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1 Motivation

1.1 What is a Protein?

An amino acid consists of a carboxyl group, an amine group, and a side chain
molecule bonded together. Amino acids are classified based on their side chain
and these side chains can be hydrophobic or they can be hydrophillic. The
carboxyl group in an amino acid can chemically bond to the amine group in
another amino acid. Because of this, strings of amino acids can be made, and
these strings are called proteins. Proteins are used for tasks in cells, and their
structure is essential to their function.

Primary Structure

The primary structure of a protein is the order of the amino acids comprising
the protein. The secondary and tertiary structures of a protein are determined
by the nature of the environment of the protein and the primary structure of
the protein.[8]

Secondary Structure

The secondary structure of a protein is local three dimensional structure in a
protein. The secondary structure could specify that a certain substring of a
protein folds into a helix, while a different substring folds into a sheet, but
the secondary structure says nothing about the positions of the sheet and helix
relative to each other. The possible local structures in the secondary structure
are helices, sheets, and random coil. Random coil is a substring of a protein that
has no clear or distinct shape, and this is due to weak or possibly non-existant
forces between amino acids in the substring.[8]

Tertiary Structure

The tertiary structure of a protein is the three-dimensional shape of the en-
tire protein.[24] While secondary structure focuses on local shape, the tertiary
structure is the global shape of the protein, and is harder to evaluate. Because
of the link between the three-dimensional shape of the protein and its function,
the tertiary structure of a protein is of significant scientific interest.[8]

Quartenary Structure

While tertiary structure is the shape of a protein, quartenary structure is how
multiple proteins interact or bond with each other. Hemoglobin for example,
is comprised of four subunits. Quartenary structure is not in the scope of this
paper, so it will not be discussed much further.[8]
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1.2 What is Protein Folding?

Protein folding is the process through which a protein reaches its final shape.
A protein is under many inter-molecular forces, such as hydrogen bonds and
interactions between hydrophobic aminon acids and the solution the protein is
contained in, and these forces caues the chain to bend and twist, while reducing
it’s energy until it reaches a minimal energy state. Almost 25% of all Nobel
prizes in chemistry since 1956 have been related to protein folding.[11] Because
a proteins function is dependent on its shape, if a protein misfolds, it becomes
inert, or worse, dangerous to the cell that it resides in. Parkinsons disease is
caused by misfolded proteins aggregating.[7] By the ”thermodynamic hypoth-
esis”, the final shape a protein takes is the shape that has the lowest possible
energy for the protein. Determining the final shape a protein takes, or protein
folding, is a major problem in the field of computational biology. [24]

1.3 Using Differential Equations to Model Protein Folding

There are many intermolecular forces in a protein, such as dipole-dipole inter-
actions, hydrogen bonding, and hydrophobic-hydrophobic interactions. To find
the minimal energy state of a protein, we could create a system of differential
equations to solve, where we are solving for the positions of all of the atoms in
the protein, with the equations being the forces between all pairs of atoms in
the protein. If we take myoglobin for example, we have a protein of approxi-
mately 150 amino acids, each of which contain dozens of atoms. As a result,
myoglobin consists of thousands of atoms, so the number of atom-atom pairs in
myoglobin is in the millions, if not tens of millions. Solving such an enormous
system of differential equations is computationally prohibitive, and as a result,
cruder approximations need to be used.

1.4 A Discrete Model

The number of ways a protein of a given length can bend are limited, and as a
result it is possible to find the final conformation of a protein with brute force
by calculating every possible conformation of a protein and finding the one with
the least energy. The number of possible conformations a protein can take is
vast; it increases at an exponential rate with respect to the number of amino
acids.[13, 25] Because of this, using the brute force method of finding the exact
confomation of a protein with more than a short length is infeasible. Because
of this, we have to simplify the search space at the cost of accuracy.

In 1989, Ken Dill proposed a simplified model for exploring the process of
protein folding by using points on a regular lattice and an energy function. This
model is called the HP Model.[17] The HP model is based on the assumption that
hydrophobic-hydrophobic amino acid interaction is a primary factor in protein
folding, and quite a bit of evidence has accrued to support this assumption.[11].
Variants of the HP Model have been proposed and studied.[1, 16, 18, 22] The
HP Model will be discussed further in Chapter 2.
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1.5 Kinetics of Protein Folding

Levinthal’s paradox is the difficulty in explaining how the difference between the
staggeringly huge number of possible conformations a protein can take is, and
how quickly a protein folds to a global minimum, can be bridged.[5] For a crude
example, we can use myoglobin, a protein found in muscle tissue in humans,
which consists of approximately 150 amino acids. If we assume that every amino
acid can take one of four possible states, there is 4150 = 2300 ≈ 1090 possible
states for myoglobin to conform to, which is underestimating the number of
ways the amino acids can bend. If the protein randomly samples one million
possible conformations a nanosecond, it would take 3 × 1064 millenia for the
protein to test all possible conformations!

Clearly myoglobin folds much faster than that. Clearly a protein uses a
method other than randomly or sequentially testing all possible conformations,
so how does a protein fold into a minimal energy shape? The HP model is
useful because it greatly simplifies the search space for a protein, but allows
enough structure to study how the process of protein folding works. Recent
experiments have shown that proteins fold by quickly optimizing energy on a
local scale before optimizing it on a global scale.[11]

1.6 Nuclear Magnetic Resonance (NMR) Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy is used in experimentally de-
termining the final structure of a protein. By analyzing the cross peaks in the
output of a NMR spectroscopy, one can determine which amino acids are ‘close’
(less than 5 angstroms apart) which provides very useful data when computing
the tertiary or secondary structure of a protein. However, NMR spectroscopy
has limitations. The protein sample must be crystalized to be able to be used in
NMR spectroscopy, and the molecular weight of the protein must be less than
approximately 30,000 dals. By combining computational models with experi-
mental data, scientists can determine the final shape of many proteins. [26]

1.7 Inverse Protein Folding

Where in protein folding, the goal is to predict the final structure of the protein
given an amino acid sequence, the goal of inverse protein folding is to find an
amino acid sequence that generates a protein structure.[19] This paper will not
consider this problem. There is also literature on algorithms for protein folding,
[3, 9, 15] but we won’t discuss them either.
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2 Mathematical Background

2.1 Essential Graph Theory Background

This paper, especially this section, will use a significant amount of graph theory,
a branch of discrete mathematics.[21] Using “Graphs & Digraphs” by Chartrand
et al., [6] essential basic definitions from the book are listed:
Graph A graph G is a finite nonempty set V of objects called

vertecies together with a possibly empty set E of 2-
element subsets of V called edges To indicate that a
graph G has vertex set V and edge set E, we write
G = (V,E).

