
Bluetooth Packet Capture and Analysis
Using Wireless Product Testbed

by

Son Nguyen

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Master of Science

in

Electrical and Computer Engineering
by

December 2020

APPROVED:

Professor Alexander M. Wyglinski, Advisor

Professor Kaveh Pahlavan, Committee Member

Professor Emmanuel O. Agu , Committee Member

Abstract

Bluetooth has solidified its place as one of the most prominent and versatile wireless

communication technology alongside Wi-Fi. In spite of its widespread usage, contemporary

Bluetooth testing technology still has many unaddressed shortcomings and issues. Hard-

ware limitations, computational complexity, and the lack of standardization are some of

the longstanding problems. Furthermore, very few systems possess a proven and reliable

capability to test both Wi-Fi and Bluetooth. This thesis seeks to develop an adaptive

Bluetooth test framework that can not only overcome limitations with existing systems but

can also accommodate other technologies and protocols as well. The work presented in this

thesis included: a packet processing and logging utility, a promiscuous packet capture sub-

system built around a production test engine, and a complementary subsystem that handle

encryption and other security mechanisms.

iii

Acknowledgements

I would like to express my deepest gratitude to my advisor Professor Alexander M.

Wyglinski for his continuous guidance and support through both my undergraduate and

master program. I am very thankful for the opportunity to work with him in the WILab

at Worcester Polytechnic Institute.

I want to thank Professor Kaveh Pahlavan and Professor Emmanuel O. Agu for serving on

my committee and providing valuable suggestions and comments with regards to my

thesis.

I would like to thank the staff and engineers at octoScope giving me the opportunity to

work on this project and for assisting me with various technical issues as well as for their

financial support throughout the course of this project.

A special thank you goes to Galahad Wernsing, my colleague at the joint

octoScope-WILab project, who developed many of the utilities and tools that the work

presented in this thesis is built upon. I also want to thank my family, friends, and other

colleagues at WILab for supporting and encouraging me throughout the course of this

project.

iv

Contents

List of Figures vi

List of Tables x

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 3
1.3 Current Issues . 9
1.4 Thesis Contributions . 10
1.5 Thesis Organization . 11

2 Overview of Bluetooth and Packet Capturing Technology 13
2.1 Bluetooth Wireless Technology Standard . 16

2.1.1 Bluetooth BR/EDR . 19
2.1.2 Bluetooth LE . 22

2.2 Packet Capturing Technologies . 27
2.3 Packet Capture File Format . 31

2.3.1 BTSNOOP . 31
2.3.2 PCAP . 33
2.3.3 PCAPNG . 35

2.4 Summary . 37

3 Proposed Bluetooth Packet Logging and Formatting System 38
3.1 Test System Description . 40
3.2 BTSnoop Formatting . 42
3.3 PCAP Formatting . 46
3.4 PCAPNG Formatting . 51
3.5 Summary . 58

4 Proposed Bluetooth Packet Capturing System 59
4.1 Litepoint IQxel-M16W-Based Promiscuous Packet Capturing Subsystem . . 60
4.2 Litepoint IQxel-MW 7G Based Promiscuous Packet Capturing Subsystem . 64
4.3 Proposed Hybrid System . 70
4.4 Summary . 73

v

5 Conclusion 74
5.1 Research Outcomes . 75
5.2 Future Work . 75

Bibliography 76

A Complementary Logger Utility for CYW20719-based Inline Packet Cap-
ture Tool 83
A.1 Control Module . 83
A.2 Communicator Module . 86
A.3 Interpreter Module . 89
A.4 Plotter Module . 95
A.5 BTSnoop Logger Module . 96
A.6 PCAP Logger Module . 98
A.7 PCAPNG Logger Module . 101

B Litepoint-based Promiscuous Packet Capture Tool 107
B.1 Litepoint Packet to JSON Translator . 107
B.2 JSON to PCAP Translator . 114

vi

List of Figures

1.1 Bar graph showcasing the trajectory of growth in annual Bluetooth device
shipment, with grey portion detailing annual Bluetooth device shipment
growth from 2013 to 2019 and the blue portion describing projected growth
from 2020 onward to 2024. The data used to compile this graph was collected
from Bluetooth SIG’s market report in 2018, 2019, and 2020 [1] [2] [3] . . . 2

1.2 Examples of Tier 1, 2, and 3 Bluetooth sniffers. It is worth noting that there
is a evident and noticeable difference in form factor’s size between each tier
of device owing to the increase in the complexity and number of components. 4

1.3 Examples of various types of equipment used for creating an isolated RF
environment in wireless testing. 8

1.4 Early mockup prototype of the wireless test system developed at octoScope
that the Bluetooth test utilities is built upon and is supposed to complement. [4] 11

2.1 Image depicting a Recommended Standard (RS) 232 serial cable [5]. Orig-
inally introduced in 1960, RS-232 is primarily utilized for serial data trans-
mission, and communication. 13

2.2 General packet capture system structure illustrating the software/hardware
divide within the a sniffer system. While the hardware component scan the
airwaves for packets, the software component handle decryption, decode ,
and control the hardware. 15

2.3 Channel maps of popular wireless telecommunication technologies and pro-
tocols utilizing the 2.4 GHz ISM band. [6] 17

2.4 General stack structure for all Bluetooth derived technology, BR/EDR and
BLE included . 18

2.5 Bluetooth BR/EDR Channel Map. BR/EDR devices make use of 79 chan-
nels, each 1 MHz apart, to exchange data. [6] 20

2.6 Example of a Typical BR/EDR Stack. The stack in this example follows
the generic layered architecture with the BR/EDR upper layers consisting of
serial ports and Radio Frequency Communication (RFCOMM) protocol. . . 21

2.7 A typical BR packet alongside a typical EDR packet. Aside from the differ-
ence in data rate, the Guard & Sync field is another major difference between
BR and EDR. The Guard & Sync field contains the guard period and the
synchronization sequence. 22

vii

2.8 Bluetooth LE Channel Map. LE devices make use of 40 Channels, each 1
MHz apart, of which 37 are used to exchange data while the 3 advertising
channels are used during the pairing process. [6] 23

2.9 Example of a Typical LE Stack. The stack in this example follows the generic
layered architecture with the LE upper layer consisting of the Generic Access
Profile (GAP) and the Generic Attribute Profile (GATT). 25

2.10 A LE uncoded packet alongside a LE coded packet. The main differences
between uncoded and coded packet are the Coding Indicator (CI), Terminator
1 (TERM1), and Terminator 2 (TERM2) fields. While the CI field indicate
the amount of symbols used in the coding scheme, the TERM fields form the
terminator sequence needed to reset the encoder. 26

2.11 Example of a Packet Capture System. The octoScope Pal-6 Packet Capture
System Complete With Antenna is Shown Here 27

2.12 Picture showcasing the user interface of the Wireshark software. In this case,
Wireshark is being utilized to capture Ethernet traffic 29

2.13 Comparison of inline packet capture system and promiscuous packet capture
system’s principle of operation . 30

2.14 Overview of the BTSnoop Packet Capture File Format. In the BTSnoop
format, one File Header is followed by multiple Packet Record, one for each
packet captured . 32

2.15 Overview of the PCAP packet capture file format. Similar to BTSnoop, the
PCAP format consists of one Global Header and multiple Packet Header and
Packet Data field for each packet logged . 34

2.16 Overview of one typical variant of the PCAPNG packet capture file format.
PCAPNG are designed to be modular and thus can be arranged in more than
one way. 36

3.1 General architecture of the OPP (Object Push Profile) file transfer test sys-
tem. The EVB will form a Bluetooth link with the test device but the packet
and file data’s final destination is the host. 38

3.2 Overview of the EVB housing the CYW20719 Bluetooth IC used in this
project [7] The EVB can be connected to a host computer using a micro-
USB port shown on the left side. The built-in antenna is located on the
daughter board on the right side . 39

3.3 The test setup for the OPP file transfer test system. The test device used
in this scenario is a smartphones running Android OS version 10. Both the
phone and the EVB is connected to a host computer running Windows 10
through USB connections. 40

3.4 Screenshot showing the file transfer on the phone and the host computer’s
side. The file transfer is started when the Python program is started on the
host computer. At this point, the program waits for a file to be sent from
the phone. On the phone’s side, after selecting the file to be sent, the user is
prompted to pick a destination. The EVB is designated as “OPP server” in
this scenario. Upon successfully completing the file transfer, the EVB send
both the transferred file and packet log to the host computer. 41

viii

3.5 Illustration of the Cypress HCI packet. Out of the six fields, only the Packet
Length field, HCI Packet Type field, and HCI Packet Data field is used in
the formatting process. 42

3.6 Illustration of the BTSnoop File Header field. The File Header field consist
of the Identification Pattern, the Version Number and the Datalink Type. . 43

3.7 Illustration of the BTSnoop Packet Record field. The Packet Record field
consist of the Original Length, the Included Length, the Packet Flags, the
Cumulative Drops, the Timestamp, and the Packet Data 44

3.8 Example of a successful capture logged into a BTSnoop File. Note that the
BTSnoop file was able to indicate both the direction and the classification of
the packets logged. 46

3.9 Illustration of PCAP Global Header field. The Global Header consist of the
Magic Number field, the Version Major/Minor field, the Thiszone field, the
Sigfigs field, the Snaplen field, and the Snaplen field. 47

3.10 PCAP Packet Record field. The Packet Record consist of both the seconds
and microseconds component of the Timestamp, the Included and Orginal
Length, and finally the Packet Data. 49

3.11 Example of a successful capture logged into a PCAP file. Note for some of
the packets, the direction field and the packet type field is unfilled due to the
an encapsulation issue discovered later on. 50

3.12 Examples of How PCAPNG Files Maybe Configured by Rearranging Differ-
ent Types of Blocks . 52

3.13 Illustration of PCAPNG Section Header Block (SHB). The SHB follows the
generic block structure and contains the Byte-Order Magic Number field, the
Version Major/Minor field, and the Section Length field. 53

3.14 Illustration of PCAPNG Interface Description Block (IDB). The IDB follows
the generic block structure and contains the Link Type field, and the SnapLen
field. There is also a 16-bit field that is reserved for future use that is currently
not utilized for any purpose. 54

3.15 Illustration of PCAPNG Enhanced Packet Block (EPB). The EPB follows the
generic block structure and contains the Interface ID field, the Timestamp,
the Captured/Original Packet Length fields, the Packet Data field. 55

3.16 Example of a successful capture logged into a PCAPNG file. Note that the
direction and the packet type field are once again filled in for all packets. . 58

4.1 The Litepoint IQxel-M16W Used in the First Build of the Promiscuous
Packet Capture System [8]. The ten status lights to the left indicate the
on-off state of device, whether a session is active, and the status of each of
the 8 modules. Each module consist of two ports that can be configured as
an input or an output and monitored separately. 60

4.2 Result graph and visualization for the EVB direct connect test. Since the
EVB was connected directly to the Litepoint engine, the signal strength was
quite high (around 20dBm) and the eye diagram is very clear. 63

ix

4.3 The Litepoint IQxel-MW 7G Used in Later Builds of the Promiscuous Packet
Capture System [9]. Outwardly, there are no major differences between the
IQxel-M16W and the IQxel-MW 7G as the layout are exactly the same. . . 65

4.4 The Over-the-air advertising beacon test setup for the Litepoint IQxel-7G-
Based Promiscuous Packet Capture System. Shielding is now necessary as
the Bluetooth packets are transmitted over-the-air. Furthermore, an actual
BLE beacon now replace the EVB in the test scenario. 66

4.5 Picture of the UI of softwares used for remote operation and providing net-
work connection to RF-isolated smartdevices 68

4.6 Result Graph and Visualization for the Over-the-air Advertising Beacon Test.
As the Beacon is not directly connected to the Litepoint, the signal level is
significantly lower (around -30 dBm) and the shape of the eye diagram ,while
still resembling the shape of the eye, is also more erratic. 69

4.7 The Nordics Semiconductor nRF52840 DK EVB used in the Complementary
Promiscuous Packet Capture System. The nRF52840 can be connected to a
host computer via a USB-B connection and it also possess built-in antenna
on the right-side of the board. [10] . 71

4.8 The Over-the-air advertising beacon test setup for the Litepoint IQxel-7G-
Based Promiscuous Packet Capture System with the nRF52840-based Com-
plementary Promiscuous Packet Capture Subsystem 71

4.9 Example of a successful capture logged using the nRF52480 DK EVB. This
section of the capture specifically detail the moment the handshake Between
the Android phone and the beacon completed. Note how the MAC address
of the phone and the beacon in the Source field is changed to Master and
Slave after the handshake completed. 72

x

List of Tables

1.1 Comparison between the existing academic literature, work and research and
the work presented in this thesis on Bluetooth packet capture file formatting 6

1.2 Comparison between the existing academic work, literature, as well as re-
search and the work presented in this thesis on Bluetooth promiscuous sniff-
ing for testing . 7

2.1 Frequency allocation for 12 of ISM radio bands. The 2.4 GHz band utilized
by Bluetooth and derivative technologies is highlighted in Cyan 14

2.2 Comparison between the physical parameter of the BR/EDR and the LE
variant of Bluetooth. Coding scheme, data rate, number of channels and
hopping intervals are all considered to be major differences between BR/EDR
and LE . 17

xi

List of Acronyms

ADC IND Advertising Connectable Indirected

ADV DIRECT IND Advertising Connectable Directed

ADV NONCONN IND Advertising Non-Connectable Indirected

ADV SCAN IND Advertising Scannable Indirected

AGC Automatic Gain Control

API Application Programming Interface

BLE Bluetooth Low Energy

BR Basic Rate

BR/EDR Basic Rate/Enhanced Data Rate

CAC Channel Access Code

CI Coding Indicator

CONNECT REQ Connect Request

CRC Cyclic Redundant Check

DAC Device Access Code

dBm Decibel-Miliwatts

DPSK Differential Phase Shift Keying

xii

EDR Enhanced Data Rate

EPB Enhanced Packet Block

EVB Evaluation Board

FDMA Frequency Division Multiple Access

FHSS Frequency Hopping Spread Spectrum

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Freuquency-Shift Keying

GHz Giga-Hertz

GMT Greenwich Mean Time

GPIO General-Purpose Input/Output

HCI Host Controller Interface

IAC Inquiry Access Code

IC Intergrated Circuit

IDB Interface Description Block

IEEE Institute of Electrical and Electronics Engineers

IO Input/Output

IoT Internet-of-Things

ISM Industrial, Scientific and Medical

kbps Kilobits-per-second

kb Kilobyte

xiii

L2CAP Logical Link Control Adaptation Protocol

LE Low Energy

LFSR Linear Feedback Shift Register

MB Megabyte

Mbps Megabits-per-second

MHz Mega-Hertz

MIC Message Integrity Check

OPP Object Push Profile

OS Operating System

OSI Open System Interconnection

PCAP Packet Capture

PCAPNG Packet Capture Next Generation

PDU Protocol Data Unit

QPSK Quadrature Phase Shift Keying

RFCOMM Radio Frequency Communication

RS Recommneded Standard

SCAN REQ Scanning Request

SCAN RSP Scanning Response

SCPI Standard Commands for Programmable Instruments

SDR Software Defined Radio

SHB Section Header Block

xiv

SIG Special Interest Group

TDMA Time Division Multiple Acces

TERM1 Terminator 1

TERM2 Terminator 2

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

USB Universal Serial Bus

UTC Coordinated Universal Time

1

Chapter 1

Introduction

1.1 Motivation

Among the technological advances of the Information Age, modern wireless telecommu-

nication protocol and technologies such as Wi-Fi and Bluetooth have always been consid-

ered to be among some of the most important if the most important innovations of the

era [11] [12] [13]. With the prevalent usage of smart devices such as smartphones, tablets,

and IoT appliances, the importance of wireless technology in every facet of modern life has

only increase [14] [15] [6]. Even though Wi-Fi has always traditionally been seen as the

predominant wireless technology, Bluetooth has been experiencing exponential growth in

usage in recent years [3] [2] [1]. Particularly, Bluetooth enabled device shipment has nearly

double in the past 6 years, growing from 2.4 billion device shipped in 2013 to 4.6 billion

devices shipped in 2019. Furthermore, this upward trend is expected to continue and fu-

ture projection are optimistically estimating that annual shipment will eventually reach 6.2

billion Bluetooth enabled devices shipped in 2024 [3]. (see Figure 1.1)

Throughout its life cycle, Bluetooth and related derivative technologies have evolved

beyond their original purpose. Aside from traditional application such as audio streaming

and data transfer, Bluetooth-related technologies have also been utilized in healthcare,

industrial, and IoT application among others [16]. From the Airpods earphones [17] to

specialized applications used for COVID-19 contact tracing [18], Bluetooth technologies

2

truly have a ubiquitous presence in every facet of the economy.

Even though Bluetooth has grown to rival Wi-Fi in both usage and versatility [19] [20],

there remains a gap in the testing capability between the two type of wireless communication

technology. In particular, whereas there is a wide variety of reliable testing hardware

and software for Wi-Fi, the options for proven Bluetooth testing solution are still quite

limited [21]. As many smart devices utilize both Wi-Fi and Bluetooth, there is considerable

demand in the market for a reliable testbed that can test both type of wireless technology

simultaneously [22]. Despite the significant level of interest, dependable solutions suitable

for testing both Wi-Fi and Bluetooth are few and far between [23]. The work detailed in

this thesis pertain specifically to the development of the Bluetooth component of a project

started at octoScope to address the aforementioned gap in the market [24].

Figure 1.1: Bar graph showcasing the trajectory of growth in annual Bluetooth device
shipment, with grey portion detailing annual Bluetooth device shipment growth from 2013
to 2019 and the blue portion describing projected growth from 2020 onward to 2024. The
data used to compile this graph was collected from Bluetooth SIG’s market report in 2018,
2019, and 2020 [1] [2] [3]

3

1.2 State of the Art

Generally speaking, the underlying working principle behind all wireless telecommuni-

cation test systems are fundamentally the same. Irrespective of the technology or protocol,

an effective wireless test system must be able to isolate, monitor, decode, and log traffic

from the test device. Bluetooth test systems generally follow the same formula [25]. Al-

though not as numerous as those dedicated to Wi-Fi testing, a widespread availability of

Bluetooth test systems does exist. Many of these systems and tools were first designed and

developed with Wi-Fi testing in mind and limited Bluetooth testing capabilities were only

added in later versions. However, with that said, it should be noted there are also some

dedicated Bluetooth test system that are proven and widely used [23] [26]. Throughout

the course of this thesis, the capabilities and limitations of these systems were studied and

taken into consideration to help determine the design goal of our own system. From what

was learned, Bluetooth test systems can generally be classified into three tiers based on the

sophistication of their design.

The first tier consists of systems that are built around a single intergrated circuit (IC)

and usually come in the form factor of a Universal Serial Bus (USB) dongle or a dedicated

evaluation board (EVB). Some noteworthy first tier Bluetooth systems include the open

source Ubertooth One/Zero [27] as well as some of the older offerings from Texas Instrument

[28], Nordics Semiconductor [29], and Cypress Semiconductor [30]. Although systems of

this tier are simplest and therefore the most affordable, they can usually only monitor a

limited number of channels at a time and they cannot be easily updated to accommodate

newer versions of Bluetooth. Systems in the second tier, which are more complex and

more expensive, are actual quite similar to the first generation system in form factor and

size. Second tier systems can monitor a large amount of channel at once but the ability

to accommodate newer versions of Bluetooth are generally still limited due to hardware

constraint. One example of a second tier system would be the Teledyne Lecroy Frontline

ComProbe BPA [31] and more recent offerings from Nordics would also fit the definition [10].

Third-tier systems, which are built-around Software Defined Radio (SDR) [32], are the most

capable and complex but also the expensive type of Bluetooth test systems. Furthermore,

4

third-tier systems not only possess the ability to monitor all the channels at the same time

but also the ability to update the firmware to accommodate and support any future version

of Bluetooth though the use of SDR [26] [33]. Some examples of third-tier systems include

the Sodera series of Bluetooth Analyzer produced by Teledyne-Lecroy [34] as well as Ellisys’s

various offerings [35] [36]. Figure 1.2 showcases examples of sniffers from all three tiers.

