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Abstract 

Our research investigates the relationship between per-occurrence and aggregate 

deductibles, with a focus on devising a simplified methodology for estimating loss elimination 

percentages, particularly pertaining to Table M. Per-occurrence deductibles require the insured to 

pay for a portion of each loss event. Aggregate deductibles accumulate losses over a defined 

period, upon reaching a certain threshold the deductible amount is subtracted from the aggregate 

losses and the insurance coverage begins. Therefore, an aggregate deductible represents the 

maximum deductible amount that a policyholder must pay for claims over the specified period. 

Table M is a widely used tool for determining the extent of loss mitigation through 

imposing per-occurrence and aggregate limits. Table M is built using entry level ratios and 

associated aggregate losses categorized by policy size or limit. Typically, this table is generated 

by modeling aggregate loss distributions using parameterized functions, which offers flexibility 

for simulations. Actuaries establish Table M by fitting claims data to similarly sized risk groups, 

ensuring accuracy in estimating loss elimination. However, limitations may arise when data is 

insufficient for creating credible groups, emphasizing the importance of analyzing entry level 

ratios to mitigate potential errors. Our primary goal is to propose an improved methodology for 

Table M, simplifying calculations, therefore facilitating informed decision-making for insurers. 

We utilized Excel to simulate various distributions while applying different per-occurrence and 

aggregate deductibles, allowing for comprehensive analysis of their effects on loss reduction 

percentages. Through these simulations, we derived enhanced methodologies for calculating and 

presenting Table M charges in a more comprehensive manner. 
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Executive Summary 

Our study focuses on the complex interplay between per-occurrence and aggregate 

deductibles, with the goal of deriving a refined methodology for calculating and presenting Table 

M in a more comprehensive manner. Per-occurrence deductibles require policyholders to cover a 

portion of each loss event, while aggregate deductibles accumulate losses over a defined period, 

triggering deductible subtraction once a threshold is reached. Table M is a critical tool for 

assessing loss mitigation by setting per-occurrence and aggregate limits. It's constructed based on 

entry level ratios and corresponding aggregate losses, providing insights into risk based on policy 

size or limit. While actuaries typically construct Table M using parameterized functions to model 

aggregate loss distributions, limitations can arise from insufficient data for creating credible risk 

groups, emphasizing the importance of analyzing entry level ratios to mitigate potential 

inaccuracies. 

Our primary objective is to propose a refined methodology for calculating and presenting 

Table M, simplifying calculations and presentation to support informed decision-making among 

insurers. Using Excel, we explored techniques for pricing policies that incorporate both 

occurrence and aggregate deductibles through simulations involving various distributions and 

different deductible structures. We comprehensively analyzed the impact of these deductible 

combinations on loss reduction percentages. These simulations allowed us to derive refined 

methodologies for computing and presenting Table M charges in a more digestible format. 
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1.0 Introduction 

Our study delves into the intricate relationship between per-occurrence and aggregate 

deductibles, aiming to streamline the process of estimating loss elimination percentages, 

particularly concerning Table M. Per-occurrence deductibles necessitate policyholders to cover a 

fraction of each loss event, while aggregate deductibles accumulate losses over a specified 

period, triggering deductible subtraction once a threshold is met. This denotes the maximum 

deductible amount a policyholder must bear within the defined period. 

Table M serves as a pivotal tool in gauging loss mitigation through the imposition of per-

occurrence and aggregate limits. Constructed upon entry level ratios and corresponding 

aggregate losses, it's crucial for assessing risk based on policy size or limit. Typically, actuaries 

craft Table M by modeling aggregate loss distributions using parameterized functions, ensuring 

flexibility for simulations. However, limitations may arise from insufficient data for creating 

credible risk groups, underscoring the necessity of analyzing entry level ratios to mitigate 

potential inaccuracies. 

Our primary goal is to propose a refined methodology for calculating and presenting 

Table M, simplifying calculations to facilitate informed decision-making among insurers. Using 

Excel, we surveyed techniques for pricing policies incorporating both occurrence and aggregate 

deductibles. To do this we simulated various distributions while applying diverse per-occurrence 

and aggregate deductibles, enabling a comprehensive analysis of their impact on loss reduction 

percentages. Through these simulations, we derived refined methodologies for computing and 

presenting Table M charges in a more comprehensive format. 
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2.0 Background 

2.1 Insurance 

Actuaries do not typically use continuous claims distributions in their purest form, where 

claims are unrestricted. Insurance companies almost always set limitations on claims under a 

given policy, most commonly an occurrence deductible. Deductibles are a policy adjustment 

often used to decrease the policy claim count by disregarding small claims that fall below the 

deductible threshold. A per-occurrence deductible denotes a fixed amount that the insured party 

must pay for each individual incident or claim covered by their insurance policy before the 

insurer starts contributing. From the perspective of the insurer, X represents the unlimited claim-

size random variable. Incorporating a per-occurrence deductible d, we have payments per loss, Y 

such that: 

𝑌 =  ൜
0, 0 ≤  𝑋 <  𝑑

𝑋 − 𝑑,  𝑑 <  𝑋
 

Any claims less than or equal to d are paid by the insured, thus the insurer pays $0. For 

any claims greater than d, the maximum amount the insured pays is d, while the insurer pays the 

remainder of the claim, X - d. Aggregate loss is the sum of these claims incurred by the insurance 

company for the entire policy. These losses help the insurer to assess the risk of and set 

premiums for the policyholder and others of similar classification. There are also aggregate 

deductibles which accumulate losses over the policy period and set a limit to the total deductible 

a policyholder would be required to cover on claims throughout the entire policy term. Once this 

threshold is met, the insurance coverage begins, and the insured is not obligated to cover any 

additional losses. We provide an example below to illustrate the fundamental concepts using a 

simple discrete model, which incorporates a policy per-occurrence and aggregate deductibles. 
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Example 2.1.1: Interaction of Per-Occurrence and Aggregate Deductibles 

Assume that n = 0, 1 or 2 and there are 3 potential claims sizes: {100, 200, 300}. The 

associated probability for N and X are provided in the following table.  

