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Abstract

The main goal of this thesis work was to develop, implement and evaluate an algorithm
that enables mining association rules from datasets that contain quantified distance
information among the items. This was accomplished by extending and enhancing the
Apriori Algorithm, which is the standard algorithm to mine association rules. The Apriori
algorithm is not able to mine association rules that contain distance information among
the items that construct the rules. This thesis enhances the main Apriori property by
requiring itemsets forming rules to “deviate properly” in addition to satisfying the
minimal support threshold. We say that an itemset deviates properly if all combinations of
pair-wise distances among the items are highly conserved in the dataset instances where
these items occur. This thesis introduces the notion of proper deviation and provides the
precise procedure and measures that characterize it. Integrating the notion of distance
preserving frequent itemset and proper deviation into the standard Apriori algorithm leads
to the construction of our Distance-Based Association Rule Mining (DARM) algorithm.
DARM can be applied in data mining and knowledge discovery from genetic, financial,
retail, time sequence data, or any domain where the distance information between items is
of importance. This thesis chose the area of gene expression and regulation in eukaryotic
organisms as the application domain. The data from the domain was used to produce
DARM rules. Sets of those rules were used for building predictive models. The accuracy
of those models was tested. In addition, predictive accuracies of the models built with and

without distance information were compared.
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1 Introduction

1.1 Context of the Problem

The Knowledge Discovery in Databases (KDD) field is concerned with the development
of methods and techniques for making sense of data [FSS96]. Association rule mining
[AIS93] identifies collections of data attributes that are statistically related in the
underlying data. An association rule is an expression of the form X=>Y where X and Y
are disjoint sets of items. In a dataset D, consisting of data instances where every instance
is a set of items, the rule X=>Y has support sup, equal to the percentage of the instances
of D that contain both X and Y. Support count supent is the number of instances of D
that contain both X and Y. The confidence conf of the rule is the percentage of instances
in D that contain Y among those that contain X.

Apriori [AS94] has become the standard algorithm for association rule mining.
However, this algorithm is not able to mine association rules that contain distance
information among the items that construct the rules. This thesis extended and enhanced
the Apriori algorithm in order to extract important patterns from datasets that capture

distance information among the items that construct the rules.

1.2 Application Domain

This thesis chose the area of gene expression and regulation in eukaryotic organisms as
an application field. The DNA (DeoxyriboNucleic Acid) sequence of these organisms is

being collected and stored in computer readable formats with an enormous rate of



progress in the last several years. Every cell in a single eukaryotic organism has the same
DNA sequence, unique for that entity. Each DNA has a double strand helical structure.
Each strand consists of a chain of nucleotide subunits. There are four nucleotides present
in the DNA: adenine (A), guanine (G), thymine (T) and cytosine (C).

A gene is a part of the DNA, which when activated is responsible for the protein
production in the cell. Different genes are active in different cells. There are two major
factors that make the same genes in the same DNA in one type of cell become active (or
be transcribed and then translated into protein) and in another kind of cell stay dormant.
The first general factors are the so-called transcriptional proteins. They reside in the cell
and interact with the binding sites of the DNA when the respective gene should be
activated. Different types of transcriptional proteins are present in different types of cells.
The second general factor is the combination of promoter subsequences (or motifs) of the
DNA. The promoter is a part of the DNA that is located upstream of the gene and
determines whether the gene is active (“on”) or dormant (“off”). This process is
illustrated in Figure 1. In this example, three motifs, M1,M2, and M3, which lie in the
upstream region of gene X, are interacting with the transcriptional proteins in order to
activate gene X.

Molecular biology experiments have shown that not only the existence of the
appropriate combination of these motifs, but also the proper pairwise distances among
them, are possible preconditions for a gene to be triggered [WhiOl]. If the appropriate
transcription factors are present in a particular cell, and the corresponding motifs are

present on a particular gene, then the transcription factors will bind the motifs and turn



the gene “on” or “off”. We wanted to build association rules that would describe whether
a gene is activated or not based on the presence of a certain mixture of motifs and

distances among them in given cell type(s).

TRANSCRIPTIONAL PROTEINS

e W2 [ raa Y] WG

MUSCLE CELL

—

Gene X ::" p—

Figure 1. Gene expression

1.3 Problem Statement

The core problem of this thesis was to design and implement an algorithm to generate
distance-based association rules. The parameters that measure the quality of the rule are
the support (sup), the confidence (conf), and the maximal coefficient of variation of
distances (cvd). This last parameter is introduced in this thesis to capture the clustering
significance of all pairwise distances of motif (item) members of a rule.

In order to illustrate the meaning and the role of the cvd parameter we extract

association rules from the sample data shown in Figure 2.



PR1 |1\_/I{_}| @ 4 | M2 5 Gene .
| | ‘ U | | A tat Gene expressed in Neural cells
() () ] B .
PR2 - Gene expressed in Neural cells
\ [ [ [ [ [ [ |
PR3 (30) Gene .
tart Gene expressed in Muscle cells
\ [ [ [ [ [
PR4 ®m m Gene
| | ‘ . T Start‘ Gene expressed in Neural cells
PR5 Gene
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PR6 3 A®A 4 A® M5 Gene
‘ ™~ ™~ ™~ tart Gene expressed in Neural cells
PR7
M5 | 2 M3 M 1 Genel
‘ ™~ ~ M At Gene expressed in Neural cells
PR8 EZ Ezt @ M5
i S— . S— Genel .
[ [ [ Il start Gene expressed in Neural cells
PR9 4 N M3 Gene
| A A start Gene expressed in Muscle cells

Figure 2. Data sample. PR (Type of the cell)) =Promoter region with gene being expressed. in a Neural
cell or Muscle cell. Boxes=DNA sequences. (Mi)=motif(i). Numbers in the circles=distances between
motifs.

This sample consists of 9 data sequences related to 9 different gene promoter regions
(PR1-PRY). Each data instance consists of two attributes. The first one is a set-valued
attribute containing the distinct motifs that are found present in the respective gene

promoter region. The second one is the cell type(s) where this gene is expressed (Neural
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or Muscle). Pairwise distances among the motifs are also given in Figure 2. These
distances are measured in (DNA) basepair positions.

Let us assume that we want association rules that have three motifs in the antecedent and
one type of cell in the consequent. If the support threshold is (2/9)*100%=22.2% and the
confidence threshold is 100%, applying the standard Apriori [AS94] over this dataset will

generate the rules presented in Figure 3.

R1: M1, M2, M5=>Neural (sup=33%), (conf=100%)

(M1, M2, M5 & Neural present in PR1, PR4, and PR7)

R2: M1, M4, M5=>Neural (sup =22%), (conf=100%)

(M1, M4, M5 & Neural present in PR1, PR2)

R3: M2, M4, M5=>Neural (sup =22%), (conf=100%)

(M2, M4, M5 & Neural present in PR1, PRS)

Figure 3. Rules obtained from standard Apriori

Rules R2 and R3 in Figure 3 have the same values for support and confidence. Based on
those measures no distinction can be made between R2 and R3. However, comparing
PR1 and PR2, we notice that M1, M4, and M5 are very similarly clustered with respect to
their pairwise distances. In the promoter regions PR1 and PR8 supporting R3, we notice
that M2, M4, and M5 are in a different order, and are further apart in PR1 than in PRS.
After this small analysis it becomes clear that the second rule is likely to be more

significant, from the biological point of view, than the third one. This significance will be
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measured by the coefficient of variation of distances (cvd). This coefficient will enable

the generation of distance-based association rules.

1.4 Related Work

Correlation measure and statistical dependence among the items that construct an
association rule are introduced in [BMS97] and [SBM9S8] respectively. Collective
strength [AY98] is used to measure if a group of attributes occur together in the data
sequences. Our work relates to these approaches in that we have the same foundational
principle of the importance of the statistical dependence among the items. But our work
differs in that none of those approaches consider the variation of the distance among the
items as a correlation measure.

Miller and Yang [MY97] introduced a type of distance-based association rules.
Their work concentrates on datasets that contain numeric attributes. The values of the
attributes are discretized into different numbers of bins using clustering. For example if
there are six instances of data and the attribute age has values 7,20,22,50,51,53,
respectively, they bin the attribute into three bins [7,7], [20,22], [50,53]. Binning is
performed after the clusters related to the distances among the values are determined.
After each numeric attribute is binned in the above manner, association rules are mined
from the transformed dataset. Our approach differs from that in [MY97] in that we base
our distance measures across different attributes, not within the values of each attribute.

Spatial association rules are explained in [Dun02]. According to their definition

for this type of rules, either the antecedent or the consequent of the rule must contain
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spatial predicates (such as near). An example of a rule with spatial antecedent and
nonspatial consequent is: If a house is located near Central Park, it is expensive. Support
and confidence for spatial association rules are calculated in the same manner as for
regular association rules. The difference between spatial association rules and regular
association rules is that in the former, the underlying database is not viewed as a set of
transactions. Instead, it is a set of spatial objects [Dun(02]. The spatial predicates that
denote the topological relations are considered as given by the data mining query. This
approach differs from ours in that it considers spatial relationships of the values of the
same attributes across the dataset, while the relationships across the distinct attributes are
not explicitly considered.

Previous work at WPI on motif and expression based classification of DNA
(MEBCS)-[MPPTO1] considered the significance of distances between the motifs that
construct the rules in biological data, but only after the Apriori algorithm generated
standard association rules. The MEBCS system established the sequential flow of tools
and methods for constructing association rules out of DNA sequences. Generation of the

association rules in this thesis follows this sequential flow.

1.5 Contribution of This Work

The main contributions of this thesis are the design, implementation, and evaluation of an
algorithm for mining distance-based association rules. These rules should increase the
significance of the patterns that are mined over data in domains in which distance

information is of importance.
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2 Background

2.1 Motif Elicitation: The Expectation-Maximization (EM) Algorithm

A preliminary point to this thesis was to obtain real genetic data that contain
motifs and distance information among them. First, we needed an apparatus that will find
motifs in a collection of DNA sequences. For this purpose the Multiple Expectation and
Maximization for Motif Elicitation (MEME) tool was used. The MEME core algorithm
extends the expectation maximization (EM) algorithm for identifying motifs in sequences
[BE9S5]. Multiple motifs are found by fitting a two-component finite mixture model to the
data [BE94]. Once the motifs are found for a series of sequences, the Motif Alignment
and Search Tool (MAST) [BG98] is used to query each single sequence for particular
motifs and respective distances between motifs. MEME/MAST can be set to find
duplicate occurrences of the motifs as well. All motifs found are denoted by their p

values- the probability of the random occurrence of each of the motifs.
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|CTTGTCTAATGGGC CGACTATATAGICTGTACGATICCGAATTGT |

JAGTGTCCCTAAGGGCGACTITATCTAGTCTGTATICCGTCGACA |

|GGCCTAAAATGTAGTCCTTATATAGTCTGATTCTCGTCGAAA |

IGTTGTGTAGTGGGCCCCGACTATAGTCTGTATTCCGTCGAAC |

rTGCGATTCATGGGCTAGTTATATAGGTAGTACGTCTAAGAAA |

ATTGTCTATAGTCCCCTGACITAGTCTGTACATICTCGATATC |

Gene Promoter Regions from one cell type

MEME

lcrtg] M1 [TG240)c| M4 k1{100) M2 [Q(150YFd M5 CGAAT

AGTGTCq M1 G(260] M4 rATc{sz( MS5 |\ TTCCGTCGACA |

[CCTG| M4 ATGG(360)CCTT| M1 \GTCTGTACGTCGTCGATA |

GG{ M1 [A(100] M2 [CCTT(350)TAGTCT] M5 [TCGTCGAAA |
< —

[ACTGTCTAATGG| M1 [TT{190YAGT| M4 \CGTCGTCGAGA |

IGTTGT({ M3 [GE120£CC| M4 ATA(7505IGT M5 |[CGTCGAAC
\_/ \_/

TGCG M5 A:.GC] M?2 [A(100YAG{ M3 @ M1 LGAAA
M2

[ATTGTCTA]

C(18 ) M4 [TAGT21 JTACA M5 [CGATATC |

ATTGT( M4 |G(60 TG M3 [ATATAGTCTGTACGTCGTCGAAA |

Gene Promoter Regions from two cell types annotated with the
motifs and the distances between the motifs

MI1: CTAA
M2: TAGT
M3: AGTA
M4: GACT
M5: ATTC

MAST

Figure 4. MEME-MAST MEME elicits motifs; MAST annotates sequences. Five sample motifs

identified by MEME are shown in the input sequences

The lower the p-value of a motif is, the higher the authenticity of the motif. Annotated

motifs and distances are produced as the output of the systems. Typically, MEME is

15




used to elicit motifs from promoter regions of genes that are all expressed in a particular
cell type. MAST is then used to annotate a group of promoters of interest with these

motifs (Figure 4).

2.2 The Apriori Algorithm

The Apriori algorithm to mine association rules was introduced in [AS94]. Given a
dataset that contains sets of items (called instances), a minimal support threshold, and a
minimal confidence threshold, Apriori mines all the association rules from the dataset
that have support and confidence above the thresholds.

Apriori employs an iterative approach known as level-wise search, where k-itemsets
(itemsets with k items) are used to construct (k+1)-itemsets [HKO1]. An itemset is
frequent if it has support greater than or equal to the user defined minimal support. The
Apriori algorithm is based on the Apriori property: “All subsets of a frequent itemset
must be frequent”. The Apriori workflow is shown in Figure 5. In step (1), the set of
frequent 1-itemsets is constructed. This set is denoted by L;. In the next step the
collection of candidate itemsets C, is generated from the frequent itemsets in L;. In step
(3) the itemsets in C, that are not frequent or that contain subsets that are not frequent
(SP) are pruned, obtaining the frequent itemsets in L. In step (4) Cs candidate sets are
generated by joining L, with itself. In general, the candidate itemsets at level Ck,; are
generated from the itemsets in Lx by joining Lk with itself as follows: If two itemsets

{aj,...., ax } and {by,...., bx } in Lk, whose items are sorted according to a given order,
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DATASET 2
Instance | Items {Ilslzllns;t} SZC
1 M1, M2, M4, M5, MI,M} | 2
N (M1, M2} | 3
12 M1, M4, M5, N L1,Cl {M1, M3} 1
13 M1, M4, M Ttemset | S_c @ %iﬁgi j @
5 M1y s ,
14 M1, M2, M5, N (M N
5 M1, M4, M M T3 s MM 0| s
16 M3, M4, M5, N M4l |7 (M2, M3} | 1
17 M1, M2, M3,M5, N {M5} 6 {M2, M4} 2
I3 M2, M4, M5.N (N} 6 (M2, M5} | 4
0V, (M) 3 (M3,N} | 2
19 M3, M4, M M T
(M3, M4} | 2
C3 (M3, M5} | 2
2 Itemset S_c {M4, M5} 4
Itemset S_c {M1, M2, M4} 1 {M4, N} 4
MLN] | 2 (MI, M2, M5} | 3 (M4, M} | 3
(M1, M} 2 {MI1, M4, M5} 2 {M5, N} 6
(MI,M2} | 3 {ML, N, M} SP {(M5,M} [ 0
(MI,M4) | 4 {M1 M2, N} 3 {M.N} 0
(MLM5) | 4 (M1, M4, N} 2 =
(M2,N} | 4 (MI.M>.N} | 4 Tiemset S_¢
(M2 M4} | 2 — | {MI, M2, M} SP (ML, M2, M5] 3
(M2, M5) | 4 M1, M4, M} 2 @ (ML M4, M5} | 2
(M3.N} | 2 (M1, M5, M} | SP (M1 M2, N} 3
(M3, M4} | 2 {M2, M4, N} 2 —> [ (M1 M4 N} 2
(M3, M5} | 2 {M2, M5, N} 4 (ML, M5, N} 4
(M4 M5) | 4 (M2, M4, M5} | 2 MV :
(M4, N} | 4 (M3, M4. M3} | I M2, M4, M5] | 2
(M4, M} | 3 {ﬁg’ﬁg’g} ; (M2, M4, N} 2
{MS,N} 6 {{M4, N ’M}} 3P {MZ, MS,N} 4
{M4, M5, N} 4 {M3.M5. N} 2
(M4, M5M} | SP {M4, M5. N} 4

C4

L4

Ttemset S ¢
@ {M1, M2, M5,N} 3 Itemset S_c
(M1 M4, M5 N} 2 @ {MI1, M2, M5,N}
{M1,M4, M5, M} | SP {M1 ,M4, M5,N}
(MI,M4,N,M} | sp | — » [ {M2 M4, M5N}

{M2, M4, M5,N} 2

N R ||

—_—

Figure 5. Regular Apriori Workflow. Minimal support count (msc) is 2, and confidence is 100%.
Subset pruned (SP) Support count (S_c).
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are such that a; = by, ap = by,...., and ax.; = byx; , then the join of these two itemsets
{ai,...., ak, bx } is added to Ck,; . Subsequent steps repeat the procedure described by
steps 2, 3 and 4 over the higher levels. This process stops when no further candidate
itemsets can be generated. Once all the frequent itemsets have been constructed,
association rules satisfying the minimal confidence condition are generated. This process

is accomplished as follows [HKO1]:

1. For each frequent itemset F, generate all nonempty subsets of F.
2. For every nonempty subset S of F, compute the confidence of the rule:
“S =>(F\S):

support_count(F)

confidence(S => (F\S)) =
support_count(S)

If confidence(S => (F\S)) >= minimal_confidence threshold, then output the rule.
Given the above example, Apriori will generate 27 rules and they will have the format

given on Figure 6.