(a) Ubertooth One [27] (b) nRF52 DK Sniffer [29]

(c) Teledyne Lecroy SODERA Sniffer

[34]

Figure 1.2: Examples of Tier 1, 2, and 3 Bluetooth sniffers. It is worth noting that there is
a evident and noticeable difference in form factor’s size between each tier of device owing
to the increase in the complexity and number of components.

5

Generally, there is a lack of standardization when it comes to the file format used

to log intercepted traffic. In most cases, captured Bluetooth traffic are logged into non-

standard proprietary packet capture file formats designed by the manufacturer [26] [37].

Smart devices such as smartphones and tablets used BTSnoop files as a way keep record of

Bluetooth data exchanges [38] [39]. While BTSnoop is a reliable format that is compatible

with many packet capture software, it is only designed to contain certain type of Bluetooth

packets. Furthermore, since BTSnoop was designed specially to accommodate Bluetooth

transmission, it is incapable of handling other type of wireless traffic [39]. For systems that

are designed to handle both Bluetooth and Wi-Fi, more universal and adaptive platform

such as PCAP [40]and PCAPNG [41] are usually used instead.

While Bluetooth test systems of all tiers can more or less handle intercepting, analyzing,

and logging packets on their own, even the most capable system has limited capacity to deal

with interference. Instead, an isolated environment, usually in the form of a Faraday cage

or an anechoic chamber (refer to Figure 1.3a and b), is used to prevent other signals from

interfering with the transmission coming the test device. [42] Traditional Faraday cages

and anechoic chamber are usually the size of a small room if not bigger, but semi-anechoic

chambers such as those produced by octoScope (see figure 1.3c) comes in much smaller form

factor ranging from the size of a small locker to that of a cupboard [43] [44]. Augmented

by add-on hardware, these chambers can also be used to simulate real-world environments,

allowing a wide variety of scenarios to be tested from the confine of one test chamber [43].

From an academic point of view, there has certainly been interest in Bluetooth packet

capture. In [45], BLE packets was formatted and processed for wireless penetration testing

and simulating a man in the middle attack. Moreover, in the book Bluetooth security [46],

Yang and Huang specifically examined the PCAP format usage in a number of cybersecurity

application. Mazzazenga, et al’s work [47] does touch on packet capture with regards to

testing, although the paper emphasis and focus on simulation and mathematical model

instead of practical tests.

Regarding Bluetooth promiscuous sniffing, there has been a decent amount of academic

work and research on topic. For instance, in [6], a Bluetooth sniffer was utilized for coex-

istence testing for industrial application in a factory floor. Aside from purely application

6

Table 1.1: Comparison between the existing academic literature, work and research and the
work presented in this thesis on Bluetooth packet capture file formatting

Existing Literature Similarities Differences

Taj Dini, et al. [45]

Focus on BLE

Consideration about other

2.4GHz ISM technology

Mentioned BLE packet recovery

Primarily focus on

Bluetooth/ZigBee security

rather than performance testing

No mention of a specific capture

file format

Yang, Huang [46]

Focus on Bluetooth

(both BR/EDR & LE)

Usage of Wireshark

Usage of PCAP format

Usage of open-source hardware

No mention of PCAPNG

More emphasis on security

rather than testing

Mazzazenga, et.al [47]
Focus on BR/EDR

Focus on packet

Usage of simulation

Emphasis on theoretical

math model

related work, in [45], the authors built a SDR-based Bluetooth promiscuous sniffer for cy-

bersecurity application using USRP in conjunction with gnuradio. While many articles

examined the SDR-based approach like in [45], there are also articles such as [48], where a

system based on inexpensive conventional Bluetooth-compliant radios are used to build a

promiscuous Bluetooth sniffer instead.

Overall, the ideal Bluetooth test system would be one that possess not only adaptive yet

reliable packet capture capability but also the ability to manipulate the test environment

and log captured packets into universally compatible file format. Although only a few

contemporary systems possess this combination, such systems represent the not only the

pinnacle but also the future standard of Bluetooth testing [49].

7

Table 1.2: Comparison between the existing academic work, literature, as well as research
and the work presented in this thesis on Bluetooth promiscuous sniffing for testing

Similarities Differences

Wetzker, et al. [6]

Consider Bluetooth

(both BR/EDR & LE)

alongside Wi-Fi

Usage of sniffer

for testing purpose

Emphasis on Industrial application

Factory floor used in test

Emphasis on coexistence

Albazrqaoe, et al. [48]

Focus on Bluetooth

(both BR/EDR & LE)

Promiscuous/Passive Sniffing

Usage of inexpensive

Bluetooth-compliant radio

Emphasis on novel

hardware design/architecture

Taj Dini, et al. [45]

Focus on BLE

SDR-based sniffer

Utilization of BLE

Beacon in test

Usage of USRP w/ gnuradio

Emphasis on

Wireless penetration testing

Man-in-the-middle attack

8

(a) Anechoic Chamber [50] (b) Faraday Cage [51]

(c) octoScope Semi-Anechoic Box [44]

Figure 1.3: Examples of various types of equipment used for creating an isolated RF envi-
ronment in wireless testing.

9

1.3 Current Issues

Despite recent advances, contemporary Bluetooth test systems still have a number of

limitations and issues. While many of these problems affect all classes of Bluetooth test

systems equally, some are only limited to certain classes and types of test system.

Hardware limitations are a particularly consistent issue that inhibit the performance and

utility for lower-end and older systems. Most lower-end systems only possess the ability to

monitor one channel at a time as monitoring multiple Bluetooth channels at the same time

is a computationally complex and intensive task. While tests that involve a small number

of devices will only involve a few channels, tests designed to emulate real-life scenarios

will more often than not involve a large portion of all available channels. Therefore, the

ability to run and conduct more complex tests with a large number of test devices are

only reserved for the most sophisticated and advanced systems. Furthermore, hardware

limitations on lower-end and older systems hamper these system’s ability to be updated to

support and accommodate newer versions of Bluetooth. Thus, the lifespan for lower-end

systems are effectively shorten as they would be rendered obsolete every time a new version

of Bluetooth is released [26].

Dealing with built-in Bluetooth security mechanism and encryption is not only a chal-

lenge for lower-end systems but for higher-end system as well. Most Bluetooth packets are

encrypted and the useful data they contain is essentially locked away. In order to decrypt

the packets, specific credentials need to be obtained. While the method used to brute force

the credentials differ system to system, they are usually time consuming and prone to error,

making them unsuitable for time sensitive and critical operations. [52]

Another issue that affects all Bluetooth test systems is the lack of a standard and

universal packet capture file format. More often than not, captured Bluetooth traffic is

logged into non-standard proprietary packet capture file formats that require specialized

software to read. It is often complicated and difficult to export the captured data to another

format. Furthermore, since these file formats are specifically designed to hold Bluetooth

packets, they would be incompatible with other wireless protocol and technology. Thus,

for systems that must handle both Wi-Fi and Bluetooth, these types of files cannot be

10

used [37] [53].

1.4 Thesis Contributions

The work detailed in this thesis is part of a larger project that seeks to build a test system

that can not only provide both accurate capture of packets but also information regarding

the RF environment through both inline and promiscuous packet capture, respectively, and

then combine all the gathered data into a single packet capture file. Figure 1.4 showcase a

prototype of the wireless test system developed at octoScope thatthe Bluetooth test utilities

is built upon. Specifically, this thesis described the development process of the Bluetooth

component of the aforementioned test system. Since many of the tools and utilities for the

Bluetooth test system was developed in conjunction with a colleague at the joint octoScope-

WILab project, the work presented in this thesis is complemented by the research presented

in [54]. This work contains the following contributions:

1. A supplementary tool for the inline packet capture subsystem that can extract, process

and logs both regular Bluetooth packets and Bluetooth HCI packets into standard file

formats such as BTSnoop, PCAP and PCAPNG;

2. Technical detail and relevant test results and data along with solution to some of the

issue encountered;

3. The promiscuous packet capture subsystem built around the Litepoint product test

engine which is supposed to complement the inline packet capture by providing data

about the RF environment as well as filling in what its counterpart may have missed;

4. Two versions of the subsystem built with the Litepoint IQxel-M16W and the Litepoint

IQxel-MW 7G respectively;

5. Over-the-air capture test results and data for the two versions of the Litepoint based

promiscuous packet capture subsystem and solutions to a number of issues;

6. Ongoing effort to develop a complementary promiscuous packet capture subsystem

that will help the Litepoint-based system handle encryption and other built-in security

11

mechanism without relying on brute forcing;

Figure 1.4: Early mockup prototype of the wireless test system developed at octoScope that
the Bluetooth test utilities is built upon and is supposed to complement. [4]

1.5 Thesis Organization

The thesis is organized as follows: Chapter 2 presents background information on all

variants of the Bluetooth protocol, contemporary Bluetooth testing systems and various

packet capture file formats utilized in the project. Chapter 3 presents relevant technical

detail and describe the development process for the packet formatting and logging tool.

Additionally, the inline packet capture system that the tool is supposed to supplement is

12

also briefly described in this chapter. Chapter 4 focus on the development process of the

promiscuous packet capture subsystem built around the Litepoint production test engine

and the complementary decryption subsystem. In addition to technical data, both Chapter 3

and 4 also present relevant test results and data as well as solutions to the issues encountered

during the respective development process. Finally, Chapter 5 discusses the outcome of the

work done and outline the future direction of the project.

13

Chapter 2

Overview of Bluetooth and Packet

Capturing Technology

Bluetooth and its various derivative technologies are members of the wireless technology

standard group previously maintained by the Institute of Electrical and Electronics Engi-

neers (IEEE) as IEEE 802.15.1 but later on standardized by the Bluetooth Special Interest

Group (SIG) [16].

Figure 2.1: Image depicting a Recommended Standard (RS) 232 serial cable [5]. Orig-
inally introduced in 1960, RS-232 is primarily utilized for serial data transmission, and
communication.

14

Table 2.1: Frequency allocation for 12 of ISM radio bands. The 2.4 GHz band utilized by
Bluetooth and derivative technologies is highlighted in Cyan

Frequency Range Center Frequency Bandwidth

6.765 MHz - 6.795 MHz 6.78 MHz 30 kHz

13.553 MHz - 13.567 MHz 13.56 MHz 14 kHz

26.957 MHz - 27.283 MHz 27.12 MHz 326 kHz

40.66 MHz - 40.7 MHz 40.68 MHz 40 kHz

433.05 MHz - 434.79 MHz 433.92 MHz 1.74 MHz

902 MHz - 928 MHz 915 MHz 26 MHz

2.4 GHz - 2.5 GHz 2.45 GHz 100 MHz

5.725 GHz - 5.875 GHz 5.8 GHz 150 MHz

24 GHz - 24.25 GHz 24.125 GHz 250 MHz

61 GHz - 61.5 GHz 61.25 GHz 500 MHz

122 GHz - 123 GHz 122.5 GHz 1 GHz

244 GHz - 246 GHz 245 GHz 2 GHz

All versions of Bluetooth operate in the 2.400 to 2.485 GHz spectrum, also known as the

Industrial, Scientific, and Medical (ISM) band, one of the most widely used frequency bands

for wireless technology development [55] (see Table 2.1). While originally only intended to

be utilized as a wireless substitute for the RS-232 data cables (see Figure 2.1), Bluetooth

and its derivatives have evolved for use in not only communication but also healthcare and

industrial applications [16] [6]. Overall, Bluetooth can be classified into two main tech-

nology standards: (1) Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) [16], and (2)

Bluetooth Low Energy (LE) [16]. Bluetooth BR/EDR, also known as Bluetooth Classic,

refers to the original implementation and its evolution while Bluetooth LE, also widely re-

ferred to as BLE, refers to the separate protocol adopted June 2010 [16]. Both the BR/EDR

variant and the LE variant share many similarities regarding technological specifications but

the latter is designed for use in Internet-of-Things (IoT) and sensor networks, where battery

conservation is an important factor in the design process.

Packet capturing systems, also commonly known as sniffers [56], capture and record

15

traffic in a digital communication network. As data packets transit across the network, it is

the sniffer’s goal to capture, decode, analyze, and display the information the packets carry

in human-readable formats [57]. A packet capturing system consists of two main compo-

nent, as illustrated in figure 2.2: (1) the communication hardware that scan the airwaves for

packets, and (2) the software that control the aforementioned hardware as well as handle

the decryption and analysis of intercepted packets [56]. Generally, packet capturing systems

refer to both systems built specifically for wired and wireless communications. Since this

thesis primarily deals with Bluetooth, the main focus is on packet capturing systems for

wireless network. As most wired network hardware have built-in functions that allow the

user to monitor packets that pass through the network, it is a relatively straightforward task

to capture network traffic over a wired network. Intercepting wireless communications rep-

resents a much more complex problem, especially for wireless technology such as Bluetooth

with built-in frequency hopping features for security purposes [58].

Figure 2.2: General packet capture system structure illustrating the software/hardware
divide within the a sniffer system. While the hardware component scan the airwaves for
packets, the software component handle decryption, decode , and control the hardware.

In this chapter, we provide an overview on the Bluetooth wireless technology standard,

with a focus on Bluetooth LE, as well as packet capturing systems. Technical details and

specifications on the Bluetooth wireless technology are discussed in Section 2.1 to provide

16

context and knowledge needed in discussion of Chapter 3. Packet capturing systems, which

constitute both hardware and software, is discussed in Section 2.2. Furthermore, relevant

details about data formats used in packet capturing in Section 2.3 is to support discussion

in both Chapter 3 and 4.

2.1 Bluetooth Wireless Technology Standard

As laid out in the Bluetooth core specifications, Bluetooth wireless communication stan-

dard is primarily geared towards short-range communication acting as substitute for cables

intended to connect portable and/or fixed electronic devices. Bluetooth operates alongside

other common wireless protocol like Wi-Fi (IEEE 802.11) and ZigBee (IEEE 802.15.4) in

the 2.4 GHz band, specifically between 2.402 and 2.480 GHz or 2,400 and 2.4835 GHz,

with 3.5 MHz and 2 MHz wide guard band at the top and bottom respectively [59] [60].

(see figure 2.3) Overall, Bluetooth systems can be classified into two classes: Bluetooth

Basic Rate/Enhanced Data Rate (BR/EDR) devices and Bluetooth Low Energy (LE) [16].

While there are certainly many differences between BR/EDR and LE, there are also many

similarities, as can be seen by the comparison in table 2.2. Built-in device discovery, con-

nection establishment, and connection mechanisms are available for both classes of devices.

Designed to be less expensive, less complex, and less power consuming than Bluetooth Ba-

sic Rate/Enhanced Data Rates system, BLE systems generally have lower data rates and

duty cycles than Bluetooth Basic Rate/Enhanced Data Rate systems. Devices and systems

that support both BLE and Bluetooth Basic Rate/Enhanced Data Rate should be able to

communicate with any other device that supports one or both of the technologies, enabling

the use of most profiles. However,it is worth mentioning that there are specific profiles that

are only available with either BLE or Bluetooth Basic Rate/Enhanced Data Rate [16].

17

Figure 2.3: Channel maps of popular wireless telecommunication technologies and protocols
utilizing the 2.4 GHz ISM band. [6]

Table 2.2: Comparison between the physical parameter of the BR/EDR and the LE variant
of Bluetooth. Coding scheme, data rate, number of channels and hopping intervals are all
considered to be major differences between BR/EDR and LE

BR/EDR LE

Frequency Range 2.4 GHz ISM

Spread Spectrum FHSS

Coding Scheme
GFSK (BR)

4/8-DPSK(EDR)
GFSK

Data Rate
1 Mbps (BR)

2 or 3 Mbps (EDR)
1 Mbps

Number of Channels 79 (1 Mhz guard band) 40 (2 Mhz guard band)

Hopping Interval 625 µs 75 ms - 4s

18

In a typical Bluetooth core system, there is only one host but there might be more than

one controller. The host in a Bluetooth core system encompasses all of the layers below

the non-core profiles and above the Host Controller Interface (HCI), whereas a controller

encompasses all the layers below the HCI [16]. Controllers are further classified into primary

controllers and secondary controllers. A Bluetooth core systems many only have one primary

controller, which may be a BR/EDR controller, an LE controller, or a combined BR/EDR

and LE controller, but may have more than one secondary controller that are alternate

MAC/PHY (AMP) controller.

Figure 2.4: General stack structure for all Bluetooth derived technology, BR/EDR and BLE
included

19

Overall, all variants of Bluetooth, including BR/EDR and LE, follow the same generic

layered architecture which are subdivided into the Physical Layer, Logical Layer, and sev-

eral Upper Layers [16] [61] (see Figure 2.4). While the Physical Layer and Logical Layer

resides on the controller, the Upper Layers reside on the host. The Physical Layer always

consists of physical transports, physical channels, and the physical links whereas the Logical

Layer always consists of logical transports and logical links. The Upper Layers may differ

depending on the application and variants of Bluetooth in question but the lowest layer is

always the Logical Link Control Adaptation Protocol (L2CAP) channel.

2.1.1 Bluetooth BR/EDR

BR radios can theoretically support a nominal data rate of up to 1 Mbps with Gaus-

sian Frequency-Shift Keying (GFSK) coding while EDR radios can accommodate a nom-

inal data rate of up to 2 or 3 Mbps for Π/4-Quadrature Phase Shift Keying (π/4-QPSK)

and 8-Differential Phase Shift Keying (8-DPSK) [59]. Bluetooth BR/EDR allows for full-

duplex communication in the unlicensed 2.4 GHz ISM band. Since other communication

technologies, most notably the widely adopted Wi-Fi, also occupies the 2.4 GHz ISM band,

Frequency Hopping Spread Spectrum (FHSS) is utilized in Bluetooth Basic Rate/Enhanced

Data Rate to prevent fading as well as destructive collision and interference [16] [6]. Gen-

erally, with FHSS, BR/EDR radios jump between the 79 allocated frequency (see Figure

2.5), each 1 MHz apart, in the 2.4 GHz ISM band in a pseudo-random pattern. However,

in certain cases, sections of the frequency band that are being occupied by other devices

can be specifically bypassed to avoid interference. A BR/EDR device may frequency hop

between the transmission and reception of packet. Using both Frequency Division Multiple

Access (FDMA) and Time Division Multiple Access (TDMA), a BR/EDR channel is parti-

tioned in both the time and frequency domains into time slots so that one frequency can be

occupied by different BR/EDR devices at different times [16]. In special cases, one packet

may occupy multiple consecutive slots on the same frequency although in most cases one

packet occupies several different slots over a number of distinctive frequencies.

20

Figure 2.5: Bluetooth BR/EDR Channel Map. BR/EDR devices make use of 79 channels,
each 1 MHz apart, to exchange data. [6]

A group of devices on the same BR/EDR physical channel generally synchronize and

adhere to a similar clock rate and frequency hopping pattern in most cases. Devices in a

typical BR/EDR operation can be classified as either master or slave. The master refers to

the device that provides the common clock and frequency hopping pattern, whereas slaves

refer to devices that adhere to these shared parameters [16]. A group consisting of one

master and its slaves operating in this manner is called a piconet. Devices that are in the

same piconet use the same specific frequency hopping pattern that is calculated based on

the synchronized clock rate the master provides as well as certain fields within the BR/EDR

packet.

In a physical channel, the link between a master device and its slave devices is generally

referred to as a physical link. The physical link’s purpose is to provide bidirectional packet

transport between the master device and associated slave devices or to accommodate uni-

directional packet transport for the master device to associated slave devices [16]. Due to

the large amount of devices that may be within the confine of one physical channel, the

ability to form a physical link is restricted and controlled. Specifically, only links between

a master device and slave devices are permitted, whereas links between slaves devices are

not allowed.

21

Figure 2.6: Example of a Typical BR/EDR Stack. The stack in this example follows the
generic layered architecture with the BR/EDR upper layers consisting of serial ports and
Radio Frequency Communication (RFCOMM) protocol.