Claim Count N 

# of Claims fn(n) 

0 0.60 

1 0.30 

2 0.10 

E[N] = 0.50, Var[N] = 0.45 

Claim Severity X 

Size x fx(x) 

100 0.40 

200 0.50 

300 0.10 

E[X] = 170, Var[X] = 4,100 

Thus, we have 7 distinct total loss amounts: {0, 100, 200, 300, 400, 500, 600}.  Provided that: 

 n = 0 n = 1 n = 2 

Amount 0 100 

200 

300 

100 + 100, 100 + 200, 100 + 300 

200 + 100, 200 + 200, 200 + 300 

300 + 100, 300 + 200, 300 + 300 

Pr{S = s | N = n} 1.00 0.40 

0.50 

0.10 

0.16, 0.20, 0.04 

0.20, 0.25, 0.05 

0.04, 0.05, 0.01 
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Now we will impose a per-occurrence deductible of $150, so for each individual claim 

the most the insured will pay is $150, and we have that the Pr{X > 150} = 0.60. Thus, we now 

have 6 distinct total loss amounts: {0, 100, 150, 200, 250, 300}. 

 n = 0 n = 1 n = 2 

Amount 0 100 

150 

100 + 100, 100 + 150 

150 + 100, 150 + 150 

Pr{S = s | N = n} 1.00 0.40 

0.60 

0.16, 0.24 

0.24, 0.36 

 

 Now assume there is an aggregate deductible of $250 in addition to the $150 per-

occurrence limit, so the insured will pay a maximum of $150 for each claim and the total amount 

the insured will pay for the entire policy is capped at $250. Thus, we now only have 4 distinct 

total loss amounts: {0, 100, 150, 200, 250}. 

 n = 0 n = 1 n = 2 

Amount 0 100 

150 

100 + 100, 100 + 150 

150 + 100 

Pr{S = s | N = n} 1.00 0.40 

0.60 

0.40, 0.60 

0.60 
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2.2 Loss Models 

Cumulative distribution functions, or CDFs, are defined for a random variable X such 

that 𝐹௑(𝑥) = Probability (X ≤ x). Characteristics of the CDF include: 

1. 0 ≤ 𝐹௑(𝑥) ≤ 1  

2. 𝐹௑(𝑥) is non-decreasing, so 𝐹௑(𝑛) ≤ 𝐹௑(𝑛 + 1)  

3. 𝐹௑(𝑥) is right conƟnuous 

4. lim
௫→ିஶ

𝐹௑(𝑥) = 0  lim
௫→ஶ

𝐹௑(𝑥) = 1  

In addition, there is also a survival function 𝑆௑(𝑥), which is the complement of 𝐹௑(𝑥). 

 𝑆௑(𝑥) = 1 −  𝐹௑(𝑥) 

So  𝑆௑(𝑥) +  𝐹௑(𝑥) = 1, and the survival function has the following characteristics,  

1. 0 ≤ 𝑆௑(𝑥) ≤ 1  

2.  𝑆௑(𝑥)is non-increasing, so  𝑆௑(𝑛)  ≥  𝑆௑(𝑛 + 1)  

3.  𝑆௑(𝑥) is right conƟnuous 

4. lim
௫→ିஶ

 𝑆௑(𝑥) = 1  lim
௫→ஶ

 𝑆௑(𝑥) = 0 

 f(x) is the derivative of F(x) so we have that,   

𝑓(𝑥) =  
𝑑

𝑑𝑥
𝐹(𝑥) =  

𝑑

𝑑𝑥
൫1 − 𝑆(𝑥)൯ = −𝑆′(𝑥)   

This can be used to find the probability that x exists between 2 numbers [a, b],  

න 𝑓(𝑥)
௕

௔

=  𝐹(𝑏) − 𝐹(𝑎) = 𝑆(𝑎) − 𝑆(𝑏) = 𝑃𝑟𝑜𝑏( 𝑥 ∈ [𝑎, 𝑏]) 
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Example 2.2.1: Finding E[X] and Var[X] 

x p(x) 

0 0.5 

1 0.25 

2 0.12 

3 0.08 

4 0.05 

 

E(X) = (0 x 0.5) + (1 x 0.25) + (2 x 0.12) + (3 x 0.08) + (4 x 0.05) 

 = 0.93 

x x- 

0 = 0 – 0.93 = -0.93 

1 = 1 - 0.93 = 0.07 

2 = 2 - 0.93 = 1.07 

3 = 3 - 0.93 = 2.07 

4 = 4 - 0.93 = 3.07 

  

Var[X] = 0.5 ∙ (-0.93)2 + 0.25 ∙ (0.07)2 + 0.12 ∙ (1.07)2 + 0.08 ∙ (2.07)2 + 0.05 ∙ (3.07)2  

 = 1.3851 

Standard deviation = √𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = √1.3851 = 1.1769 

 Mean excess loss measures the average loss severity for amounts exceeding a certain 

value, in actuarial math this threshold is the per-occurrence deductible. It is the expectation of 
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how much over the deductible a claim will be. To find the limited excess loss for a random 

variable X, use the random variable Y given,  

𝑌௉ = 𝑋 − 𝑑 given X > d 

This excludes losses below the deductible, d, and therefore can be used to find the average of the 

checks/payments the insurer pays. Mean excess loss can be calculated such that, 

𝐸(𝑌௉) = 𝐸[ 𝑋 − 𝑑 |𝑋 > 𝑑 ] =  𝑒௫(𝑑) 

𝑒௫(𝑑) =  
∫ (𝑥 − 𝑑)𝑓(𝑥)𝑑𝑥

ஶ

ௗ

1 − 𝐹(𝑑)
=  

𝐸(𝑋) − 𝐸(𝑋 ∧ 𝑑)

1 − 𝐹(𝑑)
= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐ℎ𝑒𝑐𝑘 𝑠𝑖𝑧𝑒 

Another method of imposing a per-occurrence deductibles is through left censoring and shifting 

which includes any loss or accident that the insurer did not pay. To find this consider the random 

variable Y such that,  

𝑌௅ = ൜
0 𝑖𝑓 𝑋 ≤ 𝑑

𝑋 − 𝑑 𝑖𝑓 𝑋 > 𝑑
 

To find the expected value we have that,  

𝐸(𝑌௅) = 𝐸((𝑋 − 𝑑)ା) =  𝑒௫(𝑑)(1 − 𝐹௑(𝑑)) 

