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Abstract  
 

Currently, automation is becoming more important to industry, and soon, construction work may be 

completed by robots. In the construction industry a large amount of resources are used to erect buildings. 

Increasing automation will help this problem by decreasing the project’s time and overall cost. This report 

presents a design to automate construction using two systems that autonomously build structures. Each 

system is simple and works with the other to achieve a complex task beyond either’s individual ability. The 

first system is a distributed control and guidance scaffolding that acts as both the physical support and source 

of instructions. The other is a mobile builder robot that incrementally adds new scaffolding and building 

blocks to build the required structures. 
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 Executive Summary 

Project Overview  

The goal of this MQP was to design a foundational system to autonomously build two dimensional 

structures for future projects to build upon. Our approach combines two different systems to accomplish our 

complex task. The first is the network of scaffolding blocks that communicates with itself and sends 

commands to the second system. The builder robot picks and places up scaffolding and building according to 

these instruction to expand the scaffolding network and create the final structure.  

Design  

The scaffolding and building blocks externally are both square with male and female guides on each 

side so that they can interlock with each other and are mechanically constrained. The scaffolding blocks assist 

in the building process by calculating the optimal path for the builder and then relaying these instructions. 

The building blocks are hollow so that no expensive parts are left in the completed structure. The scaffolding 

blocks broadcast messages to the network via a Controller Area Network (CAN) bus and individually send 

messages to the builder robot when it drives over them via an RGB LED. The builder robot receives these 

commands using a color sensor and executes them by driving to the correct location and picking up or placing 

down the corresponding block. The scaffolding blocks keep track of where the builder robot is eliminating the 

need for it to do its own localization. A variety of embedded programs and desktop applications were created 

to assist in the development, calibration and testing. 

Results and Recommendations 

 The goal of this project was to create a proof of concept for a system to autonomously create two 

dimensional structures using builder robots and intelligent scaffolding. Overall the project was successful in 

being the first step in a series of MQPs. We were able to create a system that can drive around on a test 

board, grab and attempt to lift our blocks, and have blocks communicate with each other. We have 

assembled a variety of suggestions for future projects. These suggestions include improving existing systems 

as well as adding additional functionality and are located in Section 6 of this report.  



3 | P a g e  
 

Table of Contents 
Abstract ................................................................................................................................................................. 1 

Executive Summary ............................................................................................................................................... 2 

Project Overview .............................................................................................................................................. 2 

Design ............................................................................................................................................................... 2 

Results and Recommendations ........................................................................................................................ 2 

List of Figures and Tables ...................................................................................................................................... 4 

1. Introduction .................................................................................................................................................. 5 

2. Literature Review .......................................................................................................................................... 6 

3. Methodology................................................................................................................................................. 8 

3.A) Robot and Block Methodology .................................................................................................................. 8 

3.A.1) Block Design ....................................................................................................................................... 8 

3.A.2) Builder Robot Design ........................................................................................................................ 11 

3.B Algorithms Methodology .......................................................................................................................... 14 

3.B.1. Target Queue .................................................................................................................................... 14 

3.B.2. Configuration Variants ...................................................................................................................... 14 

3.B.3. Scaffolding Structure ........................................................................................................................ 15 

3.B.4. Goal Stack ......................................................................................................................................... 15 

3.B.5. Goal Determination .......................................................................................................................... 16 

3.B.6 Choosing an Unneeded Block ............................................................................................................ 17 

3.B.7. Scaffolding Updates .......................................................................................................................... 17 

3.B.8. Simulation ......................................................................................................................................... 17 

4. Results & Discussion for Further Work ....................................................................................................... 18 

5. Conclusion and Further Work ..................................................................................................................... 19 

5.A. Mechanical Improvements ...................................................................................................................... 19 

5.B. Electrical Improvements .......................................................................................................................... 19 

5.C. Algorithm Improvements ........................................................................................................................ 20 

6. Bibliography ................................................................................................................................................ 22 

7. Appendix A – CAD for Builder Robot .......................................................................................................... 23 

8. Appendix B – CAD for the Blocks ................................................................................................................ 24 

 



4 | P a g e  
 

List of Figures and Tables 
 

Figure 1: Automatic House 3D Printer .................................................................................................................. 5 

Figure 2: Concrete Recycling Robot ...................................................................................................................... 5 

