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Abstract 
 

Beaches across the globe are being polluted by human trash. While there are solutions to 

remove pollution from beaches, they mostly entail large machines that are not environmentally 

friendly and require a human operator. The goal of this MQP is to develop a robotic solution to 

clean these beaches effectively. This project aims to develop building blocks for later MQPs 

including the development of one small robot, a base station with a beach mapping system, and 

the communication methods between them.  
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Chapter 1: Introduction 

Currently, five trillion pieces of unwanted and harmful plastic debris are floating in the 

oceans around the world (McCarthy, 2018). This debris often washes up on beaches endangering 

the wildlife and humans that interact with these beaches. The impact of beach pollution is not 

just an environmental hazard, but also an economic threat due to reduced tourism. Tourism with 

respect to beaches is heavily influenced by the cleanliness of the area. If trash is continually 

removed from these beaches, it could result in a decreased threat to wildlife and a reduction of an 

economic threat.   

While there are solutions to this problem, they mostly entail large machines that are not 

environmentally friendly and require a human operator. An example of this is the Surf Rake, a 

large machine that is dragged behind a tractor, raking debris into a sifting mechanism. This 

system requires a human operator to drive the machine over each inch of the beach that needs to 

be cleaned. The advantage of a system like this is its ability to clean all forms of trash, large or 

small. In addition, these systems are efficient for trash collected per hour, some being able to 

clean up to nine acres an hour (SURF RAKE SPECIFICATIONS, 2019). However, a system like 

this is not environmentally friendly and can remove some of the natural debris from the beach. A 

more common form of beach clean-up is a volunteer-based service. This activity is more 

environmentally friendly as people pick up the garbage by hand and no harm is done to the beach 

ecosystem because only the trash is removed, not the important natural debris. Whether it is 

volunteers picking up trash by hand or tractors raking over sand, a human is heavily involved in 

the process, which is labor intensive and inefficient. In some cases, the desired outcome is the 

complete removal of debris. However, on beaches not near highly populated areas, this extra 
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work is detrimental to the environment. 

The goal for this project is to have a group of robots work together to pick up trash on the 

beach. This goal will be completed by developing a scalable robotic workforce that will use 

computer vision to recognize trash and custom collection mechanisms to sift through the sand. In 

addition, a large robot will be used to map the beach and organize the robotic workforce. In a 

future implementation, the large robot will be able to collect trash and either empty 

independently or have an operator unload the trash. A successful implementation of this system 

would result in a reduction in the carbon footprint and the need for human labor in relation to 

past solutions. This system could be in theory applied to locations other than beaches including 

parks, and recreational locations. 

The problem that this project seeks to address is the difficulty to clean beaches. Pollution 

of coastal environments degrades and destroys unique beach habitat used by humans, animals, 

and plants. Accurately cleaning beaches is important as litter can affect both the health of those 

in the ecosystem and tourist activity. This robotic system aims to precisely remove particular 

types of trash compared to the larger more indiscriminate machines used today. This project 

focuses primarily on public beaches since these types of beaches have heavy traffic and are 

easily accessible.  
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Chapter 2: Background  

2.1 Introduction 

 Beaches across the globe are being polluted by human trash. This trash can harm the 

environment and the creatures that inhabit it. Cities and states combat beach pollution by 

spending upwards of several million dollars a year on all beaches by utilizing either a large 

workforce of volunteers or heavy machinery (Parker, 2018). These solutions are often ineffective 

and not environmentally friendly. A more effective solution must be found to remove beach 

pollution. The problem that this project is trying to address is the difficulty to clean beaches. 

Pollution of coastal environments degrades and destroys unique beach habitat used by humans, 

animals, and plants. Achieving this is important as litter can affect both the health of those in the 

ecosystem and tourist activity. This project focuses primarily on public beaches since these types 

of beaches have heavy traffic and are easily accessible.  

2.2 Effect on Tourism 

Every year, Americans take more than nine hundred million trips to coastal areas and 

spend about $44 billion annually during these trips (US EPA 1996). A survey concluded that two 

characteristics of beaches that visitors valued most were that the beach was clean of debris and 

the quality of the water (NOAA, n.d.). Therefore, unsanitary beaches can result in a loss of 

interest from potential tourists in turn resulting in a loss of tourism revenue for the state.  
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2.3 Effect on Health 

The polluted waters not only harm tourist interest, but also their health through many 

waterborne diseases. Numerous health concerns, such as gastrointestinal problems, directly 

associated with beach use result in millions in medical bills. In Orange County, California, there 

occur roughly 36,778 gastrointestinal (GI) episodes per year from polluted beaches (Dwighta et 

al, 2005). With GI treatments costing approximately $36 each, Orange County residents pay over 

$1.3 million per year on these treatments alone. Lacerations are also a threat to public safety on 

beaches. Lacerations to beach goers can result from sharp objects being left in the sand and 

stepped on. A study at Lorne beach, Victoria showed that out of the 211 beach injuries during the 

summer holiday period, 37% were lacerations and beach litter directly caused 19% of the 

lacerations (Grenfell, Ross, 1992). Beach pollution is a direct threat to public health and needs to 

be addressed promptly.  

2.4 History of Beach Pollution 

Concerns over beach pollution began in the 1960’s as anecdotal reports of seabirds and 

marine life being entangled, and ingesting plastics started to surface. Beach litter specifically 

came under scrutiny in 1972 when a researcher debunked the notion that beach users were 

responsible for most of the litter (Bergmann, Gutow, & Klages, 2015). Most of the litter actually 

comes from processing plants. Following this study, Doctor Anthony Cundell, a researcher who 

built on the work of Bergmann assessed the amount of litter washing ashore over one month. 

These and similar early studies found how easily litter can travel between beaches and the 

dangers of this high accumulation rate (Bergmann, Gutow, & Klages, 2015). Outside of the 

scientific realm, environmental groups began hosting beach clean-ups, such as the International 
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Coastal Cleanup. One of the most helpful procedures when cleaning these beaches is 

documentation. The director of the Plastic Soup Foundation, Maria Westerbos says, "a cleanup 

only makes sense when people take photos of everything they find — so we can investigate 

where it's coming from". Therefore, beach cleanup events like the International Coastal Cleanup 

have volunteers go to beaches and manually pick up trash.  In some cases, they also record the 

items they collect on data cards (International Coastal Cleanup, 2019).  

