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Abstract 

 Sustainable energy management has become a high priority for many countries. A 

great majority of our energy stocks comes from non-renewable fossil fuels, which are 

currently dwindling. Biofuels are one of the most promising solutions being researched to 

address this urgent problem. In particular, using transesterified Jatropha curcas L. oil 

appears to be a promising method of producing biofuels due to several properties of the 

plant, such as the high oil yield of its seeds and the fact that it does not compete with food 

crops.  

 The literature mentions many attempts of using zeolites as solid acid catalysts in 

transesterification reactions of vegetable oils with high free fatty acid (FFA) content. The acid 

catalysis prevents soap formation and emulsification, which can be observed in the basic 

process. The use of a solid catalyst makes the separation and purification of the final 

products steps easier to implement in comparison to catalysis in homogeneous conditions. 

However, the efficiency of the zeolite in the heterogeneous transesterification reaction of 

vegetable oil is not well-known yet and varies on the structure of the catalyst used.  

 This project aims at better understanding the relationship between the type of 

zeolite used and the yield of this particular reaction using reconstituted Jatropha oil from 

Sesame seed oil, which has a similar composition. Five different types of zeolites were 

compared: Y, X, Beta, Mordenite & ZSM-5. Non-catalyzed reactions as well as 

homogeneously catalyzed – with H2SO4 – reactions were also implemented. Since we take 

advantage of the catalytic properties of different zeolites, the one that were not already in 
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hydrogen form were ion-exchanged and the ion-exchanged species were then analyzed by 

Energy-Dispersive X-Ray spectroscopy (EDX). 

 Three alcohol-to-oil ratios were tested at atmospheric pressure and at T=115°C for 

each catalyst in order to determine the influence of this ratio. All experiments were 

conducted in an airtight autoclave with butan-1-ol in order to obtain a biofuel whose cetane 

index is higher than regular petroleum-based diesels. 

  



5 
 

Table of contents 

I. Introduction ................................................................................................................................... 11 

II. Background .................................................................................................................................... 15 

II.1 – Economic and Environmental aspects ...................................................................................... 15 

II.2 – General aspects of biofuels ...................................................................................................... 18 

II.3 – Jatropha Curcas ........................................................................................................................ 20 

II.3.1 –The plant ............................................................................................................................. 20 

II.3.2 – The great potential of the plant ........................................................................................ 21 

II.4 – Transesterification of Jatropha oil ............................................................................................ 31 

II.4.1 – Overhaul presentation of the reaction .............................................................................. 31 

II.4.2 – Parameters of the reaction ............................................................................................... 33 

II.5 – General presentation of the Zeolites ....................................................................................... 44 

II.5.1 – Zeolites’ structures ............................................................................................................ 44 

II.5.2 – Applications ....................................................................................................................... 47 

II.5.3 – Properties and structures .................................................................................................. 49 

III. Determination of the Acid Value of the Sesame oil .................................................................. 53 

III.1- Introduction .............................................................................................................................. 53 

III.2- Experimental ............................................................................................................................. 54 

III.2.1 - Experimental device .......................................................................................................... 54 

III.2.2 - Chemical reaction and location of the equivalence .......................................................... 55 

III.3 - Results ...................................................................................................................................... 57 

III.4 – Conclusions .............................................................................................................................. 58 

IV. Determination of the Fatty Acid Composition of the Sesame oil – Recreation of artificial 
Jatropha oil ............................................................................................................................................ 59 

IV.1 – Introduction – Necessity of the FA analysis ............................................................................ 59 

IV.2 – Theory – Methods of analysis of the FA composition of vegetable oils ................................. 61 

IV.2.1 – The Transesterification step ............................................................................................. 61 

IV.2.2 – The separation of the compounds ................................................................................... 62 

IV.2.3 – The analysis of the compounds ........................................................................................ 63 

IV.3 – Experimental ........................................................................................................................... 63 

IV.3.1 – Transtesterification in alkaline medium ........................................................................... 64 

IV.3.2 – Post-treatment of the transesterified oil ......................................................................... 66 

IV.3.3 – Gas Chromatography and Mass Spectroscopy analysis (GC-MS) ..................................... 67 



6 
 

IV.3.4 – Recreation of the artificial Jatropha oil ............................................................................ 68 

IV.4 – Results ..................................................................................................................................... 69 

IV.4.1 – GC-MS Analysis ................................................................................................................. 69 

IV.4.2 – Amounts of FAs added to the Sesame oil ........................................................................ 72 

IV.5 – Conclusions .............................................................................................................................. 73 

V. Ion-exchange process on the 13-X zeolite .................................................................................... 75 

V.1 – Introduction .............................................................................................................................. 75 

V.1.1 – necessity of the ion-exchange step ................................................................................... 75 

V.1.2 – ion exchange processes ..................................................................................................... 76 

V.1.3 – Post treatment of the ion-exchanged zeolite ................................................................... 78 

V.2 – Experimental ............................................................................................................................ 79 

V.2.1 – Pretreatment ..................................................................................................................... 79 

V.2.2 – Ion-exchange step ............................................................................................................. 79 

V.2.3 – Conductimetric analysis .................................................................................................... 81 

V.2.4 – EDX spectroscopy analysis ................................................................................................ 85 

V.3 – Results ...................................................................................................................................... 86 

V.3.1 – Conductimetric analysis .................................................................................................... 86 

V.3.2 – Basicity of the untreated zeolite 13-X - Washing step and pH variations ......................... 90 

V.3.3 – EDX spectroscopy analysis ................................................................................................ 92 

V.4 – Conclusions ............................................................................................................................... 95 

VI. Transesterification of recreated Jatropha oil with zeolites as catalysts ................................... 96 

VI.1 – Introduction ............................................................................................................................. 96 

VI.1.1 – Composition of Jatropha oil ............................................................................................. 96 

VI.1.2 –The reaction ...................................................................................................................... 99 

VI.2 – Experimental ......................................................................................................................... 102 

VI.2.1 – Reactants and Parameters of reaction ........................................................................... 102 

VI.2.2 – Experimental device ....................................................................................................... 106 

VI.2.3 – Analysis of the samples .................................................................................................. 108 

VI.3 – Results and discussion ........................................................................................................... 109 

VI.3.1 – Homogeneous and heterogeneous catalysis ................................................................. 109 

VI.3.2 – Influence of the molar butanol-to-oil ratio .................................................................... 111 

VI.3.3 – Compared efficiencies of the zeolites ............................................................................ 112 

VI.3.4 – Global results of the transesterification reactions ......................................................... 120 

VI.4 – Conclusions ............................................................................................................................ 121 



7 
 

VII. Conclusions .............................................................................................................................. 122 

VIII. Recommendations .................................................................................................................. 124 

IX. Appendices .............................................................................................................................. 132 

Appendix A: Standard curves obtained for the calibration of the gas chromatograph .................. 132 

Appendix B: Determination by calculation of the quantity of FA needed to recreate Jatropha oil 
from Sesame oil ............................................................................................................................... 134 

Appendix C: Determination of the butanol-to-oil weight ratios corresponding to the three molar 
ratios ................................................................................................................................................ 138 

Appendix D: EDX Analysis reports ................................................................................................... 141 

Appendix E: EnzyChrom Assay Kit’s manual .................................................................................... 154 

Appendix F: Determination of the glycerol concentration of a sample .......................................... 155 

Appendix G: Results of the transesterification reactions with the different catalysts. 5 zeolites (13-
X-type, Y-type, ZSM-5, Mordenite & Beta), H2SO4 and non-catalyzed reaction. Butanol-to-oil ratios 
tested: 3:1, 6:1 and 15:1. ................................................................................................................ 158 

Appendix H: Specifications and characteristics of the Parr reactor ................................................ 179 

 

 

  



8 
 

List of figures 

Figure 1 - The annual range in mass of total FFCO2 emissions. The range was calculated from the maximum and 
minimum monthly values of total FFCO2 emissions for the calendar year. The dashed line is a linear regression 
through the annual values .................................................................................................................................... 16 
Figure 2 - Per-capita energy consumption by sectoral end use in (A) the developing world and (B) the developed 
world (in gigajoules) in 2000[4] ............................................................................................................................ 17 
Figure 3 - Jatropha field in Chiapas, Mexico (3a); Jatropha plant and whole seeds in Guanacaste, Costa Rica (3b)
 .............................................................................................................................................................................. 21 
Figure 4 - Compositions of Jatropha fruits[8] ........................................................................................................ 22 
Figure 5 - Balances of the three steps of the transesterification reaction ............................................................ 33 
Figure 6 - Tetrahedra of oxygen coordinated with silicon (left) and aluminum (right) ......................................... 45 
Figure 7 - Examples of a truncated octahedron (left), the β-framework building unit and a truncated 
cuboctahedron (right), the α-framework building unit[83] ................................................................................... 46 
Figure 8 - The structure of the A-type zeolite, assembly of truncated octahedron and double four-member rings 
(D4R) .....................................................................................................................................................................  47 
Figure 9 - The three channel system. The 1-D channel system of the L-type zeolite (a). The 2-D channel system of 
Mordenite (b). The 3-D channel system of Faujasite (c).[90] ................................................................................ 52 
Figure 10 – Experimental set up for the determination of the AV of the sesame oil by titration with KOH in 
ethanol .................................................................................................................................................................. 55 
Figure 11 - Different forms of phenolphthalein depending on the value of pH ..................................................... 55 
Figure 12 - Evolution of the coloration of the solution around the equivalence (Left: before the equivalence; 
middle: equivalence; right: after the equivalence) ................................................................................................ 57 
Figure 13 - Skeletal formula of the four main FA found in Sesame oil .................................................................. 59 
Figure 14 - Overall FAME production reaction from triglycerides ......................................................................... 64 
Figure 15 - Non-diluted sample (chromatogram) ................................................................................................. 70 
Figure 16 - 100-time diluted sample (chromatogram) .......................................................................................... 70 
Figure 17 - Flow diagram for countercurrent operation ....................................................................................... 77 
Figure 18 - Flow diagram for crossflow operation [111] ....................................................................................... 77 
Figure 19 - Balances of the three ion-exchange processes on zeolite 13X ............................................................ 78 
Figure 20 – Ion-Exchange set up using a solution of Ammonium Chloride (NH4Cl) at 1mol.L-1 at a constant 
temperature of 65°C for 40 minutes ..................................................................................................................... 80 
Figure 21 – Experimental set up for the titration of the ion-exchange solutions (containing NH4

+) by an aqueous 
solution of Potassium Hydroxide (KOH) at 4.10-3mol.L-1 ....................................................................................... 83 
Figure 22 - Dosages of NH4

+ by OH- followed by conductimetry ........................................................................... 87 
Figure 23 – Number of moles of NH4

+ exchanged vs. experiment n° .................................................................... 88 
Figure 24 - Langmuir and Freundlich adsorption models applied to our ion-exchange process ........................... 89 
Figure 25 - EDX Analysis of the 13-X zeolite Before calcination and the four ion-exchange steps ........................ 92 
Figure 26 - EDX Analysis of the 13-X zeolite After the four ion-exchange steps and calcination .......................... 92 
Figure 27 - EDX Analysis of the ZSM-5 zeolite before calcination ......................................................................... 94 
Figure 28 – General structure of a triglyceride with R1, R2 and R3 saturated or unsaturated alkyl groups ........... 96 
Figure 29 - Acid-catalyzed mechanism of the transesterification reaction ......................................................... 100 
Figure 30 - Overhaul balance of the saponification reaction .............................................................................. 101 
Figure 31 -The transesterification device: Stirring controller, autoclave, heating mantle (a); open reactor (b); 
reactor’s head (c); temperature controller and thermocouple (d) ...................................................................... 108 
Figure 32 - Transesterification of recreated Jatropha oil with butanol at 115°C using H2SO4 (1%wt.) as liquid acid 
catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) .......................................................................... 110 



9 
 

Figure 33 - Transesterification of recreated Jatropha oil with butanol at 115°C using Y-type zeolite (1%wt.) as 
solid acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) ........................................................... 113 
Figure 34 - Transesterification of recreated Jatropha oil with butanol at 115°C using 13-X-type zeolite (1%wt.) as 
solid acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) ........................................................... 113 
Figure 35 - Transesterification of recreated Jatropha oil with butanol at 115°C using Beta zeolite (1%wt.) as solid 
acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) ................................................................... 115 
Figure 36 - Non-catalyzed transesterification of recreated Jatropha oil with butanol at 115°C for three butanol-
to-oil molar ratios (3:1, 6:1 & 15:1)..................................................................................................................... 116 
Figure 37 - Transesterification of recreated Jatropha oil with butanol at 115°C using Mordenite (1%wt.) as solid 
acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) ................................................................... 117 
Figure 38 - Models of the four main Fatty Acids and determination of the chain length taking into account the 
spatial set up of the molecules (dPalmitic acid = 1.387 nm, dStearic acid = 0.802 nm, dOleic acid = 1.368 nm, dLinoleic acid = 
1.249 nm) ............................................................................................................................................................ 118 
Figure 39 - Transesterification of recreated Jatropha oil with butanol at 115°C using ZSM-5 (1%wt.) as solid acid 
catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) .......................................................................... 119 
Figure 40 - Maximum conversions reached for each catalyst and each of the three butanol-to-oil molar ratio 
(3:1, 6:1 & 15:1) in the transesterification reaction of recreated Jatropha oil with butanol at 115°C ................ 120 
Figure 41 – The OD depends on the glycerol concentration in each well ............................................................ 155 

 

  



10 
 

List of tables 

Table 1 - Examples of production of biogas by digestion of the seedcake in anaerobic reactors ......................... 23 
Table 2 - Some physicochemical properties of Jatropha curcas oil and Dielsel fuel [5]......................................... 27 
Table 3 - Compared standards (ASTM) for petroleum-based diesel and biodiesel[23] ......................................... 29 
Table 4 - Uses of the different part of Jatropha plants in direct energy or energy carriers .................................. 30 
Table 5 - Specific gravity of the alcohols and organic co-colvent (Note: most vegetable oils have a specific 
gravity within the 0.80-0.95 range) ...................................................................................................................... 37 
Table 6 - Classification and performances of different catalysts used in transesterification of several vegetable 
oils ......................................................................................................................................................................... 44 
Table 7 - pKa of the Fatty Acids found in sesame oil [95]...................................................................................... 56 
Table 8 - Sesame oil composition (in % FA)[96, 97] ............................................................................................... 60 
Table 9 - FA profile of the triglycerides in Jatropha oil .......................................................................................... 68 
Table 10 - Results of the GC-MS on the diluted sample of sesame oil - Quantity of matter [mol] of each FAME in 
1 gram of oil .......................................................................................................................................................... 71 
Table 11 - Amount of each FA in the FFA fraction of the Jatropha oil ................................................................... 72 
Table 12 - Quantity of matter and weight of each FA added per gram of sesame oil .......................................... 73 
Table 13 - Molar ionic conductivity of some useful ions ....................................................................................... 84 
Table 14 - Results of the dosages of the NH4

+ ions with OH- ................................................................................. 88 
Table 15 - pH of the washing solutions ................................................................................................................. 91 
Table 16 - Weight and Atomic composition of both samples ................................................................................ 93 
Table 17 - Weight and Atomic composition for the three analyses ...................................................................... 94 
Table 18 - FA composition[118] and FFA content[108] of common plants oils ..................................................... 97 
Table 19 - FA profile of the triglycerides in Jatropha oil ........................................................................................ 97 
Table 20 - Structural characteristics of the zeolites used (* ZSM-5 structure obtained thanks to the idealized unit 
cell composition[121] and the outcome of the EDX Analysis) ............................................................................. 104 
Table 21 - Peaks’ areas for the calibration sample, the studied sample and Relative peak area (Arbitrary unit) 
ND1: Non Detected .............................................................................................................................................. 134 
Table 22 - Amount of each FA in the FFA fraction of both oils ............................................................................ 135 
Table 23 - Amount of FAs added per gram of sesame oil .................................................................................... 137 
Table 24 – Amounts of each liquid according to the butanol-to-oil molar ratio ................................................. 139 
Table 25 – Weight of each zeolite with respect to the molar ratio in each batch ............................................... 140 
Table 26– theoretical value of the maximum glycerol concentration reached with respect to the butanol-to-oil 
ratio ..................................................................................................................................................................... 157 

   



11 
 

I. Introduction 

 From the industrial revolution in the 18th and 19th centuries until now, mankind’s 

needs in energy have been growing faster and faster to enable the development of the 

industries producing the word’s goods and fuels necessary to meet transportation and 

residential needs. Nonetheless, the natural resources on which the economy and growth are 

based have been dwindling and finding new sources of renewable energies, more than a 

mere option, has become a necessity nowadays.  

 On top of the urge to address the concern of a fossil fuel shortage, it is also crucial to 

find a new source of energy that is going to be sustainable and which will meet 

environmental requirements. Many attempts have been developed and one of them 

particularly attracted scientists’ and industrialists’ attentions: biofuels. 

 Biofuels aims at making fuels from biomass. All parts of organic waste from plants 

and animals can be used in order to produce several kinds of biofuels mainly liquid and 

gaseous according to different processes. This study focused on the asset that is represented 

by the vegetable oil and more particularly the great potential that lies in Jatropha oil. This oil 

comes from a plant whose characteristics make it a strong candidate to the production of 

biodiesel on a large scale. On top of avoiding the unfavorable competition with the food 

crops, the plant has been proven to have high oil content and to be able to grow under harsh 

climatic conditions. The other parts of the plants (mainly the fibrous material from the 

wood-type by-products) can also be taken advantage of in the production of other types of 

fuels and extra-energy. And last but not least, the biodiesel produced from raw Jatropha oil 

does not require any modification of the engines and can be used exactly in the same way as 

petroleum-based diesel. 
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 It was important to understand how to make the most of all the assets of the plant 

and how to produce biodiesel efficiently from Jatropha oil. The physical and chemical 

characteristics of the raw oil added constraints to the reaction transforming it into biofuel. 

Indeed, the major concern came from the high Free Fatty Acid (FFA) content of Jatropha oil 

in comparison to other vegetable oils whose use in biodiesel production has already been 

studied in depth. This forced us to adapt the type of catalysis and to choose a catalyst able to 

both esterify the FFA and transesterify the triglycerides of the oil and at the same time, 

avoid the formation of unwanted species by saponification (which renders the separations 

steps very time and energy consuming). Taking into consideration this particular aspect led 

us to choose acidic species as catalysts. Amongst dozens of types of acid catalyst, the choice 

of a heterogeneous species was done regarding separation and corrosion aspects.  

 The transesterification and esterification reactions can be implemented in thousands 

of different ways acting on all the reaction parameters such as the type or reactor, the 

temperature, the pressure, the nature of the transesterifying alcohol the amount of each 

reactant, the quantity of catalyst… In all the experiments implemented, all the parameters 

were kept identical from one experiment to another except the alcohol-to-oil molar ratio. 

Three different molar alcohol-to-oil ratios were tested (3:1, 6:1 and 15:1) in order to 

determine if a general trend can be observed when the amount of alcohol increased with 

respect to the number of moles of triglycerides.  

 The nature of the alcohol is also a parameter of paramount importance in that 

reaction. The chain length as well as the structure of the alcohol chain (linear versus 

branched) not only play on the kinetics (reaction rate) and thermodynamics (feasibility and 

yield) of the reaction but also dramatically influences the properties and efficiency of the 

final biodiesel. The only alcohol tested in all the batches was butan-1-ol. 
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 Besides the production of biodiesel from Jatropha oil, one of the goals of the project 

was first and foremost to compare the efficiency of different varieties of zeolites as solid acid 

catalysts of the transesterification reaction. The particular structures of the zeolites 

combined with their acidic properties make them potentially efficient catalysts of the 

reactions between the alcohol and the FFA on the one hand, and between the butanol and 

the triglycerides of the oil on the other hand. Each zeolite has a particular framework 

characterized, amongst others, by the dimension of the channels, the pore size and the 

Silicon-to-Aluminum ratio. The nature of the positive counter-ion also has a strong influence 

on the properties of the zeolites. Frameworks containing hydrogen ions H+ as positive 

counter-ions exhibit Brønsted acidic properties. The influence of the nature of this cation 

was not studied since all the zeolites used were either already in their H-form or went 

through a four-step ion-exchange process in order to be in the desired form. Five different 

types of zeolites were tested (ZSM-5, X-type, Y-type, Mordenite and Beta zeolites) and 

compared to a non-catalyzed reaction and to a homogeneously catalyzed reaction with 

H2SO4. 

 It is important to note that due to the difficulties to obtain real raw Jatropha oil from 

suppliers, the oil used was Jatropha-type oil carefully reconstituted from unrefined Sesame 

oil. The whole interest of choosing Sesame oil as a starting point was to begin with oil which 

nature and proportion of each Fatty Acid (FA) were similar to the ones of Jatropha oil. This 

reconstitution first of all implied an accurate analysis of the Sesame oil’s composition by Gas 

Chromatography-Mass Spectroscopy (GC-MS) analysis, measurement of the Acid Value (AV) 

of the oil and eventually, addition of the missing FFAs in the right proportions to the initial 

Sesame oil in order to have reconstituted Jatropha oil with the exact same composition and 

properties as raw Jatropha oil.  
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 In summary, the specific objectives of the project were to: 

- Recreate Jatropha oil from unrefined Sesame oil by measuring the AV of the latter 

as well as determining accurately the composition of its FA. The goal of those two 

primary steps was to add the right amount of each FFA to the oil; 

- Obtain each zeolite in its H-form. The natures of the counter-ions of the zeolites 

whose counter-ion was unknown, was determined by Energy-Dispersive X-ray 

spectroscopy (EDX) analysis. Ion-exchange steps were implemented for the one 

which was not in its H-form. All zeolites were calcined before being used as 

catalyst; 

- Implement the transesterification (and esterification) reaction of the Jatropha-

type oil using the different zeolites and, in each case, for the three butanol-to-oil 

ratios; 

- Follow the conversion of the reaction by measuring its yield throughout the 

reaction time thanks to a colorimetric method; 

- Understand the influence of the alcohol-to-oil ratio in the reaction; 

- Compare the efficiencies of the zeolites and understand their differences with 

respect to their properties. 
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II. Background 

II.1 – Economic and Environmental aspects 

 In the past few decades, dozens of studies have been done in order to find 

alternatives to the petrol-based fuels on which our entire economy has been based for more 

than 60 years. By definition, fossil fuels are non-renewable and the reserves of oil, coal and 

natural gas are depleting dramatically. It is very hard to predict with accuracy when the fossil 

fuels supplies are going to be exhausted but even if scientists do not agree on the amount of 

time remaining before the shortage of fossil fuels, the great majority of them is aware that it 

is just a matter of time before the reserves are totally diminished. Shafiee and Topal [1] 

recently developed a new formula to compute the depletion of the three main non-

renewable fuels: oil, coal and gas. The results of the calculations exhibited alarming 

acknowledgement: the approximate depletion times would be 35, 107 and 37 years 

respectively. 

 On the other side, the environmental and climatic impacts of the petroleum-based 

fuels have been concerning scientists and government all over the word for years. Among all 

the drawbacks of the use of traditional fossil fuels, the one which attracts more attention is 

the gigantic amount of carbon dioxide (CO2) that their combustion implies. The total mass of 

CO2 emissions due to fossil fuel over the 1950 to 2006 period of time was calculated by 

Andres et al. [2]. The plot on Figure 1 shows the growth in the amplitude of the annual cycle 

over 56 years. From the data, the average Fossil Fuel CO2 (FFCO2) emission was multiplied by 

more than 4.5 in less than 60 years. 
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Figure 1 - The annual range in mass of total FFCO2 emissions. The range was calculated from the maximum 
and minimum monthly values of total FFCO2 emissions for the calendar year. The dashed line is a linear 

regression through the annual values 

 Two approaches to unravel the FFCO2 emissions problem are commonly used. The 

first one tackles the consequence of the fossil fuels consumption and tries to find solutions 

to limit the environmental impact of the emissions without necessarily acting on the 

emissions themselves. Solutions such as capture of the CO2 followed by ocean storage, 

geological storage or mineral carbonation were studied and proposed[3]. Unlike the first 

approach, the second one focuses on the source of the problem: the FFCO2 emissions. This 

second approach aims at developing innovative processes and new types of fuel which could 

be used to substitute the current processes and fuels in order to cut the CO2 emissions. 
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Figure 2 - Per-capita energy consumption by sectoral end use in (A) the developing world and (B) the 
developed world (in gigajoules) in 2000[4] 

  Figure 2 (A & B) show the distribution (in both the developing and in the developed 

world) of the consumption of energy from the primary sources (of which fossil fuels 

represent 95% of the total consumption with petroleum - 44%, natural gas - 26% and coal - 

25%).[4] All the human activities in both developing and developed worlds are closely 

related to the abundance of fossil fuels and particularly the proficiency of petroleum. 

Solutions to reduce the weight of the petroleum-based fuels in human activities are being 

developed. However, many of those new options are efficient and economically acceptable 

but require dramatic changes in order to adapt technologies to those new sources of energy, 

more particularly in the transportation area. 

 

  Biofuels seem to be a viable solution to overcome this problem. Indeed, producing 

biofuels aims at using biomass to produce a fuel (liquid fuels, biogases) which could be either 
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mixed with regular fuels or even used as a total replacement of the common types of fuels. 

Scientists and industrialists start to understand the full potential of biomass and natural 

materials that were considered so far as organic wastes. On top of the thousands of 

compounds that can be produced from biomass, its energetic potential is considered by 

many as a promising way to face the pending energetic crisis.  

II.2 – General aspects of biofuels 

 Unlike petroleum-based fuels, biofuels are renewable and non-fossil and they can be 

found in many different forms. They can be produced from oil, alcohol obtained by 

fermentation processes, wood coal or gaseous fuels derived from plants and animal 

biomass. Since the start of their use as energy sources, biofuels haven’t stopped evolving in 

order to match more and more the objectives of the sustainable development. This rapid 

evolution allowed us to classify them into three groups: the first, the second and the third 

generation. 

