
Spiral Development to Post-Release
Project Flex, a macro-focused RTS

A Major Qualifying Project Report

submitted to the Faculty of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements of the

Degree of Bachelor of Arts

in Interactive Media and Game Development

Submitted By:

Jason Asidi, Interactive Media and Game Development

Additional Contributors:

Benjamin Dorr, Interactive Media and Game Development

Advised By:

Professor Walt Yarbrough

This report represents the work of one or more WPI undergraduate students submitted to
the faculty as evidence of completion of a degree requirement. WPI routinely publishes these

reports on the web without editorial or peer review.

Abstract
This report discusses the design, implementation, and analysis of Project Flex, a

top down single player real time strategy game, or RTS, developed as part of the Spiral

Development MQP. Project Flex is a casual RTS that focuses less on unit micro and base

building and more on grand macro strategies, as seen in games such as Halo Wars and Dawn of

War. Our goal in creating Project Flex was to explore various strategy game mechanics,

including basic camera movement, unit selection, unit movement, resource gathering, unit

construction, building construction, and more. In addition, Project Flex was developed using the

Spiral Development framework, where we continually iterate and expand on the core game loop

by designing and implementing singular mechanics, primarily to mitigate issues of scope creep.

Acknowledgements
We’d like to acknowledge and thank Professor Walt Yarbrough for his advice and

guidance during the development of this project. Without his knowledge and encouragement, we

may never have gotten as far as we had. We’d additionally like to extend our thanks to the many

playtesters that helped us polish and refine the game throughout the development process, as

well as our friends and family who supported us along the way.

Table of Contents

Abstract..2
Acknowledgements..3
Table of Contents...4
Introduction... 6
Background..7

Inspirations...7
Tools...7

Game Engine.. 7
Source Control.. 8
2D Art Asset Creation.. 8
Playtesting Feedback Collection...9

Design... 11
Spiral Development..11
Scope..11
Core Gameplay Mechanics.. 13

Isometric Camera..13
Fog of War.. 13
Unit Selection and Commands... 14
Resource Management..14
Base Building..15
Combat and Victory..16

Gameplay... 17
Units...17

Infantry... 17
Basic Infantry.. 17
Drone Infantry... 17
Fast Infantry...18
Heavy Infantry...18

Vehicles...18
Basic Tank... 19
Missile Tank.. 19
Mortar Tank... 19
Support Tank..20

Unit Roles... 20
Resources... 21

CPU...21
Power.. 22
RAM... 23

Base Building...24
Military Production...24
Resource Generation...25

Resource Storage.. 25
Art...27

User Interface...27
Resource Bars... 27
Unit Selection... 28
Unit Details...29
Construction..29
Minimap..30

Placeholder Art.. 31
3D Models.. 31
Icons..32

Spiral Development...33
Benefits of Spiral Development...33
Drawbacks of Spiral Development.. 34
Conclusions on Spiral Development..34

Playtesting and Feedback... 36
Protofest... 36

Camera Controls... 36
Unit Movement...36
Resource Gathering.. 37
Unit Construction..37
Unit Models Theme.. 37

Alphafest.. 38
Refined Mechanics Testing...38
Combat Mechanics... 39
Core Gameplay Loop..39
Feedback... 40

C Term Playtesting...41
Unit Testing...41
Base Building Rework..42

D Term Playtesting...44
Restoring Cut Content.. 44
New Features.. 45

Post Mortem.. 47
Jason Asidi... 47

What Went Right.. 47
What Went Wrong.. 48
What We Learned... 50

Works Cited... 52

Introduction
Spiral Development to Post-Release is an MQP project that began in August 2023 and

ends in April 2024. The major focus of the project is the use of the Spiral Development method

to develop a game from start to finish, with a focus on rapid prototyping and frequent

playtesting. Due to the successful completion of the project with minimal issues, we can declare

that the Spiral Development model is successful in limiting the tendency for game development

projects to fail due to scope creep.

Project Flex is an exciting real-time strategy game that invites players to lead

cyberspace-themed armies to victory on a digital battlefield. Players must navigate strategic

challenges, manage resources, and build powerful units to outmaneuver their adversaries. With

its focus on strategic decision-making and battlefield control, Project Flex offers an immersive

gaming experience where every choice shapes the outcome of the conflict. Whether engaging in

intense skirmishes or constructing bases, players will find themselves immersed in a richly

detailed world ripe for exploration and conquest.

This paper aims to describe the development process of Project Flex from start to finish,

and explain several key aspects of its gameplay design. Throughout the paper, we have

highlighted some lessons for future MQP teams in bold. In addition, we will be discussing the

importance of playtesting to the development of the game, and overall the impact the use of the

Spiral Development had on its development. Finally, we will review the overall success of the

project and what things went well, what things could use improvement, and our final

recommendations for others wanting to use the Spiral Development model in game development.

Background
Inspirations

The inspiration for Project Flex stemmed from a deliberate exploration of the strategy

game genre during the preproduction phase in A term. Drawing from a diverse array of

influences, the team studied various strategy games with distinct focuses to discern the optimal

approach for the project. Notably, the Halo Wars and Dawn of War series emerged as major

inspirations, with their emphasis on real-time strategy (RTS) gameplay tailored for a broader,

more casual audience. From Dawn of War, the concept of resource generation through

requisitions was adopted, encouraging dynamic map interaction by creating a contested resource

shared between both players. Additionally, the Supreme Commander series influenced the

decision to incorporate a diverse range of resources, compelling players to engage with multiple

aspects of the game beyond mere unit management. Ultimately, the project coalesced into an

RTS experience centered around macro strategy and map control, prioritizing strategic depth and

player engagement over micro unit control.

Tools
Game Engine

The choice of game engine for Project Flex was a critical decision made early in the

development process. Unity emerged as the preferred option primarily due to the team's

familiarity with the engine's workflow and toolset. While investigating other common engines

like Godot and Unreal Engine, specific considerations guided the decision-making process.

Godot was excluded due to its lack of support for 3D art styles, which conflicted with the artist's

specialization in 3D modeling. Unreal Engine, on the other hand, was ruled out because of

concerns regarding its blueprint system and out-of-the-box support for real-time strategy (RTS)

controls. Ultimately, Unity was deemed the most suitable choice given its familiarity and

alignment with project constraints. However, in hindsight, the team acknowledges that

exploring more specialized engines after firmly deciding on the game concept might have

yielded better results.While Unity excels as a generalist engine, considerable time was spent

developing fundamental functionalities that could have been streamlined in a more specialized

engine.

Source Control

In managing source control for Project Flex, Github emerged as the chosen tool for its

simplicity and familiarity among the team members. Initially employed as a means to share

progress updates and back up data before implementing significant changes, Github seamlessly

integrated into the team's workflow. Its user-friendly interface and widespread familiarity among

team members meant it was our first choice, without any real consideration of alternative

solutions.While Github proved effective in facilitating version control, it's worth noting

that the experience may not be fully representative, as only the programmer was primarily

responsible for pushing changes. Consequently, the absence of concurrent contributions

minimized the risk of common issues such as merge conflicts. Despite this limitation, Github’s

reliability and ease of use ensured a smooth and efficient source control process throughout the

development of Project Flex.

