it still holds high accuracy [80].

Figure 4.2 shows the realistic cyber phantom provided by SEMCAD X with seventy

seven organs. This phantom is originally designed to emulate the electromagnetic envi-

ronment of human body thus it could be used to simulate the propagation of RF signals
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Figure 4.2: Phantom for simulation

inside and outside human body. In our simulations, Dielectric properties of tissues are

configured for 402MHz frequency, within the interval of 402-405MHz which is allocated

by FCC.

4.3.2 Methodology

Detection of First Peak

Detection of the first peak is a simple and intuitional but the most frequently used TOA

ranging method in BAN, especially when using UWB signals.

Define the transmitted signal as s(t) and the received signal as r(t) = s(t −τ)+η(t −

τ)

Then the time delay for detection of first peak is estimated by:

τ = |arg min{Targ max s(t)}−arg min{Targ max r(t)}| (4.18)

34



Detection of All Peaks

Though the detection of first peak is widely used in TOA based localization in BAN, its

accuracy is somehow greatly affected by the noise. To weaken the impact of noise, we

could exploit the fact that the transmitted carrier frequency signals are sinusoidal signals,

i.e., periodic signals. The number of peaks will be more than one if the observation time

is long enough.

We first acquire all the peaks in transmitted signal:

Ts = [s1,s2, ...,sn]
T (4.19)

Considering that the received signal is noised, we could segment the received signal

into pieces with length of one period, obtain the peaks in every piece and then form a

vector of detected peaks in received signal:

Tr = [r1,r2, ...,rn]
T (4.20)

Thus the estimated TOA is:

τ =

√
Tτ

T ·
√

Tτ
n

(4.21)

where Tτ = Tr −Ts

Generalized Correlation Coefficients

Generalized Cross Correlation (GCC) is an estimation methods for time delay which was

usually applied in radar system instead of UWB system [81]. Since our simulation are

conducted with carrier frequency 402 MHz, it matches quite well with this GCC methods.

Define received signal as r(t) = s(t − τ)+η(t − τ), then we have the cross-correlation
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between transmitted and received signals to be

R(τ) = E[r(t)s(t)] = E[s(t)s(t − τ)+ s(t)η(t − τ)] (4.22)

Since η(t − τ) is an additive white Gaussian noise which is independent from s(t),

E[s(t)η(t − τ)] = 0 (4.23)

R(τ) = E[s(t)s(t − τ)] (4.24)

Thus, according to the definition of autocorrelation function, we can observe that the

maximum value of R(τ) at the time t = τ

Figure 4.3: Relationship between signal frequency and TOA ranging error inside homo-
geneous tissue

4.4 RESULTS AND ANALYSIS

4.4.1 Bounds for TOA ranging error

As can be seen from the derivation of CRLB in Section II, the bound of TOA ranging

inside homogeneous tissue is related to a couple of physical coefficients, including W ,

SNR, w ,T0 andεr.
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In this subsection, we will mainly discuss the effects of w while the coefficients W

,SNR, εr and T0 that related to capability and configuration of simulation system or related

to the environment are fixed as: W = 10GHz,T0 = 25ns, SNR = 30dB, εr = 27.9, among

which the value of εr is calculated in [11] as the average permittivity of human body

around torso part.

The relationship between signal frequency and TOA ranging error inside homoge-

neous tissue is shown in Figure 4.3. From this figure we can easily observe the fact that

the bound of TOA ranging error inside homogeneous tissue drops alone with the increase

of signal frequency, i.e., they are negatively correlated.

4.4.2 Accuracy of Different TOA Ranging Methods inside Homoge-

neous Tissue

To investigate the accuracy of TOA ranging methods interpreted in Section III, we allo-

cated the WCE at 4 different positions inside GI tract of the phantom for simulation. The

distances between WCE and skin-mounted sensor range from 75.948mm to 134.231mm.

And to find the source of error, we didn’t add any noise to simulations. Table 1 shows the

TOA ranging error without noise. Since there is no noise added, these errors are supposed

to be systematic error and quantization error.

Table 4.1: ranging error without noise unit: mm

Distance Detection of First Peak Detection of All Peaks GCC
75.948 0.09 0.08 0.08
98.951 0.085 0.083 0.083

120.637 0.087 0.088 0.085
134.231 0.104 0.101 0.101

After the simulation without noise, we conducted the simulations with SNR= 30dB to

emulate the accuracy of different TOA ranging methods. Figure 4.4 shows the ranging er-
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Figure 4.4: Relationship between signal frequency and TOA ranging error inside homo-
geneous tissue

rors of three TOA ranging methods inside homogeneous tissue. In spite of the systematic

error and quantization error shown in Table 1, it is obvious that GCC performs a highest

accuracy among these methods and stays closer to the bound while detection of the first

peak reveals the largest error as well as deviation.

This observation can be explained if we review the characteristics of the TOA ranging

methods in Section III. Since detection of the first peak only make the use of first peak,

the AWGN has the most severe impact on its accuracy. While detection of all peaks

exploit all the detected peaks during the observation time, the algorithm of GCC involves

all points of signals, which indicates the best resistance to AWGN.

4.4.3 Accuracy of Different TOA Ranging Methods inside Non-homogeneous

Tissue

We analysis the accuracy of TOA ranging methods inside homogeneous in last subsection.

In practical environment, however, tissues of human body are usually non-homogeneous.
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Figure 4.5: Relationship between signal frequency and TOA ranging error inside non-
homogeneous tissue

Thus, we import the dielectric properties of body tissues at 402MHz into our simulation

to estimate the impact of non-homogeneity on the accuracy of TOA ranging methods.

Figure 4.5 shows the ranging error versus distance inside non-homogeneous tissues.

Different from what we have observed from Figure 4.4, the ranging error of GCC doesn’t

show apparent advantages of its accuracy. On the other hand, GCC still keeps its bet-

ter stability over the other ranging methods. Moreover, TOA ranging errors inside non-

homogeneous increase enormously when comparing to that inside homogeneous tissue.

For instance, the maximum errors of GCC, detection of all peaks and detection of the

first peak are about 1.85mm, 3.30mm and 5.02mm in homogeneous tissue, respectively;

Whereas their maximum errors rise to around 9.5mm, 14.2mm and 17.7mm.

Comparing the statistics from Table 1 and those from Figure 4.4 and 4.5, it is obvious

that the systematic errors and quantization errors are trivial. Meanwhile, considering

that the only difference between simulations with homogeneous tissue and simulations

with non-homogeneous tissue is the change of dielectric properties, we can draw the

conclusion that the non-homogeneity is one of the major sources of ranging error in non-
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homogeneous tissues.