 

 First-generation biofuels gather solid biofuels, bioalcohols, biodiesels processed from 

vegetable oils (in some cases the vegetable oil can be used as a fuel without any chemical 

modification), biogas and syngas, all produced from vegetable oil, starch and sugars.  

 The first generation of biofuels has the huge advantage that the production methods 

of the crops are very well understood and controlled. Also, the liquid fuels (biodiesels and 

bioalcohols) can be used in regular engines initially designed to be run with petroleum-

derived fuels without any modification of their technologies.  
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 However, the first generation of biofuels presents drawbacks which question their 

sustainability. Growing the crops dedicated to biofuel production takes over arable land that 

could be use for food production. This is highly questionable knowing that in the meantime 

925 millions of people starved in 2010. (Source: Food and Agriculture Organization (FAO) of 

the United Nations) Also, when the cost of transportation is taken into account, the 

energetic and CO2 emissions balances are mediocre. Finally, the development at a large scale 

of the cultivation of crops dedicated to biodiesel production would interfere with 

ecosystems. 

 In front of all those disadvantages, the urge to develop a second generation of 

biofuels was a priority. 

 

 Second-generation biofuels are produced from more sustainable biomass. Indeed, 

the main criterion in the development of that second generation of biofuels was to eliminate 

the dependence towards feedstock.  

 Biofuels belonging to the second generation are mostly bioalcohols issued from the 

fermentation of organic wastes (cellulosic material) or synthetic diesel obtained by pyrolysis, 

gasification and Fischer-Tropsch process. (See section I.3.2.1). 

 The advantages of the second generation of biofuels make them good candidates to 

progressively replace traditional fuels.  

 

 Third-generation biofuels based on algae and microalgae have been arising in the 

past few years. In terms of oil, theoretical yields of microalgae are tremendous in 

comparison to terrestrial plants. Due to the lack of studies, many questions have to be 

addressed (regarding the economic and technical feasibility of the cultures and their impact 
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on the environment) in order to know the long-term potential of this new generation of 

biofuels. According to a report of GreenTech Market research (GMT, 2010), a fourth 

generation of biofuels using petroleum-like hydroprocessing or advanced biochemistry 

starts appearing. Solar-to-fuel method based on the Joule-biotechnology is an example of 

the implementation of those emerging technologies. 

 

 Among those different options, scientists and industrialists have focused their 

attention on the most promising candidates. One of them, Jatropha Curcas, particularly 

retained their attention due to its high energetic potential combined with properties of the 

plant that allow it to grow on lands unsuitable for food crops. 

II.3 – Jatropha Curcas 

II.3.1 –The plant 

 Jatropha curcas is originally from the Mexican/Central American region but was 

introduced in other tropical and subtropical regions of the world where its acclimation made 

its cultivation possible. 

 This perennial species is a seed-bearing shrub or small tree (biggest specimens can 

reach 6 m) that has the quality to adapt and grow under numerous climatic conditions from 

dry tropical to moist subtropical or wet tropical forest. It can support rainfalls from 

200mm/year to 2380mm/year, 200mm/year being sufficient for seed production. It does 

best in drier tropical area and is undemanding on soil, being well adapted to poorer soils.[5] 
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 Jatropha curcas fruits are 2.5cm long, ovoid, black and have 2 or 3 halves. Seed 

production goes from 0.4 to over 12t/ha/year. Kernels and seeds have a high oil content. On 

average, 100 kg of whole seeds (hulls/husks + kernels) lead to 28-30 kg of oil.[6] 

 Except for a very few species, the great majority of Jatropha curcas fruits contains 

toxins that makes them non-edible. The main toxins are phorbol esters (biodegradable 

biotoxin), hydrogen cyanide, toxalbumin curcin (phytotoxin) and tetramethylpyrazine 

(TMPZ)[7]. 

 

 

Figure 3 - Jatropha field in Chiapas, Mexico (3a); Jatropha plant and whole seeds in Guanacaste, Costa Rica 
(3b) 

II.3.2 – The great potential of the plant 

 Several projects have been running worldwide (India, Zimbabwe, Mexico…) to 

implement the culture of Jatropha with a view to producing energy from the plant. Indeed, 

most parts of the plant can be used in energy production. [8] The potential of the plant 

mainly comes from four parts: The wood-products, the shells hulls and husks, the seed oil 

and eventually the press-cake obtained after press of the whole seeds. 
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Figure 4 - Compositions of Jatropha fruits[8] 

II.3.2.1 – The press-cake 

 The press-cake is the compact fibrous material obtained after press of the whole 

seeds. It can be used for several different purposed. 

  

 Fertilizer 

 

 The presence of toxins inside the plant is a drawback in the way it prevents the plant 

from being used as fodder and cattle food. But those toxic compounds also confer natural 

pesticide and bioinsecticide when the seedcake is used as a fertilizer. The fact that the toxins 

are biodegradable over a short period of time makes it a good fertilizer for crops[9]. 

 

 Biogas production 

 Biogas (mainly methane CH4) can be produced in anaerobic reactors by digestion 

while the press-cake is used as a feed for the bacteria. Table 1 gathers the gas production 
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yields obtained by Staubman et al.[10] and Radhakrishna[11] when cake was used as a feed 

for bacteria in anaerobic reactors. Several studies showed co-digestion using two or more 

substrates was an even more efficient way to obtain high yields for the biogas production. 

 

  Nature of the feed Volume of biogas [m3 per kg of feed] 

Staubman et al.[10] dry seed press cake 0,446 (70% CH4) 
Radhakrishna[11] solvent extracted kernel cake (de-oiled) 0,5 

Table 1 - Examples of production of biogas by digestion of the seedcake in anaerobic reactors 

 The traditional fermentation process can be followed by a steam reforming step in 

order to produce hydrogen H2 from methane CH4 following the equilibrium:  

CH4 + H20 → CO + 3H2 

 

 Bio-alcohol (and other chemicals) production 

 One of the most widespread anaerobic digestion processes is the Acetone-Butanol-

Ethanol (ABE) process that allows the lignocellulosic material to be digested by bacteria in 

anaerobic conditions. The most common bacteria used for that matter are Saccharomyces 

cerevisiae and Clostridium acetobutylicum[12] but current researches try to find other more 

efficient bacteria species to reach higher yields[13]. Other studies focused on a modification 

of the reactor itself to a Fibrous-Bed reactor[14] or a two-step process where butyric acid 

would be produced first to be finally turned into bio-butanol in a second step[15]. Mixing 

90% of regular gasoline with 10% of this bio-alcohol would allow to use this bio-alcohol in 

regular engines without needing any modification. The main drawback of those bioprocesses 

is the fact that they often need (costly) pretreatments with enzymes and/or acid 

hydrolysis[16]. Nonetheless, in spite of those pretreatment steps, the process uses only a 
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fraction of the lignocellulose (cellulose and hemicelluloses) and does not take advantage of 

the lignin. 

 

 Pyrolysis 

 Another efficient process to make energy from lignocellulosic product is pyrolysis. 

This process is an incomplete thermal degradation of the combustible in absence of air and it 

leads to ashes, tars, gaseous products and other condensable liquids. The main products of 

the reaction are the gases compounds: hydrogen H2, carbon monoxide CO, carbon dioxide 

CO2 and hydrocarbon gases. The hydrogen yield can be increased by a gas-shift reaction 

between the carbon monoxide and the water vapor[17] following the equilibrium:  

CO + H2O → CO2 + H2 

II.3.2.2 – Shells, Husks & Hulls  

 Amongst all those by-products of the cultivation of Jatropha, shells, husks and hulls 

are also lignocellulosic materials whose energetic potential has to be taken into account. 

They can either be used just as they are but after grinding them, briquettes can also be 

formed and used as sources of energy. Once more, several processes can be implemented to 

produce direct energy or products that are important energy carriers. 

 In the manner of the press-cake, those parts of the plant can be used as feed for 

pyrolysis in order to produce H2, CO2, CO and other volatile hydrocarbons. Anaerobic 

digestions can also be implemented from them to produce biogas or bio-alcohols. 
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 Combustion 

 Direct combustion is an easy way to produce direct energy. However, more mature 

processes allow to treat those by-products more efficiently in terms of energy. 

 

 Gasification 

 The gasification step gathers several processes. It not only includes a pyrolysis step 

but also allows the char produced during this previous step to react with steam in order to 

produce more hydrogen and carbon monoxide following the reaction 

C + H2O → CO + H2 

 Gasification can also be followed by a water-gas shift reaction to produce more H2. 

Vyas and Singh concluded that a gasification process implemented in an open core gasifier 

was very effective when Jatropha husks were used as feedstock [6]. 

 

 The Fischer-Tropsch process 

 Synthetic hydrocarbons can be produced from hydrogen and carbon monoxide 

thanks to the Fischer-Tropsch process following the equilibrium:  

(2n+1)H2 + nCO → CnH(2n+2) + nH2O 

Gasification processes combined with the Fischer-Tropsch reaction are being studied to 

produce sustainable transportation fuels at a large scale.  

II.3.2.3 – Wood products 

 Sotolongo et al. showed that on average, a hectare of Jatropha plantation produces 

more than 20 tons of woody biomass only due to pruning over a period of six years.[18] It 
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goes without saying that this represents a direct source of energy by combustion or 

pyrolysis.  

 Bio-oil production 

 If the woody by-products undergo a fast pyrolysis followed by a rapid quench, Bio-oil 

can be produced. Bio-oil is a dark brown mixture of several hundreds of liquid organic 

compounds. It is obtained when the products of the fast pyrolysis of cellulose, 

hemicelluloses and lignin are “frozen” by quench. All the potential of bio-oil has not been 

deeply understood yet but the literature already shows applications of this oil from heat and 

electricity production to syn-gas and specialty chemicals productions.[19] 

II.3.2.4 – Jatropha oil 

 The fact that most parts of the Jatropha plant can be used makes it very interesting in 

a Life-Cycle Approach (LCA) since the energy balance would be negative (Energy spent –

Energy produced <0). But among all those by-products and the multiple ways they can be 

treated to produce energy or efficient energy carriers, it is important to keep in mind that 

the main purpose of Jatropha plantations is the production of Jatropha oil. This oil, obtained 

after press of the whole seeds is the reason of industrialists’ and scientists’ enthusiasm. 

Indeed, the high oil content of the Jatropha seeds combined with the properties of the plant 

makes Jatropha oil an easily available and promising resource with an astonishing energetic 

potential.  

 The oil can be extracted from the seeds in two main ways. On the one hand, it can be 

extracted by mechanical expellers. In that case, engine driven screw presses are more 

efficient that manual ram press. Increasing the yield can be done by increasing the number 

of passes[9] On the other hand, chemical extraction processes of the kernel’s oil have been 
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developed and exhibited good yields. Among the extractions methods, the best-known are 

the extraction using n-hexane, water (after ultrasolnic pretreatment), supercritical CO2 or 

bio-renewable solvents such as bio-ethanol, isopropyl alcohol… 

 Raw Jatropha oil found several applications unrelated to energy production: it is the 

case for soap or biocides productions. However, it can be directly used after or before 

chemical treatment as a fuel. 

 

 Some of the physicochemical characteristics of Jatropha oil and regular diesel fuel are 

compared in Table 2[5]. 

 

Property Jatropha curcas oil Diesel fuel 
Viscosity (cP or mPa.s) 75,7 at 20°C 2-4,3 at 37,8°C 

Ignition temperature (°C) 340 51,7 
Conradson Carbon Residue Index (wt%) 0,46 0,35 

Caloric power (MJ/kg) 38,781 42,951 
Freezing point (°C) 5 ND 

Table 2 - Some physicochemical properties of Jatropha curcas oil and Dielsel fuel [5] 

 Jatropha curcas oil and Diesel fuel have comparable caloric powers. However, 

viscosity and ignition point of both liquids are very different. This is due to the structure of 

the oil itself which is mostly composed of high molecular weight molecules: the triglycerides. 

 

 Due to these differences, Jatropha oil can be used as a fuel in two ways: Direct use 

without chemical treatment; or after chemical modification. 

 

 Use of the Crude oil as a fuel 
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 In the past, several studies have proved the use of pure Jatropha oil was doable in 

motor running at constant speed and low heat rejection diesel engines but was generally 

less efficient in terms of energy and smoke emission than the use of regular diesel.[20] 

Moreover, the high viscosity of crude Jatropha oil makes the injection and ignition steps 

improper and less efficient than in a regular diesel engine. Also, using high-viscosity crude 

Jatropha oil increases the risk of fouling, gum formation, coking  in the engine and thickening 

of lubricating oil inside the motor. It is easy to understand that all those drawbacks make the 

crude Jatropha oil impossible to be used in regular diesel engines and thus, economically not 

viable.[21] 

 More promising results were obtained when blends of crude Jatropha oil and regular 

Diesel were tested. For instance Pramanik[22] showed up to 40-50%vol. in vegetable oils 

allowed to reach good efficiencies without any modification of the engine and any 

preheating of the blend. 

 Despite those results, the long-term impacts of the use of blends of diesel and 

vegetable oil remain unknown and best efficiencies are only reachable for relatively low 

Jatropha oil fractions and are very sensitive to the quality of the oil. 

 The best way to make the most of the capacities of the oil is to modify its chemical 

structure by transesterifying it. Transesterified Jatropha achieves better results in 

unadjusted diesel engines than the pure Jatropha oil used straight or in blends.[9] 

 

 Use of the transesterified oil as a fuel 

 Behind the idea of modifying the chemical structure of the components of the oil, 

there was a strong will to keep using Jatropha oil as an energy source but without modifying 

the engines. Indeed, the transesterification reaction of the triglycerides of the oil in presence 
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of a short-chain alcohol leads to Fatty Acid Alkyl Esters (The alkyl group depending on the 

nature of the alcohol used); this decreases dramatically the viscosity of the oil which enables 

to reach viscosities comparable to the one of regular diesel fuels.  

 Kywe and Oo[21] compared the viscosities of the crude Jatropha oil to the one of the 

biodiesel derived from the same oil. The kinematic viscosity decreased from 41.51mm².s-1 in 

the crude oil to 5.384 mm².s-1 when the transesterification was run with methanol and 4.009 

mm².s-1 with ethanol was the alcohol used during the transesterification step. Those 

numbers were within the limit of the American Society for Testing Materials (ASTM) for 

biodiesels and regular petro-diesel. Helwani et al. [23] compared the standards for diesel 

and biodiesel based on the ASTM (Table 3). Properties of both fuels are very similar and in 

some cases, properties of the biodiesel surpass the petroleum-based diesel such as higher 

flash point and cetane number, better lubricating power and low sulfur concentration. 

Property Petroleum-based Diesel Biodielsel 
Composition Hydrocarbon (C10-C21) FAAE (C12-C22) 

Specific gravity (g/mL) 0,85 0,88 
Flash point (K) 333-353 373-443 
Water (wt%) 0,05 0,05 

Oxygen (wt%) 0 11 
Sulfur (wt%) 0,05 0,05 

Cetane number 40-55 48-60 

Table 3 - Compared standards (ASTM) for petroleum-based diesel and biodiesel[23] 

 

 Scientists have now understood that using the altered (transesterified) Jatropha oil 

was the best way to make the most of the energetic power of the plant without any 

modification of the engines that have been running on regular petro-diesel so far. 
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 This work being based on the transesterification reaction of this particular oil, a 

deeper description of Jatropha oil and its use reported by the literature is done in the next 

section (See Section I.4). 

 

 Table 4 gathers all the uses presented above of the different part of the plant.  

 

 Press-cake Shells, Hulls & 
Husks 

Wood Products Jatropha oil 

Direct use Fertilizer 
Combustion 

Combustion Fuel (using the crude 
oil) Pyrolysis Pyrolysis 

After treatment CH4 production 
(Biogas) 

H2 production 
(Gasification, water-

gas shift) 
Bio-oil production 

BioDiesel production 
(transesterification) 

Bioalcohols 
production 

Synthetic 
hydrocarbons 

(Fischer-Tropsch 
process) 

Soaps production 

Other Chemicals Biocides production 

Table 4 - Uses of the different part of Jatropha plants in direct energy or energy carriers 

II.3.2.5 – Criticism about the use of Jatropha oil 

In spite of all the bright aspects of the potential of Jatropha, more and more studies, 

article and official reports question the actual sustainability of Jatropha cultivation. In 2010, 

the NL Agency published a report [24] in the frame work of the Netherlands Programmes 

Sustainable Biomass in which the major drawbacks are stated. The international network 

“friends of the earth” published a report supported by the Dutch government as well as the 

European commission that showed the evidence of the unsustainability of the Jatropha 

farming.[25] The legitimacy of the interest in Jatropha cultivation has also been exposed to 

the general public by the news agency Reuters in the article “Biofuel jatropha falls from 

wonder-crop pedestal”[26]. One of the main interests of Jatropha is the ability of the plant to 

grow on wastelands which would enable to make the most of lands that cannot be used for 
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food crops. However, the reality was proved to be slightly different from the bright 

expectations since cultures of Jatropha on true wastelands exhibited yields that were far too 

low to be of economic interest. In order to be viable, Jatropha plants would have to be 

grown on fertile lands with additional use of fertilizers and irrigation. On the one hand, this 

would have an impact on food security increasing the competition with food crops and 

increasing land pressure; on the other hand, it has been proved that under the same 

conditions and using the same resources, production of crops for food purposed would be 

much more profitable than farming Jatropha.  

Other aspects of the cultivation of Jatropha have been misestimated. It is the case of 

the seed yields which had been unrealistically overestimated. On the contrary, costs of land 

and labor have often been underestimated.  

If good progresses have been done regarding the oil processing efficiency, value-

creation from the by-products (from both farming and oil process) is not efficient enough. 

All those drawbacks were analyzed by Kumar et al.[27] and held responsible of the 

failure of the National Biodiesel Mission Phase-I. However, if the numerous technological, 

environmental, economic and social issues are addressed, the possibility of local production 

and use of Jatropha oil and products were not ruled out. 

II.4 – Transesterification of Jatropha oil 

II.4.1 – Overhaul presentation of the reaction 

 The transesterification reaction takes place between the ester group of a molecule 

and the alcohol function of another one – in the case of an intermolecular reaction – or the 

same one – if the reaction is intramolecular reaction. The presence of a catalyst is essential 
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for the reaction to occur. In our case, it is an intermolecular reaction (two different 

molecules involved) where a triglyceride (TG) reacts with three molecules of alcohol to lead 

to a molecule of glycerol and three molecules of Fatty Acid Alkyl Esters (FAAE). Those FAAE 

are the objective of the whole process in our case: the Biodielsel.  

 In fact, obtaining those final products from the initial reagents is a combination of 

three successive independent reactions: 

  - A first molecule of alcohol (R-OH) reacts with the triglyceride to lead to a single 

molecule of FAAE and an intermediate: a di-glyceride; 

 - Then, the di-glyceride reacts with another molecule of alcohol to lead to a 

second molecule of FAAE and the second intermediate: a mono-glyceride; 

 - Eventually, the mono-glyceride reacts with the last molecule of alcohol to lead 

to the glycerol and a third molecule of FAAE. 

  

Figure 5 shows the balance of those three steps.  
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Figure 5 - Balances of the three steps of the transesterification reaction 

 

 The transesterification of triglycerides of vegetable oils is a well-known and well-

controlled process that has been deeply studied in the literature. That is the reason why 

many parameters can be modified offering an almost infinite amount of possibilities to 

realize that reaction. 

II.4.2 – Parameters of the reaction 

II.4.2.1 – Types of reactors 

 If the transesterification reactions are done most of the time following batch 

processes, several other type of reactors can reach better conversion in a few particular 

cases (usually determined by a singular catalyst). 
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 The batch process 

 

 The batch processes have been widely studied in the past thanks to its facility of 

implementation.[28] In some cases, several batch unit are put in series in order to reach 

higher conversions.[29] 

 The main limitation of the process is its scale: for large-size production, continuous 

processes are often preferred. 

 

 The plug-flow reactors 

 

 The use of the plug flow reactor is less widespread than the use of batch processes 

but in some cases, in spite of the material constraints it implies, it exhibits obvious assets. It 

is the case when an oil has to be pretreated in acidic media and then transesterified in basic 

media. Putting two plug-flow reactors in series for each treatment allow a better yield and in 

less time than with a batch process. 

 Due to the high viscosity of the reactants, the main issue of the plug-flow reactors is 

the mass transfer. This problem can be unraveled using the following and very particular 

type of reactor. 

 

 The oscillatory-flow reactors 

 

 Due to the singular geometry of the oscillatory-flow reactors, the literature exhibits 

only a few studies about them. However, they seem to be a promising way to overcome the 
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main concerns raised by the plug-flow reactors. The amplitude and frequency of the flow 

inside the reactor can be set in order to decreases the mass transfer limitation.[30] 

 II.4.2.2 – Influence of the temperature 

 The influence of the temperature is of paramount importance. If high temperatures 

are required to allow the reaction to occur, it jeopardizes the sustainability of the process.  

The literature reports low activation energies for the transesterification reaction. Depending 

on the type of alcohol used and the quality and nature of the oil, the activation energy 

varies. Kinetics of transesterification of Soybean oil was studied by Noureddini and Zhu and 

compared to other literature results. They reported an activation energy (Ea) within the 8 

Kcal/mol to 18.5Kcal/mol range.[31] These relatively small values of Ea unable the reaction 

to occur in mild temperature conditions.  

 However, depending on the quality of the oil and the type of catalysis used, the 

temperature conditions might be adapted to the particular reaction. 

II.4.2.3 – Nature of the alcohol 

 The nature of the triglyceride is closely related to the nature of the oil and it is hard 

to have an influence on it. Nevertheless, the nature of the second reagent is easily 

manipulable. Among the alcohol family, only a few of them were commonly used in 

transtesterification reactions. Short chain alcohols from methanol to pentanol have been 

widely used. Nonetheless, several factors had to be taken into account for the choice of the 

alcohol. 
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 Cost and availability 

 

 Cost of raw materials is one of the primary concerns for the implementation of a 

process. That is why methanol was the most common alcohol used for transesterification of 

vegetable oils purposes. However, the increasing production of bio-ethanol and bio-butanol 

from biomass makes the use of these two alcohols more and more common. On top of that, 

including bio-alcohols into the transesterification process makes it 100% environment-friend 

by the production of a sustainable fuel from a renewable resource. Also, the ethanol 

produced by fermentation of sugars is much less toxic than non-renewable methanol. 

 

 Reaction aspects 

 

 The type of alcohol used also has a direct influence on the rates of reaction and 

conversions reached. Usually, the smaller the carbonated chain of the alcohol, the higher 

reactivity thanks to greater polarity of the species.  

 However, in the case of a transesterification with a short chain alcohol, the reaction 

takes place between two phases: the heavy lower phase containing the oil and a lighter 

alcoholic phase. As a consequence, in addition to the kinetics, mass transfer limitation 

becomes a limiting process. The mass transfer influence can be reduced by the choice of an 

alcohol with a longer chain. Kildiran et al. [32] shown that better yields are reached using 

ethanol, propanol and butanol than using methanol. The formation of emulsions between 

the alcohol, the oil and the reaction intermediates (mono- and di-glycerides) favors the 

reaction. The emulsion is all the more stable that the alcohol’s chain is long. With longer 
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chain alcohols and with a large alcohol-to-oil ratio, the diffusion limiting issue is avoided by 

the formation of a single-phased system. 

 In order to avoid those mass transfer limitation issues, another technique was 

established using a co-solvent. For that matter, organic solvants such as TetraHydroFuran 

(THF), ethoxyethane and (1,4)-dioxane are the most common co-solvent. Their specific 

gravities shown in Table 5 enables them to gather both phases (the oil and the alcohol 

phase) and consequently to avoid any mass transfer issue. 

Alcohol Specific 
gravity 

Methanol 0,7918 
Ethanol 0,789 

Propanol 0,8034 
Butanol 0,81 

THF 0,8892 
1,4 dioxane 1,033 

Ethoxyethane 0,7134 

Table 5 - Specific gravity of the alcohols and organic co-colvent (Note: most vegetable oils have a specific 
gravity within the 0.80-0.95 range) 

 The nature of the carbonated chain also has a strong influence. If linear chains gave 

good results, the presence of ramifications or a position of the alcohol group in the middle of 

the chain increase the steric bulk and makes the reaction hard to occur.[33] Isopropanol 

which does not carry its alcohol group at the end of its carbonated chain, did not allow to 

reach high conversions due to the repulsion caused by the additional methyl group 

compared to ethanol. 

II.4.2.4 – The alcohol-to-oil molar ratio 

 The mechanism of a transesterification reaction between a triglyceride and a mono-

alcohol involves one mole of triglyceride for three moles of alcohol. Yet, in practice, the 
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stoechiometric ratio is not used and an excess of alcohol is mandatory to reach good 

conversions. Usually the smaller ratio studied in the literature is 6:1; this allowed to shift the 

equilibrium towards the formation of the products and enabled to reach better 

conversions.[34, 35]  

  Literature exhibits a wide range of alcohol-to-oil ratios going from 6:1 up to 30:1.[36, 

37] In some publications, the molar ratio can reach 245:1.[38] This value contradicted other 

studies’ results in which high ratios were avoided in order to prevent from increasing the 

glycerol solubility in the ester phase which causes the indirect reaction to take place and 

consequently reduces the yield of the direct reaction.[39] 

II.4.2.5 – The nature of the catalyst 

The literature exhibits dozens of different catalysts for the particular 

transesterification of vegetable oils. Depending on the nature and quality of the oil, some 

catalysts fit better than others and the difference of conversion between two different types 

of catalysts can be dramatic. 