2D Art Asset Creation

In Project Flex, Gimp served as the primary tool for the creation of 2D assets, including

various placeholder icons. These icons were either crafted from scratch or modified from

existing free-to-use graphics to suit the project's needs. Gimp was selected primarily due to its

familiarity, especially since the primary user was not an artist. While Gimp may lack some of the

advanced features found in other graphics programs, its ease of use and familiarity minimized

the learning curve for the team's primary use case. Overall, Gimp performed admirably in the

creation of placeholder art, providing a versatile and accessible solution for teams with limited

artistic resources. However, it's important to note that teams with dedicated artists may benefit

from utilizing more specialized graphics programs tailored to their specific workflows.

Nevertheless, in the context of modern game engines, most graphics creation programs offer

similar functionality, making the choice of software ultimately dependent on their particular

preferences and requirements.

Playtesting Feedback Collection

For the development of Project Flex, playtesting surveys were facilitated through the

utilization of both Microsoft and Google Forms, offering comprehensive solutions for creating,

managing, and collecting valuable data from playtesting sessions. Initially, the team

experimented with both platforms but eventually gravitated towards Google Forms due to its

seamless integration with Google Sheets and email, as well as its ease of collaboration. While

both Microsoft and Google Forms offer robust features for survey creation and data collection,

the decision to settle on Google Forms was driven by its compatibility with the team's existing

workflow and its intuitive interface. Ultimately, the choice between Microsoft and Google

Forms should be based on the specific needs and preferences of each team, as both platforms

offer their respective ecosystems tailored to different workflows and requirements.

In addition, OBS (Open Broadcaster Software) served as the primary tool for recording

playtest footage from expert group sessions, enabling thorough review and analysis at a later

stage. The decision to utilize OBS was primarily driven by its accessibility as a free and

open-source software solution. While testers had the freedom to choose their preferred recording

programs, OBS emerged as the favored option among the majority due to its simplicity and

reliability. As an industry standard for both professional and amateur recording, OBS offered a

straightforward user interface and sufficient functionality for playtesting purposes. While other

recording programs may offer more specialized features, OBS proved to be a practical and

effective choice for capturing playtest sessions with ease and accuracy.

Design
Spiral Development

The core focus for our development on this MQP is the Spiral Development framework

for game development, in which we begin by creating a very small but complete gameplay loop

before building on this underlying structure to explore the game in stable cycles that always ends

with a complete gameplay loop (King, 2021). The goal of this style of development is to avoid

scope creep and keep the development process fluid until completion, thus avoiding an awkward

release where entire sections of the game aren’t finished on time and have to be cut back.

Scope
Throughout the development of Project Flex, managing scope was a paramount

consideration, guided by the principles of Spiral Development. The project's evolution was

marked by a series of deliberate steps to refine mechanics, address feedback, and prioritize

features to ensure a manageable scope and a successful end product. The process commenced

with the implementation of fundamental mechanics centered on isometric camera movement and

object selection, gradually laying the foundation for an isometric strategy game. Over the course

of A term and the initial half of B term, the development efforts were channeled into refining

these mechanics while integrating essential real-time strategy (RTS) staples such as point

control, resource generation, unit construction, and unit health and attacking. By the midpoint of

B term, Project Flex had evolved into a rudimentary strategy game, boasting a barebones

framework ready for further expansion and refinement. Playtesting during this phase

predominantly focused on evaluating the smoothness and intuitiveness of controls, ensuring a

seamless user experience essential for the game's success.

As development transitioned into the latter half of B term and extended into C term, the

looming threat of scope creep necessitated a proactive response from the team. Recognizing the

importance of maintaining focus on essential elements, efforts were concentrated on refining the

feel and mechanics of combat to ensure smooth and accessible unit control. This endeavor

demanded extensive playtesting to validate the goal of reducing need for individual unit control

during combat, otherwise known as micro, ensuring that player interaction remained intuitive

and engaging. As a result, non-essential elements to combat, such as the implementation of a

minimap, a second tier of units, and skirmish building AI, were temporarily sidelined to

prioritize core gameplay mechanics.

During D term, the project's focus shifted towards fine-tuning existing mechanics,

reintegrating sidelined content, and gathering feedback for version 1.0 and future updates. This

phase marked a pivotal moment in aligning project scope with development priorities, ensuring

the game's coherence, polish, and responsiveness to player needs. Elements such as the T2 units

and unit factory, previously deferred, were reintroduced into the game, enriching gameplay

diversity. Additionally, significant efforts were dedicated to addressing long standing bugs that

had plagued development, including issues related to fog of war visibility and rare crashes,

thereby enhancing overall stability and user experience. Furthermore, the focus on polish

extended to implementing "nice-to-have" features like a minimap and hotkeys, elevating the

game's accessibility and user-friendliness. Throughout this phase, playtesting remained a central

focus, aimed at refining gameplay mechanics and ensuring that every interaction was enjoyable

and intuitive for players.

Overall, the journey of managing scope in Project Flex epitomized the iterative nature of

game development. By consistently evaluating progress, prioritizing features, and responding to

feedback, the team navigated the complexities of scope management, culminating in a

well-rounded and engaging RTS experience.

Core Gameplay Mechanics
Real-Time Strategy (RTS) games stand as a genre renowned for their engaging gameplay

mechanics, where players navigate complex scenarios, manage resources, and orchestrate

large-scale battles. These fundamental elements collectively contribute to the dynamic and

immersive nature of RTS games.

Isometric Camera

The isometric camera perspective is a distinctive feature that provides players with a

three-dimensional view of the game world. This perspective allows for a comprehensive

understanding of the terrain, promoting effective strategic planning and decision-making. Players

can survey the battlefield with ease, assessing the layout of structures, resources, and potential

threats. Isometric camera movement not only enhances the visual experience but also plays a

pivotal role in facilitating tactical awareness and spatial navigation.

Fog of War

The inclusion of Fog of War introduces a layer of strategic complexity to RTS games. As

units explore the map, the fog lifts, revealing previously hidden areas. This mechanic not only

simulates the uncertainty of the battlefield but also necessitates reconnaissance and intelligence

gathering. Players must carefully scout the terrain to gain insights into enemy movements and

positions, adding an element of anticipation and surprise to engagements. Fog of War thus

becomes a key factor in shaping player strategies and decision-making.

Figure 1 - An in-game screenshot depicting the fog of war.

Unit Selection and Commands

Efficient control of units is paramount in RTS games, demanding a user-friendly interface

that enables players to manage diverse armies seamlessly. The ability to select individual units,

form groups, and issue commands is crucial for executing complex strategies. The

responsiveness of commands, coupled with the ease of unit selection, determines the player's

capacity to coordinate movements, engage enemies, and adapt swiftly to changing

circumstances. The skillful use of unit commands is a hallmark of expert RTS gameplay.