M5=>M (conf: 1.0), (sup: 0.6666667)
M1 && M2 ==> M5 && N (conf: 1.0), (sup: 0.33333334)
N ==> M5 (conf: 1.0), (sup: 0.6666667)
M ==> M4 (conf: 1.0), (sup: 33333334)
M1 && M ==> M4 (conf: 1.0), (sup: 0.22222222)
M3 && M5 ==>N (conf: 1.0), (sup: 0.22222222)

Figure 6. A subset of the rules generated by Apriori over the dataset in Figure 5.
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2.3 Classification Model

Using our association rules, we wanted to predict whether or not a gene of interest will be
expressed in a given type of cell. These rules will have the dependent attribute (gene
expressed or not in the given type of cell) in the consequent. Motifs present in the
antecedent will be predicting attributes. Association rules whose right-hand-sides are
restricted to the classification class attribute are called class association rules (CARS)
[LHMO8]. A classification model is generated by selecting some (or possibly all) of the
rules mined by Apriori. Several different criteria have been proposed for this selection,
some of which are described in [LHM98]. If we test this model with a new dataset we can
estimate its accuracy. The accuracy of a classification model is the proportion of correct

predictions over the total number of predictions made.
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3 Our Approach

3.1 Distance-Based Apriori

One of the main goals of this thesis was to build an accurate classification model
consisting of association rules that capture distance information. We would expect
variability of the distances among motifs to depend upon of the actual sizes of the
distances. That is, longer distances would have bigger standard deviations than smaller
distances. Thus, to determine whether distances represent similar clustering among
promoters we used the coefficient of variation of distances (cvd) introduced in [Zar99].
The cvd of a pair of motifs with respect to an itemset I is the ratio between the standard
deviation and the mean of the distances between the motifs taken from the promoter

regions that contain I. For the itemset IR1= {M1, M2, M5} from the rule R1 in Figure 2

there are three cvd’s: cvd ;p, (MI,M2), cvd o1 (MI,M5) and cvd j; (M2,M5).

In order to calculate the cvd’s, we first calculate the appropriate means and
standard deviations. Each mean is calculated upon the distances in the promoter regions
where all motif members of the itemset IR1 are present. The distance between say M1

and M2 in PR1 is denoted by d pp; (M1,M2).

Iy (M1, M 2)=

dpp(MLM2)+d,, 4(A§1,M2)+dPR7(M1,M2):

=340+100+210=216 66
3 .
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1

¢ X (d,, (MLM2)-p  (M1,M2))>

i=1,4, ;

Oy M1LM2)= \/(3 IR1

=120
The coefficient of variation of distances (cvd) for the pair M1,M2 is:

o (M1,M2)
evd , (M1,M2) = IR1

IYINYE =0.554
Mo (M1,M2)

In the same manner we calculate the rest of the cvd’s and we obtain the rules that are

depicted in Figure 7.
R1: M1, M2, M5=>Neural R2: M1, M4, M5=>Neural
(sup=33%, conf=100%) (sup=22%, conf=100%)
M2 M5 M4 M5
M1 |cvd |0.557|0.076 M1 |cvd |0.056 | 0.036
mean | 216.6 | 462.0 mean | 250.0 | 488.0
sdev | 120.0 | 35.0 sdev | 14.0 | 18.0
M2 cvd 0.433 M4 cvd 0.136
mean 237.0 mean 233.0
sdev 103.0 sdev 31.68

R3: M2, M4, M5=>Neural
(sup =22%, conf=100%)

M4 M5
M2 cvd [0.982 ] 0.772
mean | 59.0 | 97.0
sdev | 58.0 | 75.0

M4 cvd 1.199
mean 138.0
sdev 165.0

Figure 7. Distance-Based Association Rules obtained from the dataset in Figure 2

Now we can illustrate what we want from the system: rules that satisfy the min
support and min confidence thresholds, but also such that items in a rule preserve their

distances in the dataset instances that support the rule; i.e. their cvd’s are below some
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maximal allowed threshold- maxcvd. The maxcvd is given by the user, and cvd’s for each
pair of items in the rule should be less than the maxcvd. So, for the rules given in Figure
7, if the user of the system sets maxcvd threshold to be maximum 0.15, rules 1 and 3 will
be removed and only rule 2 will stay, since only for the rule 2 all pairwise cvd’s are
below the given maxcvd=0.15.

Inclusion of this parameter in the process of mining rules is accomplished by
extending the Apriori Algorithm. First, the notion of a frequent itemset is enhanced to the
notion of distance preserving frequent (DPF) itemset. In order to be DPF, itemsets need
to satisfy the minimal support threshold and in addition to this, the itemset must deviate
properly. In general, an itemset I deviates properly if it satisfies the following definition:

Given a minimal support count (msc), a maximum cvd (maxcvd), the set SI of
instances that support I, that is the instances in the dataset that contain the itemset I, we
say that I deviates properly if for each pair of items Mi, Mj in I there is a subset Slij of SI
of cardinality msc for which the cvd(Mi, Mj) in Slij is less than or equal to the maxcvd.

This definition requires each pair of items in an itemset I to have a cvd less than
the maxcvd in a subset Slij of SI. If an itemset does not satisfy this condition, it means
that no matter what items are added to the itemset in higher levels of the Apriori process,
the resulting superset either will fail to have the minimal support required or will contain
a pair of items whose cvd is above the maximum cvd allowed. Hence no rules can be
generated from this itemset (or any of its supersets) and so itemset can be removed from

consideration.
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If we look again at the example in Figure 3 we can notice that the itemset [= {M1,
M4} is present in PRI, PR2, PR3 and PRS. If we calculate the cvd from all four
sequences we obtain cvd, (M1,M4)=0.27. But when R2 is generated we are only
interested in the sequences that contain M1, M4, and M5 together, and those are PR1 and
PR2. If we calculate cvd for itemset {M1, M4} only from PRI and PR2 we obtain
cvd, (M1,M4)=0.0564. This is below the maxcvd and it is calculated from the same
number of sequences (two) as the value of the minimal support count (two) for this
example. Hence we say that this itemset deviates properly. Figure 8 presents our
procedure to determine if a frequent itemset deviates properly. This procedure returns

true if the input itemset I deviates properly, and returns false otherwise.

bool deviates_properly(Itemset I, msc, maxcvd)

//PRE: TtemSet I is nonempty; msc is the minimal support count, maxcvd is the maximum cvd and they
//are positive numbers.
//POST: returns true if the Itemset I deviates properly; returns false otherwise.

{

numOfSeq= number of the instances in the dataset;
for each pair of items in I do{

{ If the procedure combinations_deviate_properly (Pair, msc, numOfSeq, maxcvd) returns false
return false }

}

return true;

}

Figure 8. Deviates_properly Procedure

A simple illustration of the deviates_properly workflow can be given for the itemset
[I={M1, M4} from our dataset. First, the function deviates_properly is called with

required parameters {M1, M4}, msc=2 and maxcvd =0.15.
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bool combinations_deviate_properly (Pair P, msc, numOfSeq, maxcvd) {

//PRE: P is a Pair of items, msc is the minimal support count, numOfSeq is the number
/lof sequences, maxcvd is the maximum cvd and they are positive numbers.

//POST: returns true if there is a subset of instances in the dataset, with cardinality msc,
//such the cvd of the distances between the items of the pair P in those instances is less
//than the maxcvd

howmanySubsets= numOfSeq - msc +1;

/leach subset will contain msc data instances
Vector allSubsets=createTheSubsets (P, howmanySubsets, msc); (see figure 10)

for each subset from allSubsets do{
calculate the subset’s cvd ;
if (cvd < maxcvd)
{ return true; }

}

return false;

}

Figure 9. Combinations_deviate_properly Procedure

Since there is only one pair of items in {M1,M4} we call the function
combinations_deviate_properly with required parameters ({M1, M4}, 2, 4, 0.15). Since
the number of data instances where this pair is found is four (PR1, PR2, PR3 and PRSY)
and msc is 2, there are three subsets of 2 promoter regions and each should be tested for
their cvd’s. Those three subsets are created using the procedure createTheSubsets. The
createTheSubsets procedure first sorts the distances taken from the four promoter regions.
In this example, the sorted array of distances will be 190, 240,260, and 360. Then
according to the procedure three subsets of size two will be created: {190,240},
{240,260} and {260,360}. Only these three subsets need to be checked if their cvd’s are
below the maxcvd, since all other subsets of two that can be created from this array will

have larger cvd’s than at least one of these three pairs. Calculating the cvd(M1,M4) from
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the subset {240,260} will give cvd(M1,M4)=0.056. Since 0.056<0.15 this is enough to

conclude that the itemset I deviates properly.

Vector createTheSubsets (Pair P, int howmanySubsets, msc){

//PRE: P is a Pair of items, howmanySubsets is the number of subsets, and msc is the
//minimal support count and they are positive numbers.

//POST: Exactly (howmanySubsets) subsets are created, stored in the vector allSubsets
/land returned by this procedure

Calculate the distances between the two items, in the pair from

all promoter regions where the pair is present

sort these distances and store them in the array DistanceArray;
create new Vector called allSubsets that will hold all the subsets of
size msc of those distances

for(int i=0; i<howmanySubsets;i++){

create the i-th subset from the members of the DistanceArray starting
from the i-th index and ending at the (i+msc)-th index;

store the created subset in the vector allSubsets;

}

return allSubsets;

}

Figure 10. CreateThesubsets Procedure

The createTheSubsets procedure is based on the fact that the cvd between any two
items members of the pair P will increase if we consider substituting some element of the
distance array that is further apart from either the lower or the upper bound of the current
member elements of the pair. For example if we consider the array subset {190,260} or
{240, 360} instead of the subset {190,240}, they will have the bigger deviation and cvd
as well. This observation is based on the fact that the standard deviation increases with
the increase of the distance among the items. If we have distances between a pair of items
measured in n regions, our approach needs to test only (n-msc+1) subsets to check if

there is a cvd lower than the maximal one.
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DATASET 2
Instances | Items Itemset S ¢
(M1, N} 4
1l M1, M2, M4, M5, {M1, M} 2
N (M1, M2} | 3
12 M1, M4, M5, N = (M1, M3} | 1
; (M1, M4} | 4
13 Ml’ M4’ M @ Itemset S_C {Ml, MS} 4 @
14 M1, M2, M5, N (M1} 6 @ (M2, N} 1
15 M1, M4, M —> | (M2} |4 (M2, M} 0o | —>
16 M3, M4, M5, N M3} |3 (M2, M3} | 1
17 M1, M2, M3,M5, N (M4} |7 —> {M2, M4} 2
18 M2, M4, M5.N L) o (M2, M5} | 4
P Y {N} 6 (M3, N} 2
19 M3, M4, M (M} 3 (M3, M) 1
(M3, M4} | 2
C3 (M3, M5} | 2
. Itemset | S c | {M4, M5} 4
5 (M1,M2, M4} ]| 1| {M4, N} 4
(M1, M2, M5} || 3 | M4, M} | 3
Itemslet SZC cvd (M1, M4, M5} | 2 {M5,N} | 6
MM _ (MILN.M} | SP | {M5.M} | 0
{MI,M4,N} 2
(MIM4} | 4 * - >
(MIM5) | 4 - {M1, M5, N} 4 3
{MZ’ N] 1 (M1, M2, M} SP Ttemser
I bl VA (M1, M4, M} 2 "
_ {(MI.M5. M} | SP | (M1, M4, M5} *
{M2,M5,N} [| 4 | (MI,M4,N} | 2 | *
(M3,M5) | 2 | * | (M2,M4, M5} || 2 | (ML, M5.N} | 4 | =
(M4, M5} | 4 * (M3, M4, M5} || 1 | @ (M1, M4, M} ) ¥
{M4’ N} 4 * {M3,M4, N} I-| (M2, M4, M5} ‘ 2 %
{M47M} 3 - {M3,M5, N} 2 (M2, M4, N} ‘ 2 %
(M5, N) 6 ” {M4, N, M} SP (M2, M5, N} ‘ 4 *
2 {M4, M5, N} 4 {M3,M5, N} 2 *
{M4, M5,M} SP (M4, M5, N} 4 *
c4
Itemset | 2
M1, M2, M5.N @ ™ ;
{ } -I‘ Ttemsel [S_c [ ovd | How the cvd’s

N DTN e
> 5 5 |

MLMENM] | 0 | g MIMAMSN) {Ml M4 M5.N) ‘ 2 ‘ ot 15 e

2 [ figure 12.

l@

Figure 11. Deviates_properly procedure prunes the itemsets that are not DPF itemsets. Minimal
support count (msc) is 2, and confidence is 100%. Subset pruned (SP) Support count (S_c).
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This is a linear time O(n) procedure that will provide the information if the
itemset is a DPF itemset. Figure 11 illustrates how our procedure for testing if an itemset
is DPF changes the original Apriori algorithm’s flow.

The notation in Figure 11 refers to our application domain: M1-M5 are the motifs
found in the 9 promoter regions given in Figure 2. Item M denotes the expression in the
muscle cells, while N denotes expression in the neural cells. The procedure deviates
properly will test only pairs created from the itemset that contain the motifs. So the pair
{M3, N} cannot be tested since there is not a notion of distance between the item that
represents the Motif M3 and the item N that represents the expression Neural.

Using our approach on the Apriori example given in Figure 5 will lead to the
process of pruning some of the itemsets because they are not DPF. In Figure 11 the
itemsets that will be pruned away because they are not DPF itemsets (given the maxcvd
i1s 0.15) are marked with black. From this figure we can notice that for example the
itemset I={M1, M4} will not be pruned because we have shown above that this itemset
deviates properly. Illustrative example for the itemset that will be pruned is given in the
Figure 12. Figure 12 shows the pruning of the itemset {M2, M5} that belongs to the set
of frequent itemsets L2 from Figure 11. The itemset {M2, M5} is present in four
promoter regions PR1,PR4,PR7 and PR8 (given in Figure 2). The minimal support count
for this example is 2 and the maxcvd is 0.15. The Combinations_deviate_properly
procedure will create three subsets from the distances between M1 and MS. These

distances are taken from the four promoter regions where M1 and M5 occur together and
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they are 36, 150, 210, and 350. The subsets of cardinality equal to the msc are {36, 150},

{150,210} and {210,350}.

M5 150 M2
L2 I [\

Ttemset S c

........ BYeR 790 M5

......... | | [ \©

{M2, M5} | 4| M5 |-(210—] M2

........ ) | |

........ = " VE

/1 I |

cvd(M2, M5) =0.86 | [ cvd(M2, M5) =0.235 | [ ovd(M2. M5)=035 ]

36 | 150y 210 [350 | [36 1150 [2T0 [350 | [36 [ 150210 | 350

Figure 12. The itemset {M2,M5} does not deviate properly for maxcvd=0.15

The subsets of cardinality equal to the msc are {36, 150}, {150,210} and {210,350}. The
cvd’s calculated from these pairs, are (0.86), (0.235) and (0.35) respectively. Since none
of them is less than the maxcvd (0.15) the itemset {M2,M5} does not deviate properly.
All other itemsets marked with black in Figure 11 are pruned following the same course
of action as we followed for the itemset {M2, M5}.

Our Distance Association Rule Mining (DARM) produces rules from distance preserving
frequent (DPF) itemsets in same manner as regular Apriori produces rules from frequent
itemsets. What we know for the DPF itemsets is that they are DPF when calculated from
a number of instances equal to the minimal support count. If the support of the rule to be

produced is larger than the minimal support count, we check again if the itemset is DPF,
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but now calculated from all instances that support the rule. If the itemset is DPF, we
record the statistics (each pairwise mean, standard deviation and cvd) and the rule is
produced. For example, DARM will try to produce rules from the DPF {M1, M5, N}
taken from set of frequent itemsets L3 from Figure 11. If the cvd for the pair {M1,M5}
calculated from all the instances that contain the itemset {M1,M5,N} (in this case four) is
below the cvd threshold, the rules will be produced.

So, our approach enhances the main Apriori property; now all nonempty subsets of a
DPF itemset must also be DPF itemsets. The extension of this property and the
encapsulation of the deviates_properly procedure in the Apriori algorithm build the
skeleton of DARM and introduce a significant improvement, in terms of the frequent
itemsets generated, over the approach not to use the deviates properly procedure and to
mine distance-based rules from all frequent itemsets that the standard Apriori would

produce.

3.2 Model Construction

We build our classification models over a training set of data. Our classification models
consist of class association rules. Given a test data instance, a class association rule will
classify it correctly if the antecedent of the rule is present in the test instance and the class
predicted by the rule is the same as the class of the test instance.

Two different classification models are used for the experimental evaluation of this thesis

work. The first one is called the All Rules classifier. This classifier consists of all class
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association rules (rules that have the item that denotes the gene expression in the
consequent of the rule) produced by DARM. The second follows the CBA model
construction approach described in [LHM98]. The CBA model construction first sorts the
rules by confidence, then by support. Then the association rules that classify correctly at
least one instance from the training data are selected. Rules are added to the model one at
a time in the order in which they occur after sorting them. Initially the first rule is
included in the model. The resulting classifier is tested on the training instances for the
error rate (the ratio of incorrect predictions over the training data).This process is
repeated until exhausting the association rules or exhausting the training instances. The
subset of the rules with lowest error rate is the final CBA model. This CBA model
contains a default rule that is applied to test instances for which none of the other rules in
the model apply. The default class is the majority class of the unclassified training

instances. See [Pal03] for further details.