Overall, as shown in Figure 2.6, the BR/EDR stack follows the generic layered architec-

ture and can be partitioned into two main parts, the layers that inhabit the host and those

that inhabit the controller with the HCI acting as intermediary between the host and the

controller [61] [16]. The Logical Layer for BR/EDR is specified as the Baseband Layer. The

Baseband Layer and its lower counterpart, the Physical Layer reside on the controller side

while the Upper Layers reside on the host side. While the specific term for each layer of the

Upper Layers are different, they generally fulfill the same function as that of the network,

transport, session, presentation, and application layers in the Open System Interconnection

(OSI) model.

22

Figure 2.7: A typical BR packet alongside a typical EDR packet. Aside from the difference
in data rate, the Guard & Sync field is another major difference between BR and EDR.
The Guard & Sync field contains the guard period and the synchronization sequence.

The Generic BR/EDR packet consists of 3 main parts (shown in Figure 2.7): the access

code, the header, and the payload [59]. The access code, which can either be 68 or 72 bit

long, is used for timing synchronization, offset compensation, paging, and inquiry. There

are three different kinds of BR/EDR access code, channel access code (CAC), device access

code (DAC) and inquiry access code (IAC). CAC is used for piconet identification while

DAC and IAC is used for paging and inquiry respectively. The header, which is 54 bit

long, is used for flow control, slave device addressing, error checking, as well as packet

acknowledgement, numbering, and reordering where necessary. The payload, which can

be from 0 to 2745 bit long, contains the payload header field and the payload body. The

payload header field contains information used for routing the payload as well as the length

of the payload body, while the payload body can carry both audio and data.

2.1.2 Bluetooth LE

LE radios can nominally support a data rate of up to 1 Mbps in most cases and 2

Mbps for uncoded data, achieved using GFSK [60]. It is worth noting that with error

correction coding, the data rate is limited to either 500 kbps or 125 kbps for 2 symbols

per bit and 8 symbols per bit, respectively. Similar to BR/EDR radios, LE radio also

23

operates in the unlicensed 2.4 GHz ISM band and also utilize FHSS to avoid destructive

interference with other technologies occupying the same frequency band. Transceiver radio

complexity is minimized with the use of shaped. binary modulation [16]. One of the key

differences between LE and BR/EDR is that while the classic variant frequency hop between

79 channels each 1 Mhz apart with similar function (see Figure 2.5), BLE employs 40

channels each 2 MHz apart, of which 3 are specialized advertising channels (see Figure 2.8).

BLE sytems, similar to BR/EDR cousins, hops between the 37 data channels in a pseudo-

random pattern and can also avoid sections of the frequency band occupied by interfering

devices. Similar to BR/EDR, LE also utilizes both FDMA and TDMA to partition its

channels so that one frequency can be occupied by different LE devices at different time.

Instead of time slots, the basic time unit for LE systems are called events, which are classified

into advertising, extended advertising, periodic advertising, and connection events [16] [60].

Figure 2.8: Bluetooth LE Channel Map. LE devices make use of 40 Channels, each 1 MHz
apart, of which 37 are used to exchange data while the 3 advertising channels are used
during the pairing process. [6]

For LE systems, there are three classifications of device types that participated in the

events described above [16]. Advertisers are devices that transmit advertising packets on

the three designated advertising channels. Scanners are devices that receive advertising

packets but do not connect to the transmitting devices. Finally, Initiators are devices that

receive advertising packets and connect to the transmitting devices. It is worth noting this

classification only supplements the existing master/slave classification system previously

observed in BR/EDR devices instead of replacing it. Specifically, advertiser/scanner/initia-

tors designation are used during the linking process whereas the master/slave designations

are used within the piconets after the link has already been established.

An advertising event is initiated when the advertiser starts the transmission of an ad-

vertising packet corresponding to the type of event on any given advertising channel. Once

24

the scanner receives the aforementioned advertising packet, it can choose to transmit a

request to the advertisers on the same advertising channel depending on the type of adver-

tising packet it receives. At this point, the advertiser may respond on the same advertising

channel and the next advertising packet would be transmitted on a different channel. At

any point during the advertising event, the advertiser may choose to end the event and the

first channel used in the next advertising event would be the same first channel used in the

previous advertising events [16] [60].

A connection event is preceded by an advertising event in which the initiator transmits

a connection request to the advertiser on the same advertising channel that it receives

the advertising packet. Within the connection request, the access address field is used

to establish the channel hopping pattern. Channel hopping only occurs once at the very

beginning for connection events [16]. Once the advertising event ends and the advertiser

accepts the connection request, the connection event is initiated. As the connection is

established, the advertiser becomes the slave, and the initiator becomes the master in the

piconet. The master device has the ability to end the connection event at any point. The

master device and the slave devices alternate transmission of data packets on the same data

channel during the connection event. A device may be both a slave and master at the same

time.

Generally, devices form physical links within a LE physical channel that provides bidirec-

tional packet exchange between the master device and the slave devices [60]. Additionally,

specialized physical links for advertising events provide unidirectional packet transport from

the advertiser to a potentially unlimited number of scanners and initiators. As there might

be multiple devices within one LE physical channel, the ability to create a physical link is

restricted to a certain number of devices in several cases. Specifically, there must always be

a physical link between a slave and its master, and slaves are permitted to have physical

links to more than one master at a time but slaves within the same piconet do not form

physical link.

25

Figure 2.9: Example of a Typical LE Stack. The stack in this example follows the generic
layered architecture with the LE upper layer consisting of the Generic Access Profile (GAP)
and the Generic Attribute Profile (GATT).

Similar to BR/EDR, the LE stack follows the generic layered architecture (as shown in

Figure 2.9) and can be partitioned into two main parts: the layers that inhabit the host, and

those that inhabit the controller with the HCI acting as intermediary between the host and

the controller [16] [62]. The Logical Layer for LE is called the Link Layer. The Link Layer

and the Physical Layer both reside on the controller side while the Upper Layers reside

on the host side. While the specific term for each of the layers of the Upper Layers are

different, they generally fulfill the same function as that of the network, transport, session,

presentation, and application layers in the OSI model [63].

26

Figure 2.10: A LE uncoded packet alongside a LE coded packet. The main differences
between uncoded and coded packet are the Coding Indicator (CI), Terminator 1 (TERM1),
and Terminator 2 (TERM2) fields. While the CI field indicate the amount of symbols used
in the coding scheme, the TERM fields form the terminator sequence needed to reset the
encoder.

The generic LE packet consists of 4 main parts (See Figure 2.10): the preamble, the ac-

cess address, the protocol data unit (PDU), and the cyclic redundancy check (CRC) [64] [65].

The preamble, 8 bit long in most cases and 16 bit long for uncoded data, is used for time and

frequency synchronization as well as automatic gain control. Usually, the value contained

within the preamble is set to fixed value, either 10101010 or 01010101 depending on the type

of packet being sent as well as the least significant bit of the adjacent access address field [65].

The access address, which is 32 bit long, is used to distinguish communications on different

physical channels operating within close proximity. Non-periodic advertising packet’s access

address for all types of advertising packets is set to the value 0x8E89BED6, while periodic

advertising and data packet’s access addresses are randomly generated. There are two main

types of PDU: advertising channel PDU, and data channel PDU. Data channel PDU consists

of a 16 or 24 bit header and payload field that can as long as 2040 bits, which also include

an optional 32 bit message integrity check (MIC) field. Advertising channel PDU generally

consists of 16 bit header field and a payload field that can be 0 to 296 bit long [65]. There

are seven main types of advertising PDU: connectable un-directed advertising (ADV IND),

connectable directed advertising (ADV DIRECT IND), non-connectable un-directed ad-

vertising (ADV NONCONN IND), scannable un-directed advertising (ADV SCAN IND),

27

scanning request (SCAN REQ), scanning response (SCAN RSP), and connect request

(CONNECT REQ). These seven types are further organized into 3 main categories: ad-

vertising PDU, scanning PDU, and initiating PDU [64]. ADV IND, ADV DIRECT IND,

ADV NON CONN IND and ADV SCAN IND all belongs to the advertising PDU category

while SCAN REQ, SCAN RSP belongs to the scanning PDU category. CONNECT REQ

is the sole member of the initating PDU category. The very last field within a LE packet is

always the 24 bits long CRC field, used to detect errors in data storage and/or transmission.

The CRC is calculated over the PDU using the polynomial x24 +x10 +x6 +x4 +x3 +x+ 1.

2.2 Packet Capturing Technologies

A packet capturing system, colloquially known as a packet analyzer or sniffer, is defined

to be a system, which includes both hardware and software components, that can receive,

intercept, and record passing traffic of a digital communication network [56] [58]. Originally

conceived and used by network engineers to help diagnose and debug network issues, packet

capturing systems are now utilized for a wide range of application in addition to their

traditional role. Nowadays, aside from being utilized as security analysis and surveillance

tools, modern packet capturing systems also serve as the basic building block for wireless

testbeds. The Pal-6 packet capture system is shown as an example in figure 2.11.

Figure 2.11: Example of a Packet Capture System. The octoScope Pal-6 Packet Capture
System Complete With Antenna is Shown Here

A packet capturing system hardware component’s main task is to enable the reception

and interception of the monitored network’s packet and traffic. Simply speaking, packet

28

capturing hardware components are usually just radios/transceivers designed for specific

wireless communication technology but instead utilized in a sniffer system. Thus, the com-

plexity of the hardware components varies significantly depending on the type of commu-

nication technology and sniffer in question. For instance, a hybrid Wi-Fi or an Ethernet

sniffer can take advantage of built-in network interfaces on desktop computers to monitor

Wi-Fi or Ethernet traffic whereas a Bluetooth sniffer may require a specialized transceiver

in order to receive Bluetooth packets in promiscuous mode 1.

The software component of a packet capturing system’s primary task is to control the

hardware component, record and display the traffic captured in human-readable format,

as well as decode the data if necessary. In contrast to the hardware components, the

complexity for packet capturing software does not vary significantly and packet capturing

software can generally be adapted to accommodate multiple communication technologies.

Wireshark [66], previously known as Ethereal, is one of the most widely used and recognized

sniffer software, and is a prime example for adaptability of the software components within

a packet capturing system. An example of the Wireshark interface is shown in Figure 2.12.

While it is originally intended to be use with Ethernet and Wi-Fi networks, Wireshark can

also handle other communication standards as well with minor add-ons and modifications.

Generally, most sniffer systems are specifically designed and configured to monitor pack-

ets utilized by only one type of communication standard [57]. Thus, a sniffer system that is

designed to monitor IEEE 802.11 Wi-Fi traffic cannot be guaranteed to be able to monitor

Bluetooth traffic despite the fact that Wi-Fi and Bluetooth use the same 2.4 ISM frequency

band. Although there are packet capturing systems that can be used to monitor with

multiple types of packets utilized in different communication standards, these are subse-

quently more complex and expensive than systems that are designed for a single type of

communication technology.

Overall, packet analyzers can generally be classified into three main classes of systems:

(1) systems that only operates in inline mode, (2) those that only operates in promiscuous

mode, and (3) those that can alternate between both inline and promiscuous mode [67].

1a device is said to be operating in promiscuous mode if it processes all received packets instead of only
packets that is specifically addressed to be received by the said device

29

Figure 2.12: Picture showcasing the user interface of the Wireshark software. In this case,
Wireshark is being utilized to capture Ethernet traffic

An inline sniffer refers to a device that that receives, transmits, and generally operates

like a normal node within the same network that it is trying monitor. In contrast to the

concept of inline sniffer, a promiscuous sniffer generally refers to a device that can listen

in on and monitor traffic on a network without being a part of that network. In layman’s

terms, whereas the inline sniffers are “insiders”, promiscuous sniffers are “eavesdroppers”.

While it is generally more straightforward to implement an inline packet capturing system,

a promiscuous packet capturing system does offer the capability to monitor all the traffic

traversing the network and may offer more information about the channels that the network

operated in. It is worth noting there does exist a class of hybrid devices that combines the

strength of both inline and promiscuous sniffers. Specifically, these so-called hybrid devices

can seamlessly switch between operating in inline mode and promiscuous mode [56] [67]. By

forcing the controller to pass on all the traffic that it receives to the host instead of sending

only traffic that is specifically addressed to it, these hybrid devices can switch from operating

30

in inline mode to operating in promiscuous mode. Aside from being able to switch between

inline and promiscuous mode, many modern packet analyzer systems also possess the ability

to switch between unfiltered and filtered monitoring configuration [56]. In unfiltered mode,

the sniffer will seek to capture and record all of the packets possible within its reach, whereas

in filtered mode the sniffer will only capture packets that contain particular user-specified

elements and parameters. Figure 2.13 illustrate the difference in the operating mechanism

between inline and promiscuous sniffer. For a wired network, passing traffic could usually

Figure 2.13: Comparison of inline packet capture system and promiscuous packet capture
system’s principle of operation

be captured through only one node in the network as there is no possibilities of packet being

drop due to fading or interference from the environment [57]. Furthermore, equipment used

to constructed the network normally have built-in tools to monitor the traffic themselves,

removing the need of a third-party packet capturing system [67]. For wireless network,

the task of intercepting traffic is much more daunting and complex as packet capturing

systems need to take into account phenomena such as fading and interference in addition to

other environmental variables that might affect the transmission and reception of a wireless

signal. Moreover, in order to intercept traffic on a wireless network, a packet capturing

system must first determined the frequency used by the wireless communication system

to transmit and receive data. Such a challenge is especially true for a Bluetooth packet

capturing system as the channel on which data packets is exchanged is consistently changed

and switched around [16]. Overall, there are two main approach to determine the hopping

pattern. The first method is to persistently monitor only one channel and log passing

31

target traffic to approximate the hopping pattern, whereas the second method is to monitor

all the channels at the same time and outline the exact hopping pattern from observing

the movement of the packets between the channels. While the first method is relatively

straightforward and economical, it is limited by packet losses introduced by the amount of

time needed to determine the hopping pattern as well as mismatch between the predicted

and actual hopping patterns. The second method involves tracking multiple channels at once

and recreating the hopping pattern through recording channel changes on the monitored

channels. This approach is much more error-proof and much more complex and expensive

to implement [26].

2.3 Packet Capture File Format

As previously mentioned, standardization of Bluetooth packet capture file format is

still rather lacking as many manufacturers choose to come up with their own format than

rather making use of pre-existing universal formats [26] [37]. However this trend is slowly

reversing as more and more contemporary Bluetooth packet capture systems are designed

to be compatible with more ubiquitous formats like BTSnoop, PCAP, and PCAPNG. [29]

[27] [30]. The section below will give a brief description of the file formats utilized in the

Bluetooth packet capture system presented in this thesis.

2.3.1 BTSNOOP

The original implementation of the sniffer system built in this project utilized HCI pack-

ets exchanged between the host PC and the controller on the sniffer hardware to document

data exchanges within the Bluetooth piconet. Thus, in order to categorically log and dis-

play the HCI packets recorded, the BTSnoop file format was used. Originally created by

Teledyne, the BTSnoop file format is also supported by many packet capturing software

including Wireshark. While BTSnoop regularly serves as the standard file format for Blue-

tooth log files on Android devices [38], it is also suitable for usage in other devices. For

example, no modifications were needed to adapt it to the requirements of our project [39].

A typical BTSnoop file, as shown in Figure 2.14, consist of one file header and multiple

32

Figure 2.14: Overview of the BTSnoop Packet Capture File Format. In the BTSnoop
format, one File Header is followed by multiple Packet Record, one for each packet captured

packet record field following the header [39]. The file header, which provides the format

as well as some general information of the packet it contained, consists of three main fixed

length components: the identification pattern, the version number, and the datalink type.

The identification pattern, 64 bit or 8 octet long, is used to identify the file as a snoop packet

capture file. The pattern used is always 62 74 73 6E 6F 70 00 in hex, which translates to

BTSnoop followed by one null octet in ASCII. The version number, 32 bits or 4 octets long,

is an unsigned integer value indicating the version of the packet capture file in question. In

most cases, this field is generally set to 1 as a capture file is rarely reused in this project for

any purposes. The datalink type is 32 bits or 4 octets long field that identify the type of

datalink header used by the packet contained. Values 0 to 1000 are reserved whereas value

1001 and 1002 refer to un-encapsulated HCI H1 and HCI UART H4, respectively.

The packet record filed generally hold either a partial or complete copy a one packet in

addition to some information regarding the packet it contained. In order to limit the file

33

size and the amount of packets contained within, the option to truncate the packet and only

record part of it is available. The packet record is made up of two main section: information

about the packet and the packet data itself. The information section is fixed at 24 octets

long and is made up of five fields: original length, included length, packet flag, cumulative

drops and timestamps. The original length and included length, both 32 bits/4 octet long,

refers to the length of the packet contained before and after truncation. Generally, these

two fields contain the same value as truncation rarely happens based on past experience.

The packet flags field, also 32 bits/4 octet long, indicates the direction as well as the type

of the packet contained. The cumulative drops field, 32 bits/4 octet long, shows the total

amount of packets dropped by the system which created the packet file. The timestamp

field, 64 bits/8 octet long, indicates the time of packet arrived since 12:00 AM January 1st,

0 AD nominal Gregorian in microseconds resolution. The packet data field is a variable

length field that contain the captured packet including any necessary prefixes as required

by the packet format. All integer value are mandated to be of big-endian order with the

high-order bits first [39].

2.3.2 PCAP

The PCAP file format is one of the most basic and widely used formats used to record

capture network data. Originally intended for use with libpcap [40], the PCAP format

is supported by a wide variety of packet capture software, including Wireshark. In addi-

tion to Ethernet, the PCAP format can also accommodate other types of communication

technology, including Bluetooth [40].

While there are some variations, the most common version of the PCAP format is

version 2.4, which has not been changed since 1998 (see Figure 2.15). Generally, a PCAP

file would contain one global header and multiple packet headers and packet data pairs for

each of the packets that it contained [40]. The global header consists of 6 main fields: magic

number, version major, version minor, timezone correction, timestamp accuracy, snapshot

length, and data link type. The 32 bits/4 octet long magic number is used to identify the

endianness of the file and to confirm whether the file is a PCAP file or not. The version

major and minor field, each 16 bits/2 octet long, is used to indicate the version of the PCAP

34

Figure 2.15: Overview of the PCAP packet capture file format. Similar to BTSnoop, the
PCAP format consists of one Global Header and multiple Packet Header and Packet Data
field for each packet logged

file and is always set to 2 and 4, respectively, for version 2.4, The timezone correction field,

32 bits/4 octets long, is used to indicate the difference in seconds between the Greenwich

Mean Time/Coordinated Universal Time (GMT/UTC) and the local timezone. In practice,

since the timestamp is always set in GMT, this field is always set to 0. The time stamp

accuracy field, also 32 bits/4 octets long, indicates the number of significant figures in the

timestamps. This value is usually set to 0 for the default option instead of 0 significant

35

figures in most cases. The snapshot length field, also 32 bits/4 octets long, indicates the

maximum length of the captured packets in octets. The final field within the global header is

the 32 bits/4 octets long data link type, which is used to indicate the type of communication

technology of which packets are contained within the PCAP file [40]. The record header

consist of four main 32 bit/ 4 octet sections: timestamp seconds, timestamp microseconds,

included length and original length. The timestamp for the PCAP file are divided into two

fields: one for seconds and the other for microseconds. Included length and original length

refer to the length of the packet contained before and after truncation. It is worth noting

that since truncation only occurs for very large packet sizes, original length and included

length is the same value in most cases. The packet header is followed by the packet data,

which is of variable length and has no specific data alignment.

2.3.3 PCAPNG

The PCAPNG file format is the continuation and improvement of the original PCAP

format. Much like its predecessor, the PCAPNG is supported by a wide variety of packet

capture software including Wireshark. Whereas the PCAP format can accommodate multi-

ple communication technologies over different files, the PCAPNG format can accommodate

multiple communication technologies on the same file. [41] [40]

The basic unit of PCAPNG file is the block (see Figure 2.16), and all blocks contain fields

that identify the block type as well as the total length of the block in the beginning [41]. As

the PCAPNG format is designed to be modular, there is no set order or requirement for the

block included in a PCAPNG file. The sole exception to this rule is the Section Header Block

(SHB), which must always be included at the beginning of the PCAPNG file and at the

start of any section appended from one PCAPNG file to another. A PCAPNG configuration

comparable to the classic PCAP configuration include one SHB in the beginning followed by

one Interface Description Block (IDB), followed by multiple Enhanced Packet Block (EPB).

