

MQP GFP 1001

Test Selection and Prioritization for EMC

A Major Qualifying Project Report:

Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:

Eric Prouty

Tin Myo Win

Xianjing Hu

Date: January 8th, 2012

Approved:

Professor Gary F. Pollice, Major Advisor

1. Test selection

2. EMC

3. Proof of Concept

i

Table of Contents
List of Illustrations .. 1

Abstract ... 2

Acknowledgements ... 3

1. Introduction ... 4

2. Background ... 5

2.1 About EMC Corporation... 5

2.2 Current EMC

Systems and Tools .. 7

2.3 The Workflow ... 8

3. Problem Statement .. 11

3.1 A Better Solution .. 11

3.2 Problem Statement .. 11

4. Methodology ... 12

4.1 Approach ... 12

4.2 Existing solutions .. 12

4.2.1 Source code based approach .. 13

4.2.2 Binary matching approach: .. 15

4.3 The gcov tool used by our proof-of-concept... 15

4.3.1 gcov .. 16

ii

4.4 Designing a C code coverage system using gcov ... 18

4.4.1 Instrumenting an operating system .. 19

4.4.2 Source code parser ... 20

4.4.3 Test coverage parser .. 21

4.4.4 Test selection ... 22

4.5 Suggested Improvements of the Current Approach .. 22

4.5.1 Modify gcov for Embedded Systems ... 22

4.5.2 Use test history to develop a low cost solution .. 23

4.5.3 Develop a profiler for EMC’s embedded system .. 24

5. Results and Analysis ... 26

5.1 Lowest cost solution ... 27

5.2 Most cost-effective solution .. 28

5.3 Most informative solution .. 28

6. Conclusions ... 28

Appendix ... 30

gcov parser code ... 30

gcov parser output example in human-readable format .. 32

Source parser code .. 33

Glossary .. 36

iii

Bibliography ... 37

1

List of Illustrations

Figure 1. Relationship between the tools used by EMC ... 7

Figure 2. Existing development cycle at EMC showing where the test selection process occurs.10

Figure 3. Echelon's work flow .. 15

Figure 4: Gcov output with count information ... 17

Figure 5: Gcov output with function summary for a source file... 18

Figure 6: Design of C code coverage system using gcov tool .. 19

Figure 7: Instrumented Linux 3.0.4 with gcov ... 20

Figure 8: Source code parser that gives function information in a source file 21

Figure 9: A sample test coverage database ... 22

Figure 10. Analysis Summary (ARM Ltd.) .. 25

Figure 11. ARM Profiler Data Transfer Flow (ARM Limited.) ... 26

Figure 12. Workflow suggestion for using RCSA spreadsheet .. 27

file:///C:/Users/Eric/Downloads/TestPrioritizationForEMC.docx%23_Toc313818312

2

Abstract

 Currently, testers at EMC manually select test cases to ensure fixes to bugs and features

work as expected and do not affect previously functional code areas. This project investigates

automating the test selection process by providing a repeatable procedure for selecting tests, thus

improving efficiency and accuracy.

After a comprehensive background research, we designed a solution using gcov, a code

coverage tool, in conjunction with GCC to produce code coverage information. The information

is then analyzed to show the relationship between source code files and test cases, suggesting

tests to be run. We also explored other possibilities, including analyzing EMC’s RCSA

spreadsheet, modifying gcov for embedded systems, and developing a profiler for EMC’s

embedded system. Our recommendations are based upon the analysis of the pros and cons of

each solution.

3

Acknowledgements

 We are very grateful for the sponsorship and cooperation from the managers and developers at

EMC. We would like to give special thanks to James Lavallee who initiated this project, to

Patrick Cullinane who organized meetings at EMC and constantly provided valuable

information, resources, and advices, and to Padraig Bradley and James Grimaldi who contributed

very useful suggestions and comments to our project from different perspectives. We would also

like to express our sincere thanks to Professor Gary Pollice, whose advice guided us all the way

through this project from beginning to end.

4

1. Introduction

This project develops a proof-of-concept and inspires further investigation into the

exploration of systems that perform automated test selection and prioritization. The problem this

is intended to solve is selecting the proper tests to exercise changes that have been made to a

code base since the previous tested version. Given a code base and test repository, when a

change is made to that code base how do you determine which tests contained within the

repository to run?

This is an important problem that faces many companies as it directly influences the

company’s ability to provide reliable software. Even with a comprehensive testing repository,

there is often not enough time to perform a full regression test in time for critical patch releases.