Currently, the most common type of beach cleaning is known as ‘grooming’ and involves 

removing litter as well as natural debris. While this cleaning can be done manually, it is more 

typical to see large machinery utilizing rakes or sieves to separate sand from debris. One such 

machine, the Surf Rake weighs 3,800lbs and can clean up to nine acres an hour (SURF RAKE 

SPECIFICATIONS, 2019). Although this system is capable of quickly cleaning a large area, it 

also clears all the natural debris, such as sea glass and driftwood, known as wrack. The wrack is 

a source of food and habitat for many organisms, and its removal could affect the ecosystem’s 

food chains leading to the loss of species (Zielinski, Botero, & Yanes, 2019). In addition, wrack 

removal is assumed to alter the dynamics of sediment accumulation and retention, leading to the 

loss of sandy beaches (Zielinski, Botero, & Yanes, 2019). Aside from the physical damage to the 

beach ecosystem, the large tractor required to move this Surf Rake contributes a large carbon 

footprint. A Nebraska OECD (Organisation for Economic Co-operation and Development) 

tractor test found that a typical tractor at 16mph used 8.01 gal/hour of fuel (Hanna, n.d.). This 

figure translates to roughly 2 mpg, a mere 8% of the average mpg of a car. While the carbon 

footprint from the many cars driving to the beach will be much greater, any reduction in carbon 

usage is important.  
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2.5 Causes of Pollution 

Ocean pollution is the introduction of toxic materials such as plastic, oil, chemicals, 

agricultural waste, and industrial waste into the ocean. There can be several causes of ocean 

pollution, but the leading causes include sewage, toxic chemicals from industries, nuclear waste, 

thermal pollution, plastics, acid rain, and oil spillage (US EPA 2019).  

Trash and other solid materials that reach rivers, bays, and oceans eventually wash up on 

beaches. It includes plastic bags, bottles and cans, cigarette filters, bottle caps, and lids (US EPA 

2019). Other sources include people at the beach leaving behind their trash, and fishermen losing 

or discarding fishing nets and lines in the ocean. 

One of America’s most widespread and costly problems is excess nitrogen and 

phosphorus in the air and water. Nitrogen and phosphorus support the growth of algae and 

aquatic plants, which provide food and habitat for fish, shellfish and smaller organisms that live 

in water (US EPA 2019). However, when too much nitrogen and phosphorus enter the 

environment, usually from a wide range of human activities, the air and water can become 

polluted, resulting in serious environmental and human health issues, and affecting the economy 

(US EPA 2019). Animal manure, excess fertilizer applied to crops and fields, and soil erosion 

make agriculture one of the largest sources of nitrogen and phosphorus pollution in the country. 

2.6 Major Stakeholders 

Many different groups are interested in cleaning up beaches, such as local governments, 

tourists, wildlife, and private beach cleaning companies. Local governments and tourists are a 

symbiotic group of stakeholders as local governments rely on revenue from tourism and tourists 

care about the aesthetic and public safety of beaches. Some of Massachusetts' $220,000 beach 
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budget is allocated to the maintenance and cleaning of beaches (Commonwealth of 

Massachusetts, 2019), but the state also relies on volunteer efforts to keep the coastline clear, 

such as Coastsweep (Coastsweep, n.d.). Wildlife is also a stakeholder as trash and debris can be 

toxic to marine life such as sea turtles, birds, and mammals (Impacts of Mismanaged Trash, nd). 

Private beach cleaning companies, such as Sandman Beach Cleaning, are a stakeholder as they 

rely on dirty beaches for their business.  

2.7 The Solution 

 The goal of this project is to create robots that can clean beaches of small debris. A single 

human operator will be required to set up the robots on the beach as well as collect the trash from 

them at the end. While the robots are cleaning, they will need little to no interaction from the 

operator. Ideally, the target beach will be void of beachgoers as there are no plans for active 

avoidance of humans. They will be able to traverse clear beaches with minor pollution and be 

able to map the beach terrain to ensure the entire beach was cleaned. Beaches with severe 

pollution, debris in the water, or debris that is larger than a soda can will not be cleaned by this 

project. Beaches with softer sand will be the focus because it is easier to remove trash on soft 

sand than hard sand. The robot system will be able to identify trash with reasonable accuracy 

while also being able to retrieve it on its first attempt most of the time. Natural debris on the 

beach such as branches and shells will be avoided. The robot system should be scalable so that 

additional robots can be added to the group with little effort. In the future, this project can be 

continued by other MQPs to incorporate new robots to pick up different types of trash. 
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Chapter 3: Methodology 

The objectives for this project are shown in Appendix D.  

3.1 Mechanical Design 

3.1.1 Sand Locomotion Selection and Design 

The first task was to design a system that would be able to drive on sand. Tank treads 

were determined to be the best system for driving in sand for several reasons. Using treads 

provides higher traction on sand than wheels (Hughes 2013). Treads also slip less than wheels 

due to the amount of contact they have with the ground. Wheels are more likely to sink in the 

soft sand than treads if they are too narrow.  

During testing of the first design, the stock tread design proved to be ineffective, as sand 

would stick in between the ribs of the treads. This would clog the system and prevent movement. 

To solve this issue, a different tread design was implemented, like the treads used on the 

Moonraker robot shown in Figure 1 (Markhor, 2017).  
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Figure 1: Moonraker Tread System 

These treads used spaced C channel cut offs on a chain to allow sand to slip between the 

large crevices while moving. However, the system that was designed for this project proved to be 

ineffective at driving due to how the chain was connected to the C channel. Through more 

research, a solution was found where the treads were completely 3D printed and connected by 

bolts. The treads have teeth that fit into the drive sprocket’s holes, and a connected gear drives 

this sprocket to the drive pinion with a 50:11 gear ratio. The tread design and gearing can be seen 

in Figure 2 and 3, respectively.  
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Figure 2: Tread and Drive Sprocket 

 

Figure 3: Drive Pinion and Sprocket 

The sprocket and runner wheels have captive bearings that allow for smooth rotation. The 

final feature of this drive train is an external plate which connects the runners and drive sprocket 

adding rigidity to the system. This system was based on the Thingiverse model and this 
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implementation can be seen in Figure 4 (Bryant87, 2017). An assembly of the system can be 

seen in Appendix F.  