Resource Management

Resource gathering forms the economic backbone of RTS games, introducing a layer of

strategic decision-making. Players allocate workers to collect resources such as minerals, energy,

or food, with the acquired wealth used for constructing buildings, training units, and advancing

technological capabilities. The delicate balance between expansion, resource extraction, and

military production requires players to make strategic choices that impact both short-term and

long-term gameplay. Effective resource management becomes a critical skill for success in the

competitive RTS environment.

Base Building

Unit and building construction is a central component of RTS gameplay, allowing players

to shape their military and economic capabilities. The diversity of available units and structures

provides players with strategic options, fostering adaptability to different scenarios.

Decision-making during this phase involves considerations of unit composition, base layout, and

the allocation of resources to ensure a well-rounded and formidable force. Unit and building

construction serve as the foundation for executing strategic plans and responding to the evolving

dynamics of the game.

Figure 2 - A late game base.

Combat and Victory

The culmination of RTS gameplay lies in army engagement and achieving victory

conditions. As players amass their armies through resource management and construction, battles

unfold in real-time. Tactical decisions during engagements, such as unit positioning, use of

special abilities, and coordinated attacks, directly influence the outcome. Victory conditions vary

but often involve the elimination of opponents, control of key points on the map, or achieving

specific objectives. The strategic depth of army engagement and the diversity of victory

conditions contribute to the replayability and enduring appeal of RTS games.

Gameplay
Units

In Project Flex, the design philosophy behind unit creation revolves around strategic

diversity, ensuring that each unit serves a distinct role, whether from a military or

cost-effectiveness standpoint. The game features two tiers of units—infantry and vehicles—each

tailored for specific purposes to foster nuanced and engaging gameplay.

Infantry

Infantry units epitomize speed and cost-effectiveness. They are the swift operatives on

the battlefield, capable of capturing control points crucial for CPU generation. Their mobility

allows for quick point capture, hit-and-run tactics, and dynamic responses to emerging threats.

Construction of infantry units is economical, demanding only CPU and 1 RAM per unit. This

cost-effectiveness aligns with their disposable and versatile nature, making them the preferred

choice for early-game exploration, map control, and rapid response scenarios. Infantry based

armies excel at early-game maneuvers, securing control points for sustained CPU generation.

Their low-cost nature facilitates strategic map control and exploration, enabling players to

establish a foundational presence on the battlefield.

Basic Infantry

The linchpin of unit design, Basic Infantry serve as the well-rounded foundation upon

which other units are built. Versatile and adaptable, they form the backbone of early-game

strategies and provide a benchmark for comparing other unit types.

Drone Infantry

Positioned as the cheapest unit, Drone Infantry fulfill a crucial role in exploration and

point capture during the initial phases of the game. While they lack cost efficiency in combat

against other units, their affordability makes them a go-to choice for early-game map control,

while the fact that despite their decreased costs and stats they still take the same amount of RAM

as any other unit infantry discourages a spam-oriented playstyle.

Fast Infantry

As the fastest units in the game, Fast Infantry excel in capturing contested points swiftly

and executing hit-and-run attacks. Their speed allows them to evade reprisals, especially from

enemy vehicles, making them ideal for dynamic, tactical maneuvers on the battlefield. Despite

their utility, Fast Infantry are not as fragile as drones and still are a comparable combat unit,

meaning that they can scout or eliminate key targets in the first stages of an assault before the

rest of the army rolls in for support.

Heavy Infantry

Representing the pinnacle of infantry strength, Heavy Infantry serve as anchors for

assaults in the pre-vehicle phase. Their robust capabilities come at a higher cost, making them a

strategic investment for players aiming to control key areas and establish dominance early on.

Even after T2 units start coming out, Heavy Infantry can serve as wardens for control points,

tough enough to endure vehicle firepower long enough to capture a point and force an infantry

response in order to recapture it.

Vehicles

Vehicles stand in stark contrast to infantry, embodying durability and strength. However,

this robustness comes at the expense of speed, making them slower and more deliberate in their

movements. Vehicles often possess unique characteristics or special abilities that set them apart,

contributing to their role as heavy-hitters in battle. Building vehicles is a resource-intensive

endeavor, requiring CPU, Power, and multiple RAM per unit. The significant investment in these

units reflects their potent combat capabilities and specialized roles on the battlefield. The higher

resource cost signifies their importance in mid-to-late-game strategies.Vehicles play a pivotal

role in assaulting fortified positions and engaging in high-stakes battles. Their durability allows

them to withstand enemy fire, making them formidable anchors in offensive strategies. The

additional resource requirements underscore their importance in mid-to-late-game scenarios,

where a well-timed deployment can turn the tide of battle. In addition, vehicles, being the more

resource-intensive units, often boast unique features that set them apart. This specialization could

manifest as increased firepower, special abilities, or tactical advantages that amplify their

effectiveness on the battlefield. These distinct attributes further underscore the significance of

vehicles in shaping the outcome of engagements.

Basic Tank

The workhorse of vehicle units, Basic Tanks offer straightforward firepower without

additional frills. Designed for engagements against multiple infantry units, they provide a solid

foundation for mid-game strategies and serve as a versatile force on the battlefield.

Missile Tank

Specialized as an anti-horde unit, Missile Tanks are unique for their splash damage

capabilities. While effective against groups of infantry, they lack potency against other vehicles

and structures due to their focus on dealing area-of-effect damage. They’re best used for a

vehicle based strategy to clear and defend control points from infantry, and are vulnerable to

ambushes from other vehicles if not cared for.

Mortar Tank

Slow-firing and lumbering, Mortar Tanks represent the idea of extreme overkill. With the

highest damage per shot in the game, they are dedicated anti-vehicle and anti-building units,

offering strategic depth for players aiming to break through fortified positions. In addition, since

they also support the longest ranged weapon in the game, but lack the vision range to utilize it by

themselves, they do well as far ranged artillery to support an assault by faster units that can act as

spotters for it.

Support Tank

Enhancing the relevance of infantry in the late game, Support Tanks act as force

multipliers. Their aura increases the fire rate and movement speed of nearby infantry units while

providing healing. While unable to attack, their supportive role makes them invaluable in

sustaining infantry-focused strategies. Player feedback surprisingly landed the Support Tank as

the favorite vehicle, which could be attributed to the fact that unlike the other vehicles, it doesn’t

require retooling of the player’s production capacity to be majorly biased towards vehicles,

instead supporting a combined arms approach.

Unit Roles

The strategic diversity of units in Project Flex prompts players to make nuanced

decisions based on their immediate needs, the evolving battlefield, and their opponents'

strategies. Each unit type has a specific role, encouraging players to consider their composition

carefully, adapt to changing circumstances, and capitalize on the strengths and weaknesses of

their chosen units. The two-tiered structure of infantry and vehicles, coupled with the distinctive

roles of each unit type, fosters engaging gameplay and rewards thoughtful decision-making on

the path to victory. The contrast between infantry and vehicle units introduces a strategic layer to

unit selection, emphasizing their distinct roles, costs, and unique contributions to the battlefield.

These differences are not only reflected in their attributes but also impact the overall dynamics of

resource management and strategic decision-making. While infantry dominate the early game

with their agility and affordability, vehicles become instrumental in the mid-to-late game for

assaults and specialized roles. Players must strike a delicate balance in their unit composition,

adapting to the evolving dynamics of the battlefield.

