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Abstract

Traditional sequential models such as Recurrent neural networks (RNNs) have achieved sig-

nificant success in learning complex patterns for sequential input data. At each time step t, an

RNN stores the previous hidden state vector, ht−1 ∈ RD, and upon receiving the current input

vector, xt ∈ Rd, linearly transforms the tuple (ht−1,xt) and passes it through a non-linearity

to update the state vectors over T time steps. Subsequently, RNNs output the predictions as a

function of the hidden states. The model parameters (i.e., state/input/prediction parameters) are

learned by minimizing an empirical loss. However, for real world applications involving sequen-

tial data like sensor data and human behavior data, plain RNNs usually tends to produce poor

results. First, vanishing and exploding gradients often occur in training multi-layer RNNs which

is widely used to solve problems with complex patterns. Secondly, recurrent neural networks can

not model the problems which current state is related to future expectations, such as problems

involving human decision-making process. The main theme of my dissertation is to design, de-

velop and evaluate efficient models to mitigate those issues. I focus on designing RNN models

with theoretically guaranteed training stability and applying inverse reinforcement learning model

to human decision problems in my dissertation. The dissertation contains following five research

themes.

1) Human Decision Modeling with Sequential Human Decision Data. In this paper, I make

the first attempt to model passengers’ preferences of making various transit choices using Markov

Decision Process (MDP). Moreover, we develop a novel inverse preference learning algorithm to

infer the passengers’ preferences and predict the future human behavior changes, e.g., ridership,

of a new urban transit plan before its deployment. I validate our proposed framework using a

unique real-world dataset (from Shenzhen, China) with three subway lines opened during the data

timespan. With the data collected from both before and after the transit plan deployments, Our

evaluation results demonstrated that the proposed framework can predict the ridership with only

19.8% relative error, which is 23%-51% lower than other baseline approaches.



2) Altering Human Decision-Making Process via Reward Advancement. Many real world

human behaviors can be characterized as sequential decision making processes, such as urban trav-

elers’ choices of transport modes and routes [173]. Differing from choices controlled by machines,

which in general follows perfect rationality to adopt the policy with highest reward, studies have

revealed that human agents make sub-optimal decisions under bounded rationality [156]. Such

behaviors can be modeled using maximum causal entropy (MCE) principle [206].In this work,

I define and investigate a novel reward transformation problem (namely, reward advancement):

Recovering the range of additional reward functions that transform the agent’s policy from πo

to a predefined target policy πt under MCE principle. I show that given an MDP and a target

policy πt, there are infinite many additional reward functions that can achieve the desired policy

transformation. Moreover, I propose an algorithm to further extract the additional rewards with

minimum “cost” to implement the policy transformation. I demonstrated the correctness and ac-

curacy of our reward advancement solution using both synthetic data and a large-scale (6 months)

passenger-level public transit data from Shenzhen, China.

3) Using Sequential Models in General Human Prediction Problems.In this work, I aim to

develop a joint framework of combining inverse reinforcement learning (IRL) with deep learning

(DL) regression model, called IRL-DL, to predict drivers’ future behavior in ride-hailing plat-

forms. Specifically, I formulate the dynamic evolution of each driver as a sequential decision-

making problem and then employ IRL as representation learning to learn the preference vector

of each driver. Then, I integrate drivers’ preference vector with their static features (e.g., age,

gender) and other attributes to build a regression model (e.g., LTSM-neural network) to predict

drivers’ future behavior. I use an extensive driver data set obtained from a ride-sharing platform to

verify the effectiveness and efficiency of our IRL-DL framework, and results show that our IRL-

DL framework can achieve consistent and remarkable improvements over models without drivers’

preference vectors.

4) Training Stability in Learning Recurrent Models.In this work, I study the training stabil-

ity in deep recurrent neural networks (RNNs), and propose a novel network, namely, deep incre-

mental RNN (DIRNN). In contrast to the literature, I prove that DIRNN is essentially a Lyapunov
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stable dynamical system where there is no vanishing or exploding gradient in training. To demon-

strate the applicability in practice, I also propose a novel implementation, namely TinyRNN, that

sparsifies the transition matrices in DIRNN using weighted random permutations to reduce the

model sizes.

5) Lightweight Convolutional Neural Network via Recurrent Convolution. In this work,

we aim to address the problem of learning lightweight networks by proposing a novel CSR-Conv

layer that replaces traditional linear convolution with channel-split recurrent convolution. The hid-

den state transition in the vanilla RNNs leads to deeper networks, given backbones, to compensate

for the performance loss while reducing the model sizes. Essentially our CSR-Conv can be viewed

as the generalization of linear convolution. We show that the model size of a lightweight network

decreases w.r.t. the number of the duplicate networks with the rate of O( 1
T 2 ).

3



Acknowledgments

One of the very first words my advisor, Prof. Yanhua Li said to me even befor I started

my PhD is, "PhD is more like a journey". Now, almost at the end of this journey, I would

like to sincerely thank him for his great help and support. Prof. Li shows me the path to

find out what is research, how to do research and most importantly, why doing research.

I would thank him for his priceless comments, suggestions on both my work and my life.

Especially, I’m grateful for the time and energy he spent when we were in different time

zones. This five year definitely would be one of the most memorable, invaluable journey

in my life.

I also would like to express my sincere appreciation to my Co-advisor, Prof. Ziming

Zhang for his guidance and support along this journey. I would thank him for his wise

advice and idea of our work and his tolerance of my occasional weird working schedule

during the COVID-19 quarantine.

Many special thanks goes to my committee members, Prof. Oren Mangoubi and Prof.

Zhi-Li Zhang for their kindness and thoughtful feedbacks on my works and this very

dissertation.

I would like to thank my current and fellow graduate students at WPI, Menghai Pan,

Huimin Ren, Xin Zhang, Yingxue Zhang and the whole DSRG group for those discussion

we had online and offline. Without those discussions, some of my work might be totally

different. And I would never forget the "founding members" of AK123, Matt Weiss,

Jianjun Luo, Dr. Chong Zhou, Haitao Liu, Guanxiong Liu and Menghai Pan. Those days

and nights at lab are truly invaluable to me.

I also owe my gratitude to all my mentors and colleagues during my internship at Didi.

In particular, Prof. Hongtu Zhu and Dr. Shikai Luo help me with both their excellent

statistical expertise and amazing personality. I would also like to thank Ge Song, Qichao

Wang, Jia Zheng and Shixiang Wan for their brilliant ideas on and off work.

i



Thanks all my friends in both USA and China, I would never be who I am without

you guys. I would like to thank Yuan for those delicious restaurant she took me to. Many

special thanks go to Chunxing, and his fiancee, Ruiyang for everything and especially the

Michelin-level Canelé they made throughout these years. Also, Liang and Xinyu, I can’t

even start my PhD without your encouragement.

On of the most special appreciation should go to Mr. Huang, my NOIP coach at high

school. He showed what an interesting thing programming and computer science are.

Last but not least, I would like thank my family for their nonstop love and support. I

love you from the bottom of my heart.

ii



Contents

1 Introduction 3

1.1 Human Decision Modeling with Sequential Human Decision Data. . . . . 4

1.2 Altering Human Decision Process via Reward Advancement . . . . . . . 4

1.3 Use of Sequential Models in General User Prediction Problems . . . . . . 5

1.4 Training Stability in Learning Recurrent Models . . . . . . . . . . . . . . 6

1.5 Lightweight Convolutional Neural Network via Recurrent Convolution . . 6

1.6 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Human Decision Modeling with Sequential Human Decision Data 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Solution Framework . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Stage 1: Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Stage 2: Data-Driven Modeling . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . 18

2.4.2 Modeling Transit Route Choice with MDP . . . . . . . . . . . . 19

2.4.3 Decision-Making Features . . . . . . . . . . . . . . . . . . . . . 22

iii



2.5 Stage 3: Transit Plan Evaluation . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Preference Learning . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Transit Plan Evaluation . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Baseline methods . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.2 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.3 Preference Learning . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.4 Ridership Prediction . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.5 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Transforming Policy via Reward Advancement 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Preliminaries and Problem Definition . . . . . . . . . . . . . . . . . . . 43

3.2.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Policy under Maximum Causal Entropy Principle . . . . . . . . . 43

3.3 Reward Advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Min-Cost Reward Advancement . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Evaluation on object world . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Using Sequential Models in General Human Prediction Problems 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Drivers’ Behavioral Prediction Problem . . . . . . . . . . . . . . 60

4.2.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iv



4.2.3 IRL-DL Framework . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Working Cycle Detection . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Order Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Working Cycle Alignment . . . . . . . . . . . . . . . . . . . . . 66

4.4 MDP for Working Cycle Modeling . . . . . . . . . . . . . . . . . . . . . 66

4.5 IRL-DL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Inverse Reinforcement Learning . . . . . . . . . . . . . . . . . . 69

4.5.2 Driver’s Preference Learning . . . . . . . . . . . . . . . . . . . . 70

4.5.3 Regression Models for Drivers’ Behavioral Prediction . . . . . . 72

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 Experiments Setting . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.2 Preference Learning . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.3 Drivers’ Behavioral Prediction . . . . . . . . . . . . . . . . . . . 76

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Training Stability in Learning Recurrent Models 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 DIRNN: Deep Incremental RNN . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 TinyRNN: A Sparsified DIRNN . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 Ablation Study on HAR-2 . . . . . . . . . . . . . . . . . . . . . 97

v



5.5.2 State-of-the-art Performance Comparison . . . . . . . . . . . . . 98

5.5.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Lightweight Convolutional Neural Network via Recurrent Convolution 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.2 CSR-Conv: Channel-Split Recurrent Convolution . . . . . . . . . 109

6.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 Comparison with Lightweight Networks . . . . . . . . . . . . . . 114

6.4.3 Comparison with Network Compression . . . . . . . . . . . . . . 116

6.4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Conclusion and Future Work 121

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.1 Causal Inference with Human Decision-making Process . . . . . 123

7.1.2 Meta Reward Preference Learning . . . . . . . . . . . . . . . . . 124

Bibliography 125

vi



List of Figures

2.1 Crowd flows of four new subway stations in Shenzhen, China. . . . . . . 10

2.2 AFC on bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 AFC on subway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Three new subway lines opened in 2016 . . . . . . . . . . . . . . . . . . 13

2.5 Framework of qualifying transit plans system . . . . . . . . . . . . . . . 15

2.6 Map griding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Illustration: urban transit choice as an MDP . . . . . . . . . . . . . . . . 19

2.8 Ridership vector difference over iterations. . . . . . . . . . . . . . . . . 34

2.9 Iterations over Ridership vector difference . . . . . . . . . . . . . . . . . 34

2.10 Prediction Error over Days of Data Used . . . . . . . . . . . . . . . . . . 34

2.11 Prediction Error over IRL accuracy. . . . . . . . . . . . . . . . . . . . . 34

2.12 Prediction error over grid size. . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Prediction error over agents. . . . . . . . . . . . . . . . . . . . . . . . . 35

2.14 Illustration of 3 different agents in Shenzhen1 . . . . . . . . . . . . . . . 37

3.1 An Example of Reward Advancement . . . . . . . . . . . . . . . . . . . 41

3.2 A 5× 9 Object World with 2 different colors. . . . . . . . . . . . . . . . 52

3.3 Expected additional reward over policy difference. . . . . . . . . . . . . 52

3.4 Policy difference over number of trajectories used. . . . . . . . . . . . . 52

3.5 Running time over the size of state space. . . . . . . . . . . . . . . . . . 52

vii



3.6 Map with source and destination of one agent and the newly established

subways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Policy difference vs ∆Q(s, a). . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Illustration of an order being processed. . . . . . . . . . . . . . . . . . . 62

4.2 The IRL-DL framework for the driver prediction problem . . . . . . . . . 63

4.3 An illustration of data preparation process. The process contains 3 parts.

The upper time axis indicates two consecutive days. There are two valid

log-in/log-off pairs. The first one is from 9am to 19pm in the first day and

the second pair is from 5am to 12am in the second day. Then, we generate

features for each order and aggregate them by working cycle. The outputs

of this process contain both inter-day and intra-day trajectories. For intra-

day trajectories, we have 2 trajectories since we have two working cycles. 64

4.4 Illustration of an trip with 3 ExpressPool orders. . . . . . . . . . . . . . . 65

4.5 An illustration of MDP model for driver working problems: s0, . . . , sM

are states and each state has two actions including work and log-off. We

use intra-day trajectories to build MDP and learn the preference of each

driver using IRL. The output of this process is a preference vector Z for

each driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Illustration of the network structure of IRL-DL. The left component takes

inter-day trajectory as input to feed into a sequential layer and the output

is r h′. The right part takes driver preference Z as input and the output is

denoted as z′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Number of drivers vs AUC score. . . . . . . . . . . . . . . . . . . . . . . 77

4.8 AUC score vs number of (s, a) pairs collected . . . . . . . . . . . . . . . 77

4.9 Online time distribution of different group of driver . . . . . . . . . . . . 77

4.10 MAE on different tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



4.11 MAE vs amount of data. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 Prediction distribution of Task. . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Illustration of various sequential tasks. For (a)language modeling task,

we use sentence as input of recurrent models to predict the next word. As

for (b)human activity prediction, the figure shows sensor data from IoT

wearable devices on body, arms and legs respectively when the user jumps. 81

5.2 Illustration of the network architecture in our DIRNN with L = 3 and

T = 4. Here each blue node represents a neuron in the network that a

hidden state vector is generated by an ODE. . . . . . . . . . . . . . . . . 83

5.3 Training stability validation for Thm 5.3.5. . . . . . . . . . . . . . . . . 90

5.4 Illustration of convergence on the adding task. . . . . . . . . . . . . . . . 92

5.5 Training curve comparison on HAR-2. . . . . . . . . . . . . . . . . . . . 96

5.6 Test accuracy comparison. To better view the differences between dif-

ferent RNN architectures, by following some recent papers such as Fast-

GRNN and iRNN, here the numbers of parameters exclude those for lin-

ear classifiers that are identical for all the competitors. . . . . . . . . . . . 98

5.7 Ablation study on the HAR-2 dataset. . . . . . . . . . . . . . . . . . . . 99

5.8 Two kinds of activities in DSA-19 dataset. . . . . . . . . . . . . . . . . . 99

6.1 Comparison with 256 input channels and 128 output channels among

(a) depth-wise separable convolution, (b) group convolution, and (c) our

channel-split recurrent convolution (CSR-Conv) using vanilla RNNs. The

linear convolutional operation is denoted as (#input channels, filter size,

#output channels) and vertical small rectangles in (c) denote ReLU acti-

vation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 General architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ix



6.3 Comparison of error vs. compression rate on (a-e) CIFAR-10 and (f)

ImageNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 VGG-16 error (dot size) on CIFAR-10. Each curve indicates similar ρM

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Training loss comparison using the VGG-16 backbone on CIFAR-10. . . 117

x



List of Tables

2.1 Ridership Prediction Error . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Example of Driver Log . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Online time prediction error (MAE) . . . . . . . . . . . . . . . . . . . . 76

5.1 Dataset statistics and default hyperparameters in DIRNN and TinyRNN.

Please refer to our ablation study for more details. . . . . . . . . . . . . 95

5.2 Result comparison of quantization. Our results are over three trials with

networks being trained from the scratch. . . . . . . . . . . . . . . . . . . 100

6.1 Illustration of our CSR-Conv-4 architecture in Table 6.2 for VGG-16 with

T = 5, where the parameters in the 6th-13th convolutional layers are

converted to the parameters U,V in CSR-Conv with the same spatial sizes.108

6.2 Summary of our results on (2nd block) CIFAR-10 and (3rd block) Ima-

geNet, where “#C-C” denotes the number of CSR-Conv modules used in

the networks for learning compact networks, and “ρM” denotes the model

size compression rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Lightweight network comparison on ImageNet in terms of the number of

parameters and top-1 error. All the networks with model sizes smaller

than 5M are included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Top-1 error (%) comparison on CIFAR-10 using VGG-16. . . . . . . . . 118

xi



6.5 Comparison on CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 Pruning results on CIFAR-10 based on our learned CSR-Conv networks.

Here, VGG-16 and ResNet-56 are two backbone networks. . . . . . . . . 120

xii



List of Publications during my Ph.D. Studies at WPI

1. G. Wu, Y. Ding, Y. Li, J. Bao, Y. Zheng, and J. Luo. Mining spatio-temporal

reach-able regions over massive trajectory data. In 2017 IEEE 33rd International

Confer-ence on Data Engineering (ICDE), pages 1283–1294. IEEE, 2017 [172]

2. G. Wu, Y. Ding, Y. Li, J. Luo, F. Zhang, and J. Fu. Data-driven inverse learning

of passenger preferences in urban public transits. In 56th IEEE Conference on

Decisionand Control, 2017 [173]

3. G. Wu, Y. Li, J. Bao, Y. Zheng, J. Ye, and J. Luo. Human-centric urban transit eval-

uation and planning. In IEEE International Conference on Data Mining, 2018 [174]

4. G. Wu, Y. Li, and J. Luo. Transforming policy via reward advancement. In

2019 IEEE 58th Conference on Decision and Control (CDC), pages 4609–4614.

IEEE,2019 [176]

5. G. Wu, Y. Li, S. Luo, G. Song, Q. Wang, J. He, J. Ye, X. Qie, and H. Zhu. A

joint inverse reinforcement learning and deep learning model for drivers’ behav-

ioral pre-diction. In Proceedings of the 29th ACM International Conference on

Information& Knowledge Management, pages 2805–2812, 2020 [177]

6. J. Urata, Z. Xu, J. Ke, Y. Yin, G. Wu, H. Yang, J. Ye. Learning ride-sourcing

drivers’ customer-searching behavior: A dynamic discrete choice approach. Trans-

portation Research Part C: Emerging Technologies. 2021 Sep 1;130:103293. [160]

7. Z. Zhang*, G. Wu*, Y. Yue, Y. Li, and X. Zhou. Deep Incremental RNN for Learn-

ing Sequential Data: A Lyapunov Stable Dynamical System. In IEEE International

Conference on Data Mining, 2021 [195]

1



8. Z. Zhang, Y. Yue, G. Wu, Y. Li and H. Zhang. SBO-RNN: Reformulating Recur-

rent Neural Networks via Stochastic Bilevel Optimization. Thirty-fifth Conference

on Neural Information Processing Systems (NeurIPS), 2021. [196]

2



Chapter 1

Introduction

Sequential data is a fundamental type of data that represents and ordered value sequence.

Sequential data can be generated and consumed by plenty of different application such

as audio data, DNA data and financial data. To process sequential data, recurrent models

like RNN, GRU and LSTM are often used. However, traditional recurrent model can not

handle problems involving human decisions. For example, in the urban transit problems,

though transit choices of one passenger could form a sequence, each choice is made based

on not only past decisions but also expected future situations such as expected travel time

of different transit modes. So, during my PhD study, I first took a look into how to use

complex sequential model to build a model reflecting human decision making process and

applied it to real world scenarios. These works become the first part of my dissertation.

Another problem arising from building complex sequential models for human behavior

data other than modeling human decision making process is that the training of sequential

models such as RNN or LSTM are extremely unstable. So in the second part, I made some

effort to proposed a stacked recurrent neural network with guaranteed training stability.

Also, during my PhD study, I focused on how to apply sequential models to a more

general context, for example, image processing. In this work, I develop a recurrent-unit
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based convolution layer to build a small yet effective convolution layer.

1.1 Human Decision Modeling with Sequential Human

Decision Data.

In the first work, we use urban transit system as an example of data involving human

decisions to demonstrate how to model those decisions. Urban public transit planning is

crucial in reducing traffic congestion and enabling green transportation. However, there is

no systematic way to integrate passengers’ personal preferences in planning public transit

routes and schedules so as to achieve high occupancy rates and efficiency gain of ride-

sharing. In this work, we take the first step to exact passengers’ preferences in planning

from history public transit data. we propose a data-driven method to construct a Markov

decision process model that characterizes the process of passengers making sequential

public transit choices, in bus routes, subway lines, and transfer stops/stations. Moreover,

we develop a novel inverse preference learning algorithm to infer the passengers’ pref-

erences and predict the future human behavior changes, e.g., ridership, of a new urban

transit plan before its deployment. we validate the proposed framework using a unique

real-world dataset (from Shenzhen, China) with three subway lines opened during the

data time-span.

1.2 Altering Human Decision Process via Reward Ad-

vancement

Different from general reinforcement learning problems, decisions made by human agent

can not be easily changed. Instead, human agents complete tasks by evaluating the re-
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wards received over states traversed and actions employed. Many real world human

behaviors can be characterized as sequential decision making processes, such as urban

travelers’ choices of transport modes and routes [173]. Differing from choices controlled

by machines, which in general follows perfect rationality to adopt the policy with high-

est reward, studies have revealed that human agents make sub-optimal decisions under

bounded rationality [156]. Such behaviors can be modeled using maximum causal en-

tropy (MCE) principle [206]. In this work, we define and investigate a novel reward

transformation problem (namely, reward advancement) to recover the range of additional

reward functions that transform the agent’s policy from πo to a predefined target policy πt

under MCE principle.

1.3 Use of Sequential Models in General User Prediction

Problems

Based on the model developed in previous works, one can easily model human decision

process from sequential decision data. Naturally, the next question is, how to use those

decision models to provide insights while solving more general problems. In the third

work, we focus on fusing human decision modeling with general user behavior predic-

tion problems. Users’ behavioral predictions are crucially important for many domains

including major e-commerce companies, ride-hailing platforms, social networking, and

education. The success of such prediction strongly depends on the development of rep-

resentation learning that can effectively model the dynamic evolution of user’s behavior.

This work aims to develop a joint framework of combining inverse reinforcement learning

(IRL) with deep learning (DL) regression model, called IRL-DL, to predict drivers’ future

behavior in ride-hailing platforms. Specifically, we formulate the dynamic evolution of

each driver as a sequential decision-making problem and then employ IRL as represen-
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tation learning to learn the preference vector of each driver. Then, we integrate drivers’

preference vector with their static features (e.g., age, gender) and other attributes to build

a regression model to predict drivers’ future behavior.

1.4 Training Stability in Learning Recurrent Models

For many real world problems like human behavioral predictions, we need complex re-

current models such as stacked recurrent units. However, there is no guarantee that the

training of stacked recurrent neural network is stable. Usually, some tricks like gradient

clips are used to mitigate the problem. In this work, we study the training stability in deep

recurrent neural networks (RNNs), and propose a novel network, namely, deep incremen-

tal RNN (DIRNN). In contrast to the literature, we prove that DIRNN is essentially a

Lyapunov stable dynamical system where there is no vanishing or exploding gradient in

training. To demonstrate the applicability in practice, we also propose a novel implemen-

tation, namely TinyRNN, that sparsifies the transition matrices in DIRNN using weighted

random permutations to reduce the model sizes.

1.5 Lightweight Convolutional Neural Network via Re-

current Convolution

Lightweight neural networks refer to deep networks with small numbers of parameters,

which are allowed to be implemented in resource-limited hardware such as embedded

systems. To learn such lightweight networks effectively and efficiently, in this work we

propose a novel convolutional layer, namely Channel-Split Recurrent Convolution (CSR-

Conv), where we split the output channels to generate data sequences with length T as

the input to the recurrent layers with shared weights. As a consequence, we can construct
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lightweight convolutional networks by simply replacing (some) linear convolutional lay-

ers with CSR-Conv layers. We prove that under mild conditions the model size decreases

with the rate of O( 1
T 2 ). Empirically we demonstrate the state-of-the-art performance us-

ing VGG-16, ResNet-50, ResNet-56, ResNet-110, DenseNet-40, MobileNet, and Effi-

cientNet as backbone networks on CIFAR-10 and ImageNet.

1.6 Outline of Dissertation

The dissertation is organized as follows:

Chapter 2 elaborates how to model human decision process based on sequential deci-

sion data collected from urban transit system and its application on urban transit planning.

Chapter 3 develops a novel reward advancement algorithm which can guide human

agent’s policy to a predefined desired policy.

Chapter 4 shows potential applications of human decision modeling on general be-

havioral prediction problems and implements a fused model involving human decision

features and historical behaviors.

Chapter 5 introduces the stability issues in training stacked recurrent neural networks

and proposes an idea to solve this problem.