Figure 3: Demonstration of termite Robots ......................................................................................................... 6 

Figure 4: Demonstration of smart blocks ............................................................................................................. 7 

Figure 5: First Block Design Iteration .................................................................................................................... 8 

Figure 6: Current Block Design Iteration ............................................................................................................... 9 

Figure 7: Zoomed in Section Where the Blocks Connect ...................................................................................... 9 

Figure 8: First Design Iterations for Robotic Builder ........................................................................................... 12 

Figure 9: Hoist CAD Design ................................................................................................................................. 12 

Figure 10: Current Design Iteration for Robotic Builder ..................................................................................... 13 

 

Table 1:  Instruction Types for Block ................................................................................................................... 10 

Table 2: Scaffold Microcontroller Pin Assignment .............................................................................................. 11 

 

  

file:///C:/Users/Connor%20Willgress/Documents/Final%20MQP%20D-term%20Report.docx%23_Toc512447182
file:///C:/Users/Connor%20Willgress/Documents/Final%20MQP%20D-term%20Report.docx%23_Toc512447183
file:///C:/Users/Connor%20Willgress/Documents/Final%20MQP%20D-term%20Report.docx%23_Toc512447184
file:///C:/Users/Connor%20Willgress/Documents/Final%20MQP%20D-term%20Report.docx%23_Toc512447185


5 | P a g e  
 

1. Introduction 
 

 The construction industry is seeing immense growth as it tries to house the 9 billion people that will be 

on the earth by 2050. Due to extreme growth in the construction industry, problems have arisen. Companies 

are seeing a plague of unskilled workers with more construction workers being needed to complete various 

projects. The results of having a lack of skilled workers are construction projects becoming more expensive 

and having longer schedules. Our 

approach involves minimizing the 

workforce needed to build a 

structure using robotics. Increasing 

automation will decrease 

construction costs by eliminating 

human error and increasing work 

efficiency. 

The idea of automation within 

the construction industry is not completely new, and we have already seen the automated production of the 

build materials. This method of off-site or modular construction has been proven to be successful at reducing 

costs, and experts believe that its use will increase in the coming years [1]. However, we have not seen 

automation used for the actual assembly of a building. Instead large-scale machines and tools have been the 

primary option for decreasing construction time. Concepts for automating this process such as a robotic arm 

that would automate masonry have been introduced. Yet the industry has been to slow to adapt to new 

technological ideas. 

We believe that implementing swarm robotics on a large scale can be used to automate the construction 

process. Swarm robotics is an ideal tool for this task because it allows many simple robots to complete a task 

that would normally require a single robot with orders of 

magnitude more complexity. In our approach we use swarm 

robotic principles to combine two different systems to 

accomplish the task. The first is a distributed control and 

guidance scaffolding that acts as the “brains”. The other is a 

mobile builder robot that acts as the “muscle”. During 

operation, the scaffolding acts as both the physical support 

and source of instructions for the builder. The builder robots 

Figure 1: Automatic House 3D Printer 

Figure 2: Concrete Recycling Robot 
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then follow the instructions given by the scaffolding to incrementally add new scaffolding and building blocks 

to the structure. This process is repeated until the desired structure has been completed. 

This project has been limited in scope to only produce 2D structures and only one active building robot. 

The main goal of this project is to produce a framework that future work can build off and to begin 

developing the techniques and algorithms that will eventually be used to implement this system on an 

industrial scale. 

2. Literature Review 
 

Within the field of swarm robotics there is generally very little done on research into using it for building 

complex structures. Most research has been focused on biological nanorobotics, search and rescue, foraging, 

and mining. The main cause of this being that the companies and industries are more willing to spend money 

on the research into swarm robotics while the construction industry adapts slowly. Even with the limited 

research there has been an introduction into the concept of using swarm robotics for building complex 

structures.  Within our research we found two projects to be of use for inspiration as we developed our own 

project. 

The first research paper our team 

considered was “Designing Collective 

Behavior in a Termite-Inspired Robot 

Construction Team” completed by 

Justin Werfel, along with Kristin 

Petersen, and Radhika Nagpal. The 

project was centered on the idea of 

engineering an automated 

construction system that operates by 

termite-like principles.  Mound building Termites (a species of termites) live in mounds made of soil that they 

build for their colonies. Some termite mounds can be as large as 30 meters (just under 100 feet) in diameter. 