𝑌௉ calculates payments per payment, while 𝑌௅ calculates payment per loss including payments 

of size zero. The main difference being that 𝑌௉ calculates loss based on individual payments 

made by the insurer for each claim. 𝑌௅, on the other hand, utilizes an approach based on total 

payments made by the insurer for each risk or claim occurrence, including payments of size zero.  
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Example 2.2.2: Methods of Imposing Per-Occurrence Deductibles 

Possible Losses (X) Prob. X – 750 𝐸((𝑋 − 750)ା) 

100 0.4 0 0 

500 0.2 0 0 

1,000 0.2 250 250 

2,500 0.1 1,750 1,750 

10,000 0.1 9,250 9,250 

 

The table above shows how to calculate 𝑌௅, or payment per loss including payments of size zero, 

while applying a deductible, d, of 750. Now to find 𝐸[ 𝑋 − 750 |𝑋 > 750 ] only include losses 

above 750, which changes the probability of each loss. There is now only 40% of the initial loss 

remaining, so the losses now have probability reflecting this: 

Possible Losses (X) 𝐸[ 𝑋 − 750 |𝑋 > 750 ] Prob. 

1,000 250 
=  

0.2

0.4
= 0.5 

2,500 1,750 
=  

0.1

0.4
= 0.25 

10,000 9,250 
=  

0.1

0.4
= 0.25 

 

With the given information, we can now calculate the expected loss for each method.  

E(X) 𝒀𝑳 = 𝑬((𝑿 − 𝟕𝟓𝟎)ା) 𝒀𝑷 = 𝑬[ 𝑿 − 𝟕𝟓𝟎 |𝑿 > 𝟕𝟓𝟎 ] 

1,590 1,150 2,875 
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We can also calculate the expected loss of 𝑌௅and 𝑌௉ by dividing total expected losses by the 

amount of probability remaining of the given loss for each method, resulting in: 

𝐸((𝑋 − 750)ା) =
1,150

1.0
= 1,150 

𝐸[ 𝑋 − 750 |𝑋 > 750 ] =
1,150

0.4
= 2,875 

 

2.3 Aggregate Excess Loss Cost Estimation 

Calculating per-occurrence excess and aggregate excess loss can be complex, therefore it 

is beneficial to create visual interpretations, to illustrate how much each party will contribute 

toward the total cost, prior to moving to the intricate calculations. Yoong-Sin Lee describes these 

graphs in his paper The Mathematics of Excess of Loss Coverages and Retrospective Rating — A 

Graphical Approach earning them the name “Lee diagrams.” The key characteristic of these Lee 

diagrams is that the size, or severity, is on the vertical axis, while the cumulative claim count, or 

its percent of the loss distribution, is on the horizontal axis. These Lee diagrams provide an 

illustration of abstract relations and can also make it easier to follow the mathematical 

procedures instead of diving straight into the complex algebraic concepts.  
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Example 2.3.1: Lee Diagrams 

 We will first look at a distribution of a set of losses incrementally and cumulatively, with 

the number of losses on the vertical axis and the size of the loss on the horizontal axis. 

 

 

Now we will flip the axes and represent those same losses using a cumulative frequency 

curve constructed in the method described by Yoong-Sin Lee, where the vertical axis now 

represents loss size, and the horizontal axis now represents cumulative number of losses. 

 

Consider the shadowed region corresponding to the interval (xi, ni) with the area xini. 

This region can be interpreted as the amount of loss being size xi and the area below the 

cumulative frequency curve is the total loss. The cumulative number of losses can be found 

using, 
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 ci = n1+…+ni where i≤k. Thus, we can find the total amount of loss by summing all of the 

vertical strips:  

Total loss = x1n1+…+xknk 

 This provides us with a new way of visualizing the cumulative frequency curve, by 

arranging losses in ascending order from left to right with each loss taking up 1 unit horizontally. 

Consider the situation where losses are represented by the randomly distributed variable X with 

cumulative density function, or cdf,  

F(x)  =  𝑃𝑟𝑜𝑏(X ≤ x) 

Graphing the continuous cdf, we can sum up each vertical strip with area 

(𝑥)(𝑑)(𝐹(𝑥)) 

to obtain the expected value of X. E[X] is represented by the shaded region, or the area under the 

curve. This region is composed of each loss and the strip (𝑥)(𝑑)(𝐹(𝑥)) which can be interpreted 

as the contribution from losses of size between x and (𝑥) + (𝑑 × 𝑥). 

  We can also adapt this diagram to illustrate both limits and deductibles, and how 

they impact our losses. Consider a policy with a policy occurrence limit of L, as depicted in 

Figure 2.3.2: CDF Curve and Expectation                                Figure 2.3.3(a). A loss of size S1 

is below the limit L, so this loss 

is paid in full. On the other hand, 

a loss of size S2 is above L, thus 

only the amount of loss up to size 

L is paid by the insurer. Again, to 

find the expected loss we can 

sum up the vertical strips. Once 
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we reach the losses that are greater than the limit L, each loss now only contributes L to E[X]. 

This is depicted by the shaded area in Figure 2.3.3(a).  

 Now consider a policy with a policy occurrence limit L and a deductible D, as depicted in 

Figure 2.3.3(b). Each loss will now only pay the portion of the loss that is greater than D and less 

than L. Therefore, we can find the expected losses by subtracting D from all vertical strips and 

then summing those losses until we reach those that are greater than L. Losses that are greater than 

L will contribute L-D to E[X]. This is depicted by the shaded area in Figure 2.3.3(b).  