4.5 Conclusion

In this chapter, we proposed the CRLB of TOA ranging inside homogeneous tissue using

carrier frequency signals and analyzed the accuracy of three TOA ranging methods inside

GI tract. Among previous TOA ranging methods using carrier signals, neither detection

of all peaks nor GCC has been applied to localization approaches inside GI tract. We

also conducted simulations both with homogeneous tissue and non-homogeneous tissues

to investigate the performance of our TOA ranging methods. Meanwhile, we analyzed

the influence of non-homogeneity on ranging accuracy. Our future research will be con-

centrated in the same area but focus more on non-homogeneous tissue which resembles

realistic human body, designing and applying new algorithms to improve the accuracy of

in-body TOA ranging and localization techniques.
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Chapter 5

Accuracy of PDOA ranging inside

human body using two tones

5.1 Introduction

There are some requirements for localization information in BAN applications, for exam-

ple, positioning the wearable and implant sensors, in order to help the doctor to decide

where the needed target is. WCE, for example, needs the location information. The cap-

sule transmits the RF signal from inside human body to the sensor in the surface of the

human body or to another sensor inside human body [82] [11]. Several approaches have

been developed by researchers to estimate the capsule location. Two traditional technolo-

gies of RF localization are based on Time of Arrival (TOA) and Received Signal Strength

(RSS) [45].

In reference [37], the authors claims that the next step in the evolution of RF local-

ization science is the transformation into RF localization inside the human body. The

first major application for this technology is the localization of the wireless video capsule

endoscope (VCE). In the paper, authors described how they can design a cyber-physical

41



system (CPS) for experimental testing and visualization of interior of the human body

that can be used for solving the RF localization problem for the endoscopy capsule. The

authors also addressed the scientific challenges and the appropriate technical approaches

for solving the problem.

In reference [83], authors studied how to estimate the exact position of the capsule. In

the paper, the authors proposed a novel localization method based on spatial sparsity, and

directly estimated the location of the capsule without going through the usual intermediate

stage of first estimating time-of-arrival or received-signal strength, and then a second

stage of estimating the location. The results show that the proposed method is effective

and accurate, even in massive multipath conditions.

In order to get a better accuracy of localization in BAN application, people also need

to study the channel model in and out of the body [84] [85] [86] [87]. Some papers

have studied in-body path loss model for homogeneous human tissues and achieved some

good results [88] [89]. In reference [90], voltage and power transfer functions for the

path loss of a 402 MHz body-area network are also reviewed. It was shown that basic

FDTD simulations for a homogeneous human-body model, implemented in MATLAB,

agreed quite well with the advanced FEM solver for an inhomogeneous accurate human-

body model. The frequency bands used in BAN are focused on 402MHz and 2.4GHz.

For these two frequency bands, TOA and RSSI based ranging have some shortcomings.

As is know, TOA based ranging method usually needs wider bandwidth, and RSS based

ranging has low accuracy of position [79]. Further more, TOA based ranging method

using narrow band signal has a problem of ambiguity.

Although there are many papers describing BAN based ranging and positioning, one

subject is not discussed until now. That is using PDOA based ranging behaviors for BAN

applications. In this chapter we analyze phase difference of arrival (PDOA) based ranging

in BAN application. This chapter is organized as follows. In section II, we analyze the
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PDOA based ranging principle and characteristics. In section III, we analyze the cramer-

rao lower bound (CRLB) for PDOA ranging method. In section IV, we use ray tracing

method to model the distance and bandwidth influence on PDOA based ranging in BAN.

In section V we use simulation software to study the PDOA based ranging. In section VI,

we do some measurements to testify the PDOA method. These includes the measurement

setup and scenario, including the equipment and antennas used in the measurement.

5.2 POA based ranging principle and characterization

5.2.1 Phase of single tone

As we all know, three parameters representing a sine wave are amplitude, frequency and

phase [91]. Phase of arrival must be a valid method for ranging. But few people have

focused their researches on phase parameter. Actually, in some circumstances, PDOA

based ranging is similar with TDOA based ranging method. Supposed the distance be-

tween source and sensor in a homogenous tissue is d, if the electromagnetic transmission

velocity in vacuums is c, the relative average permittivity for a certain area of body is εr, v

is the electromagnetic transmission velocity in a homogenous tissue, λ is its wavelength,

we can easily get the time of arrival at the sensor:

τ =
d
v
=

d ·
√

εr

c
=

d
f λ

(5.1)

The phase of arrival ϕ satisfies the equation

ϕ +2πn = 2π f τ (5.2)

where n is the passed number of whole cycles. If using single tone for POA based

ranging, in order to avoid the phase ambiguity, we must adopt a not very high frequency
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to get a comparatively bigger wavelength.

In multipath environments, Fig. 5.1 shows how multipath components add up to-

gether. Ai is the amplitude of each path and ϕi is the phase of each path.

Figure 5.1: signal phases in multipath environment

5.2.2 Phase difference of Two tones

Since the range of the phase measurement is between 0 and 2π , it would be necessary

to recognize the passed number of whole cycles n in order to determine the distance

greater than λ . The ambiguity can be eliminated by sending two tones and measuring the

difference between their received delay phases. We get:

ϕ1 = 2π(
d f1

v
−n) (5.3)

ϕ2 = 2π(
d f2

v
−n) (5.4)

Subtract Equation 5.3 from 5.4 then we have
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d =
v

2π
ϕ2 −ϕ1

f2 − f1
=

v
2π

2π( f2 − f1)τ
f2 − f1

= v · τ (5.5)

The ambiguity in range is eliminated. The span of the measurement of ϕ is 2π , and

the maximum value of d that can be measured using phase difference of two tones is

conditioned on a maximum two tones frequency bandwidth.

For example, if the average electromagnetic velocity in the human body is 0.568e8m/s,

interval between f 2 and f 1 is 20MHz, the maximum measurable one-way distance is

2.84m. Let δϕequals a given phase difference measurement error, then the distance error

δd could be written as:

δd =
v

2π
δϕ
∆ f

(5.6)

where ∆ f = f2 − f1. It is clear from equation 5.6 that the error increases in inverse

proportion to the frequency difference. As ∆ f is made smaller to accommodate longer

range, the resolution or ranging error increases.

5.3 CRLB of PDOA ranging in AWGN channel

We use two tones f 1 and f 2 to calculate the CRLB for PDOA based ranging, and suppose

each tone has the power of W ∗S0/4, which is shown in Figure 5.2.