This is an example of a little insect being able to have built something profoundly large. In general, that is 

what this project within the research paper was looking to achieve. The systems design is motivated by the 

goal of relatively simple, independent robots with limited capabilities being able to automatically build a 

large class of non-trivial structures. They achieve this by having an arbitrary number of independent robots 

that follow an identical set of simple and local rules. The robots are equipped with hybrid wheels that allow 

Figure 3: Demonstration of termite Robots 
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them to climb onto bricks in a stair like manner. The robots are limited to local sensing, able to perceive only 

bricks and other robots in their immediate sensing. The information about the current state of the overall 

structure and actions of more distant robots is not available. By using a “seed” block they created a initiation 

point from which the contiguous structure is built. To ensure the predetermined outcome of construction, 

robot rules are based on sensed brick configurations plus a static internal representation of the target 

structure. The strengths of this projects are primarily in the design of the robot builder itself. It was built to 

be able to traverse upwards and be able to hold onto a building block at the same time. The weaknesses of 

this project is the computation of its thinking process. It uses a brute force calculation method to determine 

where and when a block will be placed, this requires long computation times and has no guarantee of being 

optimal. The robots also require an on-board camera for localization which increases the cost and complexity 

of the robot. 

Another research paper we drew 

inspiration from is “Toward Autonomous 

Constriction Using Stigmergic Blocks” put 

forth by Michael Allwright et. al. Their 

project uses a multi-robot system to 

demonstrate a decentralized control 

strategy for building three-dimensional 

structures. Like before they were 

inspired by the same idea of termites 

being able to build nest many times the 

size of an individual. Within their project 

they used autonomous robots that are equipped with a manipulator, which can pick up a stigmergic block 

and assembling the into structures. The robots utilize onboard computer vision to respond to two types of 

cues in an environment. The stigmergic blocks are semi-active cubic building material that is programmable 

by the robots themselves. The blocks can represent different building material by changing the LED colors on 

the face of the blocks. Within these blocks are eight magnets that the manipulator of the autonomous robot 

can attach to. The strengths of this project were the “smart” block itself. With the design of the LEDs it makes 

for transmission of information to the robots easier. It also allows for the displaying the different building 

materials. Its weaknesses were also revolved around the block as well. The robots relied on the blocks for 

instructions. The blocks were also extremely costly because of having the ability to communicate via NFC. 

Figure 4: Demonstration of smart blocks 
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3. Methodology 
  

This section discusses the design of building and scaffolding blocks, builder robot, and algorithms used in 

our automated construction system. Both block types share the same outward design, so they can interlock 

with each other and are mechanically constrained. The scaffolding blocks assist in the building process by 

calculating the optimal path for the builder and then relaying these instructions to the builder robot. The 

scaffolding blocks mechanically and electronically link together to form a contiguous Controller Area Network 

(CAN) network. The builder robot traverses solely along the scaffolding structure while receiving commands 

from the blocks beneath it. These commands control all of the high-level actions of the builder robot, such as 

moving along the structure, picking up a block, or placing a block. 

3.A) Robot and Block Methodology 

3.A.1) Block Design 

Both the scaffolding and the building blocks share the same external design to reduce complexity. 

The blocks are square with male and female trapezoidal guides on each side and are rotationally symmetric 

around the Z axis and bilaterally symmetric across the XY plane. The guides are tapered on the tops and 

bottoms to allow for some degree of error when placing a block. The blocks also have indentations offset 

from each edge so that they can be picked up by the robot. The blocks have a 7.6in (19.5cm) square footprint 

and are 2.3in (5.8cm) tall. 

 

 

Figure 5: CAD Design of Block (Version 1) 
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Figure 6: CAD Design of Block (Version 2) 

 

 

 

Figure 7: CAD Design of Block (Version 3) 

 

Scaffolding blocks need to be able to detect when a block is placed next to it, communicate between 

themselves, and signal the builder robot. Block detection is achieved via a simple contact switch on each face 

of the block while interconnection between blocks is achieved using pogo pins. Both mechanical systems 

require slight ramps to be embedded in the sides of the blocks to ensure that they connect smoothly, are 

actually engaged, and that the pins and switches do not bend.  