This is the situation faced by EMC who must deliver patches to customers who face critical data

losses or outages. The software must be fixed and delivered quickly in order to maintain good

customer relations. When a patch, or EPACK as it is known within the organization, is prepared

for a customer it must be tested to ensure that the problem has been fixed and that it has not

introduced further complications.

This could be accomplished by performing a full regression test which ensures that all known

problems have been accounted for and that the system is still running up to the current

specifications. This approach would cause a delay in the patch reaching a customer, which in the

case of data storage can mean sustained outages and a loss of customer satisfaction. Another

approach would be to run a random assortment of tests over the given amount of time before the

patch needs to be delivered to the customer. This approach takes into consideration the time

constraint but does not necessarily test the changed area. While throwing as many tests as

5

possible at the problem in the given time at least ensures that most of the systems functionality is

still working, it does not guarantee confidence in the patch being a successful solution.

Our solution recommends the creation of a system that ties the test repository to the code

base under test. This provides a clear link between the changed code and the tests that would

most likely exercise it, and improves confidence in the patch solution to the customer’s problem.

In order to come to this recommendation our team performed research upon the current practices

being used and the associated articles detailing similar work. Using this information a proof of

concept using the code coverage tool gcov was developed and tested. This proved that it was

possible to create a concrete relation between a test and the code under test on an operating

system. We then investigated how to introduce such a tool into the current workflow at EMC.

This also prompted further study into other options.

Our team has identified three possible solutions to the problem that could be implemented by

EMC, the remainder of this document will report upon our methodology and how we came to

such conclusions. It will also detail the three solutions that we have recommended and explain

their use. The final portion of this document will then go into details regarding future work that

could be completed and our recommendations for how this proof of concept could be moved

forward into a working implementation.

2. Background

2.1 About EMC Corporation

 “EMC Corporation (EMC) is a global leader in enabling businesses and service providers to

transform their operations and deliver Information Technology as a service.” (EMC at a

6

Glance) Being well-known for its product lines from enterprise storage arrays to security

products, EMC is accelerating to cloud computing, helping businesses to store, manage, protect

and analyze their massive quantities of data in a more flexible and cost-efficient way. EMC

customers are diverse, not only in size, from startups to the Fortune Global 500, but also in

industry and geographic location. EMC works with organizations across the world, in every

industry, in the public and private sectors.

EMC history starts with the name of the company, EMC. “E” and “M” stands for the initials

of the two founders, former Intel executive, Richard Egan and his roommate Roger Marino.

Founded in 1979, EMC started as a supplier of add-on memory to the growing minicomputer

industry. In 1990, EMC entered into the mainframe-storage market, 80% of which was taken by

International Business Machines Corporation (IBM) at that time. By 1995, EMC became the

market leader with 41% market share due to its sophisticated and well-served data storage

systems. From 1995 to 2000, the company made swift transformations, increasing the

complexity of management and production line. EMC started to aim at different market segments

offering multiple product lines rather than carrying a single storage system. During the five-year

period, EMC became a global player with presence in all corners of the globe, instead of a US-

based vendor, selling storage services to virtually all types of IT buyers. (Rao, 2003)

Today, EMC provides a wide range of product categories that address storage, information

security, data warehousing, enterprise content management and cloud computing. With nearly

50,000 employees, EMC is a serving more than 400,000 customers and partners across more

than 80 different counties. Moreover, it is managing five data centers, with storage of 10

petabytes (1 petabytes = 2
52

bytes) of information. Starting from 2004, EMC began its journey

into Cloud infrastructure to continue as a leader in the market.

7

2.2 Current EMC Systems and Tools

The following chart illustrates the relationship between the tools and platforms EMC is using

to perform its development and testing cycle, and how the customers, developers, and testers

communicate with each other. For a detailed introduction of EPACK, OPT, CAT and Syren,

refer to the glossary at the end of this document.

Figure 1. Relationship between the tools used by EMC

An EPACK is a group of fixes, as explain in the glossary section. The customers report

problems, and the developers generate fixes for the problems. After the problems are solved and

tested, the developers put the required fixes into an EPACK and then ship it to the customers.

Testers use CAT as their test cases database. Tests are drawn from the database to test

specific functionalities; if a test does not exist to cover the functionality then new test cases are

8

created and added into CAT.

Developers and testers communicate through the problem tracking platform OPT. Testers log

the bugs and new features into OPT. Developers take over the bugs and new features description,

write code to fix the bugs and add new functionalities as required, then return the cases to the

testers; the testers re-test the problems, close the case if problems solved, and put it into OPT

again if not.