Two tones spectrum consists of two impulses. The transmitted pulse is s(t), and the

observed signal at the receiver is given by:

r(t) = s(t − τ)+η(t − τ) (5.7)

Then to estimate the delay τ with two sided additive Gaussian noise (AWGN) with

spectral height N0
2 = σ2, the maximum likelihood function could be expressed as [78]:
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Figure 5.2: signal phases in multipath environment

f (o|τ) =
K

∏
k=1

{
1√

2πσ
e−

[rk−sk(τ)]
2

2σ2

}
(5.8)

where r denotes r(t) and s(τ) denotes s(t − τ). Thus the likelihood function in log

form is:

L(o|τ) = ln[ f (o|τ)] =

ln(
K

∏
k=1

1√
2πσ

)+
K

∑
k=1

{
− 1

N0
[rk − sk(τ)]2

} (5.9)

Then by applying Eq.4 and Eq.5 we obtain the second derivative of Eq.3:

∂L(o|τ)
∂τ

=
2

N0

K

∑
k=1

{
[rk − sk(τ)]

∂ sk(τ)
∂τ

}
(5.10)

∂ 2L(o|τ)
∂τ2 =

2
N0

K

∑
k=1

{
[rk − sk(τ)]

∂ 2sk(τ)
∂τ2 − [

∂ sk(τ)
∂τ

]2
}

(5.11)

Considering the fact that η(t − τ) is a two sided AWGN, we have E[rk − sk(τ)] =

E[η(t − τ)] = 0. Meanwhile, since η(t − τ) is a random variable independent from both

rk and sk(τ), E{[rk − sk(τ)]
∂ 2sk(τ)

∂τ2 } = E{η(t − τ)∂ 2sk(τ)
∂τ2 } = 0. From the definition of

waveform observation we also have E[sk(τ)] = sk(τ)
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Therefore, the Fisher information matrix could be written as:

F =−E[
∂ 2L(o|τ)

∂τ2 ] =− 2
N0

K

∑
k=1

{
−[

∂ sk(τ)
∂τ

]2
}

(5.12)

Letting K → ∞, Eq.6 turns from discrete version into continuous version:

F =−E[
∂ 2L(o|τ)

∂τ2 ] =
2

N0

∫
T0

[
∂ s(τ)

∂τ
]2 (5.13)

where T0 is the observation time.

Plug Equation 5.13 into Parseval’s theorem, we have

F =
1

πN0

∫ ∞

−∞
ω2|S(ω)|2dω (5.14)

Therefore the CRLB representing the variance of estimation is given by

CRLB = F−1 =
πN0∫ ∞

−∞ ω2|S(ω)|2dω
=

πN0∫ f0+W/2
f0−W/2 (2π f )2 S0

4 W [δ ( f − f0 +
W
2 )+δ ( f − f0 − W

2 )]2πd f
=

1

8π2( f 2
0 + W 2

4 )SNR ·T0

(5.15)

Thus, the CRLB of ranging error using two tones PDOA based ranging is

σd > v ·
√

1

8π2( f 2
0 + W 2

4 )SNR ·T0
(5.16)

Compared with CRLB of RSSI σ ln10
10α , we can get the comparison results. σ is the

variance of AWGN, α is the power gradient, d is the distance. Suppose σ =
√

5, α = 3,

d = 0.1m , the CRLB of RSSI is 0.017m. Compare this result with Figure 5.3 and 5.4, we

can conclude PDOA based ranging is more accurate than RSSI based ranging.
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Figure 5.3: CRLB of PDOA based ranging (WT0 = 1)

Supposed WT0 = 1, we can obtain the simulation result. Figure 5.3 demonstrates

the CRLBs of PDOA with two tones based ranging. As the bandwidth increases, the

PDOA based ranging with two tones becomes more accurate. T0 is the waveform interval

which represents the signal waveform duration cycle. Supposed T0=1/1M, we can obtain

another simulation result. Figure 5.4 demonstrates the CRLBs of PDOA with two tones

based ranging. As the bandwidth increases, the PDOA based ranging with two tones is

more accurate than RSSI based ranging.

So we may draw a conclusion that two tones PDOA based ranging could be more

accurate for ranging.

5.4 PDOA based ranging with ray tracing in multipath

environment

Ray tracing is a good way to evaluate the performance of multipath impact on localiza-

tion when the circumstance is relatively uncomplicated [92]. In order to characterize the
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Figure 5.4: CRLB of PDOA based ranging (T0 = 1us)

method of PDOA based ranging, we use ray tracing method to study the ranging perfor-

mance in one scenario in Figure 5.5. In this simulation, we define that there are three

paths in the time channel profile. Figure 5.6 is the time delay profile results of ray tracing

simulation.

Figure 5.5: The simulation scenario for ranging a tag with Ray Tracing

According to reference, the authors calculate the average permittivity of the human
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Figure 5.6: Channel time profile with 3 paths

body as εr = 27.9. , and compute the average velocity in the human body as v = 0.568×

108m/s. When 20MHz bandwidth is applied, from Figure 5.6 and Table 5.1, we can see

the TOA base ranging distance error is 0.629 which is much bigger than actual distance

value. Compared with Table 5.2, the POA based ranging distance error is much smaller

than that of TOA based ranging. Figure 5.7 shows the distance error using ray tracing

versus the calculated CRLB. In Figure 5.8, the results of distance measurement using

PDOA in different frequency bands are shown.

In order to explain the ranging behavior of PDOA methods more clearly, we draw the

Table 5.2. Table 5.2 shows PDOA based ranging parameters in comparison of different

frequency bands with Ray Tracing in multipath environment.

Table 5.1: Results of ray tracing in multipath environment

Bandwidth First TOA Real Distance Measured Distance Measured Distance
20MHz 1.338ns 0.076m 0.7056m 0.62959m
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Figure 5.7: Distance error using ray tracing versus the CRLB

Table 5.2: PDOA based ranging with Ray Tracing in multipath environment (real distance
is 0.076m)

Bandwidth/MHz Number of points Measured mean Measured variance Distance error
400-420 21 0.081m 1.3e-4 0.005m

2440-2460 21 0.0646m 4.2e-5 0.0114m

5.5 PDOA based ranging with simulation in SEMCAD X

To validate the performance of our PDOA based methods, we conduct simulations in

SEMCAD X, a finite difference time domain (FDTD) based simulation platform which

is proved to be faster than other simulation software. Figure 5.9 is the photograph of

experiment of ranging a source in the body. Figure 5.10 shows distance measurement

results.
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(a) (b)

Figure 5.8: (a) distance measurement using PDOA around 2.45GHz; (b) distance mea-
surement using PDOA around 402MHz

5.6 PDOA based ranging with measurement in physical

phantom environment

We also have conducted some measurements for research of POA based ranging in ane-

choic chamber space. We use Agilent network analyzer E8363B and a pair of BAN

antennas to simulate the ranging scenario, as is shown in Figure 5.11. Table 5.3 shows

some measurement results in anechoic chamber environment.

5.7 conclusion

In this chapter we address the ranging problem for BAN application which are useful for

future medical wearable and implanted electronic devices. Different from those common
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Figure 5.9: PDOA ranging scenario for in-body BAN using SEMCAD X

Table 5.3: POA based ranging with Ray Tracing in multipath environment (real distance
is 0.076m)

Actual distance Bandwidth/MHz Measured distance/m Distance error/m
0.15 400-420 0.181 0.031
0.15 2440-2460 0.178 0.028
0.25 400-420 0.279 0.029
0.25 2440-2460 0.275 0.025

methods such as RSS and TOA techniques, we propose phase difference of arrival based

method for ranging in BAN and study its channel characteristics. First, we analyze the

PDOA based ranging principle and characteristics. Second, we analyze the cramer-rao

lower bound (CRLB) for PDOA ranging method. Third, we use ray tracing method to

model the distance and bandwidth influence on PDOA based ranging in BAN. Fourth, we

use simulation software SEMCAD to study the POA based ranging. Fifth, we do some

measurements n anechoic chamber to test the POA method. The research results show

that in BAN application, POA based ranging has a good performance. It will benefit the

future reference use of choosing PDOA ranging method for BAN application.
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Figure 5.10: Expected and simulated distance in homogenous tissue

Figure 5.11: Measurement scenario—Dual band antenna (402 MHz + 2.45 GHz) for
operation in BAN
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Chapter 6

Conclusion and Future Directions

This chapter presents an overall conclusion of the thesis and provides some possible future

directions of researches in this area.