Chapter 6 demonstrates a method that can construct lightweight CNN models with

recurrent convolutions.
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Chapter 2

Human Decision Modeling with

Sequential Human Decision Data

2.1 Introduction

With the fast pace of global urbanization, the growth of urban population has already

significantly worsen the urban traffic congestion problem [166]. By aggregating the urban

trip demands with shared trains and buses, public transits offer affordable ride-sharing

services and reduce the road network traffic, which in turn mitigate the traffic congestion

problem. Urban public transits, such as city buses and subway passenger trains, are group

travel systems, deployed for general public and operated on established routes and fixed

schedules. The goal of developing new public transit plans, e.g., a new subway line

or a new bus route/schedule, is to precisely meet the needs from passengers in urban

areas, and attract as many passengers as possible, to take the new transit lines, from

other transit modes, such as private cars. To achieve such a design goal, urban transit

planners primarily conduct surveys to collect trip demand data in urban areas, and develop

transit plans that cover the most trip demands. However, survey data are usually sparse
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and biased. Moreover, without considering the passengers’ preferences (in choosing the

transit modes and routes), a transit plan may lead to unexpected (too large or too small)

ridership, after deploying it.

Taking Shenzhen, China as an example, there were three subway lines with 63 subway

stations opened in 2016. Fig 2.1 shows the dynamic crowd flows of four subway stations

along the new subway lines, which count the total number of passengers going into sub-

way stations within every half a hour. XiaSha, Baguoling, and ShangSha stations have

clear diurnal patterns, with overall high crowd flow. However, at ShenWanZhan Station

of Line #9, the average crowd flow is about 20 passengers over the day. Meanwhile, from

the taxi trip data, we observe numerous trips from ShenWanZhan region, before and after

Line #9 was opened. This indicates that opening the ShenWanZhan subway station did

not successfully attract travelers in that region, since their travel modes did not change.

With such a low ridership, it was too costly to open the ShenWanZhan subway station.

As a result, it is non-trivial to evaluate the impacts of a transit deployment plan on future

passenger behaviors prior to actual deployment, since the travel preferences of passengers

along the planned routes may vary.

In this chapter, we make the first attempt to investigate how to characterize the pas-

senger preferences from public transit trajectory data, and develop a novel approach to

predict the human behavior changes, e.g., ridership, of an urban transit plan before its

deployment. Our contributions are summarized as follows.

• First, we model the travelers’ trips using Markov Decision Process (MDP) model,

where we consider a traveler, as an “agent”, completing a trip from origin to desti-

nation by making a sequence of decisions about transport modes and routes. More-

over, from real world data, We extract various decision-making features, that pas-

sengers evaluate when making transit choices, such as travel time, cost, level-of-

convenience.
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Figure 2.1: Crowd flows of four new subway stations in Shenzhen, China.

• Second, we develop a novel inverse learning algorithm to recover the preference

function of passengers from their historical transit trajectories. With the passen-

ger reward functions, we develop transit plan evaluation framework to estimate the

future human behaviors, i.e., ridership, crowd flow, after a transit plan is deployed.

• We validate our framework using a unique dataset from Shenzhen, China, with

three subway lines opened during the data timespan. This allows us to examine

our transit plan evaluation framework, with both data collected before and after the

plan is deployed. Our results demonstrated that our proposed framework predicts

the ridership with only 19.8% relative error from the ground-truth, which is 23%-

51% lower than baseline approaches. We will make our unique dataset available to

contribute to the research community.

The rest of the chapter is organized as follows. Sec 2.2 defines the problem, de-

scribes the data, and outlines our transit evaluation framework. Sec 2.3–2.5 introduce

our proposed methodology on data-preprocessing, data-driven modeling, and transit plan

evaluation. Sec 2.6 presents evaluation results using a large-scale urban transit trajectory

dataset.
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2.2 Overview

In this section, we define the transit plan evaluation problem for urban transit system,

describe datasets we use, and outline the framework of our methodology.

2.2.1 Problem Definition

In a city, its urban public transit system, including buses and subway lines, naturally

forms a directed graph, for which we refer to as public transit graph (in short, transit

graph) defined as follows.

Definition 2.2.1 (Transit Graph) A transit graph G = (V,E) in a city represents the

connections of public transit stops by the transit lines. Vertex set V is a set of transit

nodes, i.e., locations of all bus stops and subway stations, and E as the set of transit

edges consists of all the bus routes and subway lines between transit stops/stations.

Passengers in an urban area are completing trip demands over time, e.g., commute

trips between home and working place, where we define an urban trip demand as follows.

Each passenger generates a transit trajectory, when taking the public transit system to

complete a trip.

Definition 2.2.2 (Trip Demand) A trip demand td of a passenger indicates the intent of

a passenger to travel from a source location src to a destination location dst from a given

starting time t, which can be represented as a triple td = 〈src, dst, t〉.

Passenger trip demands can be obtained from various data sources. For example,

the transaction data from AFC devices in buses and subway systems record passenger

trip demands at the level of bus stops and subway stations. Taxi GPS trajectory data with

occupation information include the trip demands for taxi trips. To complete a trip demand
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by urban public transit, the passenger generates a transit trajectory, when traversing the

transit graph.

Definition 2.2.3 (Transit Trajectory) A transit trajectory tr of a passenger trip demand

〈src, dst, t1〉 is a sequence of spatio-temporal points, that the passenger traverses in the

transit graph. Each spatio-temporal point consists of a transit node and transit edge, with

a time stamp, i.e., `i = (vi, ei, ti), where vi ∈ V and ei ∈ E.

Clearly, a spatio-temporal point ` = (v, e, t) indicates that the passenger takes a transit

line e ∈ E, e.g., bus route #3, from a transit stop/station v ∈ V at time t. With the graph

representation of the urban public transit system, a new transit plan, e.g., a new subway

line or a new bus route, can be represented as a graph, with a set of new transit nodes,

connected by the new transit edges.

Definition 2.2.4 (Transit Plan) A transit plan ∆G = (∆V,∆E) consists of a set of new

transit nodes ∆V , i.e., new bus stops and subway stations to be built, and a set of new

transit edges ∆E, i.e., new bus routes and subway lines.

Combining the transit plan graph ∆G and the existing transit graph G yields a new

transit graph G′ = (V ′, E ′) = (V ∪ ∆V,E ∪ ∆E), which represents the urban transit

connections available for the passengers, if the transit plan ∆G is deployed.

Problem Definition. Given trip demands TD = {td} of a city, transit trajectories

TR = {tr} of passengers, existing transit graph G, and a transit plan ∆G, our goal is to

evaluate/predict the ridership and crowd flow at new transit nodes v ∈ ∆V under G′, i.e.,

assuming the transit plan is deployed.

2.2.2 Data Description

In recent years, the fast development of sensing technologies and data collection infras-

tructure in urban transit systems has led to a large amount of sensing data collected from
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Figure 2.2: AFC on bus Figure 2.3: AFC on subway

Figure 2.4: Three new subway lines opened in 2016

various transit modes in real time, through Automated Fare Collection (AFC) devices on

buses, subway trains, and taxis, and GPS sets on vehicles. In this work, three sets of data

are available, including (1) public transit trajectory data, (2) taxi trip demand data and

(3) transit graph and road map data. Note that for consistency, we choose these datasets

aligned within the same time period, i.e., June to December in 2016. Below, we describe

these datasets in details, and highlight the unique advantage of our data for this study.
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Public transit trajectory data. In Shenzhen, all buses and subway stations are

equipped with automatic fare collection (AFC) systems (See Fig 2.2 and Fig 2.3), where

passengers swipe their smart cards at AFC devices to get aboard a bus or entering/leaving

a subway station. We collected 7 months of passenger transaction data from buses and

subway stations. Each transaction record contains five attributes including passenger ID,

transaction type, cost, transaction time, transit station/stop name and location. The trans-

action type field indicates if it is an event to get on a bus, or leaving/entering a subway

station. Note that most buses in Shenzhen only record the events of passengers getting on

buses, but not getting off buses. We employ the approach in [184] to recover the transit

stops where the passengers get off the buses. These transaction data allow us to extract

the trip demands and transit trajectories of passengers taking public transits.

Taxi trip demand data. We collected a large-scale taxi trajectory dataset in Shen-

zhen. These trajectories represent 21, 385 unique taxis in Shenzhen. They are equipped

with GPS sets, which periodically (i.e., roughly every 30 seconds) generate 1, 797, 131, 540

GPS records in total. Each record has five core attributes including unique plate ID, longi-

tude, latitude, time and passenger indicator. The passenger indicator field is a binary value

for taxi data, indicating whether a passenger is on board (with value 1) or not. Hence, a

sequence of taxi GPS points with passenger indicator as 1 represent a taxi trip, and the

first and last GPS points of the sequence are the source and destination locations (i.e., src

and dst) of a trip demand. The time stamp of the starting GPS point is the trip starting

time t.

Transit Graph and Road Map Data. In this chapter, we retrieve a bounding box of

Shenzhen city through the Google Geocoding API [47]. The bounding box was defined

by latitude from 22.42◦ to 22.81◦ while longitude from 113.75◦ to 114.68◦. It covers an

urban area of about 400 square miles and three million people. Within this bounding box,

we obtain Shenzhen transit graph, i.e., all 892 bus routes and 8 subway lines, and road
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Figure 2.5: Framework of qualifying transit plans system

map data from OpenStreetMap [123].

Unique advantage of our data. Within the six months timespan of our data, three

new subway lines were opened (See Fig 2.4). As a result, the transit trajectory data

include the passenger behaviors both before and after the subway line deployment. Such

data are thus perfect for our study: We can take the three new subway lines as transit

plans; predict the human behaviors (i.e., ridership) of these plans using data prior to the

deployment; and validate the prediction accuracy using the data after deployment.

2.2.3 Solution Framework

Fig 2.5 provides an overview of our proposed framework, which consists of three main

components: Data Preparation, MDP Construction, and Reward Function Evaluation.

• Stage 1: Data Preprocessing.

The urban areas are divided into n equal size grids. As a result, all the transit

nodes (bus stops, subway stations), trip demands, and public transit trajectories are
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aggregated into the grid level.

• Stage 2: Data-Driven Modeling. In this component, we model the travelers’ trips

using Markov Decision Process (MDP) model, which is reasoned as follows. Each

traveler, as an “agent”, completes a trip from origin to destination by making a

sequence of decisions about transport modes and routes. Inherently, each passen-

ger evaluates various decision-making features associated with the current state and

each possible decision, such as travel time, cost, level-of-convenience, by the trav-

eler’s reward function. The reward function represents the preference the traveler

has over different decision-making features. Each traveler is making their decisions

that maximize the total “reward” she obtains out of the trip.

• Stage 3: Transit Plan Evaluation. In this component, we first develop a novel

inverse learning algorithm to recover the preference function of passengers from

their historical transit trajectories. After the transit plan is deployed, the passengers’

preferences are invariant. With the extract passenger preferences and the new transit

graph G′ = G ∪ ∆G (updated by the transit plan ∆G), we implement a policy

iteration algorithm to estimate/predict human behaviors, e.g., ridership.

2.3 Stage 1: Data Preprocessing

Map Griding. There are around 5, 327 bus stops and 167 subway stations in Shenzhen,

China. Many of them are populated very densely in the urban area, especially in the

downtown region. Usually, all transit options within a certain walking distance (e.g., 500

meters) are considered by the passengers. Hence, we partition the urban area into small

regions and consider all transit stops in the same small region as a single aggregated

transit stop. For the ease of implementation in practice, in this work, we adopt the griding

based method, which simply partitions the map into equal side-length grids [100, 99].
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Moreover, the griding based method allows us to adjust the side-length of grids, to better

examine and understand impacts of the grid size. Hence, in Stage 1, our approach divides

the urban area into equal-size grids with a pre-defined side-length s in kilometers. Fig 2.6

shows all grids in the bounding rectangle region of Shenzhen, China, with s = 1km.

Then, we remove the grids without a road segment, which are usually located in the no-

sense areas, such as ocean or mountain. The remaining grid set is denoted as G with

n = |G| grids, which can be represented as a graph, with grids as nodes, connected by the

urban road network and transit system. Fig 2.6 highlights (in light color) those n = 1, 018

grids on the road and transit network in Shenzhen, China. Note that we will examine the

impacts of different griding side-lengths in Sec 2.6.

Trip Aggregation. We aggregate all transit nodes (i.e., stops and stations) into grids.

Moreover, each trip demand 〈src, dst, t〉 specifies a source location src, and a destination

location dst. we aggregate all trip demands to grid pairs, that is, for all trip demands with

src ∈ gi and dst ∈ gj , they will be considered in the same group with the source spoke

gi and destination grid gj . We denote Vij as the total number of trip demands with source

grid as gi and destination grid as gj . Clearly, Vij = |〈src, dst, t〉, src ∈ gi, dst ∈ gj|.

Then, the volume matrix V = [Vij] indicate the number of pairwise trip demands across

the grids. Similarly, we can aggregate the transit trajectories on grid level.

2.4 Stage 2: Data-Driven Modeling

Passengers are making a sequence of decisions when completing a trip, such as which

bus routes and subway line to take, which stop/station to transfer. Such sequential deci-

sion making processes can be naturally modeled as Markov decision processes (MDPs).

Below, we will introduce the preliminaries of MDPs, and explain how we model the pas-

senger route choice process as a MDP.
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Figure 2.6: Map griding

2.4.1 Markov Decision Process (MDP)

Markov decision processes (MDPs) [149] provides a mathematical framework for mod-

eling decision making processes, where outcomes are partly random and partly under the

control of a decision maker, namely, an agent. A MDP is a discrete time stochastic con-

trol process. At each time step, the process is in some state s, and the agent may choose

any action a that is available at state s, where the agent receives a corresponding reward

R(s, a). The process responds at the next time step by randomly moving into a new state

s′. The probability that the process moves into its new state s′ is influenced by the chosen

action. Specifically, it is given by the state transition function P (s′ | s, a). Hence, an

MDP can represented as a 5-tuple 〈S,A, P,R, γ〉, where S is a finite set of states and

A is a set of actions. P is the probabilistic transition function with P (s′ | s, a) as the

probability of arriving at state s′ by executing action a at state s, R : S × A → R is the

reward function, γ ∈ [0, 1] is the discount factor, which represents the difference in im-

portance between future rewards and present rewards. A randomized, memoryless policy

is a function that specifies a probability distribution on the action to be executed in each

state, defined as π : S × A→ [0, 1].
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Figure 2.7: Illustration: urban transit choice as an MDP

The planning problem in an MDP aims to find a policy π, such that the expected total

reward is maximized, namely,

π∗ = arg max
π∈Π

Eπ(
T∑
t=0

γtR(St, At) | S0 ∼ µ0),

where St and At are random variables for the state and action at the time step t, and

T ∈ R∪{∞} is the set of time horizons. The initial state S0 follows the initial distribution

µ0 : S → [0, 1]. Here, Π is the memoryless policy space.

2.4.2 Modeling Transit Route Choice with MDP

We can consider each traveler in public transit system, as an “agent”, who completes a

trip from origin to destination by making a sequence of decisions about transit modes

and routes. Inherently, each passenger evaluates various decision-making features asso-
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ciated with the current state and each possible decision, such as travel time, cost, level-

of-convenience, by the traveler’s reward function. The reward function represents the

preference the traveler has over different decision-making features. Each traveler is mak-

ing their decisions that maximize the total “reward” she obtains out of the trip. As a result,

we model the travelers’ trips (i.e., their transit route choices) using Markov Decision Pro-

cess (MDP) model. Below, we explain how each component in a MDP is extracted from

travelers’ transit trajectory data.

Agent: Instead of viewing each individual passenger as an agent, we consider an agent

as a group of passengers with nearby source and destination locations. Since in reality,

people who live in the same residential community and working in the same commercial

area tend to have the similar income level and family sizes, that likely lead to the similar

preference profile in public transit decision making [86]. Moreover, this allows each agent

(as a group of people) to have more trajectory data to learn their preference as a reward

function. As we partition the entire urban area into small grids (in Stage 1), we consider

all commute passenger trips with the same original and destination grids a single agent.

State set S: Each state s ∈ S is a spatio-temporal region, denoted as a tuple (g, δt), where

g represents a grid in the urban area and δt is a discrete time slot with a predefined time

interval. The state space S is thus finite, since the map is partitioned into a finite number

of grids (e.g., 1, 018 grids in Fig 2.6) and each day is divided into 5-minutes intervals.

For an agent, with a starting grid gsrc, a destination grid gdst, and a start time t0, the state

space only includes a limited number of spatio-temporal grids along the bus and subway

lines from gsrc to gdst. For example, in Fig 2.7, an agent travels from grid gsrc to gdst,

with two possible transfer grids (g1 and g2). If there are three time intervals considered in

the scenarios, each grid is mapped to three MDP states, when combined with each time

interval, as shown as the overlapped squares in Fig 2.6. Thus, there are in total 12 states

in the example MDP.
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Action set A: An action a ∈ A is a transit choice decision a passenger can make when

completing the trip, e.g., a certain bus route or subway line with transfer stations. For

example, in Fig 2.7, the actions the passenger can make at state gsrc includeBus#2→ g1

and Bus#1→ g2.

Transition probability function P : S × A × S → [0, 1]: Due to the dynamics of

urban road traffic and crowd flow conditions, after an agent takes an action a (e.g., bus

route) at a state s, the time of reaching the transferring stop may vary, leading to dif-

ferent state s′ (of the same spatial grid but different time interval). Such uncertainty is

characterized by the transition probability function as P (s′ | s, a), representing the prob-

ability of arriving at the state s′ after choosing action a at the state s. The transition

probability is obtained from maximum likelihood estimation from real-world urban tran-

sit trajectory data as follows. Suppose that we observed m trajectories for an agent in

the historical data. Each trajectory ζ is represented as a sequence of discrete states and

actions ζ = {s0, a0, s1, a1, · · · , sN} where sN = (gdst,∆tN) is the destination state and

s0 = (gsrc,∆t0) is the source state. With this information, the maximum likelihood es-

timator for the transition (s, a) → s′ is obtained by P (s′ | s, a) = N(s,a,s′)∑
s′∈S N(s,a,s′)

, where

N(s, a, s′) is the count of this transition observed from all historical trajectory data.

Reward R: When passengers make decisions of transit choices, they are considering

various decision making features, such as travel time, cost, level-of-convenience. We will

detail these decision-making features in Sec 2.4.3. In MDP, R : S × A → R represents

the reward function. It captures the unique personal preferences of an agent, that maps

the decision-making features (at a state s when taking an action a) to a reward value.

The decision making features include travel time, cost, level-of-convenience, etc. We will

discuss these features in the next subsection in more details. Such reward functionR(s, a)

can be inversely learned from transit trajectory data (See Sec 2.5).
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2.4.3 Decision-Making Features

Each state-action pair (s, a) is associated with a list features, represented as a vector

f(s,a), that travelers consider when making their transit decisions. We consider three types

of decision-making features, including monetary cost, time cost, level-of-convenience.

2.4.3.1 Monetary Cost

In general, monetary cost indicates how much money the traveler needs to spend if taking

an action a at a state s. It includes fare and remaining cost.

Fare(F). At a state-action pair (s, a), the fare feature captures the fare needed when taking

an action a at a state s, e.g., the fare for taking a bus route or a subway line.

Remaining Cost(RC) captures the expected additional cost needed (after taking a at s)

before reaching the destination. This feature can be viewed as a measurement of how

cost-efficient (s, a) is. For example, some action a taken at s, may have a smaller fare

feature, but may lead to a state s′, that needs at least two or more transfers (i.e., no direct

transit option available at s′) to reach the destination, thus incurring more remaining cost.

2.4.3.2 Time Cost

Time cost is another crucial factor that travelers consider at a state s when making the

next transit choice a, which includes travel time (to the next state s′), remaining time (to

meet a deadline to reach destination), and traffic speed (on road network at the current

state s).

Travel Time(TT) characterizes the expected travel time from the current state s to the

next state after taking an action a. This feature value at a state-action pair (s, a) is es-

timated from the historical transit trajectory data, and is averaged over all possible next

state s′ from (s, a).
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Remaining Time(RT): We observe that more than 90% of trips are commute trips,

namely, repeated round-trips of travelers between homes and working places. The travel-

ers may need to meet certain deadlines to reach destinations, i.e., a traveler needs to arrive

the company by 9:00AM in each working day. Such deadlines can be extracted from the

historical transit trajectory data, namely, taking the latest arrival time from historical trips

as the deadlines. The remaining time feature captures the time difference between the

current state time and the deadline, indicating how urgent the current trip is.

Traffic Speed(TS) indicates the average road network traffic speed in the grid and time

interval of the current state s. This feature captures the potential influence to the travel

time if an above-ground transit mode, e.g., a bus route, is chosen. We observe that in

general a traveler has higher chance to choose a nearby subway line if the traffic speed is

low.

2.4.3.3 Level of Convenience (LoC)

When travelers make transit choices, they may also consider the comfortableness and

convenience of an action a when made at a state s. Such features include number of

transfers, number of choices, and transit mode.

Number of Transfers (NoT) represents the expected number of transfers the traveler

needs to take after taking action a at state s, before reaching the destination.

Number of Choices (NoC) captures the total number of transit choices (including alter-

native bus routes, subway lines) the traveler can choose at the current state s. This feature

indicates the flexibility the traveler has at a certain state s.

Transit Mode (TM) is a binary indicator feature, indicating if the chosen action is a

subway (with TM = 1) or not.
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2.5 Stage 3: Transit Plan Evaluation

With the MDP model to characterize the decision making process of travelers, we are in a

position to investigate how we may evaluate human behaviors, e.g., ridership, of a transit

plan ∆G prior to its deployment. The idea is that deploying a transit plan will change the

existing transit graph G to G′ = G∪∆G, thus change the MDP with updated state space

S ′ = S ∪∆S and action space A′ = A ∪∆A. However, the unchanged element in MDP

is the travelers’ preferences (i.e., reward functions), namely, how they evaluate different

decision-making features to make transit choices. To evaluate the human behaviors (i.e.,

ridership) of a transit plan ∆G, we need to answer two questions:

Q1: Given the historical transit trajectory data of an agent (collected prior to a transit

plan deployment), how can we learn the preference (reward) function R of the agent, that

maximizes the likelihood the collected data being generated?

Q2: With the agents’ reward functions (learned from data collected prior to the transit

plan deployment), how can we predict the future human behaviors, (e.g., ridership) of a

new transit plan, after it is deployed?

To answer Q1, we develop a novel preference learning algorithm to extract the reward

functions of agents (i.e., travelers) (Sec 2.5.1). For Q2, we implement a policy itera-

tion algorithm to infer the travelers’ behaviors (as MDP policies) from the updated MDP

with new state and action spaces S ′ and A′ and the extracted traveler reward function R

Sec 2.5.2.

2.5.1 Preference Learning

User choice modeling and preference learning has been extensively studied in the litera-

ture that aims to learn the people’s decision-making preferences from the data they have

generated [83, 173, 191, 207]. Multinomial logit (MNL) model [83, 191] considers users
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making single one-step decision. On the other hand, maximum-entropy inverse reinforce-

ment learning (MEIRL) [207] considers users making a sequence of decisions in MDP,

which matches our passenger decision-making process well. However, MEIRL has a

strong assumption that reward functions are linear. Below, we first describe the basics of

MEIRL, highlight its limitation, and develop a novel preference learning algorithm that

can capture the general non-linear reward function of travelers.

2.5.1.1 Maximum Entropy Inverse Reinforcement Learning

The inverse reinforcement learning problem in MDPs aims to find a reward function

R : S × A → R such that the distribution of action and state sequences under a (near-

)optimal policy match the demonstrated behaviors. One well-known solution to Max-

imum Entropy IRL problem [207] proposes to find the policy, which best represents

demonstrated behaviors with the highest entropy, subject to the constraint of matching

feature expectations to the distribution of demonstrated behaviors.

The reward R(s, a) on a state-action pair (s, a) is given as a linear combination of

the feature vector f(s,a) with weight vector θ, i.e., R(s, a) = θ>f(s,a). Likewise, given a

trajectory ζ with length N , the total reward received along ζ is written as R(ζ) = θ>fζ ,

where fζ =
∑N

i=0 f(si,ai). Applying the principle of maximum entropy, the probability of

a trajectory ζ being generated follows eq.(2.1) below (See [207]).

P (ζ) =
1

Z
eθ
>R(ζ), (2.1)

where Z =
∑

ζ∈TR e
θ>R(ζ) and TR is the set of all possible trajectories that can be gener-

ated. In non-deterministic MDPs, the user preference θ can be estimated using maximum

likelihood estimation, θ∗ = argmaxθL(θ) = argmaxθ
∑

ζ∈T̃R logP (ζ | θ). Then, a stan-
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dard gradient decent method can solve it with

∇L(θ) = f̃ −
∑
ζ∈TR

P (ζ | θ)fζ = f̃ −
∑

s∈S,a∈A

D(s, a, θ)f(s,a), (2.2)

where f̃ = 1
|T̃R|

∑
ζ∈T̃R f(ζ) is the expected empirical feature vector, with T̃R as the

demonstrated trajectory set. D(s, a, θ) =
∑

ζ∈TR,(s,a)∈ζ P (ζ) is the expected state-action

pair visitation frequency, indicating the chance of (s, a) being visited if a random trajec-

tory ζ is generated.

