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Abstract

Pedestrian detection is a canonical instance of object detection that remains a

popular topic of research and a key problem in computer vision due to its diverse

applications. These applications have the potential to positively improve the qual-

ity of life. In recent years, the number of approaches to detecting pedestrians in

monocular and binocular images has grown steadily. However, the use of multispec-

tral imaging is still uncommon. This thesis work presents a novel approach to data

and feature fusion of a multispectral imaging system for pedestrian detection. It also

includes the design and building of a test rig which allows for quick data collection

of real-world driving. An application of the mathematical theory of trifocal tensor

is used to post process this data. This allows for pixel level data fusion across a

multispectral set of data. Performance results based on commonly used SVM clas-

sification architectures are evaluated against the collected data set. Lastly, a novel

cascaded SVM architecture used in both classification and detection is discussed.

Performance improvements through the use of feature fusion is demonstrated.
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Chapter 1

Introduction

Object detection has received a great deal of attention in recent years. Pedestrian

detection is a canonical instance of object detection that remains a popular topic

of research due to its diverse applications. Direct applications in car safety, surveil-

lance, and robotics, have continued to drive efforts in creating a more robust solution.

More importantly, pedestrian detection is a well defined problem with established

benchmarks and evaluation metrics. As such, it serves as a sandbox for exploring

different ideas. The main paradigms for object detection are Viola Jones variants,

HOG+SVM rigid templates, deformable part detectors (DPM), and convolutional

neural networks (ConvNets)[2].

The aim of this thesis work is to explore advancements in presently available

techniques and propose new techniques in object detection methodology. By uti-

lizing higher dimensions of data, this work aims to improve pedestrian detection

outcomes by ways of data and decision fusion.
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1.1 Motivation

According to statistics[3], each year, nearly 1.3 million people die in road crashes

worldwide, which is an average of 3,287 deaths a day. In addition to this, another

20-50 million people are injured or permanently disabled due to these accidents.

Currently, road traffic crashes rank as the 9th leading cause of death, and is expected

to become the fifth leading cause of death by 2030 unless action is taken. By

developing a more affordable and robust pedestrian detection scheme, we can stop

this trend and establish a safer roadway.

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 provides the background information

and theories required to fully understand this work. Information such as 2D and

3D view geometry as well as commonly used machine learning architectures are

provided.

Chapter 3 describes related works in the field of pedestrian detection. This field

encompasses a wide array of disciplines and backgrounds, from image processing

to theoretical math-based deep neural-net machine learning. Therefore only key

contributing pieces of work are present as opposed to a summary of the entire field.

Chapter 4 provides a discussion of data acquisition equipment and data post pro-

cessing. A custom set of data was collected as opposed to using standard pedestrian

detection data sets, captured by cameras, such as INRIA, ETH, TUD-Brussels,

Daimler, Caltech-USA, and KITTI as all of these lacked a third set of features:

thermal imaging.

Chapter 5 discusses the processes used to extract the necessary data from our raw

data set so they could be used for SVM training. Chapter 6 details the chronicle of

2



pedestrian classification and detection improvements through the use of novel SVM

architecture. Finally, Chapter 7, gives the conclusions and an overview of future

work.
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Chapter 2

Background

This chapter provides important background information related to this work. A

discussion of stereo vision camera theory along with infrared camera basics are

provided. The mathematical theory of trifocal tensor is provided as a basis for

understanding its real world application and its relevance to this work. Lastly a

brief overview of Histograms of Oriented Gradients (HOG) along with commonly

used Support Vector Machine (SVM) structures and architectures are presented.

2.1 Stereo and Thermal Vision

2.1.1 Stereo Vision

The basis of stereo vision is the human eye, for which we use to perceive depth in

a 3D space. A traditional stereo vision system consists of two cameras, displaced

horizontally from one another, to obtain two different views on the same scene. By

comparing these two images, depth information can be extracted and a disparity

map can be generated. A disparity map has values inversely proportional to the

scene depth at each corresponding pixel location.
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The mathematical principle of stereo vision is as follows. Assuming an object,

P, is in the scene, where P1 and P2 are the corresponding pixel of P in the left and

right image, as shown in Figure 2.1.

Figure 2.1: Stereo vision mathematical principle

Furthermore, we will also assume that the two cameras are parallel and in the

same horizontal plane. Next we will apply the epipolar constraint, which stipulates

that since the cameras are in horizontal lines, the epipolar of P1 and P2 are also at

the same height level. Then based on the geometric principles of similar triangles,

the following equation can be derived.

d1

s1
=

d2

s2
=

f

D
(2.1)

By rearranging the equation above, defining disparity d as d1+d2, and the baseline
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length of the two cameras s as s1+s2, the following equations can be derived.

s1 =
d1D

f
, s2 =

d2D

f
(2.2)

D =
sf

d
: s = s1 + s2,d = d1 + d2 (2.3)

Since the baseline and focal length of our stereo camera system is known and

fixed, the distance of the object in the scene can be determined based on the disparity

in the two images.

2.1.2 Thermal Vision

Infrared (IR) radiation occurs on a specific wavelength section of the electromagnetic

spectrum, more specifically, between 700 nm and 1 mm. This infrared spectrum can

then be further subdivided in to five common sections, near-infrared (NIR), short-

wavelength infrared (SWIR), mid-wavelength infrared (MWIR), long-wavelength

infrared (LWIR), and far-infrared (FIR)[4]. The specific wavelength ranges for these

can be observed in Figure 2.2. For the purpose of this paper, LWIR will be the

primary focus as it covers the wavelength range of 8-14 µm. This wavelength range

corresponds to the typical ambient and human body temperatures. This region is

also typically known as thermal infrared[5].