6.1 Conclusion

In this thesis, investigation of the accuracy of WCE localization have been done. The

work consists of three parts: video motion tracking of WCE in large intestine, TOA based

ranging inside human body, and PDOA based ranging inside human body. All these

different parts of our work focus on the accuracy of WCE localization. And the conclusion

of our work is drawn and listed below:

(1) Our WCE motion tracking algorithm in large intestine works with higher accuracy

and stability when comparing with other algorithms published in the literature. Besides,

our tracking algorithm works uniformly throughout the test with a wide range of rotation

angles and relative displacements.

(2) The measurement errors of TOA based ranging inside human body could reach

mm level (up to around 0.5mm) if appropriate estimation method is applied. And the
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non-homogeneity is the main source of TOA ranging errors in in-body to surface channel.

(3) PDOA based ranging method does expand the maximum ranging distance com-

paring with TOA based ranging methods and it performs closely to that of TOA. The error

of PDOA based method could also reach up to mm level (up to around 0.7mm).

6.2 Future Directions

Our work is still on the way which we might extend it in the future. The future work

includes several aspects:

(a) Refine our visual motion tracking algorithm to be compatible with animation of

GI tract.

(b) Reconstruct the GI tract using images emitted from WCE to help physician obtain

more knowledge of their patients.

(c) combine the proposed tracking and ranging methods to come up with a novel

hybrid localization approach.
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Appendix A

Core code

A.1 Mutual information computation

f u n c t i o n [ mi ] = Micoun te r ( hand l e s1 , h a n d l e s 2 )

a= h a n d l e s 1 ;

b= h a n d l e s 2 ;

[Ma, Na ] = s i z e ( a ) ;

[Mb, Nb ] = s i z e ( b ) ;

M=min (Ma,Mb) ;

N=min ( Na , Nb ) ;

hab= z e r o s ( 2 5 6 , 2 5 6 ) ;

ha= z e r o s ( 1 , 2 5 6 ) ;

hb= z e r o s ( 1 , 2 5 6 ) ;

i f max ( max ( a ) ) ˜= min ( min ( a ) )

a = ( a−min ( min ( a ) ) ) / ( max (max ( a ) )−min ( min ( a ) ) ) ;

e l s e

a = z e r o s (M,N) ;
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end

i f max ( max ( b ) ) ˜= min ( min ( b ) )

b = ( b−min ( min ( b ) ) ) / ( max (max ( b ) )−min ( min ( b ) ) ) ;

e l s e

b = z e r o s (M,N) ;

end

a = do u b l e ( i n t 1 6 ( a ∗255) ) +1;

b = d o ub l e ( i n t 1 6 ( b ∗255) ) +1;

f o r i =1 :M

f o r j =1 :N

in dex x = a ( i , j ) ;

i n dex y = b ( i , j ) ;

hab ( indexx , i n de xy ) = hab ( indexx , i n de xy ) +1;

ha ( i n de xx ) = ha ( in de xx ) +1;

hb ( i nd ex y ) = hb ( i nd ex y ) +1;

end

end

hsum= sum ( sum ( hab ) ) ;

i n d e x = f i n d ( hab ˜ = 0 ) ;

p = hab / hsum ;

Hab= sum ( sum(−p ( i n d e x ) . ∗ l o g ( p ( i n d e x ) ) ) ) ;

hsum= sum ( sum ( ha ) ) ;

i n d e x = f i n d ( ha ˜ = 0 ) ;

p = ha / hsum ;

Ha = sum ( sum(−p ( i n d e x ) . ∗ l o g ( p ( i n d e x ) ) ) ) ;

hsum= sum ( sum ( hb ) ) ;
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i n d e x = f i n d ( hb ˜ = 0 ) ;

p = hb / hsum ;

Hb= sum ( sum(−p ( i n d e x ) . ∗ l o g ( p ( i n d e x ) ) ) ) ;

mi = Ha+Hb−Hab ;

A.2 Fibonacci search

f u n c t i o n [ f i n a l p o i n t , f i n a l m i , d i f f e r e n c e ] = . . .

g o l d s e a r c h 1 ( s t a r t p o i n t , d i r e c t i o n , min , max , h a n d l e s )

a=min ;

b=max ;

error = 0 . 0 1 ;

T = 0 . 6 1 8 ;

c=a+(1−T ) ∗ ( b−a ) ;

d=a+T∗ ( b−a ) ;

Fa=Fp ( a , s t a r t p o i n t , d i r e c t i o n , h a n d l e s ) ;

Fb=Fp ( b , s t a r t p o i n t , d i r e c t i o n , h a n d l e s ) ;

whi le ( abs ( b−a )>=error )

i f Fa<Fb

a=c ;

b=b ;

c=a+(1−T ) ∗ ( b−a ) ;

d=a+T∗ ( b−a ) ;

Fa=Fp ( a , s t a r t p o i n t , d i r e c t i o n , h a n d l e s ) ;

e l s e

a=a ;
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b=d ;

d=a+T∗ ( b−a ) ;

c=a+(1−T ) ∗ ( b−a ) ;

Fb=Fp ( b , s t a r t p o i n t , d i r e c t i o n , h a n d l e s ) ;

end

end

f i n a l d i f f e r e n c e =( a+b ) / 2 ;

f i n a l p o i n t = s t a r t p o i n t + f i n a l d i f f e r e n c e ∗ d i r e c t i o n

f i n a l m i =Fp ( f i n a l d i f f e r e n c e , s t a r t p o i n t , d i r e c t i o n , h a n d l e s )

d i f f e r e n c e = f i n a l d i f f e r e n c e ;

A.3 Image rotation and bicubic interpolation

f u n c t i o n I = I m a g e R o t a t e ( h a n d l e s , ang )

r a d = pi / 180∗ ang ;

o ld image = h a n d l e s ;

[ width , h e i g h t ]= s i z e ( o ld image ) ;

newimage= u i n t 8 ( z e r o s ( width , h e i g h t ) ) ;

a=round ( ( width −1) / 2 + 0 . 5 ) ;

b=round ( ( h e i g h t −1) / 2 + 0 . 5 ) ;

c=a ;

d=b ;

T1 =[1 0 0 ; 0 1 0;−a −b 1 ] ;

T2 =[ cos ( r a d ) −s i n ( r a d ) 0 ; s i n ( r a d ) cos ( r a d ) 0 ; 0 0 1 ] ;

T3 =[1 0 0 ; 0 1 0 ; c d 1 ] ;