3.3 Implementation

The implementation of the DARM algorithm was done in the Waikato
Environment for Knowledge Analysis (WEKA) [FW99]. WEKA is an open source data
mining and machine learning system from the University of Waikato, New Zealand. The
DARM algorithm presented in this thesis has been developed with careful consideration
of its feasibility within the WEKA environment. In the past several years the WEKA

system has been improved by the students in the Knowledge Discovery in Databases
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research group at WPI(KDDRG) [Pal03], [Pra03], [Sto02] and [ShoO1]. This system is
now called WPI-WEKA. DARM is now part of the WPI-WEKA system.

The sequence diagram of the DARM’s main procedures with the present WPI-
WEKA modules is given in the Figure 13. DARM’s modules are rounded by thick
frames. They are invoked by the existing module called ARMinerApriori. This module is
responsible for the level-wise generation of the frequent itemsets. On each level before
claiming the itemset as frequent the ARMinerApriori invokes the procedure
deviates_properly in order to check if the itemset is a DPF itemset. The procedure
deviates_properly interacts with the procedures = Combinations_deviate_properly and
createTheSubsets in the same manner as explained in Section 3.1.. If the itemset does not

deviate properly, it is pruned from future consideration by the ARMinerApriori module.

[ AprioriSetsAndSequences ]

[ Apriori Rules ]—'
Final deviates properly

[ ARMinerApriori ]

Deviates_properly
Combinations deviate prooerlv
createTheSubsets

[Existing WEKA modules |

DARM modules

Figure 13. DARM’s interaction with the WEKA-WPI modules for mining frequent itemsets

Once all the frequent itemsets have been determined by the ARMinerApriori,

AprioriSetsAndSequences model calls the AprioriRules module to generate the

31




association rules satisfying the minimal confidence condition (Figure 13). AprioriRules
sends the rules that satisfy the minimal confidence condition and have support bigger
than the minimal support count to the DARM’s module Final_deviates_properly. This
module tests if the itemset that builds the rule is a DPF, but now calculated from all
instances that support the rule. If the itemset is not a DPF this rule is pruned.

After the rules are produced they are outputted by the WPI-WEKA system (Figure 14).
Rules contain all the distance statistics: means, standard deviations and cvd’s for each
pair of items members of the rule, presented in a format similar to the rules given in

Figure 7.

& wela Knowledge Explorer

[
Associator
{'mmamsmmms -N10-CO09-D005-U10-M01-YB-E2-B2-Z1-X0-W2-008-Rtrue

Save Output | Req‘uint.‘. Attributez in Consegquents:
Expression
- Result list -
23:58:15 - AprioriSetsd || L. Nl &¢ M2 ==» Expression=AN ([Conf: 1.0, Bup: 0.33333334]
23:568:36 - AprioriSetss m LE
| cid x 0.557
M1
mean X 220.0
sdev X 123.0

2. Ml s¢ M5 ==> Expression=AN [Conf: 1.0, Sup: 0.44444445]

Hl Hs
cwd X 0.063
nl
mean X 465.0
sdev X 30,0

IIAETA Stane d waka assaciafions ApranSeisAndSeguences
235817 Finished weka associations Apriori SetsAndSequences
2345836 Started weka assaciations AprioriSetsAndSequences
234837 Finished weka associations Apriori SetsAndSequences

Figure 14. DARM Interface
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4 Experimental Evaluation

In this section, we provide the results from testing our DARM system. First, the
data are described, and the dataset construction process is explained. Then the evaluation
metrics are defined. In the experimental protocol two phases of the experimental
evaluation are described. The first phase shows the savings of the DARM during the
process of mining association rules. The second phase shows the testing of the

classification models consisting of DARM rules.

4.1 Data Description

We use two sets of data for our experiments. The first one contains genetic data
for C.Briggsae and the second one contains data from C.Elegans. C.Elegans and
C.Briggsae are soil nematodes. DNA of those organisms are completely sequenced and
transformed in computer readable formats. Many of the genes of those organisms have
been determined. These facts have made C.Elegans and C.Briggsae genomes the subject
of many computational biology analysis and experiments.

The C.Briggsae data that we used for our experiments contained the promoter
regions of 31 genes and the cell types where the genes are expressed. There are a total of
five cell types in the dataset. The C.Elegans data that we used for our experiments
contained the promoter regions of 57 genes and one cell type where the gene is

expressed.
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In order to obtain the motifs responsible for gene expression for one cell type,
first MEME was run over the promoter sequences associated with the genes expressed in
that cell type. MEME is run with an option to find multiple occurrences of each motif in a
single promoter region. After the motifs are identified they are given as input to MAST,
together with all the promoter regions. MAST annotates those promoter regions with the
occurrences of the given motifs. The file outputted by MAST is used an input to the
MASTToARFF module written for this thesis that takes the MAST file and transforms
into the ARFF format. If there is more than one occurrence of a motif in a promoter
region, our module selects the occurrence of the motif with the lowest p-value, i.e. the
most significant occurrence of the motif according to MAST.

The ARFF format includes a data row for each gene, the cell expression of the
gene, the motifs present in the promoter region of the gene, and the location of the most
significant occurrence of each motif in terms of the starting and ending point of the motif
(counted from the start of the gene). Appendix A contains the ARFF files used for our
experiments. There are five ARFF files for C.Briggsae data, one for each cell type as
described below. Appendix A also contains the ARFF file used for the experiments with
C.Elegans data, although only the header of the ARFF file and a few illustrative data
instances were included to save space.

The five cell types used were PanNeural, ASENeural, ASKNeural, OLLNeural, and
BodyWall. PanNeural means that all neural cells express the gene; promoters in this class
are thus a subset of those expressed in the particular neural cells ASE, ASK, and OLL.

As described above, each dataset contains 31 promoter regions. MEME, MAST and
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MASTToAREFF are used to find the motifs for each cell type separately. The number of

motifs and the number of genes expressed in each of the five data files are given in

Figure 15.
C.Briggsae Number of motifs Number of Genes Expressed Percentage of  Genes
Expressed
PanNeural 25 17 (17/31)*100=54%
ASENeural 25 21 (21/31)*100=67%
ASKNeural 28 24 (24/31)*100=77%
OLLNeural 24 19 (19/31)*100=61%
BodyWall 27 20 (20/31)*100=64%

Figure 15. C.Briggsae data statistics

Also the dataset from the PanNeural cell type from C.Elegans is used. This dataset is
obtained using the same methodology as for C.Briggsae. The number of promoter regions

for this dataset is 57. The statistics for this dataset are given in Figure 16.

C.Elegans Number of motifs Number of Genes Expressed Percentage of Genes Expressed
PanNeural 28 17 (17/51)*100=29%

Figure 16. C.Elegans data statistics

4.2 Evaluation Metrics

We evaluate our classification models in terms of their accuracy. Accuracy is the
proportion of correct predictions over the total number of predictions made.

A typical example of how to use a rule to predict the expression of a novel gene
can be shown if we test Rule 2 from Figure 7. If the gene’s promoter contains motifs M1,
M4, and M5 and distances among them are within plus or minus one standard deviation

from the respective pairwise means recorded in rule R2, it will be predicted that the gene
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Figure 17. Rule used for prediction

will be expressed in neural cells. Figure 19 shows an example of how this rule is applied.
Assume that a novel gene is given and that motifs M1, M4 and M5 are present in the
promoter region of the gene. Assume also that the distances between M1 and M4, M1
and M5, and M4 and M5 are 260,475 and 215 respectively. Since those distances lie

between the corresponding mean plus/minus one standard deviation, then the rule applies

to this new gene and predicts that the gene is expressed in neural cells.

4.3 Experimental Results and Analysis

Our experimental protocol is divided into four phases. The first phase is to test the
savings of the DARM during the process of mining association rules. The second phase is

to test the classification accuracy of the models consisting of the DARM rules. The third
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phase is to visualize the top rules in each of those modes. The forth and final phase is to
compare the accuracies of models consisting of DARM rules against the accuracies of the

models consisting of regular rules.

4.3.1 Comparison of Frequent Itemsets vs. DPF Itemsets

In order to assess the advantages of our enhancement of the Apriori algorithm, we
compared this enhancement against a naive approach to obtain distance-based association
rules using regular Apriori. In this naive approach, regular Apriori is used to generate
frequent itemsets and rules from them. Then each rule is annotated with the cvd values of
all the pairs of items in the rule, and finally only those rules that satisfy the maximal cvd
threshold are kept. Both our enhanced Apriori and this naive approach output the same

set of rules.
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Figure 18. DARM Savings
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However the naive approach would consider many more unnecessary itemsets than our
DARM approach would. Figure 18 summarizes the number of itemsets considered by
both methods over the five C.Briggsae datasets. It is expected that the decrease of the

number of the frequent itemsets yields savings during the mining process.

4.3.2 Distance-Based Models

The second phase of our experiments is to gauge the influence of the introduction of the
cvd parameter in the process of mining association rules. In particular we observe the
behavior of the mining algorithm and the accuracy of the resulting models as a function
of the coefficient of the variation of distances. For the experiments shown in Figure 19,
the same datasets are used for the model building and for the model testing. For the
experimental results shown in Figure 20, 66% of the data was used for the model building
and the rest of the data for the model testing. For both of the experimental approaches, for
each of the five cell datasets, five CBA models are constructed and their accuracies are
presented as well. CBA models contain only the rules that have cvd’s less than 0.5.
Comparison of those results can be made with experiments with the same dataset with
ZeroR classifer (classifer that always predicts the majority class of the training instances).
This classifier will give the results same as the percentages for gene expression in Figure
15 (since the gene expression is the majority class in all five cell types). For the
experiments given in Figure 19 we can conclude that for the all five cell type obtained

higher classification accuracy that of ZeroR.
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Classification accuracy (CBA Model, Weighted prediction, cvd=0.5,
minsup=0.2, minconf=0.2)
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Figure 19. Classification accuracy (CBA models on C.Briggsae)

For the experiments given in Figure 20 we can conclude that the PanNeural and
CBBodyWall models obtained higher classification accuracy, while the rest three
obtained lower classification accuracy that of ZeroR..

Next, using the same experimental settings stratified 10-fold cross validation was
performed over the five cell types from C.Briggsae. Tenfold cross-validation divides the
data in ten parts, having the class attribute (cell expression in our case) distributed in each
fold following the same distribution of the class attribute in the full dataset. The training
model is constructed on nine folds, and testing is performed on the tenth fold. This
process is repeated 10 times, having each of the folds as testing set. The overall
classification accuracy for the 10 folds is obtained by averaging the accuracies obtained

from the individual folds.
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Classification accuracy (CBA Model, Weighted prediction, cvd=0.5,
minsup=0.2, minconf=0.2)
80.00%
70.00% +—
60.00% +—
5, 90.00% +— I |m Classification accuracy, 66% split
) — cross-validation. Datasets are given
5 40.00% +— — on the X-axis. 1.PanNeural
§ 2.CSBASENeural 3.CBASKNeural
30.00% - 4.CBBodyWall 5.CBBOLLNeural
20.00% +— —
10.00% +— —
0.00%
1 2 3 4 5
5 type of cells (C.Briggsae)

Figure 20. Cross-validation using 66 % split of the datasets

For the 10-fold cross validation given in Figure 21 we can also compare the results with
ZeroR and conclude that CBPanNeural, CBASKNeural, CBBodyWall and CBBollNeural

models obtained higher classification accuracy than ZeroR.

40



Classification accuracy (CBA Model, Weighted prediction, cvd=0.5,
minsup=0.2, minconf=0.2)
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m Classification accuracy, 10 fold

8 50.00% - split cross-validation. Datasets are
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Figure 21. Cross-validation using 10 fold cross-validation

4.3.3 Visualizations of the Distance-Based Models

The best rules (sorted by confidence then support) for each of the CBA models
over C.Briggsae and C.Elegans are visualized in Figures 22-27. From those visualizations
we can see that the bigger the cvd, the bigger the deviations between the motif distances.
The rule M9&M16=>CBASENeural in Figure 23, has the smallest cvd from all the rules
given in these visualizations. So if we compare the variation of the distances between
motifs from this rule and all the other rules we can visually notice that this variation is

much smaller for this rule than for the others.
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Positions of motifs M1-M3 from the rule M1&M3=>No CEPanNeural [Conf: 0.53488374,
Sup: 0.40350878,cvd(M1,M3)=0.56]
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Positions of motifs M5-M16 from the rule M5&M16=>CEPanNeural [Conf: 0.41463414,
Sup: 0.2982456, cvd(M5,M16)=0.589]
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Figure 22. Visualizations of the first and second top rules from the CBA-C.Elegans-PanNerual

cell model.
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Positions of motifs M9-M16 from the rule M9&M16=>CBASENeural [Conf: 1,

Sup: 0.322, cvd(M9,M16)=0.355]
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Figure 23. Visualization of the top rule from the CBA-C.Briggsae-ASENeural cell model .
Positions of motifs M19-M21 from the rule M19&M21=>CBASKNeural [Conf: 1,
Sup: 0.419, cvd(M19,M21)=0.497]
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Figure 24. Visualization of the top rule from the CBA-C.Briggsae-ASKNeural cell model.
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Positions of motifs M5-M17 from the rule M5&M17=>No CBBodyWall [Conf: 0.714,
Sup: 0.322, cvd(M5,M17)=0.474]
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Figure 25. Visualization of the top rule from the CBA-C.Briggsae-BodyWall cell model.
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Positions of motifs M8-M24 from the rule M8&M24=>CBOLLNeural [Conf: 0.888,
Sup: 0.25, cvd(M8,M24)=0.423]
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Figure 26. Visualization of the top rule from the CBA-C.Briggsae-OLLNeural cell model.
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Positions of motifs M24-M28 from the rule M24&M28=>CBPanNeural [Conf: 0.91,
Sup: 0.35, cvd(M24,M28)=0.446]
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Figure 27. Visualization of the top rule from the CBA-C.Briggsae-PanNeural cell model.

4.3.4 Comparison of the DARM Model vs. Regular Models

One of the goals of this thesis work was to compare the classification models
obtained from classification rules with and without the encapsulated notion of distance.
For this experimental evaluation, models built over the PanNeural dataset were used,
since this dataset contains near 60%-40% distribution of the class values. Classification
accuracy for both CBA models is shown in Figure 28. for C.Briggsae, and in Figure 29

for C.Elegans.
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AccefafiBarison of the accuracy of the CBA models build upon the regular Apriori Rules and
DARM Rules
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Figure 28. Comparison of the distance-based and regular models (C.Briggsae)
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Figure 29. Comparison of the distance-based models and regular models (C. Elegans)
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In addition to the experiments run with the CBA model, 10-fold cross validation was
performed with the All Rules model (Figure 30). This classifier consists of all class
association rules (rules that have the item that denotes the gene expression in the
consequent of the rule) produced by DARM. This classifier does not have a default rule
and hence instances to which none of the rules apply remain unclassified. The accuracy
of the model is calculated only from the test instances that can be classified. Rules that
are part of the AllRules models obtained with same parameter settings as the experiments

in Figure 30 are given in Appendix B.

Classification accuracy (All Rules Model(without default rule), Weighted prediction, cvd=0.5,
minsup=0.2, minconf=0.2)
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60% +— —

@ Classification accuracy, 10 fold

50% +— — cross-validation. Datasets are given
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40% +— — 2.CBBASENeural 3.CBASKNeural
4.CBBodyWall 5.CBBOLLNeural
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Figure 30. All Rules model (C. Briggsae)

In these experiments we used weighted prediction. If for a given test instance several

rules in the model apply and make different predictions, then each predicted value is
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weighted by the sum of the confidences of those rules that predict that value. The
predicted value with the highest weight is chosen as the model’s prediction for the test

instance.
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5 Conclusions and Future Work

The goal of this thesis was to design, implement, and evaluate an algorithm for
mining distance-based association rules. We have accomplished this goal by extending
and enhancing the Apriori algorithm. The Apriori algorithm is not able to mine
association rules that contain distance information among the items that construct the
rules. Our distance-based association rule mining algorithm (DARM) is able to use
distance information during the mining process and is able to construct rules that make
explicit both co-occurrences of items and distance-preservation patterns in the data.

The DARM implementation provided in this thesis produced significant savings
over the regular Apriori process of mining frequent itemsets. DARM rules are capable of
mining more significant patterns from the application domain data than the standard
Apriori. Classification models built with DARM rules were shown to have better
classification accuracy than the standard Apriori models.