Thermal detectors operate by allowing infrared radiation to heat up the material

in which the detector is manufactured. The temperature difference between the

material and the background is converted to an electrical signal that would be

processed by on board electronics. A micro-bolometer is the specific type of thermal

detector used to measure and convert the temperature difference on the material to

a difference in electrical resistance to achieve an output signal.

6



Figure 2.2: Infrared spectrum breakdown

2.2 Trifocal Tensor

The fundamental idea behind trifocal tensor is that when given three views and

a pair of matching points in two views along with sufficient information about the

placement of the cameras, it is usually possible to determine the location of the point

in the third view without reference to image content[6]. To further understand this

theoretical technique, the mathematical derivation of the tensor must be looked at

in detail.

Trifocal tensor is expressed by a set of three 3 × 3 matrices, [Ti], i = 1,2,3.

It describes the projective geometric relations of image triplets taken from three

different cameras. In the case of a view triplet, if the camera matrix of the first

view is in the canonical form, P1 = [I|0], then the camera matrices of the other two

views can be expressed as P2 = [A|e′] and P3 = [B|e′′] where A and B are 3 × 3

matrices, and, e′ and e′′ are the epipoles corresponding to the image of the first

camera on the image plane of the second and third camera respectively. With this,

the 3× 3× 3 trifocal tensor can be written as:

7



T = [T1,T2,T3]T (2.4)

Ti = aie
′′T − e′bT

i (2.5)

Once the tensor matrix is solved, it can be used in the computation of point and

line transfers. If (l, l′, l′′) is defined as a set of corresponding lines and (x,x′,x′′) is

defined as a set of corresponding points in three images, the transfer function can

be represented with the following equations.

lT = l′T[T1,T2,T3]l′′ (2.6)

[x′]×(
∑
i

xiTi)[x
′′]× = 03×3 (2.7)

where the notation [x]× represents a skew-symmetric matrix of the vector x = (x1,x2,x3)

defined as:

[x]× =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (2.8)

One of the common methods of transfer is by solving the trilinear equations. In ten-

sor notation, Tij
i denotes the (i,j) entry of the sub-matrix Ti . Thereby an expansion

of the point-point-point trilinear equation (2.7) can be written as:

xi[−x′3(x′′3T21
i − x′′1T23

i ) + x′2(x′′3T31
i − x′′1T33

i )] = 012 (2.9)

This will then lead to a set of nine equations, of which only four are linearly inde-
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pendent.

xiT11
i − xix′′1T13

i − xix′1T31
i + xix′1x′′1T33

i = 0

xiT21
i − xix′′1T23

i − xix′2T31
i + xix′2x′′1T33

i = 0

xiT12
i − xix′′2T13

i − xix′1T32
i + xix′1x′′2T33

i = 0

xiT22
i − xix′′2T23

i − xix′2T32
i + xix′2x′′2T33

i = 0

(2.10)

This can now be written in a matrix form as mxi = 0 where m is a vector of

four elements. The vector m is the most compact representation of the trilinear

relationship as only 12 of the 27 tensor entries appear in each of the four equations.

When i has a range of 1 to 3, the linear equations above create a linear system of

homogenous coordinates for the point x in the image.

M× x = 0 (2.11)

In the equation above, M stands for a 4× 3 matrix with entries in terms of the

tensor T and a pair of image points (x′, x′′) between two views. The corresponding

point in the first view can be found by solving this linear system as (x
1

x3 ,
x2

x3 ).

The linear system for the coordinates of point x′ is:



a121 0 a321

a122 0 a322

0 a212 a312

0 a211 a311


x′ = 0 (2.12)

where
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a121 = −x1x′′2T 33
1 − x2x′′2T 33

2 − x′′2T 33
3 + x1T 32

1 + x2T 32
2 + T 32

3

a321 = x1x′′2T 13
1 − x2x′′2T 13

2 − x′′2T 13
3 − x1T 12

1 − x2T 12
2 − T 12

3

a122 = x1x′′1T 33
1 − x2x′′1T 33

2 − x′′1T 33
3 − x1T 31

1 − x2T 31
2 − T 31

3

a322 = −x1x′′1T 13
1 − x2x′′1T 13

2 − x′′1T 13
3 + x1T 11

1 + x2T 11
2 − T 11

3

a212 = −x1x′′1T 33
1 − x2x′′1T 33

2 − x′′1T 33
3 + x1T 31

1 + x2T 31
2 + T 31

3

a312 = x1x′′1T 23
1 − x2x′′1T 23

2 − x′′1T 23
3 − x1T 21

1 − x2T 21
2 − T 21

3

a211 = x1x′′2T 33
1 + x2x′′2T 33

2 + x′′2T 33
3 − x1T 32

1 − x2T 32
2 − T 32

3

a121 = −x1x′′2T 23
1 − x2x′′2T 23

2 − x′′2T 23
3 + x1T 22

1 + x2T 22
2 + T 22

3

(2.13)

Finally, the linear system for the coordinates of point x′′ is:



0 a221 a321

a122 0 a322

a112 0 a312

0 a211 a311


x′′ = 0 (2.14)

where
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a221 = −x1x′1T 33
1 − x2x′1T 33