 

Figure 4: Drive Train 

 The tread design changed over the course of the project due to testing with the robot 

driving in sand. The design shown in Figure 5 was created to displace more sand than previous 

designs and elevate the robot. With these factors, the drive train sits on top of the sand, not 

allowing sand to clog the drive train.  

 

Figure 5: Tread Design 
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3.1.2 Robot Body Selection 

 Due to the challenges of designing two robots from scratch, robust robotic platforms were 

searched for as a starting point for the design. Requirements for both necessary platforms are 

listed below: 

● Reasonably priced 

● Can drive in beach environments 

● Have space for additional motors and sensors 

The Smallbot was found from a selection across various websites, first, due to robotic 

systems smaller than 300mm being prevalent and inexpensive. The chosen platform can be seen 

in the figure below. 

 

Figure 6: Smallbot Platform 

This robot has a full aluminum body with plastic treads held together with small metal 

rods. The specifications claim that the robot can bear 3kg of payload, but due to later 

modifications, it ultimately could support 5kg. The many holes and tie down points on the top of 

the body allow for easier modular design. The included motors specifications are shown in the 

figure below. A single motor has a maximum torque of 0.93N-m, and a no-load speed of 

100rpm. To calculate the torque requirement of the drive train, the force analysis and FBD 
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shown in Figures 7 and 8 were used. See assumptions related to this force analysis in Appendix 

E.  The estimated force on the treads (FR) was derived from the weight of the robot, assuming 

that the treads have perfect adhesion to the ground, they will not experience more force than the 

weight of the robot. 

 

 

 

Figures 7 and 8: FBD of Drive Train 
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A required torque of 0.12 Nm was found, allowing the motors to be driven at 87 rpm. 

This speed was chosen because of the resulting position along the speed and efficiency curve in 

addition to being at the torque requirement.  This value was extracted by using the motor data 

graph below in Figure 9, where it is represented by the black dashed line. This allows the motor 

to be driven at a reasonable efficiency while remaining near its maximum speed.  

 

Figure 9: Motor Data for Smallbot Drive Motors 

The Basebot posed a larger problem as platforms significantly larger than the 300mm 

Smallbot cost considerably more. Thus, instead of buying a platform including drive train and 

motors, a garden cart was chosen. This cart is pictured below in Figure 10.   
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Figure 10: Garden Cart 

In addition to the lower price point, this cart came equipped with 10” wheels and 

Ackerman steering. To add these components to another base it would cost a considerable 

amount of money and time. Due to the larger wheels, this cart will not require the use of treads to 

traverse through sand.  

3.1.3 Collection Mechanism 

For the final design, a metal claw gripper was purchased and modified, shown in Figure 

10.  
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Figure 11: Claw Gripper 

This claw utilizes a 30 kg-cm (2.9 N-m) servo motor to actuate the geared finger 

assembly to grab the trash. The gripper can exert approximately 18 N of force at the tip of its 

fingers shown in Figures 12 and 13. The value was found from performing force analysis on the 

gripper and the assumptions for this can be seen in Appendix E. 
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Figures 12 and 13: Gripper Force Analysis 

  Each finger is separated from each other by three standoffs, which allows the fingers to 

move through sand more easily than other collector designs. The aluminum construction is also 

superior to the other considered ABS plastic designs. The gripper mechanism exists at the end of 

a 2DOF arm. This arm contains a geared stepper motor for the shoulder joint and a 2.0 N-m 

servo as an elbow joint.  

The figure below shows a basic force analysis of the arm with derived torque 

requirements of 2.14 Nm and 1.15 Nm for the shoulder and elbow motors, respectively. The 

requirements are met by maximum torque outputs of the arm motors being 4 Nm and 1.96 Nm 

for the shoulder (stepper motor) and elbow (2.0 N-m servo) joints, respectively. The FGg force 

was derived from the weight of the gripper (252g) and FP from the weight of full soda can 

(400g). The force FGe was found from the weight of the elbow motor (60g) and weight of the link 

L2 (54g). The weight of a can is variable in the beach environment, as the can could have an 
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amount of sand or water inside of it. Due to this, the elbow motor was chosen due to its safety 

factor of 1.7. The force analysis for the collector arm is shown below in Figures 14 and 15. The 

force analysis shown in Figures 14 and 15 are determined using the Assumptions listed in 

Appendix E.  

 

 

Figures 14 and 15: Force Analysis of Collector Arm 

 The forward kinematics of the arm were calculated by recording the Denavit–Hartenberg 

(DH) parameters of the arm system. There are four parameters recorded for each joint: d, θ, r, α. 

The symbol d is the offset along the z-axis to the common normal. Θ is the angle about the z-axis 

from the old x-axis location to the new x-axis position. The symbol r is the length of the common 
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normal. Finally, α is the angle about the common normal from the old z-axis position to the new 

z-axis location. The DH parameter table is shown below. 𝜃1is the angle of the shoulder and 𝜃2is 

the angle of the elbow. 

Table 1: DH Parameters 

d (meters) θ (degrees) r (meters) α (degrees) 

0.0 𝜃1 0.130 0.0 

0.0 𝜃2 0.180 0.0 

 

The inverse kinematics were then calculated using the geometric approach. With the 

inverse kinematics, it was possible to set the end effector to any point in the task space and 

calculate the required angles to get there. The equations to get the joint angles 𝑞1and 𝑞2 from a 

given (x, y) coordinate from the end effector are shown below. 

 

Figure 16: Inverse Kinematics  
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3.1.4 Trash Storage Design 

 To store trash on the robot, a bucket was designed and fitted to the back of the robot. The 

design for this bucket is shown below in Figure 17.  

 

Figure 17: Smallbot Bucket Design 

For this robot to dump the contents of the bucket, a servo is attached underneath that 

allows for easy manipulation and dumping. An arch is cut from the front bucket wall to allow the 

arm easy access to place objects in the bucket. The bucket has a volume of 0.0014 cubic meters. 