This thesis presented an application of distance-based association rule mining to
the area of gene expression. However the functionality of the DARM algorithm is
independent from the application domain. The DARM algorithm developed for this thesis
can be used for data mining and knowledge discovery from genetic, financial, retail, time
sequence data, or any domain where the distance information between items is of
importance. In order to manipulate data from other domains, the only requirement is that

data instances contain numeric distances between the occurring items.
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Our DARM algorithm restricts the number of occurrences of an item in a data instance to
at most one. Future work on the DARM algorithm should include the ability to handle
multiple occurrences of an item in a data instance and hence multiple distances between
two items in an instance. This restriction was imposed in order to have a well-defined
notion of distance between pairs of items. This future extension should yield a certain
advantage in the significance and accuracies of the resulting rules in application domains

where multiple occurrences of the items are of importance.
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APPENDIX A -ARFfF files for CBriggsae and C.Elegans

A0 d° AC A 0 A0 O AC A A A A0 A A A A O A A A A O OO OO d° e

o oo o

A0 o0 o0 A A O o0 A0 A A A O A A A A O A0 A AC A A 0 O A° A° A O o o°

o

1.CBASENeural

Contains the following promoter regions

(they appear as data instances in

of appearance from the first to the last data instance)

Expressed in

gsa-1l 8.5e-40 2010
Snt-1 7.8e-33 2040
F25B3.3 1.4e-31 2039
unc-119 2e-28 2040
osm—-3 5e-24 1983
unc—-115 9.8e-24 2024
rgs—-1 2e-22 2040
tax—-4 2.1e-20 2040
syd-2 5.6e-18 2040
sng-1 1.4e-12 1920
eat-16 2e-12 2040
C41G11.3 6.7e-12 2043

C32E8.7 1.2e-11 2039
snb-1 5.5e-11 1998
aex—-1 6.3e-11 2040
C06Gl1.4 2.6e-10 2100
B0272.2 2.4e-09 2013

che-3 7e-08 2040
egl-10 4e-07 2000
CO01C4.1 8.5e-07 2045
ncs-1 1.1e-05 2042

Not expressed in

F44B9.2 1.7e-19 2056
eat-4 7.6e-08 2040
F07C3.4 6.3e-07 2040
unc-68 7.1e-07 2105
T28B4.1 5.9e-06 2040
gpa-14 2.1e-05 2040
unc-97 4.3e-05 2040
gpa-15 9.5e-05 2037
F10F2.1 0.0038 2014
odr-10 0.48 2036

MOTIF WIDTH BEST POSSIBLE MATCH

M1 15 CTCTTCCTCTTICTTC
M2 15 GAAGAGAGAGAGAGA
M3 15 GAAAAATACCAAAAA
M5 15 CGAATCTGGTTGGAA
M6 15 TTGTCAGCTGACAAA
M8 15 GAACCGAGATAATTG
M9 15 TATCTCGGTTCCTGT
M10 15 AAAAATTTCAATTTT
M11 12 TTTTTGATGTTT
M12 12 ATTTCTGAAAAA
M13 15 GTGGGCTTCTATTAG
M15 15 GGCCCCCCGAACTGA
M16 15 GTGCGCGGGGCGGTG
M17 15 CCTCTAATAGAAGGG
M18 15 GCTCGAAGTGCACGC
M19 15 TAACTTTGAGCCAAT
M20 11 GGCTCCACCCC

M21 9 AGGAGGTCC
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o

M22 15 ATTCGGGGGTGCAAA

% M23 11 CCCGGCGACCG

% M24 14 CCACGGGGCGAGAA

% M25 12 GGCACCGGTGCC

% M27 15 CGCCGAGCACCCCAC
% M29 12 CCCACCCATTCC

% M30 15 GGACGACGACTCCCG

@relation CBASENeural

@attribute CBASENeural {yes,no}
@attribute M1 string
@attribute M2 string
@attribute M3 string
@attribute M5 string
@attribute M6 string
@attribute M8 string
@attribute M9 string
@attribute M10 string
@attribute M1l string
@attribute M12 string
@attribute M13 string
@attribute M15 string
@attribute M16 string
@attribute M17 string
@attribute M18 string
@attribute M19 string
@attribute M20 string
@attribute M21 string
@attribute M22 string
@attribute M23 string
@attribute M24 string
@attribute M25 string
@attribute M27 string
@attribute M29 string
@attribute M30 string

@data

ves,’’,’ {465:480}’,7 {1033:1048}’,7 {219:234}",7 {1332:1347}",7 {1367:1382}",7 {1018:1033}"," {
1952:1967},7 {1535:1547},7 {654:666}",’ {1268:1283}’,7 {989:1004}",’ {122:137},7 {1063:1078}
1, (1428:1443}7, 77,7 {175:186}7,7 7, /7, "’ , 7 {738:752}", {1394:1406}",’ {387:402}",7 {108:120}"
,7{1852:1867}’

ves,’ {1717:1732}",7 {1388:1403}’,7 {94:109}7,"",7 {110:125}", {185:200}’,7 {79:94}7,7 {1308:13
23}7,7{166:178}", {1810:1822}', " {221:236}",7 {872:887}",7","{722:737}',7 {201:216}",’ {63:78
P, {1924 1935},

ves,’ {333:348}’,/{198:213}/,7 {1818:1833}’,"",7 {1042:1057}",7 {1116:1131}",7 {1011:1026}"," {
68:83}7,7{1608:1620}",’ {1221:1233}",7 {1143:1158}","",’ {2015:2030}",7 {1492:1507}",’ {156:17
1}7, 7 {1519:1534}7,7 7,77, 77,7/, 7 {431:445}",77 7 {118:133}",7 {51:63}",’ {468:483}"

ves,’ {471:486}", {1850:1865}’, {1784:1799}",/7,7 {1079:1094}7,",7 {1049:1064}",7 {202:217}"
,7{1128:1140}",’ {181:193}/,7 {1714:1729}’,7",7",’ {840:855}/,7 {998:1013}’,’ {860:875}",’ {328
:339}7,77,7{95:110}7,77,77,77,7{422:437}7,77,77

yes,’ {191:206}",’7,7" {1687:1702}","",7 {1829:1844}",7 {1794:1809}",” {1900:1915},7 {890:905}"
, 7 {756:768}7,7 {1114:1126}’,"",7"," {333:348}",7 {1755:1770}/,"",7 {1582:1597}",77,"/,7 {1005:
102037 ,7 7,77, "/, 77,17, 1 {1941:1956}"

ves,’ {127:142}7,7 {1109:1124}",’ {446:461}/,7 {1293:1308}"," {462:477}",7 {392:407}"," {431:446
}7,7{770:785}",7 {1858:1870}",’ {1653:1665}’,7 {601:616}",’7,’" {1192:1207}’,""," {553:568}","’
LT T {1147 1162}, T, (1132125},

ves,’ {1556:1571},7 {1573:1588}",7 {1314:1329},7",7 (883:898}’,’ {917:932}",’ {1656:1671}",""
,7{898:910}",7 {599:611}",’ {423:438}7,7",7 {949:964}’," {768:783}/,7",77 7 {1594:1605}","",""
,’ 7,7 {466:480}",7 {318:330}7,","",’ {1538:1553}"

yes,’’,’’, " {1517:1532}7,7 {1981:1996}7," {1283:1298}7," {183:198}",7 {1252:1267}",7 {1111:1126
}7, 7 {1339:1351}7,",7 {219:234}",/ {10:25}",7 {1728:1743}",7 {1209:1224}",7 {199:214}’,’ {61:76
b7, 00,7 {1042:1051}7,7 7,77, " {659:673}7,7 7,77, " {927:939}",""

ves,’ {338:353}7,/{722:737}",7 {67:82}7,7,7",7{829:844}7 7 {355:370}",7 {217:232}",’ {1205:12
17}7,7(11:23}7,7 {1118:1133}",7 {597:612}", " {1322:1337}","7,7",7", 77,7 {2000:2009}"," {621:63
6y, {498:513), 0,

56



yes,’{1798:1813}", {1678:1693}’," {44:59}",7 7,7 {520:535}",7", ", {324:339}", {225:237}", " {
922:934}7,7{239:254}",77," 7, (1379:1394}",7",7"," {1365:1376}’,’ {1453:1462}", {744:759}" "
7,77,77,77,7{1597:1609}7,77

yes,’ {761:776},7 {1670:1685}",7 {253:268}","7,77,7 {1036:1051}", {1426:1441}",’ {1702:1717}"
.7 {2006:2018}",7 (1235:1247}",7",’ ", {685:700}",’ {1487:1502}"," 7,7, (795:806}","","","" "
", 7 {74:86}","(112:127}",’",’ {871:886}'

yes,’ {1643:1658}’, {303:318}",7 {1260:1275}",7 {1008:1023}",7",7, 7 {1588:1603}",’ {1142:1157
}' L7 {42:54)7, 77,00 T {614:629)7, 77, 0 00 10 00 1 (1945:1960) 7,7, (128:142}7, 7",/ {388:40
3}7,7{289:301}",""

yes,’ {1490:1505}", {1242:1257}","',7 (1674:1689},7 ",/ {1345:1360}’," {979:994}", {1959:1974
}7,7{264:276}7,7{557:569}7,77,77,77,77,77,77,77,7{386:395}7,77,77,7{999:1013}7,77,77,7{17
02:1714}7," {532:547}"

yes,’{1894:1909}", {133:148}’,’ {1472:1487}",’","," {1310:1325}",7 {1708:1723}", {1438:1453
}7, 7 {1497:1509) 7,7 {271:283}7, 77,77, 77,77 P {1759:1774}", 77, "7, '/, 7/ ' {1544:1555}7, 77,17, 1"
.’ 1314:326},7{1983:1998}"

yes,’ {1095:1110}7,7 7,/ {1437:1452}",7 {169:184}",7/,7/, 77 ," {1666:1681}’,’ {1519:1531}",’ (83:
95} 7, 71, e (1203212177, 7 7,77, 7 {9331 945}, 7

yes,’ {360:375}", {1042:1057}’,7 {1718:1733}", {1311:1326}","’,’ {153:168}","’," {452:467}",'
{69:81}7,77, 77,7 (1398:1413}, 7/, 77,77, 77,77 7 {632:641}/ 7/, 77,7 {901:915}" 7", 7/ 77 7 (1604
1619}

yes,’{239:254}",7 {1318:1333}’,7{1957:1972}",/","," ", {1216:1231}", {1993:2008}", " {924:93
6}, {1181:1193)",7/ 7",/ {1882:1897}"," 7,7 (449:464}" 77,/ {T00:TLL}/ /7, /7, /7,17 10 10 17,
7{1902:1917}"

yes,’ {778:793},7{1470:1485}",7{109:124}","7,77, 7",/ {1386:1401}’, {204:219}",’ {304:316}",
7 {1993:2005}", {1517:1532}7, 77,7 {687:702}", 77,7, " {339:354}" /7,77, /7, 11 11 11 11 1 {1326:
1338}7, "’

yes,’ {480:495}",7 {1799:1814}",7 {690:705}",77," 7,7, " {719:734}",7 {501:516}",7",’ ", {260:27

5}7,77,77,77,77,77,77,7{801:810}7,7{1083:1098}7,7{1216:1227}7,77,77,77,77,77

yes,’ {396:411}/,7/,7 (1732:1747}", 77,77, "7, " {235:250}",7 {1977:1992}", {586:598}",’ {695:707
oy, P (346357, {625:634) 7,0, 0, 0,0, 1 (902914,

yes,’{1352:1367}",/ {1041:1056}"," {643:658}",’ ", {421:436)’,’ {894:909}",’ {543:558}", {392:
40737,/ {1629:1641})", 7 {141:153}7, 7/, 7/, 77 7 {455:470}7 77 10 10 00 00 00 rr 0 1 11079:1094)
’,7{1327:1339}",""

no,’ {1370:1385}",7 {474:489}", {1684:1699}",7 {102:117}", {1740:1755}",7 (410:425}",’ {304:31
9}7,7{978:993},’ {875:887}",’ (1815:1827}", {446:461}","/,", 7 {1959:1974}"," {1649:1664}" "
{1067:1082}7,rr,rr,rr,rr,rr,rr,rr,rr,rr

no,’ {85:100}’,{1970:1985}", {1121:1136}","7, {579:594},7 {1031:1046}",’ {508:523}"," {1218
:1233)7,7 (244:256}", 77,7 (330:345}7,7 {1242:1257}7, 77,77, 77,7 {492:507}7 /7,17 10 10 1 00
’,7{1322:1334}",""

no,’ {582:597}7,7 {1930:1945}",77," 7,7 {240:255}",7 {275:290}",7 {169:184}",7 {1752:1767}"," {21

8:230}7,7 {1737:1749}",7 7,7/, 77,7 (314:329}7, 77,7 {29:44}" 7/ 7/ 171700 17 1 11348:1363}","
4

no,’ {952:967},7{2080:2095}", {1949:1964}",7/, 7,7 {1114:1129}’," {1631:1646},",’",’ {1803
:1815}7,77,7(421:436}7, 7,7 {1554:1569}",7{93:108)",’ {1529:1544} 77,77, 7 {1472:1487}","","

v o orrorr
ror

no,’ {791:806}’,’{1819:1834}",7 {521:536}",',7 {566:581}",/", 7/, {1397:1412}"," {606:618}","
T, (589:604) 7, (1281212961 T

no,’ {1420:1435}7,7 {707:722}",7 (17:32}",77, 77,7/, 7 (1475:1490}," {1241:1256}", {417:429}" "
{296:308}7, 77,77, 77,7 {1031:1046}7,7/, 7",/ {1288:1299}",7",7 (662:677}",7/, 7", ", '/, 7{1630:1
642}7,77

no,’ {1652:1667}/, {540:555}", 77,77,/ {690:705}’, {1322:1337}’,’ {663:678}",’ {230:245}", {33
8:350}7, 77, P (411426},

no,’ {1611:1626}7, {1473:1488)", {624:639},7",/ {827:842}" 7",/ {389:404}",7 (330:345}"," {54
:66}7,77,7{302:317}7,77,77,77,77,77,7{1914:1925}7,77,77,77,77,77,77,77,77

no,’ (635:650}7,/ {1241:1256}",7 {736:751}",7", 7/, "7,/ {1280:1295}",7 {1702:1717}",’ (288:300}"
JTA1B60:1872), 77, 1,00 P {LLTA L8OV 7 10 0 e e
no,’’,’","(286:301})",7",7 (442:457}",7", 77,7 {101:116}",7 (1289:1301}",7 {1731:1743}",7",7 {93
8:953}7,77,77,77,7{706:721}7,77,77,77,77,77,77,77,7{1452:1464}7,77

2.CBASKNeural

% CBASKNeural
% Contains the following promoter regions (they appear as data instances in order
% of appearance from the first to the last data instance
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A0 o0 o0 A0 A A S0 A0 A A° A A A0 A AC A A A A A A A A A A A A A A OO A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A° A° o

o

Expressed in:

gsa—-1 2.2e-47 2010
Snt-1 2e-31 2040
F25B3.3 8.9e-30 2039

unc-119

osm-3 6.
tax-4 1.

unc-115

rgs-1 4.
syd-2 9.
eat-4 1.

2e-29 2040

6e-26 1983
3e-23 2040

1.7e-23 2024

6e—-23 2040
7e-20 2040
8e-16 2040

eat-16 1.6e-13 2040
aex—-1 5.1e-12 2040
gpa—-14 7.2e-12 2040
.3e-10 1920
2.5e-09 2013
2.6e-09 2037
.7e-08 1998
5.3e-08 2039
.5e-08 2040
C41G11.3 1.3e-07 2043
C01C4.1 3.7e-07 2045
gpa-15 4.3e-07 2037
egl-10 2.5e-06 2000
odr-10 0.0005 2036

sng-1

B0272.
C06G1.

snb-1

C32ES8.

che-3

2
2
4
2
7
8

Not Expressed in:

F44B9.2 1.4e-28 2056
F07C3.4 8.4e-13 2040
unc-68 3.3e-06 2105
unc-97 1.2e-05 2040
ncs—-1 0.00083 2042
F10F2.1 0.012 2014

T28B4.1 0.019

MOTIF WIDTH

2040

BEST POSSIBLE MATCH

GAAGAAAGAGAGAGA
TTCTCCCTCTTCTTC
AAAAACTGAAAA
CGCCGCCGCCCCTGC
GAACCGAGATAATTG
CCTCTAATAGAAGGG
CGAATCTGGTTGGAA
AAAAAGTTGTCAACT
TTTTGCACATTTTICG
GAGCCCAATTATCTC
AAAATTTTCAATTTT
TCCTGTAAAAGATAT
ATTTCTGAAAAA
GTGGGCGGGAG
ACAGGTTTTACGGTA
GCTCAAAGTGCAAGC
TATCAGCAACATTTT
ATTCGGGGGTGCAAA
TCTCTTCTCTCACCT
GAGCGTGAAATTGAG
CTGGCGGTGGTGG
CGCCACGACGTICTTC
GAGGCAGCGGTGCCG
GGAAGGGGGCGGGCA
TGGCTGGTGTGGGGG
GGGGCAGGAGGTCCA
GAGCGCGCGCTT
GCGCGCGTGGAG
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o

@relation ’CBASKNeural-Final’

@attribute CBASKNeural {yes,no}
@attribute M1 string
@attribute M2 string
@attribute M3 string
@attribute M5 string
@attribute M6 string
@attribute M7 string
@attribute M8 string
@attribute M9 string
@attribute M10 string
@attribute M1l string
@attribute M13 string
@attribute M14 string
@attribute M15 string
@attribute M16 string
@attribute M17 string
@attribute M18 string
@attribute M19 string
@attribute M20 string
@attribute M21 string
@attribute M22 string
@attribute M23 string
@attribute M24 string
@attribute M25 string
@attribute M26 string
@attribute M27 string
@attribute M28 string
@attribute M29 string
@attribute M30 string