II.4.2.5.a –Homogeneous catalyses 

Both acidic and basic species can be used as catalysts. Most studies focused on the 

use and comparison of basic catalysts due to the fast kinetics they involve.  

Their great availability and very low cost make potassium hydroxide (KOH) and 

sodium hydroxide (NaOH) the two most common bases used for that purpose.[21, 40] 

Alkoxydes such as Sodium methoxide (CH3ONa) are less common but allow to reach higher 

conversions and already include the transesterifying alcohol in their structure.[35] 
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Eventually, Carbonates can also be used as catalytic species in alkaline homogeneous 

processes.[23] 

 

Nonetheless, even if the reaction kinetics can be up to 4000 times faster using a basic 

catalyst than an acid catalyst[36, 41], the quality of the oil is the main parameter to take into 

account while choosing the type of catalyst. Indeed, oils with high Free Fatty Acid (FFA) 

and/or water contents must not be transesterified in alkaline medium due to the unwanted 

formation of large amounts of soaps. (See Section V.1.2.1). Inorganic acids are the most 

common homogeneous acid catalysts used in transesterification of vegetable oils. Among 

them, Sulfuric Acid and hydrochloric acid gave high conversion in transesterification of 

several vegetable oils with methanol [40, 42]. Organic acids such as p-Toluenesulfonic acid 

or supported organic acids also exhibited good yields[42, 43]. 

 

The main interests of using homogeneous catalyses are the availability of the 

catalysts combined with a very good knowledge of the processes involving them due to 

dozens of studies. Nonetheless, with the view to making chemical processes as efficient and 

as respectful of the environment as possible, the trend is now to use heterogeneous 

catalyses. 

II.4.2.5.b –Heterogeneous catalyses 

 Thanks to the easy way to separate them from the main liquid phase(s) at the end of 

the reaction, the heterogeneous catalysts have the advantage to considerably simplify the 

final separation units (which are then reduced to simple decantation/filtration units) and 
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most of them can be regenerated and reused later whether continuous or batch process are 

dealt with. These properties also have an impact on the sustainability of the process since 

less energy is spent on separation processes (distillation, extraction), less catalyst is needed 

due to its reuse and risks of release of toxic liquid catalytic waste downstream are avoided. 

Such as homogeneous catalysts, heterogeneous catalysts can be divided into two 

main families: the basic heterogeneous catalysts and the basic homogeneous catalysts. 

Among the basic heterogeneous catalysts, the Alkali earth metal oxides (MgO, CaO, 

SrO) and the transition and mixed metal oxides (Li/CaO, ZnO/Ba…) showed almost total 

conversions when used in the transesterification of several different vegetable oils. [44-46] 

Other studies have shown Hydrotalcites, Alkali metal oxides and basic zeolites were also 

usable for that purpose. [33, 47, 48] 

Once again, basic heterogeneous catalyst usually exhibit a good yield when they are 

used for the transesterification reaction of oils with low FFA content but are nor well 

adapted when the FFA content reaches only 1 or 2%wt. The acid solid catalysts are well 

adapted for that matter. Solid HeteropolyAcids and mixed metal oxides are the most 

efficient catalysts in terms of conversion. [42, 49, 50]  

In the past few years, zeolites have been attracting scientists’ attention. Their 

particular structures can be tailored in dozens of different ways and their catalytic properties 

adjusted to reach particular goals. Usually used in detergents or in catalytic processes in the 

petroleum industry, their uses have been widen to a very large panel of chemical reactions 

and particularly transesterification of oils for the production of Biodiesel. On the one hand, 

he particular structures exhibited by the zeolites are often an advantage in a way that they 

enable the catalysis of certain reactions, preventing others to occur at the same time which 

makes the process very specific. On the other hand, this great specificity can be a drawback 
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if the zeolite is not perfectly adapted to the type of reaction it is supposed to catalyze. As a 

consequence, yields of transesterification reactions of vegetable oils were no found as 

satisfying as with other types of catalysts. Sasidharan et al. observed less than 30% of 

conversion for conversions of beta-keto ester with H-ZSM-5 [51] and Brito et al. only 26% of 

conversion of waste cooking oil using H-Mordenite. [52] Nonetheless, the type of zeolite and 

its properties make an important difference in the conversion. The same reaction 

implemented by Sasidharan et al. with H-Y zeolite exhibited a yield over 85%.[51] 

Thus, it seems that zeolites can be adapted in order to reach industrialists’ 

expectations regarding the yields of reaction as well as a great availability combined with 

very low costs.  

This project aims at studying the efficiency of different types of zeolites used as 

heterogeneous acid catalysts in transesterification reactions. Section I.5 details the 

structures and properties of the zeolites. 

II.4.2.5.c – Other types of catalyses 

Other types of catalyses have been marginally studied mostly due to their cost.  

Enzymatic processes involving lipases were studied by Shah and Gupta[53]. Altough 

the yields obtained were comparable to the one obtained using other types of catalysts, 

implementing those reactions require highly contriolled conditions and are usually much 

more expensive than the other methods. These drawbacks make enzymatic processes 

impossible to implement at large industrial scales.  

The use of Lewis Acids (AlCl3, ZnCl2) was studied by Soriano et al. [54] and enabled 

them to reach conversions higher than 80% (with AlCl3). 
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Methods without catalysts were also studied [55] but they required a superctitical 

methanol treatment of the oil which is not as energy efficient as processes using other types 

of catalysts. 

 

Table 6 gathers and classifies the different catalysts used by previous works on 

transesterification of several vegetable oils. Table 6 also provides the conversion reached for 

each catalyst. 

 

Phase Prop
erty Catalyst Structure Feedstock Conver

sion 
Refere

nce 

Homogen
eous 

Basic 

Hydroxydes 
KOH Rapeseed 

oil 98,50% 
[40] 

NaOH - - 

Alkoxides CH3ONa Vegetable 
oils >98% [35, 

37] 

Carbonates 
K2CO3 - - 

[56] 
Na2CO3 - - 

Acid 

Inorganic Acids 

H2SO4 Rapeseed 
oil 97,50% [40] 

H3PO4 Vegetable 
oil 

- 
 [42] 

HCl Vegetable 
oil - [42] 

BuSn(OH)3 Vegetable 
oil - [42] 

Al(OR)3 Vegetable 
oil - [42] 

Organic Acids 

p-Toluenesulfonic acid Vegetable 
oil - [42] 

Sulfonated biochar 
activated carbon 

Esterificatio
n of FA 

90-
100% [43] 

wood based activated 
carbon 

Esterificatio
n of FA 97% [43] 

heteroge
neous Basic Alkali earth metal oxides 

MgO 
Soybean oil 99% [44] 
Soybean oil 98% [57] 

CaO 

Sunflower 
oil 94% [58] 

Soybean oil 95% [59] 
Jatropha oil 93% [37] 

CaO supported on 
silicate 

Sunflower 
oil 95% [60] 

Ca(OCH3)2 (calcium 
methoxide) Soybean oil 98% [48] 
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SrO Soybean oil 95% [45] 

Alkali metal oxides 
Al2O3/KNO3 Soybean oil 87% [61] 

Al2O3/Na/NaOH Soybean oil 83% [62] 

Transition and mixed metal 
oxides 

ZnO/Sr(NO3)2 Soybean oil 93% [63] 
ZnO/Ba Soybean oil 95% [46] 
ZnO/KF Soybean oil 87% [64] 
Li/CaO Karanja oil 95% [65] 

KF/Al2O3 Soybean oil 99% [66] 

Hydrotalcites Mg-Al HT 
Soybean oil 80% [47] 
Rapeseed 

oil 91% [67] 

Zeolites ETS-10 Soybean oil 95% [33] 

Acid 

Mixed metal oxides 

ZnO 
Palm oil 86% 

[49] 
Coconut oil 78% 

VOPO4,2H2O Soybean oil 80% [68] 

ZrO2/WO3
2- Sunflower 

oil 97% [69] 

ZrO2/SO4
2- Palm oil 90% 

[49] 
ZrO2/SO4

2- Coconut oil 86% 
Al2O3/PO4

3- Palm oil 69% [70] 

Al2O3/TiO2/ZnO Rapeseed 
oil 94% [71] 

Al2O3/ZrO2/WO3 Soybean oil 90% [50] 

TiO2/SO4
2- Cottonseed 

oil 90% [72] 

Solid HeteropolyAcids 

CsxHx-3PW12O40 Eruca Sativa 99% [42] 

H3PW12O40,6H2O Waste 
cooking oil 87% [73] 

H3PW12O40/K-10 clay 

Sunflower 
oil 92% 

[50] 

Soybean oil 95% 
Palm oil 94% 

Karanja oil 93% 
Jatropha oil 93% 

Ag0.5H2.5PW12O40 Castor oil 80% 
Zr0.7H0.2PW12O40/nanot

ube 
Waste 

cooking oil 97% [74] 

H3PW12O40/ZrO2 Canola oil 90% [75] 

Zeolites 

H-ZSM-5 beta-keto 
ester <30% [51] 

H-Beta Soybean oil 36% [76] 

 
La-Beta 

beta-keto 
ester 80% [51] 

Soybean oil 50% [76] 

H-Y beta-keto 
ester 85% [51] 

H-Mordenite Waste 
cooking oil 26% [52, 

77] 
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beta-keto 
ester 65% [51] 

Metallic complexes 

Zn/I2 Soybean oil 96% [78] 

Cyanide-Fe/Zn 
complexes 

Sunflower 
oil 97% [79] 

Vegetable 
oil 60% [80] 

Other 

Enzymatic 
immobilized lipase Vegetable 

oil 98% [53] 

P. cepacia lipase Vegetable 
oil - [54] 

Lewis species 
ZnCl2 Vegetable 

oil - [55, 
81] 

 AlCl3 Vegetable 
oil - 

Non-catalytic supercritical 
transesterification None Vegetable 

oil - [23] 

Table 6 - Classification and performances of different catalysts used in transesterification of several 
vegetable oils 

II.5 – General presentation of the Zeolites 

 The interest in zeolites and their application has not stopped increasing for decades. 

This can be explained by the exceptional versatility of those particular structures and the 

almost infinite variety of use they allow. On top of the 34 different species of zeolite 

minerals (natural), hundreds of structures can be artificially tailor made; this widens the 

scope of use of those materials. 

II.5.1 – Zeolites’ structures 

 Zeolites are crystalline, hydrated aluminosillicates. The general formula representing 

their structure could be written as follows: 

𝑀𝑥 𝑛⁄ �(𝐴𝑙𝑂2)𝑥(𝑆𝑖𝑂2)𝑦� • 𝑤𝐻2𝑂 

In this general formula we can note that 𝑀 is the positive counter ion of valence +𝑛 which 

balances the positive charge due to the 𝑥 (𝐴𝑙𝑂2
−) groups. The ratio 𝑦/𝑥 represents the 
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Silicon-to-Aluminium ratio and is a parameter of paramount importance to describe the 

zeolite’s properties (See Section I.5.3.1). Eventually, the sum (𝑥 + 𝑦) reprensents the total 

number of tetrahedral in a unit cell of the particular zeolite. 

 

 What the general formula does not tell us about is the spatial arrangement of the 

atoms in the material which confers them very particular properties. The microscopic 

structure of each zeolite is based on the tetrahedral formed between a small silicon (Si4+) or 

Aluminum (Al3+) cation and four oxygen atoms. Figure 6 shows the tetrahedral of oxygen 

coordinated with silicon and aluminum.  

 

 

Figure 6 - Tetrahedra of oxygen coordinated with silicon (left) and aluminum (right) 

 Those tetrahedra are the primary units from which the whole structure is built. They 

are then gathered in particular structures named Secondary Building Units (SBU) by 

Meier[82]. Often, those layouts can be described as polyhedral units. For instance, if we 

consider the example of the α-framework[83], the aluminum and silicon atoms are located 
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at the vertexes of a truncated cuboctahedron. Figure 7 shows the truncated octahedron and 

the truncated cuboctahedron structures in which the vertexes of the polyhedral unit are 

occupied by the aluminum and silicon atoms; the oxygen atoms are not shown but they are 

located around the mid-points of the lines joining two tetrahedral sites (Al or Si). 

           

Figure 7 - Examples of a truncated octahedron (left), the β-framework building unit and a truncated 
cuboctahedron (right), the α-framework building unit[83] 

 The SBUs are usually used in order to classify the zeolites in groups and are the 

elementary units from which the topology can be described. It is important to note that in 

many cases, several SBUs are necessary to describe a particular topology. Thanks to the 

example of the structure of the A-type zeolite, Figure 8 illustrates how the assembly of 

several SBUs can lead to the description the actual spatial structure of the zeolite. The 

assembly of 8 truncated octahedron units with 8 double four-member rings (D4R) creates a 

supercage on the middle of the structure of the A-type zeolite. 



47 
 

 

Figure 8 - The structure of the A-type zeolite, assembly of truncated octahedron and double four-member 
rings (D4R) 

 Eventually, the zeolite material is the inorganic polymer for which the elementary 

building blocks are those particular assemblies of SBUs. The great number of SBUs as well as 

the variety of combinations that can be done from them enable to build an almost infinite 

number of zeolite structures. 

II.5.2 – Applications 

 The microporous structure (ultraporosity) they exhibit makes them very good 

adsorbents. Separation processes make the most of that property and more particularly gas-

gas and gas-vapor separation processes. Kusakabe et al. [84] studied the permeances of 

several gases through a Y-type zeolite membrane. The great selective adsorption of CO2 

makes this particular use of zeolite an excellent gas-gas separation process spread in the 

natural gas industry. Modiflying the hydration degree of the zeolite was shown to have a 

strong influence on the permeability to water vapor and every type of gas.[85] 
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 Zeolites can also be used as molecular sieves allowing only the molecules that fit in 

the pores of the zeolite to go through it. An application of this property was implemented by 

Van Hoof et al. [86] in which organic solvents were dehydrated using NaA-type zeolite.  

 

 Molecular confinement is also enabled thanks to the particular structures of the 

zeolites. The most striking examples are the attempts in the nineties on the site of the 

Tchernobyl catastrophy [87]and later in 2011 off the coast of Fukushima, Japan, scientists 

have used quantities of zeolites in order to absorb as much as possible the radioactive 

pollution by cesium 137. 

 

 Another application of the zeolites uses the affinity of the structure towards different 

cations. It is possible to use zeolites as ion-exchange materials in order to remove cations 

from a solution. The ion exchange takes place between the zeolite and a solution containing 

cations exhibiting a higher affinity towards the zeolite than the positive counter-ion already 

in the structure. This property has been used in Part IV for the ion-exchange of the 13-X-type 

zeolite. 

 

 Eventually, zeolites are also used as catalysts for a variety of reactions thanks to the 

high concentration of active acid (Lewis and Brønsted) sites they exhibit. Above all, the 

interest in using zeolites as catalyst also comes from their specificity towards certain 

molecules. Indeed, the catalytic activity combined with the restriction in the limit size of the 

reactants – penetration of the species depending on their size in comparison to the pores’ 

sizes – fosters only certain chemical reactions and thus makes zeolites specific catalysts.  
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II.5.3 – Properties and structures 

 The great variety of uses of zeolites is mainly due to particular characteristics of their 

structures. The activity of a particular zeolite depends on how its properties are tuned. 

II.5.3.1 – The Silicon-to-Aluminum (Si/Al) Ratio 

 The Silicon-to-Aluminum ratio is one of the parameters which govern the zeolite’s 

reactivity. 

 First, based on the general formula of the zeolite the number of charged entities 

within the structure is closely related to the amount of aluminum atoms. The more AlO4
- 

groups in the zeolite, the more negative charge that needs to be balanced and consequently, 

the more positive counter-ions. On top of assuring the electro-neutrality of the structure, 

those positive ions play an important role in the reactivity of the zeolite due to their location 

outside of the Al-O-Si framework. As explained above, their number is closely related to the 

number of AlO4
- units and consequently to the Si/Al ratio. The nature of the counter-ions is 

also decisive for the reactivity of the zeolite and is tackled in Section I.5.3.2. 

 

 Second, if the Silicon-to-Aluminum ratio has a strong influence on the reactivity (and 

catalytic power) of the zeolite, it also has a huge impact of its affinity towards water. Indeed, 

the higher Si/Al ratio, the more hydrophobic the zeolite and vice-versa. [88] Decreasing the 

Si/Al ratio increases the affinity of the zeolite towards water and in the case of a reaction 

between organic species catalyzed by the acid properties of the zeolite, water molecules are 

more likely to adsorb on the surface of the zeolite causing a deactivation of the catalyst and 

thus a drop in conversion. On the other side increasing the Si/Al ratio decreases the affinity 
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of water towards the catalyst which is more available to interact with organic species and 

efficiently play the role of acid catalyst for the organic reaction. 

II.5.3.2 – The nature of the counter-ion 

  The more common positive simple counter-ions found in the zeolites are alkali such 

as Li+, Na+ or K+, alkali earth like Mg2+, Ca2+ or Ba2+ and more rarely elements belonging to 

other columns of the periodic classification such as La3+. Groups of atoms such as ammonium 

cation NH4
+ are also common structures which balance the negative charge of the zeolite 

framework. However, the nature of the cation determines the acidic catalytic power of the 

zeolite.  The higher Brønsted acidity of a zeolite is obtained when the extraframework cation 

is hydrogen H+. 

 

 The determination of the acidity of zeolites has been widely studied and it is now well 

known that zeolites exhibit both types of acid sites: the proton-donating groups (Brønsted 

sites) and the electron-accepting functionalities (Lewis sites).[89] If both of them play a role 

in the reactivity of the zeolite, the Brønsted properties of the catalyst seemed to 

predominate.  

II.5.3.3 – The channel system and the pore size 

 On the one hand, the empirical chemical formula of the zeolite (Silicon-to-Aluminum 

ratio and nature of the positive counter-ion) is a decisive parameter influencing the 

properties of the zeolite. On the other hand, the special layout of the atoms in space is of 

paramount importance and also governs the reactivity of the zeolite and its catalytic power. 
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The spatial disposition of the atoms and tedrahedra in the zeolites can be characterized by 

the dimension D and the pore size of the microporous structure of the zeolite. 

 

 The dimension D of the channel system of a zeolite is the number which characterizes 

if the void channels are intersecting each other or not. This number can go from one to three 

depending on the type of zeolite. The channels allow molecular diffusion of reactants within 

the zeolite.  

 In the one-dimensional (1-D) channel system, the channels do not intersect each 

other. It is the case of zeolites such as Mordenite or the L-type zeolite (LTL) shown in Figure 

9.a. The channels are parallel and consequently do not intersect. Molecular diffusion is 

limited to a single direction in that case. This structure can be pictured by a system of 

parallel tubes. 

 The two-dimensional (2-D) channel system exhibits two different channel systems 

that are linked. In this particular set up, we can either see a main channel system in which 

channels are parallel and linked thanks to a smaller channel system or two channel systems 

that cross each other. Figure 9.b exhibits the 2-D Mordenite (MOR) framework. 

 The three-dimensional (3-D) channel system exhibits three intersecting channel 

systems. Those three channels can either be equivalent in diameter or the diameter can also 

depend on the direction in the Cartesian coordinates (X, Y, Z). The Faujasite (FAU) structure 

displayed in Figure 9.c is an example of 3-D channel system. In the Faujasite system, the 

channels in the three directions are equidimensional. 
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Figure 9 - The three channel system. The 1-D channel system of the L-type zeolite (a). The 2-D channel system 
of Mordenite (b). The 3-D channel system of Faujasite (c).[90] 

 Whatever dimension of the channel system, the size of those channels is the 

parameter that will determine if a particular molecule (reactant or not) can enter in the 

lattice of the zeolite of will only be able to stay outside of the framework and react on the 

external surface of the zeolite. The diameter of a channel is determined by the type of 

structure and the number of oxygen atoms that are on the edge of the aperture ring. Basing 

the determination on the number of oxygen atoms is an approximation since the 

temperature and kinetic energies of a diffusive molecule can affect whether or not a 

molecule will be able to enter the structure or not. However, this assumption is valid in 

general. 
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III. Determination of the Acid Value of the Sesame oil 

III.1- Introduction 

 Due to major differences in their compositions, all the vegetable oils do not have the 

same efficiency regarding the production of biofuels. As Ramos & al. showed[91], the fatty 

acid composition of the crude oil has a huge impact on the physical properties of the derived 

biofuel which has to meet governmental requirements.  

 The nature of the fatty acids contained in the crude oil is one of the most important 

parameter but the amount of Free Fatty Acids (FFA) in the crude oil is also a parameter of 

paramount importance. Indeed, if the FFA contents of two crude oils are very different, the 

chemical processes that will produce biodiesel from them will be radically different. As 

detailed in Section V.2.1.1, it is much more profitable to implement the transesterification 

step of a vegetable oil with a low FFA content in basic catalysis whereas the same step will 

be done with an acidic catalyst for an oil with a high FFA content.  

 Thus, determining the amount of FFA helped us justifying the use of an acidic 

catalyst. In order to do so, it is possible to measure the Acidic Value (AV) also called Acidic 

Number (N) of the oil. The AV corresponds to the weight of potassium hydroxide (KOH) 

needed to neutralize the FFA present in 1 gram of oil. Thanks to this value and knowing the 

nature and quantity of the fatty acids in the oil, we can obtain an accurate value of the FFA 

content in wt%.  
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III.2- Experimental 

III.2.1 - Experimental device 

 In order to determine the Acid Value of the sesame oil, we followed the colorimetric 

titration of the Free Fatty Acids (FFA) contained in the oil by a solution of KOH in the 

presence of phenolphthalein as an indicator[92, 93]. 

 The reactions could not take place in aqueous solution due to the immiscibility of 

water and oil. Consequently, all the solutions prepared were 95% vol. ethanol-based 

solutions.  

 The titration solution was a potassium hydroxide (KOH) solution at 10-1 mol.L-1 in 

ethanol (95% vol.). An ethanolic solution of phenolphthalein at 10 g.L-1 was also prepared. 

 Common values of Acid values of crude sesame oil were reported to be between 1 

and 4 mg. Knowing that, 10 g of sesame oil were dosed[93]. To ensure a good miscibility 

between the different reactants, 100mL of a solvent mixture 1/1 vol. of 95% vol. ethanol and 

diethyl ether were added to the sesame oil sample. Due to the particular hazardous 

properties and volatilities of the compound used, both preparation of the solution and 

titration were carried out under the hood and with containers sealed as much as possible. 

 Figure 10 describes the experimental devices used. 
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Figure 10 – Experimental set up for the determination of the AV of the sesame oil by titration with KOH in 
ethanol 

III.2.2 - Chemical reaction and location of the equivalence 

 The dosage is carried out in the presence of phenolphthalein. This colored indicator is 

colorless when 0 < pH < 8.2 and turns pink when 8.2 < pH < 12 [94](Figure 11). 

 

Figure 11 - Different forms of phenolphthalein depending on the value of pH 
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 The free fatty acids are derived from the triglycerides present in the oil (See Part III). 

Thus, the main Fatty Acids dosed in this experiment are of the same nature as the FA present 

in the triglycerides and analyzed by GC-MS. Table 7 summarizes the main FA found in the 

triglycerides structure after analyzing the oil and gives the pKa for each of them[95].  

Acid Notation pKa 
Palmitic C 16:0 4,78 
Stearic C 18:0 10,15 
Oleic C 18:1 9,85 

Linoleic C 18:2 9,24 

Table 7 - pKa of the Fatty Acids found in sesame oil [95] 

 The values of the pKa of the four main FA found in the oil allowed us to classify those 

acids among the weak acids. Since the titration was done with a strong base, the 

equivalence should be expected for basic values of pH. The color change zone for 

phenolphthalein is located at pH = 8.2 which enabled us to do the dosage using 

phenolphthalein as an indicator. 

The four chemical reactions taking place during the titration were: 

Palmitic acid: 

𝐶𝐻3 − (𝐶𝐻2)14 − 𝐶𝑂𝑂𝐻 +  𝑂𝐻−  →  𝐶𝐻3 − (𝐶𝐻2)14 − 𝐶𝑂𝑂− +  𝐻2𝑂 

Stearic acid: 

𝐶𝐻3 − (𝐶𝐻2)16 − 𝐶𝑂𝑂𝐻 +  𝑂𝐻−  →  𝐶𝐻3 − (𝐶𝐻2)16 − 𝐶𝑂𝑂− +  𝐻2𝑂 

Oleic acid: 

𝐶𝐻3 − (𝐶𝐻2)7 − (𝐶𝐻)2 − (𝐶𝐻2)7 − 𝐶𝑂𝑂𝐻 +  𝑂𝐻−  

                                    →  𝐶𝐻3 − (𝐶𝐻2)7 − (𝐶𝐻)2 − (𝐶𝐻2)7 − 𝐶𝑂𝑂− +  𝐻2𝑂 
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Linoleic acid: 

𝐶𝐻3 − (𝐶𝐻2)4 − (𝐶𝐻)2 − (𝐶𝐻2) − (𝐶𝐻)2 − (𝐶𝐻2)7 − 𝐶𝑂𝑂𝐻 +  𝑂𝐻−  

→  𝐶𝐻3 − (𝐶𝐻2)4 − (𝐶𝐻)2 − (𝐶𝐻2) − (𝐶𝐻)2 − (𝐶𝐻2)7 − 𝐶𝑂𝑂− +  𝐻2𝑂 

Figure 12 shows the color evolution of the titration medium around the equivalence. 