This is approximately enough to comfortably hold 3-4 soda cans. Provided below in Figure 18 is 

an image of the bucket holding five cans of soda.  
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Figure 18: Smallbot Holding Cans 

The bucket servo has a torque requirement of 1.1 Nm, when the bucket contains four full 

soda cans which is the max capacity of the bucket. Figure 19 demonstrates how the servo 

empties a bucket. There is an arm attached to the servo that controls the bucket’s movement.  
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Figure 19: Servo Bucket Mechanism 

The calculation is made below in Figure 20. The 2 kg value in the FP variable is the 

weight of four soda cans (0.4kg) rounded to the nearest kilogram.  The force analysis shown in 

Figure 20 is determined using the assumptions listed in Appendix E.  

 

 

Figure 20: Force Analysis of Bucket 

3.1.5 Camera Mount 

 When placing the camera on the robot, it was necessary that the camera tilts to allow for 

camera calibration and manipulation. A 3D printed part was designed to hold a servo that would 

tilt the 4-ounce camera. With the entire design assembled, the servo can hold and move the 

camera to any required position within its range. The design for this is shown in Figure 21 

below. 
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Figure 21: Camera Mount 

3.2 Electrical System 

3.2.1 Microprocessor Selection 

Raspberry Pis were initially intended for all robots, as they would have enough power to 

handle OpenCV, ROS, and most future project expansions.  

 A ZED stereo camera was required for the Basebot, which would handle the mapping of 

the beach. The ZED camera is optimized for a Jetson board, so it was decided to replace the 

Raspberry Pi on the Basebot. The Jetson is much more capable of handling the stereo camera and 

mapping while also handling the management system.  

3.2.2 Electrical System Design 

The first step for the electrical design was determining the layout and components needed 

for the system. Figure 22 depicts a simplified block diagram of the components and their 
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connections in the system. As the figure shows, the small sensors are powered by the Raspberry 

Pi’s 5V and 3.3V sources. The UBEC (universal battery eliminator circuit) is a device that 

converts high-voltage (such as 25V from a 6S LiPo) to lower voltages and provides a stable step 

down from the 11.1V source to the 5V 0.7A requirement to power the Raspberry Pi. The drive 

motors of the robot are powered and controlled by a dual h-bridge circuit taking power from a 

small voltage regulator. 

 

Figure 22: Smallbot Electrical Diagram 

In the table below, all electrical elements in the Smallbot are documented with their 

power requirements. The max and idle draw columns were gathered from specification sheets 

and through testing. The power columns were derived using 𝑃 = 𝐼 ∗ 𝑉.  

Table 2: Power Requirements 

Component Amp Draw (A) Idle Amp Draw (A) Max Power (W) Idle Power (W) 

Raspberry Pi 3B+ 2.50 0.70 12.50 3.50 

Camera 0.40 0.40 2.00 2.00 

H-Bridge 0.04 0.01 0.18 0.07 

Camera Servo 0.50 0.40 2.50 2.00 

DC Motor 1.20 0.50 10.80 4.50 

Bucket Servo 3.50 0.40 17.50 2.00 

Stepper Motor 1.68 0.40 8.40 2.00 

Elbow and Gripper 1.80 0.10 9.00 0.50 
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Servo 

Coral Edge TPU 0.90 0.50 4.50 2.50 

Stepper Motor Driver 0.04 0.04 0.20 0.20 

Servo Controller 0.03 0.03 0.15 0.15 

IMU 0.10 0.00 0.35 0.00 
 

Using this data and the battery data from the three cell, 8000 mAh LiPo battery that is 

powering this system, the battery life of the robot can be derived. The maximum estimated run 

time of the system is approximately four hours while running idle and one hour at full load. To 

increase this time, a recharging station could be made to lengthen this time. In addition, 3D 

printed cases were fabricated for all components including the Raspberry Pi and USB camera.  

3.2.3 Sensors 

There are a few sensors dedicated to perception and positional data between the Basebot 

and the Smallbot. They were picked based on the requirements of low price, availability, and 

functionality. 

 The StereoLabs ZED stereo camera was purchased for $350. It has the ability to perceive 

its surroundings in 3D up to 20 meters. The ZED camera also supports ROS and has premade 

software available. The Basebot will use the ZED camera to scan the beach and divide it into 

zones. 

 A standard RGB camera was also purchased for the Smallbot. The BSG13MP camera 

module is $100. It provides USB connection and 75 degrees of vision. It supports Linux and 

Raspberry Pis. The BSG13MP is used for the Smallbots computer vision to locate trash for pick 

up.  

 The GY-521 IMU was purchased for $1. It contains both an accelerometer and a 

gyroscope with three axes of rotation. The IMU sends data using I2C to the Raspberry Pi. The 
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IMU will be utilized by the Smallbot to get the current angle the robot is at along its Z-axis and 

turning the robot to a specified angle. 

 Hall effect encoder sensors are attached to the drive motors. By using the encoders in 

conjunction with the IMU data, the robot can estimate its position. 

3.3 Computer System 

3.3.1 Task Management 

Another task was designing how the robots would communicate with one another. Using 

ROS over a wireless network was determined to be the optimal architecture that would allow for 

easier project expansion in the future.  In addition, all members of the project were familiar and 

comfortable working with ROS. The Basebot manages the Smallbots by assigning them tasks to 

accomplish, update their maps, and give them their position. There are three different types of 

tasks: 

● Clean Task: contains the zone to be cleaned. 

● Dump Task: sent when the Smallbot is ready to dump its container of collected trash. 

● Avoid Task: contains instructions to avoid hazards.  

Avoid tasks have the highest priority, so when a new avoid task is received; current progress on 

the previous task will be paused. Avoid tasks will be sent in cases not already covered by A* 

with the occupancy grid. Clean tasks have the lowest priority, so all higher priority tasks must be 

completed before they can be worked on. This management system can be expanded to manage 

multiple Smallbots. 
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3.3.2 ZED Mapping and Zones 

In addition to managing the Smallbots, the Basebot will also map the beach with a ZED 

stereo camera. The Basebot is equipped with NVidia’s Jetson Nano which has more power than a 

standard Raspberry Pi 3B+. This extra processing power will allow us to run SLAM 

(Simultaneous Location and Mapping). The map generated will be divided into sections that will 

act as the current operating field. The size of these sections will be about 10 square feet. These 

sections will be further divided into what will be called zones. The zones will be a strip in a 

section where a Smallbot will search for trash. These zones will be sent in cleaning tasks to the 

Smallbot. The ZED camera outputs a 3D map of what it can see up to 50 ft away. Due to a 

decrease in accuracy further from the ZED camera, the full operating distance of 20 meters was 

not used. This map will be updated in the management system so all robots will know where they 

are.  