2 − x′1T 33
3 + x1T 13

1 + x2T 13
2 + T 13

3

a321 = x1x′1T 32
1 + x2x′1T 32

2 + x′1T 32
3 − x1T 12

1 − x2T 12
2 − T 12

3

a122 = x1x′1T 33
1 + x2x′1T 33

2 − x′1T 33
3 − x1T 13

1 − x2T 13
2 − T 13

3

a322 = −x1x′1T 31
1 − x2x′1T 31

2 − x′1T 31
3 + x1T 11

1 + x2T 11
2 + T 11

3

a112 = −x1x′2T 33
1 − x2x′2T 33

2 − x′2T 33
3 + x1T 23

1 + x2T 23
2 + T 23

3

a312 = x1x′2T 31
1 + x2x′2T 31

2 + x′2T 31
3 − x1T 21

1 − x2T 21
2 − T 21

3

a211 = x1x′2T 33
1 + x2x′2T 33

2 + x′2T 33
3 − x1T 23

1 − x2T 23
2 − T 23

3

a311 = −x1x′2T 32
1 − x2x′2T 32

2 − x′2T 32
3 + x1T 22

1 + x2T 22
2 + T 22

3

(2.15)

2.3 HOG and SVM

One of the most popular pedestrian detection methodologies is an approach which

combines Histograms of Oriented Gradients and Support Vector Machines.

2.3.1 HOG

HOG is a type of feature descriptor. The purpose of a feature descriptor is to

generalize an object in such a way that the same object produces as close as possible

to the same feature descriptor when viewed under different conditions[7]. It was

first introduced in 2005 by Dalal and Triggs and has received a lot of notice from

researchers. This is due to the fact that local object appearance and shape can often

be characterized rather well by the distribution of local intensity gradients or edge

directions and therefore provide promising results in pedestrian detection. A lot of

11



variations exist but the basis of the method is described below.

First the centered and horizontal gradients are computed with no smoothing.

Then the gradient orientation and magnitude is computed. If it is a color image,

the color channel with the highest gradient magnitude is chosen for each pixel.

Next the image is divided into small sub-images known as cells. The cells can be

rectangular or circular. Then the image is divided into larger regions or “blocks”

that consists of a number of cells. The blocks are generated with overlap so that a

cell can belong to more than one block.

Figure 2.3: HOG calculation process visualized

The edge orientations within each cell are then accumulated in a histogram.

Next the histogram entries are combined and used as the feature vector describing

the object. Lastly, normalization of the cells across larger regions, multiple cells,

provides for a better illumination invariance[7]. The process can be visualized in

Figure 2.3.

2.3.2 SVM

Machine learning is about learning structure from data. Linear Support Vector

Machine is a popular classifier. Two sets of points are linearly separable if they

12



can be separated by a single line in two dimensions and by a hyper-plane in more

than two dimensions[8]. It should be noted that multiple separating hyperplanes

may be created based on a set of training data as seen in Figure 2.4. If they cannot

be separated by a line or in general hyper-plane they are said to be not-linearly

separable, but can still be handled by a kernel trick in order to transform the non-

linear classifier into a classifier that can work with a higher dimensional feature

space. Support Vector Machine not only classifies the patterns it also optimizes the

decision boundary based on maximizing the margin that separates the instances as

seen in Figure 2.5.

Figure 2.4: Examples of many possible separating hyperplanes

The structure of the decision-making model can take on a variety of designs. One

of the most basic methods is to concatenate different types of features into a single

SVM for training. This basic methodology generally work well given a sufficient set

13



Figure 2.5: Optimized hyperplane based on the maximum margin separating the
instances

of data.

Another option is to use a cascaded classifier SVM without feedback. This

classifier is a multi-stage system. Cascaded SVMs may suffer from loss of information

during each stage, similar to dimensionality reduction. Cascaded classifiers can be

primarily used for pre-filtering or selection, in order to save on computational cost.

Again this classifier results in errors that may accumulate during each stage.

To address the issue of error accumulation in the previous method, parallel cas-

caded SVMs with feedback structure can be used. With the feedback during train-

ing, this would eliminate the accumulation of previous stage errors. As it can be

seen in Figure 2.6, the training data were split into subsets and each one is evalu-

ated individually for support vectors in the first layer[9]. The results are combined

two-by-two and entered as training sets for the next layer. Finally the resulting

support vectors were tested for convergence by feeding the result of the last layer

14



Figure 2.6: Schematic of cascaded SVM with feedback architecture

back into the first layer, along with the non-support vectors.

This classifier is only good for training, not for decision-making. The only useful

SVM is the last stage. SVMs from previous layers merely give selected support

vectors to the next SVM during training. Therefore they are not used in decision-

making. Furthermore this classifier may pose an issue if the different features are of

different dimensions. For example a 1000-dimensional HOG feature might render a

1-dimensional mean intensity feature insignificant, though both could arguably be

just as useful.
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Chapter 3

Related Work

This chapter will focus on related works in pedestrian detection. Trying to detect

pedestrians in a traffic scene is not a trivial task. In the last decade, extensive efforts

have been made to improve the performance of pedestrian detection.

3.1 Background Subtraction Method

An early work by Xu et al.[10] showcased a fast and effective pedestrian detection

using HOG descriptor based SVM. This approach takes advantage of CodeBook

background subtraction (CBBS) to produce pedestrian samples for SVM. The HOG

features of the samples were extracted to train both linear and Radial Basis Function

(RBF) SVM classifiers offline. The process flow chart can be seen in Figure 3.1. The

group carefully investigated the influence of various ratios of positive and negative

training sets on detectors performance. Furthermore they compared Linear and RBF

SVM in experiments as well. It was concluded that their methodology obtained

reliable detection results and was robust against pedestrian appearance and pose

variations, illumination changes, background changes, shadows and etc.