@data

ves,’ {465:480}7, 7 {282:297}7,7 {1635:1647}7,7 {709:724}",7 {1367:1382}",7 {1271:1286}",’ {219:2
34}7,7{1525:1540}",7 {1750:1765}",7 {1439:1454}",7 {1952:1967},7 {1027:1042},7",’ {329:340}’
L', 77,7 {1320:1335}",77,7 {1800:1815}",’ {847:862}’,"",7 {1850:1865}",’ {1392:1407}",’ {373:38
8}7,77,77, 7 {1426:1438}7, " (122:134}’

ves,’ {1388:1403}",’ {1348:1363},7 {367:379}",/7," {480:495}",7 {722:737}",/7,7 {104:119}",7 {1
906:1921}7,/{70:85}",7 {1308:1323}",7 {88:103}7,7{922:934}",77,7 {420:435}/,7 {201:216}",’ {13
8:153}7,7",7{870:885}’,"/,"",7 {1145:1160}",77,"/," {577:592}",7 {1742:1757}",7",""'

ves,’ {198:213}’,’{333:348}/," {1348:1360}’,"’,7 {1116:1131}",’ {1492:1507}",’",’ {1036:1051}"
, 7 {578:593}/,7 {1002:1017}"," {785:800}", {683:698}7,7 {1221:1233}7,"",7 {958:973}", " {156:171
}7, 7 {1070:1085}7, 7,7, "7, " {1978:1991}"," {466:481}",7 ",/ {112:127}",7 {543:558}",77, "/, "
ves,’ {1850:1865}",7 {471:486}","7,"","",’ {840:855}/,7 7,7 {1073:1088}",/ {123:138}’,’ {1040:10
55}7,7{1924:1939}’,7 {1058:1073}",7 {181:193}’,"/,7 {1196:1211}’,7 {998:1013}",’ {935:950}", ' {
95:110}7,7{1537:1552}7,rr,rr,rr,rr,rr,rr,rr,rr,rr

ves,’’,’ {191:206}",7 {428:440}’,7 {1544:1559}",7 {1904:1919}",’ {1755:1770}"," ",/ {1875:1890}"
,7{977:992}7,7 {1789:1804}",7 {889:904}’,’ {1693:1708}",’ {1245:1257}",77,"/,"",’ {1841:1856}"
,7{1005:1020}", {160:175}’,7 {1025:1040}’,"",7 {30:45}",7 7,77, 7 {1285:1300}","","",’ {333:345
}7

yes,’’,’7, " {1519:1531}7," {1705:1720}7," {183:198}",’ {1209:1224}",7 {1981:1996}",’ {1277:1292
}7, 7 {154:169},7 {68:83}7,7 {1625:1640}7,7 {1261:1276}7,"","", /7,7 {199:214}",7 {1311:1326}","
P rr P (1734:1747}, 07,07, (1368:1383)7,7 {1646:1661}",7",""

ves,’ {1109:1124}",7 {127:142}",7 {691:703}/,7 {1202:1217}’,7 {537:552}",7 {1142:1157}",’ {1293:
1308} ,7 {241:256}7,/ {216:231}7,7 {422:437}",7 {770:785}7," {440:455}",7 {1653:1665}",7 7,77 ," {
553:568}7,7 {490:505}7, /7, {1354:1369}7,7/,7 7, /7, "/, " {1237:1252}",77,/7," {1802:1814}"," "
ves,’ ',  {1556:1571}", {624:636}7,7",7 {917:932}", {768:783}’,7",7 {836:851}’,’ {1310:1325}",
1 {802:817}",7 {1061:1076}",7",’ {599:611}’,7 {949:960}",’7,"",” {854:869}",’’,7 {1598:1613}","
{425:440}7,77,7(1774:1789}",7 {316:331}7,",7 {2021:2036},"",’7," {1628:1640}’

ves,’ {722:737}",7 {263:278}",7 {966:978}’,7 {559:574}’,’ {829:844},7 {1121:1136}",’ {1432:1447
}7, 77,7 {1388:1403},7 ",/ {217:232}7,7 {1493:1508}7,7 {11:23}","/," ", 77,7 {27:42}",’ {621:636}"
, 7 {418:433}7,7 {1331:1346}/,7",77, 7/, 77,7 {1723:1738}",/ {1995:2010}","",""'
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ves,’ {1970:1985},7 7,/ (243:255}7,7 {1845:1860}7,’ {1140:1155}’,"/,7",’ {1060:1075}"," {532:54
717, {1026:1041}", " {1276:1291}", " {517:532}7,7",7 7, "/, 7", 7 {1093: 1108}’ 17,7 {1950:1965}",""
.77, 7 {1901:1916}7,"",7", "/, 7 {1824:1839}",7 7,7’

ves,’ {1670:1685},7 {761:776}",’ {2007:2019}",/ {556:57L1}7, " ," ", /7, "/, 77, 7 {119:134}’,7 {1702
$1717}7,7 7,7 {1235:1247}",7 {361:372}7, "/, 7", /", "', " {823: 838}’ 1 {454:469}",77, {869:884}","
1,07, 1 (343:358}", ’{1951:1966}’,”,’{399.411}’
yes,’{1438.1453}’,’{1093:1108}’,’{524:536}’,”,”,”,’{169:184}’,”,’{775:790}’,”,’{1666
21681}7,7 7,7 {83:95}/,7 7,17 10 11 17 1(959:974},7 {1554:1569},7 ",/ {923:938}7,7 7,77,/ {1199
21214}7,77,7{1359:1371}",""

ves,’ {707:722}"," {247:262}",7 {18:30}7,7 {1991:2006}7,"",7 {1031:1046}","",’ {886:901}’,’ {139
:154}7,7{1694:1709}",7 {1241:1256}","",7 {296:308}7,"",7 {1331:1346}","","7," {662:677}","",'

rorr o rrorr o orrorrorr
’ ’ ’ ’ ’ ’ ’ ’

yes,’’,’ {1798:1813}", {37:49}",7",/"," {1379:1394},7/ 7",/ {149:164}" ", " {324:339}"," ", ' {
921:933}7,77,7/, 7", /7,7 {744:759}/ 7 {1112:1127}",’ {1885:1900}’,"”,’ {1321:1336}","",""," {16
47:1662}" g

yes,” (1318:1333)7,7 (239:254}7, 77,7 (188:803}",7 (346:361},7 (669:684}7 77,77,/ {1945:1960} ",
77,7 {1470:1485}",7 7, {1181:1193}",7 {1802:1813}"," ", {449:464}",7",’",’ {162:177}",7 {1397:1
412}' e, T, 0,1 (529:544) 7,7 {1351:1366}7, {1536:1548)7, "'

yes,”’, " (681:696)7,77,7 (928:943}7,7 (51:66}7,7 (472:487} 77,77, " (607:622}7,77," {1711:1726)
7,7 {1457:1472)7,7 7,77, 77,7, 7 {1690:1705}", ",/ {128:143}/,7 (1008:1023}",’ {1564:1577}", {18
62:1877)7,7 (946:961}7, {795:810}, (1319:1334}7, 77, 77,17

yes,” (133148}, {1894:1909}7,/ {556:568)7, 77,7 (1310:1325} 77,7777,/ (1451:1466}",7 {1531 :
1546)7,77,7 {1235:1250}7,7 {271:283}",7 7,7/, 7/ 77,77, 77,7 (934:949}" 7 {244:257}"," {16:31}","
7,7 {1165:1180})","",""," {1755:1767}",""

yes,’ {1242:1257}’,7 {1490:1505)"," {1184:1196},7’,’ {860:875}",/",” {1674:1689}",’ {662:677}'
.7 {773:788)7,7,7{1959:1974}"," ", (557:569}", {636:647}’,’ {1718:1733}"," ", {205:220}", "
77,7 {345:360)7 77,7 {527:542}",7 7,7, {2024:2039}",7 ",/ ", "

yes,” (1470:1485)7,7 (1134:1149)7,7 (194:206)7, 77,77, 77,77, 7 (1759:1774}" " {44:59)7, 77,7 {1923
:1938}7,7/,7{1993:2005}", {687:698}’,7,7 {393:408}",’ (1975:1990}"," ", {1451:1466}","","",
13325347y, 0 e

yes,” (1992:2007}7,7 (1643:1658}7,7 (1628:1640}7,7 7,77, 77,7 {1008:1023}",77,/ (1131:1146}7, "7,
7{75:90}7,77,7{1536:1548} 77,77, "7, " {117:132}",7 {1945:1960}",7 7,7/, '/, ' (429:444}",7" ' ",
77,7 (607:622}7,7{1909:1921}",""

yes,’’,’{396:411}’,’ (1144:1156}",7 {1884:1899}" 7,7, "/, '/ ' {8:23}’," (872:887}",/ {1977:19
92)7, 77,7 (695:707)7 17,11 17 {1066:1081)7, 77,7 (651166617, 77,17, 71 10,01 10 00 10
yes,’ (1598:1613}7,7 (1473: 1488}, (1367:1379}7, 77,77, 77,77, (811:826}", (1880:1895)7, {172
1:1736}7,7{1993:2008}", {689:704}/,7/,77, 77,77,/ {838:853}",7/,7(1818:1833}",” {704:719}","
T (1920:1932) 7,7

yes,” (1799:1814}7,7 (480:495)7,/ {304:316} 77,77, 77,7717,/ (1355:1370}7, 7,7 (502:517}7, ",
7,7 (1688:1699}’ 77,77, 77,7 {1083:1098)"," (758:773}",/ ",/ {814:827}",""," ", "7,/ {911:926}" "
’,7{997:1009}",""

yes,’’,’’,’{1871:1883}","’,"", "/, " {220:235}"," (447:462}",’ {1777:1792}"," {713:728}",’ {101:
11697, 77,7 (1731:1743)7, 77,77, 77,7 (1331:1346}" 77,/ (470:485}7 77 7/ 17,77 17 7 (1351:1366}

rrorrorr
’ ’ ’

no,’ {1474:1489}",7 {1370:1385}", {484:496},7/,7 {410:425}",/ {1040:1055}",” {102:117}",’ (174
6:1761},’ (855:870}",7{295:310}",7{978:993}",7 (1678:1693}’,7 {1983:1995}/,"",/ {1949:1964}"
P {1649:166417, 7 (363:378)7, 7/ 10,10 0 00 S E i rn

no, 77,7 {582:597)7,7 (889:901}7, 7,7 (275:290)7, 77, 77,7 (246:261}" 7 (979:994}7,7 {160:175}" " {

1752:1767}",7{178:193}7,7 {1737:1749}, 77,7 {324:339}",/ 7,7 {212:227}",""," ", {1925:1940}",
{1229:1242}7 77,77, 77, 7 (1273:1288}",7 7,7/ "

no,’ {2080:2095}/,7{952:967}",7 (1110:1122}",’ {775:790}" 7", {1554:1569}", ", 7 {451:466}"," {

436:451)7,7 7,77, 7 (1406:1421}",’ {1803:1815})",",7 {634:649)",",7 {226:241}", {1472:1487}",’
7,77,7{57.70}7,77,77,77,77,77,7{1977:1989}7,77

no,’ {1655:1670}/,’ {958:973}",7 (931:943}",",7 (1366:1381}’,"’,’ {1285:1300}", {348:363}", " {

1014:1029)",77,7 {230:245}",7 (1244:1259}, 77,7/ " (1411:1426}" ",/ '/, /" '/ 17 7 (1566:158

117,77, 10,7 (1698:1713)7, 77, (857:869)7,7 (729:741}"

no,’ (1352:1367)7,7 (1234:1249}7 7 (1597:1609) 7,7, " {1727:1742} 7,77, 7 {943:958}" 7 (202:217
b, (3925407}, 0, 0 (14115317, 7 (1325513367, (329:344) 7,707, 0,0 (1101:1116) 7, 11,01,
rr P {1118:1133)7,77,7 (960:972}7 7"

no, 7 (1589:160417,7 (635:650) 7,7 [288:300)7,77,7 (976:991}7 77,77, 7,7 (1772:1787}" 77,7 (133:7

48}7,77,7{1860.1872}7,rr,rr,rr,rr,rr,rr,rr,rr,rr,rr,rr,rr,rr,rr,rr

no,’ {1819:1834}7,7 {1773:1788}",{237:249} 77,7, 7 {1281:1296}",7",/ {52:67}’, {1100:1115}"
Pr (13971412} 7,77 100, 1 (1998:2013) 7,77, 7 (271:286) 7,77 1, 10,00, 1 00 (3612376}, 70,7 (1
669:1684)7, 77,17,
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3.CBBodyWall

0 00 o0 A0 A A S0 O A0 A° A A A0 A AC A A A A OO A A A A A A A O A OO A A° A° o

o

CBBodyWall

Contains the following promoter regions

of appearance from the first to the last data instance

Expressed in:

FO07C3.4 1.3e-30 2040
gsa-1l 8.6e-26 2010
C06Gl.4 3.1e-25 2037
F44B9.2 7.4e-17 2056
B0272.2: 2.2e-15 2013
unc-97 le-13 2040
syd-2 3e-12 2040
egl-10 8.4e-12 2000
eat-16 2.8e-10 2040
unc-68 7.5e-09 2105
T28B4.1 2.2e-08 2040

Not Expressed in:

F25B3.3 8.1e-13 2039
Snt-1 2.7e-11 2040
tax—-4 1le—-07 2040
unc-119 3.5e-07 2040
osm-3 1.4e-06 1983
rgs—-1 1.2e-05 2040
unc-115 0.0041 2024
eat-4 0.011 2040
gpa-14 0.02 2040
gpa—-15 0.034 2037
snb-1 0.04 1998
che-3 0.04 2040
C41G11.3 0.058 2043

% aex—-1 0.36 2040

% C32E8.7 0.58 2039
% sng-1 0.88 1920

% ncs-1 1.4 2042

% F10F2.1 5.3 2014
% CO01C4.1 6 2045

o o oo

o

odr-10 8.8 2036

MOTIF WIDTH BEST POSSIBLE MATCH

% 1 15 AAGAAAAAGAGAGAG
% 2 15 CCTTTICTCTTCTICT
% 3 15 TCTGAAAATCTGAAA
% 4 15 CCACCCCCGCCACCG
% 5 15 TTTATCAGTTGACAA
% 6 15 GGCCTTCTATTAGAG
% 7 12 GTTGTTTCCTCC

% 8 11 GAAATAAAAAA

% 9 15 GGAACCGAGATAATT
% 10 15 TGCAGGTGCGCGCGG
% 11 15 TTTCTCGGTTGCTGT
% 12 15 GTTCGAAAAGTTTTC
% 13 15 ATTTTATGATAAACA
% 14 15 CGCCGCCTCCCCTGC
% 15 12 CCCTCCCGATCG

% 16 15 CCGCAATCGGACTCG
% 17 15 AGTGGGAATGGGAAT
% 18 9 TTTTCGTGG

% 19 8 GCACGTCG

61

(they appear as data instances

in order



o

21 8 CCGGCCCG

% 23 15 GGCATGAGAGGGCGC
% 25 12 CTTCCCACACTA

% 26 12 GGAGGTCCTCCC

% 27 15 GTCCGGTCGCCAATG
% 28 14 GGTTGGTCTCCTCG
% 29 15 TGCTGCTTGCTCCCT
% 30 15 TGGCTCGGTGGCATC

oo oo

o

@relation ’CBBodyWall-Final’

@attribute CBBodyWallExpr {yes,no}
@attribute M1 string
@attribute M2 string
@attribute M3 string
@attribute M4 string
@attribute M5 string
@attribute M6 string
@attribute M7 string
@attribute M8 string
@attribute M9 string
@attribute M10 string
@attribute M1l string
@attribute M12 string
@attribute M13 string
@attribute M14 string
@attribute M15 string
@attribute M16 string
@attribute M17 string
@attribute M18 string
@attribute M19 string
@attribute M21 string
@attribute M23 string
@attribute M25 string
@attribute M26 string
@attribute M27 string
@attribute M28 string
@attribute M29 string
@attribute M30 string