The SHB, comparable to PCAP’s global header, possesses general information such as the

version number of the format, the total length of the packets, as well as the endianness of

the data. The IDB is comparable to the packet header field in the PCAP format whereas

the EPB is the equivalent of the packet data field. The IDB contains the snapshot length

36

Figure 2.16: Overview of one typical variant of the PCAPNG packet capture file format.
PCAPNG are designed to be modular and thus can be arranged in more than one way.

field as well as the data link field found in the global headers whereas EPB contain the

interface ID, the timestamp as well as the included and original length of the contained

packet [41].

37

2.4 Summary

In this chapter, background information regarding Bluetooth technologies, packet cap-

turing systems, and data formats relevant to the project were presented. Specifically, Section

2.1 explored the general properties, the piconet, the architecture as well the packet format

of both Bluetooth BR/EDR and BLE technology. Section 2.2 provide the general concept of

packet capture systems, the hardware and software components that made up such systems,

modes of operations, classification method as well as the implementation and limitation of

contemporary Bluetooth sniffer systems. Finally, Section 2.3 laid out the details regarding

the data format used to record

In the next chapter, a novel implementation of a testbed for Bluetooth technology is

presented.

38

Chapter 3

Proposed Bluetooth Packet

Logging and Formatting System

The work done over the last year and a half was a part of a larger effort (see [54]) to

develop a wireless test-bed for technologies utilizing the 2.4 GHz band. Generally speaking,

the effort’s primary goal was to develop a system that could provide both accurate capture

of packets as well as information regarding the RF environment through both inline and

promiscuous packet capture, respectively, and then combine all the gathered data into a

single packet capture file. Our part in the project was to develop hybrid promiscuous/inline

packet capturing and logging capability specifically for both BR/EDR and BLE technology

(see Figure 3.1).

Figure 3.1: General architecture of the OPP (Object Push Profile) file transfer test system.
The EVB will form a Bluetooth link with the test device but the packet and file data’s final
destination is the host.

This chapter pertains specifically to the development of the capability to indirectly

39

capture and log BR/EDR and BLE traffic into standard packet capture file formats such

as BTSnoop, PCAP, and PCAPNG. Demonstration of the logging capability involves a file

transfer between a BR/EDR and BLE capable devices and an EVB housing the CYW20719

Bluetooth IC (shown in Figure 3.2) [7], which is also connected through USB to a host

computer. The system, which the logging function was implemented on, was developed and

tested in [54] with assistance and guidance from engineers at octoScope and our advisor

at WPI. A general description of this system, as well as technical data relevant to the

packet capture capability, will be presented whereas specific technical detail as well as other

functionality unrelated to the purpose of this thesis has already been presented in [54].

Overall, this part of the project successfully demonstrates the capability to log and translate

packet captured through indirect inline sniffing to standard packet capture file format.

Figure 3.2: Overview of the EVB housing the CYW20719 Bluetooth IC used in this project
[7] The EVB can be connected to a host computer using a micro-USB port shown on the
left side. The built-in antenna is located on the daughter board on the right side

40

3.1 Test System Description

As briefly mentioned above, the test system used to demonstrate the logging and trans-

lating function consist of three main parts (see Figure 3.3): a BR/EDR and BLE capable

deivce, a EVB housing the CYW20719 Bluetooth IC, and the host computer connected to

the EVB through USB. The BR/EDR and BLE capable device, which in our test case is a

smart phone running the Android operating system (OS), must first discover and then pair

with the EVB (see Figure 3.4a). After being paired, a file transfer can be initiated from

the BR/EDR and BLE capable device’s side (see Figure 3.4b). At this point. the EVB

must transmit a confirmation before the file transfer can begin. The host computer, the

ultimate destination of the transferred file and also where the resulting packet capture file,

is created and filled in. As there is not a way to extract the packet directly from the EVB,

inline sniffing in a conventional sense is not possible. Instead, we rely on the HCI packets

exchanged between the EVB, which is the controller, and the computer, which is the host,

to recreate the conversation and data exchange between the two devices. Through this part

of the project, we manage to successfully log packets into three types of packet capture

file formats: the standard Bluetooth format BTSnoop as well as the more universal format

PCAP and PCAPNG. The following sections below will present the work done in order to

get each type of file format working.

Figure 3.3: The test setup for the OPP file transfer test system. The test device used in
this scenario is a smartphones running Android OS version 10. Both the phone and the
EVB is connected to a host computer running Windows 10 through USB connections.

41

(a) Picture of the smartphone

prompting the user to choose the

destination for the file transfer

(b) Picture of a terminal window on the host PC as the file transfer is initiated and subsequently

completed as the file and the capture log is received

Figure 3.4: Screenshot showing the file transfer on the phone and the host computer’s side.
The file transfer is started when the Python program is started on the host computer. At
this point, the program waits for a file to be sent from the phone. On the phone’s side,
after selecting the file to be sent, the user is prompted to pick a destination. The EVB is
designated as “OPP server” in this scenario. Upon successfully completing the file transfer,
the EVB send both the transferred file and packet log to the host computer.

42

3.2 BTSnoop Formatting

While the original test system lacked the capability to log packets to a truly universal

packet capture file format, it does possess the capability to log packets into the standard

Bluetooth packet capture file format, BTSnoop. As all later logging function developed for

more universal file format were built upon the original BTSnoop logging function, we felt

it is necessary to include a description of it here.

Figure 3.5: Illustration of the Cypress HCI packet. Out of the six fields, only the Packet
Length field, HCI Packet Type field, and HCI Packet Data field is used in the formatting
process.

While the file is transferred between the device, the EVB, and subsequently to its final

destination at the host computer, the test program also consistently classify traffic that

passes between the host and the controller, which in our case is the computer and the EVB,

respectively. Overall, in our test case, there are four type of traffic that passes between the

host and the controller: file transfer request, file transfer complete message, data packet and

HCI packet (see Figure 3.5). While the purpose of the first two types of packets are pretty

self-explanatory, data packets are used to recreate the transferred file on the host side and

HCI packets are used to fill in the packet capture log. Thus, we are primarily interested in

only the HCI packets here.

As the program classifies traffic passing between the host and the controller, HCI packets

are specifically stored in an intermediate buffer for processing as all HCI packets are logged

after and only after the file transfer is already completed. The data field as well as the

command/direction field are kept separately for ease of processing and formatting as these

two fields are placed in different and separated sections once the HCI packet they belong

to is logged into the BTSnoop file.

43

Figure 3.6: Illustration of the BTSnoop File Header field. The File Header field consist of
the Identification Pattern, the Version Number and the Datalink Type.

Regarding the actual formatting of the BTSnoop log file, the format as detailed in

documentation provided by Cypress and Teledyne were followed rigorously. The beginning

of the file is always headed by a file header that contain three specific fields [39] [7] as

shown in figure 3.6: the identification pattern, the version number, and the datalink type

specifically. The identification pattern is a 64-bit pattern, which can be translated to the

ASCII string “BTSnoop” followed by one null octet, that identify the file as a BTSnoop

file. The version number is a 32-bit unsigned integer value indicating the version of the

BTSnoop file in question. Based on the documentation provided by Cypress and Teledyne,

there has not been any update or changes after its initial release, the version number is

always set to the value 1. The datalink type field is a 32-bit long value and is used to

identify the datalink header employed in the packet logged in the BTSnoop file in question.

For simplicity sake, we initially choose to utilize un-encapsulated HCI H1 packets for host-

controller communication so the system always sets this value to 1001 (03E9 in hex) in our

tests.

The file header is followed by a number of packet records as shown in figure 3.7. The

number of packet records is equal to the number of packets that are captured by the BT-

Snoop file. For each HCI packet logged, the first two fields in a packet record are reserved

for the number of bytes in the original packet as well as the number of bytes actually in-

cluded in the BTSnoop file, respectively. The reason there are two separate fields and the

distinction exists is that the packet might be truncated once the number of bytes in a given

packet exceeds the upper limit imposed by the packet capture program and thus would

cause the number of bytes included and the number of bytes in the original packet to be

44

Figure 3.7: Illustration of the BTSnoop Packet Record field. The Packet Record field consist
of the Original Length, the Included Length, the Packet Flags, the Cumulative Drops, the
Timestamp, and the Packet Data

different. In reality, these two length fields are almost always of the same value as none of

the packets logged in any of the tests we conducted were ever truncated.

The 32-bit packet flags field, the third field in a packet record, is used indicate the direc-

tion and command flag of the packet. This field is filled in with the command/direction field

previously separated in the classification process. It is worth noting that due to differences

in the way the direction and command fields are encoded in the Cypress packet, these two

fields need to be converted before they can be used to fill in packet records. Specifically,

while the BTSnoop file’s direction flag indicate “sent” for value 0 and “received” for value

1, the opposite is true for Cypress packets. Similarly, the encoding for the command flag

is also flipped in this manner. Thus, we have to take the value given in the Cypress packet

and subtract it by 3, effectively bit-flipping the direction and command flag bits, to convert

it to the proper value used by the BTSnoop format. The fourth field in a packet record,

the cumulative drops field, is a 32-bit unsigned integer indicating the amount of packets

that were dropped by the packet capture system between the first packet and the packet

in question. As noted in documentation provided by Cypress and Teledyne, it is often not

necessary to fill in this field at all if the test system lacks the ability to count dropped

45

packets. Thus, for simplicity and ease of implementation, we decided to not include this

function in our test system. The timestamp field is the fifth and penultimate field within a

Algorithm 1 Generating microseconds resolution timestamp compliant with BTSnoop

format
1: Initialize tbtsnoop = tepoch = temp = 0

2: Generate epoch timestamp using native epoch time function

3: tepoch = generated epoch timestamp

4: temp = tepoch ∗ 1000000 . Converting from seconds to microseconds

5: tbtsnoop = temp+ 66463223296000000 . Adding arbitrary offset value

6: Return tbtsnoop

packet record. As the name suggested, this field is filled with a 64-bit signed integer that

indicate the packet’s arrival time in microseconds since midnight, January 1st, 0 AD nomi-

nal Gregorian. It is worth noting that the BTSnoop files make use of its own the timestamp

format instead of the standard Unix time format utilized in many other packet capture

format. Furthermore, since built-in time functions for most programming language make

use of the standard epoch time, a somewhat complicated conversion is necessary. Simply

adding the difference between Unix epoch time and the non-standard time format to the

result of the Python time function yields the timestamp that are inaccurate and varied quite

wildly. In [54], it was discovered through extensive testing that by adding the equivalent of

over 2100 years in microseconds to the result, an accurate timestamp can be obtained (see

Algorithm 1). Since BTSnoop was but a stepping stone, we never dug deeper into figuring

out why this specific arbitrary value worked. After the timestamp, the actual packet data is

the final field within a packet record. This field was filled in a rather straight-forward man-

ner without any significant modifications or conversion. Figure 3.8 showcased a successful

BTSnoop capture.

46

Figure 3.8: Example of a successful capture logged into a BTSnoop File. Note that the
BTSnoop file was able to indicate both the direction and the classification of the packets
logged.

3.3 PCAP Formatting

With the test system’s successful demonstration of the capability to log packets to the

standard Bluetooth packet capture file format, we next move on to the more universal PCAP

packet capture file format. While BTSnoop is only compatible with Bluetooth technologies

such as BR/EDR and BLE, PCAP can be used with a wide variety of communication

technologies including Bluetooth, Wi-Fi, and Ethernet among others. Overall there are

many similarities between the new system and its previous iteration. The new test system

also classifies traffic that passes between the host and the controller, which in our case is

again the computer and the EVB, respectively. Traffic between the host and controller are

similarly classify into four types: file transfer request, file transfer complete message, data

packet, and HCI packet. HCI packets, the main priority for the logging function, are again

specifically stored in an intermediate buffer and they are only logged after the file transfer

47

is already completed. The main differences between the two systems occur with respect to

the formatting and logging procedures for BTSnoop and PCAP. Overall, there are three

main parts in a PCAP file: the global header for the entire file, as well as paired packet

header, and packet data fields for each packet logged.

Figure 3.9: Illustration of PCAP Global Header field. The Global Header consist of the
Magic Number field, the Version Major/Minor field, the Thiszone field, the Sigfigs field, the
Snaplen field, and the Snaplen field.

The global header (see Figure 3.9) begins with a 32-bit magic number field that basically

serves to identify the file as a PCAP file, similar in purpose to BTSnoop’s identification

pattern. As opposed to translating to a certain ASCII string, PCAP’s magic number

value is simply the unsigned integer that is 0xa1b2c3d4 in hex. The dual 16-bit version

major and minor field is used to indicate the version of the file in question. The test system

makes use of version 2.4, the latest version as outlined in official documentation provided by

Wireshark. The 32-bit thiszone field is intended to store the correction time value in seconds

between GMT/UTC and the local timezone. This is most likely a redundancy mechanism

as timestamps are always in GMT in practice. In the PCAP test system, the correction

time value in thiszone is always set to 0. The 32-bit sigfigs field indicates the accuracy of

the timestamps in the number significant figures included in any given timestamp. To avoid

any unecessary complications, the system always set this field to 0 as to select the default

option for the number of significant figures in a timestamp.

The final two 32-bit field within the global header is the snaplen and the network field.

The snaplen field, short for snapshot length, sets the upper limit of the number of bytes of

48

a packet data captured that can be logged before it is truncated. In order to minimize the

amount of information lost, we set the snaplen to be the maximum value 65535, or 0xFFFF

in hex. The network field specifies a link-layer header type at the beginning of the packet.

Although our previous system utilizes only HCI H1 for simplicity, PCAP file only supports

HCI UART H4 and HCI UART H4 with PHDR direction field. Thus, the value for the

network field can only either be set to 187 (0xBB) for HCI UART H4 or 201 (0xC9) for

HCI UART H4 with PHDR.

Algorithm 2 Generating microseconds resolution timestamp compliant with PCAP format

1: Initialize tpcap s = tpcap us = tepoch = 0

2: Generate epoch timestamp using native epoch time function

3: tepoch = generated epoch timestamp

4: tpcap s = int(tepoch) . Cast to int to remove decimal values

5: tpcap us = (tepoch − tpcap s) ∗ 1000000 . Extracting and converting microseconds offset

6: Return tpcap s, tpcap us

For each packet logged to a PCAP file, there is a record (packet) header that contains the

timestamps and the lengths of the aforementioned packet (see Figure 3.10). Overall there

are four 32-bit fields in a record (packet) header: ts sec, ts usec, incl len, and orig len.

The ts sec field, utilizing the standard Unix time format, contains the date and time when

the packet was captured in seconds since January 1, 1970 00:00:00 GMT. The ts usec is

often used to contain the microseconds offset to ts sec for regular PCAP but it can also

be used to contain the offset in nanoseconds for a nanosecond PCAP file. As the Unix

time function in Python is limited to microseconds resolution, the PCAP test system is also

limited to microseconds offset. Since the PCAP timestamp makes use of Unix time, the

PCAP system does not have any issue with the timestamp relative to the BTSnoop system

as it is relatively straightforward to obtain the ts sec and ts usec. Ts sec can be obtained

by taking only the integer portion of the result of the Python Unix time function whereas

ts usec can be calculated by subtracting ts usec from the unmodified result of the Python

unix time function (see Algorithm 2).

49

Figure 3.10: PCAP Packet Record field. The Packet Record consist of both the seconds and
microseconds component of the Timestamp, the Included and Orginal Length, and finally
the Packet Data.

The incl len and the orig len field, as their name suggested, contains the number of

bytes of the packet data actually logged into the PCAP file and the original number of

bytes of the packet, respectively. In practice, these two fields always contain the same

value as the PCAP system has its snaplen value set to the highest value possible. As the

two length fields round out the record (packet) header, the actual packet data immediately

follows after. At first, due to a lack of documentation detailing the differences between

HCI H1 and H4 packet, it was assumed that the HCI H4 could substitute for the HCI H1

header without any changes and modifications to how individual packets are processed and

logged. In practice, logging packets to a PCAP file without any modifications would result

in a unspecified packet type error. The issue was not limited to only HCI H4 headers but

also HCI H4 PHDR headers as well. In fact, switching to HCI H4 PHDR complicates the

issue even further as resulting PCAP files would be plagued by not only unspecified packet

type errors but also unspecified direction errors as well. This still produced several useful

outcomes, as the HCI H4 PHDR tests showed that the issue clearly lies in how the packet

was process before it was logged into the PCAP file. Unsuch as BTSnoop, PCAP files do

not possess their own direction and command flag field but instead rely on the data packet’s

own direction and classification. Thus, the previously separated direction and command

field must be appended to the packet data before both are logged into a PCAP file. While

50

this solution completely resolve the unspecified direction error. it is only a partial solution

to the unspecified packet type error. Specifically, even though around half of the packets

were recognised by Wireshark, the unspecified packet type error curiously persist in the

other half. Without a thorough solution in sight, and thinking that a newer packet capture

file format could solve the issue, the project was moved to its next stage, adapting the

system to the PCAPNG format. Figure 3.11 showcase a successful PCAP capture.

Figure 3.11: Example of a successful capture logged into a PCAP file. Note for some of the
packets, the direction field and the packet type field is unfilled due to the an encapsulation
issue discovered later on.

51

3.4 PCAPNG Formatting

As its name suggested, PCAPNG is the evolution of the PCAP file format. PCAPNG is

intended to improve upon PCAP’s many drawback including the lack of standard nanosec-

ond resolution, interface information and packet drop count among other less notable issues.

For this project, it is a first step forward as PCAPNG can be considered a truly univer-

sal platform. Specifically, PCAPNG allows Bluetooth packets to be logged concurrently

with packets utilizing other technologies whereas PCAP only offers the ability to append a

Bluetooth packet capture file to a packet capture file utilizing a different technology. Fur-

thermore, it was hoped that a newer and more updated platform could be the key to solve

the persistent unidentified packet type error.

While the two file formats do share certain similarities, PCAP and PCAPNG files are

generally structured very differently. PCAPNG files, designed with modularity in mind,

can be arranged in more than one way, whereas a PCAP file can only be arranged in one.

To be more specific, a PCAPNG file is made up of a basic data unit called blocks. The

general block structure consist of a block type field, a block total length field, a block body

field, and another block total length field, respectively. The block type and the two blocks

total length field are 32 bits long while the block body field are of variable length but is

padded to the closest multiple of 32 bits.

There are a wide variety of blocks that are classified into two categories: mandatory

blocks, which must appear at least once in a PCAPNG file, and optional blocks, which may

or may not appear. The official documentation mandates that the only mandatory blocks

are the Section Header Block (SHB) whereas Interface Description Block (IDB), Enhanced

Packet Block (EPB) Simple Packet Block (SPB), Name Resolution Block (NRB), Interface

Statistics Block (ISB), and other custom vendor-specific block are optional blocks. It is

worth noting that there are blocks mentioned within the official PCAPNG documentation

that falls into neither categories, only being labeled as experimental as they are being tested.

To avoid unnecessary complications, the new test system is strictly incompatible with any

experimental blocks.

52

Figure 3.12: Examples of How PCAPNG Files Maybe Configured by Rearranging Different
Types of Blocks

A PCAPNG file resembling a classic PCAP file, which represents the bare minimum for

a useful capture file, would consist of one SHB, one IDB, and a few EPBs. More complex

PCAPNG files, as shown in figure 3.12, may consist of multiple SHBs, IDBs, and EPBs, as

53

well as complementary NRBs and ISBs. Ultimately, a more complex format would allow

packets utilized in different protocols, technologies, and standards to be logged into the

same PCAPNG file. However, the simpler format, is already adequate to demonstrate the

capability to log Bluetooth packets to PCAPNG while also being easier to implement.