Subgraph A graph G′ = (V ′, E′) is a subgraph of another graph
G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

Isomorphic Two graphs G and H are isomorphic if there exists
a bijective function φ : V (G)→ V (H) such that two
vertecies u and v are adjacent in G if and only if
φ(u) and φ(v) are adjacent in H. The function φ
is called an isomorphism from G to H. If there is
no such function φ as described, then G and H are
non-isomorphic graphs

Incident A vertex v and an edge e in a graph are incident with
each other if one of the vertecies comprising e is v.

Adjacent Two vertecies u and v in a graph (V,E) are adjacent
if there is an edge in E incident to both u and v.

Walk For two (not neccessarily distinct) vertecies u and v
in a graph G, a u− v walk W in G is a sequence of
vertecies in G, beginning with u and ending w v such
that consecutive vertecies in W are adjacent in G.

Path A path is a walk in a graph G in which no vertex is
repeated.

Cycle A walk in a graph G where the starting vertex is
the same as the ending vertex and no other vertex is
repeated.

Degree In a graph G the degree of a vertex v, denoted deg(v),
is the number of edges in G that are incident to the
vertex v.
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Figure 1: Two simple polygons, P1 and P2

2.2 The Handshake Principle

Imagine a conference attended by many people, some of them shaking hands. If
we want to know how many handshakes took place, we could watch the entire
conference and count the handshakes as they occur. Another way to count
the number of handshakes is to hold a poll at the exit, and ask everyone who
attended the conference how many hands they shook. By adding the all of
the answers, and dividing the sum by two, we get the same result: how many
handshakes took place. Each indidivdual’s answer is a “local” property, while
the observer’s answer is a “global” property.

A more formal statement of the relation between the local and global meth-
ods of handshake counting can be given by representing all the attendees as
vertecies of a graph, and each representing each handshake as an edge. If
G = (V,E) is a graph, then

1

2

∑
v∈V

deg(v) = |E|

Since every edge is a 2-subset of V , the preceding equation holds for every
graph G = (V,E). We will refer to this as the Handshake Principle because the
name represents the basic truth of this theorem; it takes two ‘hands’ to make a
‘handshake’.

2.3 Pick’s Theorem

Another example of how global properties are influenced by local properties is
Pick’s Theorem. Pick’s Theorem applies to ‘simple polygons’, and by simple
polygons, such as the ones shown in Figure 1, we mean shapes on a euclidean
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Figure 2: P1 and P2 with all interior and boundary points shown

plane that can be defined by a finite sequence of integer points, which we will
call the vertecies of the polygon, ending at the starting point. We will call
line segments between consecutive vertecies in a polygon edges, and we note
that these edges include their endpoints. Furthermore, these simple polygons
need not be convex or without ‘holes’ in them, but no two edges in the polygon
can intersect. For Pick’s Theorem, we need to be able to tell which points are
‘inside’ the polygon, and which ones are on the boundary. We say a point is
on the boundary of a simple polygon if it is on an edge of the simple polygon.
For the ‘interior’ and ‘exterior’, we will use a parity definition. For any point in
the plane of the polygon, if we take a ray in any direction in the plane of the
polygon, it will intersect with the edges of the polygon a finite number of times
unless the ray is colinear with one of the edges. Because there are only a finite
number of edges in the polygon, we can find a ray from the point that is not
colinear with an edge in the polygon. We will denote N to be the number of
times this ray intersects with an edge of the polygon. If N is odd, we say the
point is in the interior of the polygon, and if N is even, we say the point is in
the exterior of the polygon. Finally, the area of a polygon is a measure of the
size of the interior of the polygon.

Pick’s Theorem states that for any simple polygon where the vertecies lie on
integer points, then where i is the number of integer points inside the polygon
not on the boundary and where b is the number of integer points on the boundary
of the polygon, then the area A of the polygon is

A = i+
b

2
− 1

We submit an incomplete proof to help convince the reader of the truth of this
theorem.

Supose we have a simple polygon P with area A that can be divided into
two smaller polygons P1 and P2 with areas A1 and A2 respectively, such as in
Figure 3. Clearly A = A1 + A2. Let’s say we know that Pick’s theorem is true
for P1 and P2, so we want to show that Pick’s theorem applies to P as well.

Let the number of interior integer points of P1 and P2 be i1 and i2 respec-
tively and b1 and b2 be the number of boundary points respectively. Assuming
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Figure 3: A simple polygon P divided into two smaller simple polygons, P1 and
P2

that the theorem holds for these smaller examples, we have A1 = i1 + b1
2 −1 and

A2 = i2 + b2
2 − 1 for the areas for polygon 1 and polygon 2. Suppose we were

to attach one edge of polygon 1 to one edge of polygon 2 in such a manner that
only the boundaries of the two polygons overlap and there is only one connected
overlapping region, a line segment, and there are o overlapping integer points on
the mutual border. Because the two objects are polygons with vertexes being
integer points, the line segment begins and ends on integer points. In this pro-
cess the overlap of the two boundaries consists of two endpoints, which happen
to remain boundary points, and other points in between, which become inte-
rior points. So, the number of boundary points in the new polygon becomes
b = b1+b2−2o+2 and the number of interior points becomes i = i1+i2+o−2. So,
the area of the new polygon becomes i+ b

2−1 = i1+i2+o−2+ b1+b2−2o+2
2 −1 =

i1 + i2 + o− 2 + b1
2 + b2

2 − o+ 1− 1 = i1 + b1
2 − 1 + i2 + b2

2 − 1 = A1 +A2 which
shows that the area of the two adjoined polygons still satisfies the theorem,
A1 +A2 = A = i+ b

2 − 1.
For further reading, a full proof is found at [14], a generalization is found at

[12], and an extension to higher dimensions is found at [4]

2.4 Lattices

A lattice is a set of points with special properties. We can define a lattice to be
the span of a set of vectors in Rn using integer coefficients. Note the difference

Figure 4: Pick’s Theorem also applies to polygon P
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Figure 5: The square lattice graph compared to the square lattice

Figure 6: The triangular lattice graph compared to the triangular lattice

Figure 7: The honeycomb lattice graph compared to the honeycomb lattice
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that specifying integer coefficents as opposed to real coefficents makes. For
example,

S =

{[
1
0

]
,

[
0
1

]}
and

T =

{[
1
0

]
,

[
1
2
1
2

] [
0
1

]}
both span to R2 when using real coefficients, but when using integer coefficients,

S spans to Z2 yet T spans to Z2 ∪
{[

0.5
0.5

]
+

[
x
y

]
: x, y ∈ Z

}
However, to be able to use a lattice like a grid, we need to define edges

in some fashion. To do this, we will define a Lattice Graph to be a graph
with a vertex set that is a lattice in Rn and a edge set that is all 2-tuples of
points in the vertex set which, for some metric function d : Rn×Rn → R. Unless
specified otherwise, we will assume that for a lattice in Rn, its lattice graph uses
the euclidean metric in Rn To define a lattice graph, we will use the following
notation: G = (L, d) where L is a lattice in Rn and d is a metric function on
the lattice, and if d is the euclidean metric in Rn, the shorthand G = (L) will
suffice.