Sometimes testers also need to look into Syren to see the check-ins made by the developers.

Syren is the version control system used by EMC.

2.3 The Workflow

The following workflow diagram illustrates the overall workflow from a customer reporting

a bug through to the EPACK containing fixes being shipped back to the customer. The workflow

can be broken into the following steps:

1. Customer issue is recreated and logged into OPT.

2. In OPT, the customer issue enters into debug and fix cycle. The developers work on

fixing the issue, assign it back to testers when it’s done, and testers retest the issue.

3. When testing a certain fix, the testers look into the CAT test database to see whether there

are existing test cases to test the fix. If not, new test cases will be created and added.

4. The tester tests the fix against the test cases selected from CAT. If the fix passes the test,

the code will be checked in. If the fix fails the test, the tester will re-assign it to the

developers, and the cycle continues until the problem is solved.

5. After all fixes pass all test cases needed to test them, the fixes will be put into an EPACK.

6. To make sure that the selected fixes resolved the issue raised by the customers, and the

9

fixes do not break anything else, the testers will then need to select tests to test the entire

EPACK.

7. When the testing in Step 6 is finished and passed, the EPACK will be ready to be shipped

to the customers.

10

Figure 2. Existing development cycle at EMC showing where the test selection process occurs

11

3. Problem Statement

3.1 A Better Solution

Our design falls into Step 6 in the workflow. Specifically, when the fixes are ready in the

EPACK, what test cases the testers should choose to test the fix and other influenced code.

Currently, the test cases are selected manually from the test cases database. This process is time-

consuming and inaccurate because it’s done completely according to the judgment of the testers.

It remains for us to design a system to automate this process, i.e. to find a way to select tests

associated with a fix (including tests that test against the fix and against the influenced code). We

also need to prioritize the tests so that under tight time constraint, the most effective test cases

can be carried out first. “Effectiveness” has two meanings: tests that expose the most problems or

tests that exercise most code.

3.2 Problem Statement

The problem presented to our group is the necessity of selecting the proper tests to exercise

changes that have been made to the code base in a given EPACK. These tests must be selected

from a repository of tests while ensuring that it provides a solid coverage of the affected code.

This ensures that any changes being made interact correctly with each other and do not affect the

rest of the systems functionality. Along with ensuring that the system is functioning properly,

these tests must also be selected on a given time constraints, as deadlines are provided for the

release of each fix. This problem affects EMC and impacts them by forcing additional time to be

used performing free run testing which may miss problem areas. A successful solution to this

problem would be a system that generates an organized list of tests based on the given criteria.

12

This would provide a system that is systematic and requires minimal effort by the user thus

removing the necessity of employees to perform testing based upon their judgment, and

introducing a method of selection using concrete heuristics.

4. Methodology

4.1 Approach

To design a Test Prioritization and Selection system for EMC, a certain code coverage

system is needed for EMC’s code base. During the first few weeks of the project, team members

went to EMC weekly to collect information related to EMC’s systems and development

environment and to design a code coverage system especially for EMC’s system. The team

finally agreed to use a code-based approach, utilizing the test prioritization techniques as

mentioned below. Since EMC’s code base is mainly written in the C language, research on

existing open-source C code coverage tools such as GCT (General Coverage Tool), gcov, and

gprof took place. Eventually gcov, a test coverage tool to be used in conjunction with the GCC

compiler, was chosen to design a code coverage system for EMC’s code base. Initially, the gcov

tool was tested on an open-source C project with existing test cases, since team members did not

have access to EMC’s source code. Then, the team instrumented the Ubuntu Linux Kernel with

gcov to test our final design on an operating system.

4.2 Existing solutions

The main purpose of the project is to produce proof-of-concepts for various approaches to the

test prioritization and selection problem rather than to implement a final product. Therefore,

13

research on various similar approaches took place in the initial stage of the project. The

approaches researched included source code based test prioritization methods and a binary

matching approach.

4.2.1 Source code based approach

The main concept of a code-based approach is to use source code of the system to select

proper test cases based on the latest changes to the source code. Code-based test prioritization

techniques are dependent on information relating the tests of a test suite to various elements of a

system’s code. For instance, a particular code-based approach can utilize information about the

number of lines of code or the name of functions executed by a test. Then the information about

executed code elements is recorded for each test in a database. Different types of test

prioritization heuristics are then applied to analyze the information recorded and prioritize the

tests.