3.3.3 ZED Camera Testing 

The ZED camera comes with an API that can create a 3D mesh or Fused Point Cloud 

from images it captures. Creating these can be a long process which would hold up code, 

however the API also comes with an asynchronous method of generating the mesh or point cloud 

in a separate thread. A mesh will be used as it is easier to generate and contains more 

geometrical information, which will be easier to divide into traversable sections. The mesh 

generated is of all images captured so far, not just the current image. The Mesh can easily be 

filtered to only contain traversable triangles, or triangles in a certain area, which will allow for 

zone generation of the beach immediately in front of it.  
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To test this, tutorials were followed and then scripts were created following a similar 

procedure as the tutorials. A class was written that filters and manages the original mesh to 

obtain the traversable area, which is used to create work zones. ROS was used to test both the 

custom scripts and filters.   

3.3.4 Cleaning Process 

Once the robots are initialized on the beach, the Basebot will begin mapping with the 

ZED camera. The section it is currently occupying will be cleaned first. It will divide the current 

section into workable zones and then assign these zones as tasks one at a time to the robots that 

are working for it. Once all the zones are cleared in the section of the beach, the system will 

move to the next unexplored section and repeat the process. During this time, the Basebot is 

continually mapping and monitoring the locations of the robots working on it. Once the entire 

beach is mapped and cleaned, all robots will shut down. This flow of events is shown visually in 

Figure 23. 

 

Figure 23: Cleaning Process Flow Chart 
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3.3.5 Smallbot Main Process 

The Smallbot will request information from the Basebot, such as what its next task is, its 

position, and if it needs to avoid something. These tasks are then sent to a task identifier class to 

be handled by the proper task managers. During a clean task, the main task the Smallbot will be 

executing, the Smallbot will drive to the first coordinate in the zone. This information is 

available in the task object as well as its type and priority. Once in the zone, the Smallbot will 

generate coordinates in a serpentine path to thoroughly cover the area. If any trash is detected by 

the computer vision while navigating to a coordinate, the Smallbot will attempt to collect it. If 

the Smallbot’s trash bin becomes full, it will save the execution of the clean task and request a 

dump task. Otherwise, the Smallbot will continue along the path until completed, request a new 

clean task from the Basebot, and repeat the process.  

 

Figure 24: Smallbot Main Process 

3.3.6 Smallbot Machine Learning and Computer Vision 

For the Smallbot to be able to tell what objects/trash needs to be picked up, it used 

machine learning. Specifically, the Smallbot collected frames from the camera when instructed 
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and used a Tensorflow object detection model to identify trash. To assist with the computational 

power needed to run one of these models, a Google Coral Edge TPU was plugged in via USB to 

the Raspberry Pi. Adding this component increased the frame rate that the camera can use to 

identify objects on the beach and decreased the amount of CPU usage on the Raspberry Pi. This 

allowed the Raspberry Pi to focus on other computationally heavy processes, including but not 

limited to ROS and localization.   

To train the model Google Cloud Platform’s AutoML training platform was used. The 

pipeline for this training is provided below in Figure 25.  

 

Figure 25: AutoML Pipeline 

The first step to train the model was labeling the training data. Using the built-in tools 

provided in AutoML, the large dataset of soda can images was labeled. Some of the labeled 

images are shown below in Figure 26. The model was trained on 428 images and tested on 49 

images. These images contained various orientations, lighting conditions, and environments. 

There were also many kinds of graphical images on each can prevent the model from identifying 

only certain kinds of cans. Photos were also taken where the can was partially submerged in the 

sand and some where they were crushed. 
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Figure 26: Example Labeled Cans 

After the model had concluded training, the team was able to evaluate the model and 

produce Figure 27. This figure was generated with a confidence interval of 0.5 and an 

Intersection over Union threshold of 0.5. An IoU threshold is used to measure the overlap 

between the predicted bounding box for an object and the actual bounding box for it that was 

given during the labeling stage. The closer the predicted bounding box values are to the actual 

bounding box values, the greater the intersection and the greater the IoU value. In this figure, the 

team was also able to determine the recall and precision percentages of the model based on a 

given confidence interval. Due to the numerous definitions for these terms, the definitions in this 

context are given below: 

 Recall - A high recall model produces fewer false negatives. 

 Precision - A high precision model produces fewer false positives.  
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Figure 27: Recall and Precision Percentage 

Figure 27 shows a visualization of the recall and precision percentages for the differing 

confidence levels on a sample of 428 images. The X-axis shows the confidence of the model. 

Confidence was lower on the left and higher on the right. The Y-axis is the percentage of each of 

the variables.  

As can be seen from the graph over time there is a strong drop off in the recall percentage 

as the confidence increases to 1.0. This is because the more confidence there is the less false 

negatives that result from the model. There is also a strong increase in precision between 0.0 and 

0.25. This is because when there is less confidence about the model there is less precision in the 

results.  

 Since the model was able to identify objects effectively, the model was then exported to 

the Raspberry Pi to be used with the Google Coral USB Accelerator pictured below in Figure 28.  
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Figure 28: USB Accelerator 

Testing for this product with the model is shown below in section 4.1.10. After testing, it 

was determined that the coral does in fact improve the framerate that was received. With the 

Coral attached, the frame rate was approximately two frames per second and was .5 frames per 

second without it. One issue that the group ran into was the inability for the edgetpu library to 

work in ROS. To fix this issue, the team was able to establish a socket connection between a 

Python 3 script running the video code and a ROS Node. This socket connection allows the 

transfer of a video information between the script and the node.  

After it was confirmed that the Machine Learning model could work on the smallbot, 

being able to use this information to track and pick up a can is vital to the success of this project. 