60



T=T1∗T2∗T3 ;

t f o r m =maketform ( ’ a f f i n e ’ ,T ) ;

t x = z e r o s ( width , h e i g h t ) ;

t y = z e r o s ( width , h e i g h t ) ;

f o r i = 1 : 1 : wid th

f o r j = 1 : 1 : h e i g h t

t x ( i , j ) = i ;

t y ( i , j ) = j ;

end

end

[ u v ]= t f o r m i n v ( t form , tx , t y ) ;

f o r i = 1 : 1 : wid th

f o r j = 1 : 1 : h e i g h t

s o u r c e x =u ( i , j ) ;

s o u r c e y =v ( i , j ) ;

i f ( s o u r c e x >=width −1 | | s o u r c e y >=h e i g h t − 1 . . .

| | do u b l e ( u i n t 8 ( s o u r c e x ) ) <=0 | | dou b l e ( u i n t 8 ( s o u r c e y ) )

<=0)

newimage ( i , j ) =0 ;

% e l s e

% i f ( ( s o u r c e x / d ou b l e ( u i n t 8 ( s o u r c e x ) ) ==1) . . .

&&( s o u r c e y / d ou b l e ( u i n t 8 ( s o u r c e y ) ) ==1) )

% newimage ( i , j )=o ld image . . .
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( ( i n t 8 ( s o u r c e x ) ) , ( i n t 8 ( s o u r c e y ) ) ) ;

e l s e

a= do ub l e ( i n t 1 6 ( s o u r c e x ) ) ;

b= do ub l e ( i n t 1 6 ( s o u r c e y ) ) ;

x11= d ou b l e ( o ld image ( a , b ) ) ;

x12= d ou b l e ( o ld image ( a , b +1) ) ;

x21= d ou b l e ( o ld image ( a +1 , b ) ) ;

x22= d ou b l e ( o ld image ( a +1 , b +1) ) ;

newimage ( i , j ) = u i n t 8 ( ( b+1− s o u r c e y ) . . .

∗ ( ( s o u r c e x−a ) ∗x21 +( a+1− s o u r c e x ) ∗x11 ) + . . .

( s o u r c e y−b ) ∗ ( ( s o u r c e x−a ) ∗x22 + . . .

( a+1− s o u r c e x ) ∗x12 ) ) ;

end

% end

end

end

I =newimage ;

A.4 CRLB calculation and TOA ranging methods

c l e a r

c l c

f o r c y c l e =1:10

%%

syms t w t a u A

T0 =2 .5 e−8;
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SNR=1000;

W=1 e10 ;

c=3 e8 ;

I s =Aˆ 2∗ ( s i n (2∗ t ∗w) +2∗ t ∗w) / ( 4 ∗w) ;

I t a u =0 .5∗Aˆ2∗wˆ2∗ t −0.25∗Aˆ2∗w∗ s i n (2∗w∗ ( t−t a u ) ) ;

I s = subs ( I s , A, 1 ) ;

I s = subs ( I s , t , T0 )−subs ( I s , t , 0 ) ;

I s = subs ( I s , w, 4 0 2 e6 )

I t a u = subs ( I t a u , A, 1 ) ;

I t a u = subs ( I t a u , t , T0 )−subs ( I t a u , t , 0 ) ;

I t a u = subs ( I t a u , w, 4 0 2 e6 )

k =1;

f o r t a u =1e−9:1e−11:3∗1 e−9

down= s i n (2966236447052495765625/147573952589676412928)

. . .

/1608000000 + 944473296573929/75557863725914323419136;

up =100500000∗ s i n (804000000∗ t a u −

2 9 6 6 2 3 6 4 4 7 0 5 2 4 9 5 7 6 5 6 2 5 / . . .

147573952589676412928) − 100500000∗ s i n (804000000∗ t a u )

+ . . .

9315836341524244513916015625/4611686018427387904;

F=2∗SNR∗W∗T0∗up / down ;
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c r l b ( k ) =1/ s q r t ( F ) ∗c / s q r t ( 2 7 . 9 ) ;

k=k +1;

end

t a u =1e−9:1e−11:3∗1 e−9;

p l o t ( t a u ∗3 e8 / s q r t ( 2 7 . 9 ) ∗1000 , c r l b ∗1000) , x l im ( [ 5 7 1 7 1 ] ) ;

% y l i m ( [ 0 , 2 ] ) ;

hold on

x l a b e l ( ’ d i s t a n c e /mm’ ) , y l a b e l ( ’ r a n g i n g e r r o r /mm’ )

%% gcc

i m p o r t e d d a t a = i m p o r t d a t a ( ’ i n b o d y 2 7 . 9 . mat ’ ) ;

s t r 1 = ’ i m p o r t e d d a t a . s o u r c e ’ ;

s t r 2 = ’ i m p o r t e d d a t a . s e n s o r ’ ;

f o r c o u n t = 1 :100

f o r j =1 :7

i f ( j ==2) | | ( j ==3) | | ( j ==4) | | ( j ==7)

s o u r c e = e v a l ( s t r 1 ) ;

s e n s o r = e v a l ( [ s t r 2 , num2str ( j ) ] ) ;

Fs = 1 / ( s e n s o r ( 3 , 1 )−s e n s o r ( 2 , 1 ) ) ;

s t a r t =0 ;

f o r i =1 : l e n g t h ( s e n s o r )

i f s e n s o r ( i , 1 )>=6e−9

s t a r t = i ;

break
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end

end

t = s e n s o r ( s t a r t : l e n g t h ( s e n s o r ) , 1 ) ;

x= s o u r c e ( s t a r t : l e n g t h ( s e n s o r ) , 2 ) ;

amp=max ( s o u r c e ( : , 2 ) ) / max ( s e n s o r ( : , 2 ) ) ;

y=−amp∗ s e n s o r ( s t a r t : l e n g t h ( s e n s o r ) , 2 ) ;

x=awgn ( x , 3 0 ) ;

y=awgn ( y , 3 0 ) ;

N= l e n g t h ( y ) ;

% f i g u r e ( 1 )

% s u b p l o t ( 2 , 1 , 1 ) , p l o t ( t , x )

% s u b p l o t ( 2 , 1 , 2 ) , p l o t ( t , y )

X= f f t ( x , 2∗N−1) ;

Y= f f t ( y , 2∗N−1) ;

gcc=X. ∗ conj (Y) ;

% G=abs ( X ) . ∗ abs ( Y ) ;

% gcc=gcc . / G;

gcc= f f t s h i f t ( i f f t ( gcc ) ) ;

% gcc=abs ( gcc ) ;

l a g s=−N+ 1 : 1 :N−1; %??????