For all types of format, a PCAPNG file is always started with a SHB (see Figure 3.13)

followed by an IDB. The SHB and IDB is generally considered the equivalence of the global

header in PCAP file, providing general information about the capture file. In the simple

format intended for use, data blocks such as the SPB and the EPB immediately follow after

the SHB and IDB. The SPB is similar to the EPB but it is lighter and simpler to process

as it only contain a minimal set of information. While a PCAPNG file can accommodate

both types of packet block, it is decided that the test system will only log packets to EPB

for simplicity sake. The SHB, IDB, and EPB all follow the standard block structure, only

differing in the structure of block body and the content of the block type field.

Figure 3.13: Illustration of PCAPNG Section Header Block (SHB). The SHB follows the
generic block structure and contains the Byte-Order Magic Number field, the Version Ma-
jor/Minor field, and the Section Length field.

The SHB block type value is 0x0A0D0D0A in hex, which is unique as all other block

type value is a single number. The SHB’s block body consist of the byte-order magic field,

54

the major version field, the minor version field, the section length field and the options

field. The 32-bit byte-order magic field store the unsigned magic number 0x1A2B3C4D

which help identify PCAPNG file and indicate the endianness of each section. Similar to

their PCAP counterpart, the two 16-bit major version and minor version field indicate the

current version of the PCAPNG file at issue. Currently, the system is making use of version

1.0, which, as of August 9th 2020, is still the most recent version as indicated by official

documentation. The 64-bit section length contains a signed value specifying the length in

octets of the following section, which can be used to skip the section. Alternatively, the

section length value can be set to 0xFFFFFFFFFFFFFFFF to indicate that the length of

the section is unspecified at the cost of being unable to skip the section. Since there is no

use for a skip function, this value is set to 0xFFFFFFFFFFFFFFFF in the system. The

variable length option field can be used to enable a number of optional settings; this field

is excluded for none of the settings is used in the test system.

Figure 3.14: Illustration of PCAPNG Interface Description Block (IDB). The IDB follows
the generic block structure and contains the Link Type field, and the SnapLen field. There
is also a 16-bit field that is reserved for future use that is currently not utilized for any
purpose.

The IDB block type value is 0x00000001 in hex. As shown in figure 3.14, the IDB’s

block body consist of the linktype field, the snaplen field and the options field. The 16-bit

linktype field contains an unsigned value that indicates the link layer type of the interface.

Semantics aside, this field fulfills the same purpose as the network field for PCAP files and

55

thus make use of the same value table to distinguish between different link layer type. As

such, the linktype field can also be set to 0xC9 to indicate HCI H4 with PHDR packet type.

It is also worth noting that a 16-bit reserved field, which is kept specifically for future use

and always filled with 0, immediately follows the link type field. The third field within the

IDB’s block body is the SnapLen field, similar to its counterpart in the PCAP file, contains

the value that is the upper limit of the number of bytes of a packet data captured that can

be logged before it is truncated. In the PCAPNG test system, the SnapLen value is set

to 0, indicating no upper limit. The variable length option field in IDB is not utilized and

therefore omitted.

Figure 3.15: Illustration of PCAPNG Enhanced Packet Block (EPB). The EPB follows
the generic block structure and contains the Interface ID field, the Timestamp, the Cap-
tured/Original Packet Length fields, the Packet Data field.

The EPB block type value is 0x00000006 in hex. As shown in figure 3.15, the EPB’s

block body consists of the interface id field, two complementary timestamp fields, cap-

tured/original length fields and the packet data field. The test system also does not make

56

use of the option field in the EPB. The 32-bit interface ID field contain an unsigned value

that specify the interface on which the packet logged was either transmitted or received. It

should be noted the interface ID value is the same as the index of the corresponding IDB,

which is 0 in this case. The two 32-bit timestamp fields store the upper and lower 32-bits of

a 64-bit timestamp in Unix time format. In order to obtain the 64-bit timestamp, the result

of the Python time function was multiplied to one million. The upper half of the timestamp

is obtained by bit-shifting the 64-bit timestamp by 32 while lower half is obtained by adding

the 64-bit timestamp with 0x00000000ffffffff (see Algorithm 3).

Algorithm 3 Generating microseconds resolution timestamp compliant with PCAPNG

format
1: Initialize thigh = tlow = tepoch = tus0

2: Generate epoch timestamp using native epoch time function

3: tepoch = generated epoch timestamp

4: tus = tepoch ∗ 1000000 . Convert epoch timestamp to microseconds

5: thigh = int(tus) >> 32 . Extracting the higher 32 bits of the microseconds epoch

timestamp

6: tlow = int(tus) & 0x00000000FFFFFFFF . Extracting the lower 32 bits of the

microseconds epoch timestamp

7: Return thigh, tlow

The 32-bit captured packet length and original packet length fields fulfill the same

purpose as their PCAP counterparts, indicating the number of bytes actually logged into

the PCAPNG file and the original number of bytes of the packet, respectively. The packet

data field is the penultimate field within the block body of a EPB. Due to its nature, the

packet data field is always of variable length. The length of the packet data field is always

a multiple of 32, since the field is padded to a 32-bit boundary to comply with the standard

block size. The number of bytes to be padded is calculated by the standard padding formula

as laid out below, with Padding is the amount of bytes that needs to added, Align is the

target number of byte for the padding operation and Offset is the differences between the

original number of byte and the target.

57

Padding = Align − [(Offset)%Align]%Align (3.1)

As previously mentioned, it was hoped that by switching to the updated PCAPNG

format, the unidentified packet issue may be resolved. It was soon proven the issue does

not lie in the file format but rather something deeper within the system since the same error

was still being encountered. While the switch did not fix the issue, it did narrow down the

suspicion to one component, namely the Cypress EVB. Our suspicion was confirmed when

we discovered, despite there being four types of HCI H4 packets, the Cypress EVB only

label two types. Specifically, the Cypress EVB only label EVT and CMD packets while

SCO and ACL packets were ignored. Even with this information, the solution was no closer

to being discovered as there was still no method to distinguish between SCO and ACL

packets. Upon closer inspection of the Bluetooth core specifications, it was realized the

data total length field for the SCO and ACL packets can be used to distinguish between the

two types of packets. To be more specific, while the SCO’s data total length field is suppose

to be only 8 bit, its ACL counterpart is 16 bit long. Thus by checking whether bit 16 to

24 or bit 16 to 31 matches the total length of the packet, we can distinguish between SCO

and ACL packet (see Algorithm 4). Figure 3.16 showcase a successful PCAPNG capture.

Algorithm 4 Identify and Distinguish HCI SCO and ACL packets

1: if packet type ! = EV T or CMD then

2: ACL len = packet[16 : 31]

3: SCO len = packet[16 : 24]

4: if ACL len == len(packet) then

5: packet type = ACL

6: else if SCO len == len(packet) then

7: packet type = SCO

8: else

9: packet type = unidentified

10: end if

11: end if

58

Figure 3.16: Example of a successful capture logged into a PCAPNG file. Note that the
direction and the packet type field are once again filled in for all packets.

3.5 Summary

In this chapter, relevant technical details, design choices, and challenges of each of

the three system were presented. The chapter was ordered according to the development

timeline and follows the project progression through increasingly complex and universal

packet capture file format. Section 3.1 details the development of the standard Bluetooth

packet capture, BTSnoop. Subsequently, Sections 3.2 and 3.3 also follows the development

of PCAP and PCAPNG file format, respectively. Overall, while the process experienced

many difficulties and challenges at various stages of the development process, the capability

to log Bluetooth packets into all three format was successfully demonstrated.

In the next chapter, the feasibility and development process of a hybrid inline/promis-

cuous packet capture system is explored and presented.

59

Chapter 4

Proposed Bluetooth Packet

Capturing System

As mentioned briefly at the beginning of Chapter 3, this thesis presents the work done

as part of larger effort to develop a a wireless test-bed for technologies utilizing the 2.4 GHz

band. Generally, the system was supposed to provide both accurate capture of packets as

well as information regarding the RF environment through both inline and promiscuous

packet capture, respectively, and then combine all the gathered data into a single packet

capture file. With the inline component already developed (see [54]) and development of

logging/formatting subsystem also wrapping up, the final missing part of the project is the

promiscuous packet capture system.

Despite the availability of promiscuous Bluetooth sniffers, it was decided the project

will attempt to built a promiscuous packet capture system based on the Litepoint SDR.

This is because of the limitations of commercially-available Bluetooth ICs as well as the

capability of the Litepoint SDR. To be more specific, most affordable commercially-available

Bluetooth sniffers are limited to monitoring only one Bluetooth data link, while systems

that possess the ability to monitor multiple link at once are prohibitively expensive and

inaccessible. The Litepoint SDR, which was already used by octoScope for production

testing, not only offers the ability to monitor multiple Bluetooth data link at once but

also provide additional information of RF environment. Attempts were made to build the

60

promiscuous sniffing subsystem around the Litepoint IQxel-M16W [8] at first, but then the

IQxel-MW 7G [9] was utilized in the final build of the subsystem instead. This chapter

will first seek to explore the technical details of both version of the promiscuous packet

capturing subsystem, as well as explain how the subsystem is suppose to fit into the larger

hybrid system.

4.1 Litepoint IQxel-M16W-Based Promiscuous Packet Cap-

turing Subsystem

Unlike as the CYW20719, the Litepoint IQxel-M16W (see Figure 4.1) was originally de-

signed to be a dedicated piece of test equipment for multiple types of communication proto-

cols and technologies instead of a dedicated Bluetooth IC. Thus, building the promiscuous

sniffing function around the IQxel-M16W offers both unique advantage and challenges. The

built-in web interface is a good example to illustrate this dilemma. While the web inter-

face makes it easier and more intuitive to interact with IQxel-M16W, almost every option

included within the web interface needed to be carefully fine-tuned in order to even begin

logging Bluetooth packets.

Figure 4.1: The Litepoint IQxel-M16W Used in the First Build of the Promiscuous Packet
Capture System [8]. The ten status lights to the left indicate the on-off state of device,
whether a session is active, and the status of each of the 8 modules. Each module consist
of two ports that can be configured as an input or an output and monitored separately.

61

For example, one of the more volatile settings that also happened to be vital to in-

tercepting packet is the frequency setting. As different technologies and protocols utilize

different frequency bands, one would think that switching between different technologies

and protocols would also change the frequency being monitored, but this is not the case for

the IQxel-M16W. Specifically, while the IQxel-M16W can officially switch between modes

for different protocols and technologies, the frequency being monitored is determined by

three other frequency-related settings. The three frequency settings include: “frequency”,

“band”, and “channel”. The “band” settings determine the general frequency spectrum

or band being monitored, allowing the IQxel-M16W to switch between the 2.4 GHz band

and a variety of U-NII bands. The “frequency” and “channel” settings are essentially two

different methods to accomplish the same goal, which is to set the center frequency to be

monitored. While the “frequency” option allows the user to input a frequency, the “chan-

nel” option lets the user to choose from a list of predetermined channels based on the

respective technology/protocol channel map. Thus, in order to capture BR/EDR and BLE

packets, the IQxel-M16W must first be switched to Bluetooth mode with the “band” set-

tings set to monitor 2.4 GHz band. Special care must be taken when it comes to adjusting

the center frequency using either the “frequency” or “channel” settings as it may caused

dropped packets. Particularly, in tests conducted with the Cypress EVB transmitting BLE

advertising packets on each of the three advertising channels 37, 38, and 39 at 2402 MHz,

2426 MHz, and 2480 MHz, respectively, it is discovered that setting the center frequency

too close to either end of the Bluetooth band could cause packets transmitted in the other

end of the frequency band to be dropped. Generally, for all later tests, the center frequency

was set to a frequency in the middle of the band, usually either 2426 MHz or 2440 MHz, to

avoid packets being dropped.

Similar to the how the frequency is set, the power level is also controlled by more than

just one settings. These settings include “reference level”, “expected nominal power”, and

“user margin”. It was previously discovered by a colleague and an engineer at octoScope

that the signals were being distorted by the Automatic Gain Control (AGC) function. In

particular, the signals were being clipped because the AGC function was setting “reference

level” to just a little bit over the noise floor at -40 dBm. This is much lower than actual

62

received signal strength of +15dBm with the EVB connected directly into one of the IQxel-

M16W’s analyzer port instead of using an antenna. It should be noted that in contrast to

the frequency settings, there is no gimmick involve in tuning the other two settings. The

“expected nominal power” value should always be around -2 dBm lower than the reference

level and the value for “user margin” is just the difference between “reference level” and

“expected nominal level”.

Outside of the frequency settings and the reference power level settings, the only other

settings on the IQxel-M16W that really affect packet capture operation are “sampling rate”,

“capture length”, and “data rate”. The self-explanatory “sampling rate” setting is always

set to double the bandwidth of the Bluetooth frequency spectrum at 160 MHz according to

the Nyquist-Shannon sampling theorem. The “capture length” settings determine the length

of time or duration of a capture conducted by the IQxel-M16W. Even though the IQxel-

M16W provide the user the option to choose between “single capture” and “continuous

capture” mode, the “continuous capture” is multiple capture instances with duration as

specified by the capture length field. Usually, the IQxel-M16W is set to single capture

mode with a “capture length” of 100 ms. Unlike as the two aforementioned settings, the

“data rate” setting allow the user to choose between a wide variety of data rate options for

both BR/EDR and BLE technology instead of requiring an input value. For this option,

the default “auto-detect” option works fine with both BR/EDR and BLE. Alternatively,

for BLE captures, the specialized “LEnergy” data rate option also works adequately.

Once all of the aforementioned settings have been set correctly, the IQxel-M16W can

start intercepting and capturing packets. With the packets captured, the web-interface

built-in graphing and logging function can provide results in the form of eye diagrams, power

vs time graphs, adjacent channel power graphs, 20 db bandwidth graphs, as well transmit

quality and demodulator output summary. Although the visualizations and logs are helpful

in confirming and assuring the quality of the capture, they have several shortcomings that

diminish their usefulness in overall system. One of the most troublesome shortcomings

is the lack of adaptation and adjustment of the web-interface for Bluetooth technologies.

In particular, within the web-interface, only packets that are transmitted on the same

frequency as the center frequency set in either the “frequency” or “band” settings is decoded.

63

(a) Power vs Time Graph

(b) Eye Diagram

Figure 4.2: Result graph and visualization for the EVB direct connect test. Since the EVB
was connected directly to the Litepoint engine, the signal strength was quite high (around
20dBm) and the eye diagram is very clear.

64

The lack of adaptation is especially problematic for BLE as it was shown that in tests

conducted with BLE transmission, the IQxel-M16W still recognize the packets captured as

those of the classic BR/EDR pattern instead. Furthermore, there is no way to set the center

frequency with the “channel” settings using the 40-channel BLE channel map, when only the

79-channel BR/EDR channel map is available for use. In addition to all the aforementioned

deficiencies, the web-interface also does not possess the ability to log the captured packets

to a more standard and universal platform such as PCAP or PCAPNG.

Thus, while the web-interface is counted on to initiate the packet capture operation, the

packet are processed and logged through the use a Python scripts in conjunction with Stan-

dard Commands for Programmable Instruments (SCPI) console commands that allow us to

access functions unavailable in the web-interface. Separate versions of the aforementioned

script exist for classic BR/EDR and BLE, respectively. The BR/EDR script was developed

by an enginner at octoScope based on a script orginally used for Wi-Fi packet captures.

Later on, the same script used for classic BR/EDR captures were modified in [54] with

some assistance from Litepoint to accommodate BLE packet captures. Basically, both the

BR/EDR and BLE script is supposed to extract the captured packets from the IQxel-M16W,

process them, and log them into a PCAPNG file. It is worth noting that utilizing the scripts

along with SCPI commands not only make it possible to log packets into standard packet

capture format such as PCAPNG but it also resolve some of the issues encountered with

the web-interface. In particular, SCPI commands provided by Litepoint allow the IQxel-

M16W to decode and analyse all packets irrespective of the channel they were transmitted.

Moreover, the SCPI commands also unlocks the ability to properly recognize BLE packets,

allowing these packets to be properly decoded and logged. Figure 4.2a, and b showcase the

power/time graph, and the eye diagram from a successful direct connect capture.

4.2 Litepoint IQxel-MW 7G Based Promiscuous Packet Cap-

turing Subsystem

With some promising initial results, it was decided the project is ready to move on to the

next phase. One of the primary objectives for the next phase is to modify and reconstruct

65

the system to capture over-the-air BR/EDR and BLE traffic as all previous test thus far

have been conducted with the transmitter circuit directly connected to the SDR. Another

important objective is to adapt the system to new hardware in the form of the Litepoint

IQxel-MW 7G (see Figure 4.3).

Figure 4.3: The Litepoint IQxel-MW 7G Used in Later Builds of the Promiscuous Packet
Capture System [9]. Outwardly, there are no major differences between the IQxel-M16W
and the IQxel-MW 7G as the layout are exactly the same.

One of the driving forces behind the hardware changes was the release of the new Wi-Fi

standard IEEE 802.11ax, also commonly known as Wi-Fi 6 [68]. Whereas the IQxel-M16W,

being an older platform, was ill suited to support the new standard, the newer IQxel-MW

7G model was specifically designed with Wi-Fi 6 testing in mind. As previously mentioned,

since the project was a part of larger undertaking to develop to develop a wireless test-

bed for technologies utilizing the 2.4 GHz band, the hardware change was necessary to

accommodate the larger effort. Furthermore, we also hoped that an updated and modern

platform would also resolve some of the issues encountered with the M16W.

In order to capture over-the-air Bluetooth traffic, significant changes to the previous test

set-up were necessary. While special care was always taken to ensure that the Litepoint

engine was properly shielded and isolated, serious consideration was never given to the

66

Figure 4.4: The Over-the-air advertising beacon test setup for the Litepoint IQxel-7G-Based
Promiscuous Packet Capture System. Shielding is now necessary as the Bluetooth packets
are transmitted over-the-air. Furthermore, an actual BLE beacon now replace the EVB in
the test scenario.

shielding and isolation for the transmitter device as all previous tests were conducted with

either the transmitter connected directly to the SDR or the SDR looping back to itself. As

one of the primary detriment to over-the-air transmission is interference from other devices

utilizing the same frequency, shielding and isolation for the transmitter device was deemed

necessary to assure the quality of the capture. Thus, all transmitter devices used in the

tests are placed within a semi-anechoic test chamber designed by octoScope (see Figure

4.4). With the test chamber in the equation, a host of new issues needs to be addressed.

For instance, interacting with test devices that require manual control and input suddenly

such as smartphones and tablet became impossible as these devices need to be isolated for

the entire duration of the capture session. Furthermore, utilizing devices that require an

active network connection is also an issue as the whole point of the isolation chamber is

to keep other RF signals out. The solution to the interaction issue was relatively simple

as there are software programs that allow the user to control the targeted Android or iOS

device from the host computer through a USB connection. However, the network issue

67

was a much tougher problem to address as there was simply no straightforward method

to provide a network connection within a isolation chamber. The first proposed solution

was to use a Ethernet-to-USB-C adapter to provide the test device a connection through

Ethernet. Despite early promising results, it was soon discovered that even the most efficient

and well-built adapters were plagued by battery and heat issue. To be more specific, the

Ethernet adapters were draining power at a rate that the charger simply could not keep up.

Furthermore, it was discovered that while the connection was active, the adapters were also

dissipating an unacceptably high amount of heat which pose a fire hazard in the enclosed

confine of the isolation chamber. Consequently, an alternate solution was found in the form

of the technique called “reverse-tethering” [69]. In contrast to the concept of tethering in

which the smartphone’s network connection is shared with a connected computer, reverse-

tethering instead seeks to share the connected computer’s network connection with the

smartphone (see Figure 4.5). Although Android previously possessed a built-in “reverse-

tethering” function, this was removed in later versions due to a lack of interest and thus an

open-sourced reverse-tethering tool was used instead. Since a reverse tethered connection

does not require the phone to power the adapter on top of its functionality, there is neither

a battery nor a heat issue.