16



Figure 3.1: Process flow of background subtraction methodology

3.2 Color Feature Extraction Method

Van de Sande et al. proposed using color descriptors as an extractable feature for the

purpose of object and scene recognition[11]. Different combinations of features were

evaluated, and the group introduced a new feature based on the similarity of colors

in different regions of the detector window. This showed a significant improvement

in detection performance. It was discovered that people do exhibit some structure,

in that colors are locally similar. For example, the skin color of a specific person is

similar on their two arms and face, and the same is true for most peoples clothing.

Therefore, color self-similarities can be encoded within the descriptor window, i.e.,

similarities between colors in different sub-regions.

17



3.3 Color and Infrared Stereo Vision

One of the most notable related works was by Krotosky and Trivedi[12] in which an

analysis of color and infrared stereo approaches to pedestrian detection was explored.

A four-camera experimental test bed consisting of two color and two infrared

cameras was created to allow for synchronous capture and direct frame-by-frame

comparison of pedestrian detection approaches. Two pairs of color and infrared

cameras were arranged so that their imaged scenes were as consistent as possible.

The two pairs had identical baselines and the corresponding cameras in the color

and infrared pairs are positioned as close as possible so as to maintain the same

approximate fields of view. Additionally, lenses for the color cameras were selected

to best match the fixed zoom of the infrared cameras. All four cameras are arranged

in a single row and care was taken in aligning the pitch, roll and yaw of the cameras

to maximize the similarity in field of view.

The group conducted experiments such that pedestrians walked in front of the

test bed. The experiments included multiple pedestrians in the scene with varying

degrees of depth, complexity, and occlusion. The experimental data was captured

simultaneously with the color and infrared stereo cameras.

The fundamental algorithm utilized by this group to analyze pedestrians with

stereo imagery was to detect obstacles in the scene and localize their position in 3D

space from the disparity maps generated from stereo correspondence matching. In

essence, the disparity images derived from stereo analysis was used to generate a

list of candidate pedestrian regions in the scene.
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3.4 Decision Fusion

For any pattern classification task, when there is an increase in data size, number

of classes, dimension of the feature space, or interclass separability, the performance

of any classifier will be affected. Typically, a single classifier is unable to handle the

wide variability and scalability of the data in any problem domain. Therefore, most

modern techniques of pattern classification use a combination of classifiers to fuse

the decisions for the task. The problem of selection of a useful set of features and

discarding the ones which do not provide class separability are addressed in feature

selection and fusion tasks. A survey of these methods were presented by Mangai et

al.[13].
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Chapter 4

Data Acquisition and Processing

This chapter will discuss the process of real world data acquisition, from equipment

selection to test rig construction. Furthermore, we will discuss the techniques em-

ployed to create pixel level data fusion as this is important to the task of machine

learning.

4.1 Data Collection Equipment

For the purpose of this work, a custom test equipment rig was designed and assem-

bled in order to collect real world data for pedestrian detection. This was necessary

as there does not current exist an open source data set that our methodology and

algorithm can be applied to. Our design constraint required that our system be

mobile, easily mountable/dismountable to our test vehicle as well as maintaining

calibration between data collection runs.
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4.1.1 Stereo Vision Camera

The ZED StereoLabs, stereo vision camera was chosen for providing vision data as

well as depth data.

Figure 4.1: StereoLabs ZED camera

This camera was chosen for multiple reasons. The ZED camera can capture high

resolution side-by-side video on USB 3.0 that contains two synchronized left and

right video streams, and can create a depth map of the environment in real-time

using the graphics processing unit (GPU) of the host machine[14]. Furthermore,

StereoLabs provides the end user an easy to use SDK that allows for access to

commonly use camera controls and camera outputs with a wide array of operation

modes. One of the most important factors in choosing the ZED camera is that the

on board cameras are pre-calibrated and comes with known intrinsic parameters.

This provides for proper image rectification and disparity map generation.

4.1.2 Thermal Camera

For our LWIR camera, the FLIR Vue Pro, as seen in Figure 4.2, was chosen for

its cost to performance ratio. The FLIR Vue Pro is an uncooled vanadium-oxide

(VOx) microbolometer touting a 640x512 resolution at a full 30Hz and paired with
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a 13mm germanium lens providing a 45◦ × 35◦ field of view[15]. This IR camera has

a wide -20 to 50 ◦C operation range which will allow for rugged outdoor use. The

Vue Pro provides for Bluetooth wireless control and full data recording of thermal

video via its onboard microSD card as well as a real-time analog video output.

Figure 4.2: FLIR Vue Pro LWIR camera

At the time of this work, this thermal camera provides for the highest resolution

to cost ratio. While it is possible to obtain full digital infrared radiometric data

from the Tau 2 core inside the FLIR Vue Pro, it becomes cost ineffective, but may

be considered in the future if necessary.

4.1.3 Enclosure

Both the stereo vision and LWIR camera must remain fixed relative to each other for

repeatability between data collection sequences. A 1
4
-20 threaded rod was custom

cut to length and each end was threaded into the respective cameras tripod mounting

hole. This provided for a rigid connection between the vision and the IR camera.

Next the housing for the camera was sourced. A Carlon electrical junction box
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was utilized as this was an appropriately sized, water proof box that provided high

impact resistance. The top lid was replaced with a Lexan impact resistant clear

acrylic sheet such the stereo vision cameras can be situated safely behind it. A

circular hole was also cut into the top lid to accommodate for the thermal camera

lens to fit through and mounted via the lens barrel. This was required, as even clear

acrylic would block most if not all IR radiation in our spectrum of interest.