To complete this task, the team focused on tracking in one axis at a time. The first axis that was 

worked on was the pitch of the camera. This was implemented using the servo attached to the 

camera mount. Once this axis was concluded to work effectively, the next axis was then 

implemented on top of the previous. The next axis was the roll of the robot. This was 

implemented by having the robot rotate left and right to align with the closest can. This was 

probably the most challenging axis since the drive system has varying degrees of power based on 

which way the robot was turning. Once the robot was able to consistently track in these two axes, 

getting the robot to move towards the cans was the next challenge. Due to the lack of an 
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extremely high frame rate it was much easier to only move in two axes at one time instead of all 

three. This meant that anytime the robot centroid strayed too far from the can threshold it would 

stop moving forward and rotate to fix its position inside of the threshold. It was determined that 

this was the optimal and fastest way to navigate towards cans. To determine how close a can was 

the area of the bounding box surrounding the can was used. If that area was within a certain 

threshold it was then determined that a can was in the optimal location to be picked up. The 

robot then would drive forward a set distance to place the can in range of the arms reach. A 

common problem that was faced by this movement was that if the robot moved too much it 

would run over the can. This was solved by adding a front plate to the robot. When the robot 

determined that it was able to pick up a can it would also trigger the robot to stop what it was 

doing until it had collected the can. Once this process was completed, it would go back to finding 

more cans. If there were no cans present, then the robot would stop moving and in later 

implementations be able to go back on its path.  
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Chapter 4: Experimental Evaluation  

4.1.0: Unit Tests 

The following tests show the fundamental tests that were performed to validate the 

systems design. To test the Smallbot’s movement, the robot's driving speed, turning accuracy, 

and sand locomotion ability were tested. To test the Smallbot’s arm ability the force of the 

gripper, arm accuracy, and arm lifting power were tested. In addition, the bucket functionality, 

the machine learning model with and without the Edge TPU accelerator, ROS communication, 

and ZED functionality were tested. 

4.1.1: Driving Speed of Smallbot 

 From the calculations in the previous chapter, this robot is estimated to drive at 

approximately 0.105 m/s at the desired motor speed of 75 rpm. This speed will be influenced by 

the weight and friction the treads apply to the drive sprocket. To test the speed of the Smallbot, it 

was driven 300 millimeters and timed using a stopwatch. Ten trials were used to determine the 

actual drive speed of the robot. These trials are shown below in Figure 29.  
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Figure 29: Calculated Speed Vs. Tested Speed  

 Figure 29 shows a comparison between the calculated speed of the robot and the tested 

speed of the Smallbot. The axes show velocity of the robot in meters per second and the trial 

number. Two lines are displayed on this chart. In blue is the calculated drive speed of 0.105 m/s. 

The red line varies as it goes between the trials, but the trend line averages approximately 0.070 

m/s. 

4.1.3: Turning Accuracy of Smallbot 

 Due to the nature of driving in sand, accurate turning is critically important to navigating 

the beach. The turning accuracy was tested by attaching a marker to the robot and measuring the 

arc created while turning to varying angles. Twenty trials were performed where the robot turned 

to both 45 and 90 degrees. On average, the turning accuracy was off the target angle by less than 

7 degrees. The data for this test is shown in Appendix C Table 5. 
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4.1.4: Sand Locomotion of Smallbot 

To test the Smallbot’s ability to drive in sand, a small sand pit was constructed. This 

sandpit was large enough for the robot to be able to rotate and drive short distances. During the 

development of the drivetrain, early designs became clogged with sand and could not move. The 

final design of the tread proved to be able to rotate continuously and drive linearly without 

clogging.  

4.1.5: Gripping Force of Smallbot Gripper 

 The gripper was estimated to output 18 N of force at the tip of the fingers. This force was 

tested by attaching a spring mass scale to the end of the plastic extender, and as the gripper is 

closed, the peak force was recorded. This peak force was halved as the force was only recorded 

from one side of gripper assembly. The tested force falls short of the expected force due to high 

friction in the gears of the gripper.  

  

Figure 30: Calculated Gripper Force Vs. Tested Gripper Force 
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In Figure 30, the calculated gripper force (in blue) is compared with the tested gripper 

force (in red). The X-axis shows the test number. The Y-axis shows the force in Newtons that the 

Smallbot’s gripper applied to the force sensor. The pale red line represents the trend line,  

4.1.6: Smallbot Arm Accuracy 

 The arm’s position accuracy is critically important to being able to accurately pick up the 

trash. Thus, the kinematics of the arm were calculated, and the high resolution of the stepper 

motor allows for precise control of the shoulder joint. To test how accurate the arm is when 

given an end effector position to go to, the end effector position was measured with a set of 

calipers and compared with the desired position. This testing allowed for the error in the arm to 

be tested.  

4.1.7: Arm Max Lift Weight 

 The maximum lift weight of the arm was determined through torque calculations with the 

arm motors and link lengths resulting in a lifting capacity of 1.1kgs. This is well above the 

weight of a full soda can, averaging a weight of 0.4kg. 

 In the testing, four different cans with various weights were used. Can 1 weighed 100g, 

can 2 weighed 200g, can 3 weighed 450g, and can 4 weighed 650g. The elbow servo was able to 

lift all but the last can; however, the servo was still able to hold its position. This last can was 

filled with both sand and water, and weighed more than the average full can, so this is an 

extreme scenario that the robot would likely not have to lift.  
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4.1.8: Smallbot Bucket Testing 

 In order to test the accuracy of the buckets position the team isolated the buckets 

movement without weight. The requirements for the bucket movement are purely if the Bucket 

can go between two states. The first is the standard position where the bucket is level on top of 

the robot. The second is the bucket tilted all the way backwards at a 90-degree angle. A 

visualization of these two states are shown below in Figures 31 and 32.  

 

Figures 31 and 32: Bucket position 1 (left) and Bucket position 2 (right) 

 Upon testing, the bucket was able to move to these two positions with reasonable 

accuracy (+/- 2 degrees) as well as empty all cans from the bucket. To test the hold weight of the 

bucket, numerous filled soda cans were placed inside of the bucket. The bucket would then need 

to move into the state described by Figure 32 shown above. If the bucket were able to tilt all the 

way without stall, then the bucket's functionality would be successfully tested. The bucket was 

able to complete this test by lifting the weight that was provided to it to the desired location.  

4.1.9: Smallbot Machine Learning Recall and Precision 

 To test the machine learning model, the model was run on a variety of test images. Two 

of these test images are provided below in Figures 33 and 34. To clarify, the images pictured in 
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Figures 33 and 34 are completely new images the model has never seen before. For this model to 

work, it needs to be able to correctly identify soda cans. The team predicts that the model will 

identify cans often. Figures 33 and 34 were some of many images that were tested. All of which 

returned the correct outcomes.  