With the test-setup in order, the only task left was to adjust and fine-tune the settings

in the web-interface to initiate a capture. Since no significant changes were made to the

web-interface, parameters and values previously utilized to configure the IQxel-M16W are

also for the most part migrated to the IQxel-MW 7G . Similar to how the IQxel-M16W

was initiated, first the IQxel-MW 7G must first be switched to Bluetooth mode. For the

frequency settings, the “band” settings must be set to monitor the 2.4 GHz band while the

center frequency is set to a frequency in the middle of the Bluetooth spectrum, normally

2426 MHz or 2440 MHz, using either the “frequency” or the “channel” settings. As for the

reference power level settings, AGC must first be disabled before other power level settings

are manually adjusted. Since the average received signal strength of BLE transmissions

in our tests is around -17 dBm, the “expected nominal power” value is set accordingly

to the same level while the “reference level” value is set to be about 2 dBm lower. The

“sampling rate” and “capture length” options are once again set to 160 MHz and single

68

(a) Vysor Software For USB-based Remote Control of Android Phones

(b) Reverse Tethering Software for USB-based Ethernet for Android Phones

Figure 4.5: Picture of the UI of softwares used for remote operation and providing network
connection to RF-isolated smartdevices

69

(a) Power vs Time Graph

(b) Eye Diagram

Figure 4.6: Result Graph and Visualization for the Over-the-air Advertising Beacon Test.
As the Beacon is not directly connected to the Litepoint, the signal level is significantly
lower (around -30 dBm) and the shape of the eye diagram ,while still resembling the shape
of the eye, is also more erratic.

70

capture/single capture, respectively, mirroring the settings used to configure IQxel-M16W.

As the “LEnergy” option was not working for some reason, the “data rate” setting was set

to the default “auto-detect” option for all tests conducted. It is worth noting that, aside

from the settings mentioned above, the “ATP Type” settings, which specify the number of

channels to be calculated in adjacent channel power measurement, must also be manually

adjusted before the IQxel-MW 7G can start capturing Bluetooth packets. Specifically, there

are three main option for the “ACP type” settings: BW10M, BW20M, and ACH, which uses

a +/- 5 MHz bandwidth from the carrier, +/-10 MHz bandwidth from the carrier, and all 79

BR/EDR channels to calculate the adjacent channel power measurement. Whereas all three

options would allow the IQxel-M16W to analyse BLE packets, only the BW10M permits

the same thing on the IQxel-MW 7G. With all the settings has been correctly set and the

capture finished, the captured packets are passed through the same logger script used for

the IQxel-M16W to be processed and logged. Figure 4.6a, and b showcase thepower/time

graph, and the eye diagram from a successful direct connect capture.

4.3 Proposed Hybrid System

While the previous tests indeed proved that it is possible to capture, decode, and log

Bluetooth packets with the Litepoint product test engine, this was only true without taking

encryption and security mechanism into consideration. To be more exact, while the system

on its own would have had no issue with unencrypted advertising packets that are transmit-

ted using the same three channels every time,the same cannot be said for fully encrypted

data packets that are transmitted on a randomized sequence of frequencies. Originally,

it was assumed that there would be a method or function within the Cypress API that

would allow the user to extract the encryption key and frequency jump pattern from the

IC. However, this direction was proven flawed, as upon inquiry, Cypress disclosed that no

such function currently exist as of yet and there would also be no plans to include such a

function in future updates. Thus, we were forced to turn to an alternate solution in which

another promiscuous sniffer would work in tandem with the Litepoint engine. Specifically,

a promiscuous subsystem built around a Nordics Semiconductor IC [10], one that possess

71

the ability to extract the encryption key and the jump pattern, would help the Litepoint

handle the data packets (see Figure 4.7).

Figure 4.7: The Nordics Semiconductor nRF52840 DK EVB used in the Complementary
Promiscuous Packet Capture System. The nRF52840 can be connected to a host computer
via a USB-B connection and it also possess built-in antenna on the right-side of the board.
[10]

Figure 4.8: The Over-the-air advertising beacon test setup for the Litepoint IQxel-7G-Based
Promiscuous Packet Capture System with the nRF52840-based Complementary Promiscu-
ous Packet Capture Subsystem

72

The results for this direction seems promising as the extraction of the credentials needed

to process data packets was relatively straightforward and simple. Furthermore, since the

Nordics sniffer tool log all of the intercepted packets to the standard PCAPNG format

by default, this subsystem also provide another useful reference point that can be used to

crosscheck packet capture file logged by both the inline Cypress IC based system and the

promiscuous Litepoint based system. Figure 4.8 display the test setup detailed in this part.

At the time of the writing, this supplementary promiscuous sniffer subsystem remains

mostly a concept as adequate testing has not been conducted and many functions in their

current build require manual input and control. Future work will seek to test whether the

credentials extracted can help the Litepoint subsystem decrypt the packet and predict the

jump pattern as well as to streamline and automate the process further. Figure 4.9 showcase

a successful capture using the nRF52480.

Figure 4.9: Example of a successful capture logged using the nRF52480 DK EVB. This
section of the capture specifically detail the moment the handshake Between the Android
phone and the beacon completed. Note how the MAC address of the phone and the beacon
in the Source field is changed to Master and Slave after the handshake completed.

73

4.4 Summary

This chapter explored the development process of the Litepoint-based promiscuous snif-

fer subsystem. Specifically, each section is dedicated to detailing the technical data for the

two versions of the subsystem as well as design choices made and challenges faced during

the development process. Whereas the Section 4.1 mainly focused on a previous build of

the system and how to replicate past results, Section 4.2 and 4.3 discussed what the present

system looked like and how a refined version of the system would flesh out, respectively.

The project has managed to demonstrate the viability of a promiscuous sniffer based on the

Litepoint production test engine as well as the concept of a hybrid inline/promiscuous sys-

tem that not only monitor over-the-air traffic but also provide comprehensive information

about the RF environment in the 2.4 GHz spectrum. Although the ability to intercept and

log data packets is still in the development and early testing phase at the time of writing,

initial tests show promise and the ultimate goal of the project is well within reach.

74

Chapter 5

Conclusion

Overall, the project has successfully achieved its intended objectives. The packet cap-

ture file formatting tool has demonstrated the ability to log packets to not only the standard

BTSNoop format but also the universal PCAP, and PCAPNG format as well. Furthermore,

the Litepoint-based promiscuous sniffer has been shown to be able to reliably capture and

log unencrypted over-the-air BR/EDR, and LE traffic. Additionally, the complementary

subsystem that handle decryption has also reached initial operational capability and would

soon be ready with further testing, and refinement. Technical details and challenges en-

countered during the development process of the logging tool and the promiscuous sniffer

are detailed in the chapters of this thesis. Chapter 2 presented an overview of background

technical information on the various classes of Bluetooth-derived protocols with special em-

phasis on BR/EDR and BLE. Moreover, specialized software, hardware, and the standard

file formats utilized in packet sniffing tools were also explored in Chapter 2. The techni-

cal details and the development process of the packet formatting and logging function are

showcased in Chapter 3. Additionally, relevant specifications and data of the inline packet

capture system that the logging function was tested upon were also provided. Finally,

Chapter 4 describe both the past and present builds of the Litepoint-based promiscuous

packet capture system as well as an complementary subsystem under development that is

supposed to help the Litepoint deal with encryption and frequency-hopping patern.

75

5.1 Research Outcomes

The work presented in this thesis has resulted in the following research outcomes:

• Software that process and logs captured BR/EDR and BLE packets into standard and

universal packet capture file format such as PCAP and PCAPNG were successfully

developed and demonstrated.

• The viability of the Litepoint-based promiscuous packet capture system was proven

as the current build of the system has successfully intercepted and logged BR/EDR

and BLE packets that was transmitted over-the-air.

• A complementary subsystem that would assist the Litepoint-based system in dealing

with encrypted packets that randomly hop between frequencies. Initial tests shows

promise but further development and refinement needed before assimilation.

5.2 Future Work

Given the outcomes of this work, the following future tasks are of interest to the authors:

• Address the shortcomings and issues for the logging system and the promiscuous

sniffer system in outlined in Chapter 3 and Chapter 4.

• Complete development of the complementary system that extract encryption key and

frequency hopping pattern.

• Integration of the hybrid promiscuous/inline Bluetooth packet capture system with its

Wifi counterpart as well as those pertaining to other wireless communication standard.

76

Bibliography

[1] Bluetooth SIG, “Bluetooth market update 2018,” Bluetooth SIG,

2018. [Online]. Available: https://www.bluetooth.com/bluetooth-resources/

2018-bluetooth-market-update/

[2] ——, “Bluetooth market update 2019,” Bluetooth SIG, 2019. [Online]. Available:

https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/

[3] ——, “Bluetooth market update 2020,” Bluetooth SIG, 2020. [Online]. Available:

https://www.bluetooth.com/bluetooth-resources/2020-bmu/

[4] octoScope, “lstack-benchtop,” octoScope, 2012. [Online].

Available: https://www.octoscope.com/English/Products/Ordering/Testbeds

PreConfigured/STACK-BENCHTOP.html

[5] Lambda Laboratory Instruments , “Rs-232 connection cable,” Lambda Laboratory

Instruments, Flickr, 2012. [Online]. Available: https://www.flickr.com/photos/

50299145@N03/7189464433

[6] U. Wetzker, I. Splitt, M. Zimmerling, C. A. Boano, and K. Römer, “Troubleshooting

wireless coexistence problems in the industrial internet of things,” in 2016 IEEE Intl

Conference on Computational Science and Engineering (CSE) and IEEE Intl Con-

ference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on

Distributed Computing and Applications for Business Engineering (DCABES), 2016,

pp. 98–98.

https://www.bluetooth.com/bluetooth-resources/2018-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2018-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2020-bmu/
https://www.octoscope.com/English/Products/Ordering/Testbeds_PreConfigured/STACK-BENCHTOP.html
https://www.octoscope.com/English/Products/Ordering/Testbeds_PreConfigured/STACK-BENCHTOP.html
https://www.flickr.com/photos/50299145@N03/7189464433
https://www.flickr.com/photos/50299145@N03/7189464433

77

[7] Cypress Semiconductor, “Cyw920719q40evb-01 evaluation kit,” Cypress Semi-

conductor, 2020. [Online]. Available: https://www.cypress.com/documentation/

development-kitsboards/cyw920719q40evb-01-evaluation-kit

[8] Litepoint, “Iqxel-mw,” Litepoint, 2020. [Online]. Available: https://www.litepoint.

com/products/iqxel-mw/

[9] ——, “Iqxel-mw,” Litepoint, 2020. [Online]. Available: https://www.litepoint.com/

products/iqxel-mw-7g/

[10] Nordics Semiconductor, “nrf52840 dk,” Nordics Semiconductor, 2019. [On-

line]. Available: https://www.nordicsemi.com/Software-and-tools/Development-Kits/

nRF52840-DK

[11] Product Focus, “Top 25 inventions of the last 25 years,” Product Focus, 2019. [Online].

Available: https://www.productfocus.com/top-25-inventions-of-the-last-25-years/

[12] Chris Anderson, “The wi-fi revolution,” Wired, 2003. [Online]. Available:

https://www.wired.com/2003/05/wifirevolution/

[13] Sai Krishna, “Importance of wireless technology,” PC Tablet, 2017. [Online].

Available: https://pc-tablet.com/importance-wireless-technology/

[14] Roy Blunt, “The importance of 5g,” Senate Republican Policy Committee, 2019.

[Online]. Available: https://www.rpc.senate.gov/policy-papers/the-importance-of-5g

[15] IEEE, “The importance of 5g,” IEEE Transmit-

ter, 2020. [Online]. Available: https://transmitter.ieee.org/

why-the-development-of-wireless-networks-is-important-for-global-iot-growth/

[16] Bluetooth SIG, “Specifications of bluetooth systems,” Bluetooth SIG, 2019.

[17] Apple, AirPods (1st generation) - Technical Specifications, Apple, 2019. [Online].

Available: https://support.apple.com/kb/SP750?locale=en US

https://www.cypress.com/documentation/development-kitsboards/cyw920719q40evb-01-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920719q40evb-01-evaluation-kit
https://www.litepoint.com/products/iqxel-mw/
https://www.litepoint.com/products/iqxel-mw/
https://www.litepoint.com/products/iqxel-mw-7g/
https://www.litepoint.com/products/iqxel-mw-7g/
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-DK
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-DK
https://www.productfocus.com/top-25-inventions-of-the-last-25-years/
https://www.wired.com/2003/05/wifirevolution/
https://pc-tablet.com/importance-wireless-technology/
https://www.rpc.senate.gov/policy-papers/the-importance-of-5g
https://transmitter.ieee.org/why-the-development-of-wireless-networks-is-important-for-global-iot-growth/
https://transmitter.ieee.org/why-the-development-of-wireless-networks-is-important-for-global-iot-growth/
https://support.apple.com/kb/SP750?locale=en_US

78

[18] Google, Contanct Tracing-Bluetooth Specifications, Google, 2020. [Online]. Avail-

able: https://blog.google/documents/58/Contact Tracing - Bluetooth Specification

v1.1 RYGZbKW.pdf

[19] E. Ferro and F. Potorti, “Bluetooth and wi-fi wireless protocols: a survey and a com-

parison,” IEEE Wireless Communications, vol. 12, no. 1, pp. 12–26, 2005.

[20] Miko laj Skawiński, “Bluetooth vs. wi-fi,” Netguru, 2019. [Online]. Available: https:

//www.netguru.com/codestories/bluetooth-vs-wifi-comparison-for-the-iot-solutions

[21] John Lukez, “Test challenges of wi-fi and bluetooth devices,” Litepoint and Evaluation

Engineering, 2020. [Online]. Available: https://www.evaluationengineering.com/

home/article/13004345/test-challenges-of-wifi-and-bluetooth-devices

[22] Laura Wood, “Global $14.5bn wireless testing market by offering, technology,

application and region - forecast to 2024,” Research and Market, 2019. [Online].

Available: https://www.globenewswire.com/news-release/2019/10/21/1932383/0/en/

Global-14-5Bn-Wireless-Testing-Market-by-Offering-Technology-Application-and-Region-Forecast-to-2024.

html

[23] Mark Loveless, “Bluetooth hacking tools comparison,” Duo, 2017. [Online]. Available:

https://duo.com/decipher/bluetooth-hacking-tools-comparison

[24] octoScope, “Triathlon - rf/mac/phy analyzer,” octoScope, 2019. [Online]. Avail-

able: https://www.octoScope.com/English/Products/Ordering/Testbed Building

Blocks/Triathlon.html

[25] National Instrument, “Introduction to bluetooth device testing,” National Instrument,

2016. [Online]. Available: http://download.ni.com/evaluation/rf/intro to bluetooth

test.pdf

[26] Mohammad Afaneh, “How to use a bluetooth sniffer without pulling your

hair out!” NovelBits, 2016. [Online]. Available: https://www.novelbits.io/

bluetooth-low-energy-sniffer-tutorial/

https://blog.google/documents/58/Contact_Tracing_-_Bluetooth_Specification_v1.1_RYGZbKW.pdf
https://blog.google/documents/58/Contact_Tracing_-_Bluetooth_Specification_v1.1_RYGZbKW.pdf
https://www.netguru.com/codestories/bluetooth-vs-wifi-comparison-for-the-iot-solutions
https://www.netguru.com/codestories/bluetooth-vs-wifi-comparison-for-the-iot-solutions
https://www.evaluationengineering.com/home/article/13004345/test-challenges-of-wifi-and-bluetooth-devices
https://www.evaluationengineering.com/home/article/13004345/test-challenges-of-wifi-and-bluetooth-devices
https://www.globenewswire.com/news-release/2019/10/21/1932383/0/en/Global-14-5Bn-Wireless-Testing-Market-by-Offering-Technology-Application-and-Region-Forecast-to-2024.html
https://www.globenewswire.com/news-release/2019/10/21/1932383/0/en/Global-14-5Bn-Wireless-Testing-Market-by-Offering-Technology-Application-and-Region-Forecast-to-2024.html
https://www.globenewswire.com/news-release/2019/10/21/1932383/0/en/Global-14-5Bn-Wireless-Testing-Market-by-Offering-Technology-Application-and-Region-Forecast-to-2024.html
https://duo.com/decipher/bluetooth-hacking-tools-comparison
https://www.octoScope.com/English/Products/Ordering/Testbed_Building_Blocks/Triathlon.html
https://www.octoScope.com/English/Products/Ordering/Testbed_Building_Blocks/Triathlon.html
http://download.ni.com/evaluation/rf/intro_to_bluetooth_test.pdf
http://download.ni.com/evaluation/rf/intro_to_bluetooth_test.pdf
https://www.novelbits.io/bluetooth-low-energy-sniffer-tutorial/
https://www.novelbits.io/bluetooth-low-energy-sniffer-tutorial/

79

[27] Michael Ossmann, “Project ubertooth: Building a better bluetooth adapter,” Project

Ubertooth, 2011. [Online]. Available: http://ubertooth.sourceforge.net/hardware/

one/

[28] Texas Instrument, “Cc2540emk-usb,” Texas Instrument, 2010. [Online]. Available:

https://www.ti.com/tool/CC2540EMK-USB

[29] Nordics Semiconductor, “nrf52840 dongle,” Nordics Semiconductor, 2018. [On-

line]. Available: https://www.nordicsemi.com/Software-and-tools/Development-Kits/

nRF52840-Dongle

[30] Cypress Semiconductor, “Cysmart – bluetooth® le test and debug tool,” Cypress

Semiconductor, 2018. [Online]. Available: https://www.cypress.com/documentation/

software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool

[31] Teledyne-Lecroy, “Frontline bpa® low energy bluetooth® protocol ana-

lyzer,” Teledyne-Lecroy, 2016. [Online]. Available: https://www.nordicsemi.com/

Software-and-tools/Development-Kits/nRF52840-Dongle

[32] Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski, Software-Defined Radio

for Engineers. Artech House, 2018.

[33] Bluetooth SIG, “Validated and recognized test equipment,” Bluetooth SIG,

2020. [Online]. Available: https://www.bluetooth.com/develop-with-bluetooth/

qualification-listing/qualification-test-tools/validated-recognized-test-equipment/

[34] Teledyne-Lecroy, “Sodera series of bluetooth protocol analyzers,” Teledyne-Lecroy,

2017. [Online]. Available: https://www.fte.com/products/sodera.aspx/

[35] Ellisys, “Ellisys bluetooth explorer all-in-one bluetooth® analysis system,” Ellisys,

2018. [Online]. Available: https://www.ellisys.com/products/bex400/

[36] ——, “Ellisys bluetooth tracker ultra-portable ble and wi-fi protocol analyzer,”

Ellisys, 2018. [Online]. Available: https://www.ellisys.com/products/bex400/

http://ubertooth.sourceforge.net/hardware/one/
http://ubertooth.sourceforge.net/hardware/one/
https://www.ti.com/tool/CC2540EMK-USB
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-Dongle
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-Dongle
https://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool
https://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-Dongle
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-Dongle
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-test-tools/validated-recognized-test-equipment/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-test-tools/validated-recognized-test-equipment/
https://www.fte.com/products/sodera.aspx/
https://www.ellisys.com/products/bex400/
https://www.ellisys.com/products/bex400/

80

[37] Texas Instrument, “Packet sniffer,” Bluetooth SIG, 2014. [Online]. Available:

https://www.ti.com/tool/PACKET-SNIFFER

[38] Google, “Verifying and debugging bluetooth,” Google, 2020. [Online]. Available:

https://source.android.com/devices/bluetooth/verifying debugging

[39] Teledyne Lecroy, “Btsnoop file format,” Teledyne Lecroy, 2010. [Online].

Available: http://www.fte.com/webhelp/bpa600/Content/Technical Information/

BT Snoop File Format.htm

[40] Wireshark, Libpcap File Format, Wireshark, 2015.

[41] M.Tuexen, F.Risso, J.Bongertz, G.Combs, G.Harris, M.Richardson, PCAP Next Gen-

eration Capture File Format, IETF, 2020.