For test selection and prioritization techniques, there are several test prioritization heuristics

available. Two example test prioritization techniques are ‘total statement coverage

prioritization’, which works at statement level and ‘total function coverage prioritization’, which

works at functional level. Both types of heuristic work by prioritizing test cases in terms of the

total number of statements or functions they cover. For instance, if we use ‘total statement

coverage prioritization’ heuristic, the test that covers the largest number of statements in the

source code will be run first.

Each of the two heuristics mentioned above have their own benefits and drawbacks.

‘Statement coverage prioritization’ is more comprehensive in term of performance but more

expensive in terms of cost of capturing the trace information, compared to ‘function coverage

14

prioritization’. Since the number of statements in a program is typically much larger than the

number of functions in a program, the process of collecting statement-level traces is more

expensive and intrusive than the process of collecting function level traces. However,

experiments in granularity effects show that most techniques with finer granularity (i.e. statement

coverage in this case) have a higher weighted average of the percentage of faults detected over

the life of a test suite. (Sebastian Elbaum, 2002)

The foregoing test prioritization techniques represent a wide spectrum of approaches, varying

along several dimensions. The first dimension is granularity, which we previously mentioned, in

terms of function-level and statement-level. Granularity affects the relative costs of techniques in

terms of computation and storage, but also affects the relative effectiveness of those techniques.

The second dimension involves whether or not a test prioritization technique relies on feedback

about coverage attained so far in testing to focus on elements not yet covered. For instance,

‘additional function coverage prioritization’ technique, which is similar to ‘total function

coverage prioritization’ technique, incorporates feedback into total function coverage

prioritization, prioritizing test cases (greedily) according to the total number of additional

functions they cover. The third dimension involves whether or not a technique utilizes

information from modified version of a program. For example, techniques that depend on fault-

exposing-potential estimation attempt to factor in the potential effects of modifications in

general. Several empirical experiments have compared various techniques. (Gregg Rothermal,

2001)

15

4.2.2 Binary matching approach:

Echelon, a system developed at Carnegie-Mellon University and implemented at Microsoft,

utilizes a binary matching system to compute the differences at a basic block granularity between

versions of the program in binary form. As shown in the following figure, the system takes two

versions, a new image and an old image, of the program in binary form. Along with the test

coverage information of previous executions, detailing which tests cover which parts of the

program. The system then analyses the impacted blocks likely to be covered by existing tests.

Finally, the system outputs a prioritized list of tests.

Figure 3. Echelon's work flow

4.3 The gcov tool used by our proof-of-concept

In each stage of the project, we created a proof-of-concept using a tool or technology openly

available. After researching existing code coverage tools, team members agreed to use gcov,

16

which is an open source C code coverage tool under GNU tool set, to design a C code coverage

system.

4.3.1 gcov

Overview:

Using the gcov coverage tool, the following basic performance statistics can be recorded:

1. How often each line of code is executed?

2. What lines of code are executed?

3. How much computing time each section of code uses?

The code base should be compiled without optimization in order to use gcov on it

because the optimization, by combining some lines of code into one function, causes

inaccurate results. Gcov accumulates statistics by line so it works best with a programming

style that places only one statement on each line.

How gcov works:

The gcov framework has three phases as explained below:

1. Compilation phase (“gcc -O0 -o hello -fprofile-arcs -ftest-coverage sourcename.c”)

a. This instructs the GCC compiler to add the necessary instrumentation to the

object that gcov requires.

2. Data collection and extraction phase (“./sourcename” is the collecting binary)

3. Reporting phase (“gcov -a sourcename.c”)

During the compilation phase, a .gcno file is generated. The file contains information to

reconstruct the basic block graphs and assign source line numbers to blocks. In the second

phase, the .gcda file is generated when a program containing object files built with the GCC -

fprofile-arcs option is executed. A separate .gcda file is created for each object file compiled

with this option that is executed. It contains arc transition counts, and some summary

17

information. During the reporting phase, the .gcda and .gcno files are read out by gcov. Then

the basic block data is calculated from arc data and written into a human-readable report

(sourcename.c.gcov).

Gcov outputs:

The gcov tool was tested on an open source C project. The figure below shows a screen

shot of gcov’s output with the number of times a line is executed in a source file. The ‘-‘

symbol denotes lines containing no code, and ‘#####’ denotes an unexecuted lines.

Figure 4: Gcov output with count information

The format, or the type, of the gcov output can also be changed by including optional

flags when gcov is run on the source file. For example, using the –f flag, we can output a

18

function level summary for each source file as shown in the following figure. The summary

includes the percentages of the function executed by a test.