 

 

Figure 33: Machine Learning Test Image 1 

Figure 33 shows the output from the model after being run on the image to the left in the 

figure. On the right of the figure is the predictions that were made about the image, including the 

number of objects and what each object is, along with how confident the model is that the object 

is what it identified it as. In this case, the model identified that there was one object, which was a 

can, and it was 97% confident that this object is a can. Another feature that this figure provides is 

a bounding box on which object it deemed to be a can. In this case, it properly identified the soda 

can pictured.  
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Figure 34: Machine Learning Test Image 2 

Figure 34 also depicts an output from the model. This time the model identified that there 

were two objects in the figure. Both objects were cans. It identified one of these cans at 97% and 

the other at 67%. Even though the model was less confident, it still identified the proper items.  

4.1.10 Smallbot Edge TPU Accelerator Testing 

After the completed testing of the model off the Raspberry Pi. The team then decided that 

it was time to test on the Raspberry Pi with the Google Coral Edge TPU Accelerator. The team 

first tested the ability to run using the accelerator. This was in fact true, as it was able to receive 

the correct outcome from the terminal execution of the example code from the coral website 

(Google-Coral, 2020). 

The second test that was completed was to make sure that it was working on a known 

image of the can. To test that the model ran on the Raspberry Pi using the detect_image.py file 

from the tutorial as shown previously. The results from this are pictured below in Figures 35 and 

36.  
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Figures 35 and 36: Unprocessed and Processed Soda Can Image 

Figure 35 shows the unprocessed image. This is the input image to the model. Figure 36 

shows the processed image output from the model. As shown in Figure 36, there is a bounding 

box around the can, and a label telling us it is a can, along with the probability that it is a can, 

which in this case is 95%.  

4.1.11 ROS Testing 

To test ROS and the custom communication system, task objects were created that would 

be parsed and sent as service messages through ROS from the Basebot to the Smallbot. Each part 

of the task was sent in a ROS message. When the Smallbot receives this message, it is parsed 

back into a task object. This testing performed as expected.  

4.1.12 ZED Testing 

To test the ZED camera’s functionality, data was taken from local areas around WPI and 

tested the mesh outputs and occupancy grid generation. Overall, this works as intended. The 

ZED was able to move to any new position and orientation and it will be able to identify new 
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zones and create cleaning tasks for those zones. This test ensures that the entire system could 

clean an entire beach when it is fully implemented. 

4.2.0: Integration Tests 

The following tests integrated more than one part of the system to test integral 

functionality of the system. Basic ROS communication with the custom messages was tested 

with and without the ZED camera mapping system. In addition, the Smallbot’s ability to 

correctly identify and collect a can. 

4.2.1: Between Smallbot and Basebot 

 To test the basic communication between the Smallbot and the Basebot, different tasks 

were simulated to send to the Smallbot from the Basebot. In the first test, cleaning tasks were 

created and the Smallbot kept requesting them indefinitely. The Smallbot would increment a 

counter in the cleaning manager to simulate it cleaning the zone. Once the counter reached a 

threshold, it marked the task as complete and requested a new cleaning task from the Basebot. 

This test functioned just as expected. 

In the next test, the same system was kept with the cleaning tasks, but also periodically 

added avoid tasks. These functioned the same way as cleaning tasks with a counter. However, 

when an avoid task is added to the Smallbot, it takes priority and interrupts the current cleaning 

task. This will ensure that immediate instructions can be sent to the robot that will interrupt the 

current cleaning task. Once an avoid task is complete, the Smallbot resumes the past cleaning 

task. Periodically, a new avoid task is sent to the Smallbot. In addition, when working on a task, 
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different velocities were sent to ensure that the robot could follow commands while working on a 

task. This test functioned as expected. 

4.2.2: Incorporating the ZED camera 

 The next test of robot communication was to incorporate the ZED camera. The ZED, as 

part of the Basebot node, continuously mapped the world in front of it and generated an 

occupancy grid of this area. From this visible area, it determined what zones are in its field of 

view and created a cleaning task for each one. This was then set as the Basebot’s list of cleaning 

tasks. Once the Smallbot connected, it began cleaning the tasks sequentially. Path traversal was 

also tested, where waypoints were added in the zone. This path looked like a zigzag through the 

zone starting at the bottom and ending at the top. Once the end was reached, it marked the task as 

complete. To simulate moving, a simulated position was tracked that incremented towards its 

goal every step of the Smallbot. Once the simulated position is within a threshold of the goal 

position, then it marks that position as reached and tries to reach the next goal position. Follow 

the link in Appendix A to view this simulation in its entirety. The green rectangle is a zone and 

the purple sphere is the simulated position. This process will repeat until all zones are completed 

in front of the ZED. 

 This test was repeated while moving the ZED from its initial position, changing the 

visible zones. The Basebot was able to update its visible zones and create new cleaning tasks to 

send to the Smallbot. In addition, this test had several Smallbots simulated as part of the system 

working on cleaning tasks. This test worked as expected, proving that the system would be 

sufficient to clean an entire beach. 
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4.2.3: Computer Vision Tracking 

In order to test the computer vision tracking, cans were put in front of the robot's path in 

various different locations in relation to the smallbot, and counted the number of times the robot 

was able to successfully pick up the can and the number of times it was not. In order to make 

sure this procedure worked over 30 different can placements were tested within the Robots path. 

The robot was able to pick up 28 of these cans. Two of the cans were not detected initially, but 

with a slight nudge, the robot was able to detect the cans just fine. The suspected reason for this 

failure is the machine learning model not being trained on enough images of the bottom of the 

can.   
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Chapter 5: Discussion and Results   

The testing proved that this robotic system is feasible for full scale testing. Each 

component of the system had varying successes and failures; thus, they have been broken out 

into sections. The original objectives of the project are shown in Appendix D.  

5.1 Mechanical Results 

Most of the mechanical goals were reached. The Smallbot could drive reliably, as shown 

in the driving speed unit test. The actual driving speed proved to be slower than the calculated 

speed, which could be due to the friction in the drive train. This friction could be reduced by 

using machined aluminum parts instead of 3D printed parts and lubrication could be added to the 

gears and treads. Sand locomotion could not be fully tested due to the COVID-19 pandemic; 

however, a small test in a sand pit showed that the tread design has the potential to work. The 

Smallbot could turn in place but this does not confirm full driving capability.  