Resources
In Project Flex in particular, the three different resources–CPU, Power, and RAM, all

influence player decision making in a major fashion. Each of them are named after the game’s

computer theme, and each are important at different stages of the game. The relationship

between the different resources and their uses in the player’s production process greatly

influence the gamestate and how players begin to grind towards victory.

CPU

CPU is the most prevalent resource, with both players having a constant income from the

very start of the game and greatly increasing said income stream with each capture point taken

on the map. However, since it is the only resource that can’t be gained from constructing

buildings, it forces the players explore the map early on to find and lay claim to these points, and

from there on constantly skirmish and defend these points to maintain control of their main

sources of income. The significance of CPU lies in its ubiquity, as it is utilized for a wide range

of functions, including unit production, base construction, and more. As such, despite being

seemingly plentiful, CPU becomes the major limiter of the player’s expansion of their army and

pursuit of victory, and thus the main impetus for player engagement with the opponent and the

map.

Figure 3 - An infantry unit in a captured point.

Power

Power, a more premium resource in Project Flex, is instrumental in the construction of

buildings and higher-tier units. Unlike CPU, Power is not passively regenerated; it is exclusively

generated by power supply buildings, and the rate of generation is relatively slow. This scarcity

in the early game prompts players to prioritize the establishment of their army before heavily

investing in base construction. As the battle progresses and players amass a stronger foothold,

the importance of Power amplifies. In the mid-game, when armies are well-established and

control points secured, players find themselves relying heavily on Power to expand their

production capabilities and deploy advanced units capable of overwhelming their adversaries.

Figure 4 - A base filled with power supply buildings.

RAM

RAM introduces a unique dynamic to resource management in Project Flex. Unlike CPU

and Power, RAM is never passively generated. Instead, it is immediately granted upon the

construction of specific buildings and is equally deducted if those structures are destroyed. This

design choice encourages players to strategically position and defend RAM-generating buildings,

considering them as vital assets in their base layout. Importantly, RAM does not provide

immediate value, instead increasing the maximum number of units a player can have

simultaneously. This makes RAM the most late-game oriented resource, emphasizing the need

for a balanced and sustainable strategy. Neglecting RAM expansion can prove to be a critical

error, as it significantly impacts the size and strength of the player's army. As the game

progresses, the player who can best leverage the increased army size offered by RAM is

strategically poised to overpower their opponents and win the game.

In summary, Project Flex's resource system is a carefully crafted interplay of CPU,

Power, and RAM, encouraging players to think critically about their approach to the map and the

expansion of their base. The distinct properties and acquisition methods of each resource

contribute to a dynamic and strategic gameplay experience, where effective resource

management is pivotal to success in the ever-evolving battles of Project Flex.

Base Building
In Project Flex, the art of base building is a strategic dance, where players must navigate

the delicate balance between expanding unit production and supporting resource generation. The

tension inherent in these considerations becomes a defining aspect of gameplay, requiring

thoughtful decisions and adaptability throughout the course of battle.

Military Production

The foundation of every successful strategy in Project Flex lies in the efficient production

of units. Bases serve as the epicenter for unit construction, and players must decide when and

where to invest in unit-producing structures. The temptation to focus solely on unit production is

ever-present, especially in the early stages of a battle. A formidable army can tip the scales in

engagements and provide a strategic advantage. However, this singular focus comes with a

trade-off—the potential neglect of resource generation, limiting the sustainability and growth of

the player's forces. A player who emphasizes a large amount of focus on their military

capabilities from the start of the battle may be able to take an early lead over the opponent when

it comes to map dominance, but a savvy general will be able to build up his defenses and

resource production during such a rush and force the fast victory hoped for into a grinding

stalemate where their more stable foundation gives them a massive advantage. As a result, while

military expansion is important and should be given the focus in the early game, part of the

game’s strategy comes from knowing the consequences of overinvestment.

Resource Generation

Resource generation is the lifeblood of a player's capabilities in Project Flex. The

efficient collection of CPU, Power, and RAM dictates the extent to which a player can expand

their forces and construct advanced units and structures. As such, the strategic placement of

resource-generating buildings becomes a critical consideration during base building. Players

must resist the allure of an overly militarized approach and allocate space and resources to

support a robust economic engine. Neglecting resource generation can lead to a stagnation of

unit production, hindering a player's ability to respond to evolving threats and opportunities on

the battlefield. On the other hand however, just like an overly aggressive military buildup can

spell do from the beginning of the match, trying to play passively is only a failing strategy,

mainly due to the need to capture control points in order to generate CPU, the most widely used

resource. Without it, even creating lots of factories, defenses, and resource generators is useless

because you won’t be able to fund your economic rush. This careful balance between the need

for economic stability and also maintaining control of the map is important for the strategic

balance of Project Flex.

Resource Storage

Resource storage serves as the final core aspect of base building in Project Flex, playing a

crucial role in managing the economy and facilitating strategic decision-making. Unlike

production buildings and unit production, storage buildings do not directly increase resource

generation capabilities but rather enhance maximum production capacity. This distinction

underscores the importance of balancing resource generation with storage capacity, as high

resource generation becomes futile without sufficient storage to accommodate it. Moreover, the

amount of resource storage directly influences the number of constructions that can be initiated

concurrently, highlighting the strategic significance of maintaining adequate storage levels.

Strategic resource management in Project Flex extends beyond mere accumulation to

encompass the timing of resource allocation for maximum production efficiency. Knowing when

to allocate resources towards expanding storage capacity, even at the expense of current

resources, is paramount to fostering long-term growth in overall production capacity. This

strategic decision-making process requires careful consideration of current resource needs, future

production goals, and potential trade-offs between immediate gains and future benefits. By

strategically balancing resource allocation between immediate needs and long-term expansion,

players can optimize their production capacity and gain a competitive edge on the battlefield.

Art
User Interface

Each of the UI elements in Project Flex was carefully designed and tweaked to maximize

the amount of information shown in as small an amount of space as possible. The final result

balances readability with compactness in a way that appeals to most players.

Resource Bars

In Project Flex, the resource UI was designed and tested for quick comprehension,

ensuring players could easily grasp their resource status. The UI elements were color-coded to

align with corresponding resource storage buildings, allowing players to quickly take a look at

the battlefield and identify what they’re currently lacking in resource production just by looking

at the colors of the buildings. With the introduction of resource storage buildings, the UI was

updated to include current resource limits, allowing players to see what their current caps were at

and how quickly they were filling them out. However, a minor challenge arose with the display

of RAM, which behaves uniquely compared to other resources since it doesn’t regenerate but

rather is granted in chunks permanently. Eventually, what we settled on was to be somewhat

misleading in showing both the current resource and the cap, despite the actual display being the

number of units worth of RAM and the current resource. Overall, the resource UI effectively

facilitated resource management, contributing to a seamless gameplay experience.

Figure 5 - The Resource Bar UI.