Figure 5: Gcov output with function summary for a source file

 4.4 Designing a C code coverage system using gcov

 A C code coverage system was designed using the gcov tool with the following steps:

– Instrumented the operating system by setting compiler flags to utilize gcov tool

– Created a script to parse source code for function information.

– Created script to run tests and parse coverage information.

– Stored in database and correlated using SQL queries.

– The design was tested on the Linux operating system.

The following figure further explains the workflow of the design:

19

Figure 6: Design of C code coverage system using gcov tool

 4.4.1 Instrumenting an operating system

 Before compilation, the operating system is configured first by including the gcov

coverage profiling option. This can be done using the available configuration tools available

with the Linux kernel. The option to include coverage information is a standard part of the

current kernel. The following figure shows a screen shot of the grub boot loader about to launch

a version of Linux 3.0.4 after it had been instrumented.

20

Figure 7: Instrumented Linux 3.0.4 with gcov

 4.4.2 Source code parser

 A source code parser was created using Perl to get function information from source files.

As shown in the figure below, the Perl script returns the line number of the start-line and end-line

of each function in a source file. Then that function information is stored in a database, which is

later used to correlate between a changed line and which function it is part of by querying the

database.

21

Figure 8: Source code parser that gives function information in a source file

 4.4.3 Test coverage parser

 For test coverage information, the gcov tool is used. It is noted here again that when a

test file is executed, gcov creates a .gcda (gcov data files) for each source file the test executed.

A Perl script was created to run gcov on test files and then parse the output. Finally the test

coverage information was stored in a database. The figure below shows the database which

records the names of source files and functions a test case executed:

22

Figure 9: A sample test coverage database

 4.4.4 Test selection

 After we have the source and test information stored in a database, appropriate test cases

can be queried based on changes made to the code base. We can query the name of functions

modified using function information from the source database if we know the line numbers

modified from source control system. Then from the test coverage database, a set of test cases

that executed the modified functions can be queried.

4.5 Suggested Improvements of the Current Approach

4.5.1 Modify gcov for Embedded Systems

In an environment with a UNIX based file system, gcov produces data files for each

source file executed by a test. These data files contain count information such as the number of

times a line is executed. Since an embedded system similar to the one used by EMC does not

23

have such a file system, gcov must be modified so that rather than writing out those data files,

the count information will be extracted from the target embedded system to a host system, that

satisfies those requirements.

Gcov goes through three phases in the process of profiling as follows:

1. compilation phase (“gcc -O0 -o hello -fprofile-arcs -ftest-coverage hello.c”)

2. data collection and extraction phase (“./hello” is the collecting binary)

3. reporting phase (“gcov -a hello.c”)

Gcov needs to be modified in the second phase, which is Data Collection and Extraction

phase, where the count information is collected and extracted into gcov data files. On the

embedded system, it would be necessary to stop the system manually and make a call to the

gcov_exit function. This would then write the data into memory and transfer the data through

the network to a host system. For further information a possible approach has been described for

an open source, real-time operating system for embedded applications called eCos. (eCos® and

eCosPro® Reference Manual)

 4.5.2 Use test history to develop a low cost solution

 The test coverage information that is being gathered by the gcov tool could be

approximated by using information pertaining to the history of tests that have been run. For EMC

this comes in the form of their RCSA spreadsheets. These spreadsheets contain information

about which tests have passed and failed. As these tests are then fixed they record information

regarding their entry into OPT and eventual fixes.

 By assuming a correlation between a previously failed test, and the lines of code

contained within a fix that was created in order for this test to pass, a database the same as the

24

one previously described could be created. This solution is entirely dependent of the availability

of good history regarding this subject. With the proper history and tools in place to mine such

information this could be used as a temporary solution while a more elegant one is implemented,

or as a low-cost permanent solution, that would become more effective as history becomes more

comprehensive over time.

4.5.3 Develop a profiler for EMC’s embedded system

Instead of analyzing the RCSA spreadsheet or running the tests with gcov to get coverage

information, there exists a more effective, but also more time-consuming way to get coverage

information. The approach is to directly build a profiler for EMC’s embedded system. This is a

feasible approach because during our research, we found that such kind of profiler already exists

for the ARM embedded systems.

The ARM profiler provides analysis of the performance of code running on embedded

system, while it’s processing a real work load for as long as needed. It provides user-friendly

interfaces with results displayed in an intuitive way. The following picture shows an analysis

summary:

25

Figure 10. Analysis Summary (ARM Ltd.)