Figure 2.3.3: Lee Diagram with Per-Occurrence and Aggregate Deductibles 

 

 This can also be approached using the survival function S(x) defined as,  

S(x) = 1 – F(x) 

 We can also find E[X] using S(x) such that, 

E[X] = ∫ 𝑆(𝑥)𝑑𝑥
ஶ

଴
 

 Previously we were finding the expected losses by grouping the losses vertically, or by 

the size of the loss. Using this method, we are grouping the losses horizontally, in other words 

we are grouping the loss amounts by layer. This method can often be more convenient than 

grouping the losses by size because you can easily consider any losses within a region by 

     F(x)  S(x)    

cdf 

x 
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adjusting the boundaries in the integral. For example, in Figure 2.3.3(b), we could calculate E[X] 

by limiting the integral to losses between D and L such that, 

E[X] = ∫ 𝑆(𝑥)𝑑𝑥
௅

஽
     [1] 

Using the previous method to calculate this yields the expression,  

E[X] = ∫ 𝑥𝑑𝐹(𝑥) + 𝐿 ∙ 𝑆(𝐿) − 𝐷 ∙ 𝑆(𝐷)
௅

஽
   [2] 

Although the form using the layer method (formula [1]) is simpler, it is difficult to integrate S(x), 

which leads to the form using the size method (formula [2]) being more commonly used in 

literature.  

This leads us to Table M, which has been constructed using the layer method by 

establishing a distribution of entry level ratios and their associated aggregate losses sorted by 

size of policy or limit. Entry level ratios are used as a starting point for Table M because they are 

based on historical data and often incorporate important metrics such as loss, expense, or 

combined ratios. Table M is used to determine the percentage of loss eliminated by imposing a 

per-occurrence limit and an aggregate limit. In most cases, it is possible to model these aggregate 

loss distributions using parameterized functions. This allows for the parameters to be easily 

modified to fit specific scenarios, thus providing a versatile tool for simulations. This will 

typically be used when there are not significant similarities to policies, which would typically be 

used to establish an aggregate loss density function. The actuary must, therefore, fit the claims 

data to a collection of similarly sized risks using their general forms as a guideline to select the 

underlying frequency and severity distributions.  

Once these are established, the insurer can generate Table M for the given aggregate loss 

distribution, using the layer method described above. Actuaries use a blend of empirical data and 

models; however, it is important to note that to establish credible groups there may not be 
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enough data and thus the insurer may not be able to split the data into small enough layers to 

accurately generate Table M values. To avoid errors caused by this it is best to look at entry level 

ratios, or loss as a ratio to its expected loss.  

Example 2.3.4: Calculating Table M Charge 

Given the following loss ratios for a set of 5 identical risks: 

Risk Loss Ratio Losses 

1 40% =40%×$1,000,000 = $400,000 

2 40% =40%×$1,000,000 = $400,000 

3 80% =80%×$1,000,000 = $800,000 

4 100% =100%×$1,000,000 = $1,000,000 

5 140% =140%×$1,000,000 = $1,400,000 

 

To calculate E(Loss) take the average of the losses, 

E(loss) = ($400,000 + $400,000 + $800,000 + $1,000,000 + $1,400,000) / 5 

  =$800,000 

To calculate loss ratio, find the average of the given loss ratios,  

Loss Ratio = (40% + 40% + 80% + 100% + 140%) / 5 

       = 80% 

Assume the sample loss ratio of 80% equals the expected loss ratio. Construct Table M 

showing the insurance charges for entry ratios from 0.00 to 2.00. We therefore have 9 entry 

ratios: 0.00, 0.25, 0.50, 0.75, 1.00, 1.25. 1.50, 1.75, and 2.00. To calculate our possible aggregate 

limits, multiply these entry ratios by the expected losses.  



 
 

21 
 

We know E(loss)=$800,000, so we have the following possible aggregate limits: 

0.00 × $800,000 = $0  

0.25 × $800,000 = $200,000  

0.50 × $800,000 = $400,000  

0.75 × $800,000 = $600,000  

1.00 × $800,000 = $800,000  

1.25 × $800,000 = $1,000,000  

1.50 × $800,000 = $1,200,000  

1.75 × $800,000 = $1,400,000  

2.00 × $800,000 = $1,600,000  

Now, we must count the number of risks that fall within and above the possible losses, 

using the 5 losses provided in the original table: 400,000, 400,000, 800,000, 1,000,000, and 

1,400,000.  
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Entry ratio Possible Aggregate Limits Number of Risks Number of Risks Above 

0.00 - 0 5 

0.25 $200,000 0 5 

0.50 $400,000 2 3 

0.75 $600,000 2 3 

1.00 $800,000 1 2 

1.25 $1,000,000 1 1 

1.50 $1,200,000 0 1 

1.75 $1,400,000 1 0 

2.00 $1,600,000 0 0 
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Now calculate the percent of losses that fall above the possible aggregate loss. 

r = 0.00    5/5 = 100% 

r = 0.25    5/5 = 100% 

r = 0.50   3/5 = 60% 

r = 0 .75   3/5 = 60% 

r = 1.00    2/5 = 40% 

r = 1.25    1/5 = 20% 

r = 1.50   1/5 = 20% 

r = 1.75    0/5 = 0% 

r = 2.00   0/5 = 0% 

 

The next step is to calculate the total dollars above the aggregate limit, by summing all losses 

that fall above it, subtracting the aggregate limit from the each, so we have that: 
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Aggregate Limits $ Above the Aggregate Limit 

- = $400,000 + $400,00 + $800,000 + $1,000,000 + $1,400,000 - $0 

= $4,000,000 

$200,000 = ($400,000 - $200,000) + ($400,000 - $200,000) + ($800,000 - 

$200,000) + ($1,000,000 - $200,000) + ($1,400,000 - $200,000) 

= $3,000,000 

$400,000 = ($800,000 - $400,000) + ($1,000,000- $400,000) + ($1,400,000 - 

$400,000) 

= $2,000,000 

$600,000 = ($800,000 - $600,000) + ($1,000,000- $600,000) + ($1,400,000 - 

$600,000) 

= $1,400,000 

$800,000 = ($1,000,000 - $800,000) + ($1,400,000 - $800,000) 

= $800,000  

$1,000,000 = $1,400,000 - $1,000,000 

= $400,000 

$1,200,000 = $1,400,000 - $1,200,000 

= $200,000 

$1,400,000 = $0 

$1,600,000 = $0 

 

Now using everything calculated above we can generate Table M starting at the bottom and 

moving up using the formula. 
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Table M Charge =  𝑛𝑒𝑥𝑡 𝑇𝑎𝑏𝑙𝑒 𝑀 𝑐ℎ𝑎𝑟𝑔𝑒 + (∆𝑒𝑛𝑡𝑟𝑦 𝑟𝑎𝑡𝑖𝑜) ×  % 𝑎𝑏𝑜𝑣𝑒 𝑎𝑔𝑔 𝑙𝑖𝑚𝑖𝑡 