Unit Selection

In Project Flex, the UI for selected units was carefully crafted to offer players vital

information without cluttering the screen. It succinctly displays the health and icons for up to 25

selected units, providing a quick overview of the state of the army. Initially, there were plans to

allow players to select individual units from this UI, but testing revealed that this added

unnecessary complexity and detracted from the game's macro-strategy focus. While players

generally responded positively to the UI, there were concerns about its compatibility with final

unit designs and particularly with icons that are less easy to identify. Further testing is needed to

strike the right balance between detail and screen space, ensuring an optimal player experience.

Figure 6 - The maximum number of units shown on the unit selection UI.

Unit Details

We introduced a detailed unit view UI to provide players with in-depth information when

a single unit is selected. This feature offers essential details like health, unit icon, name, and

relevant stats such as DPS, speed, or construction range, allowing players to better understand

each unit's capabilities. The decision to include this feature stemmed from challenges in the main

UI, which made it difficult to access specific unit stats. However, feedback from playtesters

varied, with some players perceiving it as unnecessary for casual play, as unit differences were

evident through gameplay alone. Nevertheless, we retained the detailed unit view to cater to

more serious players who valued the ability to compare and contrast units for strategic

decision-making.

Figure 7 - The unit details for an infantry unit.

Construction

Crafting the construction menu UI was a dynamic process shaped by the diverse needs of

strategy game interfaces. Needing to balance showing enough information with making sure that

the menu didn’t take up most of the screen, we iterated through several adjustments based on

player feedback to ensure clarity and integration with the overall UI. The final design presents

players with a comprehensive view of available units, including icons, queue counts, and build

time remaining. To aid decision-making, the construction cost for each resource is displayed

adjacent to the units. We opted to exclude unit stats from the screen, focusing instead on

providing concise text descriptions of each unit's battlefield role. This approach aimed to

streamline the interface and prioritize essential information. Through continuous refinement

guided by player input, the construction menu UI evolved to balance accessibility and depth for

all types of players.

Figure 8 - The Construction UI for a building constructor.

Minimap

The minimap was the latest addition to the user interface, designed to enhance players'

situational awareness and strategic planning. The minimap provides a clear overview of the

battlefield, differentiating between infantry, vehicle, and building units with distinct icons, as

well as between teams using colors. The ability for players to click on specific positions to shift

the camera instantly allows rapid changes in focus, facilitating rapid response and precise

coordination. Initial feedback from players indicates a strong appreciation for the minimap,

citing its utility in planning multi-stage assaults or managing engagements across multiple areas.

Its integration into the UI has notably improved gameplay dynamics, offering players a valuable

tool for navigating the complexities of strategic warfare in Project Flex.

Placeholder Art
Due to the loss of the artist from the team, we unfortunately weren’t able to replace the

placeholder art assets for Project Flex. These temporary visuals provided a visual representation

of game elements, allowing the team to focus on refining gameplay dynamics and iterating on

core features without being hindered by the absence of finalized artwork.

3D Models

For Project Flex, the simplified 3D models used as placeholders were instrumental in

distinguishing between various units and elements within the game. Infantry and vehicles were

primarily differentiated by size, with color serving as a key identifier for both. Control points

were represented by half spheres that changed color upon capture, providing clear visual

feedback to players. Buildings, on the other hand, featured a range of complex shapes

constructed from multiple primitives, making it easy for players to distinguish between different

structures and gauge their quantities. The use of color and size as distinguishing factors received

positive feedback from playtesters, with some suggesting that the theme of primitive objects as

units could be further integrated into the final product with minor adjustments.

Figure 9 - The placeholder models for infantry units.

Icons

Placeholder icons were a fundamental part of the development process in Project Flex,

particularly within the detailed unit UI. These icons, sourced from freely available sprites found

online, acted as visual representations for the various units in the game. Despite their

simplicity—comprising only the initials of each unit—maintaining these icons proved

challenging due to their scattered references throughout the game. Looking back, it would have

been a good idea to implement a centralized system for icon definitions to streamline asset

replacement and ensure visual consistency throughout the game. During playtesting, while

functional, some testers noted that the icons appeared somewhat generic or visually unappealing,

and when units with similar initials were selected it could be somewhat confusing to tell at a

glance what they meant. It likely would have been a better idea to pick simple icons that

represented the unit's role, such as a shield for heavy infantry or a rocket for missile tanks.

Spiral Development
Benefits of Spiral Development

In the development journey of Project Flex, embracing Spiral Development methodology

has brought forth numerous advantages, fostering a dynamic and adaptable approach to crafting

the game. Notably, one significant benefit has been the infrequency of having to completely

cut content from the project. Even when adjustments were needed, they were executed in a

manner that preserved the game's core playability and left room for future expansion. This

adaptability owes much to the modular design of the game's mechanics, which were intentionally

structured to accommodate seamless integration of new resources, units, and buildings,

facilitating ongoing innovation and diversification of gameplay options.

Furthermore, Spiral Development has simplified the creation of game environments. By

leveraging a library of prefabricated assets, constructing maps becomes a straightforward task,

requiring only additional terrain and the creative touch of a level designer to bring vibrant RTS

environments to life. This modular approach not only streamlines the development process but

also empowers the team to focus on creative design aspects, with less time spent on technical

implementation. Additionally, the modular nature of the game's mechanics and environments

encourages collaboration, enabling rapid prototyping and experimentation of ideas.

In the broader context of game development, the principles of Spiral Development offer a

range of benefits. By continuously iterating on game features and content, developers can remain

agile, responding effectively to changing requirements and player feedback. This iterative

process not only reduces the risk of major setbacks but also fosters a culture of innovation and

creativity. Furthermore, the modular design inherent in Spiral Development promotes scalability

and extensibility, allowing games to evolve over time to meet the evolving needs of players and

the gaming landscape. In summary, the adoption of Spiral Development methodology in game

development provides a flexible, efficient, and adaptable framework for creating immersive and

engaging gaming experiences.

Drawbacks of Spiral Development
While Spiral Development brought numerous benefits to the project, it has also presented

its share of challenges. The relentless focus on rapid prototyping and modular development,

inherent to Spiral Development, has at times proven to be detrimental to the game's progress.

While the emphasis on creating reusable systems has its merits, there is a risk of overly

prioritizing modularity at the expense of practicality and efficiency. In some instances, the

effort invested in making systems reusable and easy to prototype has resulted in added

complexity and development overhead, making them more challenging to implement and

maintain in the long run.

In the broader context of game development, these drawbacks of Spiral Development are

not unique to Project Flex but are challenges commonly encountered in iterative development

processes. Effective communication, judicious selection of development tools, and striking a

balance between modularity and practicality are key considerations for teams embarking on

projects utilizing Spiral Development methodologies. By addressing these challenges

proactively, developers can mitigate potential pitfalls and harness the benefits of Spiral

Development to create engaging and successful gaming experiences.

Conclusions on Spiral Development
In conclusion, spiral development emerges as an effective approach for game

development, offering a framework that prioritizes iterative refinement and rapid prototyping.