4.1.4 Mounting System and Cable Management

Finally a mounting system was designed, modeled, and built utilizing 80/20 alu-

minum extrusions. This structural frame provided the adequate permanent mount-

ing points for our camera housing, as it was secured to the channels in the aluminum

extrusion by numerous screws. The entire structure is now completely portable and

can be mounted to any vehicle with a ski rack. The 80/20 extrusions would sit

between the front and back ski rack hold-downs.

Cable management was crucial our design as long runs of cables were needed in

order for communication between our laptop inside the vehicle and cameras on the

roof. In order for the system to operate in adverse conditions, the cables must run

down the back of the vehicle, through the trunk and into the vehicle cabin. This

equated to approximately 20 feet of cable.

This created an issue for our ZED stereo vision camera, as it operated on high

speed USB 3.0 protocol that allowed for a 10 feet maximum length before signal

degradation and loss[16]. To resolve this issue, an active USB extension cable was

used. This USB cable also required a 5V power on the female end. A two-conductor

wire was soldered to it and ran parallel to the USB extension cable terminating in

another USB connector for easy 5V access.

The FLIR Vue Pro IR camera utilizes a 10pin mini-USB port for power, data,
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and analog video output. A special cable, as seen in Figure 4.3 was provided by

FLIR that terminated in 10-pin mini-USB port and the other end terminated in a

standard USB plug and composite analog plug.

Figure 4.3: FLIR Vue Pro cable

The USB cable was further extended by 20 feet, this was acceptable as it was

only USB 2.0 and did not require high-speed data transfer. The same was done with

the composite analog video cable.

A total of four cables terminated from the camera setup, they were all wrapped

together with braided cable sleeves to prevent tangling, ensure robustness and cre-

ated an ascetically pleasing cable bundle.

4.1.5 Completed System

The completed system can be seen in Figure 4.4. Figure 4.5 shows the system having

been mounted to the roof rack of a test vehicle. The data cable bundle has been

routed down the back window and through the trunk of the vehicle to a laptop.
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Figure 4.4: Standalone completely assembled system

Figure 4.5: Completed system mounted on test vehicle
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4.1.6 Software

Software was developed in C++ in accordance to the ZED SDK in order to capture

visual data. Furthermore, software was developed to convert the native raw SVO file

format provided by the ZED camera into individual image sequences at 30 frames

per second (FPS). These images are post rectified and can be used directly in our

subsequent steps. The SDK also provided for the ability to generate raw disparity

data. The SDK utilizes a proprietary disparity calculation process much like that

of semi-global matching to generate the raw disparity data. This system relies on

having a powerful Nvidia GPU and CUDA in order perform these calculations.

An analog frame grabber was employed to capture the real-time analog output

of the IR camera instead of directly recording to the onboard microSD card. This

was the solution to a problem of synchronization between the thermal camera and

stereo vision camera. With analog frame grabber, we were able to precisely capture

at 30 FPS. AVI files were generated using software provided along with the frame

grabber. These AVI files were then converted into image sequences via Matlab.

Approximately a total of three hours of driving data was captured across multiple

days and lighting conditions. This does not include any highway driving as we are

unlikely to see any pedestrians on the highway. We paid close attention to capturing

situations in which visual sequences are extremely difficult to see where the thermal

images were very clear and also cases where thermal images are likely to fail where

visual images are clearly distinguishable. This resulted in a mere 58 usable sequences

totaling 4320 frames in which a person or multiple people are in clear view and

un-occluded. This may seem to be a small data set given the amount of original

data, but we have excluded situations where there may be high levels of noise and

occlusion. Furthermore, video frames without any pedestrian were also not included

in the data set.
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4.2 Application of Trifocal Tensor

In order to perform data and decision fusion, proper data alignment is necessary.

We first performed image fusion at a pixel level. This in essence mapped every pixel

on each of our three view angles to one another to which the images were a perfect

overlay on top of one another. This task is non-trivial as not only did the cameras

not have the same optical field of view, it is actually physically impossible to simply

stack three images taken from three different point of view and match them pixel for

pixel. As seen in Figure 4.6, by simply stacking the images on top of one another,

we are able to only match the foreground parts of the image where the pedestrian

is, but the rest of the image is mismatched.

Figure 4.6: Simple image stacking
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Since the ZED stereo vision system provides a left (Figure 4.9a) and right (Fig-

ure 4.7b) image, along with the calculated disparity map, we essentially know the

point to point correspondence of two point of views. Now we simply need to map

the third view, thermal imaging (Figure 4.8) to the first two. Standard methods

such as semi-global matching techniques will not work in this situation as we are

dealing with cross spectral imaging in which equivalent points will look completely

different.

(a) Left image (b) Right image

Figure 4.7: Sample images from stereo vision camera

To solve this issue, we utilized the mathematical theory of Trifocal Tensor as

discussed in section 2.2 for this application. Although there are many methods for

calculation of the tensor matrix[6], the most optimal one for our application is a

linear method based on direct solution of a set of linear equations.

According to equation (2.11), each point-point-point correspondence provides

four linearly independent equations. Thereby seven corresponding points across the

three views can uniquely determine the 27 entries of the tensor matrix. Given n point

correspondences, let A denote a matrix of size 4n× 27 and t a vector containing all

entries of the tensor, we can write
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Figure 4.8: Sample thermal image of LWIR camera

At = 0 (4.1)

Then the tensor can be obtained by the Singular Value Decomposition (SVD) solu-

tion to this linear system.

Hartley has shown that this kind of algorithm does not do well if all points

are of the form (x1 , x2 , 1) in homogeneous coordinates with x1 and x2 very much

larger than 1[17]. Therefore, it is necessary to normalize the points of each image

separately before computing the tensor and it is necessary to de-normalize the com-

puted tensor in order to work with the original image coordinates. In summary, the

normalized linear algorithm for computation of tensor T given n ≥ 7 image point
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correspondences across 3 images is as follows.