It is important to note that if there are no risks above the aggregate limit, then the Table M 

charge is 0.00. Working from the bottom up, we have,  

Entry Ratio % Above the Aggregate Limit Table M Charge 

2.00 0.00 0.00 

1.75 0.00  = 0.00 + (2.00 − 1.75)  ×  0.00 = 0.00 

1.50 0.20  = 0.00 + (1.75 − 1.50)  ×  0.20 = 0.05 

1.25 0.20  = 0.05 + (1.50 − 1.25)  ×  0.20 = 0.10 

1.00 0.40  = 0.10 + (1.25 − 1.00)  ×  0.40 = 0.20 

0.75 0.60  = 0.20 + (1.00 − 0.75)  ×  0.60 = 0.35  

0.50 0.60  = 0.35 + (0.75 − 0.5)  ×  0.60 = 0.50  

0.25 1.00  = 0.50 + (0.50 − 0.25)  ×  1.0 = 0.75  

0.00 1.00  = 0.75 + (0.25 − 0)  ×  1.0 = 1.0 

 

An alternative method to find the Table M charge is by finding the ratio of dollars above the 

aggregate limit to the total losses. Provided that the total loss is $4,000,000, we can generate 

these Table M values. 
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$ Above Aggregate Limit Table M Charge 

$4,000,000  =
$ସ,଴଴଴,଴଴଴

$ସ,଴଴଴,଴଴଴
= 1.00 

$3,000,000  =
$ଷ,଴଴଴,଴଴଴

$ସ,଴଴଴,଴଴଴
= 0.75 

$2,000,000  =
$ଶ,଴଴଴,଴଴଴

$ସ,଴଴଴,଴଴଴
= 0.50 

$1,400,000  =
$ଵ,ସ଴଴,଴଴଴

$ସ,଴଴଴,଴଴଴
= 0.35 

$800,000  =
$଼଴଴,଴଴଴

$ସ,଴଴଴,଴଴଴
= 0.20 

$400,000  =
$ସ଴଴,଴଴଴

$ସ,଴଴଴,଴଴଴
= 0.10 

$200,000  =
$ଶ଴଴,଴଴଴

$ସ,଴଴଴,଴଴଴
= 0.50 

$0  =
$଴

$ସ,଴଴଴,଴଴଴
= 0.00 

$0  =
$଴

$ସ,଴଴଴,଴଴଴
= 0.00 

Putting it all together we have that: 

Entry 
Ratio 

Aggregate 
Limit 

# of Risks # of Risks 
Above 

% of 
Risks 
Above 

$ Above 
Aggregate 
Limit 

Table M 
Charge 

0.00 - 0 5 100% $4,000,000 1.00 

0.25 $200,000 0 5 100% $3,000,000 0.75 

0.50 $400,000 2 3 60% $2,000,000 0.50 

0.75 $600,000 2 3 60% $1,400,000 0.35 

1.00 $800,000 1 2 40% $800,000 0.20 

1.25 $1,000,000 1 1 20% $400,000 0.10 

1.50 $1,200,000 0 1 20% $200,000 0.05 

1.75 $1,400,000 1 0 0% $0 0.00 

2.00 $1,600,000 0 0 0% $0 0.00 
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 In some cases, there can be overlap between excess of the per-occurrence limit and the 

aggregate limit. It is customary to apply the per-occurrence limit first, so any excess loss would 

be considered excess of the deductible and is therefore included in the per-occurrence excess 

charge. If the actuary computes Table M charges without restricting the aggregate losses for the 

impact of the deductible, then it is possible that any losses greater than the deductible could 

inflate the Table M charge. This would result in an overlap between the Table M charge and the 

per-occurrence excess charge, leading to inaccurate Table M charges. Thus, the insurer must limit 

the aggregate losses for the impact of the deductible before generating Table M.  

 The insurer can use the methods of calculating aggregate excess loss to compute the 

limited excess charges, because the shape of the distribution of unlimited losses varies from that 

of limited losses which leads to a distinct type of distribution. Consequently, this limited 

distribution can be analyzed using the same Table M methods explained above. Deductibles can 

cover a wide range, requiring the insurer to generate a distinct Table MD for the specific range. 

To do this the insurer must limit each individual loss prior to aggregating the losses of each 

policy. Loss distributions tend to be positively skewed, comprised of several small losses and 

few large losses which are responsible for a vast majority of the severity distribution’s variance. 

Therefore, after the insurer applies the per-occurrence limit, there is a decrease in the variance of 

the severity distribution, which limits the probability of unusually large limited aggregate losses 

each year. Thus, the general rule is when the deductible is lower there is less variance in both the 

severity distribution and the resulting limited aggregate loss. Therefore, for entry ratios greater 

than 1.00, lower deductibles usually lead to lower charges.  
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Example 2.3.5: Calculating Modified Table M Charge 

Assume that all risks have equal standard premiums. 
 
   Company A: 

Number of Risks Unlimited Loss Ratio 
1 10% 
4 30% 
2 40% 
4 50% 
1 60% 
3 70% 
1 80% 
2 100% 
2 120% 

 

Company B: 

Number of Risks Limited Loss Ratio 
1 10% 
4 30% 
4 40% 
3 50% 
2 60% 
1 70% 
2 80% 
2 90% 
1 100% 
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Calculate the expected loss ratio for both limited and unlimited. 

Unlimited 

𝐸(𝑈𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝐿𝑅) =
∑(𝑈𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝐿𝑅 ×  # 𝑜𝑓 𝑅𝑖𝑠𝑘𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘𝑠
 

=  
(10% × 1) + (30% × 4) + (40% × 2) + (50% × 4) + (60% × 1) + (70% × 3) + (80% × 1) + (100% × 2) + (120% × 2)

1 + 4 + 2 + 4 + 1 + 3 + 1 + 2 + 2
 

=
12

20
= 0.6 

 

Limited 

𝐸(𝐿𝑖𝑚𝑖𝑡𝑒𝑑 𝐿𝑅) =
∑(𝐿𝑖𝑚𝑖𝑡𝑒𝑑 𝐿𝑅 ×  # 𝑜𝑓 𝑅𝑖𝑠𝑘𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘𝑠
 

=
(10% × 1) + (30% × 4) + (40% × 4) + (50% × 3) + (60% × 2) + (70% × 1) + (80% × 2) + (90% × 2) + (100% × 1)

1 + 4 + 4 + 3 + 2 + 1 + 2 + 2 + 1
 

=
10.7

20
= 0.535 

Now, we can calculate the loss elimination ratio to find what percentage of the loss ratio is lost 

due to limiting.  