[42] octoScope, “Small anechoic chamber channels: Estimating channel capacity from a

chamber model,” octoScope, 2019. [Online]. Available: https://www.octoScope.com/

English/Resources/Whitepapers.html

[43] ——, “Testbed overview,” octoScope, 2020. [Online]. Available: https://www.

octoScope.com/English/Collaterals/Documents/octoBox personal testbed.pdf

[44] ——, “Products offered,” octoScope, 2020. [Online]. Available: https://www.

octoscope.com/English/Products/Ordering/index.html

[45] M. T. Dini, V. Sokolov, and V. Buriachok, “Men-in-the-middle attack simulation on

low energy wireless devices using software define radio,” CoRR, vol. abs/1906.10878,

2019. [Online]. Available: http://arxiv.org/abs/1906.10878

[46] Q. Yang and L. Huang, Bluetooth Security. Singapore: Springer Singapore, 2018, pp.

195–226. [Online]. Available: https://doi.org/10.1007/978-981-10-8447-8 6

[47] F. Mazzenga, D. Cassioli, P. Loreti, and F. Vatalaro, “Evaluation of packet loss prob-

ability in bluetooth networks,” in 2002 IEEE International Conference on Commu-

nications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333), vol. 1, 2002, pp.

313–317 vol.1.

https://www.ti.com/tool/PACKET-SNIFFER
https://source.android.com/devices/bluetooth/verifying_debugging
http://www.fte.com/webhelp/bpa600/Content/Technical_Information/BT_Snoop_File_Format.htm
http://www.fte.com/webhelp/bpa600/Content/Technical_Information/BT_Snoop_File_Format.htm
https://www.octoScope.com/English/Resources/Whitepapers.html
https://www.octoScope.com/English/Resources/Whitepapers.html
https://www.octoScope.com/English/Collaterals/Documents/octoBox_personal_testbed.pdf
https://www.octoScope.com/English/Collaterals/Documents/octoBox_personal_testbed.pdf
https://www.octoscope.com/English/Products/Ordering/index.html
https://www.octoscope.com/English/Products/Ordering/index.html
http://arxiv.org/abs/1906.10878
https://doi.org/10.1007/978-981-10-8447-8_6

81

[48] W. Albazrqaoe, J. Huang, and G. Xing, “A practical bluetooth traffic

sniffing system: Design, implementation, and countermeasure,” IEEE/ACM

Trans. Netw., vol. 27, no. 1, p. 71–84, Feb. 2019. [Online]. Available: https:

//doi-org.ezpxy-web-p-u01.wpi.edu/10.1109/TNET.2018.2880970

[49] Bluetooth SIG, “Test equipment,” Bluetooth SIG, 2020. [Online]. Available: https://

www.bluetooth.com/develop-with-bluetooth/build/service-providers/test-equipment/

[50] Cory Doctorow, “Anechoic chamber 1,” Consumers Union Labs, Flickr, 2015. [Online].

Available: https://www.flickr.com/photos/doctorow/22337544326

[51] Movax, “High-voltage lab control room,” Kettering University, Flickr, 2010. [Online].

Available: https://www.flickr.com/photos/movszx/4756294451/l

[52] Mike Ryan, Crack LE Bruteforce Decryption Tool, Crack LE, 2018. [Online]. Available:

https://github.com/mikeryan/crackle

[53] Wireshark, “Supported file format for bluetooth,” Wireshark, 2015. [Online].

Available: https://wiki.wireshark.org/Bluetooth

[54] G. Wernsing, “Programmable testbed for bluetooth experimentation,” Master’s thesis,

Worcester Polytechnic Institute, 100 Institute Rd, Worcester MA, 12 2019.

[55] John Herman, “Why everything wireless is 2.4 ghz,” Wired, 2010. [Online]. Available:

https://www.wired.com/2010/09/wireless-explainer/

[56] Kaspersky Lab, “What is a packet sniffer?” Kaspersky Lab, 2017. [Online]. Available:

https://www.lifewire.com/definition-of-sniffer-817996

[57] Bradley Mitchell, “What is a network sniffer?” Lifewire, 2019. [Online]. Available:

https://www.lifewire.com/definition-of-sniffer-817996

[58] Kevin J. Connolly, Law of Internet Security and Privacy. Aspen Publisher, 2003.

[59] Frank Golatowski, “Bluetooth baseband,” Universität Rostock - Institut für Ange-

wandte Mikroelektronik und Datentechnik, 2001. [Online]. Available: https://www.

amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth info/baseband.html

https://doi-org.ezpxy-web-p-u01.wpi.edu/10.1109/TNET.2018.2880970
https://doi-org.ezpxy-web-p-u01.wpi.edu/10.1109/TNET.2018.2880970
https://www.bluetooth.com/develop-with-bluetooth/build/service-providers/test-equipment/
https://www.bluetooth.com/develop-with-bluetooth/build/service-providers/test-equipment/
https://www.flickr.com/photos/doctorow/22337544326
https://www.flickr.com/photos/movszx/4756294451/l
https://github.com/mikeryan/crackle
https://wiki.wireshark.org/Bluetooth
https://www.wired.com/2010/09/wireless-explainer/
https://www.lifewire.com/definition-of-sniffer-817996
https://www.lifewire.com/definition-of-sniffer-817996
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/baseband.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/baseband.html

82

[60] Bluetooth SIG, “Learn about bluetooth-radio versions,” Bluetooth SIG, 2017. [Online].

Available: https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/

radio-versions/

[61] Basavaraj Patil, Yousuf Saifullah, Stefano Faccin, Srinivas Sreemanthula, Lachu Ar-

avamudhan, Sarvesh Sharma, Risto Mononen, IP in Wireless Networks. Prentice Hall,

2003.

[62] Texas Instrument, “Bluetooth low energy protocol stack basics,” Texas Instrument,

2017. [Online]. Available: http://software-dl.ti.com/lprf/simplelink cc2640r2 latest/

docs/blestack/ble user guide/html/ble-stack-3.x/overview.html

[63] MathWorks, “Bluetooth protocol stack,” MathWorks, 2019. [Online]. Available:

https://it.mathworks.com/help/comm/ug/bluetooth-protocol-stack.html

[64] Microchip Technologies, “Bluetooth low energy packet types,” Microchip

Technologies, 2016. [Online]. Available: https://microchipdeveloper.com/wireless:

ble-link-layer-packet-types

[65] RF Wireless World, “Ble advertising and ble data packet format,” RF Wireless

World, 2019. [Online]. Available: https://www.rfwireless-world.com/Terminology/

BLE-Advertising-and-Data-Packet-Format.html

[66] Wireshark, “Wireshark frequently asked questions,” Wireshark, 2020. [Online].

Available: https://www.wireshark.org/faq.html#q1.2

[67] Omar Santos, Panois Kampanakis, Aaron Woland, “Introduction to and design

of cisco asa with firepower services,” Cisco, 2016. [Online]. Available: https:

//www.ciscopress.com/articles/article.asp?p=2730336&seqNum=2

[68] Wi-Fi Alliance, “Wi-fi certified 6,” Wi-Fi Alliance, 2020. [Online]. Available:

https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6

[69] Romain Vimont, “Introducing “gnirehtet”, a reverse tethering tool for an-

droid,” Geny Mobile, 2017. [Online]. Available: https://medium.com/genymobile/

gnirehtet-reverse-tethering-android-2afacdbdaec7

https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
http://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/overview.html
http://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/overview.html
https://it.mathworks.com/help/comm/ug/bluetooth-protocol-stack.html
https://microchipdeveloper.com/wireless:ble-link-layer-packet-types
https://microchipdeveloper.com/wireless:ble-link-layer-packet-types
https://www.rfwireless-world.com/Terminology/BLE-Advertising-and-Data-Packet-Format.html
https://www.rfwireless-world.com/Terminology/BLE-Advertising-and-Data-Packet-Format.html
https://www.wireshark.org/faq.html#q1.2
https://www.ciscopress.com/articles/article.asp?p=2730336&seqNum=2
https://www.ciscopress.com/articles/article.asp?p=2730336&seqNum=2
https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6
https://medium.com/genymobile/gnirehtet-reverse-tethering-android-2afacdbdaec7
https://medium.com/genymobile/gnirehtet-reverse-tethering-android-2afacdbdaec7

83

Appendix A

Complementary Logger Utility for

CYW20719-based Inline Packet

Capture Tool

A.1 Control Module

import time

#python -m cProfile -s tottime pycontrol.py

import logger class

import interpreter class

import communicator class

import plotter

comms = communicator class.Communicator()

interp = interpreter class.Interpreter()

logs = logger class.Logger()

hci packets = []

84

#reset board

#send queued packets

#go into main loop

###The reset is still not working the way I expect

#returns the body of the first HCI packet

#packet one = comms.reset board()

#need to handle the first one manually, since interp doesn't see it

#hci packets.append([ord(packet one[0]),packet one[1:]])

comms.send initial packets()

def transfer a file():

global time #I dunno why this needs to be here but not the others

#SLEEPING WHILE PROCESSING CAN CAUSE THE INPUT BUFFER TO OVERFLOW

#Also cache everything, since the hard drive can get angry

data packets timing = []

data packets = []

file name = ""

while True:

interp.new packet()

header = comms.get header bytes()

len needed = interp.parse header(header)

#check len needed for errors

#flush buffer to log file in the future

#change this so that interp handles it silently

if len needed < 0:

comms.clear input()

continue

body = comms.get packet bytes(len needed)

interp.parse params(body)

#print interp

85

if interp.is HCI packet():

pass

hci packets.append([interp.get HCI direction(),

interp.get HCI packet bytes()])

elif interp.file transfer requested():

time1 = time.time()

print "file transfer started"

file name = body[13:-1].rstrip("image/jpe").replace('\n','')

print "file name: %s" % file name

comms.send packet(interp.get transfer req response())

file transfer started = True

data packets timing.append([time.time(), 0])

elif interp.is data packet():

data packets.append(body)

data packets timing.append([time.time(), len needed])

elif interp.file transfer complete():

time2 = time.time()

print "file transfer complete"

e time = time2 - time1

print "elapsed time =", e time

break

logs.open file transfer(file name)

for packet in data packets:

logs.write to file transfer(packet)

logs.close file transfer()

times = [t for t,size in data packets timing]

time zero = times[0]

time offsets = [x - time zero for x in times]

sizes = [size for t,size in data packets timing]

plotter.show throughput plot(time offsets, sizes, file name, logs.timestamp)

86

num transfers = 1

#while True:

print "%s transfers expected" % num transfers

for i in range(num transfers):

print "ready for transfer"

transfer a file()

#waiting at the prompt is blocking, don't leave it waiting here

#yes no = raw input("transfer another file? ")

#if yes no[0] not in "yY": break

#HCI packets recieved after completing the final image transfer ARE NOT LOGGED

CURRENTLY

logs.open hci log()

for dir, packet in hci packets:

logs.log HCI packet(dir, packet)

logs.close hci log()

A.2 Communicator Module

import serial

import serial.tools.list ports as lp

import time

'''

trace enable = bytearray.fromhex('19 02 00 02 00 01 01')

set discoverable = bytearray.fromhex('19 08 00 02 00 01 01')

set pairable = bytearray.fromhex('19 09 00 01 00 01 ')

get version num = bytearray.fromhex('19 02 FF 00 00')

MC 1 = bytearray.fromhex('19 05 23 02 00 13 00')

MC 2 = bytearray.fromhex('19 04 23 02 00 00 02')

commands = [trace enable, set discoverable, set pairable, get version num, MC 1,

MC 2]

87

for c in commands:

print "sending", c

HCI UART.write(c)

stream input(1)

'''

trace enable = '19 02 00 02 00 01 01'

set discoverable = '19 08 00 02 00 01 01'

set pairable = '19 09 00 01 00 01 '

get version num = '19 02 FF 00 00'

set psm number = '19 05 23 02 00 13 00'

set mcu size = '19 04 23 02 00 00 02'

commands = [trace enable, set discoverable, set pairable, get version num]

class Communicator():

def init (self):

self.out packet queue = [trace enable, set discoverable, get version num

, set pairable]

correct port = ""

#the above depends on your computer etc

#you need the HCI uart, not the PUART

#find the correct port based on name

ports = lp.comports()

for port in ports:

if port[1].startswith("WICED HCI UART"):

correct port = port[0]

break

else:

print "no WICED HCI port found"

#this will need to change eventually

quit()

88

print "found WICED HCI:", correct port

self.HCI UART = serial.Serial(correct port, 3000000, timeout=1)

#1s timeout, assumes a full packet will be transmitted within 1 s

time.sleep(.100)

#pyserial doens't hold until the port is actually ready

#meaning it doesn't flush properly if you don't wait

self.flush()

#returns the header, if there is one

def get header bytes(self):

if self.HCI UART.in waiting >= 5:

return [ord(x) for x in self.HCI UART.read(5)]

else:

return False

def get packet bytes(self, reqd length):

return [ord(x) for x in self.HCI UART.read(reqd length)]

def send packet(self, packet bytes string):

self.HCI UART.write(bytearray.fromhex(packet bytes string))

def send queued packet(self):

message = self.out packet queue.pop(0)

self.send packet(message)

return message

def add to queue(self, packet bytes string):

self.out packet queue.append(packet bytes string)

89

def num out queued(self):

return len(self.out packet queue)

def flush(self):

if self.HCI UART.in waiting > 0:

self.HCI UART.reset input buffer()

print "cleared input"

#if this starts in the middle of a RX, things may go sideways

def read all input buffer(self):

return [ord(x) for x in self.HCI UART.read(self.HCI UART.in waiting)]

def close port(self):

self.HCI UART.close()

A.3 Interpreter Module

'''

format:

group found by dictionary lookup

event found by array index in group

each event is an array of parameter lengths

variable lengths are left off, as they always are at the end

and the params interpreter just appends any unused length

this version has no support for translating to english

it also doesn't play nice with HCI format messages

'''

no command = [] #no command for code 0x00

#groups

##

90

command status = [1]

WICED trace = []

HCI trace = [1]

NVRAM data = [2]

device started = []

inquiry result = [6,3,1]

inquiry complete = []

pairing completed = [1,6]

encryption changed = [1,6]

connected dev name = []

user confirm req = [6,4]

device error = [1,1]

local device addr = [6]

max paired = []

buffer pool usage = [1,2,2,2,2]

DEVICE = [no command, command status, WICED trace, HCI trace, NVRAM data,

device started, inquiry result, inquiry complete,

pairing completed, encryption changed, connected dev name,

user confirm req, device error, local device addr,

max paired, buffer pool usage]

##

LE = []

##

GATT = []

##

HF = []

##

SPP = []

##

AUDIO = []

91

##

HIDD = []

##

AVRC TARGET = []

##

TEST = []

##

TIME = []

##

ANCS = []

##

ALERT = []

##

LN = []

##

IAP2 = []

##

AG = []

##

AIO CLIENT SERVER = []

##

AVRC CONTROLL = []

##

AMS = []

92

##

ping req reply = []

version info = [1,1,1,2,3,1]

MISC = [no command, ping req reply, version info]

##

connected = []

progress = []

object = []

close = []

access = []

push data = []

OPS = [connected, progress, object, close, access, push data]

##

UNKNOWN =[[] for x in range(256)]

#Codes I don't know

##

rx groups = {0x00:DEVICE, 0x01:LE, 0x02:GATT, 0x03:HF,

0x04:SPP, 0x05:AUDIO, 0x06:HIDD, 0x07:AVRC TARGET,

0x08:TEST, 0x0A:TIME, 0x0B:ANCS, 0x0C:ALERT,

0x0D:LN, 0x0E:IAP2, 0x0F:AG, 0x10:AIO CLIENT SERVER,

0x11:AVRC CONTROLL, 0x12:AMS, 0x20:OPS, 0xFF:MISC, -1:UNKNOWN}

##

respond to = {(0x20,0x04):"19 01 20 02 00 01 00"}

class Interpreter:

93

def init (self):

self.table = rx groups

self.response table = respond to

self.parsed packets = 0

self.new packet()

#reset the stored packet info

def new packet(self):

self.group = -1

self.event num = -1

self.length = -1

self.params = []

#probably freaks out if there's an issue

#assumes it is a WICED header

#returns remaining length of packet

def parse header(self, header bytes):

if header bytes[0] is not 0x19:

print "something is very wrong with the header"

print header bytes

return -1

self.event num = header bytes[1]

self.group = header bytes[2]

self.length = header bytes[3] + (header bytes[4] << 8)

if self.length > 50:

print "length requirement of %s bytes is large" % self.length

return self.length

def parse params(self, param bytes):

try:

param format = self.table[self.group][self.event num]

except Exception:

print Exception

94

print "group: ", self.group

self.new packet()

return

for field length in param format:

self.params.append(param bytes[:field length])

param bytes = param bytes[field length:]

#variable length fields

if len(param bytes):

self.params.append(param bytes)

self.parsed packets += 1

def is HCI packet(self):

return self.group == 0 and self.event num == 3

def get HCI direction(self):

return self.params[0][0]

def get HCI packet bytes(self):

return self.params[1]

def total packets(self):

return self.parsed packets

def hexify(self, p):

q = lambda x: [hex(y)[2:].zfill(2) for y in x]

return [q(x) for x in p]

def response required(self):

return (self.group, self.event num) in self.response table.keys()

def get required response(self):

return self.response table[(self.group, self.event num)]

def str (self):

if self.is HCI packet():

return "packet %s (HCI)" % self.total packets()

95

out = "packet %s (Cypress)\n" % self.total packets()

out += "group: %s\n" % self.group

out += "event: %s\n" % self.event num

out += "length: %s\n" % self.length

out += "parameters: %s" % self.hexify(self.params)

return out

A.4 Plotter Module

import matplotlib.pyplot as plt

def show throughput plot(time offsets, packet sizes, file name, log timestamp):

#format:

#time offsets started at beginning of file, 0 bit packet size

number of seconds = int(time offsets[-1]) + 1

binned sizes = [0.0]*number of seconds

times = range(number of seconds)

for time, size in zip(time offsets, packet sizes):

binned sizes[int(time)] += round(size / 125.0, 4) #8/1000, bytes to kb

average = sum(binned sizes) / number of seconds

#plot line first so the curve is on top

plt.axhline(average, color='r')

plt.plot(times, binned sizes)

plt.ylabel("kbps")

plt.xlabel("seconds")

plt.title(file name)

#need to save before show, not sure why

plt.savefig("./files/%s %s.png" % (log timestamp, file name[:-4]))

#I believe show is blocking, don't want to leave it up indefinitely

#plt.show()

plt.close()

96

A.5 BTSnoop Logger Module

import time

def get timestamp():

t = time.time()*1000000 #seconds to useconds

t += 66463223296000000

#Magic number derived from testing. No idea where it comes from

#fixes timestamp numbering in wireshark

#it's over 2100 years

return int(t)

class Logger:

#need to add non-hci logging as a second file

def init (self):

self.num HCI packets = 0

timestamp = get timestamp()

#print timestamp

self.hci log = open("./files/%s btsnoop log.bts" % timestamp, "wb")

#.bts may not be correct, but I figured it was descriptive enough for

now

#some systems get angry if files don't have extensions

#timestamp included so files aren't overwritten

#need to have it opened as binary to fix accidentally writing CRLF

self.hci log.write(bytearray.fromhex("6274736E6F6F7000 00000001 000003E9

"))

#btsnoop file

#file definition version 1

#raw HCI format

def good hex(self, x):

#you could replace lstrip with [2:] but that's less readable

97

return hex(x).rstrip("L").lstrip("0x").zfill(2)

#don't be a moron here

def log int to file(self, num, pad length bits):

byte character length = pad length bits / 4

#number of characters the string should have, 4 bits per character

#turn int into hex string

num string = self.good hex(num).zfill(byte character length)

#python appends "L" to longs when you print them

#remarkably, L is not a number in hex

#pad to correct length

chrs = [chr(int(''.join(x),16)) for x in zip(*[iter(num string)]*2)]

#see zip documentation

for ch in chrs:

self.hci log.write(ch)

#packet bytes is an array of ints in 0-255

def log HCI packet(self, direction, packet bytes):

#number of bytes in packet

self.log int to file(len(packet bytes), 32)

#number of bytes from packet written in file

self.log int to file(len(packet bytes), 32)

#direction of the packet

#direction pulled from the cypress packet

self.log int to file(3 - direction, 32)

#cumulative packets missed

#not planning on missing any

self.log int to file(0, 32)