2.5 Common Lattices

Integer Lattice

We will define the integer lattice to be the lattice graph L = (Z). It isn’t useful
for modeling, but it can be used for defining other latticies using the cartesian
product of graphs.

Square Lattice

We can define the square lattice graph to be the graph L =
(
Z2
)

We would
like to note that taking the cartesian product of two integer latticies yields the
square lattice.

Triangular Lattice

We can define the triangular lattice in two ways.

L =
({

(x− y
2 ,
√
3
2 y) : ∀x, y ∈ Z

})
L′ =

(
Z2, d

)
d((x1, x2), (y1, y2)) =

{
|x1 − y1|+ |x2 − y2| : (x1 − y1)(x1 − y2) < 0
max{|x1 − y1|, |x2 − y2|} : (x1 − y1)(x1 − y2) ≥ 0

The former of the two methods of expressing the triangular lattice yields
the traditionial lattice where the lattice points are the verticies of a equilateral
triangle tiling of the plane, while the latter of the two uses integer lattice points,
which is easier for computation.
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Honeycomb Lattice

The honeycomb lattice isn’t actually a lattice, because the span of the points in
the honeycomb lattice is the triangular lattice, but its properties make it worth
mentioning. First, the triangular lattice graph and the hexagonal lattice graphs
are duals of each other, which means if we take the vertex set to be the midponts
of all of the triangular regions formed by the triangular lattice graph, and we let
the edge set be all pairs of vertecies where their cooresponding triangles share
an edge, then we get the honeycomb lattice graph. If we do the same with
the honeycomb lattice, by taking the vertex set to be the centers of all of the
hexagonal regions formed by the honeycomb lattice graph, and let the edge set
be all pairs of vertecies whose cooresponding hexagons share an edge, we get
the triangular lattice graph again.

Using our definition of a lattice, latticies are self similar under translation.
This means that if we take an arbitrary point in a lattice, and move the lattice
so that the point we picked takes the spot of some other point in the lattice, the
lattice stays the same. However, if we translate the honeycomb lattice, it may
not be the same, but what we get is always a rotation of the original lattice by
half a turn if it’s not already identical.

Because of these properties, we will call the honeycomb lattice a semi-lattice
because it is not a lattice, but it has similar properties.

Cubic Lattice

The cubic lattice graph is: L =
(
Z3
)

We would also like to note that we can get
the cubic lattice by taking the cartesian product of the square lattice and the
integer lattice.

Triangular Prism Lattice

If we take the cartesian product of the integer lattice and the triangular lattice,
we end up with the triangular prism lattice. The triangular prism lattice is also
the verticies of the tiling of 3-space with triangular prisms where the tops and
bottoms are equilateral triangles and the 3 sides are squares.

Hexagonal Prism Lattice

If we take the cartesian product of the integer lattice and the honeycomb lattice,
we end up with the hexagonal prism lattice.

Self-Avoiding Walks

A self-avoiding walk on the square lattice can be explained as follows:
We can let the square lattice be a graph where the vertex set is Z2 and the

edge set is all pairs of points in Z2 which have a euclidean distance of 1. We can
then create a walk starting from some point on the lattice graph, without loss of
generality we can say it is (0, 0), and ending at some other point on the lattice
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graph. If no vertex in the walk is repeated, we can call the walk a self-avoiding
walk. In the square lattice graph a path is a self-avoiding walk.

2.6 A Formal Definition of the HP Model

While many variations and extensions of the HP model have been proposed
and explored, we will focus on the original HP model Dill proposed and how
the choice of lattice affects it.[16, 18] The HP model as proposed by Ken Dill,
simplifies the amino acid sequence of a protein to sequence of hydrophobic and
hydrophillic (non-polar and polar) ‘beads’. Then, the sequence of ‘beads’ then
is associated with a self-avoiding walk in a lattice-graph with a length of one
less than the number of ‘beads’ by associating each vertex in the self-avoiding
walk with the cooresponding bead in the chain of beads. We will call this bead
sequence self-avoiding walk pair a ‘modeled protein’.

The ‘energy’ of this modeled protein is calculated by taking every pair of
hydrophobic ‘beads’ that are not adjacent in the primary structure of the pro-
tein and adding −1 to the total energy if there is an edge in the lattice graph
cooresponding to the two ‘beads’ (vertecies in the lattice graph). Dill used the
square lattice, but different lattices can be used, even ones in higher or lower
dimensions. However, we would like to note that modeling the conformation
of a protein in one dimension is not very insightful.[10, 20] If we use (Z) as a
lattice graph, we only get two possible conformations, one going to the left and
one going to the right.
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3 Conformations of a HP String

A conformation is the shape a modeled protein takes in a lattice in the HP
model. Because there is an isomorphism between any two points on a lattice,
we can fix a starting point for all paths without any loss of generality. We
will use (0, 0) or (0, 0, 0) for latticies defined on Z2 or Z3. So, we will say that
two conformations are the same if one can be transformed into the other by an
isometry. Many latticies have rotational symmetry. The square lattice has rota-
tional symmetry group C4 while the triangular lattice has rotational symmetry
group C6. So, when we try to find a compact and unambiguous way to express
a conformation, we will assume that the first two lattice points are (0, 0), (1, 0)
for lattice graphs on Z2 and (0, 0, 0), (1, 0, 0) for lattice graphs on Z3 unless the
conformation is a single point, then in that case the conformation will be (0, 0)
or (0, 0, 0) in the two dimensional or three dimensional cases respectively. We
already can fix the starting point due to isomorphism under translation, We
note that for any turn any self-avoiding walk makes, the turn cannot take the
‘path’ ‘backwards’ on itself. As a result, we can reduce the number of possible
directions to go to next in a self-avoiding walk by 1, except for the starting step
which remains the same. In the square lattice, it is possible to make a reduction
of 4n possible conformations to 4×3n−1 possible conformations of length n and
in the triangular lattice a reduction from 6n to 6× 5n−1

We will use a ‘relative’ system, instead of ‘absolute’, so for the square lattice
for example, instead of using 4 directions, say North, South, East, and West,
we will use the 3 directions Straight, Left, and Right. For the triangular lattice
graph, instead of using 6 directions, we will use the five: Sharp Left, Left,
Straight, Right, Sharp Right. As a result, we can express a self-avoiding walk
with n points by a string with n − 2 symbols, because the first two points are
assumed, and every symbol specifies a new point in the walk. However, there is
no way to express a single point walk with our method, so we choose to reject
all single point self-avoiding walks as trivial and not worth studying.