1. Normalize the set of point triplets by performing transformations H, H′ and

H′′.

2. Transform the points according to xi 7→ x̂i = Hi
jx

j

3. Compute the tensor linearly by solving a set of equations of the form At = 0,

where A expresses the equation (2.7) and t is the vector of entries of tensor.

4. De-normalize the tensor by Ti = H′−1Σj(H
T(i, j)Tj)H

′′−T

In order to reconstruct the third image base on the tensor matrix, we will also

need to calculate the fundamental matrix F21 between the left and right image. The

fundamental matrix is calculated utilizing the normalized eight-point algorithm[18].

This function was readily available through Matlab and therefore was not re-derived.

Now that we know both the fundamental matrix F21 and the tensor matrix T,

we can relate the F21 = [e′]× [T1,T2,T3]e′′.

Using this computation method, we implemented the algorithm in Matlab in

order to reconstruct our thermal image such that it would perfectly overlay with our

left vision image. An example of our reconstructed image of the original Figure 4.8

can be seen in Figure 4.9b. We have also overlaid the original left vision image and

the now reconstructed thermal image and show that they are a perfect match for

every part of the image. This anaglyph can be seen in Figure 4.10.

30



(a) Left vision image (b) Reconstructed thermal image

Figure 4.9: Reconstruction based on trifocal tensor algorithm

Figure 4.10: Anaglyph overlay of reconstructed thermal image and original left
vision image
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Chapter 5

Data Extraction

This chapter discusses the processes necessary to extract the necessary data from

our raw data set such they can be use for SVM training.

5.1 Ground Truth Data Labeling

For supervised machine learning, results obtained from a given algorithm must be

compared against target ground truth; a set of results determined a priori to be

correct[19]. Generating ground truth outputs is called labeling data.

In order to assist in labeling a vast amount of frames and images, the Video

Processing Analysis Resource (ViPER) tool is used. The tool allows for import of

folders containing image sequences derived from video streams. Once we create an

OBJECT ID, such as “pedestrian”, we can draw a rectangular bounding box around

the person of interest in such frame. The following sequences follow suit. Once all

the images in a given sequence have been appropriately labeled, the label data can

be saved as an extensible XML based file format. An example of this tool interface

can be seen in Figure 5.1.

We choose to label only the left vision image sequences as this was sufficient
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Figure 5.1: ViPER tool interface

since the thermal image sequences have been transformed and reconstructed such

that the respective vision label data can be applied.

The labeled data will be then separated into two distinct groups; one group will

be use for SVM training, and the other group will be used for testing the SVM.

The groups will be separated by sequences and not just by frames. Since each

sequence will have frames that are very similar to one another, this will ensure that

the training data does not too closely resemble the testing data. The training data

set consists of 39 sequences equating to 3417 frames. The testing data set consists

of 19 sequences equating to 913 frames.
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5.2 Positive and Negative Sample Extraction

Matlab was utilized to extract both positive and negative samples for the training

data set. Using the XML data from ground truth labeling, we were able to crop out

every positive sample from the training data set. This resulted in approximately

3950 positive samples. Some of these positive samples can be seen in Figure 5.2.

Each roll of positive vision sample have its corresponding row of positive thermal

sample. This further demonstrates that our trifocal tensor technique works as de-

sired.

Figure 5.2: Positive samples in multispectral images

The negative samples are extracted using two different methodologies. First a set

of negative samples are randomly selected from the training data set. These images

may contain segments of trees, buildings, vehicle, and etc. They are obtained by
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applying a random candidate selection procedure over the pedestrian-free areas, as

denoted by the ground truth, in the images. We extracted an approximately 1:10

ratio of positive to negative samples.

Next, a set of hard negative samples were extracted. This was done along side

the classification phase of this work. To improve the SVM accuracy, the SVM was

trained and validated with the same training data set. Any false detections were

then extracted and also set as negative examples, this process is called mining for

hard negatives. By iterating this process, the accuracy of the SVM classification

can be improved. We performed two iterations after the initial training, we did not

perform any further iterations as it no longer provided any increased performance.

In the end, we have built a collection of approximately 56,000 negative samples.

Some of these negative samples can be seen in Figure 5.3.

Figure 5.3: Negative samples in vision images
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Chapter 6

Pedestrian Classification and

Detection

This chapter is focused on methods for improving classification and detection of

pedestrians by data and decision fusion.

6.1 Classification

The preliminary classification methodology that we performed provides a baseline

for which we built our successive methods. This initial first pass classification simply

took the extracted raw images from the left side of the stereo vision camera and per-

formed SVM classification. Next we also performed the same style of classification

with the raw images from the thermal camera. Lastly, the raw images from both the

vision and thermal camera were combined and passed to the SVM for classification

training. A seven-fold cross validation was also performed with the data set. The

purpose of a cross validation is to assess how the results of a statistical analysis will

generalize to an independent data set[20]. The results of this can be seen in Ta-
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Table 6.1: Cross validated SVM classification of raw image data results

Precision Recall
Left Vision Only 77.23% 47.60%
Thermal Only 95.95% 88.65%
Left Vision & Thermal 98.24% 83.83%

Table 6.2: Cross validated SVM classification of HOG data results

Precision Recall
Left Vision Only 95.47% 75.28%
Thermal Only 98.53% 85.21%
Left Vision & Thermal 98.91% 85.09%

ble 6.1. In the table, precision is defined as TruePositive
TruePositive+FalsePositive

, whereas recall

is defined as TruePositive
TruePositive+FalseNegative

.