@data

ves,’ {1175:1190}",7 {1771:1786}",7 {912:927}",/ {1229:1244}",’ {240:255}’,7 {313:328}",7 {1443:
1455}7,7 {1580:1591}7,/ {274:289}7, 7/ {1277:1292}",7 {169:184}"," {571:586}'," {224:239}"," "', {5
90:602},"{425:440}"," {1630:1645}",7 {989:998}",’ {1838:1846}’,"’,’ {378:393}7,/ {529:541}", "'
’,”,”,’{1660!1675}’,”

ves,’ {504:519}’," {613:628}/,7 {1708:1723}/,7 {705:720}",/ {1332:1347}",’ {1270:1285}",77," {13
81:1392}",/ {1553:1568}",’ {1421:1436}’,7 {958:973}’,’ {1750:1765}’, " {1316:1331}",’ {164:179}"
L7 {991:1003}",7"," ", "', " {816:824}",7 ", "/, "1, "1, 1(89:104}",'"," {376:391}",""

ves,’’,’ {374:389}7,77,7{924:939}", {466:481}","7," {1166:1178}"," ", "/, "/, " {83:98}",77,/7,'
{943:958}7,7{297:309}",7 {657:672}",7 {337:352}",7 7,/ {1582:1590}",/7,"/," ",/ {990:1002}","",
1 {233:247}",7{792:807}"," {1659:1674}’

ves,’ {1882:1897}’,’ {1430:1445}’,7{911:926}’,’’,/ {375:390}’,/ {1960:1975}"," {265:277}"'," {16
88:1699}7,7 {409:424}",7 7,7 {1669:1684}7,7 {739:754}7,/ {1724:1739}"," ", {235:247}","/,"/,'",
rr,rr,rr,r{1338:1350}7,rr,rr,rr,rr,rr

ves,’ {1319:1334}",7 {1824:1839}",7 {1704:1719}/,7",7 {1359:1374}",77,"/, 7" {730:741}",7",’ {187
7:1892}7,7{1955:1970}"," {916:931}"," ", ," {1841:1853}",7 {1021:1036}",’ {44:59}",7 {22:31}',
T L1 (792:800}, " {1531 1546},

ves,’ {541:556}", {665:680}’," {1151:1166}’," {1573:1588}7,7 {452:467}",7 7,7 {97:109}",7 ",/ 7 ,"
1,7 {1459:1474}",7 {1013:1028}",’ {1335:1350}",7’, {1506:1518}",’ {861:876}’," {1540:1555}", " {
TT5:T8AY T, T {T22: 73T

ves,’ {740:755}7,7 {353:368}/," {14:29}’,/ {1783:1798}/,"/,"/," {162:174}'," {325:336}',""'," {70
8:723}7,7 {635:650}’,7 {1369:1384}",7 {890:905}’,’ {559:574}’,7 {693:705}",7 {1687:1702}",7 {175
9:1774}7,77,77,77,7{618:633}7,77,77,77,7{498:512}7,77,77
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yes,’ {1800:1815}", {1294:1309}",’ {1560:1575}/,7 (814:829}"," ", {262:277}',’ (1855:1867}"," {
1274:1285}",7,7, 7 {906:921}"," {1634:1649}"," ", {1541:1556}",""," ", {1039:1054}"," ", {131
T:1325)7, 70,07, 1 .0 (8021814}, 77,07, 1 7,7 (1258:1273)"
yes,’ {1673:1688}’, {760:775},7 {2008:2023}",7 {7:22}/,7 {222:237}",7", 7,7 {1781:1792}"," {14
51:1466}7,7 (347:362)7,7 7,7 (1888:1903) 7, 7,7 (556:571}7, (305:317}" 7 (489:504}7 77,771,717, 1+
S TAS3LISA6Y
yes,’ (1714:1729)7,7 (2014:2029}7 7 (1454:1469}7 77,77, 7 {1553:1568)7,7 {50:62) 7,/ {1754:1765}
,77,7{612:627}7,77,7{227:242}7,77,77,7{779:791}7,7{1499:1514}7,77,77,77,77,77,77,77,77,77
4
yes,’ {1773:1788}’, {786:801}",” {1980:1995}",/",” {566:581}",’ {1280:1295}',"",’ {196:207}',’
{982:997}7,7{94:109},7 (277:292}7,7 ",/ {329:344}" 77,77,/ {965:980}",7/,7 {590:599}",77,7" '
LT, 149455097, 77, 77,7 {1671:1686}7
no,’ {1786:1801}", {447:462}",’ {57:72}",’ {2011:2026}’,’ {1042:1057},* (1493:1508}","/,* {109
7:1108}7,7 {1115:1130}", ", {408:423}’,’ {1228:1243}",” {1058:1073}", ", {508:520}",""," {162
2:1637}7,77,77,77,77,77,77,77,7{121:135}7,77,77
no,’ {1346:1361}",/ {1715:1730}", {301:316}’,"/,7 (110:125}",7 {721:736}",’/,’ (1223:1234}" " {
76:91)7,77,7 (448:463}7, (421:436} 7 (126:141}7 77,77, 17,7 (903:918}" 77,7, 17,77 7 {1012:10
28} 1,
no,’ 7,7 {1914:1929}7,7 (1186:1201)7, 77,/ {1283:1298)7,7 {1210:1225}", 77,7 {1271:1282}7, 7 {182:1
97}7,77,7{77:92}",7{1053:1068}",/ {123:138}/,7/,7 {1977:1989}/,7’," {1765:1780}/,7’,’ {1886:1
8943}7,77,7 {775:790}", 7/, {1652:1664}" 7/, {5:19}","" '
no, ’ {1990:2005}7, 7 (16261641}, (1431:1446}7, 7,7 (1079:1094) ", (841:856}" 77,/ {1935:1946)
7,7 {873:888},7,7{1049:1064}",7 {1340:1355}",7 {93L:946)7, 77, "7, /7 /" /1 11 17 1{92:107}",
77,77,77,77,7{682:697}7,77
no,’ {107:122}7,7 {192:207}",7 {429:444}"," 7,7 {1829:1844}",7 {1756:1771}"," ", {279:290}",7 {19
03191817, 77,7 (1599:1614)7, 77,7 (1853:1868)7, 77,77, 77,17 17,07 10,01 10 170 17 1(213:227)",
4
no,’ {1655:1670}",/ {1557:1572}",7 ",/ {1713:1728}", {842:857}",’ {769:784}"," ", {1831:1842}",
{916:931}7,{1272:1287}"," {204:219}",7 {708:723}","","’,’ {1684:1696}","’, {1800:1815}",""
L {6381646)7, 77,0, 0,0, P {1626:1641}7, 7 {227:242) 7
no,’ {1166:1181}7,7 (1279:1294), 7 {285:300}7 77, {462:477} 77,7 {1607:1619}",7 (865:876}7, " {
536:551}7,77,7{1047:1062}",” {837:852}/,7/,7 {1202:1217}",7 (1360:1372}" 7,7 (921:936}","",’
{1453:1461), 77, /0, rr rr rr rr 1 4992:207} "7
no,’ {102:117}",’ {1940:1955}", " {311:326}",/ {471:486}',’ {579:594}","", ", {1650:1661}",’ {10
32:1047}7,7 7,7 {1293:1308}", 77,7 {338:353}/, 77, /7, ",/ {1329:1344)7, 77,7/ 1/ 10 00 00 00,
rr rr
’
no,’ {1420:1435}",7 {248:263},7 (545:560}", ",/ {1159:1174}",7 {1032:1047}"," ", {24:35}","",
£, (1778:1793)7, 7 (112011135} ,7 7,77 17,7 (811:826)7 7 (L703:1718)7, 77,77, 77,1717 17 17,1 (1
987:2001}7,7 7,7
no,’ (224:239}, 7 (1604:1619) 7,7 {126:141}7, 77,7 (827:842}7,77,7 7,7 (1267:1278}" 77,77, 7 {360:3
75}7,7{624:639}7,77,77,77,77,77,77,77,77 7{34:49}7,7{1715:1727}7,77,7{293:308}7,77,77,77
no,’ {693:708}",’ {1893:1908},* (844:859}",",7",*/ '/, 7 {1197:1208}","," ', (1499:1514}" "'
LT T (325333) 0,1 101 (351536317, 10,01 0
no, ’ {1437:1452}7 7 (1466:1481}", 7 (905:920)7, 7, (359:374}7, 77, {1486:1498} ",/ {221:232}" 7"
,7{1213:1228}7,7 {1594:1609}", {25:40}7,/ {1765:1780}", 77,77, /", /" 7 {1108:1117}",7" '/ '/ 7

v rr rrorrorr
ror

0,7 {302:317}"," {1641:1656}",7 {1667:1682}", ", /", "/, "7, 7 {68:79}","7,/",7{34:49}",/ {512:52
T}y, {1932:1947}", 7 (388403}, /1, 00 r 00 0 00 T (19491961},

no,’ {1091:1106}","{1436:1451}","{98:113}","","","","","{1659:1670}"," {1750:1765}",""," {13
71:1386})7 77,7/, "/, " {1721:1733}","","'", ’{426 435}’,”,”,”,’{1645 1657}, 7,0, 0
no,’ {1491:1506}’,7 {1242:1257}",7 {774:789}", {1303:1318}’,7 {1560:1575}","/,'",7 {99:110}","
{1185:1200}","","{1695:1710}","",7{719:734}","{1628:1643}","","","{1882: 1897}’ rrLrr
’,”,”,”,’{1534:1548}’,’{385:400}’,”

no,’ {1189:1204}",”{1796:1811}"," {567:582}","{1369:1384}",’{375:390}","","","{1503:1514}",
" {1853:1868}7, 7,7 {958:073 ), /7, 1,0 I I A A ad g g ’{676 690}’ I
no,’ {1099:1114}7,7",7" {630:645}7,77,7 {1647:1662}',"",7",7 {1805: 1816}’ ' ”,’{601.616}’,’{
313:328}’,”,”,”,”,’{2021:2036}’,”,”,”,’{176:191}’,’{34.46}’,’{473.485}’,”,”,”,’

’

no, ' 7, " {634:649)7 77,7, 0, T 00 1 (4032414} ,7 7,77, " {1465:1480},7 {130:145}", {1248:1263}

roorr rr rr rrorr o rrorro o rrorrorrorrorrorir
2 A A e S e

no,’ {213:228}7,77,7{20:35}/,7 {1932:1947}/,7 7,77, 7/, 7 {1329:1340}/,7",77, " {81:96}","7,""," {
1884:1899}7,77,77,7{1305:1320}7,77,77,77,77,77,77,77,77,7{338:353}7, r
no,’ {466:481}7,7 {1933:1948}7,’ {810:825}",7 {1981:1996}",7 {82:97}7,7",7 ",/ {1773:1784}"," {71
9734}! rr ll’l{1721:1736}!,!!,!!,!! rr l{193 208}! rr ll’ll’ll’ll’ll’ll’ll’ll’ll
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4.CBOLLNeural

o0 o0 o0 A° A o O A0 A A A O A A A A O A OO A° d° o

0 o0 o0 A0 A A O A% A AC A A A A A A A A A A A A O A A A A S A0 A A° A A A A A° A° A A OO o o

o

CBOLLNeural (whole)

Contains the following promoter regions

(they appear as data instances

of appearance from the first to the last data instance

Expressed in:

.gsa-1 4.5e-46 2010

.rgs—-1 1.7e-32 2040
.Snt-1 2.8e-31 2040

.syd-2 1.2e-20 2040
.eat-4 3.2e-20 2040
.sng-1 5.8e-18 1920
.snb-1 7.3e-16 1998

W Jo U b WN

= = )
w N o

.che-3 2.7e-14 2040

e
(SN

.aex—-1 6.2e-13 2040

e e
O 0 J o

Not Expressed in:

F44B9.2 1.1le-25 2056
osm-3 1.2e-17 1983
F07C3.4 1.5e-13 2040
unc-68 3.3e-12 2105
gpa-14 9.7e-09 2040
T28B4.1 1.2e-08 2040
tax—-4 2.3e-08 2040
unc-97 3.3e-07 2040
gpa-15 1.5e-05 2037
ncs-1 1.6e-05 2042
F10F2.1 0.00099 2014
odr-10 0.13 2036

.F25B3.3 1.3e-34 2039

.unc-119 1.5e-29 2040
.unc—-115 1.3e-24 2024

.C32E8.7 4.5e-15 2039
.eat-16 5.4e-15 2040

.egl-10 2.4e-13 2000

.C06G1.4 6.9e-13 2100
.C41G11.3 1.1le—-12 2043
.B0272.2 2.2e-11 2013
.C01C4.1 9.8e-08 2045

MOTIF WIDTH BEST POSSIBLE MATCH

1 15 GAAGAGAGAGAGAGA
2 15 CTCTTCCTCTTICTTC
6 15 CGAATCTGGTTGGAA
7 14 TTATCTCGGTTTCT
8 15 ATTTTATCAGTTGAC
9 15 GAACCGAGATAATTG
12 15 GTTTTCCAGAAAAAT
13 15 TGGAAAATTGAAAAA
14 15 GGCCTTCTATTAGAG
15 15 CTCTAATAGAAGGCC
16 12 CCGCTCTCCGCT
17 15 ATTAGGGGGTGCAAA
18 15 TTGTCAACTAAAAAA
19 12 CCCACCCATTCC
20 12 GCGCGGGGCGGC
21 15 GAGGCACCGGTGCCC
22 15 GAAAAGTTTTGAGAG
24 15 ATGAGTGTGTGTGCG
25 15 TGTACCCCCGAATTG
26 15 TCCCGTCGCGACGTC
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in order



o

27 15 CATTTTCATTTCATC

% 28 15 GTTCATCATAATATC
% 29 11 CCCGGCGACCG
% 30 15 CCACGGGGCGAGAAA

o

@relation ’CBOLLNeural-Final’

@attribute CBOLLNeural {yes,no}
@attribute M1 string
@attribute M2 string
@attribute M6 string
@attribute M7 string
@attribute M8 string
@attribute M9 string
@attribute M12 string
@attribute M13 string
@attribute M14 string
@attribute M15 string
@attribute M16 string
@attribute M17 string
@attribute M18 string
@attribute M19 string
@attribute M20 string
@attribute M21 string
@attribute M22 string
@attribute M24 string
@attribute M25 string
@attribute M26 string
@attribute M27 string
@attribute M28 string
@attribute M29 string
@attribute M30 string

@data

ves,’ {465:480}7,7 {282:297}/,7 {219:234}",/ {1017:1031}", {1330:1345}",7 {1367:1382}",7 {1652:
1667}7,7 {1710:1725},7 {1270:1285},7 {978:993}’,/ {1408:1420}",’’,” {1519:1534}’,’ {108:120}"
,’{124:136}",7 {1392:1407}",7 {861:876}",/ {319:334}7,7",7 {341:356}"," {263:278}’," {1496:1511
b1, 00,7 {738:753)7

ves,’ {198:213}",{333:348}/,7",7{1010:1024}",’ {1080:1095}",7 {1116:1131}’,7 (832:847}',' {66
2:677}7,77,7" {1493:1508}7," {634:646}",77,’ {1042:1057}"," 7,7 {1657:1669}","",7 {572:587}","",
rr, T 1 (862:877},7 {1059:1074}7,7 7,7 {431:446}’

ves,’ {1933:1948}",7 {1556:1571}/,7 ", /7, "/, 7 {917:932}", {597:612}’,7 {1300:1315}",’ {425:440}
© L1 {769:784}7, 7,77, {(842:857}7,7 {152:164}",7 {947:959}7,7 {316:331}’,7",/ {1271:1286}",'","
{1771:1786}", {1887:1902}" 77,7/ ,""

ves,’ {1388:1403}",’ {1348:1363}’,’ {1275:1290}",7 {78:92}/,7 {516:531}’,’ {185:200}’,’ {1559:15
74}, (784:799}7,7 {738:753}7,7 {T2L1:736}7, 7",  {411:426}7, 7 {110:125}7 77,77 0 00, rr 0 0,
T T{127:142)7 00,0

ves,’ {507:522}7, " {471:486}’,7",7 {1048:1062}",7 {1110:1125}",77, {180:195}/,7",7 {1185:1200}
1,7 {(841:856}7,7 {1847:1859}7,7 {95:110}",’ {1079:1094}",’7,"",7 {1824:1839}",7 ",/ {2011:2026}"
L7, T 7261741}, {930:945}7 7,17

ves,’ {1109:1124}",7 {1875:1890}",’ {1293:1308}",’ {430:444}’,’ {500:515}’,7 {537:552}",7 {1712
1727} ,7 {681:696}7,77," ", {1412:1424}",7 7,/ {(462:477}7,7 {113:125}",7 {1194:1206}",7 {1209:12
24}’ ,7{28:43}",7 {1780:1795}/,7",77," {231:246}",7 {813:828}",77,""'

ves,’ {722:737}",7 {263:278}",7 7,77, 77,7 {829:844}",’ {123:138}7,7 {1258:1273}","",7 ", {692:70
4}7,7{621:636}7,"",'7," {1326:1338}7,",7{1923:1938},"",7 {596:611}","," {1596:1611}",’ {88
9:904}7,7 7,77

yes,’ {1761:1776}’,7 {1970:1985},7 7,7 {507:521}7,7 {1103:1118}’,” {1031:1046}’,’ {1475:1490}",
1 {487:502}",77,""," {1381:1393}’,7",7 {1066:1081}",7",’ {1265:1277}",/7,"","", "7, 7 {1898:1913
}7, 7 {1333:1348}7, " {337:352}/,"",""

ves,’ {1760:1775},7 {1104:1119},7 7,7 {1003:1017}",’ {373:388}7,",7 {404:419}",7 {35:50}","",
rrLrr (7441759}, {1211:1226}7,7 {1597:1609}7,7 ", 77,77, 7 {1304:1319}7,7 {792:807}",7 ", {499
:514}7,77,77,77

ves,’ {133:148}7, 7 {1891:1906}",7,7" {1712:1726}7,"",7 {1310:1325},7 ",/ {1871:1886}",77,"",""
L7, T{314:326)7, 7 {1676:1688}7, 7 {1781:1796}7, /1,1, 00,10, 10 1 {1544:1555}7, 7"
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yes,’’,’{1014:1029}", {1674:1689}",’ {981:995}", {815:830}",’ {1345:1360}", " {1764:1779}", " {
1182:1197}7,7{1939:1954}",77,7/, 7 {518:533}’,7 (1969:1984}",7 {1702:1714}"," {693:705}" 7",
,77,77,77,77,77,77,7{999:1014}7

yes,’{1670:1685},’ {761:776}","’,7 {605:619}"," {1516:1531},7/,’ {1233:1248}’," {2009:2024}"
L7, (164451656}, 7, 7,07,  (854:866)7, 77,77, (4202435}, 0 00 00 00 00