Figure 10 shows the top five time-consuming functions with different prioritization

benchmarks at the top, and pie charts of code coverage measured by instruction and by function

with percentages are shown at the left of the analysis. At the top left, the summary also provides

links to other more detailed reports, including the complete list of statistics for every function

organized by execution, code coverage and time spent; detailed information on the source code

and its derived assembly code, annotated with performance and coverage information. It also

generates views that help explore the dynamic call graph and caller-callee relationships.

26

We suggest that EMC analyze the statistics given by the detailed views, in the same way

that we analyze the statistics given by gcov. EMC should end up with a script that takes in the

function-level analysis file from the profiler and generate a list of tests to be performed.

The way that the ARM profiler transfers data from the embedded hardware (or hardware

simulation) to the user interface on a PC is shown in the following picture:

Figure 11. ARM Profiler Data Transfer Flow (ARM Limited.)

The ARM profiler works by observing code on target hardware using RealView ICE and

RealView Trace 2 or by testing code against a Real-Time System Model (RTSM). The former

runs on the actual embedded hardware while the latter runs on a simulated model. Data on the

embedded hardware is accessed through a controller on the ARM core using the JTAG interface.

The RealView ICE product has a run control unit that connects to the target board over a JTAG

interface and to a PC using either USB or Ethernet. If EMC is to develop a similar profiler, the

data transfer solution adopted by ARM should be of reference value.

5. Results and Analysis

This project produced three recommendations that EMC

could follow to solve the

problem of selecting and prioritizing tests, along with a proof of concept detailing our primary

recommendation. These three solutions run the gamut from the lowest cost, to most effective,

27

with our primary recommendation as a compromise between the two. The lowest cost solution

utilizes the available history of tests in order to produce a correlation between failed tests and the

changes that were necessary to produce a successful run. This implies that the changed code is in

direct relation to the test, and therefore the test can be assumed to cover that piece of code.

The second solution is a compromise between cost and effectiveness. It uses the gcov

tool mentioned above. This allows for an implementation utilizing existing tools to reduce cost,

while still allowing for comprehensive test coverage. The final recommendation is the creation of

a profiler designed for EMC’s Symetrix system; this would require the most engineering but

would provide the finest grained run-time information possible. This would result in the most

accurate representation and would allow more complex heuristics to be used in the test selection

process.

 5.1 Lowest cost solution

This solution utilizes the fact that EMC maintains records of every test that has failed,

and in turn the fix that was then associated with it in a later update. As mentioned above this

allows correlation between that piece of code and the test that had failed. This allows for a

coverage data base to be built by analyzing the entire available history. The workflow for how

this process should occur is included below.

 Figure 12. Workflow suggestion for using RCSA spreadsheet

28

 5.2 Most cost-effective solution

Modifying gcov tool for an embedded system would be recommended as the most cost-

effective solution. Using the existing gcov tool, a certain C code coverage system can be

implemented at line level accuracy. Then, the line numbers in source file being executed by a test

can be recorded. Therefore, by modifying the existing gcov tool, a reliable C code coverage

system for EMC system could be implemented. For this project, code coverage information at

functional level has been demonstrated by testing the tool in Linux kernel.

5.3 Most informative solution

The solution that will provide the most complete set of information is to create a profiler

specifically for EMC’s Symetrix system. This would provide accurate run time information

about every command that is executed for a specific test. The major drawback of this solution

however is the amount of engineering required to implement it. This system would need to be

built from scratch and would require a large number on man-hours to complete.

6. Conclusions

This project has provided several feasible solutions to the stated problem. Though there is a

lot of work to be done before a fully functional system can be implemented this project has

provided the base work to begin the selection and further development of a solution. Throughout

the entire process, from gathering information to implementing the prototype, the education and

several project experiences received at WPI helped team members greatly. First of all is the

communications skill team members learned during their school projects. Understanding EMC’s

29

complex systems in a short amount of time required team members to ask intelligent and concise

questions and then interpret the answers to design the system collaboratively among team

members and project advisor. Secondly team members’ familiarity with the Linux operating

system helped complete the project since the project included compiling, building, and testing of

C projects. Last but not least, working knowledge of the Perl scripting language and relational

databases was big help to create a proof-of-concept for the system designed.