However, it becomes necessary to distinguish between what is expressable
by a conformation code, and what is a self-avoiding walk. The set of all self-
avoiding walks on a given lattice graph G is a proper subset of the set of all
walks on the same lattice graph G expressable by conformation codes, so we
will call walks expressable by conformation codes self-avoiding walk candidates.
If we choose to express self-avoiding walk candidates as a series of characters,
we can encode them with shorthand. For example on the square lattice graph,
we can use the symbols

- x +

to represent Left, Straight, and Right respectively For example, to encode the
conformation of the protein in figure 8, we would use

x++x-++-x+xx

For the triangular lattice, we propose the inclusion of the following symbols
for Sharp Left and Sharp Right respectively:
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Figure 8: A protein has a conformation code of x++x-++-x+xx Using the
bijective relation, this conformation maps to 122,102,201,211

Figure 9: In the triangular lattice, the conformation codes << and >> form
cycles

< >

For a simple and elegant way to iterate through all of the self-avoiding walk
candidates with n nodes, we note that there is a bijective relation between all
positive numbers in base three with up to n digits and all possible conforma-
tion codes of length n on the square lattice graph, and similarly between base
5 numbers up to length n and self-avoiding walk candidates on the triangular
lattice graph. We can prove this by mapping each symbol in a shorthand nota-
tion for a square lattice graph conformation to three digit numbers with up to n
digits. We use the following: - → 0, x → 1, + → 2, < → 3, > → 4 because
it works for both the square and triangular lattice graphs simultaneously. We
would like to note that in the case of the square lattice graph, the sequences
--- and +++ can never appear because these sequences repesent the smallest
cycle possible in the square lattice graph, C4. Similarly, << and >> can never
appear in valid conformations in the triangular lattice because these sequences
map to C3 in the triangular lattice. In fact, we can test a conformation for
‘validity’ in a similar method, a conformation code of length l maps to a self-
avoiding walk if and only if it contains no substring that maps to a cycle in the
appropiate lattice graph. We could use this fact to find a bound on the number
of self-avoiding walks of length n by creating an exhaustive list of conformations
that map to cycles, but such a search would be exhaustive and exhausting. We
can find a lower bound for the number of self-avoiding walks of length n in the
square lattice by only letting the walk go up or right. At every step, the walk
moves away from the origin, so it cannot make a cycle, and for every step, the
walk can go either left or up, so we get a lower bound of 2n. Bounds with
higher bases for the exponent can be made, but they require significantly more
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effort to create, and we already have exponential upper and lower bounds for
the number of self-avoiding walks of length n, so we can say that the number of
self-avoiding walks of length n increases exponentially with respect to the length
of the walk.
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4 Lattice Properties

4.1 Square Lattice

The square lattice can be imagined as the set of points Z2 where two points,
x = (x1, x2) and y = (y1, y2) are adjacent if |x1 − y1|+ |x2 − y2| = 1 We would
like to note that x and y are adjacent if and only if the sum of the differences
between the first and second coordinates of x and y is 1 For convienence, will
we define PS to be the set of all points in the square lattice.

Parity

As Agarwala et. al. mentioned, the square lattice has the parity property where
for a walk in a square lattice graph, it is impossible for vertecies visited on an
even step to be adjacent with other vertecies visted on an even step and similarly
for odd aminos.[1, 2] We provide a proof.

Let us divide the points of the square lattice into two sets, E and O:

E = {(x, y)|x+ y is even}

O = {(x, y)|x+ y is odd}

E ∪ O = PS and E ∩ O = ∅. So, if x ∈ PS then either x ∈ E or x ∈ O. Let
us assume that x = (x1, x2) ∈ PS . Because a point y ∈ PS is adjacent to x in
the square lattice iff |x1 − y1|+ |x2 − y2| = 1, the only points that are adjacent
to x are (x1 + 1, x2), (x1 − 1, x2), (x1, x2 + 1), (x1, x2 − 1). For all four of those
points, the sum of the coordinates comes out to either x1 +x2 +1 or x1 +x2−1.
If x ∈ E, then x1 + x2 is even so all of the points adjacant to x are in O and
vice versa. Because a conformation of a modeled protein forces adjacent ‘beads’
in the string to be adjacent in their embedding in the lattice, ‘beads’ in odd
positions in the string (assuming we start enumeration of the ‘beads’ at 1) go
to even positions in the lattice and ‘beads’ in even positions in the string go to
odd positions in the lattice. We have already shown that only pairs of points
not from the same set can be adjacent so ‘beads’ in odd positions in the string
cannot be adjacent to other ‘beads’ in odd positions in the string and mutatis
mutandis.

We note that

4.2 Triangular Lattice

The triangular lattice is traditionally represented as the verticies of an infinite
tesselation of equilateral triangles, but for our convienence, we will represent it
as Z2 with a different distance function than the square lattice graph. We will
define d(x, y) to be the following:

d(x, y) =

{
|x1 − y1|+ |x2 − y2| : (x1 − y1)(x1 − y2) < 0
max{|x1 − y1|, |x2 − y2|} : (x1 − y1)(x1 − y2) ≥ 0

If we say that x and y are adjacent in the triangular lattice if d(x, y) = 1),
then (0, 0) is adjacent to (0, 1),(0,−1),(1, 0),(−1, 0),(1, 1), and (−1,−1) We can
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easily transform these coordinates to the ones in the traditional triangular lattice
as such:
(x, y)→ (x− 1

2y,
√
3
2 y)

Parity

Unlike the square lattice graph, the triangular lattice doesn’t have the parity
property. As shown in the sequence in Figure 10, we can force the endpoints of
any ‘bead sequence’ of arbitrary length to be adjacent in the triangular lattice
graph. We can do this by forming a ribbon-like structure. A modeled protein
embedded in the triangular lattice can achieve a lower energy than a modeled
protein embedded in the square lattice.