#timestamp

self.log int to file(get timestamp(), 64)

#packet

for x in packet bytes:

self.hci log.write(chr(x))

self.num HCI packets += 1

def close logs(self):

self.hci log.close()

98

def open file transfer(self, file name):

self.file = open("./files/%s" % file name, "wb")

def write to file transfer(self, data bytes):

for x in data bytes:

self.file.write(chr(x))

def close file transfer(self):

self.file.close()

A.6 PCAP Logger Module

import time

def get timestamp():

t = time.time()*1000000 #seconds to useconds

t += 66463223296000000

#Magic number derived from testing. No idea where it comes from

#fixes timestamp numbering in wireshark

#it's over 2100 years

return int(t)

def get pcap timestamp():

t = time.time()

t us = (t - int(t)) * 1000000

return int (t), int(t us)

class Logger:

#need to add non-hci logging as a second file

def init (self):

self.num HCI packets = 0

99

timestamp = get timestamp()

#print timestamp

self.hci log = open("./snoop logs/%s pcaptest.pcap" % timestamp, "wb")

#.bts may not be correct, but I figured it was descriptive enough for

now

#some systems get angry if files don't have extensions

#timestamp included so files aren't overwritten

#need to have it opened as binary to fix accidentally writing CRLF

self.hci log.write(bytearray.fromhex("6274736E6F6F7000 00000001 000003

E9"))

#Decimal Hex

#Bluetooth HCI H4 187 BB

#Bluetooth HCI H4 w/PHDR 201 C9

#BLE LL 251 FB

#BLE Linux Monitor 254 FE

#BLE BREDR BB 255 FF

#BLE LL w/PHDR 256 100 (00 01) in little

endian

#Default (Ethernet) 1 1

#Little Endian

self.hci log.write(bytearray.fromhex("a1 b2 c3 d4 00 02 00 04 00 00 00

00 00 00 00 00 00 00 ff ff 00 00 00 c9"))

#btsnoop file

#file definition version 1

#raw HCI format

self.serial log = open("./snoop logs/%s serial log.txt" % timestamp, "wb

")

def good hex(self, x):

#you could replace lstrip with [2:] but that's less readable

return hex(x).rstrip("L").lstrip("0x").zfill(2)

#don't be a moron here

def log int to file(self, num, pad length bits):

byte character length = pad length bits / 4

100

#number of characters the string should have, 4 bits per character

#turn int into hex string

num string = self.good hex(num).zfill(byte character length)

#python appends "L" to longs when you print them

#remarkably, L is not a number in hex

#pad to correct length

chrs = [chr(int(''.join(x),16)) for x in zip(*[iter(num string)]*2)]

#see zip documentation

for ch in chrs:

self.hci log.write(ch)

#packet bytes is an array of ints in 0-255

def log HCI packet(self, direction, packet bytes):

#PCAP timestamp

ts sec, ts u sec = get pcap timestamp()

#ts sec - Seconds only epoch time

self.log int to file(ts sec,32)

#ts u usec - Microseconds offset to ts sec

self.log int to file(ts u sec, 32)

#PCAP length

#incl len

self.log int to file(len(packet bytes) + 1, 32)

#orig len

self.log int to file(len(packet bytes) + 1, 32)

#number of bytes in packet

self.log int to file(len(packet bytes), 32)

#number of bytes from packet written in file

self.log int to file(len(packet bytes), 32)

#direction of the packet

#direction pulled from the cypress packet

self.log int to file(3 - direction, 32)

#cumulative packets missed

#not planning on missing any

self.log int to file(0, 32)

#timestamp

self.log int to file(get timestamp(), 64)

#packet

101

testing = [direction] + packet bytes

print testing

for x in testing:

self.hci log.write(chr(x))

self.num HCI packets += 1

self.serial log.write("HCI packet %s\n" % self.num HCI packets)

#self.log serial packet(packet bytes)

def log serial packet(self, packet):

p = " ".join([self.good hex(x) for x in packet])

self.serial log.write(p)

self.serial log.write("\n\n")

def log serial flush(self, data):

self.serial log.write("error, flushing\n")

p = " ".join([self.good hex(x) for x in data])

self.serial log.write(p)

self.serial log.write("\n\n")

def log outgoing packet(self, packet string):

self.serial log.write("TX: %s\n\n" % packet string)

def close logs(self):

self.hci log.close()

self.serial log.close()

A.7 PCAPNG Logger Module

import time

def get timestamp():

t = time.time()*1000000 #seconds to useconds

t += 66463223296000000

#Magic number derived from testing. No idea where it comes from

102

#fixes timestamp numbering in wireshark

#it's over 2100 years

return int(t)

def get pcap timestamp():

t = time.time()

t us = (t - int(t)) * 1000000

return int (t), int(t us)

#for microseconds resolution only

def get pcapng timestamp():

t = time.time()

t us = t * 1000000

t high = int(t us) >> 32

t low = int(t us) & 0x00000000ffffffff

return int(t high), int(t low)

class Logger:

def init (self):

self.num HCI packets = 0

self.timestamp = get pcap timestamp()[0]

#print timestamp

def good hex(self, x):

#you could replace lstrip with [2:] but that's less readable

return hex(x).rstrip("L").lstrip("0x").zfill(2)

#don't be a moron here

def log int to file(self, num, pad length bits):

byte character length = pad length bits / 4

#number of characters the string should have, 4 bits per character

#turn int into hex string

num string = self.good hex(num).zfill(byte character length)

#python appends "L" to longs when you print them

#remarkably, L is not a number in hex

#pad to correct length

103

chrs = [chr(int(''.join(x),16)) for x in zip(*[iter(num string)]*2)]

#see zip documentation

self.hci log.write(''.join(chrs))

#Wireshark doesn't recognize all packet types for some reason

#packet bytes is an array of ints in 0-255

def log HCI packet(self, direction, packet bytes):

#Block Type (Block type number for EPB is 6)

self.hci log.write(bytearray.fromhex("0000 0006"))

#Padding calculation to comply with 32 bit data allignment

padding = 4 - ((abs((len(packet bytes) + 1 + 4) - 4)) %4) %4

#Block Total Length

total block length = len(packet bytes) + 1 + 4 + padding + 32

self.log int to file(total block length, 32)

#Interface ID (This field is zero since we are using one interface can

be change later)

self.hci log.write(bytearray.fromhex("0000 0000"))

#PCAPNG Timestamp (64 bit - microseconds resolution)

t = time.time()

t us = t * 1000000

t us int = int(t us)

print hex(t us int).rstrip("L").lstrip("0x").zfill(16)

ts us high, ts us low = get pcapng timestamp()

#Timestamp (Higher 32 bits)

self.log int to file(ts us high,32)

#Timestamp (Lower 32 bits)

self.log int to file(ts us low,32)

#Packet Length

direction of packet = direction % 2

#Captured Packet length

self.log int to file(len(packet bytes) + 1 + 4, 32)

#Original Packet Length (In reality the captured & original length

should be the same)

104

self.log int to file(len(packet bytes) + 1 + 4, 32)

#Direction of packet field

self.log int to file(direction of packet, 32)

#Packet

#trying to fix h4 formatting with the below

packet indicator = [4,1]

if direction > 1:

ACL intmd = packet bytes.encode("hex")[4:8]

ACL trans = ACL intmd[2] + ACL intmd[3] + ACL intmd[0] + ACL intmd

[1]

if int(ACL trans,16) == ((len(packet bytes.encode("hex")[8:]))/2):#

ACL

self.log int to file(2,8)

elif int(packet bytes.encode("hex")[4:6],16) == ((len(

packet bytes.encode("hex")[6:]))/2):#SCO

self.log int to file(3,8)

else: #this should never happen

self.log int to file(2,8)

else:

self.log int to file(packet indicator[direction],8)

self.hci log.write(packet bytes)

Padding

for x in range(padding):

self.hci log.write(bytearray.fromhex("00"))

#BLock Total length

self.log int to file(total block length, 32)

self.num HCI packets += 1

def close hci log(self):

self.hci log.close()

def open file transfer(self, file name):

self.file = open("./files/%s %s" % (self.timestamp, file name), "wb")

def open hci log(self):

self.hci log = open("./files/%s hci log.pcapng" % self.timestamp, "wb")

105

#some systems get angry if files don't have extensions

#timestamp included so files aren't overwritten

#need to have it opened as binary to fix accidentally writing CRLF

self.hci log.write(bytearray.fromhex("a1b2c3d4 0002 0004 00000000

00000000 0000ffff 000000c9"))

self.hci log.write(bytearray.fromhex("0a0d0d0a 0000001c 1a2b3c4d 0001

0000 FFFFFFFFFFFFFFFF 0000 001c "))

'''PCAP Global Header | PCAPNG Section Header Block | Length (8 bit

= 1 octet, 32 bit = 4 octet)

Magic Number | Block Type | 4 octet

Major Version | Block Total Length | 4 octet

Minor Version | Magic Number | 4 octet

Timezone | Major Version | 2 octet

Sig Figs | Minor Version | 2 octet

Max Packet Size | Section Length | 8 octet

Data Link Type | Options | 0 octet (

variable)

| Block Total Length | 4 octet

| Total | 28 octet

'''

self.hci log.write(bytearray.fromhex("00000001 00000014 00c9 0000

00000000 00000014"))

'''PCAPNG Interface Description Block |Length

Block Type | 4 octet

BLock Total Length | 4 octet

Link Type | 2 octet

Reserved | 2 octet

SnapLen | 4 octet

Options | 0 octet (variable)

Block Total Length | 4 octet

Total | 32 octet

'''

def write to file transfer(self, data bytes):

self.file.write(data bytes)

def close file transfer(self):

106

self.file.close()

107

Appendix B

Litepoint-based Promiscuous

Packet Capture Tool

B.1 Litepoint Packet to JSON Translator

coding: utf-8

'''

Instructs a Litepoint IQxel to re-analyze all

packets within an IQ capture in Channel 1 and write results

to a JSON file.

'''

import sys

import lime

import json

import time

import datetime

import argparse

def help():

108

print("Usage: ")

print(" python %s [<jsonFile>]" % file)

print(" [<jsonFile>] - filename for JSON packet storage")

exit()

def packet to json(jsonFilename, LP IP address='169.254.22.24'):

'''

dictofPacketsDefault = {

"Capture Timestamp": "01:01:1980:13:00:00.000000",

"Channel Index": 0,

"Detected IF Bandwidth": 0,

"Detected Payload Length (bytes)": 0,

"Detected Data Rate": 0,

"CRC Pass?": False,

"Preamble Bytes": "",

"Header Bytes": [

""

],

"Payload Bytes": "",

"Signal Bandwidth (MHz)": 0

}'''

dictofPacketsDefault = {

"Capture Timestamp": "01:01:1980:13:00:00.000000",

"Preamble Bytes": "",

"Header Bytes": [

""

],

"Payload Bytes": "",

"CRC Bytes": ""

}

dictofPackets = {}

dictofAllPackets = {}

lime.initLime()

con = lime.connect(address=LP IP address, port=24000)

109

con.setTimeout(60000)

lime.Print("Getting packet count:\n")

scpi commands = '''

BT;CONF:DRAT LEN;

BT;CONF:DEWH ON;

BT;CONF:CHAN:AUTO ON;

BT;CONF:SLOC CIND;

BT;CONF:LEN:SWOR:AUTO ON;

BT;CONF:LEN:PHE LINK;

BT

CHAN1

BT

CALC:POW 0,1

BT;FETC:SYNC?

'''

r = con.query1d(scpi commands)

if r[0]=='0':

packet count = int(r[2])

print("packet count : %d" % packet count)

ts = time.time()

capturetime = datetime.datetime.fromtimestamp(ts).strftime('%m:%d:%Y:%H

:%M:%S.%f')

for packetNumber in range(0,packet count):

try:

print("")

print("*****Packet : %d" % (packetNumber+1))

#get packet type here!!

#determine analysis type

scpi commands template = '''

CHAN1

110

BT

CLE:ALL

CALC:POW {0},1

CALC:TXQ {0},1

CALC:SPEC {0},1

'''

scpi commands = scpi commands template.format(packetNumber, 1)

print(scpi commands)

con.scpi exec(scpi commands)

r = con.query1d("*wai;err:all?")

if int(r[0]) != 0:

raise Exception("{} ran into errors: {}".format(

scpi commands, r))

dictofPackets = dictofPacketsDefault.copy()

dictofPackets['Capture Timestamp'] = capturetime

'''

#Channel index

scpi commands =

BT;FETC:SEGM1:TXQ:CHAN?

#print(scpi commands)

r = con.query1d(scpi commands)

dictofPacket['Channel Index'] = r[1]

'''

#IF bandwdith

#Signal bandwidth

#Data rate

#CRC pass?

#Preamble Bytes

111

scpi commands = '''

BT;FETC:SEGM1:TXQ:LEN:PRE?

'''

#print(scpi commands)

r = con.query1d(scpi commands)

if r[0]=='0' :

bits = r[1]

packet hex = ''

print("Number of bits: %d" % len(bits))

for byte in range(0,len(bits),8):

byte int=0

for b in range(0,8):

if bits[byte+b] == 0x01:

byte int += 2**b

packet hex += "{:02x}".format(byte int)

dictofPackets['Preamble Bytes'] = packet hex

else :

print("BITS query error")

#Header Bytes

scpi commands = '''

BT;FETC:SEGM1:TXQ:LEN:PDUH?

'''

#print(scpi commands)

r = con.query1d(scpi commands)

if r[0]=='0' :

bits = r[1]

packet hex = ''

print("Number of bits: %d" % len(bits))

for byte in range(0,len(bits),8):

byte int=0

for b in range(0,8):

if bits[byte+b] == 0x01:

byte int += 2**b

packet hex += "{:02x}".format(byte int)

112

dictofPackets['Header Bytes'] = packet hex

else :

print("BITS query error")

#Payload bits

scpi commands = '''

BT;FETC:SEGM1:TXQ:CLAS:PAYL?

'''

print(scpi commands)

r = con.query1d(scpi commands)

#print(r)

if r[0]=='0' :

bits = r[1]

packet hex = ''

print("Number of bits: %d" % len(bits))

for byte in range(0,len(bits),8):

byte int=0

for b in range(0,8):

if bits[byte+b] == 0x01:

byte int += 2**b

packet hex += "{:02x}".format(byte int)

dictofPackets['Payload Bytes'] = packet hex

else :

print("BITS query error")

#CRC bytes

scpi commands = '''

BT;FETC:SEGM1:TXQ:LEN:CRC?

'''

print(scpi commands)

r = con.query1d(scpi commands)

#print(r)

if r[0]=='0' :

bits = r[1]

packet hex = ''

113

print("Number of bits: %d" % len(bits))

for byte in range(0,len(bits),8):

byte int=0

for b in range(0,8):

if bits[byte+b] == 0x01:

byte int += 2**b

packet hex += "{:02x}".format(byte int)

dictofPackets['CRC Bytes'] = packet hex

else :

print("CRC query error")

key = str(int(packetNumber)+1)

dictofAllPackets.update({key:dictofPackets})

except:

pass

print(dictofAllPackets)

json str = json.dumps(dictofAllPackets, indent=4)

print(json str)

f = open(jsonFilename,"w")

f.write(json str)

f.close()

else:

lime.error("No valid packets found\n")

if name == " main ":

parser = argparse.ArgumentParser(description='This script commands a

LitePoint analyzer to re-analyze and then save results to JSON.')

parser.add argument('LP IP address', type=str, help='IP address of the

LitePoint analyzer')

parser.add argument('JSON file', type=str, help='Name of output JSON file')

args = parser.parse args()

114

LP IP address = args.LP IP address

jsonFile = args.JSON file

Read the parameters

'''

if len(sys.argv) >= 3:

help()

if len(sys.argv) <= 1:

help()

jsonFile = sys.argv[1]

'''

print("jsonFile =%s " % jsonFile)

packet to json(jsonFile, LP IP address=LP IP address)

B.2 JSON to PCAP Translator

import os

import subprocess

import sys

import json

import time

import datetime

import binascii

if (sys.version info > (3, 0)):

print("Python 3 not yet supported")

sys.exit()

#Need to install hexdump package

import hexdump

def byte to int(x) :

115

x = int(binascii.hexlify(x),16)

return x

def crc check(input bitstring, polynomial bitstring, check value):

'''

Calculates the CRC check of a string of bits using a chosen polynomial.

initial filler is assumed to be '1'.

'''

len input = len(input bitstring)

initial padding = check value

input padded array = list(input bitstring + initial padding)

polynomial bitstring = polynomial bitstring.lstrip('0')

while '1' in input padded array[:len input]:

cur shift = input padded array.index('1')

for i in range(len(polynomial bitstring)):

if polynomial bitstring[i] == input padded array[cur shift + i]:

input padded array[cur shift + i] = '0'

else:

input padded array[cur shift + i] = '1'

if '0' not in ''.join(input padded array)[len input:]:

return True

else:

return False

def help():

print("Usage: ")

print(" python %s [<jsonFile>] [<pcapFile>]" % file)

print(" [<jsonFile>] - filename for JSON packet storage")

print(" [<pcapFile>] - filename for PCAP packet storage")

exit()

jsonFile = ''

pcapFile = ''

writeAMPDU = 0

iqSourceFile = ''

116

Read the parameters

if len(sys.argv) >= 4:

help()

if len(sys.argv) <= 1:

help()

jsonFile = sys.argv[1]

pcapFile = sys.argv[2]

print("jsonFile =%s " % jsonFile)

print("pcapFile =%s " % pcapFile)

with open(jsonFile) as f:

dictofPackets = json.load(f)

pcap file = open("packets.txt", 'w')

for key in sorted(dictofPackets, key=int):

packet = dictofPackets[key]

packethex = '00000000' + packet['Header Bytes'] + packet['Payload Bytes'] +

packet['CRC Bytes']

if (sys.version info > (3, 0)):

print("TBD")

else :

packetbytes = packethex.decode("hex")

capturets = time.mktime(datetime.datetime.strptime(packet['Capture Timestamp

'], '%m:%d:%Y:%H:%M:%S.%f').timetuple())

packetts = capturets #+ float(packet['Packet Start Time (us)']) / 1000000

packettime = datetime.datetime.fromtimestamp(packetts).strftime("%m:%d:%y:%H

:%M:%S.%f")

pcap file.write(packettime)

117

pcap file.write('\n')

old stdout = sys.stdout

sys.stdout = pcap file

hexdump.hexdump(packetbytes)

sys.stdout = old stdout

pcap file.close()

text2pcap path = r"C:\Program Files\Wireshark-octoScope\text2pcap.exe"

cmd = [text2pcap path, '-l', '251', 'packets.txt', pcapFile, '-t', '%m:%d:%y:%H

:%M:%S.']

print ("cmd: %s" % cmd)

subprocess.call(cmd)

	List of Figures
	List of Tables
	Introduction
	Motivation
	State of the Art
	Current Issues
	Thesis Contributions
	Thesis Organization

	Overview of Bluetooth and Packet Capturing Technology
	Bluetooth Wireless Technology Standard
	Bluetooth BR/EDR
	Bluetooth LE

	Packet Capturing Technologies
	Packet Capture File Format
	BTSNOOP
	PCAP
	PCAPNG

	Summary

	Proposed Bluetooth Packet Logging and Formatting System
	Test System Description
	BTSnoop Formatting
	PCAP Formatting
	PCAPNG Formatting
	Summary

	Proposed Bluetooth Packet Capturing System
	Litepoint IQxel-M16W-Based Promiscuous Packet Capturing Subsystem
	Litepoint IQxel-MW 7G Based Promiscuous Packet Capturing Subsystem
	Proposed Hybrid System
	Summary

	Conclusion
	Research Outcomes
	Future Work

	Bibliography
	Complementary Logger Utility for CYW20719-based Inline Packet Capture Tool
	Control Module
	Communicator Module
	Interpreter Module
	Plotter Module
	BTSnoop Logger Module
	PCAP Logger Module
	PCAPNG Logger Module

	Litepoint-based Promiscuous Packet Capture Tool
	Litepoint Packet to JSON Translator
	JSON to PCAP Translator