2.5.1.2 Passenger Preference Learning

Maximum entropy IRL assumes each passenger reward function R(s, a) to be a linear

function to the feature vector f(s,a) at (s, a). Such strong assumption limits its ability to

accurately learn passengers’ preferences. In Sec 2.6, we show comparison results with

real world data between linear vs non-linear reward functions. Now, we will first expand

MEIRL to allow non-linear reward functions, and then develop a computational efficient

algorithm to inversely learn a non-linear reward function R(s, a) that best match the col-

lected transit trajectory data.

Consider a general non-linear reward function R(s, a). With the principle of maxi-

mum entropy, P (ζ), the probability of a trajectory ζ being generated, can be uniquely

obtained by solving the optimization problem below.

Problem P1 : max
P (ζ)

:
∑
ζ∈TR

P (ζ)(− lnP (ζ)), (2.3)

s.t.
∑
ζ∈TR

P (ζ) = 1, (2.4)

∑
ζ∈TR

P (ζ)R(ζ) = R̃. (2.5)
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R̃ = 1
|T̃R|

∑
ζ∈T̃R R̃(ζ) represents the empirical average reward of trajectories, with T̃R

as the set of collected transit trajectories (i.e., the sample space). The objective function

eq.(2.3) is the total entropy of the trajectory distribution. Constraint eq.(2.4) guarantees

the total probability of all trajectories equals 1. Constraint eq.(2.5) specifies that the

expected trajectory reward matches the empirical average trajectory reward R̃. The close-

form solution to this problem is P (ζ) = 1
ZR
eR(ζ), with ZR =

∑
ζ∈TR e

R(ζ),where TR is

the set of all possible transit trajectories in the MDP (i.e., the population space).

Proof: Denote P (ζ) as the distribution of the trajectories generated by an agent

with its optimal policy. We collected a sampled trajectory set T̃R = {ζ} from the agent.

Problem P1 above is used to estimate the distribution P (ζ), so it matches the dataset T̃R

well, with a maximum entropy. The Lagrange function of P1 is represented as eq.(2.6).

L(P (ζ)) =
∑
ζ∈TR

−P (ζ)ln(P (ζ) + λ1

( ∑
ζ∈TR

P (ζ)− 1
)

+ λ2

( ∑
ζ∈TR

P (ζ)R(ζ)− R̃
)

(2.6)

Taking the derivative of L(P (ζ)) with respect to P (ζ), we obtain ∂L(P (ζ))
∂P (ζ)

= 1 −

ln(P (ζ))+λ1+λ2R(ζ). When the derivative ∂L(P (ζ))
∂P (ζ)

= 0, we have P (ζ) = e1+λ1 ·eλ2R(ζ).

λ2 is called “temperature” [149] used to quantify the degree to which the agent follows

a sub-optimal policy vs a global optimal policy. Without loss of generality, we can set

λ2 = 1. Moreover, given the second constraint
∑

ζ∈TR P (ζ) = 1 (from eq.(2.5)), we can

obtain e1+λ1 = 1/ZR = 1/
∑

ζ∈TR e
R(ζ), which completes the proof.

Assume that the reward function follows a non-linear model, e.g. Neural Network

(NN), with parameter vector θ, i.e., R(s, a, θ). The model parameter vector θ can be

estimated using maximum likelihood estimation, say, solving the optimization problem
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below.

max
θ

: L(θ) =
∑
ζ∈T̃R

logP (ζ | θ) (2.7)

Then, a standard gradient decent method can solve it with

∇L(θ) =
∑

s∈S,a∈A

(
D∗(s, a)−D(s, a, θ)

)∂R(s, a, θ)

∂θ
, (2.8)

where D∗(s, a) = Ñ(s,a)/|T̃R| and Ñ(s,a) is the count from all transit trajectories that

traverse the station-action pair (s, a). Clearly, at i-th iteration, the state-action pair visita-

tion frequency D(s, a, θi) and the partial derivative ∂R(s,a,θi)
∂θi

are required when updating

θi+1 = θi + α · ∇L(θ), where α is the step size for updating θ. As a result, this approach

only works for models that allow computing ∂R(s,a,θ)
∂θ

, such as neural network (with back-

ward propagation), linear regression. Models, such as decision tree, random forest, cannot

be applied as reward function models, since no derivatives can be computed. Moreover,

mini-batch gradient decent approach cannot be applied, since each iteration requires up-

dating visitation frequencies for all state-action pairs. To tackle these challenges, we

employ the following observation (Theorem 2.5.1) to further improve the flexibility of

the non-linear preference learning algorithm.

Theorem 2.5.1 The optimization problem P1 is equivalent to the problem P2 below.

They share the same optimal solution.

Problem P2 : max
θ,R∗

:
∑
ζ∈T̃R

log
1

ZR
eR
∗(ζ), (2.9)

s.t.
∑
ζ∈T̃R

(R∗(ζ)−R(ζ, θ))2 ≤ ε, (2.10)

where R∗(ζ)’s are the reward values received, that best describe the demonstrated trajec-
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tory data, and ε > 0 is a sufficiently small value.

Proof: Denote Lagrange function of P1 and P2 as L1(θ) and L2(R∗(ζ), θ), respec-

tively. ∂L1(θ)
∂θ

is clearly eq.(2.8), which can be rewritten as follows, with P̃ (ζ) be the

empirical probability of trajectory ζ to occur.

P1 :
∂L1(θ)

∂θ
=
∑
ζ∈T̃R

(
P̃ (ζ)− P (ζ, θ)

)∂R(ζ, θ)

∂θ
= 0. (2.11)

Similarly, the partial derivative of L2(R∗(ζ), θ) is

P2 :
∂L2(R∗(ζ), θ)

∂θ
=
∑
ζ∈T̃R

(
R∗(ζ)−R(ζ, θ)

)∂R(ζ, θ)

∂θ
= 0. (2.12)

P (ζ, θ) = 1
ZR
eR(ζ,θ), withZR =

∑
ζ∈TR e

R(ζ,θ), and P̃ (ζ) = 1
Z̃
eR
∗(ζ) with Z̃ =

∑
ζ∈T̃R e

R∗(ζ).

From eq.(2.12) above, P2 is seeking for aR(ζ, θ) that is equal toR∗(ζ), which means that

ZR = Z̃. It is thus equivalent to P (ζ, θ) = P̃ (ζ), which is the solution from problem P1

and completes the proof.

Problem P2 can be decomposed into two subproblems as follows.

Subproblem 2− 1 : max
R∗(ζ)

∑
ζ∈T̃R

log
1

ZR
eR
∗(ζ), (2.13)

Subproblem 2− 2 : min
θ

∑
ζ∈T̃R

(R∗(ζ)−R(ζ, θ))2. (2.14)

Since R∗(ζ) =
∑

(s,a)∈ζ R
∗(s, a), from Subproblem 2-1, it is easy to prove that

R∗(s, a) can be learned with gradient decent, with ∇L(R∗(s, a)) = D∗(s, a) − D(s, a),

and R∗(s, a) represents the reward value received at a state-action pair (s, a). Then,

R∗(s, a) can be used as input of Subproblem 2-2 to solve an optimal model parameter
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Algorithm 1 Preference Learning

1: INPUT: MDP M ,trajectories T̃R and learning rate α, f(s,a);
2: OUTPUT: Preference function R∗(s, a);
3: Initialize R∗0(s, a); i = 1;
4: while ‖∇L(R∗(s, a))‖2 > ε do
5: update D(s, a) with R∗i−1(s, a) using Alg 2;
6: update ∇L(R∗(s, a)) = D∗(s, a)−D(s, a);
7: R∗i (s, a) = R∗i−1(s, a) + α ∗ ∇L(R∗(s, a));
8: i+ +;
9: Train a model R(s, a, θ) with features f(s,a) and labels R∗i−1(s, a);

10: return R∗(s, a), R(s, a, θ) and θ;

θ. Note that here the subproblem 2-2 can be viewed and solved using supervised learning

approach, which is compatible with any supervised model.

Alg 1 presents the pseudo-code of the passenger preference learning algorithm. Line 4–

5 update the state-action pair visitation frequency using Alg 2. Line 6–8 update R∗(s, a)

with gradient decent method. Line 9 build supervise machine learning model using vector

f(s,a) as features, and R∗(s, a) as labels. Alg 2 computes the optimal policy π(s, a) with

policy search, and calculates the state-action pair visitation frequency by solving a group

of linear equations as eq (2.15) and eq (2.16).

D(s)−
∑
s′∈S

∑
a′∈A(s′)

D(s′, a′) · P (s | s′, a′) = u0(s),∀s ∈ S, (2.15)

D(s, a) = D(s)π(s, a),∀(s, a) ∈ (S,A), (2.16)

where D(s) =
∑

a∈A(s) D(s, a) represents the station visitation frequency, namely, the

likelihood of visiting the state s, if a random trajectory is generated. u0(s) is the initial

distribution.
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Algorithm 2 Computing State-Action Visitation Frequency

INPUT: MDP = 〈S,A, P,R(s, a), 1〉;
2: OUTPUT: State-action pair visitation frequency D(s, a);

Solve optimal policy π(s, a) from MDP with policy iteration [149];
4: Solve D(s, a) from eq (2.15) and eq (2.16);

return D(s, a);

2.5.2 Transit Plan Evaluation

Given a new transit plan ∆G = 〈∆V,∆E〉, e.g., a new subway line or bus route, the new

state and action spaces are S ′ = S ∪∆S and A′ = A ∪∆A, respectively. With the pas-

senger preference function R(s, a), the updated MDP with new transit plan is represented

as 〈S ′, A′, T, R(s, a), γ〉, where transition probability matrix T is considered unchanged,

and discount factor γ = 1. With such a new MDP, we can apply Alg 2 to extract the

optimal policies π(s, a) passengers will employ, D(s) state visitation frequency, D(s, a)

state-action pair visitation frequency. These statistics can evaluate many aspects of the

new transit plan ∆G, including the ridership of new transit lines, and crowd flow at dif-

ferent regions over time.

Ridership of new transit lines. To evaluate the ridership of a new transit plan at a certain

station, we denote (se, ae) as the state-action pair of our interests. State se corresponds

to the grid with the station to be evaluated. Recall that we consider all trips with the

same source-destination grid pair as an agent. Let m denote the total number of agents

in the urban area of our interests. For each agent 1 ≤ i ≤ m, we denote ni as the

number of passengers in the agent i. we apply Alg 2 to extract the state-action pair

visitation frequency Di(se, ae) for agent i at the state-action pair (se, ae). As a results,

Rider(se, ae) =
∑m

i=1Di(se, ae) · ni represents the total ridership getting on the new

transit line ae from state se.

Crowd flow in a grid. Similarly, to predict the total crowd flow at a grid g during certain

time interval ∆t, let se = [g,∆t] denote the corresponding state in MDP. We calculate

31



the state visitation frequency D(se) over all m agents. The crowd flow at state se can be

estimated as Crowd(se) =
∑m

i=1 Di(se) · ni.

2.6 Evaluations

There were three new subway lines opened in 6/01/2016-12/31/2016, i.e., Line #11 on

June 28, 2016, and Line #7 and #9 on October 28, 2016. To test the human-centric

transit plan evaluation algorithm, we use data prior to the deployment to build models and

predict the ridership of those new subway stations, and validate the prediction results with

the data collected after their deployment.

2.6.1 Baseline methods

We conduct two sets of experiments: (i) compare reward learning (Subproblem P2-1 in

eq.(2.13) with other inverse learning baselines; (ii) compare ridership prediction (Sub-

problem P2-2 in eq.(2.14) with other baseline frameworks.

Baselines for reward learning.

Our Method: Inverse Reinforcement Learning with Sub-optimal Policy(IRL+SP) (Line

#1–#8 in Alg 1). It chooses the reward function with the principle of maximum entropy,

and assumes that human make decisions with softmax-based suboptimal policies [207].

Baseline 1: Inverse Reinforcement Learning with Optimal Policy (IRL+OP). This

baseline chooses the reward function with the principle of maximum entropy, but assumes

that human decision-making follows an optimal deterministic policy, which means at each

state, there is only one action being taken.

Baseline 2: Apprenticeship Learning (AL) [1]. This baseline employs the principle of

maximizing the reward gap between the best and second best policies to choose reward

function. It still assumes that passengers take optimal deterministic policy.
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Baselines for ridership prediction.

Our Method: Alg 1 combined with multiple machine learning models as Line #9, such

as random forest, lasso regression, and linear regression.

Baseline 1: Machine Learning Models (ML). We directly train machine learning mod-

els to predict the ridership.

Baseline 2: Multinomial Logit (MNL) Model [62]. This baseline considers each pas-

senger make a single decision of the entire trip trajectory, rather than a sequence of deci-

sions. MNL is used for the reward learning, where the preference learning still employs

different machine learning models.

2.6.2 Experiment settings

The evaluations are conducted on a server with 24 Intel X5670 2.93GHz processors,

94GB memory, and Suse Linux Enterprise Server 11. We use stopping criteria as ε1 =

10−12 for Gradient Decent unless mentioned otherwise. We employ the following two

metrics to evaluate the reward learning and ridership prediction.

Visitation frequency difference. During the reward learning process, we not only extract

reward valuesR∗(s, a) that best match the demonstrated trajectory data, we also obtain the

state-action pair visitation frequencyD(s, a) for each state-action pair. It can be expressed

as a visitation frequency vector D = [D(s, a)]. Likewise, we can obtain an empirical

state-action pair visitation frequency vector D̃ = [D∗(s, a)] from the transit trajectory

data. Each D∗(s, a) represents the percentage of collected trajectories that went through

(s, a). The visitation frequency difference is the 2-norm difference of the two vector D

and D̃, which characterizes how accurate the learned reward values are.

Ridership Prediction Error. Given a new subway station of a new transit plan (i.e., a

subway line), which is within a grid g, denote s as a state over the grid g. The new transit

line is considered as an action a. Let N(s, a) be the number of passengers taking the new
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transit line a at state s after the new line is opened, which can be obtained from the data.

Denote N ′(s, a) as the predicted ridership at state s, taking transit line a. The Ridership

prediction error is quantified as |N(s, a)−N ′(s, a)|/N(s, a).

2.6.3 Preference Learning

We compare our preference learning method IRL+SP with two baseline methods, includ-

ing IRL+OP and AL in Section 2.6.1.

The Fig 2.8 clearly indicates that our IRL+SP algorithm outperforms baseline meth-

34



0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

R
el

at
iv

e 
Er

ro
r

0 100 200 300 400 500
Grid Size(m)

IRL+RF

Figure 2.12: Prediction er-
ror over grid size.

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
Er

ro
r

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

IRL+RF ML+RF IRL+Lasso
ML+Lasso IRL+LR MNL

ML+LR

Figure 2.13: Prediction error over agents.

ods on ridership vector difference. After convergence, our IRL+SP method leads to the

lowest ridership vector difference, around 3× 10−12, where IRL+OP and AL have rider-

ship vector differences as high as 0.023 and 0.3, respectively. Such results indicate that

passengers make sub-optimal decisions, rather than optimal decisions. In terms of conver-

gence rate, the results in Fig 2.8 show that both our IRL-SP method and IRL-OP method

converge fast, within 30 iterations, while the results with AL fluctuates over iterations.

Fig 2.9 shows how many iterations our IRL-SP algorithm (Alg 1) needs to converge

with different stopping criteria (ε in Alg 1), i.e., ranging from 10−1 to 10−20. The re-

sults are promising: less than 1K iterations are needed to achieve a stopping criteria with

accuracy as high as 10−10.

2.6.4 Ridership Prediction

Now, we evaluate the accuracy and efficiency of our proposed algorithm in predicting the

ridership of a new transit plan.

Prediction accuracy.

Table 2.1 shows the relative errors in ridership prediction for a new transit plan, when

comparing with different baseline algorithm. Clearly, our IRL-SP Algorithm (when com-

bined with Random Forest (RF) model at Line #9 in Alg 1) yields the lowest prediction

relative error, about 19.8%. IRL-SP based models (right-most column) have the lowest
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Table 2.1: Ridership Prediction Error
ML MNL IRL

Linear 0.4337 0.3684 0.4879
Lasso 0.3665 0.3214 0.3126

Random Forest 0.3306 0.3152 0.1982

errors than machine learning models and multinomial logit models. This indicates that

passengers are making a sequence of decisions rather than one decision when planning

their trip demands. Moreover, the linear models (ML+LR, MNL and IRL+LR) shown in

the first row of Table 2.1 have relative errors about 36%–49%, much higher than other

non-linear models. This indicates that passengers are evaluating various decision-making

features in a non-linear fashion. On the other hand, random forest model when directly

used for prediction (ML), or combined with MNL and IRL, outperform linear models and

Lasso based models.

Impact of training data size. Fig 2.10 shows how the ridership prediction relative error

changes over the amount of training data we use. We change the size of training data from

1 day data to 6 days’ data. Clearly, the relative errors of all approaches decrease when

more training data are included.

Impact of stopping criteria ε. Fig 2.11 shows how the relative errors change with differ-

ent stopping criteria ε of Alg 1, ranging from 10−1 to 10−25. The relative error goes down

as ε decreases for IRL with RF, where it keeps unchanged for IRL with LR and Lasso.

Moreover, when ε is lower than 10−12, the relative error remains stable. As a result, we

choose ε = 10−12 in our experiments.

Impact of grid size. Fig 2.12 shows the prediction relative error changes over the grid

size. We vary the grid side-length from 50m to 500m, and observe that 250m yields the

lowest relative error. This can be explained as follows: If the grid size is too small, there

will be likely fewer stations in each grid, thus less trajectories aggregated in each grids.
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Figure 2.14: Illustration of 3 different agents in Shenzhen1

Such sparse data lead to high prediction error. On the other hand, with too large grids,

more trajectories and stations will be aggregated into each station, and different decision

choices from passengers will be mixed together and considered identical, thus increase

the prediction error.

Impact of different agents. We apply all baseline algorithms to different agents, compare

their prediction relative errors. Fig 2.13 shows the comparison results on five randomly

chosen agents. It is clear that for all five agents, the prediction errors are consistent over

different baseline algorithms, i.e., (i) IRL based models out perform ML and MNL based

models, (ii) non-linear models performs better than linear models.

2.6.5 Case studies

Now, we show three agents (group of passengers) as examples, which have significantly

different reward functions, e.g., weights on decision-making features. Fig 2.14 (A)-(C)

show the locations of the source and destination grids, and their preferences to eight

different decision-making features.

Fig 2.14(A) represents the traveler group from Baoan to Xili. Baoan is a residential

area with low housing prices, where there are many manufacture factories in Xili. So

the commuters from Baoan to Xili are likely workers with low income, which explains

why their weights to fare and remaining cost are higher. Moreover, factories in Xili
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usually require their employees following fixed schedule. As a result, their preference to

remaining time is much higher than other agents.

Fig 2.14(B) shows the traveler group from Meicun to Xiasha. Meicun, as a resi-

dential area, has high housing prices, where there are many technology companies, with

high salary and flexible working schedule. These observations explain the preferences

extracted, i.e., they weigh travel time highly when making decisions, while weighing the

fare, remaining cost, and remaining time lower.

Fig 2.14(C) presents passenger group from Hezhou to Gaoxinyuan (High-Tech Park).

Hezhou has lower housing price, and is in rural area with long distance from Gaoxinyuan.

Hence, the passenger group are more likely with low income level. This matches the

preference learned from the data, where they turn to weigh more on fare, and weigh less

on travel time.

2.7 Related Work

In this section, we summarize the literature works in two related areas to our study: 1)

urban computing, and 2) user choice modeling.

Urban Computing. Urban computing integrates urban sensing, data management and

data analytic together as a unified process to explore, analyze and solve existing critical

problems in urban area such as traffic congestion, energy consumption and pollution[202].

In [106], the authors propose an dynamic urban transit system with shared shuttles using

hybrid hub-and-spoke mode. The authors in [7] employ real world trajectory data of

sharing bikes to develop bike lane planning strategies. In [161, 187], the authors detect

urban events from heterogeneous urban datasets. However, none of those works have

explicitly studied the “urban human factors”, i.e., how people make decisions. Our work

1Fare(F), Remaining Cost(RC), Travel Time(TT), Remaining Time(RT), Traffic Speed(TS), Number of
Transfers(NoT), Number of Choices(NoC), Transit Mode(TM)
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is the first study investigating how to quantify human preferences, and consider such

preferences in urban transit planning.

User Choice Modeling. User choice modeling has been extensively studied in the litera-

ture with applications, which investigate how users make decisions in various application

scenarios. For examples, In [144], they use random utility maximization and random

regret minimization to analyze users’ choice on park-and-ride lots. In [129], authors es-

timate a multinomial discrete choice model and a latent variable model of travel mode

choice. In [207], where the authors propose a probabilistic approach to discover re-

ward function for which a near-optimal policy closely mimics observed behaviors. How-

ever, differing from these works, we employ data-driven approaches to study the unique

decision-making process of urban public transit passengers, by proposing a novel learning

algorithm to capture the general non-linear preference functions.
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Chapter 3

Transforming Policy via Reward

Advancement

3.1 Introduction

In sequential decision making problems [206], human agents complete tasks by evaluat-

ing the rewards received over states traversed and actions employed. Each human agent

may have her own unique reward function, which governs how much reward she may

receive over states and actions [170, 191]. For example, urban travelers may evaluate the

travel cost vs travel time with different weights, when deciding which transport mode,

route, and transfer stations to take [173]. Uber drivers may prefer different urban re-

gions to look for passengers, depending on their familiarity to the regions, and distance

to their home locations, etc [175]. To quantify and measure the unique reward function

each human agent possesses, maximum causal entropy inverse reinforcement learning

(IRL) [207] has been proposed to find the reward function and the corresponding policy,

that best represents demonstrated behaviors from the human agent with the highest causal

entropy, subject to the constraint of matching feature expectations to the distribution of
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Figure 3.1: An Example of Reward Advancement

demonstrated behaviors.

Going beyond the human agent reward learning problem, in this work, we move one

step further to investigate how we can influence and change agent’s policy (i.e., decisions)

to a target policy πt from the original policy πo observed from the agent’s trajectories, by

purposely updating and advancing the rewards received by the human agent. Figure 3.1

illustrates this problem with a concrete example. A small scale Markov Decision Process

(MDP) has two states {s0, s1}, and two actions {a1, a2}. Starting from s0, an agent can

reach s1 by either taking action a1 or a2. The original rewards received by the agent from

taking action a1 are a2 are equal, i.e., R(s0, a1) = R(s0, a2) = 3 (Figure 3.1(a)). As

a result, the policy of choosing a1 vs a2 are both 50% by the maximum entropy princi-

ple [207]. If we want the human agent to switch to a new policy (see Figure 3.1(b)) with

πt(a1|s0) = 0.73 and πt(a2|s0) = 0.27, respectively, we can introduce additional reward

∆R(s0, a2) = −1 to state-action (s0, a2), and keep R(s0, a1) invariant (Figure 3.1(c)).

This problem of finding additional reward to transform human agent’s policy with

minimum cost is of great practical importance. For example, urban passengers employ

their own unique policies to choose transit modes and transfer stations, which may collec-

tively lead to unbalanced crowd flows, i.e., under- and over-supplied traffic over stations

and routes. One way to mitigate such a problem is to motivate or incentivize passengers
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to autonomously change and transform their policies, e.g., by providing additional reward

to the those passenger agents, in forms of coupons, discounted price, etc [202, 86]. More-

over, it is crucial how to achieve this goal with minimum overall cost. In the literature,

reward transformations [118, 79] have been studied extensively, primarily focusing on

transforming the reward, with the goal of preserving the same policy (which is formally

termed as “reward shaping”). Differing from reward shaping, our design goal is more

general, namely, transforming rewards, so the agent behaves as a target policy πt, which

may or may not be the same as the agent’s original policy πo. We refer this problem as a

“reward advancement” problem.

In this chapter, we make the first attempt to tackle the reward advancement problem.

Given a Markov Decision Process and a target policy πt, we investigate the range of

additional rewards that can transform the agent’s policy to the predefined target policy πt

under MCE principle. Our main contributions are summarized as follows.

• We are the first to define and study the reward advancement problem, namely, find-

ing the updating rewards to transform human agent’s behaving policy to a prede-

fined target policy. We provide a close-form solution to this problem. The solution

indicates that there exist infinite many such additional rewards, that can achieve the

desired policy transformation.

• Moreover, we define and investigate min-cost reward advancement problem, which

aims to find the additional rewards that can transform the agent’s policy to πt, while

minimizing the cost of the policy transformation.

• We also demonstrated the correctness and accuracy of our reward advancement

algorithm using both synthetic data and a large-scale (6 months) passenger-level

public transit data from Shenzhen, China.