Figure 10: Visual Proof by Handwaving

4.3 Honeycomb Lattice

The honeycomb lattice is the triangular lattice with 1
3 of its vertices removed

and 2
3 of its edges removed. If we start with the triangular lattice graph defined

on Z2, and remove all vertices (x, y) such that x + y mod 3 == 0 and remove
all edges incident to the removed verteces, we get a lattice graph isomorphic to
the honeycomb lattice graph. By removing every third point in the triangular
lattice, we are left with two different classes of vertices, those where x + y =
1 mod 3 and those where x + y = 2 mod 3, and furthermore, no two vertices
in the same class are adjacant! The honeycomb lattice has the parity property.
Furthermore, we note that the shortest path in the honeycomb lattice graph
that has the two endpoints sharing an edge is 5 edges long. This can be seen
easily when we note that the first three edges brings the endpoints of the path
further apart no matter which path we choose!

4.4 Cubic Lattice

The cubic lattice is the extension of the square lattice into three dimensions. We
can express the set of points of the cubic lattice as Z3 with (0, 0, 0) as the origin
and once again with two points x and y being adjacent if and only if the sum
of the differences of their coordinates is 1 or |x1− y1|+ |x2− y2|+ |x3− y3| = 1
[23]
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Parity

We can show, with minor modification to the proof for the square lattice, that
the cubic lattice also has the parity property.

Let us divide the points of the square lattice into two sets, E and O:

E = {(x, y, z)|x+ y + z is even}

O = {(x, y, z)|x+ y + z is odd}

E ∪ O = PS and E ∩ O = ∅. So, if x ∈ PS then either x ∈ E or x ∈ O. Let
us assume that x = (x1, x2, x3) ∈ PS . Because a point y ∈ PS is adjacent to x
in the cubic lattice iff |x1 − y1|+ |x2 − y2|+ |x3 − y3| = 1, the only points that
are adjacent to x are (x1 + 1, x2, x3), (x1 − 1, x2, x3), (x1, x2 + 1, x3), (x1, x2 −
1, x3), (x1, x2, x3 − 1), (x1, x2, x3 + 1) For all six of those points, the sum of the
coordinates comes out to either x1 + x2 + x3 + 1 or x1 + x2 + x3 − 1. If x ∈ E,
then x1 + x2 + x3 is even so all of the points adjacant to x are in O and vice
versa. Because a conformation of a modeled protein forces adjacent ‘beads’
in the string to be adjacent in their embedding in the lattice, ‘beads’ in odd
positions in the string (assuming we start enumeration of the ‘beads’ at 1) go
to even positions in the lattice and ‘beads’ in even positions in the string go to
odd positions in the lattice. We have already shown that only pairs of points
not from the same set can be adjacent so ‘beads’ in odd positions in the string
cannot be adjacent to other ‘beads’ in odd positions in the string and mutatis
mutandis.
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5 Bounds

The energy of a modeled protein is determined by the following formula where
C is the number of contacts of the modeled protein in the lattice and E is the
energy of the protein:
E = −C

The number of contacts that a protein can have is at least zero, so we
immediately have an upper bound for the possible energy a protein can have:
zero. Furthermore, this bound is exact and cannot be lowered because if we
take the modeled protein where the bead chain makes a straight line with no
bends, it is impossible for any contacts to form, regardless of the bead chain, so
this protein conformation has a energy of 0. As a result, we will only consider
lower bounds for the energy of a modeled protein as the upper bound is trivial.

5.1 Lower Bounds on Minimal Energy

5.1.1 Square Lattice

Näıve Bound To start off this subsection, we will introduce a simple and
näıve lower bound for the lowest energy that a protein can take. With the
exception of the endpoints of the bead string, every black bead can come into
contact with at most two other beads, but if the bead is an endpoint of the
bead chain, it can come into contact with at most three other beads. However,
because of the handshake rule, we are double counting each contact so we have
to treat endpoints as contributing 3

2 contacts and midpoints as contributing 1
contact to the total number of possible contacts. So, if we assume a bead chain
consisting solely of hydrophobic beads, we get a lower bound for the energy
of the protein of: E ≥ n+ where n is the number of beads in the bead chain
and E is the energy of a modeled protein with length n. Because replacing a
hydrophobic bead with a polar bead can never add more contacts, this bound
applies to all modeled proteins of a given length n If we can count the number
of hydrophobic beads in the bead chain, we can get a slightly better bound. If
we take H to be the number of hydrophobic beads in the bead chain, we can
use E ≥ H + 1 instead of E ≥ N + 1 as a lower bound, because polar beads
can’t form any contacts under the Dill HP model.

Parity Bound As discussed in Chapter 4, the square lattice has the parity
property where if you divide the beads in the modeled protein by their position
in the modeled protein’s bead chain into two sets by whether or not their position
in the sequence is even and odd, contacts between two beads can only happen
if the two beads are in different groups. We can create a bound on the number
of contacts a protein can have and as a direct result, we can bound the energy
a protein can take.
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Figure 11: A modeled protein

Figure 12: A minimal energy conformation of the protein in Figure 11

In Figure 11, hydrophobic amino acids are white beads and polar amino
acids are black beads, and bonds are represented by solid lines and contacts
are represented by dashed lines. Starting at the top left corner, and using the
abbreviations N for hydrophobic (non-polar) and P for polar amino acids, we
get the following as the bead chain:
NPNNNPNNPP
Using the enhanced näıve lower bound, we get E ≥ −7 which is not a very good
lower bound considering the lowest energy this bead chain can take is -3, as seen
in the Figure 12.