 

Figure 12 - Evolution of the coloration of the solution around the equivalence (Left: before the equivalence; 
middle: equivalence; right: after the equivalence) 

III.3 - 

 The equivalent volume of the solution of KOH at at 10-1 mol.L-1 poured was Veq = 2.45 

mL. The weight of KOH necessary to neutralize 1g of oil is then given by: 

𝐴𝑉[𝑚𝑔] =
𝑀[𝑚𝑔.𝑚𝑜𝑙−1].𝐶[𝑚𝑜𝑙. 𝐿−1].𝑉𝑒𝑞[𝐿]

𝑚𝑜𝑖𝑙[𝑔]
=  

56100  .  10−1 .  2.45. 10−3

10
= 1.374

𝑚𝑔
𝑔

 

Results 

 The acid value found seemed in good agreement with the values found for sesame oil 

in the literature.  
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III.4 – Conclusions 

 This analysis allowed us to know how much FFA the initial sesame oil contained. The 

result found was in good agreement with the common AV for sesame oil found in the 

literature. From the number found, it was possible to determine how much of each of the 

four main FA we needed to add to the sesame oil in order to recreate the high FFA content 

Jatropha oil. The method of calculation of the quantity of each FFA can be found in Apendix 

B.  



59 
 

IV. Determination of the Fatty Acid Composition of the Sesame oil 
– Recreation of artificial Jatropha oil 

IV.1 – Introduction – Necessity of the FA analysis 

 The nature of the Fatty Acids (FA) of Sesame oil can be easily found in the 

literature.[96, 97] The main fatty acids present in the oil (as Free Fatty Acids and as part of 

the structure of the triglycerides) are Palmitic Acid (C 16:0), Stearic Acid (C 18:0), Oleic Acid 

(C 18:1 cis 9) and Linoleic Acid (C 18:2 cis 9, cis 12). Their skeletal formulas can be found on 

Figure 13.  

 

Figure 13 - Skeletal formula of the four main FA found in Sesame oil 
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 Hwang [96] gathers the results on several studies [98-100] about different sesame 

oils’ compositions. Table 8 presents the FA composition of sesame oil. All together, those 

four FA represent more than 98% of the FA contained in the oil. Thus, we can reasonably 

neglect the other FA in the oil and only consider those four FA.  

 O'Connor & Herb 
[98] 

Codex  
Alimentarius [99] 

Cultivated 
[100] 

Wild 
[100] 

Crocker 
[97] 

Myristic (C14:0) ND-0,1 < 0,5      
Palmitic (C16 :0) 7,9 - 12 7,0 - 12 9,0 - 9,6 8,2 - 12,7 8 - 12 

Palmitoleic (C16:1) 0,1 - 0,2 < 0,5 0,1 - 0,2 0,2 - 0,3  
Heptadecanoic 

(C17:0) 
ND - 0,2        

Heptadecenoic 
(C17:1) 

ND - 0,2        

Stearic (C18:0) 4,8 - 6,1 3,5 - 6,0 5,6 - 6,4 5,6 - 9,1 4 - 7 
Oleic (C18:1) 35,9 - 42,3 35 - 50 41,9 - 45,2 34,3 - 

48,1 
35 - 45 

Linoleic (C18:2) 41,5 - 47,9 35 - 50 38,0 - 41,6 33,2 - 
48,4 

37 - 48 

Linolenic (C18:3) 0,3 - 0,4 < 1,0 0,5 - 0,6 0,6 - 0,9  
Arachidic (C20:0) 0,3 - 0,6 < 1,0 0,3 0,2 - 0,8  

Eicosenoic (C20:1) ND - 0,3  < 0,5 0,1 0,1  
Behenic (C22:0) ND - 0,3  < 1,0 0,1 0,1  

Lignoceric (C24:0) ND - 0,3    trace trace  

Table 8 - Sesame oil composition (in % FA)[96, 97] 

 Although their nature is well known, the percentage of each of those four main FA 

can vary dramatically from a sample to another. [96, 98-100] Moreover, the Sesame oil 

(obtained from Kevala international LLC) used as a starting point for our experiments did not 

have a perfectly well-known Fatty Acid (FA) composition. As a consequence, an analysis of 

the nature and the amount of each FA present in the oil was necessary before going any 

further in its use.  
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IV.2 – Theory – Methods of analysis of the FA composition of vegetable oils 

 Several methods exist to determine the FA composition of an oil. The most common 

methods are based on separation followed by analysis of the chemical compounds. The 

separation step is usually a chromatographic step. At the end of this step, the different 

components have been separated depending on their molecular weight, their affinity with 

the stationary phase, their volatility… The analysis of the components of the original mixture 

can be done thanks to different kind of devices.  

IV.2.1 – The Transesterification step 

 Prior to the separation/analysis steps, all the most common methods require a 

transesterification step. This first mandatory step aims at chemically transforming the 

triglycerides (TG) of the oil thanks to the transesterification reaction. This enables to 

decrease the viscosity and increase the volatility of the mixture.  

 Indeed, the Fatty Acid Methyl Esters (FAME) formed by the reaction have much 

shorter molecular weights than the initial oil mostly composed of triglycerides. The breakage 

of the triglycerides into small-chained molecules allows the use of chromatographic devices 

to separate the different compounds at relatively low temperatures. Using directly the 

triglycerides in the columns would have three main drawbacks: 

- Damage of the column due to the high temperature necessary to evaporate the 

triglycerides; 

- Fouling - and eventually clogging - of the device because of the residues of TG along 

the column; 
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- Damage of the structure of the TGdue to the high temperatures. Loss of accuracy of 

the final result of the chromatography (detection of other chemicals formed during 

the thermolysis of the initial compounds). 

IV.2.2 – The separation of the compounds 

 Once the mixture of FAME obtained, compounds have to be separated from one 

another for further analysis. The main method used for that matter is the Gas 

Chromatography (GC).  

 The literature[101] shows another efficient method to directly analyze a mixture of 

TG without any pretreatment (transesterification) step: the Reverse-Phase High-

Performance Liquid Chromatography (RP-HPLC) followed by a Refractive Index (RI) detector. 

This method gives accurate results but its implementation becomes very delicate for 

complex mixtures of TG. 

 The method chosen here was a good compromise between accuracy and relatively 

easy implementation. After the required transesterification step with methanol, the mixture 

of FAMEs in hexane underwent a GC. The main parameters to take into account to choose 

the characteristics of the column are the physical interactions between the three phases of 

the column.  

Indeed, the individual partition (or adsorption equilibrium properties) determines the rate at 

which each component will move through the system[102]. It also determines de degree of 

separation of the different compounds in the sample. It is also required to make sure no 
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chemical interaction or transformation take place between the different phases inside the 

device. 

The main criterion for the choice of the carrier gas (mobile phase) is the non-interaction with 

the components and column material (stationary phase). Hydrogen H2 is a common choice 

due to its low viscosity and high diffusion coefficient. 

IV.2.3 – The analysis of the compounds 

 Each component of the initial FAME mixture has been separated. The goal of the 

following and last step is to analyze the nature and the amount of each component. Two 

main technologies are commonly used for that purpose: 

- The Flame Ionization detector (FID)[103]; 

- The Mass spectroscopy analysis (MS)[104]. 

 Both methods are equivalent in terms of accuracy. However, the FID is not as 

inconvenient for an online analysis directly in a production chain whereas MS detectors are 

ideal candidates for continuous analysis. Moreover, MS offers a higher sensibility than FID 

which allows to analyze much diluted samples. 

IV.3 – Experimental 

 The method chosen for the FA analysis of the oil was a Gas Chromatography followed 

by a Mass Spectroscopy (GC-MS).  
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 In a first step, the triglycerides of the crude Sesame oil were transesterified in 

alkaline medium using methanol. At the end of this first step Fatty Acids Methyl Esters 

(FAME) were obtained and ready to be analyzed in a second step by GC-MS. 

IV.3.1 – Transtesterification in alkaline medium 

 The triglycerides are the main components of the Sesame oil we are using. Each 

triglyceride is composed by a back-bone of glycerol to which are attached three FA. The 

transesterification step with methanol (MeOH) aims at breaking apart each triglyceride into 

three FAMEs and a glycerol molecule. A balance of the reaction is given on Figure 14. 

 

Figure 14 - Overall FAME production reaction from triglycerides 

  Prior to the any reaction, both the oil and the methanol were dried using Soduim 

Sulfate (Na2SO4). This white solid is a powerful desiccant when used at moderate 

temperatures. It forms with the moisture contained in solutions an hydrate Na2SO4·10H2O by 

capturing ten water molecules. This compound does not interact with the other components 

of the oil under those conditions. 

 Then, an alkaline catalytic solution was prepared by dissolution of 5.6 g of potassium 

hydroxide (KOH) in 100 ml of dry methanol. The concentration of the methanolic solution 
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obtained was 1 mol.L-1 of KOH. This allowed the formation of potassium methoxide [K+; 

MeO-] given by the following equilibrium: 

[𝐾+;  𝑂𝐻−] + 𝑀𝑒𝑂𝐻 → [𝐾+;  𝑀𝑒𝑂−] + 𝐻2𝑂 

 All the reactants were separately brought to a temperature of 60°C before being put 

together in the preheated reactor. This temperature avoids the vaporization of the methanol 

(Teb
methanol =64.7°C) and enables a good reaction yield [105]. 

 The transesterification reaction was carried out with an oil to methanol weight ratio 

of 1:10 (12 g of dry oil, 120 ml of dry methanol) and catalyzed by adding 1.5 ml of the 

methanolic potassium hydroxide solution to the medium. The transesterification reaction 

was implemented in the Parr reactor for 30 minutes with an overhead stirrer running at 

1000 rpms. 

 Once the reaction done, the media was rapidly cooled down to room temperature 

thanks to a bath of cold water. 

 Contrary to the expected observation, a single-phased system was observed. Indeed, 

instead of a observing a bottom phase mainly composed of glycerol and most of the 

unreacted methanol separated from an upper layer containing the FAME and a small 

amount of alcohol, we observed only one phase containing all the unreacted chemicals and 

the products. This is due to the very high alcohol to oil ratio used for the experiment. The 

huge excess of methanol increases the solubility of the glycerol. This could be an issue at a 

large scale since it makes the separation steps more delicate and it can favor the reverse 

reaction between glycerol and FAME which would lead to the formation of mono-,  di- and 

triglycerides. [39, 106] However for out analytic purposes in that section we needed to focus 
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our attention on the esterification reaction itself and not specially its yield. The conversion 

was not determined but the expected values in those conditions are roughly 97%[105].  

IV.3.2 – Post-treatment of the transesterified oil  

 The post-treatment steps were described in details by Braithwaite and Stock [102] 

and by the Health Services of the Indian Ministry of Health[92] . 

 The FAMEs were extracted by a mixture of hexane isomers due to their non-polarity 

and thus, their affinity with non-polar solvants. The high alcohol to oil ratio allows the 

reaction to be almost complete so the amount of mono-, di- and triglycerides extracted by 

the hexane phase was neglected. The mixture of hexane isomers was obtained from 

Pharmco-Aaper (Brookfield, CT). 

  The washing step with water aimed at removing the unreacted methanol and the 

glycerol formed during the transesterification. The content of the reactor was poured in a 

separating funnel. The reactor was rinsed with 40mL of hexane which was introduced in the 

separating funnel. Due to long carbonated chains, the FAME and remaining triglycerides are 

non-polar. Thus they pass into the upper hexane layer. The bottom layer contains the polar 

compounds such as the glycerol, the methanol, the potassium methoxide and the potential 

soaps formed by saponification of the Free Fatty Acids (FFA) initially present in the oil.  

 The upper layer was sucked off the funnel and washed with 100 ml of deionized 

water to remove the traces of polar compounds. The non-polar phase underwent this 

process two more times with 40mL of water and the polar phase was washed again with 

60mL of hexane. 
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 In the end, the solution of FAME in hexane is dried with sodium sulfate and a part of 

the solvent is evaporated on a water bath at 68°C. It is important not to raise the 

temperature too high in order not to damage the FAME. A temperature of 68°C enabled to 

evaporate part of the hexane without impacting on the structure of the FAME.  

 A 50mL of solution of FAME (Approximately 5% to 10%wt.[92]) in hexane are kept for 

the GC-MS chromatography.  

IV.3.3 – Gas Chromatography and Mass Spectroscopy analysis (GC-MS) 

 The sample was analyzed twice with different degrees of dilution. The first run was 

done with the sample right after the extraction steps with hexane. The first chromatogram 

showed FAMEs concentration that were too high to be determined accurately and needed to 

be decreased. Thus, the sample underwent a dilution by 100. 

 The percentage of each FA found with that method was the actual percentage of this 

particular FA both as a Free Fatty Acid (FFA) and within the triglyceride structures. It is 

important to state that we made the assumption that the molar fraction of each FA in the 

FFA part of the oil was the same as the molar fraction of the same FA within the triglyceride 

structures.  

 This assumption can be justified by the mechanism of formation of the FFA within the 

oil by chemical decomposition of the triglycerides[107]. Over time, the FFA content of the oil 

increases due to the hydrolysis, photolysis and thermolysis of the triglycerides. Indeed, even 

if the kinetics of those reactions is slow (characteristic time in months), it does affect the 

composition of the oil. (See Section V.2.1.6). 
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 Considering the FA composition of the FFA and the FA composition of the 

triglycerides as equivalent was a justified assumption. 

IV.3.4 – Recreation of the artificial Jatropha oil 

 The literature [37, 97, 103] reports the nature and the FA profile of the triglycerides 

contained in Jatropha oil. The results are gathered in Table 9. Jatropha oil contains in great 

majority the same four as the ones found in Sesame oil and we can observe the results 

presented by the different sources are consistent with each other. We based our reflection 

on the FA profile described by Akbar et al.[103].  

 Crocker[97] Akbar et al.[103] Endalew[37] 

Palmitic (C16:0) 11 to 16 14,2 14,1 - 15,3 
Stearic (C18:0) 6 to 15 7 3,7 - 9,8 
Oleic (C18:1) 34 to 45 44,7 34,3 - 45,8 

Linoleic (C18:2) 30 to 50 32,8 29,0 - 44,2 

Table 9 - FA profile of the triglycerides in Jatropha oil 

 The purpose was to recreate artificial Jatropha oil that would have the same acid 

value as the one reported in the literature (See Part II) and which would also have a 

composition of FFA qualitatively and quantitatively similar to the one observed in natural 

Jatropha oil.  

 Once the molar percentage of each FA in the sesame oil known thanks to the GC-MC 

analysis, it was possible to recreate artificial Jatropha oil by adding the right amount of each 

FA to the original sesame oil to finally end up with an oil whose AV and FFA profile were 

exactly equal to the ones of natural Jatropha oil.  
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 Technical grade Palmitic, Stearic and Linoleic acids were bought from Sigma Aldrich. 

Technical grade Oleic acid was bought from Consolidated Chemical.  

IV.4 – Results 

IV.4.1 – GC-MS Analysis 

 The Gas Chromatograph used for the separation of the different compounds of our 

samples was the 7890A GC using automated splitless injection (Agilent G4513A, 7693A auto-

sampler injector) from Agilent Technologies. The Mass Spectrometer for the detection of the 

compounds was the 5975C MS equipped with a triple-axis detector from Agilent 

Technologies as well. The software interface and databank were also provided by the same 

company.  

 Helium was the carrier gas maintained at a flow rate of 1 mL.min-1. The column used 

was Stabilwax® Cat#10623 (30 m x 0.25 mm x 0.25 µm) with polyethylene glycol as the 

stationary phase. Column temperature was held at 125˚C for 1 min, elevated first at 

10˚C.min-1 for 5 min to 175˚C and then at 6˚C.min -1 to reach 250̊C when all FAMEs of 

interest had been eluted.  

 As it can be seen on Figure 15, the chromatogram obtained while analyzing the non-

diluted sample does not allow any relevant conclusion regarding its FAME composition. After 

a dilution by 100, the sample underwent a new GC-MS analysis in the exact same conditions. 

The chromatogram obtained for the diluted sample (presented on Figure 16) exhibits clear 

peeks which match the theoretical composition of the oil.  
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Figure 15 - Non-diluted sample (chromatogram) 

 

Figure 16 - 100-time diluted sample (chromatogram) 

 The retention times of the separated compounds contained in the sample match the 

retention times of the four FAMEs found in the databank of the CG-MS software (OpenLAB 

CDS ChemStation Edition, Agilent Technologies). The area under each peak was proportional 
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to the amount of each compound present in the sample. Thanks to the calibration curve and 

the area of each peak, we were able to obtain the percentage of each FAME considering that 

the Palmitic, Stearic, Oleic and Linoleic FAMEs were the only FAMEs present in the oil. The 

results are gathered in Table 10. The details of the determination of the data presented in 

Table 10 thanks to the calibration values of the column and the chromatogram (Figure 16) 

can be found in Appendix A. 

 Molar Fraction  Quantity of matter (x10-5) [mol] 
Palmitic (C16:0) 0.0721 0.1802 
Stearic (C18:0) 0.1021 0.2553 
Oleic (C18:1) 0.3446 0.8616 

Linoleic (C18:2) 0.4812 1.2029 
Total 1 2.5 

Table 10 - Results of the GC-MS on the diluted sample of sesame oil - Quantity of matter [mol] of each FAME 
in 1 gram of oil 

 This analysis permitted us to check that the percentage of each FAME was within the 

ranges of values found in the literature for sesame oils [97-100]. 

 On the chromatogram shown in Figure 16, other smaller peaks were visible. 

Comparing the retention times of those peaks with the databank of the software allowed us 

to determine the possible nature of the minor compounds detected. Those compounds are 

indicated as impurities (imp) on Figure 16. At t ≈  11.2 minutes, 14-methyl Palmitic acid 

(C17:0) was detected. Also, around t ≈ 14.45 minutes, traces of Linolenic acid (C18:3) were 

detected. 
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IV.4.2 – Amounts of FAs added to the Sesame oil 

 Thanks to the AV of the sesame oil that we determined in Part II (AVsesame = 1.374 

mgKOH/goil i.e. 2.5x10-5 moleFFA/goil) and with the results of the GC-MS analysis, the quantity of 

matter of each of the four main FA was computed.  

 The AV found in the literature for the Jatropha oil was 28 mgKOH/goil [37] which 

corresponds to 5x10-4 mole of KOH at the equivalence. Thus, it was deducted that 1g of 

Jatropha oil contained 5x10-4 mole of FFA. We assumed that only the four main FA were 

present in the oil (i.e. the sum of their four molar fractions was equal to 1). Using the FA 

profile described by Akbar et al.[103], the molar fraction of each FA in the Jatropha oil was 

computed.  

 Molar fraction in the FFA fraction and quantity of matter [mol] of each FA are 

gathered in Table 11 for both Sesame and Jatropha oil.  

  Sesame oil Jatropha oil [103] 
Molar Fraction  Quantity of matter 

(x10-5) [mol] 
Molar fraction Quantity of matter 

(x10-4) [mol] 
Palmitic (C16:0) 0.0721 0.1802 0.143 0.715 
Stearic (C18:0) 0.1021 0.2553 0.071 0.355 
Oleic (C18:1) 0.3446 0.8616 0.453 2.265 

Linoleic (C18:2) 0.4812 1.2029 0.333 1.665 
Total 1 2.5 1 5 

Table 11 - Amount of each FA in the FFA fraction of the Jatropha oil 

  

 Using Sesame oil as a starting point, the amounts of each FA which needed to be 

added to the oil were computed to reach a composition close to the Jatropha oil 

composition.  
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For each Fatty Acid FAi, the amount NFAi of FAi that needed to be added to the sesame oil 

was computed according to the relation below: 

𝑥𝐹𝐴𝑖,𝐽 =  
𝑁𝐹𝐴𝑖 + 𝑁𝐹𝐴𝑖,𝑆 

∑ 𝑁𝐹𝐴𝑖,𝑆𝑖 + ∑ 𝑁𝐹𝐴𝑖𝑖
 

With        𝑥𝐹𝐴𝑖,𝐽       the molar fraction of the particular FAi in the Jatropha oil, Note that 
∑ 𝑥𝐹𝐴𝑖,𝐽𝑖 = 1 

                𝑁𝐹𝐴𝑖         the quantity of matter [mol] of the particular FAi that has to be added to 
1g of oil, 

                𝑁𝐹𝐴𝑖,𝑆       the quantity of matter [mol] of the particular FAi in 1g of the Sesame oil. 

 

 The amounts 𝑁𝐹𝐴 of each of the four FA that were added per gram of sesame oil are 

presented in Table 12. The detail of the calculations can be found in Appendix B. We can 

easily verify that the total amount of FFA in the recreated oil (FA added to the oil on the one 

hand, and FA already present in the sesame oil on the other hand) equals the total amount 

of FFA in the Jatropha oil taken as a reference[103]. 

  Quantity of matter (x10-5) [mol] Weight added [mg]  
Palmitic (C16:0) 6.97 17.87  
Stearic (C18:0) 3.29 9.36  
Oleic (C18:1) 21.79 61.54  

Linoleic (C18:2) 15.45 43.33  
Total 47.5 132.1  

Table 12 - Quantity of matter and weight of each FA added per gram of sesame oil 

IV.5 – Conclusions 

 The important amounts of Fatty Acids added to the initial sesame oil justify this 

process. Indeed, those quantities allow us to better visualize the important impact of the 

high Free Fatty Acid content than the only knowledge of the Acid Value of Jatropha oil. It 



74 
 

was also important to measure with accuracy the natures and exact amounts of the Fatty 

Acids contained in the oil since, on top of having an influence on the kinetics of reaction of 

transesterification, the nature and quantity of the different Fatty Acid Esters were reported 

to have an direct impact on the quality if the fuel itself[108, 109]. 

 The oil obtained at the end of that step had a FFA content almost identical to the one 

of the genuine Jatropha oil. This sought characteristic enabled us to carry on our work and to 

tackle the transesterification reactions.  
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V. Ion-exchange process on the 13-X zeolite 

V.1 – Introduction  

 In the past three decades, the industry has widened the field of application of the 

zeolites. Their catalytic properties are now combined with their high ion-exchange power. 

This property can not only be used to remove particular ions from waste water (such as 

metal ions) but also enables to modify the structure of the zeolite itself in order to impart a 

particular chemical or physical property to it.  

 In this project, the Brønsted acidity of the zeolites was used for catalytic purposes 

and consequently, it was mandatory to obtain the hydrogen-form of each zeolite. That is 

why ion-exchange processes were implemented. 

V.1.1 – necessity of the ion-exchange step 

 Every zeolite structure is composed of two different elements which determine its 

physical and chemical properties: 

 - A fixed basis made of the aluminum, silica and oxygen atoms linked with covalent 

bonds. In a way, this fixed structure can be considered as the “skeleton” of the zeolite. It is 

important to notice that this microporous molecular structure of the zeolites is made of 

aluminum oxide groups and silicon dioxide groups commonly known as silica SiO2. Since the 

valence structure of aluminum is 3s2 3p1, the aluminum oxide group is negatively charged 

which makes the entire structure negatively charged. To counterbalance those charges, 

positive species have to be present in the structure. 
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 - The counter-cation, often a sodium, potassium, calcium or hydrogen atom which 

role is to compensate the negative charge of the structure.  

 

For instance, the general structure of a dry zeolite in a sodium form can be written as:  

Nan(AlO2)n(SiO2)p   where n and p are integers. 

The Brønsted acidity of the zeolite comes mostly from the presence of hydrogen atoms in its 

structure. Among the five different zeolites used, only three (Y-type, Mordenite and Beta) 

were known to be in hydrogen form. The positive counter-ion in the 13-X-typezeolite was 

Na+. In order to enhance the Brønsted acidity of those three solids, an ion-exchange step 

was necessary.  

V.1.2 – ion exchange processes 

 The ion exchange process can be done following several different paths. It can either 

be a countercurrent operation in which the zeolite and the solution move countercurrent to 

each other in a stagewise manner. It can also be a crossflow process where the zeolite 

powder goes through several fresh batches of the solution which contains the cation to 

exchange in the zeolite structure. 

Both processes are illustrated in Figure 17 and Figure 18[110]. It can clearly be seen on 

figure 18 that the zeolite encounters several batches of fresh exchange solution whose 

concentration 𝑁𝑇0𝑣0 is constant. The nomenclature presented below Figure 17 and Figure 18 

was also developed by Howard S. Sherry[110]. 
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Figure 17 - Flow diagram for countercurrent operation 

 

Figure 18 - Flow diagram for crossflow operation [111] 

With 
 

𝐶 =  𝑁𝑇𝑣 = In batch process, number of equivalent of salt in solution fed into a stage 
𝐶′ =  𝑁𝑇𝑣′ = In continuous process, number of equivalent of salt in solution flowing per time unit 
𝑚 = index of the stage in a multistage process 
𝑛 = index of the last stage in a multistage process 
𝑁𝑇 = total normality 
𝑄 = 𝑊𝑢 = in batch process, number of equivalent of zeolite fed into a stage  
𝑄′ = 𝑊𝑢′ = in continuous process, equivalent of zeolite flowing per time unit 
𝑆 = fraction of the interesting ion in solution 
𝑢 = in batch process, weight (in g) of dry zeolite entering a stage 
𝑢′ = in continuous process, weight (in g) of dry zeolite flowing per time unit 
𝑣 = in batch process, volume (in L) of solution entering a stage 
𝑣′ = in continuous process, volume (in L) of solution flowing per time unit 

 
 Here and in most laboratory operations, we operated following the crossflow 

operation[111]. 

 Depending on the later use of the zeolite, different counter-cation can be inserted in 

the structure of the zeolite by ion-exchange processes.  

 Uni-univalent exchanges can be made by replacing a cation by another cation. For 

instance, it is the case when the initial sodium, potassium or any other single-charge cation 
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is replaced by another single-charge cation such as lithium, silver, etc in a one-for-one 

process.  

 Di-univalent exchanges can also be implemented. It occurs for example when a single 

charge sodium cation Na+ is replaced by a double charge calcium cation Ca2+ in a two-for-one 

process.  Eventually, rare earth ion-exchange processes can be done on certain types of 

zeolites like X and Y-type zeolites. They involve multiple charged ions such as lanthanum 

cations La3+[111]. Figure 19 illustrates the three examples of ion-exchange processes on 

zeolites. 