Although, the results are numerically insignificant at this point, the trend is

promising. We can see that the thermal images alone are significantly better per-

forming than visual data alone. Furthermore, it can be argued that simply combin-

ing the two SVMs of Thermal and Left provides a slight improvement in precision.

Although this is easily offset by the decrease in performance of recall, but that could

be attributed to the extremely poor recall of vision only. We believe this is due the

low quality of the visual image data, which is a limitation of our instrumentation.

In the next step, we leveraged the capabilities of HOG as a feature descriptor in

order to improve our classification training.

We performed the same classification training methodology as outline in the

initial baseline run, except this time, instead of simply providing the SVM with the

raw image data, we preprocessed the data through HOG and provided the SVM

with the histogram data. Again a seven-fold cross validation was performed against

the data set. The results can be seen in Table 6.2. While analyzing these results, we

can see that the thermal imaging provides for what seems to be a better result on

its own. These classification results should not be a direct inference on the actual
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performance of this system during detection. This is because during detection, not

only does positive samples need to be correctly classified but an exponentially larger

number of negative data will need to be properly classified. This will result in a

significant drop in actual performance. Therefore decision fusion becomes necessary.

In the next phase of this work, we have performed an intelligent data/decision

fusion technique. As discussed in Section 2.3.2, a multilayer SVM architecture passes

the result of the previous layer to the next layer. These results are in a binary form

of yes or no. We believe this results in a significant loss of useful information.

Instead we propose the use of the classification score from first layer SVMs to train

the second layer SVM.

The SVM classification score for classifying observation x is the signed distance

from x to the decision boundary ranging from −∞ to +∞[21]. A positive score for

a class indicates that x is predicted to be in that class, a negative score indicates

otherwise. Furthermore, a large value represents a higher level of confidence whereas

a lower score indicates higher uncertainty. For the rest of this work, we will refer

this classification score as our confidence score.

This methodology will over come some of our instrumentation limitations where

the feature may be unclear in one spectra yet very evident in a different spectra.

Therefore this style of decision fusion will yield a better result. Based on an overall

survey of our data set, we have determined the following ranking for best to worst

overall feature confidence score.

1. Thermal Imaging

2. Visual Imaging

3. Disparity Map

We have also plotted (Figure 6.1) each point in a given image frame to visualize and
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compare the confidence result of the first layer of SVM for two different features.

Figure 6.1: SVM feature confidence comparison of visual and thermal

The x-axis represents the confidence score of the visual image and the y-axis presents

the confidence score for the corresponding thermal image. We can see that there is

no distinct and clear separation of the positive samples (red, TP) vs the negative

samples (blue, TN). There is an area in the middle where there are a number of

false positives (cyan, FP) along with misses (green, FN). This further validates and

shows the importance of our approach.

A similar plot of confidence was created for all three features of visual, thermal

and disparity. We can see that there is still no clear and distinct separation of

positive and negative samples.
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6.2 Detection

In this section, we will focus on computer vision algorithms for detecting pedestrians.

We begin with an overview of pedestrian detectors and examining some of the ideas

introduced in detection in the last decade and how those works ultimately shaped

our design.

A common methods for moving object detection proposed in the literature has

been background subtraction. The goal of background subtraction is to “remove”

the background in a scene by describing an adequate model of the background[10].

This results in only objects of interest left in the scene for tracking and further

analysis. This technique is generally low in computational cost. However, the major

flaw in this technique is the requirement of a stationary camera. Unfortunately, the

cameras in our application are vehicle mounted and are non-stationary. Therefore,

this method could not be applied to a moving camera situation since the background

is always changing.

Color based feature extraction used to determine regions of interest, ROI, is

another frequently discussed method in moving object detection. This feature ex-

traction scheme essentially computes implicit “soft segmentations” of image regions

into foreground/background[22]. Unfortunately, color by itself is of limited use, be-

cause colors vary across the entire spectrum both for people’s clothing and and for

the background. This creates an unsolved problem of color consistency. Therefore

color information could be a good feature to use in image classification but could

not be applied to detection[23].

As we have shown in our classification results, HOG features in thermal imaging

alone was a strong classifier which suggests that it might be a good feature to use

in detection. One could argue that the human body remains in a relatively stable
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temperature range of 36.5-37.5 ◦C, and therefore should be a feature to utilize. The

flaw in this is that though the human body core temperature remains relatively

stable, the surface temperature radiated through the infrared spectrum varies wildly.

Furthermore, the human body temperature often blends into the wide variety of

background in a scene. This affect can be seen in Figure 6.3. Therefore using the

HOG features in thermal imaging alone would not be optimal for ROI selection in

detection.

Figure 6.3: Pedestrian blending into the background

Another novel approach, as described in Section 3.3, is to utilize the disparity

map generated from either the stereo vision camera or the stereo thermal camera to

determine a ROI. This approach is far from optimal or robust as it requires either the

pedestrians to be extremely close to the test bed or for ultra high-resolution color

and infrared cameras to be utilized. Neither of these are feasible at this time or

cost effective. Pedestrian detection at ranges of 5 meters or less becomes ineffective
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as avoidance becomes ever more challenging and collision inevitable. Furthermore,

utilizing ultra-high resolution cameras creates an immense amount of data, which

leads the inability to process in real time. Lastly the cost of high-resolution infrared

cameras is still at an exuberant price, making a stereo infrared system unaffordable.

Train a classifier on n × m image windows. Positive examples contain the object
and negative examples do not.
Choose a threshold t and steps ∆x and ∆y in the x and y directions.