% f i g u r e

% s u b p l o t ( 2 1 1 ) , p l o t ( l a g s / Fs , gcc ) , t i t l e ( ’ gcc ’ ) , g r i d on ;

[ c , l a g s ]= x c o r r ( x , y ) ;

% s u b p l o t ( 2 1 2 ) , p l o t ( l a g s / Fs , c , ’ r ’ ) , t i t l e ( ’ xcorr ’ ) , g r i d on ;
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f o r i =−10:10

i n d e x ( i +11)= l a g s ( f i n d ( c==max ( c ) ) + i ) ;

v a l u e ( i +11)=c ( f i n d ( c==max ( c ) ) + i ) ;

end

i n t e r p o l a t e d i n d e x = i n d e x ( 1 ) : 0 . 0 0 1 : i n d e x ( l e n g t h ( i n d e x ) ) ;

i n t e r p o l a t e d v a l u e = i n t e r p 1 ( index , va lue , i n t e r p o l a t e d i n d e x , ’

s p l i n e ’ ) ;

d e l a y ( j ) = i n t e r p o l a t e d i n d e x ( f i n d ( i n t e r p o l a t e d v a l u e . . .

==max ( i n t e r p o l a t e d v a l u e ) ) ) / Fs ;

t i m e d e l a y =1/402 e6−abs ( d e l a y ( j ) ) ;

% t i m e d e l a y=abs ( d e l a y ( j ) ) ;

d i s t a n c e ( count , j ) = t i m e d e l a y ∗3 e8 / s q r t ( 2 7 . 9 ) ∗1000 ;

a c t u a l d i s t a n c e ( count , : ) = [ 7 5 . 9 4 8 98 .951 120 .637 1 3 4 . 2 3 1 ] ;

end

end

end

x =[ a c t u a l d i s t a n c e ( : , 1 ) ; a c t u a l d i s t a n c e ( : , 2 ) ; . . .

a c t u a l d i s t a n c e ( : , 3 ) ; a c t u a l d i s t a n c e ( : , 4 ) ] ;

y =[ d i s t a n c e ( : , 2 ) ; d i s t a n c e ( : , 3 ) ; d i s t a n c e ( : , 4 ) ; d i s t a n c e

( : , 7 ) ] ;

error =sum ( x−y ) / l e n g t h ( x ) ;

y=y+ error ;

error =abs ( y−x ) ;

e r r o r m e a n = z e r o s ( 1 , 4 ) ;

e r r o r m e a n g c c ( c y c l e , 1 ) =sum ( error ( 1 : 1 0 0 ) ) / l e n g t h ( error
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( 1 : 1 0 0 ) ) ;

e r r o r m e a n g c c ( c y c l e , 2 ) =sum ( error ( 1 0 1 : 2 0 0 ) ) / l e n g t h ( error

( 1 0 1 : 2 0 0 ) ) ;

e r r o r m e a n g c c ( c y c l e , 3 ) =sum ( error ( 2 0 1 : 3 0 0 ) ) / l e n g t h ( error

( 2 0 1 : 3 0 0 ) ) ;

e r r o r m e a n g c c ( c y c l e , 4 ) =sum ( error ( 3 0 1 : 4 0 0 ) ) / l e n g t h ( error

( 3 0 1 : 4 0 0 ) ) ;

p l o t ( a c t u a l d i s t a n c e ( 1 , : ) , e r r o r m e a n g c c ( c y c l e , : ) , ’∗ ’ ) , . . .

gr id on , hold on

%% a l l peaks

c=3 e8 ;

e p s i l o n b l o o d = 2 7 . 9 ;

i m p o r t e d d a t a = i m p o r t d a t a ( ’ i n b o d y 2 7 . 9 . mat ’ ) ;

f o r c o u n t =1:100

[ p e a k s o u r c e , t i m e p e a k s o u r c e , p e a k r e c e i v e d ,

t i m e p e a k r e c e i v e d ] . . .

= P e a k D e t e c t i o n ( i m p o r t e d d a t a . s e n s o r 2 , i m p o r t e d d a t a . s o u r c e )

;

f o r i =1 : l e n g t h ( t i m e p e a k r e c e i v e d )

t i m e d i f f e r e n c e ( i ) =abs ( t i m e p e a k r e c e i v e d ( i )−

t i m e p e a k s o u r c e ( i ) ) ;

m e a s u r e d d i s t a n c e ( i ) = t i m e d i f f e r e n c e ( i ) ∗c / s q r t (

e p s i l o n b l o o d ) ;
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end

m e a n d i s t a n c e 1 ( c o u n t ) =sum ( m e a s u r e d d i s t a n c e ) . . .

/ l e n g t h ( m e a s u r e d d i s t a n c e ) ∗1000 ;

[ p e a k s o u r c e , t i m e p e a k s o u r c e , p e a k r e c e i v e d ,

t i m e p e a k r e c e i v e d ] . . .

= P e a k D e t e c t i o n ( i m p o r t e d d a t a . s e n s o r 3 , i m p o r t e d d a t a . s o u r c e )

;

f o r i =1 : l e n g t h ( t i m e p e a k r e c e i v e d )

t i m e d i f f e r e n c e ( i ) =abs ( t i m e p e a k r e c e i v e d ( i )−

t i m e p e a k s o u r c e ( i ) ) ;

m e a s u r e d d i s t a n c e ( i ) = t i m e d i f f e r e n c e ( i ) ∗c / s q r t (

e p s i l o n b l o o d ) ;

end

m e a n d i s t a n c e 2 ( c o u n t ) =sum ( m e a s u r e d d i s t a n c e ) / . . .

l e n g t h ( m e a s u r e d d i s t a n c e ) ∗1000 ;

[ p e a k s o u r c e , t i m e p e a k s o u r c e , p e a k r e c e i v e d ,

t i m e p e a k r e c e i v e d ] . . .

= P e a k D e t e c t i o n ( i m p o r t e d d a t a . s e n s o r 4 , i m p o r t e d d a t a . s o u r c e )

;

f o r i =1 : l e n g t h ( t i m e p e a k r e c e i v e d )

t i m e d i f f e r e n c e ( i ) =abs ( t i m e p e a k r e c e i v e d ( i ) . . .

− t i m e p e a k s o u r c e ( i ) ) ;
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m e a s u r e d d i s t a n c e ( i ) = t i m e d i f f e r e n c e ( i ) ∗c / s q r t (

e p s i l o n b l o o d ) ;

end

m e a n d i s t a n c e 3 ( c o u n t ) =sum ( m e a s u r e d d i s t a n c e ) / . . .

l e n g t h ( m e a s u r e d d i s t a n c e ) ∗1000 ;

[ p e a k s o u r c e , t i m e p e a k s o u r c e , p e a k r e c e i v e d ,

t i m e p e a k r e c e i v e d ] . . .