𝐿𝐸𝑅 =  
(0.6 − 0.535)

0.6
= 10.83% 

Using loss ratios from 0% to 120% in 10% increments, there is enough information to generate 

Table MD. To find the entry ratios, use the unlimited Table M expected loss ratio.  

𝐸𝑛𝑡𝑟𝑦 𝑅𝑎𝑡𝑖𝑜 =  
𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜

𝐸(𝑈𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝐿𝑅)
=  

𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜

0.6
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Loss Ratio Entry Ratio # of Risks Above % of Risks Above 

0% 0% 20 100% 

10% 17% 19 95% 

20% 33% 19 95% 

30% 50% 15 75% 

40% 67% 13 65% 

50% 83% 9 45% 

60% 100% 8 40% 

70% 117% 5 25% 

80% 133% 4 20% 

90% 150% 4 20% 

100% 167% 2 10% 

110% 183% 2 10% 

120% 200% 0 0% 

 
Now calculate the Table MD charge using the same formula as Example 1.3.4.  

Table MD Charge =  𝑛𝑒𝑥𝑡 𝑇𝑎𝑏𝑙𝑒 𝑀 𝑐ℎ𝑎𝑟𝑔𝑒 + (∆𝑒𝑛𝑡𝑟𝑦 𝑟𝑎𝑡𝑖𝑜) ×  % 𝑎𝑏𝑜𝑣𝑒 𝑎𝑔𝑔 𝑙𝑖𝑚𝑖𝑡 

Starting from the bottom up, we have that,  
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Entry Ratio % of Risks Above Table MD Charge 

200% 0% 0 

183% 10% = 0 + (200% − 183%) × 10% = 0.0167 

167% 10% = 0.0167 + (183% − 167%) × 10% = 0.0333 

150% 20% = 0.0333 + (167% − 150%) × 20% = 0.0667 

133% 20% = 0.0667 + (150% − 133%) × 20% = 0.1000 

117% 25% = 0.1000 + (133% − 117%) × 25% = 0.1417 

100% 40% = 0.1417 + (117% − 100%) × 40% = 0.2083 

83% 45% = 0.2083 + (100% − 83%) × 45% = 0.2833 

67% 65% = 0.2833 + (83% − 67%) × 65% = 0.3917 

50% 75% = 0.3917 + (67% − 50%) × 75% = 0.5167 

33% 95% = 0.5167 + (50% − 33%) × 95% = 0.6750 

17% 95% = 0.6750 + (33% − 17%) × 95% = 0.8333 

0% 100% 1.0000 
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Putting it all together we have: 

Loss Ratio Entry Ratio # of Risks Above % of Risks Above Table MD Charge 

0% 0% 20 100% 1.000 

10% 17% 19 95% 0.8333 

20% 33% 19 95% 0.6750 

30% 50% 15 75% 0.5167 

40% 67% 13 65% 0.3917 

50% 83% 9 45% 0.2833 

60% 100% 8 40% 0.2083 

70% 117% 5 25% 0.1417 

80% 133% 4 20% 0.1000 

90% 150% 4 20% 0.0667 

100% 167% 2 10% 0.0333 

110% 183% 2 10% 0.0167 

120% 200% 0 0% 0.0000 
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3.0 Methodology 

To achieve the goal of our project, we developed random numbers that follow chosen frequency 

and severity distributions with chosen constant expected values and created VBA code to run the 

simulation using the distributions. We followed these steps to accomplish these tasks: 

1. Examine how different frequency and severity distributions interact with each other 

2. Investigate how an aggregate deductible impacts the insurer’s payout 

3. Effectively communicate the results in comprehensive tables 

3.1 Matching Moments and Percentiles 

To minimize difference in our results due to varying distributions, we chose to match 

their moments or percentiles to create distributions of the same mean or spread. The method used 

depended on the distributions involved, as some distributions are difficult to match to each other. 

First, we defined constants for our distributions – the severity distributions would have a 

mean of 10,000 and the frequency distributions a mean of 85. With these values in mind, we 

calculated the parameters for our distributions. We started with the exponential and poisson 

distributions first, since they each only have one parameter, which is equal to the mean. They 

served as the baseline distributions for matching moments and finding parameters. 

The next frequency distribution we wanted to use was uniform, which has an expected 

value of:  

𝐸[𝑋] =
𝑏 + 𝑎

2
 

Thus, we chose 60 for a and 110 for b since we only wanted claim frequencies in this range, 

which resulted in a mean of 85. From there, we calculated the variance of the uniform 
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distribution so we could use it to simulate another distribution. The variance of a uniform 

distribution on the interval [a, b] is equal to: 

𝑉𝑎𝑟(𝑋) =
(𝑏 − 𝑎)ଶ

12
 

After plugging in our parameters, the variance came out to 
଺ଶହ

ଷ
. We used these values to find 

parameters (r, p) for the negative binomial distribution, setting up these equations: 

𝐸[𝑋] =
𝑟(1 − 𝑝)

𝑝
= 85                𝑉𝑎𝑟(𝑋) =

𝑟(1 − 𝑝)

𝑝ଶ
=

625

3
 

By combining and algebraically manipulating these equations, we found 𝑝 = 0.408 and          

𝑟 = 59. We repeated this process to generate another severity distribution as well, for a total of 

two severity and three frequency distributions.  

3.2 Inverse Transform 

To prepare for the simulation, we created our own data to simulate insurance policies and 

their claims. We used the inverse transform method to convert uniformly distributed random 

numbers to random numbers 

following a target distribution.  