The chapter is organized as follows, Section 3.2 discusses preliminaries and formally
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defines the reward advancement problem. Section 3.3 introduces our maximum entropy

reward advancement algorithm. Section 3.5 presents evaluation results using both grid

world scenario and real world urban passenger data.

3.2 Preliminaries and Problem Definition

In this section, we review the basics of finite Markov Decision Process and Maximum

Causal Entropy (MCE) policy.

3.2.1 Markov Decision Process

An MDP is represented as a tuple 〈S,A, T, γ, µ0, R〉, where S is a finite set of states and

A is a finite set of actions. T is the probabilistic transition function with T (s′|s, a) as the

probability of arriving at state s′ by executing action a at state s, γ ∈ (0, 1] is the discount

factor1, µ0 : S → [0, 1] is the initial distribution, and R : S × A → R is the reward

function. A randomized, memoryless policy is a function that specifies a probability

distribution on the action to be executed in each state, defined as π : S × A→ [0, 1]. We

use ζ = [s0, a0, s1, a1, . . . , sL, aL] to denote a trajectory generated by the MDP, which is

a sequence of state-action pair. L is the length of trajectory. The planning problem in an

MDP aims to find a policy π, such that the expected total reward is maximized.

3.2.2 Policy under Maximum Causal Entropy Principle

One well-known solution to the inverse reinforcement learning problem is Maximum

Causal Entropy Inverse Reinforcement Learning [206]. It proposes to find the policy

that best represents demonstrated behaviors with highest causal entropy H(A||S), which

1Without loss of generality, we assume γ = 1 in this work, and it is straightforward to generalize our
results to γ 6= 1.
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is calculated by H(A||S) = −∑s∈S
∑

a∈AD(s, a) lnπ(a|s), where D(s, a) represents

the expected visitation frequency of the state-action pair (s, a), when one trajectory is

generated under policy π(a|s).

The policy under maximum causal entropy principle (i.e., MCE policy) best repre-

sents the demonstrated behaviors with the highest causal entropy, and is subject to match-

ing the reward expectations of demonstrated behaviors. Denote Q(s, a) = R(s, a) +∑
s′∈S T (s′|s, a)

∑
a′∈A π(a′|s′)Q(s′, a′) as Q-function on state-action pair (s, a), indi-

cating the expected rewards to be received starting from (s, a), MCE policy is

π(a|s) =
eQ(s,a)∑

a′∈A e
Q(s,a′)

. (3.1)

Eq.(3.1) is the policy conducted by the human agent, that best matches her generated

trajectory data. Usually, the Q(s, a) can be represented using a parameterized function

Q(s, a|θ), for instance, a neural network model. If we use T̃R to represent expert trajecto-

ries we collected, the Q-functionQ(s, a|θ)’s then can be estimated by solving a maximum

likelihood estimation problem,

θ∗ = argmax
θ

L(θ) = argmax θ
∑
ζ∈T̃R

lnP (ζ|θ). (3.2)

3.3 Reward Advancement

Inverse reinforcement learning problem [118, 206, 207, 43, 125, 174, 192] aims to in-

versely learn agent’s reward (or preference) function from their demonstrated trajectories,

namely, inferring how agent makes decisions. In this work, we move one step further to

investigate how we can influence and transform agent’s decision-making policy to a target

policy πt from the original policy πo observed from the demonstrated trajectories, by pur-

posely updating and advancing the reward functionsR(s, a) in the MDP. Reward transfor-
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mations [118, 169] have been studied in the literature, primarily focusing on transforming

the rewards, with the goal of preserving the same policy (which is formally termed as “re-

ward shaping”). Differing from reward shaping, our design goal is more general, say,

transforming rewards, so the agent behaves as a predefined target policy πt, which may

or may not be the agent’s current policy πo. This problem is referred to as a ”reward

advancement” problem, and we formally define it as follows.

Reward Advancement Problem. Given an MDP 〈S,A, T, µ0, Ro〉, the agent’s MCE

policy is πo. we aim to find additional rewards ∆R to be added to the original reward Ro,

such that the agent’s MCE policy under the updated MDP 〈S,A, T, µ0, Ro+∆R〉 follows

a predefined target policy πt. Without loss of generality, we use γ = 1 as discount factor

for simplicity.

For MDP 〈S,A, T, µ0, Ro〉, each policy π running on it leads to a unique Q-function:

Qπ
o (s, a) = Ro(s, a) +

∑
s′∈S

T (s′|s, a)
∑
a′∈A

π(s′, a′)Qo(s
′, a′).

From Maximum Causal Entropy Inverse Reinforcement Learning, there exists a unique

MCE policy πo in form of eq.(3.1) that maximizes the likelihood of observing the given

demonstration data. However, when appropriate additional rewards ∆R(s, a) are pro-

vided, MDP becomes 〈S,A, T, µ0, Ro+∆R〉, and the underlying MCE policy may change

to π. This occurs because the additional rewards ∆R transforms and advances the MCE

policy from πo to π. In this case, the Q-function with MCE policy π is characterized

as Qπ(s, a) = R(s, a) +
∑

s′∈S T (s′|s, a)
∑

a′∈A π(a′|s′)Qπ(s′, a′), where R(s, a) =

Ro(s, a) + ∆R(s, a), Qπ(s, a) = Qπ
o (s, a) + ∆Q(s, a), and ∆Q(s, a) = ∆R(s, a) +∑

s′∈S T (s′|s, a)
∑

a′∈A π(a′|s′)∆Q(s′, a′).

As a result, transforming from the original MCE policy πo, the new MCE policy π is a

function of addition reward ∆R, or equivalently ∆Q, i.e., π(a|s; ∆Q). Given a predefined
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πt, finding the right ∆Q, such that π(a|s; ∆Q) = πt(a|s) for any s ∈ S and a ∈ A, solves

the reward advancement problem. The following Theorem 3.3.1 introduces the complete

solution set to this problem.

Theorem 3.3.1 Given an MDP 〈S,A, T, µ0, Ro〉, the sufficient and necessary condition

to transform its MCE policy to a predefined policy πt is to provide additional Q-function

∆Q, such that

∆Q(s, a) = ln
πt(a|s)
eQ

πt
o (s,a)

+ β(s), (3.3)

where β : S → R is any real number function defined on states. Such additional Q-

function is called “advancement function”.

Proof:

(Sufficiency.) If ∆Q(s, a) follows eq.(3.3), the new Q-function over πt becomes:

Qπt(s, a) = Qπt
o (s, a) + ∆Q(s, a) = ln πt(a|s) + β(s).

As a result, for any (s, a), the ratio between eQπt (s,a) and
∑

a′ e
Qπt (s,a′) is exactly πt(a|s),

thus πt is the MCE policy of the new MDP.

(Necessity.) Given a certain additional Q-function ∆Q, if it transforms the MCE

policy to πt, that infers

πt(a|s) =
eQ

πt
o (s,a)+∆Q(s,a)∑

a′∈A e
Q
πt
o (s,a′)+∆Q(s,a′)

, (3.4)

e∆Q(s,a) =
πt(a|s)
eQ

πt
o (s,a)

∑
a′∈A

eQ
πt
o (s,a′)+∆Q(s,a′). (3.5)

Define β(s) = ln
∑

a′∈A e
Q
πt
o (s,a′)+∆Q(s,a′), we have ∆Q(s, a) = ln πt(a|s)

eQ(s,a) + β(s). It

completes the proof.
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The advancement function introduced in Theorem 3.3.1 is defined on additional Q-

function, which can be easily “translated” into additional reward function ∆R by the

following mapping function.

∆R(s, a) = ∆Q(s, a)−∑
s′∈S

T (s′|s, a)
∑
a′∈A

πt(s
′, a′)∆Q(s′, a′). (3.6)

Theorem 3.3.1 indicates that there are infinite many advancement functions that can

transform an original MCE policy πo to a given πt. However, different advancement func-

tions may lead to different costs in reality to apply the additional rewards. For example,

in ride-hailing service, additional rewards provided to Uber drivers could be in the form

of monetary values; in urban public transportation systems, the additional rewards to pas-

sengers could be in forms of ride discount. More additional rewards applied lead to more

cost to the system. Without lower bound on β(s), the advancement function ∆Q can be

as low as −∞. In turn, the addition rewards ∆R inferred from eq.(3.6) can be arbitrarily

small as well. It is equivalent to increase the ride rate to be extremely large for public

transits, which is not feasible in real world scenario. Next, we will introduce and provide

solution to the reward advancement problem with minimum cost as the objective.

3.4 Min-Cost Reward Advancement

Now, we investigate how to identify additional rewards that transform the agent to an

MCE policy πt, while guaranteeing minimum “implementation cost”, namely, a min-cost

reward advancement problem. Without loss of generality, we consider that the total cost

of transforming the agent’s policy is equal to the expected additional rewards offered to

47



the agent, i.e.,

C(∆R) =
∑
s∈S

∑
a∈A

Dt(s, a)∆R(s, a)

= C(∆Q) =
∑
s∈S

∑
a∈A

µ0(s)πt(a|s)∆Q(s, a),

where Dt(s, a) is the state-action pair visitation frequency under target policy πt, and

µ0(s) is the initial state distribution. As a result, the general form of min-cost reward

advancement problem can be formulated as follows.

Problem 1: Min-Cost Reward Advancement:

min
∆Q

C(∆Q) =
∑
s∈S

∑
a∈A

µ0(s)πt(a|s)∆Q(s, a), (3.7)

s.t. π(a|s; ∆Q) = πt(a|s), ∀s ∈ S, a ∈ A, (3.8)

∆Q(s, a) ≥ φ(s, a), ∀s ∈ S, a ∈ A. (3.9)

Constraint eq.(3.8) guarantees to transform the agent’s MCE policy to πt, representing

the infinite many feasible solutions given in Theorem 3.3.1. Constraint eq.(3.9) specifies

the minimum additional expected reward we can offer to the agent, namely, φ : S ×A→

R are system constants. Constraint eq.(3.9) makes sense in reality, which infers that the

expected reward received by the agent cannot be lower than a certain minimum value.

without this constraint, ∆Q(s, a) = −∞ becomes a trivial solution to Problem 1.

Theorem 3.4.1 The solution to the min-cost reward advancement problem in eq.(3.7)-
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(3.9) is


∆Q(s, a) = max

a′∈A
(ln eQ

πt
o (s,a′)

eQ
πt
o (s,a)

πt(a|s)
πt(a′|s) + φ(s, a′)), µ0(s) > 0,

∆Q(s, a) ≥ max
a′∈A

(ln eQ
πt
o (s,a′)

eQ
πt
o (s,a)

πt(a|s)
πt(a′|s) + φ(s, a′)), µ0(s) = 0.

Proof: Theorem 3.3.1 indicates the solution set of constraint eq.(3.8). As a re-

sult, we can safely remove constraint eq.(3.8) and replace ∆Q(s, a) with eq.(3.3). Then,

Problem 1 is transferred to the following format, with variable β(s), instead.

Problem 2: Min-Cost Reward Advancement in β

min
β

∑
s∈S

∑
a∈A

µ0(s)πt(a|s)(β(s) + ln
πt(a|s)
eQ

πt
o (s,a)

), (3.10)

s.t β(s) ≥ max
a∈A

(ln
eQ

πt
o (s,a)

πt(a|s)
+ φ(s, a)),∀s ∈ S. (3.11)

Eq.(3.10) is clearly a linear function of β(s). As a result, the minimum objective function

eq.(3.10) is achieved, when each β(s) is minimum, that is, when the equality is attained

in constraint eq.(3.11):

β(s) = max
a∈A

(ln
eQ

πt
o (s,a)

πt(a|s)
+ φ(s, a)), µ0(s) ≥ 0. (3.12)

Moreover, eq.(3.10) indicates that the value of objective function only hinges on β(s),

with µ0(s) > 0. For other states with µ0(s) = 0, β(s) only needs to fulfill the constraint

eq.(3.11), and has no impact on the value of the objective function. The complete set of

solutions to Problem 2 is as follows.
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
β(s) = maxa∈A(ln eQ

πt
o (s,a)

πt(a|s) + φ(s, a)), µ0(s) > 0,

β(s) ≥ maxa∈A(ln eQ
πt
o (s,a)

πt(a|s) + φ(s, a)), µ0(s) = 0.

Plugging the above solution set to eq.(3.3) yields the solution to ∆Q, and completes the

proof.

Again, the solutions to advancement function ∆Q can be mapped to additional re-

wards ∆R, by applying

∆R(s, a) = ∆Q(s, a)−
∑
s′∈S

T (s′|s, a)
∑
a′∈A

πt(a
′|s′)∆Q(s′, a′).

Moreover, Theorem 3.4.1 indicates that the optimal solutions of ∆Q(s, a) on states with

µ0(s) > 0 are unique (with equalities), while solutions on states with µ0(s) = 0 are

infinite many, following inequalities.

Practical challenges in algorithm design. Theorem 3.4.1 provides a nice close-form so-

lution set to the min-cost reward advancement problem. However, it requires calculating

Qπt
o (s, a) based on original reward Ro(s, a) and target policy πt(a|s). A natural way to

calculate it is value iteration method [207, 149], which employs an iterative framework,

and solves a dynamic programming sub-problem within each iteration. As a result, such

approach would be time-consuming, when the state space is large. Moreover, the value

iteration will not work, when the transition matrix T is unknown.

To address the problems of scalability and unknown dynamics, we propose to apply

Monte Carlo policy evaluation method to estimate Q-function of original rewards under

target policy Qπt
o (s, a). Here, we adopt the first-visit Monte Carlo method [149]. From

first-visit Monte Carlo method, we have Qo(s, a) as the average total reward after first
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visit to state-action pair (s, a) on each trajectory, denoted as

Qo(s, a) =
1

|T̃Rs,a|
∑

ζ∈T̃Rs,a

∑
t≥t(s,a)|ζ

Ro(st, at), (3.13)

where ζ is one trajectory, (st, at) is a state-action pair on the trajectory ζ , t(s,a)|ζ is the

first occurrence of (s, a) in ζ and |T̃Rs,a| is number of trajectories traversing (s, a). Since

trajectory set T̃Rs,a were collected with original policy πo, we adopt importance sampling

method to estimate Q-function of original reward under target policy Qπt
o (s, a) by

Qπt
o (s, a) =

∑
ζ∈T̃Rs,a

∑
t≥t(s,a)|ζ

πt(a|s)
πo(a|s)Ro(st, at)

|T̃Rs,a|
, (3.14)

where the πt(a|s)
πo(a|s) is the importance ratio. Similarly, we can estimate ∆R(s, a) through

importance sampling as

∆R(s, a) = ∆Q(s, a)

− 1

|T̃Rs,a,s′,a′ |
∑

ζ∈T̃Rs,a,s′,a′

πt(a
′|s′)

πo(a′|s′)
∆Q(s′, a′),

(3.15)

where T̃Rs,a,s′,a′ are trajectories containing (s, a, s′, a′) and |T̃Rs,a,s′,a′ | is the number of

those trajectories. Moreover, if the original policy πo is unknown, we can estimate it from

the observed trajectories.

The algorithm for reward advancement via Monte Carlo Policy Evaluation is summa-

rized in Algorithm 3. Specifically, Line 3 calculates Qπt
o (s, a) using Monte Carlo policy

evaluation.
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Algorithm 3 Min-Cost Reward Advancement via Monte Carlo Policy Evaluation

1: INPUT: States S, Actions A, Original Rewards Ro and Original Trajectory Set T̃R;
2: OUTPUT: Additional reward on each state-action pair ∆R(s, a) (One from many

solutions in Theorem 3.4.1);
3: For each state-action pair (s, a), calculate Qπt

o (s, a) =∑
ζ∈T̃Rs,a

∑
t≥t(s,a)|ζ

πt(a|s)
πo(a|s)

Ro(st,at)

|T̃Rs,a|
;

4: Calculate β(s) = maxa∈A(ln eQ
πt
o (s,a)

πt(a|s) + φ(s, a)) for each state s;

5: Calculate ∆Q(s, a) = ln πt(a|s)
eQ
πt
o (s,a)

+ β(s) for each stat-action pair (s, a);
6: For each (s, a), calculate ∆R(s, a) = ∆Q(s, a) −

1
|T̃Rs,a,s′,a′ |

∑
ζ∈T̃Rs,a,s′,a′

πt(a′|s′)
πo(a′|s′)∆Q(s′, a′);

7: Return ∆R(s, a);

Figure 3.2: A 5 × 9 Object World with 2
different colors.

Figure 3.3: Expected additional reward
over policy difference.

Figure 3.4: Policy difference over number
of trajectories used.

Figure 3.5: Running time over the size of
state space.
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3.5 Evaluation

In this section, we first evaluate the correctness and accuracy of our (min-cost) reward

advancement algorithm, with synthetic object world scenario. Then, by modeling passen-

gers’ travel decisions in public transit system as a Markov Decision Process, we conduct

empirical case studies using a large-scale (6 months) passenger-level public transit data

collected in Shenzhen, China, from 07/01/2016 to 12/30/2016.

3.5.1 Evaluation on object world

First, we use an object world [91] scenario to evaluate our reward advancement algorithm.

A Object World is a Grid World with random placed colored objects. Running into grids

with objects in different colors will lead to different rewards. We call it “collect the

object”. The agent will also get a large reward by arriving the destination. So, the ideal

policy should be going to the destination, while collecting as many objects with higher

rewards as possible. Figure 3.2 shows an example of object world. There are 5× 9 grids.

We randomly placed 2 green objects and 3 red objects in the scenario. Each object has

an color. An agent will gain a positive reward ([5, 8] in our setting), when it reaches a

grid with a red object, and a negative reward (ranging within [−5,−3]) when visiting a

green object. A grid with no object leads to a negative reward of−1. Moreover, when the

agent reaches the destination, it gets a large reward, within [15, 30]. At each grid, an agent

can take 5 different actions, including “stay” and “move” towards one of four directions.

With certain given transition probability, the agent would go to a random neighboring grid

along the direction it has chosen. We choose discount factor γ to be 1 for all experiments.

To evaluate our algorithm, we first randomly generate an Object World with pre-defined

parameters, including the number of colors and objects. Then, we randomly place all

objects in grids. We run value iteration with entropy-enhanced reward [142] to calculate a
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randomized original policy for the agent in the generated Object World. The target policy

is also randomly generated as the objectives of reward advancement.

Impact of difference between πo and πt. First, we examine the impact of the differ-

ence between original policy and target policy to the expected additional reward. We use

normalized 2-norm difference of two policy vectors to indicates the policy difference,

which is calculated by ‖πo, πt‖2 =
∑
s∈S

∑
a∈A(πo(a|s)−πt(a|s))2

|(s,a)| , where |(s, a)| is the number

of state-action pairs. We evaluate the expected additional reward, which is calculated as∑
s∈S
∑

a∈ADt(s, a)∆R(s, a) indicating the total amount of additional reward we would

provide. It’s hard to design target policy with specific difference from original policy,

so we group target policy with similar difference together and calculate the average ∆R.

The result is shown in Figure 3.3. The figure indicates that with increase of policy differ-

ence, the expected additional reward would increase. When larger than a certain threshold

of policy difference, the expected reward increases linearly, while the policy difference

increases linearly as well. This shows that even with target policy far from original dif-

ference, we can successfully transfer the policy at a reasonable cost.

Impact of the number of trajectories used in Monte Carlo policy evaluation. Monte

Carlo algorithm is employed to reduce algorithm running time. However, lower running

time lowers down the inference accuracy. The smaller the sample size is, the less accurate

the policy transformation is. Denote π′t as the policy transformed to after executing Algo-

rithm 3. Figure 3.4 shows how Monte Carlo sample size impacts the difference between

πt and π′t. It is clear that more sampled trajectories lead to more accurate results. Roughly,

we need around 5, 000 trajectories to achieve a relatively good accuracy. Moreover, with

the increase of Object World size, more trajectories are needed to enable accurate estima-

tion of additional rewards, for policy transformation.

Impact of state space size on algorithm running time. Though we have obtained the

close-form solution of ∆Q(s, a) and ∆R(s, a), computingQπt
o (s, a) is still the bottleneck
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component, in running time. Here we evaluate the efficiency of the Monte Carlo based

algorithm we proposed. Figure 3.5 shows the running time of 3 different algorithms.

The blue solid line with red dot indicates running time of Value Iteration, the brown

and red dash line with blue dot means running time of Monte Carlo method with 5, 000

and 10, 000 sampled trajectories, respectively. Obviously, the Monte Carlo method takes

much less time than standard Value Iteration. Moreover, the running time of Monte Carlo

method increases linearly, as the number of state increases quadratically. The running

time increases with more trajectories used. The result shows that the Monte Carlo method

is more computationally efficient.

3.5.2 Case studies

In this section, we use a real-world dataset to demonstrate the effectiveness of proposed

reward advancement algorithm. To validate the algorithm, we need to verify that agent’s

behaviors still follow MCE principle after reward advancement. To validate this assump-

tion, we use a large public transit dataset. We collected 6 months passenger-level public

transit data from Shenzhen, China, which allows us to evaluate the potential of redistribut-

ing passengers by transforming their decision policies, in trip starting time, station and

transport mode selection.

Passengers are making sequences of decisions when completing trips, such as which

bus routes and subway lines to take, which stops/stations to transfer at. Such sequen-

tial decision making processes can be naturally modeled as Markov decision processes

(MDPs). Since nearby stops/stations usually are similar to passengers, we will split the

whole city into grid cells and aggregate stops/stations within each grid cell. The states

are regional grids during different time intervals. Actions are available bus routes and

subway lines passengers can take. Our model and formulation follow the work [175].

We inversely learn the reward functions of passengers using Maximum Causal Entropy
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Figure 3.6: Map with source and destina-
tion of one agent and the newly established
subways.

Figure 3.7: Policy difference vs ∆Q(s, a).

Inverse Reinforcement Learning [206] and the features we use include monetary cost,

travel time, waiting time, and etc.

Additional reward can be provided using different methods, for example, deploying

one new subway line can surely provide additional rewards to passengers in many differ-

ent ways, for example, more transit choices, and lower average travel time. The Figure 3.6

illustrates the deployment of a new subway line in Shenzhen, which is the light blue dash

line. To validate our assumption that providing additional rewards can transform pas-

sengers’ behaviors to a target policy, we first learn the reward function from passengers’

trajectories before deployment of the subway line. Then, we use features changed by de-

ploying the new subway to calculate how much additional reward were provided. Lastly,

we calculate a new policy, πt, after reward advancement and compare this policy with

ground-truth policy, πtrue, of passengers after the deployment of new subway line.

Figure 3.7 shows that the policy differences of state-action pairs between πt and πtrue

are small, with the X-axis as the Q-function difference of each state-action pair before

and after subway deployment and the Y-axis as the relative error of πt and πtrue. The

small difference between πt and πtrue validates that our reward advancement theory in

Theorem 3.3.1.
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Chapter 4

Using Sequential Models in General

Human Prediction Problems

4.1 Introduction

Accurately predicting users’ behavior based on their history and short-term features plays

a critical role in many domains, such as major e-commerce companies, ride-hailing plat-

form, social networking, and education. As an illustration, we consider an important

problem of predicting drivers’ behavior, such as working hours or income per day, in

some ride-hailing platforms, such as Uber and Lyft. We call such a problem as Drivers’

Behavioral Prediction. Solving such driver prediction problem usually requires the in-

tegration of drivers’ history with some ’static’ features including personal characteristics

(e.g., age or gender), non-platform environment variables (e.g., government policy), and

platform policies (e.g., dispatching policy) to predict drivers’ future behaviors. Improving

the accuracy of such prediction may allow the ride-hailing platform to achieve a healthy

equilibrium between dynamic supply and demand systems.

However, most existing predictive models focus on the use of static features and some
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summary statistics of users’ history, such as Recency, Frequency, and Monetary (RFM)

value [10]. For instance, RFM analysis as a marketing technique has been widely used to

analyze customer’s behavior including how recently a customer has purchased (recency),

how often the customer purchases (frequency), and how much the customer spends (mon-

etary). It is beneficial to improve customer segmentation by dividing customers into var-

ious groups for future personalized services and for identifying customers who are more

likely to respond to promotions [77]. However, those summary statistics may have min-

imal predictive power in some problems, such as driver’s behavioral prediction. For in-

stance, as shown in Table 4.2, the inclusion of RFM gains little improvement in prediction

accuracy.

A significant challenge associated with moving beyond the simple summary statis-

tics of users’ history is how to use representation learning to learn an effective embed-

ding vector of the evolution of users’ properties. In many cases, such evolution can be

very complicated due to its considerable heterogeneity across users and/or time intervals.