= P e a k D e t e c t i o n ( i m p o r t e d d a t a . s e n s o r 7 , i m p o r t e d d a t a . s o u r c e )

;

f o r i =1 : l e n g t h ( t i m e p e a k r e c e i v e d )

t i m e d i f f e r e n c e ( i ) =abs ( t i m e p e a k r e c e i v e d ( i )−

t i m e p e a k s o u r c e ( i ) ) ;

m e a s u r e d d i s t a n c e ( i ) = t i m e d i f f e r e n c e ( i ) ∗c / s q r t (

e p s i l o n b l o o d ) ;

end

m e a n d i s t a n c e 4 ( c o u n t ) =sum ( m e a s u r e d d i s t a n c e ) / . . .

l e n g t h ( m e a s u r e d d i s t a n c e ) ∗1000 ;

a c t u a l d i s t a n c e ( count , : ) = [ 7 5 . 9 4 8 98 .951 120 .637 1 3 4 . 2 3 1 ] ;

end

x =[ a c t u a l d i s t a n c e ( : , 1 ) ; a c t u a l d i s t a n c e ( : , 2 ) ;

a c t u a l d i s t a n c e ( : , 3 ) ; . . .

a c t u a l d i s t a n c e ( : , 4 ) ] ;
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y =[ m e a n d i s t a n c e 1 ’ ; m e a n d i s t a n c e 2 ’ ; m e a n d i s t a n c e 3 ’ ;

m e a n d i s t a n c e 4 ’ ] ;

error =sum ( x−y ) / l e n g t h ( x ) ;

y=y+ error ;

error =abs ( y−x ) ;

e r r o r m e a n = z e r o s ( 1 , 4 ) ;

e r r o r m e a n d a p ( c y c l e , 1 ) =sum ( error ( 1 : 1 0 0 ) ) / l e n g t h ( error

( 1 : 1 0 0 ) ) ;

e r r o r m e a n d a p ( c y c l e , 2 ) =sum ( error ( 1 0 1 : 2 0 0 ) ) / l e n g t h ( error

( 1 0 1 : 2 0 0 ) ) ;

e r r o r m e a n d a p ( c y c l e , 3 ) =sum ( error ( 2 0 1 : 3 0 0 ) ) / l e n g t h ( error

( 2 0 1 : 3 0 0 ) ) ;

e r r o r m e a n d a p ( c y c l e , 4 ) =sum ( error ( 3 0 1 : 4 0 0 ) ) / l e n g t h ( error

( 3 0 1 : 4 0 0 ) ) ;

p l o t ( a c t u a l d i s t a n c e ( 1 , : ) , e r r o r m e a n d a p ( c y c l e , : ) , ’ ro ’ ) ,

. . .

gr id on , hold on

%% f i r s t peak

c=3 e8 ;

e p s i l o n b l o o d = 2 7 . 9 ;

i m p o r t e d d a t a = i m p o r t d a t a ( ’ i n b o d y 2 7 . 9 . mat ’ ) ;

f o r c o u n t =1:100

[ p e a k s o u r c e , t i m e p e a k s o u r c e , p e a k r e c e i v e d ,
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t i m e p e a k r e c e i v e d ] . . .

= P e a k D e t e c t i o n ( i m p o r t e d d a t a . s e n s o r 2 , i m p o r t e d d a t a . s o u r c e )

;

t i m e d i f f e r e n c e =abs ( t i m e p e a k r e c e i v e d ( 1 )− t i m e p e a k s o u r c e

( 1 ) ) ;

m e a s u r e d d i s t a n c e = t i m e d i f f e r e n c e ∗c / s q r t ( e p s i l o n b l o o d ) ;

m e a n d i s t a n c e 1 ( c o u n t ) = m e a s u r e d d i s t a n c e ∗1000 ;

[ p e a k s o u r c e , t i m e p e a k s o u r c e , p e a k r e c e i v e d ,

t i m e p e a k r e c e i v e d ] . . .

= P e a k D e t e c t i o n ( i m p o r t e d d a t a . s e n s o r 3 , i m p o r t e d d a t a . s o u r c e )

;

t i m e d i f f e r e n c e =abs ( t i m e p e a k r e c e i v e d ( 1 )− t i m e p e a k s o u r c e

( 1 ) ) ;

m e a s u r e d d i s t a n c e = t i m e d i f f e r e n c e ∗c / s q r t ( e p s i l o n b l o o d ) ;

m e a n d i s t a n c e 2 ( c o u n t ) = m e a s u r e d d i s t a n c e ∗1000 ;

[ p e a k s o u r c e , t i m e p e a k s o u r c e , p e a k r e c e i v e d ,

t i m e p e a k r e c e i v e d ] . . .

= P e a k D e t e c t i o n ( i m p o r t e d d a t a . s e n s o r 4 , i m p o r t e d d a t a . s o u r c e )

;

t i m e d i f f e r e n c e =abs ( t i m e p e a k r e c e i v e d ( 1 )− t i m e p e a k s o u r c e

( 1 ) ) ;
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m e a s u r e d d i s t a n c e = t i m e d i f f e r e n c e ∗c / s q r t ( e p s i l o n b l o o d ) ;

m e a n d i s t a n c e 3 ( c o u n t ) = m e a s u r e d d i s t a n c e ∗1000 ;

[ p e a k s o u r c e , t i m e p e a k s o u r c e , p e a k r e c e i v e d ,

t i m e p e a k r e c e i v e d ] . . .

= P e a k D e t e c t i o n ( i m p o r t e d d a t a . s e n s o r 7 , i m p o r t e d d a t a . s o u r c e )

;

t i m e d i f f e r e n c e =abs ( t i m e p e a k r e c e i v e d ( 1 )− t i m e p e a k s o u r c e

( 1 ) ) ;

m e a s u r e d d i s t a n c e = t i m e d i f f e r e n c e ∗c / s q r t ( e p s i l o n b l o o d ) ;

m e a n d i s t a n c e 4 ( c o u n t ) = m e a s u r e d d i s t a n c e ∗1000 ;

a c t u a l d i s t a n c e ( count , : ) = [ 7 5 . 9 4 8 98 .951 120 .637 1 3 4 . 2 3 1 ] ;

end

x =[ a c t u a l d i s t a n c e ( : , 1 ) ; a c t u a l d i s t a n c e ( : , 2 ) ; . . .

a c t u a l d i s t a n c e ( : , 3 ) ; a c t u a l d i s t a n c e ( : , 4 ) ] ;

y =[ m e a n d i s t a n c e 1 ’ ; m e a n d i s t a n c e 2 ’ ; m e a n d i s t a n c e 3 ’ ;

m e a n d i s t a n c e 4 ’ ] ;

error =sum ( x−y ) / l e n g t h ( x ) ;

y=y+ error ;

error =abs ( y−x ) ;

% p l o t ( x , y , ’ ∗ ’ ) ;

% ho ld on

% p l o t ( [ 7 5 . 9 4 8 98 .951 120 .637 1 3 4 . 2 3 1 ] , . . .
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[ 7 5 . 9 4 8 98 .951 120 .637 1 3 4 . 2 3 1 ] , ’ ro ’ )

% error mean=sum ( e r r o r ) / l e n g t h ( e r r o r )

% f i g u r e

% p l o t ( x , e r r o r , ’ ∗ ’ )

e r r o r m e a n = z e r o s ( 1 , 4 ) ;

e r r o r m e a n d f p ( c y c l e , 1 ) =sum ( error ( 1 : 1 0 0 ) ) / l e n g t h ( error

( 1 : 1 0 0 ) ) ;

e r r o r m e a n d f p ( c y c l e , 2 ) =sum ( error ( 1 0 1 : 2 0 0 ) ) / l e n g t h ( error

( 1 0 1 : 2 0 0 ) ) ;

e r r o r m e a n d f p ( c y c l e , 3 ) =sum ( error ( 2 0 1 : 3 0 0 ) ) / l e n g t h ( error

( 2 0 1 : 3 0 0 ) ) ;

e r r o r m e a n d f p ( c y c l e , 4 ) =sum ( error ( 3 0 1 : 4 0 0 ) ) / l e n g t h ( error

( 3 0 1 : 4 0 0 ) ) ;

p l o t ( a c t u a l d i s t a n c e ( 1 , : ) , e r r o r m e a n d f p ( c y c l e , : ) , ’m+ ’ ) ,

. . .

gr id on , hold on

l egend ( ’ Bound f o r TOA r a n g i n g e r r o r ’ , ’ G e n e r a l i z e d Cross . . .