[𝑵𝒂𝟖𝟔(𝑨𝒍𝑶𝟐)𝟖𝟔(𝑺𝒊𝑶𝟐)𝟏𝟎𝟔 ]𝒔 + 𝟖𝟔(𝑵𝑯𝟒
+;𝑪𝒍−)𝒂𝒒 → [(𝑵𝑯𝟒)𝟖𝟔(𝑨𝒍𝑶𝟐)𝟖𝟔(𝑺𝒊𝑶𝟐)𝟏𝟎𝟔 ]𝒔 + 𝟖𝟔(𝑵𝒂+;𝑪𝒍−)𝒂𝒒 

[𝑵𝒂𝟖𝟔(𝑨𝒍𝑶𝟐)𝟖𝟔(𝑺𝒊𝑶𝟐)𝟏𝟎𝟔 ]𝒔 + 𝟒𝟑(𝑪𝒂𝟐+;𝟐𝑪𝒍−)𝒂𝒒 → [(𝑪𝒂)𝟒𝟑(𝑨𝒍𝑶𝟐)𝟖𝟔(𝑺𝒊𝑶𝟐)𝟏𝟎𝟔 ]𝒔 + 𝟖𝟔(𝑵𝒂+;𝑪𝒍−)𝒂𝒒 

𝟑 [𝑵𝒂𝟖𝟔(𝑨𝒍𝑶𝟐)𝟖𝟔(𝑺𝒊𝑶𝟐)𝟏𝟎𝟔 ]𝒔 + 𝟖𝟔(𝑳𝒂𝟑+;𝟑𝑪𝒍−)𝒂𝒒 → [(𝑳𝒂)𝟖𝟔{(𝑨𝒍𝑶𝟐)𝟖𝟔(𝑺𝒊𝑶𝟐)𝟏𝟎𝟔 }𝟑]𝒔 + 𝟐𝟓𝟖(𝑵𝒂+;𝑪𝒍−)𝒂𝒒 

Figure 19 - Balances of the three ion-exchange processes on zeolite 13X 

V.1.3 – Post treatment of the ion-exchanged zeolite 

 In some cases the fresh ion-exchanged solid cannot be used right away and need a 

last step to be catalytically efficient. Indeed, it is the case when a hydrogen form of the 

zeolite is needed. The main process to obtain the H-form of the zeolite is to pass by an 

intermediate form where the counter-cation is an ammonium anion NH4
+. Eventually, a 

calcination step allow the ammonia removal, the counter-cation becomes H+ and an gaseous 

ammonia NH3 comes out of the solid zeolite. The reaction path can be written as follows:  

𝑍 − 𝑁𝐻4𝑠𝑜𝑙𝑖𝑑   
𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛
�⎯⎯⎯⎯⎯⎯⎯�   𝑍 − 𝐻𝑠𝑜𝑙𝑖𝑑 + 𝑁𝐻3𝑔𝑎𝑠 

Where Z stands for the zeolite structure 
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V.2 – Experimental  

V.2.1 – Pretreatment 

 First and foremost, species such as water, oxygen, nitrogen or other molecules can be 

adsorbed at the surface and inside the pores of the zeolites. To avoid any perturbation 

during the ion exchange process, the zeolites were pretreated by calcinations in an oven at 

500°C for 3 hours. We have: 

𝑍 + 𝑀𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑   
𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡

500°𝐶�⎯⎯⎯⎯⎯⎯⎯⎯⎯�   𝑍 + 𝑀𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑑 

Where Z stands for the zeolite structure and M, any species initially adsorbed in the zeolite. 

 The zeolite was not preconditioned in its sodium form by making the zeolite go 

through several batched of Sodium Chloride (NaCl) since we assumed that 100% of the 

counter-cations present in the structure were sodium ions. This hypothesis was confirmed 

later on thanks to the EDX-Analysis [112] (See Section IV.3.3). 

V.2.2 – Ion-exchange step 

 A solution of ammonium chloride (NH4Cl) at 𝐶𝑁𝐻4𝐶𝑙 = 1𝑚𝑜𝑙. 𝐿−1  was obtained by 

dissolving 53.45g of anhydrous NH4Cl in 1000mL of deionized water. This solution was used 

as the exchanged solution.  

 Working with zeolites in solution requires mild conditions since zeolites’ structures 

are quite sensitive to extreme pH values[113]. When a pH of 4 or lower is reached, the 

crystalline lattice can be partially or even totally perturbed due to the fact that aluminum 

atoms are solubilized as aluminum hydrates[114]. It is also important to mention that each 
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solution was brought to 60°C and maintained at that temperature during the entire time of 

the ion-exchange process. Those constant mild conditions were kept up not only to ensure 

an isothermal process but also to avoid damaging the zeolite structure by reaching high 

temperatures.  

 Then, 10g of the freshly calcined zeolite were introduced in a 2000mL 3-neck flask 

and fitted with a reflux condenser. 1000mL of the NH4Cl solution were introduced in the 

flask. This first batch was heated at 65°C with continuous mechanic agitation during 40 

minutes. A diagram of the experimental device is provided in Figure 20. 

 

Figure 20 – Ion-Exchange set up using a solution of Ammonium Chloride (NH4Cl) at 1mol.L-1 at a constant 
temperature of 65°C for 40 minutes 

 After 40 minutes of reaction, the solution was filtered with a sintered glass funnel. 

The filtrate was kept for further analysis and the powder was used one more time in another 

ion-exchange step. The zeolite powder underwent four identical ion-exchange steps, every 
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time with a freshly made solution of (NH4Cl) at𝐶𝑁𝐻4𝐶𝑙 = 1𝑚𝑜𝑙. 𝐿−1. The filtrate of each step 

was kept for further analysis (See Section IV.3.1). 

 After the four batches, half of the powder obtained by the final filtration is calcined 

at 500°C for 3 hours and kept in a close dry hermetic container to be used as the acidic 

catalyst in the esterification/transesterification step (See Part V). This calcination step leads 

to the H-form of the zeolite according to the following balance: 

𝑍 − 𝑁𝐻4𝑠𝑜𝑙𝑖𝑑   
𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛
�⎯⎯⎯⎯⎯⎯⎯�   𝑍 − 𝐻𝑠𝑜𝑙𝑖𝑑 + 𝑁𝐻3𝑔𝑎𝑠  

V.2.3 – Conductimetric analysis 

V.2.3.a – Theory

 The concentration in ammonium cations (NH4
+) can be determined by several 

methods including conductimetric dosage by a sodium hydroxide solution whose 

concentration is perfectly known. The reaction which takes place in the medium is: 

𝑁𝑎+ + 𝑂𝐻− + 𝐶𝑙− + 𝑁𝐻4+ →  𝑁𝑎+ + 𝐻2𝑂 + 𝐶𝑙− + 𝑁𝐻3  

  

 The conductivity of a solution containing p ions is related to the molar ionic 

conductivity of each ion with the formula: 

𝜎 =  ∑ 𝜆𝑖 . [𝑋𝑖]
𝑝
𝑖=1   

Where σ is the conductivity of the solution [S.m-1]; 

             𝜆𝑖 is the molar ionic conductivity of the ion i [S.m²/mol] 

             [𝑋𝑖] is the molar concentration of the ion I [mol.m-3] 
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In conductimetry, it is essential that the concentration of the analyzed solution does not 

exceed 10-2 mol.L-1. 

V.2.3.b – Analysis

 In order to make sure the ion-exchange took place, the ammonium cations remaining 

in solution were dosed by a solution of sodium hydroxide (NaOH) at 4.10-3mol.L-1. The 

dosage is followed with a conductivity meter (WTW Portable pH/Conductivity Tester, Model 

DUO-60. Model 16467-116). 

  

 As explained in the previous section, the concentration of the different species in 

solution should not exceed 10-2 mol.L-1. Consequently, before being dosed, the exchanged 

solution of ammonium chloride was diluted by 100. 

 The experimental device used for the dosage is presented in Figure 21. 
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Figure 21 – Experimental set up for the titration of the ion-exchange solutions (containing NH4
+) by an 

aqueous solution of Potassium Hydroxide (KOH) at 4.10-3mol.L-1 

 At the beginning of the addition of the NaOH solution, the conductivity of the 

solution is supposed to slightly decrease from its initial value since the hydroxide and 

ammonium ions react together to form water and ammonia, two uncharged species 

following the balance: 

𝑂𝐻−
𝑎𝑞 + 𝑁𝐻4+𝑎𝑞 + 𝑁𝑎+𝑎𝑞 → 𝑁𝐻3𝑎𝑞 + 𝐻2𝑂𝑎𝑞 + 𝑁𝑎+𝑎𝑞 

       𝐶ℎ𝑎𝑟𝑔𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 →  𝑈𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 

 Table 13 gives the molar ionic conductivity of the different ions present in the 

solution. Since𝜆𝑂𝐻− > 𝜆𝑁𝐻4+ > 𝜆𝑁𝑎+, the disappearance of the hydroxide and ammonium 



84 
 

ions surpasses the addition of sodium ions to the medium which confirm the decrease in 

conductivity at the beginning.  

Ion OH- NH4
+ Na+ Cl- H3O+ 

Molar ionic conductivity λ in S.m²/mol (x10-4) 198,6 73,5 50,1 76,3 349,8 

Table 13 - Molar ionic conductivity of some useful ions 

 After the equivalence, all the ammonium cations have disappeared to form ammonia. 

The conductivity of the solution starts increasing since the addition of ions is not anymore 

compensated by the reaction. 

 Plotting the conductivity with respect to the volume of NaOH solution poured will 

lead to a V-shaped curve whose slope-break point gives us the equivalent volume Veq. 

 Then, we have 𝐶𝑂𝐻−  .𝑉𝑒𝑞 =  𝐶𝑁𝐻4+ .𝑉𝑁𝐻4+   

 𝐶𝑁𝐻4+ =  𝐶𝑂𝐻
−  .𝑉𝑒𝑞

𝑉𝑁𝐻4+
            with   𝐶𝑂𝐻− = 4. 10−3𝑚𝑜𝑙. 𝐿−1 

                                                       𝑉𝑁𝐻4+ = 50 𝑚𝐿 

 Eventually, the concentration 𝐶𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 of the initial exchange solution is obtained 

multiplying the concentration 𝐶𝑁𝐻4+by 100 since the exchanged solution was diluted by 100 

prior to the dosage. 

 For each zeolite used, the plots of the conductivity with respect to the volume of the 

sodium hydroxide (NaOH) at 4.10-3mol.L-1 are presented below. 
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V.2.4 – EDX spectroscopy analysis 

V.2.4.a – Theory 

 The conductimetric analysis of the batches of exchange solution provided good 

qualitative results and the trend of the decrease in exchange with respect to the number of 

the batch was relevant. However, the results obtained thanks to that method were not 

quantitatively accurate (See Section IV.3). A second set of analysis was done in order to 

conclude about the efficiency of the ion-exchange process. This second batch of analysis 

aimed at focusing on the product of the ion-exchange process itself – the zeolite – rather 

than on the exchange solution.  

 The elemental analysis of each sample was made using an Energy-Dispersive X-ray 

(EDX) spectrometer (AMRAY Scanning electron microscope model 1610 Turbo). This 

technique enables to determine the raw chemical composition of a powder based on the 

response of the sample to X-ray excitation. This powerful analysis method is not efficient for 

elements whose atomic number is lower than 12 (Carbon) which did not affect our 

measurements.  

V.2.4.b – Analysis 

 The EDX analysis was initially done in order to overcome the lack of accuracy of the 

conductimetric analysis on the 13-X zeolite (See Section IV.3). Then, the EDX analysis was 

used as a tool to know the elemental composition of the ZSM-5 zeolite and thus to conclude 

about the kind of treatment was necessary to obtain its hydrogen form.  In other words, for 

the ZSM-5 zeolite, the interest of using that method was double:  
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- Know the exact composition of the zeolite to know (or check) the Si/Al ratio and the 

nature of the positive counter-ion; 

- Apply to appropriate kind of treatment in order to obtain the H-form of the zeolite; 

- In the case of an ion-exchange process, check if the composition after treatment was 

in agreement with the expected product. 

 

 For the sake of accuracy, several measurements were done on each sample. The 

different analyses done on each sample were consistent. Complete reports can be found in 

Appendix C. 

V.3 – Results

V.3.1 – Conductimetric analysis 

  

 Since the ion-exchange process was done 4 times, the dosage of the exchange 

solution was done 4 times too. Figure 22.a to Figure 22.d shows the four different plots of σ 

(µS) = f [V(mL)] for each waste solution. It is important to note that only for the two first 

titrations, the concentration of the solution of sodium hydroxide was 1.10-3mol.L-1 and not 4. 

10-3mol.L-1 as it is for all the following experiments. That can explain the very slow increase 

of conductivity after the equivalence for dosage 1 and 2 in comparison to the followings. 
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Figure 22 - Dosages of NH4
+ by OH- followed by conductimetry 

 For each dosage linear regressions were done on both parts of the V-shaped curve. 

The abscissa of the intersection point of the two linear regression lines give us the 

equivalent volume of sodium hydroxide poured. Table 14 gathers the results of the four 

dosages for the ion-exchange process made on 13-X zeolite. Figure 23 shows the amount of 

ammonium ion exchanged during the four experiments. We verified that the quantity of 

matter exchanged decreased gradually with the number of the experiment.  
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Experiment n° COH- [mol/L] Veq [mL] mol of 
NH4

+ in 
solution 

before ion-
exchange 

mol of NH4
+ in 

solution after ion-
exchange 

mol of NH4
+ 

exchanged 
[mol] 

1 10-3 89,052 1 0,1781 0,8219 

2 10-3 153,22 1 0,3064 0,693561 

3 4. 10-3 85,033 1 0,6807 0,31973677 

4 4.  10-3 99,32 1 0,7945 0,205 

    Total exchanged [mol] 2,04019777 

Table 14 - Results of the dosages of the NH4
+ ions with OH-  

 

Figure 23 – Number of moles of NH4
+ exchanged vs. experiment n° 

 The literature shows several examples of ion-exchange processes involving zeolites 

[112], [115], [116]. The main purpose of those processes is to remove ammonium cations 

from waste water. Models of adsorption of ammonium cations can be developed 

introducing the Langmuir and Freundlich adsorption models. The isotherms of Langmuir and 

Freundlich are respectively given by the following expressions: 
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• Isotherm of Langmuir:                                      𝑞𝑒 = 𝑞0 .  𝐶𝑒 .  𝑏
(1+𝑏 .  𝐶𝑒)

 

• Isotherm of Freundlich:                                    𝑞𝑒 = 𝐾 .𝐶𝑒
1 𝑛�   

Where  - Ce is the equilibrium concertration of NH4
+ in the solution in mol.L-1; 

 - C0 is the initial concertration of NH4
+ in the solution in mol.L-1; 

 - qe is the equilibrium adsorption capacity in mol.L-1 (assumed to be C0-Ce); 

 - q0 is the maximal (monolayer) adsorption capacity in mol.L-1; 

 - b is the coefficient of Langmuir isotherm in L.mol-1; 

 - K and n are the coefficients of Freundlich isotherm. 

 

Figure 24 - Langmuir and Freundlich adsorption models applied to our ion-exchange process 

Both models were applied to our case (with C0 = 1 mol.L-1) and the plots can be found on 

Figure 24. It can be easily seen that neither of the two models fits to our case. This can be 

explained by two factors. First, the zeolite was reused for each experiment and 

consequently, its exchange capacity was decreasing as we saw on Figure 23. Langmuir and 

Freundlich models work in the case of the study of a fresh zeolite contacting solutions of 

various known concentration[112], [115]. 
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The second argument that can be brought up here is the quality of the zeolite initially used. 

Poor washing steps during the manufacturing steps might have left traces of unknown 

products. Those traces will be studied later on (IV.3.2). 

As Table 14 shows, 2.04 moles of ions NH4
+ were exchanged according to the titrations. 

Thanks to the chemical formula Na86(AlO2)86(SiO2)106 of the compound provided by Sigma-

Aldrich, it is possible to determine the maximum number of moles of sodium exchangeable 

in 10 grams of the dry zeolite.  

nexchangeable = 86.
𝑚𝑁𝑎86(𝐴𝑙𝑂2)86(𝑆𝑖𝑂2)106
𝑀𝑁𝑎86(𝐴𝑙𝑂2)86(𝑆𝑖𝑂2)106

= 86.
10 [𝑔]

13412 [𝑔.𝑚𝑜𝑙−1]
= 0.064 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑁𝑎 

 This result is contradictory with the total amount of NH4
+ which reacted during the 

ion-exchange process. Indeed, the titrations lead to a quantity of ion exchanged 31 times 

higher than the actual exchangeable amount of ions. This can be explained by the fact that 

another reaction involving ammonium ions could have taken place in the solution and 

disturb the measurement. Another set of analysis was done to explain the apparent 

irrelevance of the previous result. 

V.3.2 – Basicity of the untreated zeolite 13-X - Washing step and pH variations 

 After the inconsistency of the previous analysis, analyses were done on the untreated 

zeolite in order to understand which other reaction could have taken place between the 

ammonium cation and a compound present in the zeolite powder perturbing the titration 

results.   
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 1 g of untreated 13-X zeolite was thoroughly washed several times using 100mL of 

distilled water at 65°C for each wash. The pH of each filtered solution was measured. The 

washing steps were stopped once the pH of the washing solution reached a neutral value. 

Results of those wash are given below (Table 15). 

Washing batch n° 1 2 3 4 5 6 7 8 9 
pH 9,8 9,5 9,1 9 8,7 8,6 8,2 8 7,8 

Table 15 - pH of the washing solutions 

 Note: The pH of the pure water used at that temperature was 6.1 (measured). 

 The high values of pH for the first washing batches prove that basic species are 

present in the structure of the untreated zeolites. Those species solubilize during the 

washing steps. This pH change can have two main causes: 

- Basic compounds remaining from the production process of the zeolite (zeolite not 

thoroughly washed at the end of the fabrication process) 

- A reaction between the zeolite powder and the solution. 

 

 The second option corresponds to an ion-exchange reaction between water 

molecules and the cations of the zeolites following the balance below: 

𝑍 − 𝑁𝑎 + 2𝐻2𝑂 → 𝑍 − 𝐻3𝑂 + 𝑁𝑎+ +  𝐻𝑂− 

 The previous washing step of the zeolite cannot indicate us if the pH change is due to 

one cause or another. Further analyses were done using Energy-Dispersive X-Ray 

Spectroscopy (EDX). 
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V.3.3 – EDX spectroscopy analysis 

V.3.3.a – the 13-X Zeolite 

 For the 13-X zeolite, the structure before and after the four ion exchange steps and 

calcination were analyzed. 

Figure 25, Figure 26 and Table 16 present the output of the EDX analysis on both samples of 

zeolite 13-X.  

 

Figure 25 - EDX Analysis of the 13-X zeolite Before calcination and the four ion-exchange steps 

 

Figure 26 - EDX Analysis of the 13-X zeolite After the four ion-exchange steps and calcination 

  Before ion-exchange After ion-exchange 
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Element Wt% At% Wt% At% 
Na 10.48 9.90 0.87 0.85 
Al 20.12 16.21 29.40 24.35 
Si 27.18 21.03 37.54 29.86 
O 35.65 48.41 32.19 44.94 
S 6.56 4.45 0 0 

Total 100.00 100.00 100.00 100.00 

Table 16 - Weight and Atomic composition of both samples 

 

 The comparison between the EDX Analysis of both samples is an evidence of the 

efficiency of the ion-exchange and calcination steps. Indeed, the elemental analysis of the 

raw sample which did not undergo the steps contains shows 9.9 at% of Sodium in the 

structure. Whereas the sodium content of the sample after exchange was only 0.85 at%. As 

expected the sample lost more than 91.1% of its sodium content thanks to the ion-exchange 

process. The calcination step implemented after the exchange allows the freshly-exchanged 

ammonium cations to vanish at the expense of lonely protons. That is why the ammonium 

content cannot be observed in the second sample. 

 In the first EDX analysis appears a significant atomic quantity of Sulfur. This amount 

of sulfur was without a doubt a remaining quantity of a compound containing sulfur used in 

the zeolite production process. The literature shows several examples where compounds of 

that nature are used in neutralizing steps during the process. [111, 117] This observation can 

also be related to the unexpectedly high values of pH of the water solutions used to wash 

the zeolite in Section IV.3.2. 

 Comparing both data sets collected from the analyses also show that the ion-

exchange and calcination steps did not affect the fixed structure of the zeolite since the 

values of the Si/Al ratio before and after the exchange steps remain equals.  
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V.3.3.b – the ZSM-5 zeolite 

 For the ZSM-5 zeolite, the structure before calcinations was analyzed. Figure 27 and 

Table 17 present the output of the EDX analysis on the ZSM-5 zeolite.  

 

Figure 27 - EDX Analysis of the ZSM-5 zeolite before calcination 

 First analysis Second analysis Second analysis 
Element Wt% At% Wt% At% Wt% At% 

Al 7.82 5.08 11.18 7.55 7.89 5.10 
Si 25.22 15.75 28.92 18.75 24.17 15.02 
O 30.13 33.04 25.82 29.38 30.56 33.32 
N 36.83 46.13 34.09 44.32 37.38 46.56 

Total 100.00 100.00 100.00 100.00 100.00 100.00 
Si/Al Ratio 3.10 2.48 2.94 

Table 17 - Weight and Atomic composition for the three analyses 

 The analysis on the sample shows here that the Si/Al ratio was 2.84 for the ZSM-5 

zeolite. It also told us that the counter-ion was ammonium NH4
+. The unexpected result is in 

the amount of Nitrogen present in the sample. Since NH4
+ is part of the structure in order to 

compensate the negative charge due to the aluminum atoms (one negative charge per 

aluminum atom), the atomic percentage of Al and N should be equal. We observed a much 

higher percentage of nitrogen than aluminum. This observation can be explained by the fact 
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that the sample did not undergo the calcinations step before being analyzed. Thus, the 

nitrogen (N2) adsorbed from the air was remaining at the surface of the zeolite.  

 A calcination step at 450°C for 3 hours unraveled the problem and allowed us to 

obtain the ZSM-5 zeolite in its right H-form.  

 The three zeolites (Y-type, Mordenite and Beta) already were in their Hydrogen form. 

Beta and Mordenite were were ordered from Zeolyst and the Y-type zeolite from Sigma-

Aldrich. Both suppliers provided the MSDS and the technical specification data sheets of the 

products. Thus, they only underwent a calcinations step at 450°C for 3 hours and were not 

analyzed by EDX spectroscopy. 

V.4 – Conclusions  

 The catalytic power of a zeolite is closely related to the nature of the positive counter-ion 

balancing the negative charge of the silicon/aluminum/oxygen framework. Consequently, it was 

essential to know the nature of this cation prior to the implementation of any transesterification 

reaction of vegetable oil using the different type of zeolites as solid acid catalysts for the main 

reaction. In the case of the 13-X-type zeolite, the lack of accuracy of the conductimetric analysis was 

overcome by a second set on analyses done by Energy-Dispersive X-Ray spectroscopy. This EDX 

analyses aimed at knowing if the ion-exchange process worked efficiently in the case of the 13-X-type 

zeolite. They also enabled us to know which treatment was appropriate for the ZSM-5 zeolite prior to 

use it as catalyst in the main transesterification reaction of the recreated Jatropha oil.  
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VI. Transesterification of recreated Jatropha oil with zeolites as 
catalysts 

VI.1 – Introduction 

VI.1.1 – Composition of Jatropha oil  

VI.1.1.1 – Triglycerides and Fatty Acids 

 Jatropha oil, like every vegetable oil is mainly composed of triglycerides. Triglycerides 

are Fatty Acids Triesters formed with the combination of a glycerol molecule – the backbone 

of the triglyceride – and three molecules of Fatty Acids link to the glycerol thanks to an ester 

group. Figure 28 shows the general structure of a triglyceride.  

 

 

Figure 28 – General structure of a triglyceride with R1, R2 and R3 saturated or unsaturated alkyl groups 

 Fatty Acids (FAs) encountered in the triglycerides’ structures are long carbonated 

chains ended by a carboxylic acid group. They can either be saturated, monounsaturated or 

polyunsaturated. In plants and vegetable oils the chain lengths of the FAs typically vary from 

14 to 18 carbon atoms. The international normalized nomenclature the fatty acid is written C 
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n:m, n corresponding to the number of carbons (including the carbon of the carboxylic acid 

group) and m standing for the number of double bonds C=C in the chain. Sometimes, the 

notation includes the location of the double bonds and the conformation cis or trans that it 

exhibits (i.e. for Linoleic Acid: C 18:2 cis 9, cis 12). Table 18 presents the FAs encountered in 

the triglycerides’ structures found in common types of plants and vegetables oils[118].  