 The collection mechanism was fully implemented and shown to work in integration 

testing. The gripper’s finger design allowed it to move through sand without resistance in the 

testing sand pit. On an actual beach, sand density is highly variable, and more testing needs to be 

done before this design can be proven to work on any beach. The arm design also performed well 

in the unit testing. The mechanical limit of this system was its inability to lift a can that was 

completely full of sand and water weighing 650 grams. While this is an extreme case compared 

to a full can of soda weighing 400 grams, this proves that a stronger elbow joint servo should be 

used for any edge cases.  

Storage and dumping of the trash were the easiest of the mechanical systems and was 

successful. The system was able to store multiple cans and dump them even when the combined 
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weights of the cans were 1.5 kg. This shows that the system can reliably store and dump three 

full cans of soda.  

Aside from the Smallbot, the Basebot was not fabricated in this iteration of the project. 

The computer science requirements were fully tested; however, the electro-mechanical 

components were not. Future  

5.2 Electrical Results 

Our original electrical objectives were achieved. The electrical system was implemented 

on a perforated board allowing for a clean design and less chance of wiring error. Ideally, this 

system should have a PCB and be tested in simulation to confirm that all parts are fully powered. 

Each electrical component was tested to ensure that the subsystem it controlled operated 

correctly. The Basebot electrical system was not implemented into the system as it was easier to 

test the ZED camera without it. 

5.3 Computer Science Results 

The computer science aspect of the project had successful and incomplete objectives. To 

start, the ROS communication was thoroughly tested and determined to be a success. Zones were 

communicated as tasks with multiple Smallbots connected to the Basebot without any system 

errors. The management system is the backbone of the project and as such was one of the first 

parts completed.   

The ZED camera was the next successful portion of the computer science aspect of this 

project. The system was successfully able to have the ZED camera create a 3D mesh of the beach 

and then create an occupancy grid of the visible area and identify work zones for the Smallbots 

to clean. However, this was not tested on a real beach. It is unknown if the system will act 
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differently in a real environment or how accurate simultaneous localization and mapping will be 

on a full beach. There are no obvious issues with the system being unable to do so, but until the 

Basebot is fabricated this will not be certain. 

Due to the Basebot not being fabricated, the system was unable to move forward with the 

trash exchange between the Smallbot and Basebot. This objective is a goal of future teams as 

they develop the Basebot. This also affects the final objective of returning to the start position. 

The full mechanical system should be fabricated before this feature is implemented in the 

management system. 

Originally the Smallbot was going to detect trash with OpenCV, but after minor testing 

early in the project, it was decided that cans were unable to be identified consistently with 

traditional computer vision methods. Instead, machine learning was implemented into the 

system. This included generating a Tensorflow Lite model as described in the methodology 

section. This method ultimately worked better than traditional computer vision methods and 

completed the goal.  
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Chapter 6: Conclusion 

 In the project’s present state, the system can clean a beach of cans. The Basebot can 

maintain multiple Smallbots, mapping a beach, and dividing it into workable zones to be sent as 

tasks to each of its Smallbots. The Smallbot can communicate with the Basebot, and moving in 

its environment, correctly identifying a can, moving to the can’s position, and collecting it. This 

project is a proof of concept of a multi robot system that can clean a beach of human debris. This 

project laid down the foundations for future teams to continue developing the system and 

integrate further functionality. 

In the future implementations of this project, the system should look towards fabricating 

the Basebot, upgrading Smallbot positional sensors, collecting additional pieces of trash other 

than soda cans, developing a stand-alone method for communication, and improving the 

scalability of the current system. With these improvements, this system should be able to 

accomplish the mission that was set out to complete.  
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Appendix 

Appendix A: Project Presentation Video 

Link to video: https://www.youtube.com/watch?v=hBx1OiOC5TI 

Appendix B: Beachbots MQP Wiki     

 Link to website: https://sites.google.com/view/beachbotsmqp/home 

Appendix C: Unit Testing Data 

Table 3: Gripper Test Data 

 

 

  

Test Number Gripper Force Tested (N) 

1 13.6 

2 13.45 

3 13.05 

4 13.6 

5 13.45 

https://www.youtube.com/watch?v=hBx1OiOC5TI
https://sites.google.com/view/beachbotsmqp/home
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Table 4: Drive Speed Data 

Trial Number Drive Speed Tested (cm/s) 

1 70.4 

2 64.5 

3 71.5 

4 72.9 

5 74.4 

6 66.6 

7 73.7 

8 67.4 

9 74.4 

10 74.8 

 

Table 5: Smallbot Turning Test 

Test Number Attempted Angle (Degrees) Actual Angle (Degrees) 

1 90 83 

2 90 99 

3 90 90 

4 90 100 

5 90 91 

6 90 80 

7 90 86 

8 90 90 

9 90 97 

10 90 102 

1 45 38 

2 45 51 

3 45 58 

4 45 53 

5 45 55 
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Appendix D: Initial Objectives 

Mechanical Objectives 

● Collector to pick up trash. Trash will be of soda can size or smaller 

● Collector will filter out sand from trash and debris 

● Collected trash will be dumped into the Basebot 

● Both Smallbot and Basebot will store trash 

● Form of locomotion to move through sand while also not sinking 

Electrical Objectives 

● Smallbots will operate with Raspberry Pi 3 B+ with the default camera 

● Basebot will operate with a Jetson Nano with a ZED Stereo Camera 

Computer Science Objectives 

● Use ROS to communicate information between Basebot and Smallbots 

● Basebot will map field with stereo camera, then divide the field into zones 

● Zones will be sent as Tasks to the Smallbot to clean 

● Smallbots will use OpenCV to detect trash to collect 

● Smallbots return to the Basebot when the trash container is full 

● Once the beach is cleaned, robots will return to starting location for retrieval 

Appendix E: Force Analysis Assumptions 

● All links are rigid bodies 

● Frictionless joints and links 

● Force of gravity on links is negligible 
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● Gears have perfect contact at a point 

Appendix F: Exploded Assemblies Views 

 In addition to these drawings, the full Solidworks assembly of the robot can be found on 

the wiki in Appendix B. 

 

Figures 37: Arm Subassembly 
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Figures 38: Drive Train Subassembly 

 