Since messages between the building block and the builder robot are simple and only one-way, an 

RGB LED was chosen for sending instructions to the Robot. An off the shelf color sensor costs less than ten 

dollars and RGB LEDS are a few cents apiece making using RGB LEDS for simple commands cheaper and easier 

to use than wireless protocols. Additionally RGB signaling allows for visual debugging of the blocks. There 
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needs to be support for thirteen commands, four main commands four variants (three of which have four 

variants) as detailed in Table 1. If the STOP command is designated as the color white, the other 12 

commands can easily be assigned a value from 0-359 representing their hue. A simple calibration script was 

written to determine the optimal hues for the commands as well as the maximum speed the color sensor 

could operate to minimize errors.  

 

BASE INSTRUCTION TYPE NO VARIANTS FORWARD BACK LEFT RIGHT 

STOP ✓ X X X X 

DRIVE X ✓ ✓ ✓ ✓ 

PICK UP X ✓ ✓ ✓ ✓ 

PLACE X ✓ ✓ ✓ ✓ 

Table 1:  Instruction Types for Block 

 

For communication between blocks, a physical protocol was chosen over a wireless protocol due to 

cost limitations. Wireless transceivers are several times more expensive than their wired counterparts. 

Additionally, some wireless protocols would require one or more transceivers per side of the block. The CAN 

protocol was picked over other wired protocols. Can was chosen because of its ability to broadcast messages 

to all nodes simultaneously, fewer connecting wires, and the availability of robust transceivers. The low-

speed implementation of the CAN protocol was chosen because it does not require the CAN bus to be 

terminated by resistors, instead each node contains the needed resistors.  Choosing low speed CAN causes 

several restrictions not present in high speed CAN, namely a lower speed and the maximum number of nodes 

is determined by the resistance provided by each node on the bus. Since messages between nodes are small 

and infrequent, the lower speed is a non-issue. The number of scaffolding blocks is known in advance; 

therefore, the needed resistance can be calculated beforehand. 

The Microcontroller being using for this project is the NUCLEO-L432KC. The NUCLEO boards are a 

part of the MBED ecosystem which provides real-time OS functionality for embedded boards. This particular 

board was chosen due to its low price point, while retaining relatively large Flash and SRAM. Additionally, it 

has built in support for I2C, SPI, and CAN. The tentative port assignments for the board can be found in Table 

2. 
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Port # Type Use 

D2 CAN TD CAN TD 

D10 CAN RD CAN RD 

D3 PWM LED R 

D5 PWM LED G 

D6 PWM LED B 

D4 DIO Contact Switch 

D9 DIO Contact Switch 

D11 DIO Contact Switch 

D12 DIO Contact Switch 

D10 I2C DATA Backup I2C Data 

A6 I2C CLK Backup I2C Clock 

Table 2: Scaffold Microcontroller Pin Assignment 

3.A.2) Builder Robot Design 

The builder robot is broken into three mechanical systems: the gripper, the lift, and the drivetrain. 

The gripper mechanism is the part of the builder that directly interacts with the building and scaffolding 

blocks. A parallel gripping mechanism, actuated by a single servo motor, allows for the blocks to be grabbed 

and released with little horizontal movement. The “fingers” of the gripper are designed to mate with the 

insets on the blocks to ensure a mechanically constrained grip. The servo motor torque requirements are 

minimally important as the motor only needs to be powerful enough to hold the gripper closed when holding 

a block: The design of the fingers precludes the need for a frictional hold on the block and the servo motor 

doesn’t contribute to lifting the block. 
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Figure 8: Original CAD Designs of the Builder Robot (Version 1) 

 

The gripper and the block the robot is carrying are lifted by a screw drive powered by a geared DC 

motor. The screw drive allows for a high torque ratio and purely vertical lift, opposed to the arc that a four-

bar mechanism would create. This verticality allows for a block to be removed or placed even when it is 

surrounded by other blocks. The hoist connects to the gripper via a runner. The runner contacts the hoist at 3 

points: a centered hex nut that attaches to the screw and 2 nylon bushings that provide mechanical 

alignment against the guide rods. In the initial design, all three contact points were in line, but this was 

changed in later versions to a triangular arrangement to improve stability. The hoist is homed using a contact 

switch and the raised position determined by the time taken to raise the hoist. 