30

Appendix

gcov parser code

#!/usr/bin/perl

use Getopt::Long;

use File::Find;

use strict;

use warnings;

use DBI;

my $dbh;

my ($del_statement, $delete_sql);

#get the root of the soure directory that should be parsed

my $sourceBase;

my $testBase;

my $curTest;

setupDatabase();

GetOptions("source=s" => \$sourceBase, "test=s" => \$testBase);

open OUTPUT, ">>output.txt";

find(\&testWanted, $testBase);

sub setupDatabase {

 $dbh = DBI-

>connect("DBI:mysql:database=emcmqp;host=mysql.wpi.edu",

"mqpgroup", "xwQ7S6") or die ("Couldn't connect to DB\n");

 $dbh->{AutoCommit} = 0; # Use transacted processing

 $dbh->{RaiseError} = 1; # die on processing errors

 $delete_sql = qq{DELETE from Static};

 $del_statement = $dbh->prepare($delete_sql);

 $del_statement->execute();

}

sub testWanted {

 if (-x $_ and !($_ eq ".")){

 #execute the test

 #system("./$_");

 print OUTPUT "Test: $_\n";

31

 $curTest = $_;

 #search through the source for the .gcda files to see

which source files were used

 find(\&sourceWanted, $sourceBase);

 }

}

sub sourceWanted {

 #search for .gcda le

 if ($_ =~ /(.+)\.gcda/){

 my $file = $1;

 #when found execute gcov on the associated c file

 my @func_data = `gcov -f $file.c`;

 #parse the .gcov file into a useable format

 parseGcov($file, @func_data);

 #remove the .gcda file so that its not processed the

next time around

 unlink("$file.gcda");

 exit;

 }

}

sub parseGcov {

 my $file = shift;

 my @func_data = @_;

 my %entries;

 my $curEntry = 0;

 my $sql = qq{INSERT INTO TestCoverage (testName, sourceName,

functionName) VALUES (?, ?, ?)};

 #use gcov info to determine the % of each function that is

executed by the test

 foreach my $line (@func_data){

 #output all of the % information to a flat text file

 if ($line =~ /File '.*'/){

 shift @func_data;

 } elsif ($line =~ /Function.*'(.*)'/){

 my $func = $1;

 $line = shift @func_data;

 if ($line =~ /Lines executed:(.*)%/){

 my $percent = $1;

 if ($percent > 0){

 if ($file){

 $entries{$curEntry++} = ["$file.c",

$func];

32

 undef $file;

 }

 }

 }

 }

 }

 eval {

 my $statement = $dbh->prepare($sql);

 while (my ($id, $dataRef) = each %entries) {

 my @data = @$dataRef;

 $statement->execute($curTest, $data[0], $data[1]);

 }

 }

}

gcov parser output example in human-readable format

Test: test-mask

 Source File: files_gz.c

 Function: NpicReadGZ_Open -> 44.44%

 Function: NpicWriteGZ_Open -> 44.44%

 Source File: mask_comp.c

 Function: NpicCompGeneMask -> 97.16%

 Source File: props.c

 Function: NpicPropKeyIsValid -> 100.00%

 Function: NpicFreeProps -> 100.00%

 Function: NpicSupprProp -> 100.00%

 Function: NpicAddProp -> 50.00%

 Source File: mask_creat.c

 Function: NpicExpandMask -> 100.00%

 Function: NpicMaskInsert_6l -> 100.00%

 Function: NpicMaskInsert_5d -> 38.46%

 Function: NpicMaskInsert_4l -> 91.67%

 Function: NpicMaskInsert_3l -> 100.00%

 Function: NpicMaskInsert_2d -> 91.67%

 Function: NpicPrintMask -> 38.46%

 Function: NpicCopyMask -> 90.91%

 Function: NpicCreateMaskDP -> 90.91%

 Source File: files_nmask.c

 Function: NpicNMASKWriteFile -> 98.48%

 Function: NpicWriteNMASK -> 90.91%

 Function: NpicReadMedialAxisMask -> 56.25%

 Function: NpicWriteMask -> 98.48%

 Source File: mask_gsym.c

 Function: NpicGsymPermuNext -> 100.00%

33

 Function: NpicGsymCombiNext -> 100.00%

 Function: NpicGsymInit -> 100.00%

Source parser code

#!/usr/bin/perl

use strict;

use warnings;

use Getopt::Long;

use File::Find;

use DBI;

my $dbh;

my ($del_statement, $delete_sql);

#get the root of the soure directory that should be parsed

my $source_root;