C o r r e l a t i o n ’ , ’ D e t e c t i o n o f A l l Peaks ’ , ’ D e t e c t i o n o f F i r s t

Peak ’ )

end

a c t u a l d i s t a n c e ( 1 , : )

f o r k =1:4

y gcc ( k ) =sum ( e r r o r m e a n g c c ( : , k ) ) / 1 0 ;

e g c c ( k ) =max ( e r r o r m e a n g c c ( : , k ) )−min ( e r r o r m e a n g c c ( : ,

k ) ) ;
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y dap ( k ) =sum ( e r r o r m e a n d a p ( : , k ) ) / 1 0 ;

e d a p ( k ) =max ( e r r o r m e a n d a p ( : , k ) )−min ( e r r o r m e a n d a p ( : ,

k ) ) ;

y d f p ( k ) =sum ( e r r o r m e a n d f p ( : , k ) ) / 1 0 ;

e d f p ( k ) =max ( e r r o r m e a n d f p ( : , k ) )−min ( e r r o r m e a n d f p ( : ,

k ) ) ;

end

errorbar ( a c t u a l d i s t a n c e ( 1 , : ) , y gcc , e g c c / 2 )

errorbar ( a c t u a l d i s t a n c e ( 1 , : ) , y dap , e dap / 2 )

errorbar ( a c t u a l d i s t a n c e ( 1 , : ) , y dfp , e d f p / 2 )
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Appendix B

Brief tutorial to Simulations

B.1 Tutorial to FDTD algorithm

In this thesis, all simulations are conducted using three dimensional Finite Difference

Time Domain (FDTD) [93] solver with the Yee algorithm [94] (shown in Figure B.1).

Figure B.1: The 3-D model of Yee Algorithm

In the Yee algorithm, consider ∂Hx
∂ t = 1

µ (
∂Ey
∂ z − ∂Ez

∂y ), then using central differential

equation we have
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Hn+1/2
x (i, j,k)−Hn−1/2

x (i, j,k)
∆t

=

1
µ(i, j,k)

[
En

y (i, j,k+1/2)−En
y (i, j,k−1/2)

∆z
−

En
z (i, j+1/2,k)−En

z (i, j−1/2,k)
∆y

]

(B.1)

where µ(i, j,k) denotes the permeability at specific point. Equation B.1 therefore

defines the relationship of Hx(i, j,k) at time step n+ 1/2 and that at time step n− 1/2.

Thus we come to Equation B.2:

Hn+1/2
x (i, j,k) = Hn−1/2

x (i, j,k)+

∆t
µ(i, j,k)

[
En

y (i, j,k+1/2)−En
y (i, j,k−1/2)

∆z
−

En
z (i, j+1/2,k)−En

z (i, j−1/2,k)
∆y

]

(B.2)

Now consider ∂Ex
∂ t = 1

ε (
∂Hz
∂ y − ∂Hy

∂ z −σEx), if we apply the similar steps in Equation

B.1 and B.2, then we have

En+1
x (i, j,k)−En

x (i, j,k)
∆t

=

1
ε(i, j,k)

[
Hn+1/2

z (i, j+1/2,k)−En+1/2
z (i, j−1/2,k)

∆y
−

Hn+1/2
y (i, j,k+1/2)−Hn+1/2

y (i, j,k−1/2)
∆z

]− ε(i, j,k)
σ(i, j,k)

En+1/2
x (i, j,k)

(B.3)

Plug in central differential equation En+1/2
x (i, j,k)≃ En+1

x (i, j,k)+En
x (i, j,k)

2 we have
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En+1
x (i, j,k) =

1− ∆tσ(i, j,k)
2ε(i, j,k)

1+ ∆tσ(i, j,k)
2ε(i, j,k)

En
x (i, j,k)+

∆t
ε(i, j,k)

ε(i, j,k)
[
Hn+1/2

z (i, j+1/2,k)−En+1/2
z (i, j−1/2,k)

∆y
−

Hn+1/2
y (i, j,k+1/2)−Hn+1/2

y (i, j,k−1/2)
∆z

]− ε(i, j,k)
σ(i, j,k)

En+1/2
x (i, j,k)

(B.4)

Equation B.2 and B.4 can be more clearly if you take a glance at Figure B.2.

Figure B.2: The expanded Yee cell with k-plane and k+1/2-plane

Now the relationships between consecutive steps are clear.

B.1.1 Tutorial to SEMCAD X

SEMCAD was originally started through various projects at ETH in Zurich. It is set-

ting new standards in computational electromagnetic (CEM) software, being the most

efficient, functionally complete and affordable toolsets for antenna design and general

EM/Thermal simulation on the market [95].

To help readers come up with a smoother reading experience of the simulation part in

this thesis, a brief tutorial of SEMCAD X is posted in this subsection.
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Figure B.3: The main interface of SEMCAD X

Figure B.3 shows the main interface of SEMCAD X 14.8. This interface will auto-

matically show up after we start the server which is usually a workstation or desktop.

SEMCAD X provides users with a family of human phantom containing detailed organ

tissue materials to conduct accurate CEM simulations.

To run simulations on SEMCAD X, we provide instructions with figures below to

present a full procedure of a simulation.

First, we import the phantom or other models to SEMCAD X main GUI. File →

Import Model → select the model type and model file you need to import. After import is

done, the model will show up in Main GUI. A sample of this operation is given in Figure

B.4.

Second, in the ”explorer” frame, we can edit the model as well as add or delete other

objects. To edit the other configurable settings such as signal frequency, grid size, time

step and etc, we can refer to the frame ”EM-Simulations”, as shown in Figure B.5

Then, we right click the ”Grid” item and select ”Lock Grid” operation, and click ”Run

Simulation”.

Finally after the simulation is done, we open ”Result” in ”EM-Simulation”, and send
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(a) (b)

Figure B.4: (a) Frame ”Explorer” to edit the model; (b) Frame ”EM-Simulation” to con-
figure the settings of simulation

what we need to Viewers. Figure B.6 shows a sample of the simulation results.
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Figure B.5: A sample of received signal voltage from simulation results

Figure B.6: A sample of received signal voltage from simulation results
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