 

Figure 9: CAD Designs for Robot from 2nd Revision 
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The builder robot has two driven wheels located at the center of the robot. Initial designs had the 

driven wheels at the front of the robot to ensure that the wheels-maintained traction when a block was 

lifted. This was determined to be less important than having the turning center close to the center of the 

robot. Because our project is not time sensitive, the drivetrain was purchased based on out of the box 

usability and price. Originally ball casters were placed at the front and the back of the robot to improve 

stability. During testing, it became clear that the casters were not a feasible solution because they fell into 

the gripper holes in the tops of the scaffolding blocks. To combat this, the casters were replaced with acrylic 

skids which were larger than the holes. The skid mounting holes were countersunk to give clearance to the 

mounting screws. Additionally, a small chamfer was filed into the skid bottoms to account for the small 

inconsistency in the block’s surface. 

 

 

Figure 10: Final CAD Rendering of the Builder Robot 

 

The robot’s sensor suite is comprised of two line detection sensors, and a color sensor. The line 

detection sensors are placed at the front and back of the robot, spaced so that they have the maximum 

amount of space between them to improve our line sensor resolution. The color sensor is placed at the 

center of the robot so that the color sensor and the RGB LED are inline when the robot is centered over the 

scaffolding block. 
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3.B Algorithms Methodology 

This section discusses the high-level algorithmic view of the construction system. The algorithm must 

be able to take in a target structure and direct the two subsystems to build the structure. The current 

iteration of the algorithm has two main simplifications: there is be only one builder robot that starts on top of 

a block and the target structure must be two dimensional. This block is designated as the seed block and is at 

coordinates (0,0). The seed block will never move and off to one side is the cache. The cache is where the 

builder will retrieve new blocks and must be manually filled by an outside person.  

The Algorithm uses the concept of a spine row and reach columns. The spine row provides a 

constant line of scaffolding blocks that always exists to the left of the current column. This simplifies the 

pathfinding needed to reach any given block, by returning to the spine row and going to the appropriate 

column before going down the reach column to the required row. If a block is unreachable, it can be made 

reachable by either extending the spine row or the associated reach column 

 

3.B.1. Target Queue 

The target structure must be contiguous and is represented as a list of coordinates. Before the giving 

it to the algorithm, the target structure must be sorted to create the target queue. This target queue specifies 

the order that the targets will be placed. The algorithm works to place each target in the queue sequentially 

and does not consider the rest of the target structure. Because of this single mindedness, the target queue 

must adhere to several specifications (listed in the Configuration section).  As long as these specifications are 

met the target queue can be in any order. 

 

3.B.2. Configuration Variants 

The target queue configures before being passed to the algorithm. This configuration process is to 

sort the queue to meet two requirements. All target locations must be to the right of the origin and the 

target queue must be sorted from right to left. The first requirement is a basic assumption made to simplify 

the algorithm. The second requirement is due to the algorithm placing the reach columns for a building block 

to the left of the building block. Additionally, the queue can manipulate the target queue by translating or 

rotating the entire structure. This manipulation preserves the overall shape of the target structure but can 

reduce the amount of time needed for the building process. 

There are currently four variants for sorting and translating the target queue: SingleOffsetConfigurer, 

MidOffsetConfigurer, CentroidConfigurer, and LongestSpineConfigurer. All of these configurers translate then 
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sorts the target structure. SingleOffsetConfigurer translates the structure so that all target locations are in to 

the right and below the spine. MidOffsetConfigurer translates the structure so that the seed is in the center 

of the upper and lower bounds of the target. CentroidConfigurer translates the structure so that the seed is 

in line with the centroid of the target. SingleOffsetConfigurer translates the structure so that the resulting 

spine will have the most blocks in the target. 

Additionally, the target structure can be rotated to increase efficiently. There are four rotators are 

currently available to rotate the structure in increments of 90 degrees. There are also two more advanced 

rotators that attempt to rotate the structure to optimally place the centroid. 

 

3.B.3. Scaffolding Structure 

The scaffolding structure is comprised of two types of substructure, one spine row, and several 

reaching columns. The spine row is a continuous line of blocks along the x-axis and is connected to the seed 

block. The reaching columns are columns of scaffolding blocks used to access a target not adjacent to the 

spine. Scaffolding is added, moved and removed to in accordance to the goals in the goal stack. 

The reach column for the current target will always be to the side of the target in the -x direction. 