The first step is producing 

uniformly distributed random numbers 

in excel using the rand() function. The 

rand() function updates automatically 

in the spreadsheet, so we copied the 

values instead, using the same set of 

uniformly distributed numbers 

on (0,1) for all distributions. The random numbers represent the probability that the random 

Figure 3.2.1: Inverse Transform Method Exponential Distribution Example Graph 
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number X, or the value of the CDF F(x), is less than or equal to x – shown in figure 3.2.1 by the 

dots on the y-axis.  

Next, we need the inverse CDF of our target distribution. The first distribution we aimed 

to generate was exponential, which has CDF:  

𝐹(𝑥) = 1 − 𝑒
షೣ

ഇ , 

where θ represents the distribution’s mean, F(x) is the random number generated, and x is the 

value we’re solving for – represented by the corresponding dots on the x-axis in figure 3.2.1. We 

plugged in 10,000 for θ and rearranged the equation to solve for x, which resulted in:  

𝑥 =  −10,000 ∗ ln (1 − 𝑋), 

where X represents the value of the CDF at x.  

 In excel, we created a column to evaluate this equation with the value of the previously 

generated random numbers as the input X, and it produced exponentially distributed claim 

amounts. While we were able to invert the exponential CDF algebraically and input into excel, 

not all distributions are as simple to rearrange.  

 Another technique for simulating a distribution involves creating the distribution using 

the CDF and parameters in excel, beginning by initializing a column of ‘x’ values which are 

integers greater than or equal to 0. In the next column, the CDF is entered as the formula, 

complete with parameters, with the x-values as the input. We now have the cumulative 

probabilities from [0,1] of each x.  

 In the next column, the previously generated column of random numbers is pasted. In the 

final column, XLOOKUP is used to search for an F(x) that matches the random number, and 

then outputs the corresponding x-value, representing the claim severity or frequency.  
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3.3 Simulation 

The expected values of the severity and frequency distributions were $10,000 and 85 

claims, respectively, for an aggregate expected value of $850,000. We generated 100,000 

possible claims severities and 1000 frequency values, each representing the number of claims 

made on a given policy.  

To begin the simulation, the severity distribution is copied to column A on the 

CurrentVBARun tab in the simulation workbook, and the frequency distribution to column B. 

The contents of the 4 tables in R19:AD73 should be cleared before beginning. We then created a 

table with different occurrence and aggregate deductibles as a ratio of their expected value. They 

served as inputs for the simulation, which took in the occurrence deductible first and ran the 

simulation for each of the aggregate deductibles. For example, the first occurrence deductible 

was 2000, and the first aggregate 

deductible was 170,000. The simulation 

runs and spits out the outputs, then 

continues with the other aggregate 

deductibles 340,000, 510,000, 680,000, 

and so on until all possible 

combinations with the 2000 are 

exhausted. The simulation then moves 

on to the next occurrence deductible and 

continues the same process.    

After taking in the first occurrence and aggregate deductible, the simulation reads in the 

first claim number from the frequency distribution. For example, if the first number was 98, the 

 Expected Expected  
 10,000 850,000 

Ratio Occ Deductible Agg Deductible 
0.0                 -                            -    
0.2           2,000                170,000  
0.4           4,000                340,000  
0.6           6,000                510,000  
0.8           8,000                680,000  
1.0         10,000                850,000  
1.2         12,000             1,020,000  
1.4         14,000             1,190,000  
1.6         16,000             1,360,000  
1.8         18,000             1,530,000  
2.0         20,000             1,700,000 

Table 3.3.1: Occurrence and Aggregate Deductibles 
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simulation would iterate through each of the first 98 claims in the severity column. From there, 

the simulation outputs how much the insured paid, how much the insurer paid because the claim 

was over the occurrence deductible, how much the insurer paid because the aggregate deductible 

was reached, and the total ground up claims.  

The simulation repeats this for each of the 1000 policies with the same occurrence and 

aggregate deductible combination, each time tracking where the previous policy had left off in 

the severity distribution and continuing from the next cell. After completing the run, the 

simulation outputs 4 values into specified tables. The values are the average insured payment, the 

average insurer over occurrence payment, the average insurer over aggregate payment, and the 

average ground up claims, all as a ratio to the aggregate expected value. After the values are put 

into the corresponding cells in each of the 4 tables, the simulation runs again with the next 

combination of occurrence and aggregate deductibles. This process is repeated until all 

combinations are exhausted, producing 4 tables with 121 cells each for a single run.  
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4.0 Results & Analysis 

4.1 Generating Claim Distributions 

The procedure for creating the severity and frequency distributions varied based on the 

distribution and its limitations, as we used our judgment to create a balance between consistent 

methodology and meaningful results. Initially, we intended to match both the first and second 

moments to minimize variability in the results due to differences in the mean and variance of the 

distributions.  The exponential severity distribution was generated first, as it was the most 

straightforward. As indicated in section 3.1, the mean of the severity distribution was chosen as 

10,000, which we used to find the variance.  

The variance of a distribution X can be expressed in terms of expected value: 

𝑉𝑎𝑟(𝑋) = 𝐸[𝑋ଶ] − 𝐸[𝑋]ଶ. 

Given the expected value for the exponential distribution: 

𝐸[𝑋௞] =  𝜃௞ ∙ 𝑘!   𝑖𝑓 𝑘 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 

we combined these two formulas to find the variance of our exponential distribution as: 

𝑉𝑎𝑟(𝑋) = [𝜃ଶ ∙ 2!] − [𝜃]ଶ = 100,000,000. 

Thus, we attempted to algebraically solve for parameters 𝜃, 𝛼 for the pareto distribution using 

the given formulas: 

𝐸[𝑋] =  
𝜃

𝛼 − 1
= 10,000;    𝑉𝑎𝑟(𝑋) =

2𝜃ଶ

(𝛼 − 1)(𝛼 − 2)
−

𝜃

𝛼 − 1
= 100,000,000 

After some algebraic manipulation, the final result was: 

(𝛼 − 1) = (𝛼 − 2), 
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which cannot be true, meaning we were unable to match both the expected value and variance. 

Ultimately, we chose to match the expected value for the distributions so the aggregate expected 

value, 𝐸[𝑆], would remain constant as it is used in calculating the values in the tables.  

Below are two tables displaying the distributions we generated for severity and 

frequency, their probability density functions, and parameters. All six combinations of frequency 

and severity distributions were used to run the simulation: each run producing its own set of 4 

tables. 