The methodology emphasizes the importance of delivering playable iterations early and often,

recognizing that it is preferable to have a functional prototype for playtesting rather than striving

for perfection from the outset. However, it is essential to remain mindful of the inherent

challenges of spiral development, particularly in small teams. With fewer oversight and

viewpoints in development, small teams may struggle to sustain the rapid pace of development

required by spiral methodologies, leading to potential burnout and inefficiencies. Nonetheless, by

embracing the principles of spiral development while remaining cognizant of its limitations,

game developers can leverage its strengths to navigate the complexities of game development

and ultimately deliver compelling and successful gaming experiences.

Playtesting and Feedback
Protofest

During A-Term, we had the opportunity to participate in ProtoFest, an important event

specifically designed for testing prototypes of various projects at their earliest stages. This event

allowed us to present a demo build of our project, which centered around the development of a

real-time strategy (RTS) game. Our demo build showcased the core gameplay mechanics of our

RTS game, including camera movement, unit movement and selection, resource gathering, and

unit construction. These features are fundamental to the player's experience, and we wanted to

ensure they were intuitive, engaging, and enjoyable.

Camera Controls

ProtoFest attendees had the opportunity to test the camera controls, assessing their

responsiveness, speed, and ease of use. This aspect is vital in an RTS game to ensure players can

navigate the game world efficiently. The feedback we received was instrumental in refining the

camera controls and adjusting the camera speed to a level that felt comfortable and user-friendly.

Based on feedback, we fine-tuned the camera speed to ensure that players could explore the

game world comfortably without it feeling too fast or sluggish, switching from the camera

moving at a constant fast pace to starting slow but quickly accelerating if the camera continued

moving in the same direction..

Unit Movement

Testing the unit movement and selection mechanics was crucial for us to evaluate how

well players could control their units. Attendees provided insights on the responsiveness of unit

commands and helped us identify any issues in unit pathfinding and selection. This feedback

guided us in fine-tuning the average unit speed and ensuring that unit selection was as seamless

as possible. Feedback from ProtoFest attendees allowed us to adjust the average unit speed to

strike the right balance between realism and gameplay fun. From the responses we gathered, the

average unit speed was just slightly too slow for what the player’s expected for a unit of average

size, and we increased it accordingly.

Resource Gathering

In an RTS game, resource management is a key element. We incorporated resource

gathering mechanics into our demo build, and ProtoFest participants were able to evaluate the

resource collection process. Their feedback allowed us to adjust resource generation rates and

refine the resource gathering experience to strike the right balance in gameplay.

Unit Construction

Attendees had the opportunity to experience unit construction, an integral part of our

game. Testing this feature helped us determine placeholder construction rates and evaluate the

overall pace and progression of the game. The feedback received during ProtoFest played a vital

role in optimizing the pacing and balance of unit construction within the game, and we used the

responses from the initial feedback to inform our construction rates for future additions.

Unit Models Theme

The feedback also provided us with a better understanding of the player's preferences and

expectations for unit models. This, in turn, helped us make informed decisions on how we should

theme and design our unit models, ensuring they resonate with the target audience.

The feedback gathered during ProtoFest was invaluable. It not only provided insights

into the usability and playability of our game but also helped us make informed decisions

regarding several aspects of our project. ProtoFest served as a pivotal testing ground for our

MQP project, enabling us to gather crucial insights, fine-tune key gameplay mechanics, and

make informed decisions about the direction of our game. The feedback received during this

event not only improved the overall quality of our project but also helped us align our design

choices with the player's expectations, ensuring a more engaging and immersive gaming

experience.

Alphafest
AlphaFest, a prominent event during B term, marked a pivotal moment in the

development of our MQP. This event provided an opportunity for a broader audience to

experience our game, offering a first glimpse into the culmination of our efforts in the form of an

alpha build. This alpha build not only showcased refined mechanics from previous testing phases

but also introduced new elements, including unit combat and a demo level that synthesized all

key gameplay mechanics.

Refined Mechanics Testing

Building upon the foundation laid during ProtoFest, our alpha build featured the

refinement of critical gameplay mechanics. Attendees at AlphaFest had the chance to explore

and test the intricacies of camera movement, unit movement and selection, resource gathering,

and unit construction. This phase allowed us to verify the effectiveness of refinements made

based on ProtoFest feedback and ensure a smoother, more immersive player experience.

Combat Mechanics

A significant highlight of the alpha build was the introduction of combat mechanics. For

the first time, units within the game had the capability to engage in battle with each other. This

implementation brought a new layer of depth to our project, transforming it from a construction

and resource management simulation into a real-time strategy (RTS) game. Attendees were now

able to witness and participate in dynamic battles, adding an exciting dimension to the overall

gaming experience.

Core Gameplay Loop

The focal point of our alpha build at AlphaFest was the combat test, designed to allow the

player to utilize all the mechanics implemented in the game at that time. This level was not

merely a collection of features but a strategic challenge that encapsulated the essence of our

envisioned gameplay. It served as an embodiment of the player's journey within our RTS world,

demanding resource management, strategic thinking, and tactical decision-making.

In the test level, players were entrusted with the task of constructing an army, gathering

the necessary resources by assaulting control points guarded by turrets. The intricacies of our

game unfolded as players navigated through the dynamic process of assembling their forces,

each unit contributing to the growing strength of their army. This phase served as a test of the

intuitiveness of our unit construction mechanics, ensuring that players could seamlessly

transition from resource accumulation to unit deployment. As the players grew their army and

controlled more of the map, they were then faced with the challenge of assaulting a fortified base

defended by more automated turrets. This marked the culmination of our efforts to slowly build

up mechanics into our core gameplay loop as we tested and implemented them. The demo level

was not only a showcase of unit-to-unit interactions but also the first encounter with hostile

structures, emphasizing the strategic importance of balancing offense and defense. The defensive

turrets provided a tangible obstacle, prompting players to consider their army’s numbers,

positioning, and timing as they attacked the resource points and enemy HQ.

Feedback

The response from AlphaFest attendees was overwhelmingly positive. Players enjoyed

the immersive experience of building their armies, strategically maneuvering units, and engaging

in intense battles. The demo level successfully demonstrated the cohesion of our primary

gameplay loop. While the reception was favorable, valuable feedback and minor notes for

improvement were gathered. Attendees provided insights into aspects such as unit balance,

enemy difficulty, and the overall pacing of the demo level. These notes, though minor, are

instrumental in ensuring that our game not only captivates players but also provides a balanced

and engaging experience.

In conclusion, AlphaFest served as a significant milestone, marking the unveiling of our

game's alpha build to a wider audience. The success of our alpha build at AlphaFest affirmed the

strength of our project's core design and mechanics. As we move forward in the development

process, the feedback received will guide us in making targeted refinements. This iterative

approach, consistent with the principles of Spiral Development, positions us to deliver a polished

and compelling gaming experience as we advance towards the final stages of our MQP. The

positive reception, coupled with valuable feedback, reinforces our commitment to delivering a

high-quality and enjoyable gaming experience, and we look forward to incorporating these

insights into the next phases of development.

C Term Playtesting
Starting from C term onwards, a new chapter unfolded in its development journey as the

project shifted from an on-campus endeavor to a remote collaboration. This shift introduced a set

of challenges, with one of the most conspicuous being the limitation on the ease of obtaining

playtesting feedback from the familiar circles of roommates, friends, and on-campus events.