This allows for all the blocks in a column to be placed one after another after the reach column has been built 

to reach the target furthest from the spine. Working to preserve the spine and reach paradigm allows for 

several assumptions. First, all scaffolding blocks are reachable. Second if you are not on the same column as 

another scaffolding block, you can reach it if you travel towards the spine, move to the correct column, and 

then travel down that reach column. 

 

3.B.4. Goal Stack 

The act of placing a building block in a target location is comprised of several steps. The steps that 

the algorithm is actively considering is stored on a stack called the goal stack. There are four types of goals 

PLACE_BUILD_BLOCK, PLACE_SCAFFOLD, PICK_BUILD_BLOCK, PICK_SCAFFOLD. 

Goals also have two locations associated with them: the location of the block being picked up or 

placed and the location the builder will be at when completing the goal. These locations must be adjacent 

with the former being named the goal location, and the second being the helper location. Goals higher on the 

stack are needed to achieve goals lower on the stack. The goal on the bottom of the stack will always be 

placing a building block at the current target location.  
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3.B.5. Goal Determination 

The goal stack is updated whenever the top-most goal is completed, when this happens the 

completed goal is popped off the stack. There are 4 valid ways the current goal can be incompletable. To help 

complete a goal, another goal is pushed onto the stack. After adding a new goal, the goal stack is reevaluated 

to see if any more goals are needed. 

The first way the target goal is pushed onto the stack when the stack is empty, this occurs when the 

last root goal was completed. The new goal is the next uncompleted target in the target queue. The helper 

location for this goal is the block in the -x direction, this is so that the reach column is on the +y side of the 

target location. In the case when the next target block is next to the spine and is the only one in that column 

on that side of the spine, the helper location on the spine instead of in the -x direction. 

The next way a new goal is added onto the stack is if the current goal is unreachable, that is there is 

no series of movements that robot can take to reach the helper location of the goal. If this is the case, the 

goal pushed onto the stack will be to place a block that will help reach the helper location. The location of 

this goal is the first unoccupied location on the spine or the reach column for the current target. The first 

unoccupied location is chosen because it is obviously currently reachable. Additionally, we choose a location 

adjacent to the current scaffolding structure instead of the goal because it reduces the potential size of the 

goal stack. 

The third way a goal is added onto the stack is if the current goal is to place a block and a block is not 

currently held. If the next goal is to place a building block at the target, the block is always retrieved from the 

cache. Otherwise, the scaffolding structure is analyzed to determine if any of the current scaffolding blocks 

are unneeded to reach the next goal. The next goal is to pick up one of these unneeded blocks (see Choosing 

an Unneeded Block). 

The final way that a goal is added is if the current goal is to place a building block at a target location, 

but the target location already has a scaffolding block. In this case the new goal is to place a new scaffolding 

in the location needed next (or the cache if it will never be needed). When the goal stack is re-evaluated to 

determine if a new goal is needed, it will see the new goal and create one to get an unneeded block. The 

moved block may not be the one blocking the goal, but though many iterations of moving blocks eventually 

that block will be moved. Moving the blocking scaffolding is done via this roundabout process because it 

allows all the unneeded blocks to be moved as the goal updates, preventing a block from being left behind 

far away from the seed. 

Since these are the only 4 ways a new goal can be created, it can be shown through a decision tree 

that at most 3 goals will ever be on the stack at any given moment. This is useful because the algorithm may 
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eventually be run on embedded system of the scaffolding blocks and the bounded number of goals will 

reduce memory usage. 

 

3.B.6 Choosing an Unneeded Block 

The unneeded blocks are any blocks left over from previous reach columns or any blocks on the 

spine further than the current goal. The unneeded block that is chosen to be moved is the one from the 

newest reach column that is furthest away from the spine. If this column has the helper location, we also 

prioritize the side with the helper location. Choosing this block reduces the number of steps needed to 

retrieve a block, while keeping all blocks reachable. 