 

 
 

 

 

 

 

Distribution PDF Parameters 

Exponential 
𝑓(𝑥) =

𝑒ି௫/ఏ

𝜃
 

𝜃 = 10,000 

Pareto 
𝑓(𝑥) =

𝛼𝜃ఈ

(𝑥 + 𝜃)ఈାଵ
 

𝛼 = 10, 𝜃 = 90,000 

 Table 4.1.1: Claim Severity Distributions 

Distribution PDF Parameters 

Poisson 
𝑓(𝑥) =

𝜆௞𝑒ିఒ

𝑘!
 

𝜆 = 85 

Negative Binomial 
𝑓(𝑥) = ൬

𝑥 + 𝑟 − 1

𝑟 − 1
൰ 𝑝௥(1 − 𝑝)௞ 

𝑟 = 59, 𝑝 = 0.408 

Uniform 
𝑓(𝑥) =

1

𝑏 − 𝑎
 

𝑎 = 60, 𝑏 = 110 

 Table 4.1.2: Generated Claim Frequency Distributions 
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4.2 Sample Output 

We first ran the simulation with exponential severity and poisson frequency. The results 

are in the following tables: 

Figure 4.2.1: Output tables for exponential severity, poisson frequency. 
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The values in each table are ratios of the payment specified to the expected value, which is 

constant at $850,000. While the table is set up to produce ratios, it can easily be converted to 

dollars so the payment amounts can be analyzed and presented directly: 

Figure 1.2.2: Output tables represented in dollars. 



 
 

42 
 

When the ratios are converted to dollar amounts, it provides a clearer picture of exactly 

how much the insurer and insured will pay, along with the total claim amount. Say a policy has 

occurrence deductible $8000 and aggregate limit $510,000, then we can look at the cell in each 

table corresponding to a 0.8 occurrence deductible ratio and a 0.6 aggregate ratio to determine 

the payment allocations. In this example, the ground up claims would be $849,718, just below 

the expected value of $850,000. The insured would pay $463,947 total, with the insurer paying 

the remainder, $382,142 due to the occurrence deductible and $3629 due to the aggregate limit 

being reached. While the tables can be useful & more easily understood in a dollar format, the 

original ratio values are more important since the expected value was chosen arbitrarily.  

4.3 Output Table Features 

Now, in a new situation, say the severity distribution is still exponential, while the claim 

frequency is uniformly distributed. We will now explore and learn how to interpret the output 

tables produced in this simulation run.  

4.3.1 Insured Payment 

The first table represents the proportion of the expected total claims that the 

policyholder is expected to pay. For example, when both the occurrence deductible and 

aggregate limit ratios are equal to 1, the policyholder will pay 62.93% of the expected 

total losses.  

Table 1.3.1: Policyholder payments for exponential severity, uniform frequency 
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If we examine the table column by column, seeing how the payment ratio changes 

when the aggregate ratio remains constant and the occurrence ratio increases, we can see 

that the value approaches an asymptote when the limit ratio is 0.2, 0.4, and 0.6. The 

asymptotic value is equal to the aggregate ratio. Since the aggregate ratio is relatively 

low, when the occurrence ratio increases, the aggregate limit is reached quicker and the 

payments from the insured stop immediately. This is not seen for the relatively high 

aggregate ratios as the aggregate limit is much greater and even when the occurrence 

ratio is high, there will still be claims that are greater than the expected value in which the 

responsibility is the insurers.  

Row by row, the opposite is true. As the aggregate ratio increases while holding 

the occurrence ratio constant, the payment ratio approaches an asymptote. The asymptote, 

however, is not equal to the value of the ratio. It seems to be close to the ratio value when 

it is relatively low, however this changes as the occurrence ratio increases.  

4.3.2 Insurer Payment 

The table for the insurers’ payment due to the loss being greater than the 

occurrence deductible is a little different in that it is constant across each row. Since this 

Table 4.3.2: Insurer occurrence payments for exponential severity, uniform frequency 
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table is focused on payments as a result of the occurrence deductible, it doesn’t change as 

the aggregate limit varies.  

The table for the insurers’ payment due to the losses reaching the aggregate limit 

accounts for the difference in payment allocation. The values indicate the extra charge 

that should be applied to the policy for the aggregate limit.  

When the aggregate limit is low, as mentioned in the previous section, the 

insured’s payment reaches an asymptote, however the payment allocation’s difference is 

accounted for in this table – it increases down a column because the aggregate limit has a 

greater impact, meaning the claim severities were relatively high. Across the rows, the 

value decreases because the aggregate limit is greater and not reached as easily with the 

given policies.  

4.3.3 Total Claim Amount 

The table for ground up losses represents the ratio of the total accumulated losses 

to the expected value, which in this case is 99.64%. The values in this table are a sum of 

Table 4.3.3: Insurer aggregate payments for exponential severity, uniform frequency 

Table 4.3.4: Total ground up losses for exponential severity, uniform frequency 
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the corresponding values in the three preceding tables. The value remains constant 

throughout the table as the claims used in the simulation are the same throughout the 

iterations. The only inputs changing are the aggregate limits and occurrence deductibles, 

which determine the allocation of the payments.  
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5.0 Recommendations 

 Our improved methodology for calculating and presenting Table M in a more 

comprehensive manner allocated the payments between the insured and insurer based on the 

applied deductibles. We used VBA to write this code, since we required a coding language that 

could manage substantial amounts of data. Future works could further develop this by upgrading 

the VBA code to solve the aggregate charge analytically when the given per-occurrence and 

aggregate deductibles are entered. By automating this process insurers can gain efficiency in 

handling large datasets. This could also improve accuracy in estimating deductible allocations.  

   For this project, our data was entirely simulated in Excel. In the future it could be 

beneficial to explore enhanced integration with data sources and insurance companies. By 

pulling relevant data such as historical data, claim information, or risk profiles the methodology 

can provide more realistic and tailored deductible allocations for individual policy holders. This 

proactive approach could lead to insurers being able to adjust the methodology to suit their 

specific needs, thus enhancing its usability and overall effectiveness.  

 By integrating these recommendations into the methodology, insurers could enhance the 

efficiency and precision of deductible allocations. This would also enhance the overall 

effectiveness of risk management practices.  
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