 
  Type of oil Rapeseed Corn Cotton Linseed Palm Peanut Sesame Soybean Sunflower Coconut Olive 

 FFA content (%)[108]  0.15  0.23 0.85    0.2 1.2 0.4 

Name of the FA Normalized nomenclature                       

Butyric C4:0                       

Caproic C6:0                   0 - 0.8   

Caprylic C8:0                   5.0 - 9.0   

Capric C10:0                   6.0 - 10.0   

Lauric C12:0                   44.0 - 52.0   

Myristic C14:0 - 0.0 0.8 - 1.0 0.1 - 0.1 - 13.0 - 19.0 0.1-1.2 

Palmitic C16:0 4.8 10.9 22.7 5.3 43.5 9.5 8.9 10.3 5.4 8.0 - 11.0 7.0 - 16.0 

Palmitoleic C16:1 0.5 - 0.8 - 0.3 0.1 0.2 0.2 0.2 0 - 1 1.6 

Stearic C18:0 1.6 1.8 2.3 4.1 4.3 2.2 4.8 3.8 3.5 1.0 - 3.0 1.0 - 3.0 

Oleic C18:1 53.8 24.2 17.0 20.2 36.6 44.8 39.3 22.8 45.3 5.0 - 8.0 65.0 - 85.0 

Linoleic C18:2 22.1 58.0 51.5 12.7 9.1 32.0 41.3 51.0 39.8 Traces-2.5 4.0-15.0 

Linolenic C18:3 11.1 0.7 0.2 53.3 0.2 - 0.3 6.8 0.2     

Arachidic C20:0                   0 - 0.04 0.1 - 0.3 

  Others 6.1 4.4 4.7 4.4 5.0 11.3 5.2 5.0 5.6     

Table 18 - FA composition[118] and FFA content[108] of common plants oils 

  Table 19 shows the nature and amount of the different FA found in Jatropha oil. Alike 

most types of plants (See Table 18), Jatropha oil exhibits high Oleic and Linoleic contents 

(more than 79% of the total FA content). Significant amounts of two other FA – Palmitic and 

Stearic Acid – are found and only traces of other FA (Non-reported here) are measured. 

 
Crocker[96] Akbar et al.[102] Endalew[36] 

Palmitic (C16:0) 11 to 16 14,2 14,1 - 15,3 

Stearic (C18:0) 6 to 15 7 3,7 - 9,8 

Oleic (C18:1) 34 to 45 44,7 34,3 - 45,8 

Linoleic (C18:2) 30 to 50 32,8 29,0 - 44,2 

Table 19 - FA profile of the triglycerides in Jatropha oil 
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VI.1.1.2 –Free Fatty Acid content 

 Free Fatty Acids (FFA) are species naturally present in the every type of 

vegetable/plant oil. They come from the decomposition of a triglyceride into a glycerol 

molecule and three Free Fatty Acids molecules. Due to their carboxylic acid structure 

described above, their amount affects the chemical properties and reactivity of the oil 

towards other Brønsted species. 

 In acid oils, the FFA content can vary from 0.5% up to 40%. However, most 

vegetable/plant oils have low FFA content. One of the typical characteristics of Jatropha oil is 

that the Free Fatty Acid (FFA) content is naturally much higher than in other vegetable/plant 

oils. Freshly pressed Jatropha oil can have more than 22% of FFA in its raw composition [21] 

whereas the FFA content of the plants presented in Table 18 ranges from 0.15% et 

1.2%[108].  

 Initially, every type of oil has a different amount of FFA in its composition but with 

time, the FFA content increases. Khan, Bhatti and Sardar[107] quantified this increase on 

several batches of Soybean oil, Cotton seed oil and sunflower oil after a ten-month period of 

storage. The sealed groups underwent increases of 99.4%, 104% and 119.25% respectively 

whereas the unsealed groups experienced a much more important increase of 1066.4%, 

1085.4% and 1241% respectively.  

 The dramatic rancidity of the oil after unsealed storage is due to the chemical 

decomposition of the triglycerides into FFA, monoglycerides, diglycerides and glycerol. 

Factors such as light rise in temperature, presence of moisture in the medium or even 

lipolytic enzyme lipase can accelerate significantly the amount of FFA in the oil which directly 
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affects the reactivity, chemical and physical properties of the oil and consequently its use in 

the industry. 

 The Free Fatty Acid content, characterized by the Acid Value of the oil (See Part II) 

has an enormous impact on the type of catalysis used in the transesterification reaction. The 

influence in the choice of the catalysist of the high AV (28 mgKOH/goil [37]) in the case of 

Jatropha oil was studied in depth in Section V.2.1.1. 

VI.1.2 –The reaction 

VI.1.2.1 – Presentation of the transesterification reaction  

 The transesterification reaction takes place between an ester group and an alcohol 

group and can be either intra- or extra-molecular. In our case, it is an extra-molecular 

reaction between the three ester groups of a triglyceride molecule and three molecules of 

alcohol in presence of a catalyst. However, the mechanism of the reaction was shown to be 

closely related to the type of catalyst used[40]. Figure 29 shows the mechanism of the 

reaction catalyzed by an acidic species (See Section V.1.2.1).  
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Figure 29 - Acid-catalyzed mechanism of the transesterification reaction 

 The mechanism presented in Figure 29 only shows one transesterification step. 

However, it is important to notice that in the acid-catalyzed reaction between a triglyceride 

and butanol, three transesterification step occur to finally lead to three molecules of Fatty 

Acid Butyl Esters (FABEs) and a molecule of glycerol. The entire mechanism being very 

similar to the one presented in Figure 29 is not presented here.   

 The acid-catalyzed transesterification reactions are characterized by two consecutive 

and reversible substitutions preceded by a step of protonation of the carbonyl group 

(forming an unstable tetrahedral intermediate) whereas the alkali-catalyzed reactions are 

based on a reversible addition–elimination mechanism. In the reaction catalyzed with an 

acid species, the carbon atom of the carbonyl group of the triglyceride becomes more 

electrophilic by the catalyst and more susceptible to be attacked by alcohol.  
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 The main differences between the acidic and the alkali-catalyzed mechanism come 

from the degree of polarization of the carbonyl group of the triglyceride, the nucleophile 

strength of the alcohol and also from the ability of the substituted group to leave the 

tetrahedral intermediate. Those differences between both mechanisms have a strong 

influence on the kinetics of the reaction. They are able to explain why the alkali-catalyzed 

reaction was shown to have a much greater reaction rate than the same reaction catalyzed 

in acidic medium. 

VI.1.2.1 – Unwanted parasitic reaction 

 In general, the conditions used for the transesterification reaction are also ideal for 

another unwanted side reaction involving the triglycerides of the oil. This particular reaction 

called Saponification involves the formation of soaps (i.e. ionic species composed of a 

carboxylic ion and a positive counter-ion such as Na+) would particularly occur when a 

nucleophilic (basic) species is present in the medium. It can also marginally happen when the 

water content of the oil is high. 

 

Figure 30 - Overhaul balance of the saponification reaction 

 The effects of this reaction have to be minimized or even avoided since it creates 

emulsions and renders the separation steps of the diesel phase particularly energy and time 

consuming.  
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 However, in our experiments, the use of an acid catalyst prevents the formation of 

soaps and only the acid-catalyzed transesterification reaction of the triglycerides as well as 

the acid-catalyzed esterification reaction of the FFA occur in the media. 

VI.2 – Experimental 

VI.2.1 – Reactants and Parameters of reaction  

VI.2.1.1 – Choice of the alcohol 

 Many parameters were taken into account while choosing the type of alcohol used in 

the transesterification reaction. First of all regarding the feasibility of the reaction, long chain 

linear alcohols (With more than 6 carbon atoms in their chain) as well as non-linear species 

such as isopropanol and tertiobutanol were not considered due to the slow (or even null) 

kinetics they involve.  

 Among the small chain linear alcohols, butanol was chosen for quality purposes. 

Indeed, working with a longer chain imparts a higher energy density to the final fuel thanks 

to a higher Cetane Number (C#). C# of linear chain alcohols were proven to increase linearly 

with the number of carbon atom in their chain[119].  

 Whithin the scope of sustainable development, we kept in mind that the two alcohols 

mainly produced from biomass are ethanol and butanol (ABE process). The choice between 

them was made considering the fact butanol has a greater Lower Heating Value (LHV) and its 

combustion releases less Volatile Organic Compounds (VOC) than ethanol[12]. 

 The main drawback regarding the choice of butanol is its good miscibility with 

glycerol as well as oil. Butanol played the role of a co-solvent during the reaction and did not 
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allow different phases to separate. On the one hand, the single-phased liquid system did not 

present any matter diffusion as a two-phase system would. But on the other hand, it 

rendered the separation of the products and the reactants hard. 

 Working with longer chain alcohols had an influence on the reaction conditions and 

more particularly on the temperature conditions. 

VI.2.1.2 – Butanol-to-oil ratios 

 Even if the stoechiometric ratio is 3:1, higher ratios are usually chosen in order to 

increase the solubility of the mono-, di- and triglycerides in the alcohol phase[120].  

 Three molar Butanol-to-oil ratios were tested: 3:1 (stoechiometric ratio), 6:1 and 

15:1. The choice of those different ratios was made regarding previous studies and in order 

to determine its influence on both the progression of the reaction overtime and the final 

yield reached.   

VI.2.1.1 – Choice of the catalyst 

 Choosing an acid catalysis was justifiable by the fact that the high FFA content of the 

oil did not permit us to use a basic catalysis. On top of that, the choice of an heterogeneous 

catalysis is more interesting in our case than an homogeneous acid catalyst which would 

highly foster corrosion of the reactor and its components in those harsh conditions. 

 

 The primary goal of our study is to compare the activity of different zeolites as solid 

acid catalysts in the transesterification reaction between butanol and high FFA Jatropha oil. 

Thus, five different types of zeolites were tested: X-type (13-X) zeolite, Y-type zeolite, 

Mordenite, Beta and ZSM-5. Their properties are gathered in Table 20. 
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Nature of the 

zeolite 
Chemical formula 

(before treatments) Dimension Pore 
size (Å) 

Si/Al 
ratio Cation Treatment Shape 

X-type (13-X) Na86[(AlO2)86(SiO2)106]•264H2O 3-D 7,4 1,23 H+ 
Ion-

exchanged, 
calcined 

Powder 
(2µm) 

Y-type H56[(AlO2)56(SiO2)136]•250H2O 3-D 7,4 2,43 H+ Calcined Powder 
(2µm) 

Mordenite H8[(AlO2)8(SiO2)40]•24H2O 2-D 6,7 - 7,0 5 H+ Calcined Powder 
(2µm) 

Beta H2[(AlO2)2(SiO2)150]•4H2O 3-D 6,68 75 H+ Calcined Powder 
(2µm) 

ZSM-5 (NH4)52[(AlO2)52(SiO2)44]•16H2O 2-D 5,5 2,84 H+ Calcined Grains 
(0,4mm) 

Table 20 - Structural characteristics of the zeolites used (* ZSM-5 structure obtained thanks to the idealized 
unit cell composition[121] and the outcome of the EDX Analysis) 

 Since it is hard to quantify accurately the molar amount of active catalytic sites within 

a zeolite, all the experiments were run with a fixed weight of zeolite corresponding to 1%wt. 

of the total weight of reactants in the batch. 

 In order to have landmarks as references, three batches were also ran without 

catalyst (one for each Butanol-to-oil ratio) and three other with sulfuric acid at 98.5%mol as 

a catalyst. For the latter, the quantity of catalyst was also chosen as 1%wt. of the total 

weight of the reactants. 

VI.2.1.4 – Choice of the temperature 

 For all the batches, the reaction temperature was maintained constant at 115°C. This 

particular temperature was chosen taking into account several factors and physical 

properties. 

 First of all 117°C is the vaporization temperature of the butanol under atmospheric 

pressure. In order to avoid a raise in pressure due to the appearance of a significant amount 

of vapor phase, the temperature was kept below the vaporization temperature of the 



105 
 

alcohol. A two-degree Celsius margin of precaution was kept in order to avoid any 

unexpected pressure increase in case of an overshoot in temperature control. 

 Working with harsh temperature conditions also exhibits several other mechanistic 

advantages. Indeed, the kinetics and thermodynamics of the transesterification reaction are 

governed by the energy gradient between the reactants and the products of the reaction as 

well as the steric mobility of the reactants towards each other. Thus, applying intense 

reaction conditions to the batch allowed to reach higher conversions with the relatively long 

chained butan-1-ol. 

 Finally, working at higher temperatures decreased the viscosity of the mixture and 

limited the effect of diffusion of the reactants toward each other and toward the catalyst. 

Increasing the temperature for that reason is even more justified because of the high 

content of long-chained and unsaturated Fatty Acids such as Oleic and Linoleic acids [122]. 

VI.2.1.5 – Stirring conditions 

 One of the concerns regarding the medium in which the reaction took place was the 

homogeneity of the solution. The transesterification required two reactants whose specific 

gravities were different from each other leading to the formation of a biphasic liquid 

mixture. On top of that, the choice of a heterogeneous catalyst added one more phase to 

the system. Moreover, the expected products of the reaction (the Biodiesel made of the 

Fatty Acid Butyl Esters (FABE) and the alcohol phase containing the glycerol as well as the 

unreacted butanol) were not miscible either. It is then easy to understand that mass transfer 

limitation had an important influence on the feasibility of the reaction from its beginning 

until its end.   
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 A high mixing rate was chosen to overcome the mass transfer limitation. With a 

stirring-speed of 1000 rpm, we assumed the medium was well-stirred and the contact 

between phases (i.e. reactants) was ideal.  

V.2.1.6 – Moisture content of the oil and storage conditions 

 Either the transesterification reaction itself (with the unwanted side reaction of 

saponification) or the natures of the catalysts (zeolites) are sensitive to the presence of 

water in the medium.  Wright et al. observed that a rise of water content of 0.11% to 

0.57%mol caused the yield of the transesterification reaction of cottonseed oil with ethanol 

to drop from 89.4% to 61.8%[123]. Thus, the alcohol used was dry butanol (with less than 

0.01%wt. of water), traces of water were removed from the oil using a powerful desiccant 

(Calcium Chloride CaCl2) and the material was carefully dried before each experiment. 

 To avoid penetration of moisture inside the bottles of reactants, all containers were 

carefully sealed using parafilm. Moreover, the reactants were kept away from the light 

(thanks to smoked glass bottles) in order to avoid the increase of the FFA content. 

VI.2.2 – Experimental device 

 Among all the different types of reactors commonly used and presented in the 

backgroud section (Batch reactors, plug-flow reactors, oscillatory flow reactors – See section 

I.4.2.1), the reactor used for our purpose was a well-stirred batch reactor. The reactor was a 

donation from the company Sepracor given to the Chemical Engineering department of the 

Worcester Polytechnic Institute by Robert Pritko. The device include à 450mL stainless steel 

vessel, sealed to an airtight head. A mechanical stirring agitator, a sampling line as well as a 
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pressure relief valve, a vent and an emergency rupture disk (2000psig) were part of the 

reactor’s head. The head of the reactor also exhibited a gas inlet which was not used for our 

purposes and was plugged carefully by a safety rupture disk of the same nature as the first 

one.  

Figure 31.a to Figure 31.c show pictures of the device. Specifications of the reactor and its 

components can be found in Appendix H. 

 In order to control the stirring speed, the stirring propeller was activated by a Parr 

motor whose speed was controlled by a Parr 4842 controller.  

The temperature control was guaranteed by a Eurotherm 2116 temperature controller and 

the temperature was measured with a K-type thermocouple (Chromel [Ni:90%, Cr:10%]– 

Alumel[Ni:95%, Mn:2%, Al:2%,Si:1%]) . The temperature controller can be seen on Figure 

31.d. 
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Figure 31 -The transesterification device: Stirring controller, autoclave, heating mantle (a); open reactor (b); 
reactor’s head (c); temperature controller and thermocouple (d) 

VI.2.3 – Analysis of the samples 

 In order to follow the conversion of the reaction overtime, we chose to follow the 

concentration of glycerol in the media overtime. Indeed according to the balance of the 

reaction, the formation of glycerol was a good indicator of the yield of the transesterification 

reaction since it is the compound formed at the end of the three transesterification steps of 

the tri-, di- and mono- glycerides. The concentration of glycerol in the medium showed the 

global conversion of the triglycerides into biodiesel. However, it is important to notice that 

this method enabled to measure the conversion of the transesterification reaction only and 

did not take into account the formation of FABEs from FFA thanks to the esterification 

reaction. Consequently, the actual production of biodiesel (as FABEs) was slightly higher than 

the conversion measured. 

 The detailed procedure of determination of the glycerol concentration in the reactor 

overtime is detailed in Appendices E & F. 
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VI.3 – Results and discussion 

 In this section, the following graphs show the conversions (in %) that were observed 

with each catalyst for the three butanol-to-oil ratio tested (3:1, 6:1 and 15:1). The method of 

determination of those numerical values of conversions is reported in Appendix F. Also, the 

calibration curves and raw data for each experiment are provided in Appendix G.  

VI.3.1 – Homogeneous and heterogeneous catalysis 

 A reference reaction using a liquid acid catalyst (H2SO4 at 98%wt.) was implemented 

in the same conditions as the reactions with zeolites. This reaction enabled to reach high 

values of conversion between 17% – for a butanol-to-oil ratio of 3:1 – and up to 74.4% for a 

15:1 ratio. Figure 32 show the evolution of the conversion with respect to time for the three 

different butanol-to-oil ratios. 
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Figure 32 - Transesterification of recreated Jatropha oil with butanol at 115°C using H2SO4 (1%wt.) as liquid 
acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) 

 The yields reached using H2SO4 as catalyst for the transtesterification reactions are 

lower than those reported in the literature. Nimcevic et al. [40] implemented 

transesterification of rapeseed oil in the exact same conditions and observed final 

conversions of 96.4% and 96% for 6:1 and 15:1 butanol-to-oil molar ratios respectively after 

4 hours of conversion. This major difference can be explained by the nature of the oil. 

Indeed, the oil used in our case was recreated Jatropha oil with a much higher FFA content 

than the rapeseed oil used by Nimcevic et al. The parallel esterification reaction of the FFA 

observed in our experiments did not occur in the rapeseed oil batch and consequently did 

not affect the yield of the transesterification reaction. 
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VI.3.2 – Influence of the molar butanol-to-oil ratio 

 Many studies concluded that in homogeneous catalysis, the best alcohol-to-oil ratio 

was around 6:1.[34, 120] However, in all the experiments implemented by us with any type 

of zeolite used as acid catalyst, the conversions reached increased with the butanol-to-oil 

ratio.  

 This can be explained by the fact that higher butanol-to-oil molar ratios increase the 

solubility of the triglycerides in butanol and consequently allow a better contact between 

the reactants. Thus, the greater butanol-to-oil ratio, the higher probability of reaction 

between the species. 

 Another explanation from this acknowledgement is the evolution of the viscosity of 

the reactive medium. Indeed, the viscosity of a butanol/oil mixture decreases when the 

butanol-to-oil ratio increases. This is due to the lower viscosity of butanol in comparison to 

the oil. Consequently, in the batches with a low butanol-to-oil ratio (i.e. high viscosity) a 

diffusion limiting process towards the solid zeolites particles in suspension in the mixture 

was observed. On the contrary, increasing the butanol-to-oil ratio decreased the viscosity 

and decreased the impact of the diffusion of the reactants towards the catalyst particles. 

 The acknowledgement that a high butanol-to-oil molar ratio is necessary for acid-

catalyzed transesterification is relevant to the observation made by Freedman et al. [34] 

during the transesterification of various vegetable oils with sulfuric acid as a catalyst. High 

conversions were reached for a alcohol-to-oil molar ratio of 30:1. Zheng et al. [38] noticed 

that an alcohol-to-oil molar ratio of 245 :1 was necessary in order to reach good conversions 

of waste oil with methanol in acidic catalysis.  

 Also, the nature of the alcohol involved in the transesterification step had an 

important influence on the reaction medium. Indeed, the main difference with the use of 
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small-chained alcohols – such as methanol or ethanol – and butanol is that the latter is less 

reactive than the two others due to its bigger size. The steric bulk implied by its size also 

decreases its activity that has to be compensated by a higher butanol-to-oil ratio. 

VI.3.3 – Compared efficiencies of the zeolites 

 For a fixed butanol-to-oil ratio, the compared efficiencies of the different catalysts 

(zeolites & H2SO4) bring to the light several properties of the zeolites and their influence on 

their ability to catalyze the transesterification reaction. 

 The four main criteria that come out in order to explain the outcomes of the different 

reactions are: 

 

- The hydrophobicity of the zeolite increasing with the silicon-to-aluminum ratio; 

- The acidity decreasing when the silicon-to-aluminum ratio increases; 

- The pore size of the zeolite which limits the diffusion within their structures; 

- The zeolite particles size. 

VI.3.3.a – Hydrophobicity of the catalyst 

 As explained in Section I.5.3.1, zeolites with low silicon-to-aluminum ratios are less 

hydrophobic than zeolites with high Si/Al ratios. This result was observed comparing the 

efficiencies of Y-type zeolite and 13-X-type zeolite. Figure 33 and Figure 34 exhibit the 

results obtained using Y-type and 13-X-type zeolites. 
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Figure 33 - Transesterification of recreated Jatropha oil with butanol at 115°C using Y-type zeolite (1%wt.) as 
solid acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) 

 

Figure 34 - Transesterification of recreated Jatropha oil with butanol at 115°C using 13-X-type zeolite (1%wt.) 
as solid acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) 
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 Regarding the pore size, the particle size and the type of channels, Y-type and 13-X-

type zeolites were equivalent. The major difference between both structures was the Si/Al 

ratio. The Y-type framework exhibited a higher Si/Al ratio (Si/Al=2.43) than the 13-X-type 

zeolite (Si/Al=1.23). Thus, the 13-X-type zeolite was less hydrophobic than the Y-type zeolite 

and more sensitive to the presence of water in the medium. However, the gap between the 

yields obtained with both zeolites (more than 12 times greater with the Y-type zeolite in the 

case of a butanol-to-oil ratio of 15/1) cannot only be explained thanks to the hydrophobicity 

difference. The efficiency of the ion-exchange and calcination processes implemented on the 

13-X-type zeolite can be questioned. The poor quality of the ion-exchanged catalyst could 

also be the explanation why the reaction implemented with a 6:1 butanol-to-oil ratio 

unexpectedly exhibited a lower yield than the reaction done with a 3:1 ratio. 

VI.3.3.b – Acidity of the catalyst 

 Acidity of the catalyst is also influenced by the Si/Al ratio. This ratio was particularly 

high in the case of the zeolite Beta (Si/Al=75) and had a strong influence on the conversion 

reached. Figure 35 and Figure 36 show the outcome of the reactions catalyzed with zeolite 

Beta and non-catalyzed.  
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Figure 35 - Transesterification of recreated Jatropha oil with butanol at 115°C using Beta zeolite (1%wt.) as 
solid acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) 
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Figure 36 - Non-catalyzed transesterification of recreated Jatropha oil with butanol at 115°C for three 
butanol-to-oil molar ratios (3:1, 6:1 & 15:1) 

 The difference between the non-catalyzed reaction and the reaction in which zeolite 

Beta was used as solid acid catalyst is not significant. The influence of Beta zeolite on the 

reaction is very limited (almost non-existent). The high silicon-to-aluminum ratio of Beta 

zeolite implies a very low density of acid catalytic site in the structure of the zeolite and does 

not enable to catalyze efficiently the transesterification reaction. 

 This acknowledgement was also confirmed by the outcome of the reactions 

implemented with Mordenite and presented in Figure 37.  
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Figure 37 - Transesterification of recreated Jatropha oil with butanol at 115°C using Mordenite (1%wt.) as 
solid acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) 

 The yields reached are slightly lower in the case of the use of Mordenite as catalyst 

than when Y-type zeolite is used. This difference was explained by Si/Al ratio, higher in the 

case of Mordenite (Si/Al=5) than with the Y-type zeolite (Si/Al=2.43). 

VI.3.3.c – Influence of the pore size 

 When we tried to correlate the pore sizes of the different zeolites with the outcomes 

of the transesterification reactions implemented with all the different zeolites, no trend 

seemed to appear. It does not seem that the pore size has an important influence in the 

catalytic efficiency of the zeolite. The main explanation comes from the size of the molecules 

reacting. Modeling the reactants with Jmol (Figure 38) gave us estimations of the dimensions 

of the molecules. 
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Figure 38 - Models of the four main Fatty Acids and determination of the chain length taking into account the 
spatial set up of the molecules (dPalmitic acid = 1.387 nm, dStearic acid = 0.802 nm, dOleic acid = 1.368 nm, dLinoleic acid = 

1.249 nm) 

  The numbers provided by those models show that the molecules involved in the 

transesterification reaction are much larger than the pore sizes of any zeolite used. The 

diffusion of the molecules inside the pores of the zeolites is extremely limited. As a 

consequence, the acidic sites inside the pores cannot be reached by the reactants. 

 This tends to prove that the transesterification reaction between the tri-, di- and 

mono-glycerides and butanol as well as the esterification reaction of the FFA by butanol 

takes place almost exclusively on the surface of the zeolites leaving the inside acidic sites 

unused. 

VI.3.3.d – Influence of particle size 

 In the case of a reaction involving molecules whose dimensions are larger than the 

pore size, the size of the particles is essential because it determines the active surface area 

available to catalyze the reaction. This aknoledgement was proven by the low conversions 

obtained using ZSM-5 as a catalyst and presented in Figure 39.  
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Figure 39 - Transesterification of recreated Jatropha oil with butanol at 115°C using ZSM-5 (1%wt.) as solid 
acid catalyst for three butanol-to-oil molar ratios (3:1, 6:1 & 15:1) 

 The fact that the average diameter of the particle of catalyst was 200 times greater 

than all the other zeolites’ particle diameter makes a significant difference in the limiting 

diffusion process. In the case of the use of 0.4mm ZSM-5 grains, the surface area available 

for the reaction was 40,000 times smaller than with a powder with an average particle size 

of 2µm, if particles are assumed to be spherical. The Y-type zeolite and ZSM-5 had similar 

silicon-to-aluminum ratios (i.e. acidity and hydrophobicity) however, the active surface of 

the first one was greater than the active surface of the latter causing a significant difference 

regarding their catalytic power. Nonetheless, comparing the activity of ZSM-5 and the Y-type 

zeolite, we could note that even with a ratio between the surfaces area of 40,000, the 

conversions were only 3.5 times, 1.8 times and 2.5 times lower with ZSM-5. This came from 

the fact that a catalytic site is used multiple times during the transesterification reaction.  
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VI.3.4 – Global results of the transesterification reactions 

 Figure 40 gathers the results of all the transesterification reactions implemented with 

the different catalysts for the three butanol-to-oil ratios.  