 

3.B.7. Scaffolding Updates 

The scaffolding blocks instruct the builder robot to move and pick up or place blocks. The 

instructions must be relative to the orientation of the builder robot because it does not know its global 

heading. Since the algorithm knows the position of the builder robot at any given point, these instructions 

can be updated after every time a new goal is pushed onto the goal stack. The default state of the scaffolding 

blocks is to show the drive forward instruction. At most only four blocks need to show special instructions on 

any update. The start block, the end block, the on block, and the off block. The start block is the block that 

the robot is on top of at the time of the update. The end block is the block at the helper location of the 

current goal. The on block is the block on the spine in the same column as the robot. The off block is the 

block that the block on the spine in the column of the helper location. Some of these blocks are the same 

block and in others, not all blocks are needed. If the builder and the end location are in the same column the 

start block just needs to tell the builder to go towards the end location. In this case, the on and off blocks are 

not needed. Otherwise, the builder needs to go towards the spine row, move along that row to the column 

that the helper location is in, and move down that column to the helper location. Obviously if the builder or 

the helper location are on the spine row, then the movement along the corresponding column is unneeded. 

3.B.8. Simulation 

A simulation of this algorithm was originally created in python with various example structures. The 

original simulation can be found on github at https://github.com/cjcormier/roboscaffold_sim. Python 3.6 and 

tk/tcl must be installed to run the examples. Due to the slowness of Python and the difficulty of extending 

the application UI with tkinter, the simulation is now written in Kotlin and TornadoFX. The rewrite can be 

found at https://github.com/cjcormier/roboscaffold-sim-kotlin-jvm. 

https://github.com/cjcormier/roboscaffold_sim
https://github.com/cjcormier/roboscaffold-sim-kotlin-jvm
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In addition to the ability to simulate the construction of various structures, the rewritten project provide 

the ability to compare the strategies based on three metrics number of robot moves, number of scaffolding 

updates, and amount of scaffolding used.  

4. Results & Discussion for Further Work 
 

Throughout the course of this project we were faces with multiple problems that hampered progress. 

Despite these difficulties we were able to create a prototype capable of achieving many of the individual 

parts of the system but struggles in some situations.  

The final robot is capable of driving around on a test board, but not on top of the scaffolding blocks. This 

is due to not the robot having enough room on the top of the scaffolding blocks to reposition itself if it was 

slightly offset. Additionally, if the test board is not level the robot has difficulty driving in some directions due 

to different wheel speed tuning needed. The different tuning may be circumvented with encoders, which we 

were not able to use due to the limited space in between the motors being used by the color sensor.  

The hoist and runner has trouble picking up even a detached lid of the scaffolding blocks. Part of the 

issue is that when the runner was manufactured we were not able to fit in the nylon bushings. This allowed 

for the runner to pitch forward when holding any weight which in turn caused the screw lift to bind. 

According to calculations done before the motor was selected, the hoist should have been able to lift 

approximately 4 pounds (the block is under 2 lbs.) so the hoist’s failure is most likely due to the binding.  

The Scaffolding blocks worked well overall. The pogo pins and copper pads create a solid connection for 

the CAN network but are difficult to attach to the block. The pogo pin are especially difficult to attach, since a 

small amount of epoxy on the retractable end causes the pin to be nonfunctional. This difficulty in assembly 

is compounded by the fact that any significant issue with epoxying the contacts and pins is difficult to undo. 

This could be resolved by designing the scaffolding block to be more modular. 

A significant contributor to our lack of time was due to manufacturing issues. Because the laser cutter 

was not functioning properly for most of B-Term, we were not able to laser cut the acrylic for the robot and 

were set back around 5 weeks. Additionally, the print bed for the 3D printer we were using was too small, 

leading to the issue with repositioning the robot mentioned above. 
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5. Conclusion and Further Work 
  

The goal of this project was to create a proof of concept for a system to autonomously create two 

dimensional structures using builder robots and intelligent scaffolding. Overall the project was successful in 

being the first step in a series of MQPs. We were able to create a system that can drive around on a test 

board, grab and attempt to lift our blocks, and have blocks communicate with each other. We have 

assembled a variety of suggestions for future projects. These suggestions include improving existing systems 

as well as adding additional functionality. 

5.A. Mechanical Improvements 

Larger Robot & Larger Blocks: Many of the issues we encountered were due to the small size of the robot 

and blocks. Finding a way to increase the block size would allow the robot to be larger and mitigate some of 

these issues. 

 

Improve Drivetrain: Currently the robot has difficulty driving sloped surfaces. This could be improved by 

getting better drive motors or allowing for encoders to detect actual wheel rotation speed. 

 

Improved Hoist and Gripper Mechanism: The robot hoist screw binds when attempting to raise the blocks. 

This issue may be solved by making sure the nylon bushings work or by using a forklift system to reduce block 

rotation. 