We can use the parity of the square lattice to our advantage. We can seperate
the beads into two groups, based off whether each bead is in an even or odd
position in the HP string. By splitting NPNNNPNNPP into two groups this
way, we get NPNNNPNNPP so the two groups are:
N N N N P (odd) and P N P N P (even)
By the handshake rule, a bead may come into contact with at most 2 other
beads, unless the bead is at the end of a bead chain, then it can come into
contact with 3 other beads. We see that the first group has four non-polar
beads with one corresponding to an endpoint while the second group has two
hydrophobic beads neither of which correspond to an endpoint. As a result,
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Figure 13: Two modeled proteins showing that the lower bounds on energy
given by the näıve bound can be achieved.

the beads in the first group can have at most 3 + 2 + 2 + 2 = 9 contacts and
the beads in the second group can have at most 2 + 2 = 4 contacts. Because
contacts between beads are mutual, it follows that both groups should share
the same number of contacts in a protein. We get the minimum of 9 and 4 for
an upper bound on the number of contacts the bead sequence can make leaving
us with -4 for a lower bound for the optimal energy of the bead chain. The
lower bound of -4 is much closer to the actual minimum energy of the example
modeled protein which is -3, than the näıve bound of -7

5.1.2 Triangular Lattice

Näıve Bound We will once again discuss the näıve bound, but this time we
will explore the cubic lattice. In the infinite triangular lattice, every point is
adjacent to exactly six other points. When a bead is on a endpoint of a bead
chain, it has exactly one bond, which leaves five adjacent points to form contacts,
and similarly for beads in the middle of a bead chain, they have exactly two

Figure 14: For chains consisting solely of hydrophobic amino acids, squares like
this one have the lowest energy possible for the chain in the square lattice
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bonds, which leave four adjacent points to form contacts. With this knowledge,
we can form a very näıve lower bound for the possible energy of a modeled
protein in the triangular lattice, E ≥ 2N + 1 where N is the length of the HP
string. We can improve the näıve lower bound by replacing the total number of
beads with the total number of hydrophobic beads, H, to get E ≥ 2H + 1

Parity Bound Because the triangular lattice doesn’t have the parity property,
we cannot create a better lower bound on the lowest energy a protein can take
in the triangular lattice by splitting the HP string.

5.1.3 Cubic Lattice

Näıve Bound When we consider that any point in the cubic lattice is sur-
rounded by 6 other points, we can easily get the same results for näıve bounds for
the cubic lattice: E ≥ 2N + 1 where N is the length of the HP string. Similarly
where H is the number of hydrophobic beads in the bead chain, E ≥ 2H + 1

Parity Bound Like the square lattice, the cubic lattice also has the parity
property. The procedure for calculating the lower bound for energy using the
parity principle is exactly the same as calculating the lower bound for energy
using the parity principle on the square lattice except we acknowledge that
endpoint beads can have up to 5 contacts instead of 3 contacts and that midpoint
beads can have up to 4 contacts instead of 2. We will use the example HP string
from earlier to demonstrate this.

We can use the parity of the cubic lattice to our advantage. We can seperate
the beads into two groups, based off whether each bead is in an even or odd
position in the HP string. By splitting NPNNNPNNPP into two groups this
way, we get NPNNNPNNPP so the two groups are:
N N N N P (odd) and P N P N P (even)
By the handshake rule, a bead may come into contact with at most 4 other
beads, unless the bead is at the end of a bead chain, then it can come into
contact with 5 other beads. We see that the first group has four non-polar
beads with one corresponding to an endpoint while the second group has two
hydrophobic beads neither of which correspond to an endpoint. As a result,
the beads in the first group can have at most 5 + 4 + 4 + 4 = 17 contacts and
the beads in the second group can have at most 4 + 4 = 8 contacts. Because
contacts between beads are mutual, it follows that both groups should share the
same number of contacts in a protein. We get the minimum of 17 and 8 for an
upper bound on the number of contacts the bead sequence can make leaving us
with -8 for a lower bound for the optimal energy of the bead chain. The lower
bound of -8 higher than the näıve bound of − 5+4+4+4+4+4

2 = − 25
2 = −12.5.
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6 Energy Landscapes

To model protein folding, we need a way to fold a modeled protein. We propose
three operations on modeled proteins in the square lattice. If the walk that is
generated by an operation is a self-avoiding walk, then the operation is valid,
otherwise the operation is invalid for the conformation operated on.

• Identity : We propose the inclusion of an identity operation. The identity
operation leaves the modeled protein unchanged.

• Bend : If we can represent the conformation as a sequence of relative steps,
we can define the bend operation to be where we change one of the direc-

tions in the sequence to another direction. . .

• Flip: If we represent the conformation of as a sequence of absolute steps,
such as up, down, left, or right, we can define the flip operation to be the in-
terchange of two consecutive steps. If the two steps are the same, then the

flip operation is the same as the identity operation. . .

We will refer to these operations as the basic operations.
We would like to call two conformations equivalent if one can be transformed

into the other using a sequence of the basic operations. Furthermore, we call
two conformations equipotent if one can be transformed into the other using a
sequence of the basic operations, and the initial, final, and all of the intermediate
conformations have the same energy. We can extend the three operations to the
triangular lattice without changing their definitions.

Note that in the rest of this chapter, polar amino acids are white beads and
hydrophobic amino acids are black beads

Proteins can fold rapidly, in some cases proteins can reach their optimal
configuration in microseconds despite the immense number of conformations a
protein can take.[11] A theoretical structure that has been used to explain this
and other puzzling properties of protein folding is the energy funnel.[11] The
energy funnel is based off the concept that there is more than one way for an
unfolded protein to reach its native state, and that the energy landscape, roughly
takes the shape of a ‘funnel’ as one approaches the optimal state while folding.

Given the HP string NpNppNppNppNpN, we would like to find a sequence
of operations that will reduce the energy of our modeled protein to the minimal
energy without increasing the energy at any point.
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Figure 15: The unfolded state of the protein ”NpNppNppNppNpN” in the
square lattice

Before we proceed any further, we will use some of the techniques discussed
in Chapter 5 to get a lower bound on the minimal energy of the HP string
NpNppNppNppNpN in the square lattice. To use the parity bound from Chapter
5, we will need to split the string into two groups. The first group will contain the
first bead and every other bead after that, so the first group is N N p p N p p .
The second group will contain the second bead and every other bead after
that, so the second group is p p N p p N N. Using the parity bound, we get
min{−|3 + 2 + 2|,−|2 + 2 + 3|} = −7 as a lower bound on the minimal energy
of the HP string NpNppNppNppNpN in the square lattice. For this modeled
protein to achieve an energy of -7, the 6 black beads must fully fill a 2× 3 block
in the square lattice. If we let this happen, then the endpoints must reside in
the centers of the long edges of the rectangle. Otherwise, the endpoints would
be unable to come into contact with three other black beads.

Without loss of generality, we can assume that the black beads forms a
rectangle that is two beads tall and three beads wide. Furthermore, we can study
the endpoint that resides in the upper of the two midpoints of the rectangle
without any loss of generality. The next black bead in the HP sequence is
separated from the endpoint by a single white bead. Because the endpoint is
at the middle of the top of the rectangle, the first step must be upwards. As
a result, the next bead, which is a black bead, cannot reside in the rectangle,
proving that the modeled protein cannot reach a minimal energy of -7 in the
square lattice. Therefore, the minimal energy of the modeled protein is -6 or
higher in the square lattice.