 

 

Figure 40 - Maximum conversions reached for each catalyst and each of the three butanol-to-oil molar ratio 
(3:1, 6:1 & 15:1) in the transesterification reaction of recreated Jatropha oil with butanol at 115°C 

 Yields reached with zeolites were usually much lower than those obtained using the 

liquid acid catalyst. This is consistent with the results found in the literature. Kiss et al. tested 

three different types of zeolites (H-ZSM-5, Y and Beta) and only observed a few percents of 

increase in conversion in comparison to the non-catalyzed reaction. These observations 

were justified by the limiting diffusion process of the bulky reactants inside the pores of the 

zeolites. 
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VI.4 – Conclusions 

 In our study, we saw that among the three butanol-to-oil ratio tested, the greatest 

one gave the best conversions with every type of catalyst. However, it is important to keep 

in mind that beyond the yield aspect of the reaction, the feasibility and cost of separation of 

the different products and remaining reactants is essential. On the one hand, contrary to 

homogeneous reactions, the use of zeolites allowed a simple filtration step to remove the 

catalyst. But on the other hand, using butanol in excess increases the miscibility of the 

reactants and the products making the separation of the different compounds hard and 

energy-consuming. On top of that, increasing the solubility and the quantity of the glycerol 

in the liquid phase containing the products of the transesterification reaction inevitably 

shifts the reaction equilibrium towards the formation of the reactants and consequently 

decreases the yield. 

 The efficiency of each zeolite is closely related to the properties of the catalyst used. 

At a microscopic scale, the silicon-to-aluminum ratio governs the hydrophobicity and density 

of acidic sites in the structure which evolve in opposite direction with respect to the Si/Al 

ratio. The nature of the positive counter-ion also influences the acidity of the zeolite. 

The size of the pores determines if the reaction takes place within the pores or if the 

reactants react only on the surface of the catalyst.  

At a macroscopic scale, the size of the zeolite particles have a strong impact on the efficiency 

of the catalysis, especially when the reaction takes place exclusively on the surface of the 

zeolite. 
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VII. Conclusions 

This project enabled us to achieve several objectives: 

  o  Determine several properties of the oil used as a starting point for the 

production of biofuel production (Sesame oil) such as its Acid Value (AV) by titration and the 

exact composition of its triglycerides by CG-MS analysis. This analysis enabled us to recreate 

artificial Jatropha oil whose composition was accurate and very close to raw jatropha oil; 

  o  Implement a four-step ion-exchange process in order to obtain the X-type 

zeolite initially in the NH4-form in the desired H-form. The major issue here was the 

impossibility to determine accurately the amount of ion exchanged thanks to that process; 

  o  A further study of the ion-exchanged structure by EDX analysis allowed us 

to verify the efficiency of the four-step ion-exchange process previously implemented. The 

EDX analysis on the ZSM-5 zeolite also permitted us to know the nature of the positive 

counter-ion balancing the negative charge of the structure and consequently revealed to us 

that the zeolite did not need any other treatment than a simple calcination; 

  o  Testing different zeolites as solid acid catalysts in the transesterification 

reaction of Jatropha-type oil with butanol enabled to correlate the results of the follow up of 

the conversion over time with the nature and properties of the zeolites. The yields of the 

reaction could be explained regarding, amongst others, the Silicon-to-Aliminum ratios (i.e 

the acidity and hydrophobicity of the zeolite), the impact of the particle size on the efficiency 

of the catalysis. The pore size did not have any influence on the yields of reaction because 

none of the FA (and consequently, none of the mono-, di- and triglycerides) fitted into the 

zeolites pores. From the comparison of the different catalysts, it appeared that despite its 
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drawbacks regarding separations steps, homogeneous catalysis with H2SO4 enabled to reach 

better conversions than any of the acid catalysts. Among the zeolites tested, the Y-type 

zeolite was the more efficient solid acid catalyst and the final conversion reached after 3 

hours with a butanol-to-oil molar ratio of 15:1 was around 61%. 

  o  The study of three different butanol-to-oil molar ratios (3:1, 6:1 and 15:1) 

was a good way to determine the trend observed when the alcohol proportion increased 

with respect to the oil. In every case, the butanol-to-oil molar ratio which enabled to reach 

the best yields was 15:1. The comparison of the yields reached with the three tested ratios 

showed a clear trend: the higher butanol-to-oil molar ratio, the better yield. 
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VIII. Recommendations 

 This study and more particularly the implementation of the transesterification 

reactions in batch reactor allowed us to test different parameters of reaction as well as 

several zeolites as solid acid catalysts. However, it also made us aware of the almost infinite 

possibilities offered by this simple reaction. Complementary studies could be done in order 

to understand accurately the mechanism of the reaction as well as the influences of all the 

parameters in stake in the reaction.  

 Regarding the follow up of the conversion over time, our method simply enabled us 

to have access to the conversion of the transesterification reaction only by determination of 

the glycerol production. It would be worthwhile following the consumption of butanol in 

parallel of the production of glycerol. Indeed, due to the high FFA content of the oil, a 

significant proportion of the biodiesel produced comes from esterification of the FFA with 

butanol. Following the alcohol consumption would enable us to follow the conversions of 

the transesterification and the esterification at the same time and would give access to the 

exact quantity of biodiesel produced in the medium. 

 Concerning the nature of the catalyst itself, we have seen that the size of the 

reactants involved in that particular reaction makes the pore size almost insignificant when 

microporous materials are used as catalysts. Dissolving part of the framework of the catalyst 

could have a strong influence on the pore size and would enable to enlarge those pores 

increasing the active surface area and thus making the catalyst much more active. Another 

option would be to choose a solid acid catalyst of another nature and that possesses amuch 

greater surface area. It would be the case with metal and mixed metal oxides such as 
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Zirconium, Tin, Tungsten or even Titanium oxides. Their acidic properties can be enhanced 

by functionalizing them by acid treatment with sulfuric or phosphoric acids for instance.  

 Finally, the use of heterogeneous catalysis makes the separation step much easier 

than with homogeneous catalysts. On top of saving time and energy thanks to the 

separation step itself, the interest is also to be able to recover the solid catalyst and to reuse 

it for the same purpose. Studying the efficiency of the recovered catalyst after several 

batches as well as a possible deactivation (in batch reactor) and/or leaching effect (In 

continuous process) would enable to determine if the catalyst can be reused without 

significantly losing its activity. This would fall within the objectives of finding a process able 

to meet the sustainable development’s requirements. 
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IX. Appendices 

Appendix A

• Palmitic acid (C16:0) 

: Standard curves obtained for the calibration of the gas chromatograph 

Concentration 
(mg/L) 

Area 1 Area 2 Average Area 

10,71 18460738 33701595 26081167 

21,43 57949846 57509115 57729481 

42,86 175942163 160765586 168353875 

53,57 207678116 218711866 213194991 

85,71 292296095 354361128 323328612 

 

 

• Stearic acid (C18:0) 

Concentration 
(mg/L) 

Area 1 Area 2 Average Area 

10,71 29619138 39059948 34339543 
21,43 65964524 68917591 67441058 
42,86 192412754 181875514 187144134 
53,57 223814977 233687313 228751145 
85,71 321211184 376479379 348845282 

 

 

• Oleic acid (C18:1) 

Concentration 
(mg/L) 

Area 1 Area 2 Average Area 

10,71 25998501 36094614 31046558 

21,43 61244079 63212556 62228318 

42,86 182724237 170251804 176488021 

53,57 212254024 223103247 217678636 

85,71 305969728 362081682 334025705 
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• Linoleic acid (C18:2) 

Concentration 
(mg/L) 

Area 1 Area 2 Average Area 

10,71 23380765 33026347 28203556 

21,43 55645815 57479312 56562564 

42,86 165292868 153954759 159623814 

53,57 193023693 204624675 198824184 

85,71 281321744 332354873 306838309 

 

 

• Linolenic acid (C18:3) 

Concentration 
(mg/L) 

Area 1 Area 2 Average Area 

10,71 17463609 24523904 20993757 

21,43 42035607 43057674 42546641 

42,86 123392966 114542144 118967555 

53,57 144263456 153811415 149037436 

85,71 212694089 250914103 231804096 
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Appendix B

 In the chromatogram obtain thanks to the GC-MS analysis of the transesterified sesame oil, 

clear peaks corresponding to each FAME present in the solution of FAMEs in hexane can be 

observed. 

: Determination by calculation of the quantity of FA needed to recreate 
Jatropha oil from Sesame oil 

The area of each peak is related to the concentration of the corresponding FAME in the sample. 

 However, a calibration of the device had to be done with a standard solution containing the 

expected FAMEs with a perfectly known concentration. The purpose of this calibration is to know 

correlate the output of the GC-MS analysis with the actual concentration of the compounds in the 

sample. Table 21 indicates the area of each peak (arbitrary unit) detected while analyzing the 

calibration sample (left column) and the studied sample (right column). The sample analyzed for the 

calibration was a solution of hexane containing the five following FAMEs: Palmitic Acid (C 16:0), 

Stearic Acid (C 18:0), Oleic Acid (C 18:1 cis 9), Linoleic Acid (C 18:2 cis 9, cis 12) and α-Linolenic Acid (C 

18:3 cis 9, cis 12, cis 15). It is of paramount importance that the calibration is done with a solution 

containing the compounds that are going to be detected later with a perfectly well know 

concentration for each compound and in the same conditions of chromatography. In the calibration 

sample, the concentration of each FAME was known and equaled to 1mg.L-1. 

  Calibration sample – Peak Area Studied sample – Peak 
Areas 

Relative peak 
area 

Palmitic (C16:0) 3790761 10064930 265.5122 
Stearic (C18:0) 4117230 15494233 376.3267 
Oleic (C18:1) 3121850 49799556 1269.7976 

Linoleic (C18:2) 3588044 63611289 1772.8681 
Linolenic (C18 :3) 2699593 ND1 - 

Total 17317478 138970008 3684.5043 

Table 21 - Peaks’ areas for the calibration sample, the studied sample and Relative peak area (Arbitrary unit) 
ND1: Non Detected 
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 On the calibration curve, in spite of the differences observed in the areas of the peaks, all of 

them correspond to the same concentration (1mg.L-1) of a different FAME. That is why the area 

under the peak obtained while analyzing our sample has to be balanced out regarding the area found 

for the same compound on the standard curve. For each FA, a relative peak area is found following 

the method detailed below: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 =  100 .  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑎𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑎𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒
 

The numerical values for each FA detected in the studied sample can be found on the right column of 

Table 21. The relative peak areas allowed us to obtain the molar fraction of each FAME in the studied 

sample. Also, we assumed that the molar fraction of each FA in the FFA phase was equal to the molar 

fraction of the corresponding FAME derived from the oil by transesterification. Assuming this and 

knowing the measured acid value (AV) of the crude sesame oil (AVsesame oil = 1.374 mgKOH/goi which 

corresponds to 2.5x10-5 molFA/goil) enabled us to know the quantity of matter of each FA present in 

the FFA part of the crude oil (Table 22). 

  Sesame oil Jatropha oil [103] 
Molar Fraction  Quantity of matter 

(x10-5) [mol] 
Molar fraction Quantity of matter 

(x10-4) [mol] 
Palmitic (C16:0) 0.0721 0.1802 0.143 0.715 
Stearic (C18:0) 0.1021 0.2553 0.071 0.355 
Oleic (C18:1) 0.3446 0.8616 0.453 2.265 

Linoleic (C18:2) 0.4812 1.2029 0.333 1.665 
Total 1 2.5 1 5 

Table 22 - Amount of each FA in the FFA fraction of both oils 

 For each Fatty Acid FAi, the amount NFAi of FAi that needed to be added to the sesame oil 

was computed according to the formulas below: 

                          For the Palmitic acid:            𝑥𝑃𝑎𝑙𝑚,𝐽 =  𝑁𝑃𝑎𝑙𝑚+𝑁𝑃𝑎𝑙𝑚,𝑆 
∑ 𝑁𝐹𝐴,𝑆𝐹𝐴 + 𝑁𝑃𝑎𝑙𝑚+𝑁𝑆𝑡𝑒𝑎+𝑁𝑂𝑙𝑒𝑖+𝑁𝐿𝑖𝑛𝑜

 

 

                          For the Stearic acid:              𝑥𝑆𝑡𝑒𝑎,𝐽 =  𝑁𝑆𝑡𝑒𝑎+𝑁𝑆𝑡𝑒𝑎,𝑆 
∑ 𝑁𝐹𝐴,𝑆𝐹𝐴 + 𝑁𝑃𝑎𝑙𝑚+𝑁𝑆𝑡𝑒𝑎+𝑁𝑂𝑙𝑒𝑖+𝑁𝐿𝑖𝑛𝑜
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                          For the Oleic acid:                 𝑥𝑂𝑙𝑒𝑖,𝐽 =  𝑁𝑂𝑙𝑒𝑖+𝑁𝑂𝑙𝑒𝑖,𝑆 
∑ 𝑁𝐹𝐴,𝑆𝐹𝐴 + 𝑁𝑃𝑎𝑙𝑚+𝑁𝑆𝑡𝑒𝑎+𝑁𝑂𝑙𝑒𝑖+𝑁𝐿𝑖𝑛𝑜

 

 

                          For the Linoleic acid:            𝑥𝐿𝑖𝑛𝑜,𝐽 =  𝑁𝐿𝑖𝑛𝑜+𝑁𝐿𝑖𝑛𝑜,𝑆 
∑ 𝑁𝐹𝐴,𝑆𝐹𝐴 + 𝑁𝑃𝑎𝑙𝑚+𝑁𝑆𝑡𝑒𝑎+𝑁𝑂𝑙𝑒𝑖+𝑁𝐿𝑖𝑛𝑜

 

 

With        𝑥𝐹𝐴𝑖,𝐽       the molar fraction of the particular FAi in the Jatropha oil, Note that ∑ 𝑥𝐹𝐴𝑖,𝐽𝑖 = 1 

                𝑁𝐹𝐴𝑖          the quantity of matter [mol] of the particular FAi that has to be added to 1g of oil, 

                𝑁𝐹𝐴𝑖,𝑆       the quantity of matter [mol] of the particular FAi in 1g of the Sesame oil. 

 

 We have 4 equations (one for each FA) with the 4 values of 𝑁𝐹𝐴𝑖  as unknowns. However, 

those 4 equations are not independent and another one has to be found in order to replace one of 

the 4 equations of the system and make the new system independent. The new independent 

equation which is introduced related both AVs: 

𝑁𝐹𝐴,𝐽 = 𝑁𝐹𝐴,𝑆 +   𝑁𝑃𝑎𝑙𝑚 + 𝑁𝑆𝑡𝑒𝑎 + 𝑁𝑂𝑙𝑒𝑖 + 𝑁𝐿𝑖𝑛𝑜 

With        𝑁𝐹𝐴,𝐽        the total quantity of matter [mol] of FA in 1g of the Jatropha oil, 

                𝑁𝐹𝐴,𝑆        the quantity of matter [mol] of the particular FAi that has to be added to 1g of oil. 

 

 Eventually the system of 4 independents equations where the 4 unknowns are the 𝑁𝐹𝐴𝑖  is: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑥𝑃𝑎𝑙𝑚,𝐽 =  

𝑁𝑃𝑎𝑙𝑚 + 𝑁𝑃𝑎𝑙𝑚,𝑆 
∑ 𝑁𝐹𝐴,𝑆𝐹𝐴 +  𝑁𝑃𝑎𝑙𝑚 + 𝑁𝑆𝑡𝑒𝑎 + 𝑁𝑂𝑙𝑒𝑖 + 𝑁𝐿𝑖𝑛𝑜 

𝑥𝑆𝑡𝑒𝑎,𝐽 =  
𝑁𝑆𝑡𝑒𝑎 + 𝑁𝑆𝑡𝑒𝑎,𝑆 

∑ 𝑁𝐹𝐴,𝑆𝐹𝐴 +  𝑁𝑃𝑎𝑙𝑚 + 𝑁𝑆𝑡𝑒𝑎 + 𝑁𝑂𝑙𝑒𝑖 + 𝑁𝐿𝑖𝑛𝑜 

𝑥𝑂𝑙𝑒𝑖,𝐽 =  
𝑁𝑂𝑙𝑒𝑖 + 𝑁𝑂𝑙𝑒𝑖,𝑆 

∑ 𝑁𝐹𝐴,𝑆𝐹𝐴 +  𝑁𝑃𝑎𝑙𝑚 + 𝑁𝑆𝑡𝑒𝑎 + 𝑁𝑂𝑙𝑒𝑖 + 𝑁𝐿𝑖𝑛𝑜          
𝑁𝐹𝐴,𝐽 = 𝑁𝐹𝐴,𝑆 +   𝑁𝑃𝑎𝑙𝑚 + 𝑁𝑆𝑡𝑒𝑎 + 𝑁𝑂𝑙𝑒𝑖 + 𝑁𝐿𝑖𝑛𝑜

� 

 Solving the system lead to the final results: 

⎩
⎪
⎨

⎪
⎧𝑁𝑃𝑎𝑙𝑚 = 6.97 10−5 𝑚𝑜𝑙
𝑁𝑆𝑡𝑒𝑎 = 3.29 10−5 𝑚𝑜𝑙
𝑁𝑂𝑙𝑒𝑖 = 21.79 10−5 𝑚𝑜𝑙
𝑁𝐿𝑖𝑛𝑜 = 15.45 10−5 𝑚𝑜𝑙

� 
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 Table 23 gathers the weight of each FA per gram of sesame oil that needs to be added in 

order to obtain oil which has similar properties as Jatropha oil. 

  Molecular weight [g.mol-1] Quantity of matter (x10-5) [mol] Weight added [mg] 

Palmitic (C16:0) 256.42 6.97 17.87 

Stearic (C18:0) 284.44 3.29 9.36 

Oleic (C18:1) 282.44 21.79 61.54 

Linoleic (C18:2) 280.44 15.45 43.33 

Total 1 2.5 132.1 

Table 23 - Amount of FAs added per gram of sesame oil 
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Appendix C

 C.1 – Preliminary calculations 

: Determination of the butanol-to-oil weight ratios corresponding to the 
three molar ratios 

 Before computing the actual weights of butanol and oil used, it was necessary to determine 

an average molecular weight of the oil 𝑀𝑜𝚤𝑙������.  

 The nature and amount of each FA (whether as FFA or inside the triglycerides’ structure) in 

the oil is perfectly known (See section III.3 and III.4). This enabled us to compute the average 

molecular weight of FAs (𝑀𝐹𝐴������), triglycerides (𝑀𝑡𝑟𝚤𝑔�������) and finally the number of moles of triglyceride 

(𝑁𝑡𝑟𝑖𝑔) per gram of oil. 

𝑀𝐹𝐴������ =  �𝑥𝐹𝐴𝑖,𝐽
𝑖

 𝑀𝐹𝐴𝑖 =  𝑥𝑃𝑎𝑙𝑚,𝑜𝑖𝑙  𝑀𝑃𝑎𝑙𝑚 + 𝑥𝑆𝑡𝑒𝑎,𝑜𝑖𝑙  𝑀𝑆𝑡𝑒𝑎 + 𝑥𝑂𝑙𝑒𝑖,𝑜𝑖𝑙  𝑀𝑂𝑙𝑒𝑖 + 𝑥𝐿𝑖𝑛𝑜,𝑜𝑖𝑙  𝑀𝐿𝑖𝑛𝑜

= 0.142 × 256.42 + 0.07 × 284.44 + 0.447 × 282.44 + 0.328 × 280.44

= 274.56 𝑔.𝑚𝑜𝑙−1 

Since the structure of the triglyceride derives from the structure of the FAs, we obtain: 

𝑀𝑡𝑟𝚤𝑔������� = 3(𝑀𝐹𝐴������ − 𝑀𝐻)  +  𝑀𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙  − 3𝑀𝑂𝐻 =  3(274.56 − 1) +  92 − 3 × 18 = 864.68 𝑔.𝑚𝑜𝑙−1 

The AV of the oil allows us to compute the weight of FFA per gram of oil: 

𝑚𝐹𝐹𝐴 = 𝑁𝐹𝐹𝐴 𝑀𝐹𝐴������ = 5 × 10−4 × 274.56 = 0.1373 𝑔 

This leads to the number of moles of triglycerides per gram of oil: 

𝑁𝑡𝑟𝑖𝑔 =
𝑚𝑡𝑟𝑖𝑔

𝑀𝑡𝑟𝚤𝑔������� =
1 −𝑚𝐹𝐹𝐴

𝑀𝑡𝑟𝚤𝑔������� =
0.8627
864.68

= 9.98 × 10−4 𝑚𝑜𝑙 ≈ 1mmol  

 C.2 – Determination of the butanol-to-oil weight ratio for each experiment 
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 The purpose of the calculation is to find, for each butanol-to-oil ratio, the weights of each 

liquid that have to be mixed in order to fill the Parr reactor (400mL). The density of the butanol was 

taken from the supplier (Sigma-Aldrich) and the specific gravity of the modified oil was measured. 

We had 𝑑𝑏𝑢𝑡𝑎𝑛𝑜𝑙 = 810 𝑔. 𝐿−1 and 𝑑𝑜𝑖𝑙 = 918 𝑔. 𝐿−1. 

 We solved a two-equation system with two unknowns: the weight of each liquid: 𝑚𝑏𝑢𝑡 and 

𝑚𝑜𝑖𝑙. The first equation is a volumetric equation. The second one expresses the molar ratio: 

�
𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 = 𝑉𝑜𝑖𝑙 + 𝑉𝑏𝑢𝑡 =

𝑚𝑜𝑖𝑙

𝑑𝑜𝑖𝑙
+
𝑚𝑏𝑢𝑡

𝑑𝑏𝑢𝑡
𝑁𝑏𝑢𝑡 = 𝑁𝑡𝑟𝑖𝑔

� 

Knowing the densities of both liquids and the fact that there was 9.98 × 10−4 𝑚𝑜𝑙 of triglycerides 

per gram of oil, we ended up with the following numerical system: 

�
0.4 =

𝑚𝑜𝑖𝑙

918
+
𝑚𝑏𝑢𝑡

810
𝑚𝑏𝑢𝑡 = 74 × 9.98 × 10−4 × 𝑅𝑎𝑡𝑖𝑜𝐵𝑢𝑡/𝑜𝑖𝑙 ×  𝑚𝑜𝑖𝑙

� 

Table 24 gathers the amounts of each liquid involved in each reaction depending on the molar ratio. 

Molar Ratio Weight of butanol [g] Weight of oil [g] Weight Ratio 
3 to 1 65,023 293,51 0,22 to 1 
6 to 1 108,46 244,28 0,44 to 1 
9 to 1 139,21 209,44 0,66 to 1 

15 to 1 180,35 162,8 1,11 to 1 
30 to 1 231,72 104,59 2,21 to 1 

Table 24 – Amounts of each liquid according to the butanol-to-oil molar ratio 

 Eventually, these amounts were the amount used with each zeolite. The amount of zeolite 

added in each batch was equal to 1% to the total weight of liquid in the reactor. Table 25 gives the 

weight of solid acid catalyst used in each batch. Note that the amount of zeolite (in grams) does not 

depend on its nature. 

Molar Ratio Weight of zeolite [g] 
3 to 1 3.58 
6 to 1 3.53 
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9 to 1 3.48 
15 to 1 3.43 
30 to 1 3.36 

Table 25 – Weight of each zeolite with respect to the molar ratio in each batch 
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Appendix D

• First analysis of the powder of 13-X-type zeolite before ion exchange 

: EDX Analysis reports 

Princeton Gamma-Tech, Inc. 
Spectrum Report 

Monday, December 10, 2012 
 

File: C:\susan\MQP\spray dryer thursday group\_S001.pgt 
Collected: December 10, 2012 14:17:27 

 

 
 

 
 
 

Element Line keV KRatio Wt% At% ChiSquared 
Na KA1 1.041 0.0747 10.48 9.90 1.66 
Al KA1 1.487 0.1647 20.12 16.21 2.55 
Si KA1 1.740 0.2155 27.18 21.03 2.55 
O KA1 0.523 0.2057 35.65 48.41 21.73 
S KA1 2.307 0.0523 6.56 4.45 1.59 

Total    100.00 100.00 5.80 
 
 

Element Line Gross (cps) BKG (cps) Overlap (cps) Net (cps) 
Na KA1 26.1 5.5 0.0 20.6 
Al KA1 54.1 6.1 0.0 48.0 
Si KA1 67.2 6.0 0.0 61.2 
O KA1 39.3 3.1 0.0 36.2 
S KA1 18.0 4.9 0.0 13.2 

 
 

Element Line Det Eff Z Corr A Corr F Corr Tot Corr Modes 
Na KA1 0.783 1.034 1.367 0.993 1.403 Elmnt. 
Al KA1 0.900 1.057 1.171 0.988 1.222 Elmnt. 
Si KA1 0.889 1.035 1.221 0.998 1.261 Elmnt. 
O KA1 0.435 0.931 1.863 0.999 1.733 Elmnt. 
S KA1 0.898 1.057 1.187 1.000 1.254 Elmnt. 