yes,’ {1470:1485}", {1486:1501}","7,7/, '/, ',/ {1958:1973}"," {761:776}","",""," ", "', '/, ' {13
26:1338}7,77,77,7{29:44} 7/, "7, 77,7 {1637:1652}" 77,77, "

yes,’ {700:715}",7 {480:495}7 7/, /", /7, "7, "/ " {302:317}",""," {611:626}", {1013:1025}"," {108
3:1098)7,77,77,7", 77,7 {1028:1043}","",’",’ {272:287}’,7 {418:433}","",7 {1216:1227}"," {230:2
453"

yes,’{1799:1814}", {1093:1108}",’ {169:184}",7", {1996:2011}","/,7 {798:813}’," (6:21}","",’
T, 77,7 {420:435)7,7{475:490}7,7{933:945}/, 7/, 77,77, " (144:159}", 77,70, 1 {1732:1747}7 7,0,
{1203:1218}"

yes,’’,’{359:374}’," {1311:1326}",’ {690:704}’," {535:550}",’ {153:168}",’ (409:424}",’ {1979:1
994)7, 77,77, 1 {927:939} 7/, 17,17, 00,00, 1 {1461:1476}7,7 {1084:1099},7 {1435:1450}",7 (780:79
5}7,7{259:274}"," 7, , " {901:916}"

yes,’{303:318}’, {1643:1658}’,’ {1008:1023}", {1568:1582}", {1395:1410}",’ {1698:1713}"," {1
65:180}7,{78:93},7",7",""," {1945:1960}",7 ",/ {289:301}’,’ {387:399}",""," {975:990}"," {877
:892}7,7," {1443:1458}/ 7,7,/ {332:343}","'

yes,’ {1318:1333}’,7{239:254}",7 {1386:1401}",” {1720:1734}",{289:304}",77," {756:771}"," {14
89:1504}7,"7,77, "/, 7",/ {1244:1259}"," 7,7 (1884:1896}",/ {539:554}",7 {1409:1424}",7",""," {21
2:227)7, 00,0

yes,’{1755:1770}",7 {396:411}" 77,7 {50:64}" 77,7/, " {91:106}", " {18:33}",7"," ", "7, "/, "7, /{90
2:914}7,77,77,7{1561:1576}7,7{67:82}7,77,77,77,77,77,77

no,’ {1474:1489}",7 {1370:1385}", ",/ {303:317}",’ {373:388}", {410:425})",’ {752:767}", {912:9
27}7,7{1960:1975}",7 {1627:1642}",7",’", {335:350},7",7",7 {580:595}/,7 {611:626}","","" "'
, 77,7 (352:367) 70,

no,’ {170:185}",’ {191:206}",7,7 {1902:1916}",’ {1831:1846}’,/ {1794:1809}’,” {1507:1522}"," {1
16:131}7,77,7{1756:1771}",” {1544:1556}",7 {1005:1020)", " {1869:1884}/ 77, 77,77 /7 /71 171 /(2
28:243})7,77,7{1852:1867}","",""

no,’’,’ {582:597},’",’ {168:182},7,7 {275:290}",7/,7 {913:928}’," {313:328}", {127:142}","'
, 77,7 {240:255}7, 7,7, " 7,7 (1378:1393}" 7, ', " {1632:1647}",’ {503:518}", {223:238}"," """
no,’ {2080:2095}",7 {952:967}"," ", {1669:1683}’,"",’", {2036:2051}",’ {1650:1665}",/ {1553:15
68)7, 77,77, 7,7 {237:252)7,7 {204:216}7, 7,17, 17 P {1T54:1T69}" 11,1, 00

no,’ {707:722}",7 {1750:1765}",7 7,7, "/, '/ '/ 7 {546:561}’,7 {1032:1047}",” {1303:1318}"," ", {
1568:1583}",7 7,7 {1630:1642}",77,7/, 7 {1214:1229}",7 {831:846}"," ", ",/ {1244:1259}",77,7" '"
no,’ {1840:1855}",/ {1773:1788}", ",/ , 7 {564:579}"," 7,7 {274:289}",7 {1399:1414}" 7,7 {1280:1
295)7,77,77, 7 {1198:1213}",""," ", {361:376}"," ", {1547:1562)}’,"",’ {495:510}","’,’ {1316:133
1}’!”!”
no,’’,’’,’{1981:1996},’ {1251:1265}",’ {1285:1300}", {183:198}’,"’,’ {1185:1200}",’ {1210:12
25)7, 77,07, (1475162}, 7 {927:939)7, 77,77,/ {1049:1064}7, 7,7 {9:24}" 77,77, " {1300:1315}’

rrorr
’ ’

no,’ {1655:1670}",7 {958:973}7,",7 {883:897}",/7,7 {1366:1381}7," {1334:1349}7,7",77,/{52:67}
1,7 (835:847}7, 7,7 {327:342}7,77, 77,77, {1168:1183}’,"/,7 {1035:1050}’,"",’ {1764:1779}","",

rrorr
’

no,’ {1598:1613}’,7 {1473:1488}","’,'{362:376}","","7,7{1732:1747}",7 {1365:1380}","",7","",
T 1175621771}, 0,0, 0, T, 1 (484:499}7 ,7 {1941:1956}7,7 ", {1057:1072}’,7 {535:550}","",""
no,’ {1100:1115}’,7 {1352:1367}’," 7,7 {1254:1268}’,7/,7{1727:1742}",7 {1910:1925}’,’ {671:686}
PN rr r 0132721339, 00,0 0 1 (1409:1424) 77,77, {1013:1028}" 7,00

no,’ {1433:1448}’,7 {635:650}","7,7{975:989}",7 {319:334}7 /7,77, 7 {16:31}7 77,77 /7 11 1{363
2378, {1852 186T

no, ", 811826, 0,0, 1 {82297, {1452 1464, 0,0, {939
:954}7,77,7{1250:1265}"," {154:169}7,7","’

5. CBPanNeural

o

o

% CBPPanNeural

% Contains the following promoter regions (they appear as data instances in order
% of appearance from the first to the last data instance

% Expressed in:

% gsa-1l 5.3e-41 2010

% F25B3.3 1.3e-31 2039
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A o0 o0 A A O 0 A0 A A A O A0 A AC A 0 A0 A A A A A A A A A A A A A A A A O A A A A A A A A A A A A A A A A% A A A A A A A° A A A A o o

o

unc-119 3.4e-29 2040
rgs—-1 4.2e-27 2040
Snt-1 4.9e-27 2040
unc-115 9e-27 2024
egl-10 2.6e-23 2000
sng-1 2.7e-18 1920
eat-16 3.2e-18 2040
syd-2 6.4e-18 2040
snb-1 7.5e-15 1998
C41G11.3 le-13 2043
C06G1.4 1.6e-13 2100
aex-1 1.6e-11 2040
B0272.2 9.1le-11 2013
C32E8.7 7.8e-09 2039
CO01C4.1 1.1e-08 2045

NotExpressed in:

F44B9.2 1le-21 2056
osm-3 1.3e-18 1983
eat-4 1.9e-12 2040
F07C3.4 9.1e-12 2040

unc-68 9.3e-08 2105
gpa—-15 5.2e-07 2037
tax—-4 5.8e-07 2040
T28B4.1 9.9e-07 2040
unc-97 1.2e-06 2040
gpa-14 3.7e-06 2040
che-3 0.0003 2040
F10F2.1 0.00052 2014
ncs-1 0.024 2042
odr-10 0.94 2036

MOTIF WIDTH BEST POSSIBLE MATCH
1 15 CTCTCCCTCTTICTTC
2 15 GAAGAAAGAGAGAGA
5 15 CGAATCTGGTTGGAA
6 15 ATTTTATCAGTTGAC
7 15 GTGGGCTTCTATTAG

9 15 CGAGATAATTGAGCT
12 12 TTTTTGATTTTT
13 14 TTATCCCAGTTTICT
14 15 CTCTAATAGAAGGCC
15 15 ATTCGGGGGTGCAAA
16 15 TTGTCCACTAATAAA
17 12 ACCGCTCTCCGC
18 15 AGCCGAGCGGCACAC
19 15 GTTTATCATAATATC
20 12 GTGCGGGGGGCG
21 15 TACTTGTTCCCTTGC
22 11 CCCGGCGACCG
23 15 CCCCTCTCTACCCCC
24 15 CCGGGATACCCGAAC
25 12 ACAAGTTTTCGG
26 15 CTCACCCCCAGACCC
27 12 CCCTICTTCTCIC
28 15 TCCTTTTGACACCTC
29 12 GGCACCGGTGCC
30 12 GGGTTACTGTAG

@relation ’CBPPanNeural-Final’
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@attribute CBPPanNeuralExpr {yes,no}
@attribute M1 string
@attribute M2 string
@attribute M5 string
@attribute M6 string
@attribute M7 string
@attribute M9 string
@attribute M12 string
@attribute M13 string
@attribute M14 string
@attribute M15 string
@attribute M16 string
@attribute M17 string
@attribute M18 string
@attribute M19 string
@attribute M20 string
@attribute M21 string
@attribute M22 string
@attribute M23 string
@attribute M24 string
@attribute M25 string
@attribute M26 string
@attribute M27 string
@attribute M28 string
@attribute M29 string
@attribute M30 string

@data

yes,’ {282:297}’,7 {501:516}",{219:234}’,’ {1517:1532}",” {1268:1283}", {1558:1573}", {1535:

1547}7,7{1017:1031}",’ {1064:1079}",7”,’ {1479:1494}",7 {1407:1419}", {387:402},’ {1496:1511

}7,7{113:125}7,77,7 7,77, 7 {1841:1856}’, {1649:1661}",’ {169:184}",/ {1799:1811}",’ {808:823}’

,7{1394:1406}",""

yes,’ {333:348}’,7{198:213}’,*,{1080:1095}", {1143:1158}’,’ {1003:1018}",* (1608:1620}"," {

1534:1548}",/{1493:1508}",” ",/ {1042:1057}",” ",/ {115:130}’,’ {1059:1074}",* (1657:1669}"," ",

7,77, 7 (633:648}7,7 {1229:1241}7,7{2009:2024}7, 7,7 {1964:1979}",7 ", "

yes,’ {471:486}’,7 {531:546}’,7,/ {1110:1125}", {1714:1729}"," ', {1128:1140}",’ (875:889}",’

{841:856}7,’{95:110},7 (1079:1094}",7",* (422:437}*,7 {930:945}, "/, "7, ", " {664:679}" "’ '

965:977}",77," {568:580}",7 7,7/, "'

yes,’ {1556:1571}", {1209:1224}","","/, 7 {423:438}’," {921:936}", {898:910}","",’ {769:784}",

17,7 {842:857}7,7 {1706:1718}",7 7", ",  {380:395},7", /", "7, " (287:299}", ", {1684:1696}" "

’,7{318:330}",""

yes,’ {1348:1363}’,{1388:1403}"," {1275:1290}",’ {516:531}",/ {221:236}","",’ {466:478}"," {78

:92}7,7{721:736},7/,7 (110:125}",7 7,7, 7 {127:142}"," {583:595}",7/ 7/, 77,7 (1950:1965}",' ",

" {1522:1537}",7"," {864:879}" 7", "

yes,’ {1875:1890}", {1109:1124}"," ", {500:515},7 {601:616}’, {541:556}",” {449:461}"," {430:

4443)7,77, 77,1 {462:477}7, 7 (1411:1423}7, 77,7, {1192:1204}","7,"","*,’ {827:842}",’ {741:753}

7,77, 7{1348:1360}", {153:168}',"",’ {630:642}"

yes,’ {1799:1814}",7 {861:876},"/ 7/, {260:275}",/ {307:322},7 {1644:1656}",’ (749:763}",’ {6

11:626}7,7{1083:1098}",7,7{1012:1024}","7,"",’", 7 {1541:1556}", {1216:1227}"," ", {1692:17

07}",7{1029:1041}",7",7 {218:230}",’ {949:964}",’,” {1928:1940}"

yes,’ {1798:1813}’, {1753:1768}"," ', {373:388}",’ {1135:1150}", ",/ {571:583}’,’ {1003:1017}"

;7 11635:1650}7, 7 {794:809}", {1211:1226}",7/,"", 7 {970:985}","/, "/, /' ' {748:763}",’ {811:826

}7,71323:335})7,7(1367:1382}7 77,7 (22:37}7,"",""

yes,’ {761:776}’,7 {1689:1704}",7,7 {1516:1531}",” {430:445}",’ {1040:1055},* (1783:1795}", "'

S, T (1645:1657) 7,7 {112:127)7, 7 {744:759} 7,7 {356:368}",’ {1428:1443},"",’ {529:544}",

LT, (4031415}, 77,7 {74:86)7,7 (34:46)

yes,’ {263:278},7 (722:737}7,7",7 ", 7 {1643:1658}",/ ",/ {1205:1217}",7", 7/, " {621:636}',""," {6

91:703}","’,’ {889:904},",’{1985:2000},","/,* (1443:1458}",7 {911:923}’, {505:520}","" "
4

yes,’{1894:1909}", {133:148}’,7{1050:1065},7",7"," ", {1497:1509}",7 {739:753}","","',’ {88

4:899}’,7/,7{321:336}",""," {657:669}", ", {1544:1555}" 7,/ {63:78}",7 {836:848}","",’ {1781

1793}, 7 {412:427}7,7 ",

yes,’ {1643:1658}", {303:318}",7 {1008:1023}",” {1216:1231}",/ {1532:1547}"," ",/ {42:54}"," {15

53:1567},77,"," ", {1842:1854}",/ {388:403}","/,",’ {880:895}"," (332:343}",7","," {74:86}

7,77, 7 {1437:1449)7,7 {1341:1356)7,7",""

68



ves,’ {835:850}’,7 {90:105}"," {1311:1326}",’ {535:550}",7 {2060:2075}",7,7 {69:8L1}","","",'",
1 {1595:1610}",7 {928:940}",7 ", 7", 7", "/, "1 11963:978}",’ {794:809}",’ {219:231}", ’{898 913y
7{1022:1034}7,7{978:993}",7 7,7’

ves,’ {1093:1108}",7 {1232:1247}",7 {169:184}",/ {1996:2011}",’7," ", {1519:1531}",7 ", /7, "7, " {
475:490}7,77,7",7{981:996}",7",7 {1304:1319}7,/7,77,/{25:40}",7 {1603:1615}","7,/ {1115:1127
b7, 7 {1392: 1407}' v
yes,’{239.254}’,’{1318:1333}’,”,’{289:304}’,”,”,’{1207:1219}’,”,”,”,’{1244:1259}’,’
*, 7 {786:801}7,""," {1882:1894}",7 {219:234}" /7,77 ,7 ",/ {1410:1422}",/ {810:825}7,7 /7,77, /7,7 {
719:731}"

ves,’ {1014:1029}’,’ {1242:1257}’,’ {1674:1689}/,’ {1110:1125}",’",’",’ {1804:1816}’,’ {1343:13
57}, 70, 7, T {1969:1984}7 1, T 0 0t rr 10182721842} ,7 {778:790}7, 7/, , 7 {572:587}"
.7, {655:667}’

ves,’ {396:411}7," {447:462}",77 77,7 {1703:1718}"," {1781:1796}",’ {586:598}",7 {50:64}","",""'
LI 01870 1885}’ 1 {849:864}," {22:34}" 77,77, 1 {5:20}",""," {1467:1479}"
no,’{1370:1385}’,’{474.489}’,”,’{373:388}’,’{503.518}’,’{414.429}’,’{1554:1566}’,’{303:3
17}7,7{1960:1975}",/ {811:826}7," " ,7 ", /7,7 {352:367}",7"," 7,7/, 77,77, 7{913:925}",77,7 {588:6
00}/, {1194:1209}","",""
no,’{191.206}’,’{1218.1233}’,”,’{1831:1846}’,”,’{1908:1923}’,’{1816:1828}’,’{1704:1718}
1,7 {1756:1771}",’ {1005:1020}",’ {1869:1884}",7’,"/,7 {1852:1867}/,"",7 7,7/, 7", /7, 7 {1300:131
2}7,7{76:91}",7 {370:382}7,7 {1423:1438}","",""

no,’ {1489:1504}’,’ {1970:1985}’,"/,7 {1103:1118}","’,7 {1027:1042}",’ {1286:1298}",’ {507:521}
*,rr L1 1406:421})",7 {1066:1081}7, 77,17, 1 {337:352}7, 07,0, 00,00 0 1 (320:332}7, 77,7 {1949:196
1}7,7{110:125}7,7 7,7’
no,’’,"{1930:1945}",7/,7{202:217}",’7," {161:176}"," {1774:1786}",7 {273:287}",/ {313:328}","
1,71 {240:255}7, 77,7 {1348:1363}",7 {223:238}",/ {1241:1253}",/7,"", 7", /7,7 {1379:1391}",""," {5
85:597}7, 7 {964:979}7,77," {617:629}’

no,’ {952:967}’,’ {2080:2095}",’ {466:481}",7",’ ", {1110:1125}’,"7,"7,’ {1553:1568}"," ", {237
:252}7,77,77,7{894:909}7,rr,rr,rr,rr,rr,r{1782:1794}7,77,7{1970:1982}7,77,77,77

no,’ {1611:1626}",7 {1:16}",77,"",7 {302:317}",’ {163:178}’," {1639:1651}’," {1266:1280}",""," {
1130:1145}7, 7 {1756:1771}/," ', "', " {793:808}/,"/,"/, "/, " {715:730}'," ", {626:638}',""," {523:
535}7,7{1427:1442}",'7,7 {1739:1751}'

no,’’,"’,"{926:941}",’ {1285:1300}", {219:234}7,7 {187:202}",’ {1270:1282}",7 {76:90}",’ {1210
:1225}7,7 {705:720}",7 {850:865}’,"/,7 {1704:1719}’,7 {1300:1315}7,"",77, 77,7/, 77,7 {1051:1063