For instance, in the driver’s behavioral prediction problem, we consider a working cy-

cle model such that each driver makes a sequence of decisions ordered by time, such as

being idle, taking orders, and logging off every day. Even within each driver, such a se-

quence pattern may vary dramatically across days. Moreover, since the working cycle

model is a sequential decision problem, it may be solved by using reinforcement learn-

ing (RL) [201]. Different from normal sequential problem, which can be solved using

RNN or LSTM, the original idea of RL is to find an optimal policy mapping from states

to actions to maximize user’s long-term rewards, rather than learning his/her embedding

vector. Instead, we consider Inverse Reinforcement Learning (IRL) algorithm for learning

the user’s embedding vector based on his/her preference vector.

The IRL problems arise naturally when one is interested in predicting future behav-

ior of agents based on the observations of his/her past behavior. The key idea of IRL
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is to find a reward function such that the distribution of state and action sequences un-

der a (near-)optimal policy with respect to the reward function matches the demonstrated

trajectories from an agent [119, 207]. Various estimation methods for IRL including

apprenticeship learning [1], maximum entropy IRL [207], Bayesian IRL [133], relative

entropy IRL [12], and maximum causal entropy IRL [11], have been developed in the lit-

erature. For instance, a broadly used solution to IRL problem [12] proposes a model-free

method to find the policy, while neural-network-based reward function [43] can represent

more complex expert behaviors. Moreover, IRL can also be viewed as a special case of

Generative Adversarial Networks (GANs) [42, 60].

Motivated by solving the drivers’ behavioral prediction problem, we develop a joint

IRL-DL framework of integrating drivers’ history and static features to predict drivers’ fu-

ture behavior. We use RL to formulate each driver’s working cycle in a day sorted by time

as a sequential decision-making process. The working cycle of each driver consists of

different decisions when the driver maximizes his/her total inherent rewards weighted by

income and other aspects. Then, we use IRL to learn each driver’s decision-making pref-

erence vector. Finally, we combine each driver’s preference vector with other attributes to

build a deep learning regression model (e.g., LTSM-neural network) for prediction. Our

contributions can be summarized as follows.

• We are the first to propose a general prediction framework of combining drivers’

static features and decision-making preference vector together for prediction.

• By modeling a driver’s daily working cycle process as a sequential decision-making

problem, we use IRL to learn the driver’s preference vector.

• We use a large-scale real-world data set obtained from a ride-sharing platform to

show that the use of a preference vector can achieve up to 13% improvement than

baseline models in terms of the prediction accuracy on different tasks.
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The rest of this chapter is organized as follows. We introduce the driver’s behavioral

prediction problem and provide a brief overview of data and the architecture of IRL-DL

in Section 4.2. The data-preprocessing part is elaborated in Section 4.3. Section 4.4 is to

model the driver’s working cycle as a Markov Decision Problem, and in Section 4.5, we

show how to learn a driver’s preference vector. Details of experiments and evaluations

are given in Section 4.6, followed by a brief discussion of related works in Section 4.7.

4.2 Overview

In this section, we introduce the drivers’ behavioral prediction problem, provide a de-

scription of the data set we use, and outline the IRL-DL framework.

4.2.1 Drivers’ Behavioral Prediction Problem

Definition 4.2.1 (Working Cycle) Each driver in a ride-hailing platform can decide when

to start to work and when to stop working every day. We define a complete working cy-

cle of every driver at a given day as the time interval from the starting time, denoted as

Timein, to the ending time, denoted as Timeoff .

We introduce an inter-cycle trajectory as a working static sequence of multiple work-

ing cycles. The inter-cycle trajectory is used to model the long-term behaviors of a driver.

Definition 4.2.2 (Inter-cycle trajectory) The inter-cycle trajectory of a driver is an or-

dered sequence, denoted as Trinter = (W1, . . . ,WN), where N is the total number of

working cycles andWi = {tstart,i, tend,i, fWi
} represents the i−th working cycle, in which

tstart,i is the start time of Wi, tend,i is the end time of Wi, and fWi
is the feature vector of

Wi for i = 1, . . . , N .
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Furthermore, we introduce an intra-cycle trajectory consisting of a sequence of all

orders that each driver finishes within the same working cycle. We use intra-cycle trajec-

tories to characterize the short-term behaviors of a driver.

Definition 4.2.3 (Intra-cycle trajectory) The intra-cycle trajectory of a driver’s i−th

working cycle is an ordered sequence of

Tri,intra = (Oi,1, Oi,2, . . . , Oi,Ni),

whereNi is the total number of orders in the i−th working cycle, andOi,k = {tk;start,i, tk;end,i, fOi,k}

represents an order with tk;start,i being the start time of order Oi,k, tk;end,i being the end

time of Oi,k, and fOi,k being the feature vector of Oi,k for k = 1, . . . , Ni.

We use X to denote the vector of all features other than intra-cycle and inter-cycle

trajectories. We now formally define the drivers’ behavioral prediction problem.

Drivers’ Behavioral Prediction Problem Definition Given a driver’s other features

inX , intra-cycle trajectory TRintra, and inter-cycle trajectory TRinter, we want to predict

his/her future behavior (e.g., total online time, income, or finished orders), denoted as G,

in the next period T .

4.2.2 Data Description

We use four data types in the data set obtained from a ride-hailing platform including

(i) order data; (ii) finance data; (iii) customer service worksheet data; and (iv) driver log

data. For consistency, all these data types are aligned with the same time period starting

from March 2018 to July 2018.

Order Data. Figure 4.1 shows a typical order in a ride-hailing platform consisting of

three key stages including pick-up stage(driving to the origin), waiting stage(waiting for

the passenger), and serving stage(sending the passenger to the destination).
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Figure 4.1: Illustration of an order being processed.

Finance Data. We consider various charging variables of each order including cus-

tomer’s payment, driver’s cut, driver’s incentives, time rate, distance rate, and sometimes

long-distance rate.

Customer Service Worksheet Data. We extract some variables from customer ser-

vice worksheet, such as the number of complaints of each driver received from passengers

since drivers with more complaints are more likely to leave the platform.

Driver Log Data. We extract the inter- and intra-cycle trajectories of each driver.

4.2.3 IRL-DL Framework

Figure 4.2 provides an overview of our proposed IRL-DL framework consisting of three

main components including data preprocessing, preference learning, and driver predic-

tion.

• Data Preprocessing. We first extract drivers’ working cycles from their log data.

Then, we align order data, finance data, and customer service data together at the

order level. Subsequently, we generate the intra-cycle trajectories, inter-cycle tra-

jectories, and additional features of all drivers.

62



Figure 4.2: The IRL-DL framework for the driver prediction problem

• Preference Learning. For each driver, we model the whole working cycle as

a Markov Decision Process (MDP) and use IRL to learn a reward function that a

driver uses to make various decisions based on intra-cycle trajectories. The reward

function represents the preference function that each driver would decide to keep

working or log off based on current and future expected rewards.

• Driver Prediction. We integrate the preference vector of each driver with all other

features to build a predictive model to predict a driver’s status.

4.3 Data Preprocessing

In this section, we introduce three key preprocessing steps to generate various features

and trajectories.
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Table 4.1: Example of Driver Log
Driver Time Action
0001 2018-03-20 08:00:35 Log in
0001 2018-03-20 08:03:04 Assigned Order
0001 2018-03-20 08:45:13 Finish Order

... ... ...
0001 2018-03-20 18:54:29 Log off

Figure 4.3: An illustration of data preparation process. The process contains 3 parts.
The upper time axis indicates two consecutive days. There are two valid log-in/log-off
pairs. The first one is from 9am to 19pm in the first day and the second pair is from
5am to 12am in the second day. Then, we generate features for each order and aggregate
them by working cycle. The outputs of this process contain both inter-day and intra-day
trajectories. For intra-day trajectories, we have 2 trajectories since we have two working
cycles.

4.3.1 Working Cycle Detection

Actions of each driver can be viewed as a sequence of actions ordered by time. Table 4.1

illustrates an example of one driver’s action log.

The working cycle should start with a log-in action and end with the following log-off

action. We show an example in Figure 4.3. As we have stated, we split those working

cycles based on the driver’s log-in/log-off actions.
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Figure 4.4: Illustration of an trip with 3 ExpressPool orders.

4.3.2 Order Aggregation

In the order aggregation process, we mainly have two tasks. The first task is to aggregate

features of the same order sitting in different data sources. The second task is to aggregate

ExpressPool orders based on which trip they belong to. ExpressPool is a carpool product,

whose details will be given later.

Features of one order are in different data sources. Features, such as pick-up distance,

driving distance, and other trip-related features are in the ordered dataset. Financial fea-

tures also include subsidies of drivers in the financial dataset, and one order may have

multiple records for different subsidies, such as passenger’s coupon and driver’s incen-

tive. Other features including customer service features like rating and complaints are in

a separate data source, and we align them using order IDs. For some complaints without

a particular order ID, we use driver ID and passenger ID to identify, which order those

complaints belong to.

The second task is to process ExpressPool orders. We use Figure 4.4 to demonstrate

how ExpressPool works. In Figure 4.4, For example, if there is a trip with 3 different

orders, where a trip is defined as from assignment of the first ExpressPool order to the

finish of the last ExpressPool order. Each passenger would pay fixed fees based on the

ExpressPool pricing model. As for the driver, he/she would still get his/her share based on

the distance and time he/she drove. In this case, the income of the driver was calculated
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based on the travel distance and travel time from picking up the first passenger to drop-

ping off the last passenger. This rule is to guarantee that the driver’s income would not

decrease even if he/she only gets one order the whole trip (since ExpressPool orders al-

ways have a discount). We then should aggregate ExpressPool orders to their correspond-

ing trips. Some features, such as subsidy and income can be added together. However,

some features of ExpressPool order should be aggregated based on the pricing strategy.

For example, the pick-up distance is the distance to pick up the very first passenger other

than the sum of pick-up distances of all 3 orders. After aggregating ExpressPool orders,

we also need to aggregate their features from other data sources as mentioned above. For

example, in Working Cycle A of Figure 4.3, orders 2 and 3 are ExpressPool Orders, so

we have to aggregate their features together.

4.3.3 Working Cycle Alignment

Finally, we can then use working cycles and aggregated orders to generate both intra-cycle

and inter-cycle trajectories. For intra-cycle trajectories, we fit aggregated order data into

different working cycles of each driver and then sort all orders by using its assignment

time. For inter-cycle trajectories, we can calculate features for each working cycle. The

features that we used in intra-cycle and inter-cycle trajectories include Working Status

such as Total Finished Orders and Last Order Feature like the total income of last

order. Just like the example in Figure 4.3, for the two working cycles, we can generate

one intra-day trajectory for each working cycle and one inter-day trajectory for all cycles.

4.4 MDP for Working Cycle Modeling

We explain how to use MDP to model the decision-making processes of a driver’s working

cycle.
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Figure 4.5: An illustration of MDP model for driver working problems: s0, . . . , sM are
states and each state has two actions including work and log-off. We use intra-day trajec-
tories to build MDP and learn the preference of each driver using IRL. The output of this
process is a preference vector Z for each driver.

We regard each driver as an independent "agent" since each driver has his/her own

preference. Each driver uses individual preference to evaluate various decision-making

features associated with the current state and each possible action, such as income, work-

ing hours, and personal experience [86]. The reward function indicates the driver’s pref-

erence for different features, and each driver makes his/her own decision to maximize a

total inherent reward during the whole working cycle other than only maximizing his/her

real income. For example, if a driver could have an unpleasant day, then he/she might

decide to stop working. Thus, for long term reward maximization problem, it is natural

to use MDP to model driver’s decision-making process. Below, we explain how to build

an MDP model based on the preprocessed data in Section 4.3.
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Agent: We use each driver as a single agent and then collect a certain amount of intra-

cycle trajectories, e.g., 3-month data. However, for some part-time drivers, we may not

have enough trajectories to learn a robust preference function, so we collect more trajec-

tories until there are at least N intra-cycle trajectories. We set N to be 30, and thus we

have at least 30 trajectories for each driver. However, for simplicity, we only draw two

trajectories in Figure 4.5.

Action setA: Let Tm be a predefined time interval associated with Sm form = 0, 1, . . . ,M .

As illustrated in Figure 4.5, a driver always has two actions during the idle stage includ-

ing continuing to work and logging off, forming an action set A in our problem. For

logging off, we omit temporal log-offs. Naturally, one intra-cycle trajectory would have

one log-off action in the end and multiple working actions.

State set S: As shown in Figure 4.5, we divide each day into fixed-length time slots, for

example, 10 minutes per time slot. Thus, we have 1, 440 states in total and M = 1440.

However, since drivers usually have their own pattern and they can work at most 12 hours

per working cycle, the state space is not very large.

Transition probability function P : S × A × S → [0, 1]. There are two actions in

A for each driver. If a driver would decide to log off, then the driver could finish the

trajectory. If the driver would continue to work, then it could lead to different result

states. Specifically, if the platform does not assign any order to the driver, then it would

result in an idle state. Otherwise, the driver transfers to the state represented by the

end time of an order. Thus, the transition probability contains two parts including the

probability to be assigned an order, denoted as Po(s), and the distribution of driving

time, denoted as Pd(s′|s, a). By combining those two probabilities together, we have

P (s′|s, a) = {1 − Po(s)} + Po(s)Pd(s
′|s, a). For example, in Figure 4.5, if the driver

logs in at state S0 and does not get any order assigned to him or her, then the driver will

transit to state S1. Otherwise, the driver will transit to S2 or other states based on how it
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takes the driver to finish the order. However, for some complicated dispatching strategy,

P (s′|s, a) may be different across subjects, which makes it very difficult to estimate Po(s)

and Pd(s′|s, a). Therefore, we employ a model-free method to learn the reward function

elaborated in Section 4.5.

Reward R: When drivers make decisions on whether to log off, they consider various

decision-making features, such as working hours, income, and experience. We will give

these decision-making features in the following subsection for more details.

In MDP, R : S × A→ R captures the unique personal preference of an agent, which

maps decision-making features (at a state s while taking action a) to reward value. These

decision-making features include working hours, income, and experience, among others.

Such reward function R(s, a) can be inversely learned from intra-cycle trajectory data. In

our problem, we assume R(s, aoff ) = 0, indicating that the immediate reward is 0 when

a driver decides to log off.

4.5 IRL-DL

In this section, we introduce IRL, describe how to learn driver’s preference based on the

MDP of driver’s working cycle, and integrate driver’s preference with other attributes to

predict driver’s future behavior.

4.5.1 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) has been widely used to learn a reward function

R(s, a) of an MDP in the past decade. The IRL is to find a reward function R(s, a)

such that the distribution of action and state sequences under a (near-)optimal policy

with respect to R(s, a) matches with the demonstrated trajectories observed from an

agent [119, 207]. A broadly used solution to IRL problem [12] proposes a model-free
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method to find the policy, which best represents demonstrated behaviors with the highest

entropy, subject to the constraint of matching feature expectations to the distribution of

demonstrated trajectories. The reward function R(s, a) is assumed to be a linear function

of observed feature f(s, a) at state-action pair (s, a), that isR(s, a) = θT ·f(s, a), where θ

is a preference vector. Thus, the reward of a trajectory is given by R(ζ) = θTf(ζ), where

ζ represents a trajectory from MDP and f(ζ) =
∑

(s,a)∈ζ f(s, a). Then, if some trajec-

tories are collected, we have
∑

ζ∈TR P (ζ)f(ζ) = f̃ , where TR is the set of all possible

trajectories, P (ζ) is the probability of ζ being generated by the MDP and f̃ is an empirical

feature expectation based on collected trajectories. We can then calculate the preference

vector θ by solving a maximum entropy problem and have P (ζ) = eθ
T f(ζ)/

∑
ζ∈TR e

θT f(ζ).

We may calculate the maximum likelihood estimate of θ by using standard gradient de-

cent method with the gradient given by f̃ −∑ζ∈T̃R P (ζ)f(ζ), where T̃R is the set of

observed drivers’ trajectories.

4.5.2 Driver’s Preference Learning

In our problem, f̃ and f(ζ) can be easily calculated from observed data. However, it

remains an open question how to calculate the probability of trajectory being gener-

ated by the MDP constructed by using method mentioned in Section 4.4, namely P (ζ).

From the definition of P (ζ), we know that,P (ζ) = P0(s0)
∑T

t=1 π(st, at)P (st+1|st, at),

where P0(s0) is the initial start distribution, π(st, at) is the probability from policy, and

P (st+1|st, at) is the transition probability, in which st+1 is the next state in ζ . It follows

that the transition probability contains two parts including Po(st) and Pd(st+1|st, at).

However, it is difficult to estimate the two parts of the transition probability by using

observed data. The travel time distribution Pd(st+1|st, at) is long-tailed and quite wide

due to the presence of occasionally long orders, such as orders to airport or even some-

times to another city. It brings difficulties that wide distribution would increase computa-
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tional complexity and the long-tailed part of Pd(st+1|st, at) would not be robust to noise.

Moreover, the probability of getting an order Po(st) is more difficult to estimate due to

dispatching strategy and environment. Thus, model-based methods based on transition

probability do not work well for our problem.

We employ Relative Entropy Inverse Reinforcement Learning (REIRL) to learn the

preference vector. The REIRL is a model-free method and uses importance sampling to

estimate F =
∑

ζ∈T̃R P (ζ)f(ζ) as follows:

F =
∑
ζ∈T̃R

U(ζ)φ(ζ)−1eθ
T f(ζ)∑

ζ′∈T̃R U(ζ ′)φ(ζ ′)−1eθT f(ζ′)
f(ζ), (4.1)

where U(ζ) is a uniform distribution and φ(ζ) is the trajectory distribution from a sample

policy φ, where φ(ζ) = Π(s,a)∈ζφ(s, a). The brief derivation and the proof of (4.1) can

be found in [12].

The gradient f̃ −∑ζ∈T̃R P (ζ)f(ζ) can be estimated by

∇θL(θ) =f̃ −
∑
ζ∈T̃R

P (ζ)f(ζ)

=f̃ −
∑
ζ∈T̃R

U(ζ)φ(ζ)−1eθ
T f(ζ)∑

ζ′∈T̃R U(ζ ′)φ(ζ ′)−1eθT f(ζ′)
f(ζ).

(4.2)

Applying the IRL algorithm, we can learn the preference vector θ.

To make preferences across models of different drivers comparable, we use z-score

[89] normalization. Higher/lower z-score on the k-th feature, denoted as zik, means that

driver i has strong preference on the k-th feature. The use of z-score in our problem has

two major advantages. First, we can compare different drivers’ preferences via their z-

scores. Second, the elements of zi would most likely lie between [−3, 3], but those of

θi could be any real value. This shows the advantage of training neural networks. The
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z-score can be calculated as zi = diag(H
− 1

2
i ) � θi, where i indicates the i-th driver, H−1

i

is the inverse of Hessian Matrix of θi, diag(·) means diagonal elements of a matrix, and

we use � to denote element-wise multiplication. Furthermore, we have

Hi =
∂2L(θi)

∂2θi

=

[∑
ζ

P (ζ)fi(ζ)

(
fj(ζ)−

∑
ζ′

P (ζ ′)fj(ζ
′)

)]
,

(4.3)

where fi(ζ) and fj(ζ) means the i-th and j-th elements of f(ζ), respectively. And P (ζ)

can be estimated using importance sampling. After acquiring the z-score zi of each driver,

we can then build up a model to predict drivers’ future behavior.

4.5.3 Regression Models for Drivers’ Behavioral Prediction

We elaborate more on regression models and features that we use to predict drivers’ be-

havior, such as total online time, income and finished orders. Figure 4.6 illustrates the

general LatentCross [9] framework of the neural network for doing driver’s prediction. It

is the Driver Prediction part in Figure 4.2. The first component is the trajectory embedding

model, which in our case we use PhasedLSTM [116] as an example, but any model deal-

ing with sequential data can be plugged in the sequential layer. As shown in Figures 4.2

and 4.6, this part takes Inter-day trajectories, which are the output of data preparation

process demonstrated in Figure 4.3, as input and produces an trajectory embedding. The

right component of Figure 4.2 is to take the driver preference that we learn in the pref-

erence learning phase as input. Then, we apply several dense layers to add non-linearity.

As stated above, the input is zi rather than the raw preference vector θi. Then, we use

the element-wise product layer to combine trajectory embedding and driver’s preference,

which is the same as LatentCross, in order to capture two-way relationship between the

hidden state and each context feature [9]. Finally, a dense layer is added to produce final
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Figure 4.6: Illustration of the network structure of IRL-DL. The left component takes
inter-day trajectory as input to feed into a sequential layer and the output is r h′. The right
part takes driver preference Z as input and the output is denoted as z′.

prediction.

Algorithm 4 shows how to predict a driver’s behavior for a trained prediction model.

First, we collect intra-cycle trajectories from multiple data sources that we described in

Section 4.2. Then, we construct a working-cycle MDP based on the observed intra-cycle

trajectories and we can use MDP and IRL to learn driver’s preference vector. Finally,

we combine the inter-cycle trajectory, driver’s preference vector, and other attributes to

predict driver’s behavior. Furthermore, for a new driver, without historical behavior data,

we return the mean prediction of all drivers as predictive value.

73



Algorithm 4 Driver Prediction

1: INPUT: Driver ID Di;
2: OUTPUT: Some predicted status of Di, denoted as Gi;
3: Collect intra-cycle trajectory set TRintra of Di;
4: Build Markov Decision Process using TRintra;
5: Learn the preference vector θi via Relative Entropy Inverse Reinforcement Learning;
6: Extract inter-cycle trajectory set TRinter for driver Di’s historical behaviors;
7: Use trained PhasedLSTM model to predict Gi based on the input of θi and TRinter using the

LatentCross Framework in Figure 4.6;
8: Return Gi

4.6 Evaluation

In this section, we use extensive experiments to verify the effectiveness and efficiency of

our proposed IRL-DL for drivers’ income.

4.6.1 Experiments Setting

We extracted data from 58, 160 drivers starting from March, 2018 to July, 2018 in a city.

Data from March to May were used to train, and data in June and July were used as

test data. First, we collected drivers’ two-month intra-cycle trajectories to learn drivers’

preference and then used 30-day long inter-cycle trajectories and drivers’ preference to

build prediction models, in which the target value is driver’s total income in the next

30 days. To predict income, we use driver’s total income in the 30 days of July as the

ground truth. Then, intra-cycle trajectories generated in June were used to learn driver’s

individual preference and the prediction was made based on driver’s preference and 30-

day long inter-cycle trajectories. Since the accurate prediction of when a driver would

log off indicates that the learned preference vector may indicate how drivers make his/her

log-off decision, we used AUC score to evaluate the accuracy of log-off action prediction

accuracy for preference learning.

As for driver’s income prediction, Mean Absolute Error (MAE) is used as the evalua-
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tion metric. For information safety, we normalize the actual response by dividing by their

average. We compare our model with three sets of baseline models.

• Shallow Models. We compare our method with two types of models. The first one

is the BG-NBD model, in which we denote drivers’ working days as "purchase" and

their earnings as "monetary value" and build a RFM model to do drivers’ behavioral

prediction. Moreover, instead of using LSTM and neural network, we generate

statistical features in various time intervals and feed those features into a shallow

model, such as XGBoost, to predict each driver’s income.

• Models Without Driver Preference. In those models, we omit driver’s preference

and only use driver’s historical behaviors to predict driver’s income. We also use

RFM features extracted from the BG-NBD model to train those models.

• Trajectory Embedding Component. We also compare multiple sequential mod-

els including RNN, LSTM, and Phased-LSTM. Moreover, any other sequential

model can be added into our IRL-DL framework since the goal of this chapter is

that the inclusion of additional decision-making preference can be combined with

any trajectory embedding models in order to achieve better prediction accuracy.

4.6.2 Preference Learning

We evaluate the effectiveness of our preference learning model. Figure 4.7 shows the

distribution of AUC scores with the y-axis being the number of driver. It indicates that for

most drivers, preference vector learned can accurately predict whether a driver would log-

off. However, for a few number of drivers, we do not have accurate prediction due to the

lack of sufficient records. See Figure 4.8 for the relationship between AUC score and the

size of records. Each point in Figure 4.8 indicates one individual driver. We also verify

that the preference vector we learn is correlated with driver’s future behavior. Specifically,

75



Table 4.2: Online time prediction error (MAE)
w/o RFM w RFM w/o RFM w RFM
w/o Pref. w/o Pref. w Pref. w Pref.