Construct an image pyramid.

For each level of the pyramid
Apply the classifier to each n×m window, stepping by
∆x and ∆y , in this level to get a response strength c.
If c > t

Insert a pointer to the window into a ranked list L, ranked by c.

For each window W in L, starting with the strongest response
Remove all windows U 6= W that overlap W significantly,

where the overlap is computed in the original image by expanding windows in
coarser scales.

L is now the list of detected objects.

Figure 6.4: Sliding window detection algorithm[1]

In this work, we propose the sliding window detector method which creates

numerous windows for a given frame. Each of the window is then run through the

classifier to determine if there is an instance of a pedestrian. In order to detect

pedestrians at multiple scales the sliding window detector is also ran at multiple

scales. The sliding window approaches appears most promising for low to medium

resolution settings, under which segmentation based methods often fail. The sliding

window algorithm can be seen outlined in Figure 6.4.

After implementing the sliding window algorithm in Matlab, over 90,000 win-
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dows per image were created. This detection problem now has essentially become a

classification problem. After applying our multilayered SVM technique using confi-

dence scores against our entire testing data set, we were able to achieve the following

results in Table 6.3. In this table, FPPI stands for false positives per image.

Table 6.3: Detection results based on multilayer & confidence score SVM approach

Detection Rate Miss Rate FPPI
Visual 64.16% 35.85% 16.68
Thermal 77.70% 22.30% 14.95
Disparity 31.98% 68.02% 19.89
Visual + Thermal 83.10% 16.90% 3.37
Visual + Disparity 65.68% 34.32% 7.00
Thermal + Disparity 80.55% 19.45% 5.63
Visual + Thermal + Disparity 84.62% 15.38% 1.74

FPPI was utilized in our finding instead of false positives per window (FPPW)

as a result of findings by Dollar et al.. It was shown that the evaluation metrics of

per-window (FPPW) was flawed[24]. While the per-window methodology is useful

for isolating evaluation of binary classifiers, the classification task, the ultimately

the goal of pedestrian detection is to output the location of all pedestrians in an

image, a detection task. Therefore, full image metrics are more appropriate for this

task as it provides a natural measure of error of an overall detection system.

The results from Table 6.3 was then plotted, Figure 6.5, to visually show our

improvements by comparing the miss rate and FPPI for each feature used. It is

important to note that a lower miss rate and/or FPPI indicates a better perfor-

mance. Furthermore, we also plotted, Figure 6.6, the performance of each feature

detector against the entire test dataset. This plot shows the miss rate versus false

positives per image and uses log-average miss rate as a common reference value for

summarizing performance. A lower curve indicates a better performance.

Using this detection system, we created a script in Matlab to draw green boxes
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around areas where the system had identified the image as having a pedestrian.

Below in Figures 6.7 and 6.8 are sample result images of our pedestrian detection

system shown in both spectra.

Figure 6.5: Detection result comparison of different features
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Figure 6.7: Detection result on visual image

Figure 6.8: Detection result on thermal image
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis work has presented a novel approach to data and decision fusion of a

multispectral imaging system. We have designed and built a testing rig which is not

only portable but reusable on any vehicle with a ski rack. This thesis work has also

made our data set publicly available to enable future research on computer vision.

Furthermore, we have provided a permanent platform for which more data can be

easily collected. This data will maintain the same perspective views and will allow

for quick and effective post processing with very little overhead. With even more

data, the accuracy of our SVM will undoubtedly increase.

An real-world application of the mathematical theory of trifocal tensor was pre-

sented and validated. This allowed for pixel level data fusion across a multispectral

set of data. Different architecture of SVMs were presented as well as showing the

flaws of decision based cascaded SVMs. We have shown that a confidence score

based cascaded SVM was more appropriate in fusion of multiple features. Lastly,

this was validated through testing of pedestrian detection in our data set. We have
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shown a significant improvement through the use of feature fusion. It should also

be noted that we utilized only linear SVMs for computational efficiency, we believe

RBF SVMs could provide for even better results.

7.2 Future Work

Further improvements can be made to our current work. There are three major

categories in which improvements can be made.

The first category is in the quality of our equipment. As the cost of LWIR

imaging continues to drop, more and more higher resolution thermal cameras will

be come readily available and affordable. Stereo vision cameras are also improving

consistently, the current problem does not lie with the resolution of the imaging

sensor, but with the data transfer protocol. Unfortunately, even with USB 3.0,

we are unable to achieve enough bandwidth to stream simultaneous high definition

videos without frame loss. Furthermore, data storage and data write speed becomes

a significant problem as we are unable to record the data fast enough or have enough

space to store this vast amount of data. At 1080p resolution, approximately four

seconds of footage requires 1GB of storage. With improvements to technology we

hope to be able to work with higher resolution images in the future as this will fully

utilizes the power of HOG features.

The second category of improvements lies with discovery of more meaningful

features. Features in which we can fuse to our current set to further improve SVM

classification and detection accuracy. One of these features we can look at is the

correlation between disparity map and pedestrian image size. These two values are

proportional to each other since a person’s height should increase as they get closer

to our cameras which leads to a higher disparity value. This could then form a
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constraint, with a certain threshold to account for people of different height.

The last category of improvement to our current work is to able to enable this

system to perform in real-time. A pedestrian detection system is not useful in a

real-world situation if it cannot operate in real-time at a minimum of four frames

per second. Four FPS corresponds to 250 ms which is the average human reaction

time. This acceleration can be achieved on graphics processing units (GPUs) or field

programmable gate arrays (FGPAs) as these equipment are perfect for vast parallel

processing.
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