GetOptions("source=s" => \$source_root);

setupDatabase();

find(\&sourceWanted, $source_root);

sub setupDatabase {

 $dbh = DBI-

>connect("DBI:mysql:database=emcmqp;host=mysql.wpi.edu",

"mqpgroup", "xwQ7S6") or die ("Couldn't connect to DB\n");

 $dbh->{AutoCommit} = 0; # Use transacted processing

 $dbh->{RaiseError} = 1; # die on processing errors

 $delete_sql = qq{DELETE from Static};

 $del_statement = $dbh->prepare($delete_sql);

 $del_statement->execute();

}

sub sourceWanted {

 if ($_ =~ /(.*)(?:\.c)$/){

 my $file = $1;

 parse("$file.c");

 }

}

sub parse {

 my $file = shift;

34

 open SOURCE, "$file";

 my ($curLine, $startLine, $endLine, $curEntry, $funcName);

 my %entries;

 $curLine = 1; #line numbers start at 1...

 my $openBraces = undef;

 my $sql = qq{INSERT INTO Static (sourceName, functionName,

startLine, endLine) VALUES (?, ?, ?, ?)};

 while (my $line = <SOURCE>){

 #fucntion definiton... therefore the start of a new

function

 if (!defined($startLine) && $line =~

/(?:(?:int|void|char|short|long|float|double|signed|unsigned|boo

l|complex|imaginary|struct|union|const|restrict|volatile)[\s*])

+*?(.*)\s*\(+.*/){

 $startLine = $curLine;

 $funcName = $1;

 print ("Function name: $funcName\n");

 }

 if (defined($startLine)){

 if ($line =~ /{/){

 $openBraces++;

 }

 if ($line =~ /}/){

 $openBraces--;

 }

 if (defined($openBraces) && $openBraces == 0){

 $endLine = $curLine;

 print("Starts: " . $startLine . "\tEnds: " .

$endLine . "\n");

 $entries{++$curEntry} = [$funcName, $startLine,

$endLine];

 undef($startLine);

 undef($endLine);

 undef($openBraces);

 }

 }

 $curLine++;

 }

 eval {

 my $statement = $dbh->prepare($sql);

 while (my ($id, $dataRef) = each %entries) {

 my @data = @$dataRef;

35

 $statement->execute($file, $data[0], $data[1],

$data[2]);

 }

 }

}

36

Glossary

CAT: Test case database called Common Automation Tool, in which a user can search test cases

by ‘Test Name’, ‘Primary Tester’ and ‘Product Information’.

EPACK: A fix/patch which a development team would ship to an EMC customer. Testers

choose a set of test cases from the CAT system to test against the EPACK.

gcov: C code coverage profiler, which is run in concert with the GCC compiler.

OPT: The Online Problem Tracking (OPT) system in which testers can list problems/bugs

found. The following fields are filled while listing the issue in the tool: Status, Severity, Product

Information, Problem Type, Problem Submitter, Responsible Engineer and Responsible Tester.

RCSA: A history report listing the records of regression testing, including which tests have

passed of failed, and if necessary their associated record in the OPT system.

SYREN: A source-control tool. Users can use this tool to see code difference between two

versions of source code along with other functionalities often provided by version control

systems.

37

Bibliography

eCos® and eCosPro® Reference Manual. (n.d.). Retrieved 12 22, 2011, from Test Coverage:

http://www.ecoscentric.com/ecospro/doc/html/ref/gcov.html

EMC at a Glance. (n.d.). Retrieved 11 07, 2011, from EMC: http://www.emc.com/about/emc-at-

glance/corporate-profile/index.htm

Gregg Rothermal, R. H. (2001). Prioritizing Test Cases for Regression Testing. IEEE Transaction on

Software Engineering , 929-947.

(2003). Leading with Knowledge. In M. Rao, Leading with Knowledge (pp. 93-99). Tata McGraw-Hill.

Sebastian Elbaum, A. G. (2002). Test Case Prioritization:A Family of Empirical Studies. IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, 159-181.

ARM Limited. "ARM Profiler Non-Intrusive Performance Analysis

." ARM.com.Web. 23 Dec 2011. <http://www.arm.com/products/tools/software-tools/rvds/arm-

profiler.php>.

ARM Limited. "ARM Profiler User Guide Version 2.1, 5.3.Analysis Elements." ARM Infocenter.Web. 23

Dec 2011. <http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0414d/index.html>.

http://www.arm.com/products/tools/software-tools/rvds/arm-profiler.php
http://www.arm.com/products/tools/software-tools/rvds/arm-profiler.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0414d/index.html