Despite the constraints, this phase marked a turning point that demanded a proactive and

strategic approach to playtesting, especially as we began entering a phase of content

development which required more focus on balance and tuning various features, and thus more

frequent testing. Faced with the need for a more deliberate playtesting approach, I took the

initiative to reach out to colleagues with whom I had previously collaborated on a strategy game.

Leveraging existing professional connections proved to be an effective solution. These

colleagues, already familiar with game development dynamics and possessing a strategic

understanding of gameplay mechanics, became the primary playtesters for Project Flex during

this phase.

With a new set of playtesters secured, the iterative feedback process continued, albeit in a

remote setting. The challenges of physical separation were mitigated by leveraging various

collaboration tools. Video conferencing, shared documents, and communication through the use

of Discord facilitated seamless discussions and exchange of ideas. These tools became

instrumental in maintaining an effective feedback loop, enabling thorough discussions on

gameplay mechanics, user experience, and overall game dynamics.

Unit Testing

As is fitting with the focus of the term on content development, the very first set of

changes put into testing were the expanded unit pool, which focused mainly on infantry units.

The playtesting phase revealed that Time-to-Kill (TTK) was notably high, inadvertently

encouraging players to spam the most cost-effective units damage-wise. This approach

undermined the potential for strategic endurance and varied unit compositions, and hurt units that

were supposed to be centered around their durability such as Heavy Infantry especially weak. In

response to these findings, adjustments were implemented to lower most units' damage output,

requiring at least two shots to defeat comparable units. This tweak emphasized higher health

values, promoting a more nuanced approach to engagements. Furthermore, build times were

equalized more across infantry and vehicle classes, aligning with player feedback to enhance

satisfaction. In addition, the playtesting sessions not only identified areas for improvement but

also sparked ideas for new units. These player-generated concepts were carefully considered,

leading to the implementation of the Tier 2 vehicles that enriched the strategic diversity of the

game. These additions were a direct result of player feedback during testing.

Base Building Rework

In Project Flex’s original concept for base building, the only method of creating new

factories was to find build spots gathered around the map and capture them, forcing the player to

engage with the map in order to expand their production. In addition to this, there were no

resource generation building options, because CPU was the only resource players had to collect.

The original design with build spots was implemented with the intention of providing structure to

base building. However, playtesting quickly revealed that this approach stifled players' strategic

creativity and limited their ability to adapt to evolving battlefield dynamics. The predefined build

spots and limited resources to utilize imposed a rigid framework, inhibiting players from

exploring innovative base layouts and hindering the organic development of their military

infrastructure.

Player feedback during the playtesting sessions became a compass pointing towards a

more player-centric approach. The consensus emerged that the build spots method felt restrictive

and was counterintuitive to the dynamic nature of real-time strategy gameplay. This prompted a

reevaluation of the base-building mechanics with the overarching goal of empowering players to

craft bases that aligned with their strategic vision. In response to these insights, a pivotal decision

was made to transition from the constraining build spots model to a more traditional RTS

approach—free building. This paradigm shift marked a significant departure from the predefined

spots, granting players the freedom to place structures wherever they deemed fit. The change was

transformative, unlocking strategic potential and encouraging players to experiment with diverse

base layouts that suited their preferred playstyle.

The introduction of free building brought a surge of creativity to Project Flex. Players

could now experiment with unconventional base designs, adapt to varying map conditions, and

develop strategies that leveraged the terrain to their advantage. The newfound flexibility elevated

the strategic depth of the game, fostering an environment where players were no longer bound by

predetermined locations but could instead tailor their bases to suit the ever-changing dynamics of

the battlefield. In addition, the addition of the two other resources, Power and RAM, allowed for

a great diversity in unit build costs, allowing the addition of the T2 vehicle units that cost not

only CPU but also Power, a resource previously limited to building construction alone. While the

shift to free building liberated strategic creativity, it also required a delicate balance to prevent

potential abuse. To address this, constraints were introduced based on construct range, ensuring

that while players had the freedom to build anywhere, they still had to consider the proximity of

structures to maintain a cohesive and strategically sound base.

The transition to free building, informed by player feedback and iterative design

principles, had a profound impact on the overall player experience. By embracing a continuous

feedback loop, the development team responded dynamically to player insights, refining the

base-building mechanics iteratively. This player-centric approach aligned seamlessly with the

Spiral Development methodology, where each cycle of feedback and refinement contributed to

the game's evolutionary process. The shift from restrictive build spots to free building not only

addressed player concerns but also enhanced the overall strategic depth of the game. Spiral

development's emphasis on flexibility and responsiveness to user input became evident as

Project Flex evolved organically in response to player experiences, fostering a more engaging

and player-driven real-time strategy experience.

D Term Playtesting
Restoring Cut Content

In the final stages of Project Flex's development, significant attention was given to

reintroducing features that had been previously cut, aiming to enrich the gameplay experience.

One of the main highlights was the reintroduction of vehicles, which underwent rebalancing and

role adjustments. Unlike before, vehicles now required power and multiple RAM, altering their

strategic importance within the game. Feedback from playtesters was positive, with many

appreciating the newfound balance between infantry and vehicles, leading to a more varied and

engaging gameplay experience. It also helpfully mitigated the strength of vehicle rush strategies,

as players could no longer stockpile resources as effectively without crippling other aspects of

production.

Despite the success of reintroducing vehicles, efforts to restore AI-controlled skirmish

units' ability to construct buildings proved more challenging than anticipated. While initially

intended, technical complexities during implementation led to the feature being put on hold once

again. However, the idea of AI construction remains a consideration for future updates, with

potential solutions including implementing a system where AI opponents "cheat" by

spontaneously generating buildings on set timers—a method commonly seen in popular RTS

titles like StarCraft.

In summary, the playtesting phase focused on reintegrating cut features provided valuable

insights into gameplay balance and player satisfaction. By carefully refining and readjusting

previously removed elements, Project Flex was able to offer a more diverse and engaging

gaming experience, laying the foundation for a successful final release.

New Features

Also included in this term was a significant effort to incorporate new

player-accommodating features based on player feedback and requests. Among the most

prominent requests from players was the desire for a minimap and hotkeys to streamline map

navigation and unit management. The implementation of the minimap proved to be highly

successful, significantly enhancing the ability to deploy units across multiple locations without

diminishing the importance of player skill in analyzing the map and predicting strategic

movements.

However, the reception to hotkeys was more mixed. While hotkeys for assigning units to

command groups and panning to the closest unit or structure were implemented, they were not as

well-received as initially anticipated. This lukewarm response was attributed in part to the

addition of the minimap, which already streamlined map navigation to a considerable extent.

Further playtesting is deemed necessary to determine whether the inclusion of hotkeys enhances

or overly complicates the player experience.

Overall, the focus on making Project Flex more accessible and user-friendly for casual

players was largely successful. By listening to player feedback and implementing requested

features, the development team was able to enhance the game's accessibility without

compromising its strategic depth or the impact of player skill. Moving forward, continued

playtesting and iteration will be essential to ensure that new features enhance the overall

gameplay experience in a meaningful way.