}r rrorrorrorrorr
’ ’ ’

,’{1773:1788}’,’{1819:1834}’,”,’{45:60}’,”,”,’{237:249}’,”,’{1280:1295}’,”,’{1198:
1213}’,”,”,’{1316:1331}’,”,”,”,”,’{123:138}’,’{1353:1365}’,”,’{425:437}’,”,”,”
no,’ {958:973}7,7 {1655:1670}",",7 {1130:1145}/,7 7,7 {1181:1196}’,7 {930:942}",’ {1676:1690}",
" {52:67}",'7," {324:339}7,/{725:737}7,/ {1506:1521 ),/ 1/ 00 00 00 00 1 0702:714} ", {819
1831}, 0,
no,’ {706: 721}' " {1820:1835}7,7",7 {1601:1616}",7",""," {469:481}’,7 {1281:1295}",7 {1032:1047
}7, 7 {662:677},7 {1159:1174}",7 7,77, " {314:329}",7 7, /7, 77,77 17 1 (538:550}",’"," {1697:1709}
1,7 1{1789:1804}7 77,17
no,’{1473 1488}, 77,7, 70,7, 1 {9:24}7,7 {110:122}",7 {1307:1321}7,77,"7, " {1718:1733}","",""'
L ' {1216+ 1231}’,’{30:42}’,”,”,’{1367:1382}’,”,’{1012:1024}’
no,’ {635:650}7,7 {1223:1238}7,7,7 {1202:1217}",7 7,77, {288:300}",7 {975:989}", /7, 7/, 77 17 7
P rr 1 11918:1933}7, 07,07, 17,1 {939:951}7, /7,77, 1 {557:572}7 77,/ {1169:1181}"
no,’{lO40.1055}’ 1 {1352: 1367}’,”,”,” " ’{1629 1641}’ ,77,7", 7", 7 {487:502}",7 {1860:1872
}rL T, T, T, 1 {2025:2040)7, 77 ",",'{1492.1504}',",",'{1990:2005}',",'{1312:1324}'
no,’{466:481}’,’{1871.1886}’,’{220:235}’,’{1628:1643}’,”,”,’{1404:1416}’,’{721:735}’,”
,77,7{82:97}7,77,77,7{154:169}7,77,77,77,77,77,7{401:413}7,77,77,77,77,77

6. CElegansPanNeural

o

o

CEPanNeural
Contains the following promoter regions (they appear as data instances in order
of appearance from the first to the last data instance

o0 o0 o0 o° d° o

o

goa-1l 3.5e-29 9717 Expression:yes
C06G1l.4 1.4e-28 3258 Expression:yes
C41G11.3 1.5e-23 11702 Expression:yes
unc-11 1.1e-19 1918 Expression:yes

o° oo

o
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o

C04E12.7 1.1e-19 6439 Expression:yes
unc-64 3.2e-19 5002 Expression:yes
eat-16 4.3e-18 4721 Expression:yes
Y105C5B.19 1.9e-17 5998 Expression:yes
aex-3 5.5e-15 1320 Expression:yes
F25B3.3 8.8e-15 4019 Expression:yes

1

5

o o o o o

o

snb-1 1.2e-14 3329 Expression:yes
BO464.5 2.5e-13 6196 Expression:yes
syd-2 2.6e-13 6003 Expression:yes
unc-119 5.9e-13 3283 Expression:yes
egl-10 5.8e-12 11970 Expression:yes
unc-51 1.7e-11 3980 Expression:yes
nhr-74 1.1e-10 4548 Expression:no
C32E8.7 1.7e-10 1200 Expression:yes
jnk-1 1.9e-10 14208 Expression:yes
elg-10 2.8e-09 8943 Expression:no
rab-3 5.5e-09 3064 Expression:yes
rgs-1 6.8e-09 2400 Expression:yes
jkk-1 6.8e-09 3601 Expression:yes
F42A10.3 4.1e-08 6626 Expression:no
Snt-1 6.6e-08 6205 Expression:yes
unc-54 le-07 1894 Expression:no
gpa-14 1.2e-07 3000 Expression:no
osm-3 2.6e-07 1889 Expression:no
myo—-3 7.4e-07 3751 Expression:no
eat-4 1.6e-06 2340 Expression:no
tax-2a 2.4e-06 6409 Expression:no
T28B4.1 1.8e-05 5272 Expression:no
W05B10.4 2.8e-05 6020 Expression:no
sng-1 0.00024 4998 Expression:yes
unc-97 0.00032 2175 Expression:no
unc-112 0.00036 2947 Expression:no
nhr-89 0.00041 2010 Expression:no
tax-2c 0.00043 1129 Expression:no
gpa-3 0.00059 6001 Expression:no
tax-4 0.0012 17056 Expression:no
gpa—-15 0.0063 3000 Expression:no
che-3 0.0074 2600 Expression:no
Flp-6 0.008 2951 Expression:no
kin-8a 0.0081 5883 Expression:no
F54C9.7 0.014 4927 Expression:no
nhr-81 0.022 3269 Expression:no
Sra-9 0.027 4000 Expression:no
ncs—-1 0.03 3000 Expression:no
nhr-73 0.043 2536 Expression:no
nhr-82 0.061 3688 Expression:no
ceh-22 0.13 4000 Expression:no
Sra-7 0.15 7685 Expression:no
F44B9.2 0.17 1745 Expression:no
nhr-75 0.63 3421 Expression:no
F07C3.4 1.6 6956 Expression:no
nhr-72 2.1 3096 Expression:no
odr-10 2.2 1000 Expression:no

A0 o0 A° A A0 A0 O A A A A A0 A A A A A0 A A A A A0 A A A A A A A A A A OO A A A A O A A A A O o o o

o

@relation ’CEPanNeural-weka.filters.AttributeFilter—-R5,23’

@attribute Expression {yes,no}
@attribute M1 string
@attribute M2 string
@attribute M3 string
@attribute M5 string
@attribute M6 string
@attribute M7 string
@attribute M8 string
@attribute M9 string
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@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute
@attribute

@data

yes,’ {3462:

M10
M11
M12
M13
M14
M15
M16
M17
M18
M19
M20
M21
M23
M2 4
M25
M26
M27
M28
M29
M30

3478}, {8816:8832}

string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
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APPENDIX B —Rules part of the AllRules models (minsup=0.2,
minconf=0.2, cvd=0.5) for CBriggsae.

1.CBASENeural
1. M2 && M11 ==> CBASENeural=yes
M2 M11
cvd X 0.463
M2
mean X 852.0
sdev X 395.0

2. M8 §&& M10 ==> CBASENeural=yes

M8

cvd X
M8

mean X

sdev X

3. Ml && M13 ==> CBASENeural=yes

M1

cvd X
M1

mean X

sdev X

4. M3 && M29 ==> CBASENeural=yes

M3

cvd X
M3

mean X

sdev X

5. M9 && M16 ==> CBASENeural=yes

M9

cvd X
M9

mean X

sdev X

6. M1 && M17

M1

cvd X
M1

mean X

sdev X

7. M2 && M6

M2

cvd X
M2

mean X

sdev X

8. M3 && M20 ==> CBASENeural=yes

M3

cvd X
M3

mean X

sdev X

9. Ml12 g; M16 ==> CBASENeural=yes

M12
cvd X
M12

M10
0.481

634.0

305.0

M13

0.489

924.0

453.0

M29

0.465

945.0

440.0

M16

0.355

833.0
296.0

==> CBASENeural=yes

M17
0.458

850.0
390.0

> CBASENeural=yes

M6
0.284

844.0
240.0
M20
0.467
1103.0

515.0

M16
0.468

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

.6666667, Sup: 0.516129]

.75, Sup: 0.38709676]

.6923077, Sup: 0.29032257]

.78571427, Sup: 0.3548387]

.0, Sup: 0.32258064]

.5714286, Sup: 0.2580645]

0.5714286, Sup: 0.2580645]

.8, Sup: 0.2580645]

.0, Sup: 0.29032257]
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mean X 740.0

sdev X 347.0
2.CBASKNeural
1. Ml && M6 ==> CBASKNeural=yes

M1 M6

cvd X 0.453
M1

mean X 737.0

sdev X 334.0

2. M7 && M10 ==> CBASKNeural=yes

M7

cvd X
M7

mean X

sdev X

3. M1 g&& M9

M1

cvd X
M1

mean X

sdev X

4. M1 s& M11

M1

cvd X
M1

mean X

sdev X

5. M1 & M14

M1

cvd X
M1

mean X

sdev X

6. M7 && M13

M7

cvd X
M7

mean X

sdev X

7. M5 && M10

M5

cvd X
M5

mean X

sdev X

8. M5 && M19

M5

cvd X
M5

mean X

sdev X

M10
0.460

785.0
361.0

> CBASKNeural=yes

M9
0.448

742.0
333.0

==> CBASKNeural=yes

M11
0.431

945.0
407.0

==> CBASKNeural=yes

M14
0.376

879.0
331.0

==> CBASKNeural=yes

M13
0.465

694.0
323.0

==> CBASKNeural=yes

M10
0.452

1134.0
514.0

==> CBASKNeural=yes

M19
0.316

595.0
188.0

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

[Conf:

9. M5 && M10 && M19 ==> CBASKNeural=yes

M5

cvd X
M5

mean X

M10 M19
0.487 0.316

1046.0 595.0

0.6923077, Sup: 0.29032257]

0.8125, Sup: 0.41935483]

0.6666667, Sup: 0.32258064]

0.90909094, Sup: 0.32258064]

0.75, Sup: 0.29032257]

0.8666667, Sup: 0.41935483]

0.90909094, Sup: 0.32258064]

0.8888889, Sup: 0.2580645]

[Conf: 0.8888889, Sup: 0.2580645]
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sdev

cvd
M10

mean

sdev

10. M19_£& M21 ==> CBAé%Neural:yes

cvd
M19

mean

sdev

11. M21_£& M22 ==> CBASKNeural=yes

cvd
M21

mean

sdev

12. M2

cvd
M2

mean

sdev

13. Mll_g& M24 ==> CBASKNeural=yes

cvd
M11

mean

sdev

14. M1

cvd
M1

mean

sdev

15. M1

cvd
M1

mean

sdev

16. M6

cvd
M6

mean

sdev

17. M2

cvd
M2

mean

sdev

18. M14 && M21 ==> CBASKNeural=yes

cvd
M14
mean

X 510.0
X X
X X
X X

M19 M21

X 0.497
X 808.0
X 402.0

M21 M22

X 0.302
X 872.0
X 264.0

&& M19 ==> CBASKNeural=yes

M2 M19

X 0.488
X 868.0
X 424.0

M11 M2 4

X 0.474
X 972.0
X 461.0

&& M19 ==> CBASKNeural=yes

M1 M19

X 0.404
X 918.0
X 372.0

&& M27 ==> CBASKNeural=yes

M1 M27

X 0.434
X 798.0
X 347.0

&& M22 ==> CBASKNeural=yes

M6 M22

X 0.398
X 647.0
X 257.0

&& M14 ==> CBASKNeural=yes

M2 M14

X 0.488
X 806.0
X 394.0

M14 M21
X 0.334
X 1035.0

188.0
0.463

834.0
386.0

[Conf: 1.0, Sup: 0.41935483]

[Conf: 1.0, Sup:

0.32258064]

[Conf: 0.7777778, Sup: 0.4516129]

[Conf: 1.0, Sup: 0.2580645]

[Conf: 0.78571427, Sup: 0.3548387]

[Conf: 0.75, Sup: 0.29032257]

[Conf: 0.8888889, Sup: 0.2580645]

[Conf: 0.71428573, Sup: 0.32258064]

[Conf: 1.0, Sup: 0.29032257]
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sdev X 346.0

19. MZZ_E& M24 ==> CBASKNeural=yes [Conf: 1.0, Sup: 0.29032257]

M22 M2 4
cvd X 0.470
M22
mean X 753.0
sdev X 354.0
3.CBBodyWall
1. M5 && M17 ==> CBBodyWallExpr=no [Conf: 0.71428573, Sup: 0.32258064]
M5 M17
cvd X 0.474
M5
mean X 522.0
sdev X 248.0

2. M2 && M12 ==> CBBodyWallExpr=yes [Conf: 0.4285714, Sup: 0.29032257]

M2 M12
cvd X 0.483
M2
mean X 936.0
sdev X 452.0

3. M2 &g_MS ::>_CBBodyWallExpr:no [Conf: 0.6363636, Sup: 0.4516129]

M2 M5
cvd X 0.473
M2
mean X 1006.0
sdev X 477.0

4. M2 &g_M12 ==; CBBodyWallExpr=no [Conf: 0.57142854, Sup: 0.38709676]

M2 M12
cvd X 0.488
M2
mean X 789.0
sdev X 385.0

5. M3 &g_M17 ::; CBBodyWallExpr=no [Conf: 0.6666667, Sup: 0.32258064]

M3 M17
cvd X 0.373
M3
mean X 981.0
sdev X 366.0

6. M8 &g_MIB ::; CBBodyWallExpr=no [Conf: 0.6666667, Sup: 0.32258064]

M8 M13
cvd X 0.481
M8
mean X 1092.0
sdev X 526.0
4. CBOLLNeural

1. M1 && M7 ==> CBOLLNeural=yes [Conf: 0.6315789, Sup: 0.38709676]

M1 M7
cvd X 0.439
M1
mean X 979.0
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sdev X 430.0

2. Ml &g_M9 ::>_CBOLLNeural:yes [Conf: 0.6923077, Sup: 0.29032257]

M1 M9
cvd X 0.440
M1
mean X 876.0
sdev X 386.0

3. Ml && M8 ==> CBOLLNeural=yes [Conf: 0.73333335, Sup: 0.3548387]

M1 M8
cvd X 0.495
M1
mean X 744.0
sdev X 368.0

4. M1l && M18 ==> CBOLLNeural=yes [Conf: 0.58823526, Sup: 0.32258064]

M1 M18
cvd X 0.481
M1
mean X 798.0
sdev X 384.0

5. M6 && M8 ==> CBOLLNeural=yes [Conf: 0.8888889, Sup: 0.2580645]

M6 M8
cvd X 0.448
M6
mean X 936.0
sdev X 420.0

6. M8 &g_M24 ==; CBOLLNeural=yes [Conf: 0.8888889, Sup: 0.2580645]

M8 M24
cvd X 0.423
M8
mean X 1002.0
sdev X 425.0

7. M2 && M17 ==> CBOLLNeural=yes [Conf: 0.8, Sup: 0.2580645]

M2 M17
cvd X 0.432
M2
mean X 498.0
sdev X 215.0

8. M2 &g_M18 ==; CBOLLNeural=yes [Conf: 0.57894737, Sup: 0.3548387]

M2 M18
cvd X 0.433
M2
mean X 849.0
sdev X 368.0
5. CBPanNeural
1. Ml && M7 ==> CBPPanNeuralExpr=yes [Conf: 0.8666667, Sup: 0.41935483]
M1 M7
cvd X 0.423
M1
mean X 995.0
sdev X 422.0

2. M1l && M12 ==> CBPPanNeuralExpr=yes [Conf: 0.60714287, Sup: 0.5483871]
M1 M12
cvd X 0.495
M1
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mean X 847.0
sdev X 420.0

3. M2 &g_M7 ==> CBPPanNeuralExpr=yes [Conf: 0.8666667, Sup: 0.41935483]

M2 M7
cvd X 0.391
M2
mean X 1001.0
sdev X 392.0

4. M1 &s& M25 ==> CBPPanNeuralExpr=yes [Conf: 0.5555555, Sup: 0.48387095]

M1 M25
cvd X 0.471
M1
mean X 893.0
sdev X 421.0

5. M6 &g_M28 ==; CBPPanNeuralExpr=yes [Conf: 0.6, Sup: 0.29032257]

M6 M28
cvd X 0.485
M6
mean X 468.0
sdev X 227.0

6. M24 g; M28 ==> CBPPanNeuralExpr=yes [Conf: 0.9166667, Sup: 0.3548387]

M24 M28
cvd X 0.446
M2 4
mean X 863.0
sdev X 385.0

7. M1 && M16 ==> CBPPanNeuralExpr=yes [Conf: 0.54545456, Sup: 0.38709676]

M1 M16
cvd X 0.312
M1
mean X 886.0
sdev X 277.0

8. M16 g& M28 =:> CBPPanNeuralExpr=yes [Conf: 0.5625, Sup: 0.29032257]

M16 M28
cvd X 0.433
M16
mean X 790.0
sdev X 342.0

9. M2 &g_M16 ==; CBPPanNeuralExpr=no [Conf: 0.45454547, Sup: 0.32258064]

M2 M16
cvd X 0.436
M2
mean X 1196.0
sdev X 522.0

10. M12_£& M13 ::> CBPPanNeuralExpr=no [Conf: 0.5, Sup: 0.3548387]

M12 M13
cvd X 0.488
M12
mean X 835.0
sdev X 408.0
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