Can we improve this bound further? Because there are only a finite num-
ber of possible conformations, we can prove that the minimal energy of the HP
string NpNppNppNppNpN in the square lattice is -5 by examining all of the
possible conformations. We claim without proof that the conformation in Fig-
ure 16 is optimal and now proceed with the folding sequence in Figure 17:

As you can see, the two ends of the protein folded together to form a ‘rib-
bon’. There are no basic operations that the modeled protein can use without
increasing its energy. We will try a different set of moves to try to reach a state
of minimal energy, in Figure 18

The sequence in Figure 18 leads to a final state with a lower energy than the
one in Figure 17. Note how the two black beads on the corners of this confor-
mation are isolated. Furthermore, none of the basic operations can be applied
to this conformation without increasing the energy of the modeled protein.
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Figure 16: A minimal energy conformation of the protein

Figure 17: A sub-optimal folding sequence of NpNppNppNppNpN

27



Figure 18: A folding sequence that results in a final energy of -4

Figure 19: A folding sequence that results in a minimal energy conformation.
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The folding sequence in Figure 19 starts from the unfolded state and ends in
a minimal energy state. Furthermore, the modeled protein goes between these
states without increasing its energy at any point.

What we have shown in the previous three examples is that the energy of
a modeled protein as it folds to a minimal energy state is not necessarily non-
increasing. Furthermore, we have shown that it is possible for a protein to end
up in a sub-optimal conformation where it cannot fold to a lower energy state
without first increasing its energy. In fact, the final state in all three examples
are ones where there is no valid operation that can be applied without increasing
the energy of the modeled protein. Based off of this fact, we will introduce some
terminology.

• An energy well is the set of all conformations that are equipotent to a
given conformation, including itself.

• A proper energy well is where no conformation in the energy well can
be transformed into a conformation of less energy without increasing the
energy at any point.

• A minimal energy well is an energy well comprising of native states.

Assuming that our conjecture that all conformations of a modeled protein are
equivalent is true, for a given conformation in a proper energy well, there is at
least one folding sequence from the given conformation to a conformation with
minimal energy. Every folding sequence is a finite sequence of conformations,
so there is a maximum energy attained in the sequence. Because there is a
finite number of sequences, we can take the minimum of all of these maximum
energies. We take this minimum energy, and we call the difference between this
minimum energy and the energy of our given conformation to be the depth of
the energy well. It doesn’t matter which conformation in the energy well we use
to get the depth because the result will always be the same.

We would like to point out, without proof, that the depth of the energy well
of the final state in Figure 18 is 2, and the depth of the energy well of the final
state in Figure 17 is also 2. If we visualize the energy landscape as a funnel
shaped sheet, energy wells would be local minima in the sheet.

This leads us to a question, is it possible that a protein that has deep energy
wells is more likely to misfold than one with shallow energy wells?
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7 Case Studies

For the purposes of this section, we will denote hydrophobic beads as N and
polar beads as p. So, a HP string with three hydrophobic beads followed by
four polar beads would be NNNpppp.

7.1 pNNpNpNpNNN

Figure 20: The unfolded conformation of pNNpNpNpNNN

The HP string pNNpNpNpNNN has only one minimal energy conforma-
tion in the square lattice, unique up to isometry, but it has 6 minimal energy
conformations in the triangular lattice, unique up to isometry.

Figure fig:bob is the unique, up to isometry, minimal energy conformation
of the HP string pNNpNpNpNNN

In the triangular lattice graph, the conformations in Figure 22 are equipo-
tent. There are only two differences, which way the hydrophobic tail bends in
the center and which direction the loose polar end faces. In fact, the six confor-
mations in the triangular lattice forms a single minimal energy well. Through
the flip operation, we have ε ↔ φ, α ↔ β, and γ ↔ δ. And by bending the
polar end cap through all three possible conformations, we get α↔ γ ↔ ε, and
β ↔ δ ↔ φ. As a result, we find that through our basic operations, we get that
{α, β, γ, δ, ε, φ} is the minimal energy well. The 6 different conformations are
essentially same shape. Also, not too surprisingly, the hydrophobic core forms
a ball surrounded by non-polar residues. In this manner, a is a similar shape
to the triangular lattice minimal energy conformations because it is a ‘glob’ of
non-polar residues surrounded by polar residues.

Figure 21: Conformation a
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α β γ

δ ε φ

Figure 22: Conformations α,β, γ, δ, ε, and φ of pNNpNpNpNNN

Table 1: Number of conformations with a given energy in the square lattice

0: 3,962

-1: 1,307

-2: 225

-3: 18

-4: 1

SUM: 5,513

Table 2: Number of conformations with a given energy in the triangular lattice

0: 50,546

-1: 111,202

-2: 100,919

-3: 53,223

-4: 19,737

-5: 6,774

-6: 1,420

-7: 453

-8: 151

-9: 6

SUM: 344,431
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Figure 23: Scatterplot of the Energy, Diameter, and Area of the conformations
of pNNpNpNpNNN in the Square Lattice
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Figure 24: Scatterplot of the Energy, Diameter, and Area of the conformations
of pNNpNpNpNNN in the Triangular Lattice with energy of at most -7
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For the purpose of these case studies, we will define the term diameter. For
a given point p in a set of points P , we will call the eccentricity of p to be the
maximum value of the set E = {d(p, x)|x ∈ P} where d(a, b) is the euclidean
distance between two points, a and b. We will represent the eccentricity of a
point p in a set of points P as a function, ecc(p, P ). Now, we will define the
diameter of a set of points, P , as the maximum of the set F = {ecc(p, P )|p ∈ P}.

Figures 7.1 and 7.1 show that there are more conformations than possible
diameters or areas of the convex hulls of the conformations. This is because it
is possible to have two or more conformations map to the same set of points,
but in a different order. For an example of this, see Figure 22. In Figure 22,
conformations α and β have the same set of points, but they are in a different
order.

In Figure 7.1 and Figure 7.1, we also see something else. It appears that
for each energy level in the scatter plots, the points are centered around the
minimal energy conformation’s points. It also appears that the conformation
which corresponds to a straight line is an outlier, in 7.1 we see that it lays
significantly further away from the other conformations with energy 0. Perhaps
the distance from the center can be used as a measure of entropy? In the straight
line conformation, the points are as stretched out as far as possible from each
other.
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We see in tables 1 and 2 that the energy state of 0 is the most common in
the square lattice, but in the triangular lattice, the most common energy state
is -1, closely followed by -2. Furthermore, in the triangular lattice the energy
state of 0 is the 4th most common energy state. This can be explained when we
take into account that in the square lattice, we can get 2n−1 conformations with
n beads where there cannot be any contacts by simply only going up or to the
right. This is somewhat close to the observed limit near en total conformations
with n amino acids, whereas in the triangular lattice, the limit is closer to 5n

so the 2n−1 in the triangular lattice is a significantly smaller proportion of the
total number of conformations.