 

Multiple Structure Layers: The final goal of this series of MQP’s is to enable the construction of 3D 

structures. The builder robot being able to navigate over multiple layers is integral to this goal. 

 

Scaffolding Block Modularity: The scaffolding blocks are currently two parts, the base and the lid. When 

there is a single issue with adding the CAN pins and contacts, the entire base may unusable. Allowing for 

individual components of the blocks to be removed reduces the impact that a single mistake has on the 

manufacturing process. 

 

5.B. Electrical Improvements 

Wireless Inter-Block Communication: The current system of pogo-pins creating a mechanical - wired 

connection works well enough for the current iteration. However, there are problems with using our current 

CAN system at larger scales. The CAN network is partly reliant on having a total resistance below a threshold, 

and adding more blocks slowly increases the resistance in the network. Additionally, moving the current 



20 | P a g e  
 

system to a 3-dimensional structure would require additional mechanical connections on the tops and 

bottoms of the block. This could be prevented by adding wireless communication between blocks. 

  

Two Way Scaffold-Builder Communication: To manage the scope of the project we kept both the robot and 

the scaffolding as simple as possible. However, having feedback between the robot and the scaffolding block 

could provide valuable additional data for system control. For example, the robot does not currently know 

whether a block has been properly connected to the network; this could be fixed with additional feedback 

between the actors. 

 

Decrease Impact of Checking Line Sensors: Due to the way the line sensors function, it takes approximately 

6ms total to get readings for both sensors. This can impact the performance if the line sensors are checked in 

tight loops. This time can be reduced at the cost of precision. Since the sensors are constantly being checked 

during this time, threading this process would not reduce the impact of reading the sensors. Offloading this 

processing to another processor to would eliminate most of the impact of frequently checking the line 

sensors. Additionally, this processing is only necessary for the digital version of these sensors, using the 

analog version would simply either require more ADC ports or analog multiplexers.  

 

Vision Based Location Detection: Currently the line sensors and color sensor are used to approximate the 

location of the robot on top of the block, this can cause some issues when the robot is drastically misaligned. 

A solution to this is to use a small camera mounted to the bottom of the robot. While possibly increasing the 

accuracy of localization, it would also vastly increase the processing needed to determine the robot’s 

position. 

 

Create PCB for Scaffolding and Robot:  The current wiring for the scaffolding and robots is accomplished 

using breadboards and plugging wires directly into the microprocessor. While this worked well enough for 

this prototyping phase, increasing the consistency of the manufactured blocks will improve the speed at 

which they can be made. 

 

5.C. Algorithm Improvements 

More Complex Algorithms: The current algorithm is relatively simplistic, research into more complex 

algorithms may decrease construction times. One suggestion is to search through the decision space to 

determine the path with the least number of steps. A less computationally taxing, approach is to simply 

improve edge cases for the existing algorithm. 
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Dynamic and Distributed processing: Currently the system uses a predetermined plan for the robot to build 

the structure. Allowing for the scaffolding blocks to detect errors in the building process and adapt to these 

issues is necessary for the system to more realistically simulate real world conditions.  

 

Multiple Robots: Determining concepts to make full use of multiple robots would decrease construction 

times. This may simply be intelligently dividing up the structure into substructures and having multiple robots 

work separately. Another alternative is to have the robots work together and around each other on the same 

structure. This could be done by making loops that the robots always maneuver around in the same 

direction, avoiding the issue of the robots needing to drive onto the same block.  

 

Reduce Invalid Structures During Analysis: To test an algorithm we run that algorithm through all unique 

valid structures within given dimensions. Currently a minor amount of culling is done to remove structures 

that are simply translated within the maximum space and reduce the number of invalid shapes. For. a 5x5 

square, the current process checks 27964666 structures for validity. Of the structure checks only 7.4% are 

valid structures. Reducing the number of invalid check would increase the analysis speed. 

 

Monte Carlo analysis for larger structures: Since the number of valid structures grow at 2^(n^2), where n is 

the edge length of the bounding square, the time to test all structures of a given size increases rapidly. To 

reduce this time, using a large random sample of structures to perform the analysis for larger sizes would 

increase analysis speed. 
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7. Appendix A – CAD for Builder Robot 
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8. Appendix B – CAD for the Blocks 
 

 

 

 