 

Live Time: 118.95 Count Rate: 471 Dead Time: 14.85 % 
Beam Voltage: 15.00 Beam Current: 2.00 Takeoff Angle: 59.51 
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• Second analysis of the powder of 13-X-type zeolite before ion exchange 

Princeton Gamma-Tech, Inc. 
Spectrum Report 

Monday, December 10, 2012 
 

File: C:\susan\MQP\spray dryer thursday group\_S001.pgt 
Collected: December 10, 2012 14:23:58 

 

 
 

 
 

Live Time: 106.92 Count Rate: 474 Dead Time: 14.78 % 
Beam Voltage: 15.00 Beam Current: 2.00 Takeoff Angle: 59.51 
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Element Line keV KRatio Wt% At% ChiSquared 
Na KA1 1.041 0.0729 10.25 9.67 1.22 
Al KA1 1.487 0.1637 19.99 16.09 2.50 
Si KA1 1.740 0.2151 27.11 20.95 2.50 
O KA1 0.523 0.2069 35.90 48.71 20.76 
S KA1 2.307 0.0539 6.76 4.58 1.21 

Total    100.00 100.00 5.48 
 
 

Element Line Gross (cps) BKG (cps) Overlap (cps) Net (cps) 
Na KA1 25.8 6.2 0.0 19.7 
Al KA1 53.5 6.8 0.0 46.7 
Si KA1 66.3 6.5 0.0 59.7 
O KA1 39.3 3.6 0.0 35.7 
S KA1 18.3 5.0 0.0 13.3 

 
 

Element Line Det Eff Z Corr A Corr F Corr Tot Corr Modes 
Na KA1 0.783 1.034 1.369 0.993 1.406 Elmnt. 
Al KA1 0.900 1.057 1.170 0.988 1.221 Elmnt. 
Si KA1 0.889 1.035 1.220 0.998 1.260 Elmnt. 
O KA1 0.435 0.932 1.864 0.999 1.735 Elmnt. 
S KA1 0.898 1.057 1.186 1.000 1.254 Elmnt. 

 
 

• Third analysis of the powder of 13-X-type zeolite before ion exchange 

Princeton Gamma-Tech, Inc. 
Spectrum Report 

Monday, December 10, 2012 
 

File: C:\susan\MQP\spray dryer thursday group\_S001.pgt 
Collected: December 10, 2012 14:28:48 

 
Live Time: 76.50 Count Rate: 474 Dead Time: 14.81 % 
Beam Voltage: 15.00 Beam Current: 2.00 Takeoff Angle: 59.51 
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Element Line keV KRatio Wt% At% ChiSquared 
Na KA1 1.041 0.0720 10.15 9.57 0.72 
Al KA1 1.487 0.1597 19.51 15.69 2.35 
Si KA1 1.740 0.2158 27.13 20.95 2.35 
O KA1 0.523 0.2083 36.17 49.03 14.57 
S KA1 2.307 0.0562 7.04 4.76 1.30 

Total    100.00 100.00 3.85 
 
 

Element Line Gross (cps) BKG (cps) Overlap (cps) Net (cps) 
Na KA1 26.2 6.7 0.0 19.5 
Al KA1 52.9 7.2 0.0 45.7 
Si KA1 67.3 7.2 0.0 60.2 
O KA1 40.2 4.2 0.0 36.0 
S KA1 19.4 5.5 0.0 13.9 

 
 

Element Line Det Eff Z Corr A Corr F Corr Tot Corr Modes 
Na KA1 0.783 1.034 1.372 0.993 1.409 Elmnt. 
Al KA1 0.900 1.057 1.170 0.988 1.222 Elmnt. 
Si KA1 0.889 1.035 1.217 0.998 1.257 Elmnt. 
O KA1 0.435 0.932 1.865 0.999 1.737 Elmnt. 
S KA1 0.898 1.057 1.185 1.000 1.253 Elmnt. 
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• First analysis of the powder of 13-X-type zeolite after ion exchange 

Princeton Gamma-Tech, Inc. 
Spectrum Report 

Monday, December 10, 2012 
 

File: C:\susan\MQP\spray dryer thursday group\_S001.pgt 
Collected: December 10, 2012 14:40:33 

 

 
 

Live Time: 40.71 Count Rate: 623 Dead Time: 17.02 % 
Beam Voltage: 15.00 Beam Current: 2.00 Takeoff Angle: 59.51 
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Element Line keV KRatio Wt% At% ChiSquared 
Na KA1 1.041 0.0064 0.87 0.85 0.90 
Al KA1 1.487 0.2587 29.40 24.35 2.18 
Si KA1 1.740 0.2962 37.54 29.86 2.18 
O KA1 0.523 0.1805 32.19 44.94 9.80 

Total    100.00 100.00 2.93 
 
 

Element Line Gross (cps) BKG (cps) Overlap (cps) Net (cps) 
Na KA1 10.3 8.0 0.0 2.4 
Al KA1 109.4 8.6 0.0 100.8 
Si KA1 120.2 7.8 0.0 112.4 
O KA1 46.9 4.4 0.0 42.5 

 
 

Element Line Det Eff Z Corr A Corr F Corr Tot Corr Modes 
Na KA1 0.783 1.029 1.342 0.988 1.365 Elmnt. 
Al KA1 0.900 1.052 1.097 0.984 1.136 Elmnt. 
Si KA1 0.889 1.030 1.230 1.000 1.267 Elmnt. 
O KA1 0.435 0.927 1.925 0.999 1.783 Elmnt. 
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• Second analysis of the powder of 13-X-type zeolite after ion exchange 

Princeton Gamma-Tech, Inc. 
Spectrum Report 

Monday, December 10, 2012 
 

File: C:\susan\MQP\spray dryer thursday group\_S001.pgt 
Collected: December 10, 2012 14:48:13 

 

 
 

 
 

Live Time: 37.26 Count Rate: 701 Dead Time: 18.04 % 
Beam Voltage: 15.00 Beam Current: 2.00 Takeoff Angle: 59.51 
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Element Line keV KRatio Wt% At% ChiSquared 
Na KA1 1.041 0.0065 0.90 0.87 0.96 
Al KA1 1.487 0.2462 28.15 23.09 2.12 
Si KA1 1.740 0.2928 37.04 29.17 2.12 
O KA1 0.523 0.1919 33.91 46.87 11.63 

Total    100.00 100.00 3.27 
 
 

Element Line Gross (cps) BKG (cps) Overlap (cps) Net (cps) 
Na KA1 11.6 8.7 0.0 2.8 
Al KA1 122.7 9.4 0.0 113.3 
Si KA1 140.0 8.7 0.0 131.2 
O KA1 58.7 5.3 0.0 53.4 

 
 

Element Line Det Eff Z Corr A Corr F Corr Tot Corr Modes 
Na KA1 0.783 1.031 1.354 0.989 1.381 Elmnt. 
Al KA1 0.900 1.054 1.102 0.984 1.144 Elmnt. 
Si KA1 0.889 1.032 1.225 1.000 1.265 Elmnt. 
O KA1 0.435 0.929 1.903 0.999 1.767 Elmnt. 

 

 
 

• First analysis of the ZSM-5 particles before calcination 

Princeton Gamma-Tech, Inc. 
Spectrum Report 

Friday, January 18, 2013 
 

File: C:\gaetan lemoine\zsm-5\_S001.pgt 
Collected: January 18, 2013 15:20:26 

 

 
 

Live Time: 65.65 Count Rate: 737 Dead Time: 18.67 % 
Beam Voltage: 15.00 Beam Current: 2.00 Takeoff Angle: 59.51 
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Element Line keV KRatio Wt% At% ChiSquared 
Al KA1 1.487 0.0626 7.82 5.08 3.12 
Si KA1 1.740 0.2068 25.22 15.75 3.12 
O KA1 0.523 0.1027 30.13 33.04 14.14 
N KA1 0.392 0.1761 36.83 46.13 14.14 

Total    100.00 100.00 4.57 
 
 

Element Line Gross (cps) BKG (cps) Overlap (cps) Net (cps) 
Al KA1 71.8 9.4 0.0 62.3 
Si KA1 209.3 8.8 0.0 200.5 
O KA1 67.3 4.9 0.7 61.8 
N KA1 23.7 3.4 1.3 19.1 

 
 

Element Line Det Eff Z Corr A Corr F Corr Tot Corr Modes 
Al KA1 0.900 1.106 1.145 0.986 1.249 Elmnt. 
Si KA1 0.889 1.083 1.126 1.000 1.219 Elmnt. 
O KA1 0.435 0.976 3.009 1.000 2.935 Elmnt. 
N KA1 0.077 0.951 2.201 0.999 2.091 Elmnt. 
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• Second analysis of the ZSM-5 particles before calcinations 

Princeton Gamma-Tech, Inc. 
Spectrum Report 

Friday, January 18, 2013 
 

File: C:\susan\MQP\spray dryer thursday group\_S001.pgt 
Collected: January 18, 2013 15:06:25 

 

 
 

 
 

Live Time: 102.25 Count Rate: 663 Dead Time: 17.65 % 
Beam Voltage: 15.00 Beam Current: 2.00 Takeoff Angle: 59.51 
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Element Line keV KRatio Wt% At% ChiSquared 
Al KA1 1.487 0.0916 11.18 7.55 4.54 
Si KA1 1.740 0.2368 28.92 18.75 4.54 
O KA1 0.523 0.0892 25.82 29.38 13.87 
N KA1 0.392 0.1486 34.09 44.32 13.87 

Total    100.00 100.00 5.05 
 
 

Element Line Gross (cps) BKG (cps) Overlap (cps) Net (cps) 
Al KA1 81.9 8.5 0.0 73.4 
Si KA1 192.5 7.7 0.0 184.7 
O KA1 48.0 4.3 0.5 43.2 
N KA1 16.7 2.9 0.9 12.9 

 
 

Element Line Det Eff Z Corr A Corr F Corr Tot Corr Modes 
Al KA1 0.900 1.097 1.130 0.984 1.220 Elmnt. 
Si KA1 0.889 1.074 1.137 1.000 1.221 Elmnt. 
O KA1 0.435 0.967 2.993 1.000 2.895 Elmnt. 
N KA1 0.077 0.943 2.435 0.999 2.294 Elmnt. 

 

 
 
 
 
 

 

• Third analysis of the ZSM-5 particles before calcination 

Princeton Gamma-Tech, Inc. 
Spectrum Report 

Friday, January 18, 2013 
 

File: C:\gaetan lemoine\zsm-5\_S001.pgt 
Collected: January 18, 2013 15:15:44 
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Element Line keV KRatio Wt% At% ChiSquared 
Al KA1 1.487 0.0629 7.89 5.10 3.52 
Si KA1 1.740 0.1977 24.17 15.02 3.52 
O KA1 0.523 0.1037 30.56 33.32 20.52 
N KA1 0.392 0.1817 37.38 46.56 20.52 

Total    100.00 100.00 5.95 
 
 

Element Line Gross (cps) BKG (cps) Overlap (cps) Net (cps) 
Al KA1 113.6 15.6 0.0 98.0 
Si KA1 314.4 14.5 0.0 299.9 
O KA1 106.3 7.6 1.1 97.6 
N KA1 38.0 5.3 2.0 30.7 

 
 

Element Line Det Eff Z Corr A Corr F Corr Tot Corr Modes 
Al KA1 0.900 1.108 1.147 0.987 1.254 Elmnt. 
Si KA1 0.889 1.085 1.127 1.000 1.223 Elmnt. 
O KA1 0.435 0.977 3.016 1.000 2.946 Elmnt. 
N KA1 0.077 0.953 2.163 0.999 2.057 Elmnt. 

 

Live Time: 59.19 Count Rate: 1144 Dead Time: 23.96 % 
Beam Voltage: 15.00 Beam Current: 2.00 Takeoff Angle: 59.51 
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Appendix E

 

: EnzyChrom Assay Kit’s manual 
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Appendix F

 The main purpose of the project is to follow overtime the yield of transesterification 

reactions implemented with different acid catalysts (5 zeolites and sulfuric acid) and for 

several butanol-to-oil ratios. In order to follow the degree of conversion of the reaction, a 

one-step enzymatic method was chosen using the EnzyChrom Glycerol Assay Kit (Cat# EGLY-

200) developed by BioAssay Systems. The analysis is based on a colorimetric procedure 

which allows to have access to the glycerol concentration inside the sample analyzed. The 

sample’s Optical Density (OD) at 570nm is directly related to its concentration in glycerol. 

Prior to each measurement, a calibration curve based on the OD of standards whose glycerol 

concentration is perfectly known was done. The measurements of the OD of the calibration 

samples and the reaction samples were realized thanks to the Spectrometer Spectramax 

(model 340PC – 384). Figure 41 shows an example of the pink coloration due to the presence 

of glycerol in the well. 

: Determination of the glycerol concentration of a sample 

 

Figure 41 – The OD depends on the glycerol concentration in each well  

 Using this method, we assumed that glycerol was the only compound having an 

influence on the OD of the sample. This assumption was justified by the fact that this 

particular method of analysis combines glycerol kinase (which catalyzes the transfer of a 
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phosphate from ATP to glycerol thus forming glycerol phosphate), glycerol phosphate 

oxidase (which catalyzes the reaction leading to glycerone phosphate from glycerol 

phosphate) and a color reaction in one step. The specificity of the reactions involved in the 

process makes the assumption reasonable.  

 We can also note that on top of the precautions taken to keep the buffer and all the 

reagents in the freezer at -20°C between the experiments, a calibration curve was plotted 

simultaneously with each analysis for a better accuracy of the measurement.  

 A detailed method of analysis is provided in Appendix D. 

 Once the OD of each sample determined, the use of the slope of the calibration curve 

leads to the value of the concentration of the sample in mmol (1mmol = 0.092g/L of glycerol) 

thanks to the following formula: 

𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑂𝐷𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟

𝑆𝑙𝑜𝑝𝑒
 

 In our case, the glycerol concentration of the sample is not the actual glycerol 

concentration in the reactor. Indeed, each sample is the result of a dilution of 0.5mL of 

reaction medium in 20mL of deionized water. As a consequence a simple dilution calculation 

has to be implemented to the concentration of the sample 𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 in order to obtain 

the glycerol concentration in the reactor 𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 : 

𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑟𝑒𝑎𝑐𝑡𝑜𝑟(𝑡) = 40 𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) 

Calculation of conversion 

 Once the results of the analysis with the EnzyChrom Glycerol Assay Kit found, it was 

necessary to find the value of the conversion. First of all, as a reference, finding the 

theoretical concentration of glycerol for each Butanol-to-oil ratio was essential as a 

reference to compute the yield reached in each sample.  
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In Appendix B, the number of moles of triglycerides per gram of oil 𝑁𝑡𝑟𝑖𝑔 was calculated. We 

obtained 𝑁𝑡𝑟𝑖𝑔 = 9.98 × 10−4 𝑚𝑜𝑙 ≈ 1mmol. 

Knowing the specific gravity of the oil (𝑑𝑜𝑖𝑙 = 918 𝑔. 𝐿−1) as well as the molecular weight of 

the glycerol 𝑀𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 = 92 𝑔.𝑚𝑜𝑙−1 and the volume of the reactor 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 = 0.4𝐿, lead to 

the expression of the theoretical glycerol concentration 𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑇𝑂𝑇 in the reactor in the 

case of a total conversion 𝑋𝑇𝑜𝑡 = 1. 

𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑇𝑂𝑇 (𝑔. 𝐿−1) =  𝑚𝑜𝑖𝑙
𝑁𝑡𝑟𝑖𝑔

3𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟
𝑀𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 

Table 24 in Appendix C gives the weight of oil used for each Butanol-to-oil Ratio. As a 

consequence, 𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑇𝑂𝑇 was calculated for each value of 𝑅𝑎𝑡𝑖𝑜𝐵𝑢𝑡/𝑜𝑖𝑙 . The values are 

gathered in Table 26. 

𝑹𝒂𝒕𝒊𝒐𝑩𝒖𝒕/𝒐𝒊𝒍 𝑪𝒈𝒍𝒚𝒄𝒆𝒓𝒐𝒍 𝑻𝑶𝑻 (𝒈.𝑳−𝟏) 
3 to 1 22.457 
6 to 1 18.691 
9 to 1 16.025 

15 to 1 12.456 
30 to 1 8.002 

Table 26– theoretical value of the maximum glycerol concentration reached with respect to the butanol-to-
oil ratio 

 Once those theoretical values obtained, the actual conversion 𝑋𝑡 reached at time t 

(min) for the particular value 𝑅𝑖 of butanol-to-oil ratio can be computed thanks to the 

measurement of the glycerol concentration in the reactor 𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑟𝑒𝑎𝑐𝑡𝑜𝑟(𝑡) and the 

theoretical maximum glycerol concentration computed for the same ratio 𝑅𝑖 : 

𝑋𝑡 =  
𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑟𝑒𝑎𝑐𝑡𝑜𝑟(𝑡) 

𝐶𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑇𝑂𝑇
 

  



158 
 

Appendix G

• 13-X-type zeolite: 

: Results of the transesterification reactions with the different catalysts. 5 
zeolites (13-X-type, Y-type, ZSM-5, Mordenite & Beta), H2SO4 and non-catalyzed 
reaction. Butanol-to-oil ratios tested: 3:1, 6:1 and 15:1. 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,051 

0,5 1,071 
1 1,729 
    

Slope 1,678 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,091 0,08772348 0,39062867 
30 0,059 0,017544696 0,078125734 
60 0,181 0,285101311 1,269543176 
90 0,239 0,412300358 1,835954747 

150 0,511 1,008820024 4,4922297 
180 0,502 0,989082241 4,40433825 
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• 13-X-type zeolite: 

- Butanol-to-oil ratio: 6:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,045 

0,5 0,544 
1 1,004 
    

Slope 0,959 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
5 0,066 0,080583942 0,431137668 

30 0,067 0,084421272 0,451668034 
60 0,071 0,099770594 0,533789494 
90 0,069 0,092095933 0,492728764 

120 0,11 0,249426486 1,334473736 
180 0,114 0,264775808 1,416595196 
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• 13-X-type zeolite: 

- Butanol-to-oil ratio: 15:1 

Calibration data and curve: 

 

Gly (mM) OD at t= 20 min 
0 0,052 

0,5 0,565 
1 0,886 
    

Slope 0,834 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
17 0,066 0,06177458 0,49594236 
30 0,063 0,04853717 0,389668997 
60 0,082 0,132374101 1,062733628 
90 0,191 0,613333333 4,923999144 

120 0,197 0,639808153 5,136545869 
180 0,194 0,626570743 5,030272506 
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• Y-type zeolite: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,051 

0,5 1,071 
1 1,729 
    

Slope 1,678 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,088 0,081144219 0,361331519 
30 0,184 0,291680572 1,298840326 
60 1,396 2,949702026 13,13488902 
90 1,914 4,085721097 18,19353029 

120 2,089 4,469511323 19,90253072 
180 2,235 4,789702026 21,32832536 
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• Y-type zeolite: 

- Butanol-to-oil ratio: 6:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,069 

0,5 0,63 
1 1,08 
    

Slope 1,011 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
5 0,072 0,010919881 0,058423205 

30 0,072 0,010919881 0,058423205 
60 0,073 0,014559842 0,077897607 
90 0,642 2,085697329 11,15883222 

120 1,275 4,389792285 23,48612854 
180 2,024 7,116122651 38,07245546 
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• Y-type zeolite: 

- Butanol-to-oil ratio: 15:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,046 

0,5 0,597 
1 1,084 
    

Slope 1,038 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,054 0,028362235 0,227699382 
30 0,087 0,145356455 1,166959335 
60 0,235 0,670057803 5,379397908 
90 0,671 2,215799615 17,78901425 

120 1,379 4,725857418 37,94040959 
180 2,178 7,558535645 60,6818854 
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• ZSM-5: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) t= 20 min 
0 0,051 

0,5 1,071 
1 1,729 
    

Slope 1,678 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,055 0,008772348 0,039062867 
30 0,054 0,006579261 0,02929715 
60 0,068 0,037282479 0,166017185 
90 0,218 0,36624553 1,630874696 

120 0,403 0,771966627 3,437532293 
180 0,676 1,37067938 6,103572963 
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• ZSM-5: 

- Butanol-to-oil ratio: 6:1 

Calibration data and curve: 

Gly (mM) t= 20 min 
0 0,051 

0,5 1,071 
1 1,729 
    

Slope 1,678 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,053 0,004386174 0,02346677 
30 0,083 0,070178784 0,375468323 
60 0,125 0,162288439 0,868270497 
90 0,403 0,771966627 4,130151554 

120 0,977 2,03079857 10,8651146 
180 1,781 3,794040524 20,29875622 
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• ZSM-5: 

- Butanol-to-oil ratio: 15:1 

Calibration data and curve: 

Gly (mM) t= 20 min 
0 0,051 

0,5 1,071 
1 1,729 
    

Slope 1,678 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,061 0,02193087 0,176066716 
30 0,066 0,032896305 0,264100073 
60 0,097 0,100882002 0,809906891 
90 0,301 0,548271752 4,401667888 

120 0,691 1,403575685 11,26826979 
180 1,442 3,050584029 24,49088013 
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• Mordenite: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,122 

0,5 0,694 
1 1,165 
    

Slope 1,043 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,143 0,07409396 0,329937034 
30 0,145 0,081150527 0,361359609 
60 0,268 0,515129434 2,293847951 
90 0,507 1,358389262 6,048845624 

120 0,537 1,464237776 6,520184244 
180 0,642 1,834707574 8,169869414 
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• Mordenite: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,053 

0,5 0,574 
1 0,764 
    

Slope 0,711 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
5 0,073 0,103516174 0,553828979 

30 0,093 0,207032349 1,107657957 
60 0,102 0,253614627 1,356880998 
90 0,348 1,526863572 8,168977435 

120 0,698 3,338396624 17,86098456 
180 0,982 4,808326301 25,72535606 
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• Mordenite: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,045 

0,5 0,665 
1 1,105 
    

Slope 1,06 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,07 0,086792453 0,696792332 
30 0,079 0,118037736 0,947637571 
60 0,846 2,780830189 22,32522631 
90 1,569 5,290867925 42,47646054 

102 1,625 5,485283019 44,03727536 
150 1,676 5,662339623 45,45873172 
180 1,869 6,332377358 50,83796852 
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• Beta: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,122 

0,5 0,694 
1 1,165 
    

Slope 1,043 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
15 0,124 0,007056568 0,031422575 
40 0,125 0,010584851 0,047133862 
60 0,122 0 0 
90 0,126 0,014113135 0,062845149 

120 0,129 0,024697987 0,109979011 
180 0,125 0,010584851 0,047133862 
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• Beta: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,122 

0,5 0,694 
1 1,165 
    

Slope 1,043 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
20 0,126 0,014113135 0,075507652 
45 0,122 0 0 
85 0,124 0,007056568 0,037753826 

120 0,129 0,024697987 0,132138391 
145 0,133 0,038811122 0,207646042 
170 0,135 0,045867689 0,245399868 
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• Beta: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 min 
0 0,045 

0,5 0,665 
1 1,105 
    

Slope 1,06 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,067 0,076377358 0,613177252 
30 0,059 0,048603774 0,390203706 
60 0,08 0,121509434 0,975509264 
90 0,077 0,11109434 0,891894185 

120 0,076 0,107622642 0,864022491 
180 0,071 0,090264151 0,724664025 
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• H2SO4: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 
min 

0 0,053 
0,5 0,574 
1 0,764 
    

Slope 0,711 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
5 0,18 1,643319269 8,792035036 

30 0,16 1,384528833 7,40746259 
60 0,147 1,216315049 6,507490499 
90 0,232 2,316174402 12,3919234 

120 0,293 3,105485232 16,61486936 
180 0,299 3,183122363 17,03024109 
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• H2SO4: 

- Butanol-to-oil ratio: 6:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 
min 

0 0,056 
0,5 0,809 
1 1,346 
    

Slope 1,29 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,101 0,320930233 1,429087735 
30 1,977 13,70015504 61,00616751 
60 1,906 13,19379845 58,75138464 
90 2,002 13,87844961 61,80010514 

120 2,112 14,66294574 65,29343072 
180 2,163 15,02666667 66,91306348 
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• H2SO4: 

- Butanol-to-oil ratio: 15:1 

Calibration data and curve: 

Gly (mM) OD at t= 20 
min 

0 0,052 
0,5 0,565 
1 0,886 
    

Slope 0,834 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
15 0,091 0,430215827 3,453884291 
30 0,869 9,012470024 72,35444785 
60 0,877 9,100719424 73,06293693 
90 0,807 8,32853717 66,86365744 

120 0,864 8,957314149 71,91164217 
180 0,893 9,277218225 74,4799151 
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• Non-catalyzed reaction: 

- Butanol-to-oil ratio: 3:1 

Calibration data and curve: 

Gly (mM) t= 20 min 
0 0,05 

0,5 0,496 
1 1,225 
    

Slope 1,175 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,049 -0,00313191 -0,01394627 
30 0,065 0,04697872 0,20919412 
60 0,093 0,13467234 0,59968981 
90 0,06 0,03131915 0,13946275 

120 0,061 0,03445106 0,15340902 
180 0,051 0,00313191 0,01394627 
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• Non-catalyzed reaction: 

- Butanol-to-oil ratio: 6:1 

Calibration data and curve: 

Gly (mM) t= 20 min 
0 0,05 

0,5 0,496 
1 1,225 
    

Slope 1,175 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,063 0,04071489 0,21783154 
30 0,065 0,04697872 0,25134409 
60 0,079 0,09082553 0,4859319 
90 0,061 0,03445106 0,184319 

120 0,071 0,06577021 0,35188172 
180 0,059 0,02818723 0,15080645 
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• Non-catalyzed reaction: 

- Butanol-to-oil ratio: 15:1 

Calibration data and curve: 

Gly (mM) t= 20 min 
0 0,05 

0,5 0,496 
1 1,225 
    

Slope 1,175 
 

 

time OD 20 concentration Gly (g/L) Conversion (%) 
10 0,071 0,06577021 0,52802033 
30 0,063 0,04071489 0,32686973 
60 0,064 0,04384681 0,35201356 
90 0,061 0,03445106 0,27658208 

120 0,064 0,04384681 0,35201356 
180 0,059 0,02818723 0,22629443 
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Appendix H

 

: Specifications and characteristics of the Parr reactor 
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