Post Mortem
Jason Asidi
What Went Right

Throughout the development journey of Project Flex, I encountered numerous hurdles

and triumphs that shaped the way I approached the project. One of our most significant

achievements was the creation of a fully functional game by the project's completion. This

milestone stands as a testament to our perseverance and dedication to the project's success. I am

particularly proud that we reached a technically "finished" build halfway through A term,

showcasing the benefits of adopting a spiral development approach. This early milestone not

only validated our development process but also provided us with a solid foundation from which

to iterate and refine our game further.

Despite the inevitable setbacks and challenges we faced along the way, we managed to

create an experience that resonated with players and ourselves alike. The journey was not

without its difficulties, there were many significant obstacles both expected and unforeseen.

However, our ability to overcome these challenges and adapt to unforeseen circumstances

demonstrated our resilience and commitment to completing this project. Despite the setbacks, the

satisfaction of seeing players enjoy our creation made every moment of struggle worthwhile.

Looking back on our project, I realize that it has given me invaluable experience for

future endeavors. Working within the constraints of time and resources taught me valuable

lessons in project management and resource allocation. The skills and insights gained from

navigating these challenges will undoubtedly serve me well in our future endeavors as I enter the

game development industry full time. While the journey was challenging, it was also immensely

rewarding, leaving me with a sense of accomplishment and a wealth of knowledge to carry

forward into future projects.

What Went Wrong

During the development of Project Flex, the team encountered various challenges that

impacted the project's progress and outcomes. From poor communication to poor planning,

several factors combined to result in delays and compromises that meant the project wasn’t able

to live up to its full potential.

One notable issue had been the occurrence of several issues stemming from poor

communication with both the project advisor and teammates. In the iterative and fast-paced

environment of Spiral Development, effective communication is paramount to ensure that

everyone remains aligned on project goals and milestones. As deadlines approached,

inadequate communication between team members and the project advisor led to

misunderstandings regarding project priorities and progress updates. This lack of clear

communication ultimately resulted in delays and forced us to adapt timelines and expectations

accordingly. The lack of clear communication can lead to misunderstandings, delays, and

ultimately, hinder the progress of the project.

Another challenge encountered during the development process was the significant

amount of time I spent grappling with third-party plugins.While these plugins offer convenient

solutions for certain functionalities, in a larger team setting, coding behaviors and tools

from scratch may have been a more optimal approach. Custom-built solutions would have

allowed for greater adaptability and customization tailored specifically to the game's

requirements, potentially reducing the time and effort spent troubleshooting compatibility issues

or limitations of third-party tools.

Furthermore, halfway through the development cycle, the project transitioned to a solo

endeavor, further exacerbating the challenges caused by poor communication. With the project

now solely managed by myself, the workload increased significantly, necessitating adjustments

to the project scope and expectations. Even worse, this happened just as I was starting a new full

time job, so my ability to both work on the project and conduct playtesting was greatly reduced.

In addition, as I had to return home to begin work, I had much less availability to the student

body for playtesting during the last stretch of development, and had to lean even more on my

group of colleagues for most of my playtesting. As a result, there was no chance that we’d be

able to replace the placeholder assets in the build, and I had to scale down the scope of both the

unit and enemy rosters and enemy AI. These adaptations were essential to ensure that the project

remained feasible within the constraints of the revised development timeline.

Overall, the problems we faced during development can largely be traced to both

poor communication between all members involved with the project and lethargic

adaptation to changing circumstances. Despite the obstacles encountered, my ability to adapt

and make necessary adjustments ensured that the project remained feasible within the constraints

of the revised development timeline. Moving forward, these experiences will serve as valuable

insights to improve my communication practices and streamline my development workflow for

future projects.

What We Learned

Reflecting on the development journey of our project, several key lessons have emerged

that will undoubtedly shape how I approach future endeavors. One crucial takeaway is the

importance of prioritizing functionality over perfection. While a modular system is

advantageous, dedicating excessive time and resources to refining intricate features may not

always yield the best results. Instead, I learned the value of allocating our efforts towards further

playtesting and addressing features that resonate most with our audience. This is always

something I’ve struggled with personally due to some of my perfectionism in wanting to have a

system that can do everything I’d ever want it to do, but this project has really showcased how

damaging this can be when working on tight deadlines and minimal resources.

Another vital lesson learned is the necessity of flexibility and adaptability in my

development approach. It is crucial not to become entrenched in a particular method or tool

if it proves to be a hindrance to progress. I discovered that being willing to switch approaches

or tools when faced with obstacles can lead to more efficient problem-solving and ultimately

accelerate development. Having faced numerous issues with the 3D pathfinding plugin used

during the project made me with I had buckled down and simply made my own from scratch that

would fit all my needs from the project back from the very beginning, and in the late stages I did

not appreciate several of the compromises I had to make to get the unstable pathfinding system

working again after there was a big update halfway through D term development.

Furthermore, effective communication emerged as a cornerstone of successful project

management. I realized that maintaining constant communication, even when faced with

challenges or setbacks, is essential for keeping all stakeholders informed and aligned. Professor

Yarbrough notes here, his belief that all “Production is Communication.” By providing regular

updates and addressing concerns promptly, it’s much easier to mitigate potential tension within

the team and foster a more collaborative and supportive environment.

Finally, I gained a newfound appreciation for the value of playtesting and user feedback.

Embracing the mantra of "test early and test often," we learned that involving playtesters

from the early stages of development can provide invaluable insights and perspectives.

Regardless of the refinement level of a build or feature, the diverse viewpoints of playtesters can

uncover unforeseen issues and inspire innovative solutions to existing problems. Moving

forward, I’m going to try to integrate playtesting into my development process as a fundamental

component of creating compelling and engaging experiences for the intended audience.

Works Cited
1. Casteel, B. “Wayward.” (2015, March 18). Random thoughts on resource management in

RTS. Wayward Strategy.
https://waywardstrategy.com/2014/12/18/random-thoughts-on-resource-management-in-r
ts/

2. Casteel, B. “Wayward.” (2021, June 19). Some thoughts about the “early game” phase of
RTS. Wayward Strategy.
https://waywardstrategy.com/2021/06/18/some-thoughts-about-the-early-game-phase-of-r
ts/

3. Doll, T. (2020, November 24). Time as a resource part 1: Single Player Map Design.
Wayward Strategy.
https://waywardstrategy.com/2015/05/26/time-as-a-resource-part-1-single-player-map-de
sign/

4. Doll, T. (2020, November 24). Time as a resource part 2: Multiplayer map design.
Wayward Strategy.
https://waywardstrategy.com/2015/06/07/time-as-a-resource-part-2-multiplayer-map-desi
gn/

5. Doll, T. (2020, November 24). Unit Design, clarity of roles and redundancy. Wayward
Strategy.
https://waywardstrategy.com/2018/05/17/unit-design-clarity-of-roles-and-redundancy/

6. King, D. (2021, December 9). Thread by @delaneykingrox on thread reader app. Advice
for Spiral Development in Game Development.
https://threadreaderapp.com/thread/1468804328857038849.html