BG-NBD N/A 0.5953 N/A N/A
XGB 0.4532 0.4166 0.3898 0.3890

RNN-30 0.3883 0.3703 0.3258 0.3257
RNN-60 0.3681 0.3642 0.3146 0.3140

LSTM-30 0.3574 0.3510 0.3105 0.3103
LSTM-60 0.3430 0.3413 0.2957 0.2956

PLSTM-30 0.3502 0.3419 0.3004 0.2993
PLSTM-60 0.3483 0.3371 0.2933 0.2930

we use the K-Means algorithm to split drivers into five different clusters based on their

preferences. Figure 4.9 shows the distribution of future online time in the next 30 days

for each cluster, revealing that different clusters correspond to different online time dis-

tributions. It may further indicate that drivers’ preferences define their working patterns,

contributing to their future performance. In summary, driver’s preference is accurate and

of great potential value for the drivers’ behavioral prediction problem.

4.6.3 Drivers’ Behavioral Prediction

We conduct experiments to show that our proposed framework can increase the prediction

performance in a variety of tasks.

Algorithm Efficiency. We show the computational effectiveness of our proposed

framework. Table 4.2 shows 29 different models that we used. The first one is the BG-

NBD model, which has the poorest performance. The second four models are based

on XGBoost. We also consider RNN, LSTM and PhasedLSTM models with different

numbers of output size in the trajectory embedding layer as well as the output dimension

of preference layer.

We have the following observations. First, the use of driver’s preference can reduce

prediction error for more than 10%. Second, deep models, such as RNN and LSTM,
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Figure 4.7: Number of drivers vs AUC
score.

Figure 4.8: AUC score vs number of (s, a)
pairs collected

Figure 4.9: Online time distribution of dif-
ferent group of driver Figure 4.10: MAE on different tasks.

Figure 4.11: MAE vs amount of data. Figure 4.12: Prediction distribution of Task.

outperform the XGBoost model. Third, the benefit of increasing network complexity

from 30 to 60 is not significant enough. Therefore, without loss generality, we fix output
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size at 30. Fourth, the RNN model without driver preference can outperform XGBoost

even with the use of driver preference. Fifth, among all models, PhasedLSTM with the

use of driver preference can achieve the best performance since PhasedLSTM can capture

the long-term effect of temporal sequences. Therefore, PhasedLSTM would be used as

a default option in the following evaluation. Also, for shallow models, RFM features

can slightly improve prediction accuracy solely. Also, for deep models like LSTM and

PhasedLSTM, the contribution of using recency, frequency and monetary values is pretty

marginal, since the RFM related pattern can be learned by sequential models.

Different Tasks. We consider additional tasks including predicting total online time,

driver’s average income per day, and driver’s worked days in the next month. The results

in Figure 4.10 indicate that our model performs well in all tasks. Therefore, preference

vector may represent driver’s behavior in different aspects.

Amount of Data. We investigate the amount of data that we need. In this experiment,

we choose drivers’ total online time in the following 30 days as target response. The

result in Figure 4.11 shows the prediction error (MAE) versus the number of working

cycles that we used to train the model. The results indicate that MAE is essentially the

same even with more than 23 working cycles. We can also reduce the randomness of data

by including more observations. This randomness may come from two resources. The

first one is the environment randomness and the second one is that drivers may exhibit

certain randomness.

Prediction Illustration. We choose one task to illustrate the prediction result ob-

tained from the proposed framework. Figure 4.12 presents the actual distribution of

driver’s online time and the predictive distribution. We have the following observations.

First, the two distributions are very similar to each other. Specifically, the KL-divergence

of those two distributions is equal to 0.1503. However, if we aggregate all drivers to-

gether, then their behaviors would be more predictable and the prediction performance is
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better. Second, the true distribution of A is more long-tailed compared with the predic-

tion distribution of A. It indicates that our prediction model may make a few conservative

predictions since the long-tailed part is often caused by rare cases.

4.7 Related Work

In this section, we summarize the literature works in two related areas to our study: 1)

inverse reinforcement learning, and 2) user choice modeling. Learning reward function

R(s, a) of an MDP is a problem which has been broadly studied in the past decade, which

is called Inverse Reinforcement Learning. The inverse reinforcement learning problem

(IRL) is to find a reward function R(s, a), such that the distribution of action and state

sequences under a (near-)optimal policy with respect toR(s, a) matches the demonstrated

trajectories from an agent [119, 207]. A broadly used solution to IRL problem [12] pro-

poses a model-free method to find the policy. Besides, neural-network-based reward func-

tion [43] is considered, which can represents more complex expert behaviors. And the

Inverse Reinforcement Learning can be viewed as a special application of GAN [42, 60].

Also, IRL is used to model human’s sequential decision-making process and is used to

predict human behaviors in urban transit system [164]. Inspiring by these work, we also

use Inverse Reinforcement Learning algorithm to extract driver’s preference vector. User

choice modeling has been extensively studied in the literature with applications, which

investigate how users make decisions in various application scenarios. For examples,

in [144], they use random utility maximization and random regret minimization to an-

alyze users’ choice on park-and-ride lots. In [207], the authors propose a probabilistic

approach to discover reward function for which a near-optimal policy closely mimics

observed behaviors. However, differing from these works, we employ data-driven ap-

proaches to study the unique decision-making process of urban public transit passengers.
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Chapter 5

Training Stability in Learning

Recurrent Models

5.1 Introduction

Thanks to the fast development of mobile sensing technologies, large amounts of sequen-

tial data are being collected rapidly, such as vehicle GPS records, stock prices, sensor

data from air quality detectors, etc. In these sequential datasets, the points in a sequence

are dependent on the other points in the dataset. In practice, there are many applications

in mining these sequential data. For example, Natural Language Processing (NLP) [34]

aims to predict or guess the next word for us (Fig 5.1(a)), and human activity recognition

(HAR) [84, 2] predicts or classifies human activities from sequential data collected from

IoT wearable devices, such as accelerometers and gyroscopes (Fig 5.1(b)). Recurrent neu-

ral networks (RNNs) have achieved significant success in tackling these applications, i.e.,

learning complex patterns for sequential input data. At each time step t, an RNN stores

the previous hidden state vector, ht−1 ∈ RD, and upon receiving the current input vector,

xt ∈ Rd, linearly transforms the tuple (ht−1,xt) and passes it through a non-linearity
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(a) Language modeling. (b) Human activity prediction.

Figure 5.1: Illustration of various sequential tasks. For (a)language modeling task, we use
sentence as input of recurrent models to predict the next word. As for (b)human activity
prediction, the figure shows sensor data from IoT wearable devices on body, arms and
legs respectively when the user jumps.

to update the state vectors over T time steps. Subsequently, RNNs output the predic-

tions as a function of the hidden states. The model parameters (i.e., state/input/prediction

parameters) are learned by minimizing an empirical loss.

In the literature, there are significant amount of works on developing RNNs such as,

just to name a few, long short-term memory (LSTM) [61], gated recurrent unit (GRU)

[23], UGRNN [26], FastGRNN [84], unitary RNNs [4, 72, 188, 113, 130], deep RNNs

[127, 208, 114], linear RNNs [13, 90, 6], residual/skip RNNs [70, 8, 18, 15, 84], ordinary

differential equation (ODE) based RNNs [152, 121, 16, 84, 19, 138, 73].

Continuous-Time RNN (CTRNN). [135] introduced continuous-time RNN to mimic

activation propagation in neural circuitry, which is modeled as follows:

βġt = −αgt + φ(Ugt + Wxt + b), (5.1)

where at the t-th time step, xt ∈ Rd denotes the input signal, gt ∈ RD denotes the

hidden state vector, ġt denotes the change rate of the vector gt, φ denotes the activation

function parametrized by U ∈ RD×D,W ∈ RD×d,b ∈ RD, and α, β ∈ R+ denote some
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predefined constants.

Incremental RNN (iRNN). Inspired by CTRNN, [73] introduced an incremental RNN

whose hidden-state transition function is defined as follows:

zt = gt + ht−1, (5.2)

βġt = −αzt + φ(Uzt + Wxt + b),gt(0) = 0,ht = g∗t ,

where gt(0) denotes the initial value for gt, g∗t denotes an equilibrium point of the ODE,

if any, and α, β ∈ R+ are learnable through iRNN training. Then by using Euler’s method

to discretize the ODE in Eq. 5.2, we can further rewrite the equation as

zt(k) = gt(k) + ht−1, (5.3)

gt(k + 1) = gt(k) + ηkt (φ(Uzt(k) + Wxt + b)− αzt(k)),

gt(0) = 0,ht = gt(K), k ∈ [K − 1],

where α, ηkt ∈ R+ are some learnable parameters. [73] proved that under mild conditions

gt(k) converges linearly and limK→∞ gt(K) = g∗t , if any equilibrium exists. Note that

Eq. 5.3 is used for implementation.

Training Stability Challenge of RNNs. Vanishing and exploding gradients often occur

in training RNNs, due to the repeatability of network weights in the chain rule when com-

puting gradients, leading to instability in training with their magnitude either too small or

too large. It has been proven that theoretically there is no vanishing/exploding gradient

in the training of iRNN, leading to fast convergence empirically. In the literature, some

other RNNs have analyzed and demonstrated their training stability as well, such as Anti-

symmetricRNN [16], LipschitzRNN [40], MomentumRNN [120], nnRNN [74], expRNN

[92]. In particular, the stability analysis often comes with the eigenvalues of the Jacobian
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Figure 5.2: Illustration of the network architecture in our DIRNN with L = 3 and T = 4.
Here each blue node represents a neuron in the network that a hidden state vector is
generated by an ODE.

of the hidden state dynamics in order to study the problem of vanishing/exploding gradi-

ents. Recently, [134] proposed analyzing RNN training using attractors and smoothness

as alternatives.

Lyapunov Stability in Dynamical Systems. RNNs are often considered as dynamical

systems, and several derivatives are developed from this perspective, such as iRNN and

AntisymmetricRNN. However, there are few works that borrow the theory of dynamical

systems to analyze the RNN training stability (without strong assumptions on the Jaco-

bian). Recently, [39] studied the Lyapunov spectra of chaotic recurrent neural networks.

[162] proposed using Lyapunov exponents to understand the information propagation in

RNNs, but unfortunately there is no discussion on how to introduce such nice Lyapunov

stability into the development of RNNs. [36] proposed viewing neural networks from

a dynamical systems perspective as pointwise affine maps. However, the theoretical re-

sults are adapted from dynamical system analysis and the assumptions for deep neural

networks are too strong to be met in practice. [159] proposed an ODE based network

implementation to guarantee stability as well as incorporating prior knowledge.
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Deep (Stacked) RNNs. By stacking the conventional shallow RNNs such as LSTM,

GRU, or iRNN, we can generate deep RNNs whose hidden states depend on the previous

states along not only time steps but also network layers. In particular, in this work we

consider the deep RNN as illustrated in Fig. 5.2. It is well-known that deep RNNs

require a considerable amount of work (such as learning rate and clipping) to ensure

proper convergence. In other words, the training stability of deep RNNs can be achieved

empirically with careful initialization, but its theoretical property still remains elusive.

Our Contributions. In this chapter, we study the training stability of deep RNNs from the

perspective of Lyapunov stability, and propose a novel deep incremental RNN (DIRNN)

that is a generalization of iRNN into the deep regime.

• Theoretical contributions: We prove that our DIRNN is essentially a Lyapunov stable

dynamical system with a set of equilibrium points, each for a hidden state. We then

prove the training stability of DIRNN where there exists no vanishing/exploding gradi-

ent. To the best of our knowledge, we are the first to provide such theoretical results on

the training stability for deep RNNs.

• Empirical contributions: The model sizes of deep RNNs grow linearly with the increase

of the network depth, which may limit the applications of DIRNN in reality. To address

this problem, we propose a sparsified DIRNN, namely TinyRNN, that significantly re-

duces the number of parameters with marginal accuracy loss. We evaluate our approach

on seven benchmark datasets and demonstrate state-of-the-art performance.

5.2 Related Work

RNN Architectures. LSTM [61] applies gate-controlled memory cells to mitigate the

vanishing/exploding gradient issue in sequence-based tasks. Another widely-used variant
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of RNNs is GRU [23]. Both LSTM and GRU are developed through sophisticated recur-

rent units [25]. In particular, FastGRNN [84] feed-forwards state vectors to induce skip

or residual connections, to serve as a middle ground between feed-forward and recurrent

models, and to mitigate gradient decay. ShaRNN [32] was proposed to induce long-term

dependencies and yet admit parallelization, where the first layer splits the input sequence

and runs several independent RNNs, and the second layer consumes the output of the

first layer using a second RNN thus capturing long term dependencies. iRNN [73] was

proposed based on a novel ODE based formulation to facilitate the training of RNNs by

achieving identity gradient between hidden layers and low-rank matrix decomposition.

Unitary and orthogonal RNNs aim to preserve the norm of hidden features by controlling

the eigenvalues, explicitly or implicitly, that has been studied extensively in recent years

[4, 72, 188, 113, 130, 40, 74, 92, 56, 111]. For instance, [92] proposed expRNN by per-

forming the first-order optimization with orthogonal and unitary constraints based on a

parametrization stemming from Lie group theory through the exponential map.

Deep RNNs. RNNs are inherently deep in time. Inspired by this property, researchers

are seeking to develop new networks to investigate the benefits of depth in space of RNN

architectures. For instance, [49] combined multiple recurrent levels on the basis of bi-

directional LSTM [50, 143] to improve RNN performance in speech recognition task.

Another study in [58], with a deeper analysis of the different emergent time scales, also

proposed a similar stacking architecture. [95] proposed IndRNN where neurons in the

same layer are independent of each other and they are connected across layers. Other deep

RNNs have been proposed in the literature as well [20, 38, 41, 141, 48, 69, 127, 131].

Lightweight RNNs. Recently, lightweight RNNs, i.e., RNNs with small model sizes,

have been attracting more and more attention due to the great potentials in both academic

research and industrial products [73, 32, 107, 80, 115, 137, 84]. Such RNNs can be loaded

on mid-end and more powerful high-end edge devices such as smartphones, and have been
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introduced into some real-world applications such as machinery fault diagnosis [107]. In

particular, FastGRNN [85] employed gated techniques and fixed-point quantization to

further compress the models learned by FastRNN. [157, 158] proposed hybrid matrix

decomposition (HMD) and Kronecker product (KP) approaches, respectively, for RNN

compression on edge devices. Both approaches belong to low-rank tensor decomposition.

DirNet [189] was proposed based on an optimized fast dictionary learning algorithm to

compress RNNs on mobile devices.

5.3 DIRNN: Deep Incremental RNN

Motivation. iRNN [73] introduced an interesting notion of “identity” gradient in back-

propagation. That is, given two arbitrary hidden state vectors ht,ht−1, (t ∈ [T ]), it holds

that ∂ht+∂ht−1 = 0 where ∂ denotes the partial derivative operator. Letting τ denote the

continuous time for measuring the change rate, we then can achieve the following ODE:

ḣt(τ) + ḣt−1(τ) ≡ ∂ht(τ)

∂τ
+
∂ht−1(τ)

∂τ
= 0,∀t ∈ [T ]. (5.4)

Now if we take ht,ht−1 as variables, then such linear dynamical systems are Lyapunov

stable (see Def. 5.3.1). This novel perspective motivates us to study the training stability

for deep RNNs.

Formulation. In order to prove the Lyapunov stability, we intentionally propose the fol-

lowing ODE based hidden-state transition function for our DIRNN with L hidden layers:

zl,t = gl,t +
l−1∑
m=1

γm,thm,t +
t−1∑
n=1

ρl,nhl,n, (5.5)

βlġl,t = −αlzl,t + φ(Ulzl,t + Wlxt + bl),

gl,t(0) = 0,hl,t = g∗l,t,∀l ∈ [L],∀t ∈ [T ],
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where gl,t(0) denotes the initial value for gl,t, g∗l,t denotes an equilibrium point of the

ODE, if any, and αl, βl ∈ R+, γm,t, ρl,n ∈ R are learnable through DIRNN training.

Compared with Eq. 5.2, we can see that the key difference between DIRNN and iRNN

lies in the auxiliary variable zl,t where DIRNN involves additional stacked hidden state

vectors with suitable weights. This formulation corresponds to the network architecture

in Fig. 5.2.

5.3.1 Stability Analysis

Definition 5.3.1 (Lyapunov Stability [140]) Consider a nonlinear dynamical system ẋ =

f(x(τ)), x(0) = x0 with the system state vector x(τ) ∈ D ⊆ Rn and a continuous func-

tion f : D → Rn. Suppose that f has an equilibrium at x∗ so that f(x∗) = 0, then this

equilibrium is said to be Lyapunov stable, if for every ε > 0, there exists a δ > 0 such

that, if ‖x(0)− x∗‖ < δ, then for every τ ≥ 0 we have ‖x(τ)− x∗‖ < ε.

In other words, if the solutions that start near an equilibrium point x∗ stay near x∗ forever,

then x∗ is Lyapunov stable.

Proposition 5.3.2 ([16]) The solution of an ODE is (Lyapunov) stable if maxi=1,··· ,nRe(λi(J(t))) ≤

0,∀t ≥ 0, where J(t) ∈ Rn×n denotes the Jacobian matrix of function f , λi(·) denotes

the i-th eigenvalue, and Re(·) denotes the real part of a complex number.

Lemma 5.3.3 Consider the change rates of hidden states h over continuous time τ . Then

DIRNN satisfies

żl,t = ḣl,t +
l−1∑
m=1

γm,tḣm,t +
t−1∑
n=1

ρl,nḣl,n = 0,∀l,∀t. (5.6)

Proof: By plugging the equilibrium point into the ODE, we have −αlz + φ(Ulz +

Wlxt + bl) = 0. Now by taking the derivative w.r.t. τ , we have αlżl,t =
[
∇φ ·UT

l

]
żl,t
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that holds for all possible xt, leading to żl,t = 0. Here ∇ denotes the gradient operator

and (·)T denotes the matrix transpose operator. We now complete our proof.

Theorem 5.3.4 (Stability of Hidden States) We define s =
∑

l,t zl,t =
∑

l,t θl,thl,t where

θl,t ∈ R,∀l,∀t denotes the combination weights. Then it holds in DIRNN that

ṡ(τ) = 0,∀τ ≥ 0, (5.7)

leading to a Lyapunov stable dynamical system.

Proof: We can achieve Eq. 5.7 based on Eq. 5.6 in Lemma 5.3.3. This is equivalent

to ṡ = 0 · s whose Jacobian is 0 where all the eigenvalues are zeros. Then based on Prop.

5.3.2, we can complete our proof.

Theorem 5.3.5 (Training Stability) Assuming θl,t 6= 0,∀l,∀t in Thm. 5.3.4, then it

holds in DIRNN that
∥∥∥∂s(τ)
∂hl,t

∥∥∥
F

is constant in time, leading to no vanishing or exploding

gradient. Here ‖ · ‖F denotes the Frobenius norm of a matrix, respectively.

Proof: Base on Thm. 5.3.4, we have ∂
∂τ

(
∂s(τ)
∂hl,t

)
= ∂ṡ(τ)

∂hl,t
= 0,∀l,∀t. Then based

on Def. 5.3.1, the magnitude of ∂s(τ)
∂hl,t

along any direction is constant in time, and thus∥∥∥∂s(τ)
∂hl,t

∥∥∥
F

is constant in time. If there were vanishing gradients over all the hidden states

(i.e., slow update), the F-norm would be arbitrarily small. If there were exploding gradi-

ents over at least one hidden state (i.e., fluctuation), the F-norm would be arbitrarily big.

We now complete our proof by the contradictions of both cases to the constant F-norm.
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5.3.2 Implementation

Similar to iRNN in Eq. 5.3, we apply Euler’s method to compute the equilibrium point

for each hidden state, i.e.,

zl,t(k) = gl,t(k) +
l−1∑
m=1

γm,thm,t +
t−1∑
n=1

ρl,nhl,n, (5.8)

gl,t(k + 1)

= gl,t(k) + ηkl,t(φ(Ulzl,t(k) + Wlxt + bl)− αlzl,t(k)),

gl,t(0) = 0,hl,t = gl,t(K), k ∈ [K − 1],∀l ∈ [L], ∀t ∈ [T ].

Theorem 5.3.6 Suppose that φ(·) is a 1-Lipshitz function in the norm induced by ‖ · ‖

(i.e., the `2 norm), ‖Ul‖ < αl, and ηkl,t ≤ 1
αl−‖Ul‖

,∀k, then it follows that DIRNN in

Eq. 5.8 converges to the equilibrium point asymptotically, i.e., hl,t = limK→∞ gl,t(K) =

g∗l,t. Moreover, if ηkl,t = ηl,t,∀k holds, then the convergence is linear with the rate of

1− ηl,t(αl − ‖Ul‖).

Proof: Letting T (g) = g + ηkl,t(φ(Ulzl,t(g) + Wlxt + bl) − αlzl,t(g)), similar to

iRNN, it follows that T (·) is a contraction: ‖T (g)− T (g′)‖ ≤ [1− ηkl,t(αl − ‖Ul‖)]‖g−

g′‖ < ‖g−g′‖. Therefore, the Euler’s method in Eq. 5.8 leads to asymptotic convergence,

with linear rate if ηkl,t are the same over k. We then complete the proof.

Learning Objective. Given training data (x, y) ∼ X × Y where x = {x1, · · · ,xT} is a

data sample and y is its label, we aim to minimize the following loss:

min
αl,γl,t,ρl,t,η

k
l,t,ω,Ul,Wl,bl

∑
(x,y)∼X×Y

`
(
y, zL,T ;ω

)
, (5.9)

where ` : Y × RD × Ω → R denotes the loss function parameterized by ω such as

cross-entropy.
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Figure 5.3: Training stability validation for Thm 5.3.5.
5.3.3 Discussion

We validate our analysis on the Adding task that is widely used for RNN evaluation. We

strictly follow [4] to generate the dataset using the public code1. There are two sequences

with length T = 50. The first sequence is sampled uniformly at random U [0, 1]. The

second sequence is filled with 0 except for two entries of 1. The two entries of 1 are

located uniformly at random position i1, i2 in the first half and second half of the sequence.

The prediction value is the sum of the first sequence between [i1, i2]. The ground-truth

mean squared error is 0.167 when a model simply guesses 1 as the output regardless of

1https://github.com/rand0musername/urnn
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the input sequence. We use the value 0.167 as the baseline.

Stability Validation in Thm. 5.3.5 with Random Gaussian Weights for DIRNN. Note

that s is a variable over continuous time, which is difficult to measure directly. Instead,

we utilize the sampling approach to simulate it. Specifically, first we randomly select a

sample from the dataset (denoted as τ = 0) and add Gaussian noise (sampled from ei-

ther N (0, 0.1) or N (0, 1)) to each time step of the sample to generate a new sample at

the time τ , leading to 5,000 new samples in total. Then we feed these samples together

with the original one to DIRNN with random Gaussian weights for L = 3 as demon-

stration. Such weights satisfy the conditions in Thm. 5.3.6. The activation functions φ

are either ReLU or tanh, and the hidden state vectors are well distributed. Finally we

compute
[
‖∂ṡ(τ)
∂hl,t
‖/‖∂ṡ(0)

∂hl,t
‖ − 1

]
l=3,t=1

to measure the stability, and illustrate the results in

Fig. 5.3. Though the errors in computing the equilibrium points are propagated through

the network, we can still observe that:

• A larger K leads to better stability, regardless of the noise, indicating that our analysis

should hold for the equilibrium points, i.e., K → +∞;

• With small amounts of noise, all K’s can perform similarly, on average, to preserve the

stability;

• With large amounts of noise, K = 1 seems to fail due to the poor estimation of the

equilibrium points.

Such observations can be made across different network depth L, sequence length T ,

network weights, and activation functions that satisfy the conditions in Thm. 5.3.6. Please

refer to our supplementary file for more results.

Validation of Convergence to Equilibrium in Thm. 5.3.6. In general, it will be chal-

lenging to learn a deep model that can meet all the conditions in Thm. 5.3.6, except for

homogeneous functions over Ul,Wl,bl, γl,t, ρl,t. To see this, we can rewrite the condi-

tions as maxk{αl−1/ηkl,t} ≤ ‖Ul‖ < αl. Since empirically it often holds that 0 ≤ αl ≤ 1
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Figure 5.4: Illustration of convergence on the adding task.
and 0 ≤ ηkl,t ≤ 1, the lower bound here is often less than 0, while ‖Ul‖ is often bigger

than 0. Therefore, very often the lower bound holds. To guarantee the upper bound, we

can simply divide Ul,Wl,bl, γl,t, ρl,t by a sufficiently large constant. Such rescaling will

not affect the lower bound.

Note that the conditions in Thm. 5.3.6 are sufficient. Therefore, in practice even

the function in Eq. 5.8 is not homogeneous, the update for ODE may still converge.

We illustrate such convergence behavior in Fig. 5.4(a) with either ReLU (leading to a

homogeneous function in Eq. 5.8) or tanh as our activation functions. The network

architecture is the same as the one for stability validation. Then we use Eq. 5.8 to compute

the distances between the k and k − 1 iterations in ODE. The monotonically decreasing

curves over different layers demonstrate the convergence for both activation functions.