7.2 NNNpNpNpppNppNpN

a b c

d e f

Figure 25: Conformations a, b, c, d, e, and f of NNNpNpNpppNppNpN

Studying the tables for the number of conformations of NNNpNpNpppNpp-
NpN, we see that the minimum in the triangular lattice is once again roughly
twice as low as that in the square lattice. We also note that the number of
possible conformations in the triangular lattice is 3 orders of magnitude greater
than the number of conformations in the square lattice. Noting how there are
roughly half a billion conformations in the triangular lattice, even taking as
little as a whole second to analyze each of the conformations would become a
non-stop endeavor that lasts over 15 years, which is clearly out of the scope of
this paper.
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Table 3: Number of conformations with a given energy in the square lattice
(Unique up to 8-fold symmetry)

0: 538,120 67.091%

-1: 211,279 26.342%

-2: 44,355 5.530%

-3: 7,093 .884%

-4: 1,092 .136%

-5: 130 .017%

-6: 6 .000%

SUM: 802,075 100.000%

Table 4: Number of conformations with a given energy in the triangular lattice
(Unique up to 12-fold symmetry)

0: 58,310,910 12.102%

-1: 144,385,164 29.967%

-2: 148,055,634 30.729%

-3: 84,743,452 17.588%

-4: 32,860,115 6.820%

-5: 10,245,377 2.126%

-6: 2,579,916 .534%

-7: 503,102 .104%

-8: 106,898 .022%

-9: 19,718 .004%

-10: 2,884 .000%

-11: 596 .000%

-12: 33 .000%

SUM: 481,813,799 100.000%
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Figure 26:
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Also it is clear that computing the conformation web for a protein in the
triangular lattice would be prohibitive. Assuming that a conformation of length
16 can, at any point, transform into roughly 100 other conformations, out of
roughly 1 billion, we see that the conformation web would be a sparse graph
and a list of nodes and their connections would be the ideal way to represent the
graph. We get roughly a TB of storage required to store the web if we assume
that a conformation of length 16 takes somewhere on the order of 10 bytes to
represent. We can expect that a conformation of length 20 would take roughly
a peta-byte of memory to represent - which is an absurd amount of storage.
Clearly, we have to limit our explorations and representations of conformation
webs to small subsets of conformation webs.

For example, it would not be unreasonable to explore the structure of the
conformation web consisting of very low energy conformations to look for energy
wells. The number of low energy conformations generally represent a miniscule
proportion of the total number of possible conformations, which means we can
cut many orders of magnitude off of the computation time or storage space
needed to explore this subset of the conformation web. In our example, the
proportion of conformations of energy less than or equal to -10 to the total
number of conformations is 6.2x10−6 Exploring this subset of the energy web of
this HP string or a similar HP string is tractable and a possible topic for further
research.

Looking at the chart of the number of conformations in the triangular lattice,
we can see that the bulk of the conformations are of low energy, which is not
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surprising, but the expected value of the energy of a conformation randomly
chosen from all of the possible valid conformations with equal probability is -1.9
in the case of the triangular lattice and -.4 in the case of the square lattice. We
conjecture that the distribution of the energy of the conformations of the square
lattice follows an exponential distribution while the triangular lattice follows a
poisson distribution with a moderate value for λ

Unlike pNNpNpNpNNN, NNNpNpNpppNppNpN has 6 different minimal
energy states (unique up to isometry) which are much more varied in structure.
Conformation e is interesting because it has an empty point in the interior of the
structure, however, {d, e, f} forms a minimal energy well, because d ↔ e and
e↔ f by flipping an amino in or out of the hole. If the protein was surrounded
by a sufficiently water-like solution to repel the hydrophobic aminos, e would be
an undesirable conformation because the hole inside it exposes 3 hydrophobic
aminos to solution.
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Figure 27: First minimal energy conformation well. Conformations 1 and 12

Figure 28: Second minimal energy conformation well. Conformations 2 and 11

Figure 29: Third minimal energy conformation well. Conformations 3 and 10

When we compare the minimal energy square and triangular lattice confor-
mations, we find that the triangular conformations have a ‘maximally-dense’
hydrophobic core, while the square lattice conformations do not. However, this
is more of a property of the triangular lattice than a property of the protein
sequence itself.
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Figure 30: Fourth minimal energy conformation well. Conformations 4, 5, 8,
and 9

Figure 31: Fifth minimal energy conformation well. Conformations 6 and 7

Figure 32: Sixth minimal energy conformation well. Conformations 13, 14, 15,
16, and 17

Figure 33: Seventh minimal energy conformation well. Conformations 18, 19,
20, and 21

Figure 34: Eigth minimal energy conformation well. Conformations 22 and 23

Figure 35: Ninth minimal energy conformation well. Conformations 24, 25, and
26
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Figure 36: Tenth minimal energy conformation well. Conformation 27

Figure 37: Eleventh minimal energy conformation well. Conformation 28

Figure 38: Twelvth minimal energy conformation well. Conformations 29, 30,
and 31

Figure 39: Thirteenth minimal energy conformation well. Conformations 32
and 33
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8 Conclusions

We explored the HP model not only on the square lattice as originally proposed
by Ken Dill, but we also used the triangular lattice.

We found upper and lower bounds on the number of self-avoiding walks in
the square and triangular lattices ranging from trivial ones to more complicated
bounds. In the square lattice, we got O(bn) for some b in [1 +

√
2, 3]. We found

lower bounds for the minimal energy of a bead sequence. We also examined dif-
ferent lattices and their properties. We counted the number of all self-avoiding
walks of length up to 16 in the square and triangular lattices by exhaustively
listing the valid self-avoiding walks for each length. We used these comprehen-
sive lists of self-avoiding walks to thoroughly study two HP sequences, one of
length 11, and the other of length 16. We studied these sequences in the square
and triangular lattices.

The diameter of the convex hull of a conformation can be used as an estimate
of the energy of the conformation. Further research in this matter could prove
useful. Our examples demonstrated that the same holds true for the area of
the convex hull. Both of these measures can be easily computed for a given
conformation.

Our model and examples are in the Euclidean plane, but extensions to 3-
space are easy and tractable. However, in 3-space self-avoiding walks can be
knotted and new problems arise.
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