Training Convergence on Adding Task. To demonstrate the effect of our stability anal-

ysis on training networks, we illustrate the convergence of several RNNs on the adding

task in Fig. 5.4(b), where ShaRNN and indRNN are another two deep RNNs. As we

see, our DIRNN can converge with either ReLU or tanh activations, and ReLU leads to

faster convergence. The setting of ReLU plus K = 5 converges the fastest in terms of

the training steps. Note that neither ShaRNN nor indRNN has the convergence guarantee
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theoretically, and thus some tricks such as gradient clipping are often used in training.

In contrast, there is no need at all to use such training tricks in DIRNN to avoid vanish-

ing/exploding gradients.

5.4 TinyRNN: A Sparsified DIRNN

A critical problem in DIRNN is that the number of parameters grows linearly with the

number of layers L, leading to larger model sizes and longer running time w.r.t. other

RNNs that may limit its applicability. To address this issue, we further propose a novel

implementation of DIRNN, namely TinyRNN, where all the transition matrices are spar-

sified. Note that our stability analysis holds for any transition matrix which guarantees

that TinyRNN can be trained well.

Inspired by ShuffleNet [193] and ShufflingRNN [136], we propose reparametrizing

the transition matrices in Eq. 5.8 using weighted permutation matrices. That is,

Ul = AlBl,Wl = ClDl,∀l ∈ [L], (5.10)

where Al,Cl ∈ RD×D denote two diagonal weighting matrices and Bl ∈ RD×D,Dl ∈

RD×d denote two permutation matrices, respectively.

Our proposed weighted permutation matrices essentially favor the learning of orthog-

onality in the transition matrices for training RNNs [92]. To see this, let us take the calcu-

lation of Uz (no subscripts for simplicity) for example, Uz = ABz = [aiB(i)z]i∈[D],

where ai denotes the i-th entry along the diagonal, B(i) denotes the i-th row in the

matrix, and [·] denotes the vector concatenation operator. In our permutation matrices

Bl,Dl,∀l, the rows of each matrix are predefined as orthogonally with each other as

possible. Such permutation matrices define new coordinate systems where the diagonal
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matrices are learned for proper scaling factors.

Predefined Random Permutation Matrices. Note that learning the permutation ma-

trices along with the TinyRNN training is very challenging, because the permutation im-

poses a strong constraint in the matrix structure that is difficult to be satisfied during learn-

ing. To address this problem, we propose initializing both permutation matrices randomly

(Bl without repetition and Dl with repetition if d < D, otherwise without repetition) and

fixing them during training. We only learn the weighting matrices accordingly.

Number of Model Parameters. To further reduce the model size, we simply set bl =

0,∀l, because we only observe marginal accuracy improvement with such parameters.

Therefore, the learnable parameters in our TinyRNN are Al,Cl, αl, γl,t = γl, ρl,t =

ρl, η
k
l,t = ηl, leading to the total number of parameters as (2D + 4)L. We also learn a

linear classifier ω on top of hidden state zL,T consisting of D|Y| parameters, where |Y|

denotes the cardinality of the label set. Together, we have (2D+ 4)L+D|Y| parameters.

Fix-Point Quantization. To further reduce the model size, the fix-point quantization

techniques can be integrated into TinyRNN as well, either during or after the training.

For simplicity to demonstrate this capability, in our experiments we apply the quantizer

in [85] as a post-processing step to compress our models.

5.5 Experiments

Datasets. We test our approach on different tasks that are widely used in the literature of

RNN evaluation. All the statistics of the benchmark datasets are listed in Table 5.1.

• Benchmark vision task: We conduct the experiments on two datasets, i.e., Pixel-MNIST

and Perm-MNIST. Specifically, Pixel-MNIST refers to pixel-by-pixel sequences of im-

ages in MNIST where each 28 × 28 image is flattened into a 784 time sequence vector,

while a random permutation to the Pixel-MNIST is applied to generate a harder time
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Table 5.1: Dataset statistics and default hyperparameters in DIRNN and TinyRNN. Please
refer to our ablation study for more details.

Dataset Statistics DIRNN TinyRNN
#Train #Test #Time #Feat. #Cls. D L K D L K

Pixel-MNIST 60k 10k 784 1 10 128 3 3 128 3 2
Perm-MNIST 60k 10k 784 1 10 128 5 3 128 3 2
Noisy-MNIST 60k 10k 1000 28 10 128 4 3 128 10 1
Noisy-CIFAR 50k 10k 1000 96 10 256 4 3 256 10 1

HAR-2 7.3k 2.9k 128 9 2 128 5 3 128 5 3
DSA-19 4.6k 4.6k 125 45 19 128 4 3 128 6 3

PTB 929k 82k 300 300 10k 300 5 3 300 5 1

sequence dataset as Perm-MNIST.

• Noise padded vision task: For this task, we utilize Noisy-MNIST and Noisy-CIFAR.

For Noisy-MNIST, each row of an MNIST image with dimension 28 is fed into the

model at every time step. The first 28 time steps of input contain the original 28 rows

of MNIST. The remaining 972 time steps are filled with random noise, leading to T =

1, 000 time steps in total. Noisy-CIFAR is created in the same way with input dimension

32 ∗ 3 = 96 due to the RGB channels.

• Human activity recognition task: We test our method on HAR-2 [84] and DSA-19 [2].

HAR-2 was collected from an accelerometer and gyroscope on a Samsung Galaxy S3

smartphone. DSA-19 was collected from a resource constrained IoT wearable device

with 5 Xsens MTx sensors having accelerometers, gyroscopes and magnetometers on

the torso and four limbs.

• Language modeling task: We test our method on Penn Treebank (PTB) dataset [112].

300 length word sequences were used for word level language modeling task using

Penn Treebank (PTB) corpus. The vocabulary consisted of 10, 000 words and the size

of trainable word embeddings was kept the same as hidden units. This is the setup used

in [85]. Note that, for the language modeling task, just the model size of the various

RNN architectures has been reported.

Baseline Algorithms.. We compare our results with baselines including vanilla RNN,
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LSTM [61], AntisymmetricRNN [16] 2, FastRNN [85]3, FastGRNN [85]4, IndRNN [95]5,

ShaRNN [32]6, iRNN [73]7, LipschitzRNN [40]8 and MomentumRNN [120]9. As a

demonstration for comparison on model size, we employ the pruning algorithm from

[52]10 as a post-processing step for TinyRNN to further compress the learned models.

Note that using the public code we have verified the results of each competitor on the

datasets that were reported in the references. For simplicity and consistency we cite the

numbers from the references, if exist, otherwise, we report our reproduced results with

the tuned best hyperparameters.
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Figure 5.5: Training curve comparison on HAR-

2.

Training & Testing Protocols. In

our implementation, we utilize ReLU

as our activation functions, as we ob-

served that this activation works bet-

ter than others such as tanh in terms

of both accuracy and convergence.

This observation is consistent with the

state-of-the-art methods such as iRNN

and FastRNN. In both DIRNN and

TinyRNN, we set γl,t = γl, ρl,t =

ρl, η
k
l,t = ηl over different time steps

and iterations in the ODE solver. Following FastRNN and iRNN for a fair compari-

son, we replicate the same benchmark training/testing split with 20% of training data for

2https://github.com/KurochkinAlexey/AntisymmetricRNN
3https://github.com/microsoft/EdgeML
4https://github.com/microsoft/EdgeML
5https://github.com/Sunnydreamrain/IndRNN_pytorch
6https://github.com/microsoft/EdgeML
7https://github.com/dtake1336/ERNN-for-speech-enhancement
8https://github.com/erichson/LipschitzRNN
9https://github.com/minhtannguyen/MomentumRNN

10https://github.com/mightydeveloper/Deep-Compression-PyTorch
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validation to tune hyperparameters. Then we retrain the models using best tuned hyper-

parameters using the full training set and test them on the test set. We report our results

over three trials with randomization wherever needed. All the experiments were run on

an Nvidia Tesla P40 GPU with CUDA10 on a machine with Intel Xeon@2.60GHz CPU

with 20 cores.

Hyperparameters. We use the grid search to fine-tune the hyperparameters of each base-

line as well as ours on the validation datasets whenever is necessary. Table 5.1 lists all

the hyperparameters for DIRNN and TinyRNN architectures on different datasets, where

we follow [85, 73, 16] to set the hidden feature dimension D, and fine-tune the numbers

of layers in depth L, and update times in iRNN K, respectively. The batch size of 128

seems to work well across all the datasets for all the methods. Adam [78] is used as the

optimizer for all the methods. The learning rate is always initialized to 10−3 with linear

scheduling of weight decay.

5.5.1 Ablation Study on HAR-2

We first show the training convergence in Fig. 5.5 that has similar behavior to Fig. 5.4(b)

for the adding task. This demonstrates that the training stability can be generalized on

different datasets. Then we illustrate the performance of our method under different

(D,L,K)-hyperparameter settings in Fig. 5.7, where we can see that:

• The deep architectures contribute the most to the performance of both architectures;

• D = 128 is already sufficient for good accuracy with a small model size;

• Among all settings, we can observe a performance drop from L = 5 to L = 6;

• It seems that small K’s can already produce good accuracy that leads to good compu-

tational efficiency as well.
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5.5.2 State-of-the-art Performance Comparison
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Figure 5.6: Test accuracy comparison. To better view the differences between different
RNN architectures, by following some recent papers such as FastGRNN and iRNN, here
the numbers of parameters exclude those for linear classifiers that are identical for all the
competitors.
Benchmark Vision Task. Fig. 5.6(a-b) illustrate our performance comparison. The y-

axis is the test accuracy of different models and the x-axis is the number of parameters

in the log scale. As we see, DIRNN achieves the best on both datasets, indicating the
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Figure 5.7: Ablation study on the HAR-2 dataset.
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Figure 5.8: Two kinds of activities in DSA-19 dataset.

advantages of deep RNN structures. Compared with it, the results of TinyRNN are lower

by 1% ∼ 2% with a tiny fraction of parameters. This compact design in TinyRNN can

provide us the capability of processing larger data orrunning multiple models in parallel

in real-world applications.

Noise Padded Vision Task. This task is specifically designed for evaluating the capability

of RNNs to capture the long term dependency (LTD) among the data. Fig. 5.6(c-d) illus-

trate our comparison results. On Noisy-MNIST, DIRNN achieves the best accuracy, while

on Noisy-CIFAR LipschitzRNN achieves the best and DIRNN is the second. TinyRNN
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Table 5.2: Result comparison of quantization. Our results are over three trials with net-
works being trained from the scratch.

Algorithms HAR-2 DSA-19 PTB
Acc.(%) Model (KB) Acc.(%) Model (KB) Perplexity Model (KB)

RNN 91.31 29 71.68 20 144.71 129
LSTM 93.65 74 84.84 526 117.41 2052
FastRNN 94.50 29 84.14 97 127.76 513
FastGRNN 95.59 3 83.73 3.25 116.11 39
Antisymmetric 93.15 29 85.37 32 116.87 45
iRNN 96.30 18 88.11 19 115.71 288
ShaRNN 95.40 29 87.36 40 116.14 130
IndRNN 95.35 139 86.93 93 116.02 653
LipschitzRNN 95.32 35 87.51 260 115.36 578
MomentumRNN 95.28 29 87.13 20 115.87 130
DIRNN 96.53±0.18 174 88.38±0.16 124 115.35±0.35 775
TinyRNN 96.17±0.24 8 86.04±0.17 12 115.81±0.45 45
TinyRNN+Q 95.73±0.32 0.99 85.65±0.18 1.4 116.09±0.43 20

achieves only ∼1% accuracy loss with ∼3x smaller architecture compared with Lips-

chitzRNN. Surprisingly, ShaRNN works as poorly as vanilla RNNs on both datasets. We

hypothesize that this comes from the network design choice where the two-layer archi-

tecture with data splitting actually breaks the LTD among the data, although this may not

occur on other datasets.

Human Activity Recognition Task. We illustrate our comparison results in Fig. 5.6(e-

f). Unsurprisingly, our DIRNN achieves the best on HAR-2 with an accuracy of 96.53%.

And on DSA-19, the DIRNN architecture also achieves the best accuracy. Besides, our

TinyRNN achieves the second best on HAR-2 with the smallest number of parameters.

This is probably because the data is relatively simple with low-dimensional features and

fewer classes where models with small complexity can handle.

Model Size Comparison. Table 5.2 lists the test accuracy and model sizes (i.e., the stor-

age on the hard drive, including the linear classifiers) of different competitors. TinyRNN+Q

indicates the method where the quantization method in FastGRNN is applied to further

reduce the sizes of learned models by TinyRNN. As we see, DIRNN works the best in
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terms of accuracy, and TinyRNN+Q performs slightly worse but with smaller models by

two orders of magnitude. This indicates that the proposed tiny architecture can achieve a

good balance between model size and performance.

Training & Inference Time. Such numbers are highly dependent on the network archi-

tectures of DIRNN as well as the data. For instance, on HAR-2 and DSA-19, the training

time is 103s and 100s per epoch and the inference time is 0.46ms and 0.35ms per data

sequence on an Nvidia Tesla P40 GPU.

5.5.3 Case Study

We use real world cases from DSA-19 dataset to demonstrate the advantage of the pro-

posed DiRNN model. The DSA-19 dataset contains 19 different human activities and

some activities have similar patterns which sometimes makes it hard to distinguish those

similar activities. For example, both jumping and playing basketball are categories of

those 19 activities. However, jumping is a common activity when playing basketball.

In Fig. 5.8, we show the acceleration sensor data of users’ body movement when they

perform playing basketball and jumping, respectively. From the Fig. 5.8 (b), we can

observe periodic fluctuations of the acceleration in X Axis, which indicates the body as-

cending and descending in the air. However, when a user plays basketball, the jumping

sequence becomes noisy, since the player usually completes more complex movements

with the basketball such like dribbling or shooting. In our experiments, we notice that the

traditional RNN model usually cannot tell the difference between jumping and playing

basketball, we believe it is because that the vanilla RNN model only detects the jumping

patterns in the basketball sequence and treat other irregular patterns as noise. However,

with our proposed DiRNN model, we can successfully classify the jumping and playing

basketball activities. This indicates that the proposed DiRNN model can better learn the

sequential patterns in the series data.
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Chapter 6

Lightweight Convolutional Neural

Network via Recurrent Convolution

6.1 Introduction

Convolutional neural networks (CNNs) [82] have revolutionized computer vision by achiev-

ing state-of-the-art performance on many applications [54, 45, 71]. The impressive im-

provement usually comes with a substantial increase in the number of parameters (i.e.,

model size) which is undesirable for the model applicability in many real-world applica-

tions [46, 51], such as embedded systems where the computing resources (e.g., processor

and memory) in the hardware are limited. Therefore, how to design/learn lightweight neu-

ral networks, i.e., reducing storage requirement in terms of parameters while achieving

good performance, is becoming increasingly demanded [139, 33, 105, 204, 93, 147].

Generally speaking, there are two families of approaches for learning lightweight net-

works in the literature: (1) network architecture design/search, and (2) network compres-

sion. Typical works in the former family include SqueezeNet [67], MobileNet [139],

ShuffleNet [193], EfficientNet [154], MnasNet [153], and ProxylessNAS [14]. Such ap-
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proaches focus on developing network architectures (e.g., using small convolutional fil-

ters) to satisfy certain requirements such as model size while achieving good performance

for the applications. The latter family includes the approaches such as compression with

learning [168, 94, 97, 75, 37, 200, 132, 63, 193] or after learning [52, 85], whose basic

ideas are to remove the network redundancy by imposing some structural assumptions on

the convolutional filters. Nice surveys on this topic can be found in [22, 186, 24, 30, 117].

Motivation. Intuitively, reducing the number of parameters in each convolutional layer

can significantly compact a given network. However, this may lead to poor generalization

of the network, as wider networks have been shown to effectively improve the perfor-

mance [185, 154]. In order to compensate for the performance loss due to model size

reduction (i.e., lightweight networks), we are mainly motivated by the following works:

• Deeper Networks: In complement to the universal approximation theorem [28], recent

works such as [110] have shown that with the increase of network depth, the number

of hidden neurons can be dramatically reduced to approximate a function with similar

expressive power. This motivates us to consider constructing a deeper network using

narrow networks.

• Visual Transformer (ViT): Recently [35] demonstrated excellent performance on image

recognition using ViT that are designed to handle sequential input data, similar to recur-

rent neural networks (RNNs). In their work, each image is divided into 16× 16 patches

in the spatial domain, and then fed into ViT as an input data sequence. This motivates

us to consider exploring RNNs (not ViT due to its large model size) in different ways

to learn lightweight networks.

Our proposed approach and contributions. Based on consideration above, we propose

a novel convolutional layer, namely Channel-Split Recurrent Convolution (CSR-Conv),

as illustrated in Fig. 6.1(c) where the 256 input channels are equally split into 4 groups,

fed into a recurrent convolutional layer (implemented using a vanilla RNN in the figure
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Figure 6.1: Comparison with 256 input channels and 128 output channels among (a)
depth-wise separable convolution, (b) group convolution, and (c) our channel-split recur-
rent convolution (CSR-Conv) using vanilla RNNs. The linear convolutional operation is
denoted as (#input channels, filter size, #output channels) and vertical small rectangles in
(c) denote ReLU activation functions.

as demonstration) as input, and the hidden states in the RNN are concatenated to gener-

ate the 128 output channels. Compared with depth-wise separable convolution (used in

MobileNet [139]) and group convolution (used in ShuffleNet [193] and ResNeXt [178])

in Fig. 6.1(a-b), respectively, we can see clearly that our key difference is to replace each

linear convolution with a recurrent convolution. As a result, if imaging each figure as a

graph where all the linear convolutions are denoted by nodes, then the depths (i.e., the

longest paths) between node “split” and node “concat” in the figures are different: in Fig.

6.1(a-b) the depths are both 2, while in Fig. 6.1(c) the depth is 5. In other words, recur-

rent convolution can lead to deeper network architectures, which could be beneficial for

learning lightweight convolutional networks.

We are aware that the integration of RNNs with convolution for deep learning has

been explored in the literature such as [163, 101, 76, 151, 145, 122, 148]. However, to

the best of our knowledge, we are the first to explore the applicability of recurrent deep

models (e.g., RNNs, GRUs, LSTM) as general recurrent convolutional layers to learn

lightweight CNNs. Given a backbone network such as VGGNet [146] or ResNet [54], we

can easily replace its linear convolutional layers using our CSR-Conv to reduce the model
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size, achieving a deeper network as well as preserving its performance1. We analyze

the relationship between model size and CSR-Conv to show that the model compression

rate is fairly controllable. We also demonstrate the state-of-the-art performance of our

approach based on seven existing network architectures on CIFAR-10 [81] and ImageNet

[29] datasets.

6.2 Related Works

Recurrent neural networks. RNNs have achieved significant success in learning com-

plex patterns for sequential input data, and have been widely used in computer vision

[197, 203, 198, 190, 27, 128]. At each time step, an RNN updates the state vector based

on the current state and input data. Subsequently, RNNs output the predictions as a func-

tion of the hidden states. The model parameters are learned by minimizing an empirical

loss. In the literature, there are significant amount of works on developing RNNs such

as, just to name a few, long short-term memory (LSTM) [61], gated recurrent unit (GRU)

[23], UGRNN [26], FastGRNN [84], unitary RNNs [4], antisymmetric RNN [17], incre-

mental RNN [73], exponential RNN [92], Lipschitz RNN [40].

Recurrent convolutional neural networks (RCNN). [101] proposed incorporating the

recurrent connections in each convolutional layer to generate features with different res-

olutions. [163] added a gate to the recurrent connections in RCNN to control context

modulation and balance the feed-forward information and the recurrent information. [76]

imposed very deep recursive layers to improve performance without introducing new pa-

rameters for additional convolutions. [151] developed a recursive convolutional neural

network with the residual connection. [145] replaced vanilla RNN architecture with an

1Certainly we can design new networks using our standalone CSR-Conv layers, but this is beyond the
scope of this chapter. In this work, we only focus on learning lightweight networks given certain backbone
networks.
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LSTM structure in RCNN. [122] used dilated convolution in the RCNN to reduce com-

putational complexity.

Variants of convolutional operator for compression. [31] proposed using a linear com-

bination of basis functions to predict parameters for compression. [5] proposed encoding

convolutions by few lookups to a dictionary trained to cover the space of weights in

CNNs. [171] presented a parameter-free, FLOP-free “shift” operation as an alternative

to spatial convolutions. [44] proposed channel-wise convolutions, which replace dense

connections among feature maps with sparse ones in CNNs. [168] proposed a Structured

Sparsity Learning (SSL) method to regularize the structures such as filters, channels, filter

shapes, and layer depth of CNNs. [102] proposed an efficient CircConv operator based

on the presumed circulant structures of convolutional filters where Fast Fourier Transform

(FFT) can be used to compute the filter responses in feed-forward and inverse FFT can be

applied in back-propagation.

Network compression. Weight pruning [52, 53, 98] aims at reducing non-significant

weights to reduce computation and memory usage of the model. Other than weight prun-

ing, filter level pruning which leads to the removal of the corresponding feature maps is

also studied intensively [55, 96]. Regularization constraints are also introduced in pruning

[3, 108, 66]. Low-rank factorization [88, 150, 68, 194, 183] aims to decompose the large

weight matrices in the convolutional layers into smaller matrices with fewer parameters.

Knowledge distillation [59, 87, 126] aims to force a smaller student network to fit specific

features from a larger teacher network for knowledge transfer.
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6.3 Our Approach

6.3.1 Problem Definition

In this chapter, we only focus on learning lightweight convolutional networks by replacing

some linear convolutions with CSR-Conv in a given backbone network such as VGGNet

or ResNet, so that the model size can satisfy certain requirements. We will not design or

propose new network architectures.

Specifically, given a backbone network with L convolutional layers, a desirable model

compression rate ρM (this constraint is optional depending on the applications/users), and

a training dataset {x, y} ⊆ X × Y with sample x ∈ X and label y ∈ Y , we propose the

following optimization problem as our objective for learning lightweight networks:

min
ω,T ∈ZL

E(x,y)`
(
f(x;ω, T ), y

)
, s.t.

MC

MB

≈ 1− ρM , (6.1)

where f denotes the modified network with CSR-Conv parametrized by ω, T denotes a

set of the sequence lengths as input to the recurrent convolutional layers in CSR-Conv (if

the length is equal to 1, there will be no change to the linear convolution), ` denotes the

loss function, E denotes the expectation operation, and MC ,MB denote the numbers of

parameters in the modified and backbone networks, respectively. In case that achieving

the exact compression rate ρM may be impossible, we instead try to search for the best

network architectures with similar compression rates.

Grid-search solver with CSR-Conv. In contrast to network architecture search (NAS)

that is optimized in the network architecture space, in this work we simply use grid-

search to determine T , same as EfficientNet [154], because our search space is much

smaller than NAS given the compression rate and backbone network. To accelerate our

training, in our implementation we further reduce our search space to T ∈ {1, T}L, that
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Table 6.1: Illustration of our CSR-Conv-4 architecture in Table 6.2 for VGG-16 with
T = 5, where the parameters in the 6th-13th convolutional layers are converted to the
parameters U,V in CSR-Conv with the same spatial sizes.

Layer VGG-16 Ours #Param (ρM )
Conv1 [3×64] [3×64] 1,728(0.0%)
Conv2 [64×64] [64×64] 36,864(0.0%)
Conv3 [64×128] [64×128] 73,728(0.0%)
Conv4 [128×128] [128×128] 147,456(0.0%)
Conv5 [128×256] [128×260] 299,520(-1.6%)

Conv6 [256×256]
[52×52]
[52×52] 48,672(91.9%)

Conv7 [256×256]
[52×52]
[52×52] 48,672(91.9%)

Conv8 [256×512]
[52×103]

[103×103] 134,685(87.8%)

Conv9 [512×512]
[103×103]
[103×103] 190,962(91.9%)

Conv10 [512×512]
[103×103]
[103×103] 190,962(91.9%)

Conv11 [512×512]
[103×103]
[103×103] 190,962(91.9%)

Conv12 [512×512]
[103×103]
[103×103] 190,962(91.9%)

Conv13 [512×512]
[103×103]
[103×103] 190,962(91.9%)

FC / / 267,264(0.0%)
Total 2,022,489(86.5%)
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is, a linear convolutional layer is either unchanged or split into T groups of channels. We

then determine T > 1 using grid-search as well as learning ω. We list an exemplar of

our network implementation in Table 6.1 where the bold parts are the filter sizes in CSR-

Conv. We restrict our grid search so that the number of channels in the backbone network

is approximately preserved by the RNNs.

6.3.2 CSR-Conv: Channel-Split Recurrent Convolution

Split

Recurrent conv layer

Concat

RNN
GRU
LSTM

Channel-Split Recurrent Convolution 
(CSR-Conv)

Figure 6.2: General architecture.

We illustrate the general ar-

chitecture of CSR-Conv in

Fig. 6.2, where “Split” and

“Concat” denote the channel

split and concatenation op-

erations, respectively. The

in-between recurrent convo-

lutional layer takes the split

data sequence as input and

outputs the hidden states

over time. It can be imple-

mented using an RNN, GRU,

LSTM, etc. Recall that Fig.

6.1 illustrates our customized

implementation based on a vanilla RNN, where the input and output are 3D features and

the network weights are 4D. For simplicity, we represent all the input and output data as

vectors, and network weights as matrices. Specifically, we denote xl ∈ Rdl ,∀l ∈ [L] as a

dl-dim input for the l-th convolutional/recurrent layer (xl = x, i.e., the input data to the
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network, when l = 0). We will explain the architecture based on a vanilla RNN as well.

Channel split. The goal of this step is to generate data sequence based on the in-

put channels for further process in the recurrent layer. Imagining that we need a se-

quence with length T at the l-th convolutional layer, then we reshape xl to a matrix

Xl = [xl,t]t∈[T ] ∈ Rd
dl
T
e×T where d·e denotes the ceiling operator and [·]t∈[T ] denotes

the vector concatenation operator. This new matrix will be fed into the recurrent layer

column-by-column sequentially.

Vanilla RNN based recurrent convolution. We follow the simplest RNN formulation

(i.e., vanilla RNN) as below to implement the recurrent layer:

hl,t = σ
(
UT
l hl,t−1 + VT

l xl,t

)
,hl,0 = 0,∀t ∈ [T ], (6.2)

where at the layer l and time step t, hl,t ∈ RDl denotes the hidden state vector, Ul ∈

RDl×Dl ,Vl ∈ Rd
dl
T
e×Dl denote the shared state and data transition matrices in the RNN,

σ denotes the activation function such as ReLU, and (·)T denotes the matrix transpose

operator. Here we do not take the bias term into account, because in practice we do not

observe any significant improvement with the bias term but introducing more parameters.

Note that the recurrent layer defined in Eq. 6.2 can be viewed as the generalization of

the traditional linear convolution, because both will be equivalent when T = 1. For other

implementations, one can replace the formula in Eq. 6.2 with the corresponding formula

to construct the recurrent layer.

Channel concatenation. Once we have the collection of the hidden state vectors, we

simply concatenate them into a (Dl × T )-dim vector hl = [hTl,t]
T that will be used in

further process.
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Table 6.2: Summary of our results on (2nd block) CIFAR-10 and (3rd block) ImageNet,
where “#C-C” denotes the number of CSR-Conv modules used in the networks for learn-
ing compact networks, and “ρM” denotes the model size compression rate.

Network Top-1 Err.(%) ρM (↓) #Param. #C-C T
VGG-16 6.04±0.05 0.0% 14.98M 0 1
CSR-Conv-1 5.89±0.06 39.3% 9.09M 5 2
CSR-Conv-2 6.01±0.10 49.0% 7.64M 4 3
CSR-Conv-3 6.16±0.10 67.2% 4.91M 6 3
CSR-Conv-4 6.35±0.08 86.5% 2.02M 9 5
CSR-Conv-5 7.08±0.12 95.0% 0.75M 12 9
ResNet-56 6.74±0.14 0.0% 0.85M 0 1
CSR-Conv-1 6.12±0.11 21.8% 0.66M 4 2
CSR-Conv-2 6.69±0.12 61.0% 0.33M 11 3
CSR-Conv-3 6.83±0.10 70.3% 0.25M 17 3
CSR-Conv-4 7.93±0.19 78.8% 0.18M 15 4
CSR-Conv-5 9.15±0.13 88.9% 0.09M 22 5
ResNet-110 6.50±0.05 0.0% 1.74M 0 1
CSR-Conv-1 5.72±0.07 17.2% 1.44M 7 2
CSR-Conv-2 5.55±0.05 36.4% 1.11M 14 2
CSR-Conv-3 6.12±0.11 61.3% 0.67M 22 3
CSR-Conv-4 7.06±0.15 79.6% 0.35M 31 4
CSR-Conv-5 8.57±0.18 87.1% 0.22M 33 5
DenseNet-40 5.19±0.04 0.0% 1.06M 0 1
CSR-Conv-1 5.19±0.12 15.9% 0.89M 19 2
CSR-Conv-2 5.13±0.09 35.2% 0.69M 11 3
CSR-Conv-3 5.09±0.14 50.3% 0.53M 22 3
CSR-Conv-4 6.01±0.13 63.7% 0.38M 23 4
CSR-Conv-5 8.30±0.15 82.4% 0.19M 34 5
MobileNet-V2 5.53±0.15 0.0% 2.24M 0 1
CSR-Conv-1 5.21±0.13 26.4% 1.65M 4 3
CSR-Conv-2 5.08±0.14 34.3% 1.47M 7 3
CSR-Conv-3 5.37±0.09 44.1% 1.25M 17 3
CSR-Conv-4 5.84±0.12 51.4% 1.09M 18 3
CSR-Conv-5 6.10±0.21 57.3% 0.95M 18 4
ResNet-50 23.85±0.23 0.0% 25.56M 0 1
CSR-Conv-1 23.51±0.27 35.7% 16.43M 10 3
CSR-Conv-2 24.61±0.24 70.3% 7.59M 15 4
EfficientNet-B0 22.90±0.23 0.0% 5.28M 0 1
CSR-Conv-1 22.34±0.31 18.9% 4.28M 3 3
CSR-Conv-2 27.59±0.31 26.3% 3.89M 4 5
MobileNet-V2 27.80±0.29 0.0% 3.50M 0 1
CSR-Conv-1 27.65±0.32 14.0% 3.01M 2 4
CSR-Conv-2 29.45±0.32 29.5% 2.47M 12 4
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6.3.3 Analysis

Proposition 6.3.1 (Model Size) Suppose that the numbers of input and output channels

in each convolutional layer of the backbone network are equal to those from CSR-Conv

with sequence length T (T > 1). Then we can compute the model size ratio, λM , between

CSR-Conv in Eq. 6.2 and the corresponding linear convolution as follows:

λM =
k2D(D + d)

k2DdT 2
=

(
1 +

d

D

)
1

T 2

= O

(
1

T 2

)
. (6.3)

Often empirically d ≤ D ⇔ 0 < d
D
≤ 1 holds. Meanwhile, given the fact that the number

of parameters in unchanged sub-networks is trivial, the compression rate will be heavily

dominated by the number of the duplicate networks T .

Proposition 6.3.2 (FLOPs) Suppose that (1) the computational complexity of add, multi-

plication, and σ is a unit operation with one FLOP, and (2) the input and output dimension

for the backbone network can be represented as dT and DT , respectively. Then we can

compute the FLOP ratio, λF , between CSR-Conv in Eq. 6.2 and the corresponding linear

convolution as follows:

λF =
k2WHDT (1 + 2D + 2d)

k2WHDT (1 + 2dT )
(6.4)

=
1 + 2D + 2d

1 + 2dT
≤
(

1 +
D

d

)
1

T
,

where the equation holds if and only if T = 1 + D
d

that leads to λF = 1.

The upper-bound in Eq. 6.4 indicates that the FLOPs of CSR-Conv tends to decrease w.r.t.

T approximately. For instance, empirically our CSR-Conv-1 for ResNet-56 in Table 6.2

has the same FLOPs as ResNet-56, even with better performance and smaller model size,
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because we set T = 2 and d = D in CSR-Conv in our implementation. Differently,

CSR-Conv-5 can achieve 42.0% of FLOP compression rate, compared with ResNet-56.

6.4 Experiments

Datasets. Following the literature, we evaluate our approach comprehensively on CIFAR-

10 [81] and ImageNet [29] for the image classification task. CIFAR-10 consists of 50k

training images and 10k testing images from 10 classes. ImageNet is a large dataset,

which contains over 1m training images and 50k testing images from 1000 categories.

Backbone networks & baseline approaches. We conduct experiments based on five

main stream CNNs, i.e., VGGNet [146]2, ResNet [54]3, DenseNet [64]4, MobileNet

[139]5, and EfficientNet [154]6. To better demonstrate the effectiveness of our approach in

learning lightweight networks, we mainly compare it with state-of-the-art (1) lightweight

networks and (2) network compression methods, including L1 [93], SSS [66], Variational

Pruning [199], HRank [103],NISP [182], GAL [104], Hinge [97], CNN-FCF [96], Group

Lasso [124], L2PF [65], EGL [124] and DEGL [124], DCP-A [205], Slimming [108] and

GBN [181].

Implementation. We use PyTorch to implement our network architecture. Following the

literature as well as the original code for each network, in our experiments we use the

SGD optimizers with the cross-entropy loss and set the initial learning rate, momentum,

and decay as 0.05, 0.9, and 0.0005, respectively. The learning rate is divided by 2 every

30 epochs on CIFAR-10 and by 10 every 10 epochs on ImageNet. We use Top-1 error as

our performance measure for both datasets. We report our results based on three random

2https://pytorch.org/docs/stable/torchvision/models.html
3https://pytorch.org/docs/stable/torchvision/models.html
4https://pytorch.org/docs/stable/torchvision/models.html
5https://github.com/tonylins/pytorch-mobilenet-v2
6https://github.com/lukemelas/EfficientNet-PyTorch
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trials in terms of mean and standard deviation.

6.4.1 Results Summary

We summarize our results in Table 6.2 based on seven classic network architectures. In

general, we use grid search to determine which convolutional layers in the backbone

network should be replaced by CSR-Conv layer. Overall, CSR-Conv can be used to learn

smaller but better lightweight networks based on different backbones. Specifically,

• CSR-Conv can effectively learn lightweight networks using less than half of the model

sizes of the backbone networks with no, or only< 1% performance loss. On CIFAR-10,

CSR-Conv can even achieve ρM > 80% with 1% ∼ 3% performance loss.

• CSR-Conv seems to be able to improve the performance by 0.1% ∼ 1% when ρM <

50%.

• CSR-Conv performs stably, as the standard deviation ranging from 0.04% to 0.31%.

• Often more CSR-Conv layers are needed to learn more lightweight networks. Mean-

while, deeper RNNs are desirable for better performance. This validates our motivation.

6.4.2 Comparison with Lightweight Networks

We also compare our CSR-Conv based networks with the state-of-the-art lightweight net-

works. The comparison results are listed in Table 6.3, where we show 3 CSR-Conv based

networks with EfficientNet and MobileNet as our backbones. It is clear that CSR-Conv

with EfficientNet has the lowest error among all the networks. The “lighter” models with

the MobileNet backbone also have similar or better performance comparing to the net-

works with similar model sizes such as MUXNet-s and DY-MobileNetV2 x0.35. Note

that the DY-MobileNetV2 x0.35 model also uses MobileNetV2 as the backbone network,

and our model can achieve significantly better performance with even less parameters.
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Figure 6.3: Comparison of error vs. compression rate on (a-e) CIFAR-10 and (f) Ima-
geNet.
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Table 6.3: Lightweight network comparison on ImageNet in terms of the number of pa-
rameters and top-1 error. All the networks with model sizes smaller than 5M are included.

Networks #Param. Err. (%)
MUXNet-xs [109] 1.8M 33.3
MUXNet-s [109] 2.4M 28.4
Ours-1 (MobileNet-V2) 2.5M 29.5
DY-MobileNetV2 x0.35 [21] 2.8M 35.1
Ours-2 (MobileNet-V2) 3.0M 27.7
ECA-Net [165] 3.3M 27.4
PVTv2-B0 [167] 3.4M 29.5
MUXNet-m [109] 3.4M 24.7
MnasNet-A1 [153] 3.9M 24.7
DY-MobileNetV2 x0.5 [21] 4.0M 30.6
Proxyless [14] 4.0M 25.4
MUXNet-l [109] 4.0M 23.4
MixNet-S [155] 4.1M 24.2
Ours-3 (Efficient-B0) 4.3M 22.3
GreedyNAS-C [180] 4.7M 23.8
DY-MobileNetV3-Small [21] 4.8M 30.3
MnasNet-A2 [153] 4.8M 24.4
ViTAE-T-Stage [179] 4.8M 23.2
PiT-Ti [57] 4.9M 25.4

This also validates the effectiveness of our CSR-Conv layer. Since these competitors are

based on standard linear convolutions, we strongly believe that our CSR-Conv layer can

further reduce the model sizes of such networks while preserving (even improving) their

performance. Also, post-processing such as pruning can be applied to our networks to

achieve smaller networks. See Table 6.6 later for example.

6.4.3 Comparison with Network Compression

Fig. 6.3 illustrates our comparison with the state-of-the-art on both CIFAR-10 and Im-

ageNet, where methods towards the bottom right corner are preferred. We can see the

performance trends as discussed above for Table 6.2. Surprisingly, our approach forms

“lower-bound” curves in each subfigure, indicating that given similar model compression
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Figure 6.5: Training loss comparison
using the VGG-16 backbone on CIFAR-
10.

rates CSR-Conv often works best. This is because of the overparameterization in the neu-

ral networks so that we have a sufficiently large parameter space to identify a better yet

lightweight architecture. Thanks to our design, CSR-Conv has the flexibility of exploring

the performance with a specific compression rate. In summary, CSR-Conv can manage to

learn lightweight networks effectively, consistently and robustly using different backbone

networks on large-scale complicated datasets.

6.4.4 Ablation Study

Impacts of the hidden state transition in vanilla RNNs. The hidden state transition

helps construct deeper networks, compared with the backbones, to compensate for the

performance loss when learning lightweight networks. To verify this usage, we compare

our model with a baseline model with shared weights in group convolutions (denoted as

“s-GroupConv”), as illustrated in Fig. 6.1(b), to replace our CSR-RNN layers. We then

tune such networks so that the model size compression ratios are approximately the same

as ours. We list some results in Table 6.4, where we can see that in all the cases our

results are consistently better than this baseline, demonstrating the need of the hidden
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state transition.

Table 6.4: Top-1 error (%) comparison on

CIFAR-10 using VGG-16.

Networks ρM (↓) Ours s-GroupConv

CSR-Conv-1 39.4% 5.89 6.23

CSR-Conv-2 49.0% 6.01 6.56

CSR-Conv-3 67.2% 6.16 7.03

CSR-Conv-4 86.5% 6.35 7.27

CSR-Conv-5 95.0% 7.08 7.82

Impacts of the number of CSR-Conv lay-

ers and input sequence length. Recall that

we use grid search to seek a lightweight net-

work architecture to meet a certain model size

compression rate, if required. We take VGG-

16 for example to demonstrate their impacts

on the performance, as illustrated in Fig. 6.4.

Note that we select convolutional layers in

the VGG-16 architecture in descending order.

We can see that:

• The model compression rates towards the bottom left corner are lower and lower.

• Given the same model size compression rate, the networks form nice “U” shaped con-

tours where more CSR-Conv layers need short sequence length.

• Lightweight networks with small errors, given compression rates, are distributed along

the valley.

These observations are very useful as guidance for our approach on how to search for a

lightweight network architecture effectively.

RNN variants, GRU, and LSTM as the recurrent layer. Overall, we do not observe

any significant performance improvement over the vanilla RNN implementation. For

instance, to learn lightweight networks based on VGG-16 with a model compression rate

of ∼87% on CIFAR-10, vanilla RNN, incremental RNN, and FastRNN achieve 6.35%,

6.45%, and 7.87% in terms of classification error, respectively. Using the same amount

of parameters Lipschitz RNN achieves 6.55% error with a model compression rate of

∼78%. Similarly, we replace vanilla RNNs with GRUs and LSTMs to learn lightweight

networks based on ResNet-56 that achieve (10.9%, 7.53%) and (-18.8%, 7.80%) in terms
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of (ρM , error) on CIFAR-10, respectively. These results are worse than vanilla RNNs as

well, probably due to the short sequence length. Therefore, by default we utilize vanilla

RNNs as the recurrent layer in our CSR-Conv.

FLOP reduction. As demonstration, we verify the FLOP reduction of our approach

using ResNet-56 in practice and list our results in Table 6.5. Recall that our main focus

of this chapter is to learn lightweight networks, and FLOPs tend to decrease as well

with the increase of sequence length, in general. For CSR-Conv-1, the input and output

dimensions are the same so that T = 1 + D
d

holds, and thus no drop in FLOPs exists.

Such results in Table 6.5 also verify Prop. 6.3.2 properly.

Table 6.5: Comparison on CIFAR-10.

Networks Err.(%) FLOPs(↓) Param(↓)

ResNet-56 6.74 0.0% 0.0%

CSR-Conv-1 6.12 0.0% 21.8%

CSR-Conv-2 6.69 12.8% 61.0%

CSR-Conv-3 6.83 17.2% 70.3%

CSR-Conv-4 7.93 29.6% 78.8%

CSR-Conv-5 9.15 43.5% 88.9%

Running time. Recall that our CSR-Conv

layer leads to deeper networks that need to be

optimized/inferred sequentially. Therefore,

our running time is heavily dependent on the

numbers of CSR-Conv layers in the networks,

as well as the bottleneck computation in the

backbone networks. For instance, the train-

ing time is 0.3ms per batch on a Quadro

RTX 6000 GPU when we run ResNet-56 on

CIFAR-10 dataset. Under the same setting, CSR-Conv-1 (CSR-Conv-5) involves 4 (22)

CSR-Conv layers and runs for 0.56ms (1.31ms), with the increase of compression rate

from 21.8% to 88.9%. Differently, on ImagetNet the MobileNet-V2 architecture takes

1.068s to train per batch and CSR-Conv-1 (CSR-Conv-2) takes 1.071s (1.096s) that in-

volves 2 (7) CSR-Conv layers.

Training curves. It is critical to make sure that our lightweight networks are easy to train

even with a small portion of parameters and RNNs that share parameters. To demonstrate

this, we illustrate our training curves of VGG-16 in Fig. 6.5 where ρM = 0 denotes the
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backbone network and the rest are the variants of our approach. For simplicity, we only

plot the training curves of the first 100 epochs. As expected, the networks with a higher

compression rate are more difficult to train, leading to larger training losses and test errors.

Note that the trends of loss are very similar to each other, indicating that our lightweight

yet deeper networks can be trained as easily as backbone networks.

Table 6.6: Pruning results on CIFAR-

10 based on our learned CSR-Conv net-

works. Here, VGG-16 and ResNet-56 are

two backbone networks.

Network Err.(%) ρM (↓)

CSR-Conv + VGG-16 6.35 86.5%

CSR-Conv + VGG-16

+ [52]
6.40 91.9%

CSR-Conv + ResNet-56 6.83 70.3%

CSR-Conv + ResNet-56

+ [52]
6.90 75.3%

Further compression with existing meth-

ods. Note that the learned filters in our

CSR-Conv layers are still dense, and thus we

can apply network compression methods as

post-processing to further reduce the model

size. We list some results in Table 6.6 us-

ing the classic compression algorithm in [52]

to prune our learned lightweight networks.

It is apparent that the pruning algorithm can

further reduce ∼ 5% of model sizes with

marginal ∼ 0.06% error increase. These re-

sults show that our CSR-Conv layer can be

considered as being orthogonal to the literature of network compression.
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Chapter 7

Conclusion and Future Work

Complex recurrent models can benefit people in many aspects. In this dissertation, we

illustrate this in the following five domains.

1) Human Decision Modeling with Sequential Human Decision Data. In this work,

we introduce a novel transit plan evaluation framework that can evaluate the future human

behaviors, e.g., ridership and crowd flow of a new transit plan, before its deployment. In

this framework, we develop a preference learning algorithm to inversely learn the pas-

sengers’ preference functions when making transit decisions, and predict future human

behaviors of a new transit plan. Our extensive evaluation results using real-world data

demonstrated that our framework can predict the ridership with only 19.8% relative error,

which is 23%-51% lower than other baseline approaches.

2) Altering Human Decision-Making Process via Reward Advancement. We de-

fine and study a novel reward advancement problem, namely, finding the updating rewards

to transform human agent’s behavior to a predefined target policy πt. We provide a close-

form solution to this problem. The solution we found indicates that there exist infinite

many such additional rewards, that can achieve the desired policy transformation. More-

over, we define and investigate a min-cost reward advancement problem, which aims to
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find the additional rewards that can transform the agent’s policy to πt, while minimizing

the cost of the policy transformation. We solve this problem by developing an efficient

algorithm. We demonstrated the correctness and accuracy of our reward advancement so-

lution using both synthetic data and a large-scale (6 months) passenger-level public transit

data from Shenzhen, China.

3) Using Sequential Models in General Human Prediction Problems.In this work,

we introduce a novel drivers’ behavioral prediction framework that can make accurate

prediction of driver’s future behavior. In this framework, we use driver’s historical intra-

cycle behaviors to learn driver’s preference on his/her decision-making process and then

combine the learned preference with inter-cycle features to predict driver’s behavior in

the future. Our extensive evaluation results based real-world data sets demonstrate that

our framework can achieve the prediction accuracy of MAE = 0.29, which is on average

13% lower than existing state-of-the-art approaches without using driver’s preference.

We believe that the idea can benefit domains where both micro (i.e., intra-cycle) and

macro (i.e., inter-cycle) decision making process are involved. For example, e-commerce

platforms, like Amazon, Alibaba and etc, may apply this methodology to improve the

prediction of customers’ life time value.

4) Training Stability in Learning Recurrent Models.In this work, we study the

problem of training stability in deep RNNs. We propose a novel deep incremental RNN

(DIRNN) that has skip connections along both dimensions of time steps as well as net-

work depth. Inspired by recent works such as iRNN, we propose a novel ODE based for-

mulation for DIRNN that can be solved efficiently using Euler’s method. We prove that

DIRNN is a Lyapunov stable dynamical system where there is no vanishing/exploding

gradient in training, and thus leading to good training stability. To the best of our knowl-

edge, we are the first in the literature to provide such theoretical results on the training sta-

bility for deep RNNs. To address the model complexity issue in DIRNN, we also propose
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a novel implementation, namely TinyRNN, where the transition matrices are sparsified

using weighted random permutation matrices to reduce the number of parameters in the

network. The learned models can be further compressed using other techniques such as

network pruning. We evaluate both RNN models on five different tasks that involve seven

benchmark datasets and ten baseline algorithms. Our DIRNN can achieve state-of-the-art

accuracy and TinyRNN (with pruning) can achieve the best trade-off between accuracy

and model size. Note that our theoretical results can be valuable to analyze the training

stability of other networks such as ResNet [54].

5) Lightweight Convolutional Neural Network via Recurrent Convolution. In

this work, we aim to address the problem of learning lightweight networks by proposing

a novel CSR-Conv layer that replaces traditional linear convolution with channel-split

recurrent convolution. The hidden state transition in the vanilla RNNs leads to deeper

networks, given backbones, to compensate for the performance loss while reducing the

model sizes. Essentially our CSR-Conv can be viewed as the generalization of linear

convolution. We show that the model size of a lightweight network decreases w.r.t. the

number of the duplicate networks with the rate ofO( 1
T 2 ). We then conduct comprehensive

experiments to evaluate our CSR-Conv on CIFAR-10 and ImageNet. We demonstrate

state-of-the-art performance on learning lightweight networks in terms of accuracy vs.

model size.

7.1 Future Work

7.1.1 Causal Inference with Human Decision-making Process

In previous research, I studied the preference of agents when they make different deci-

sions. Further more, we use a real-world case to demonstrate the potential of altering

agent’s decision by imposing additional rewards. However, the problem of behavior re-

123



shaping can be viewed as a causal inference problem. The plain preference learning model

is a naive single learner model, where we directly model the treatment effect of impos-

ing additional reward on change of agents’ future behaviors. Obviously, single learner

models suffer from unstable training and poor performance when the ratio of signal and

noise is low. In the future work, I intend to combine reward advancement models with

causal inference methods such as Double Machine Learning or DragonNet to improve the

accuracy and efficiency of reward advancement learning model.

7.1.2 Meta Reward Preference Learning

As shown in previous chapters, we do reward advancement by learning preference of hu-

man agents first. In the previous chapter, the preference of one agent is learned using its

own trajectories. But agents may share some common preferences. For example, though

taxi drivers have their own preference, they tend to go to areas with more potential orders.

If those preferences are learned independently, we may ignore those similarities. Also,

for some agents, such as new drivers or part-time drivers, we may not have enough tra-

jectories to learn a solid preference. If we can apply meta learning technique, we may be

able to learn one agent’s preference based on some common preference vectors and only

a few trajectories we collected from those particular agents. This definitely can improve

the quality and efficiency of learning multiple agents’ decision making preference.
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