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Abstract

With the abundance of cheap computing power and high-speed internet, cloud

and mobile computing replaced traditional computers. As computing models evolved,

newer CPUs were fitted with additional cores and larger caches to accommodate run

multiple processes concurrently. In direct relation to these changes, shared hard-

ware resources emerged and became a source of side-channel leakage. Although

side-channel attacks have been known for a long time, these changes made them

practical on shared hardware systems. In addition to side-channels, concurrent ex-

ecution also opened the door to practical quality of service attacks (QoS).

The goal of this dissertation is to identify side-channel leakages and architectural

bottlenecks on modern computing systems and introduce exploits. To that end, we

introduce side-channel attacks on cloud systems to recover sensitive information such

as code execution, software identity as well as cryptographic secrets. Moreover, we

introduce a hard to detect QoS attack that can cause over 90+% slowdown. We

demonstrate our attack by designing an Android app that causes degradation via

memory bus locking.

While practical and quite powerful, mounting side-channel attacks is akin to

listening on a private conversation in a crowded train station. Significant manual

labor is required to de-noise and synchronizes the leakage trace and extract features.

With this motivation, we apply machine learning (ML) to automate and scale the

data analysis. We show that classical machine learning methods, as well as more

complicated convolutional neural networks (CNN), can be trained to extract useful

information from side-channel leakage trace.



Finally, we propose the DeepCloak framework as a countermeasure against side-

channel attacks. We argue that by exploiting adversarial learning (AL), an inherent

weakness of ML, as a defensive tool against side-channel attacks, we can cloak side-

channel trace of a process. With DeepCloak, we show that it is possible to trick

highly accurate (99+% accuracy) CNN classifiers. Moreover, we investigate defenses

against AL to determine if an attacker can protect itself from DeepCloak by applying

adversarial re-training and defensive distillation. We show that even in the presence

of an intelligent adversary that employs such techniques, DeepCloak still succeeds.
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Chapter 1

Introduction

In 1965, Gordon Moore famously predicted that the number transistors in integrated

circuits would double every two years. For the most part, processors kept up with

the Moore’s Law and reached incredible transistor densities. With more transistors,

came the opportunity for hardware designers to implement increasingly complex

optimizations that would be otherwise impossible. Single-core CPUs evolved into

64-core, multi-threaded behemoths. Functionality that was previously maintained

by separate chips got integrated into CPUs. Memory architecture, size and band-

width radically changed, always towards faster and more efficient computing. While

these improvements certainly increased compute capabilities, they were designed

and implemented with the mindset and assumption that a hardware system would

be used only by trusted parties. This assumption was the conclusion of thinking

that if a potential attacker has access to run code on the machine, the system was

already compromised. While certain isolation techniques were implemented, like

the address space layout randomization (ASLR), to protect systems from untrusted

code, these protections were aimed at software based threats and not necessarily

affected side-channel attacks. Moreover, optimizations like the addition of multi-
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ple levels of memory into the CPU, called caches added shared resources between

threads, cores and processes. The purpose of these caches is to use temporal and

spatial locality as a means to keep frequently used data in the CPU and improve

performance. However, as we demonstrate in this dissertation, these optimizations

towards performance open new attack surfaces to modern computing systems.

As computing systems became simultaneously more efficient, more capable and

cheaper, computing paradigm shifted into mobile computing via smartphones and

shared systems via cloud. This shift increased productivity while allowing software

from multiple sources running side-by-side on a shared hardware. While side-channel

attacks have been demonstrated to recover secret information from chips in the past,

these attacks required the physical access to work and were considered out-of-scope

of security evaluation of shared hardware resources. For instance, on cloud, there

was always an implied trust that an attacker cannot have physical access to the

system therefore cannot mount a side-channel attack.

In this dissertation, we show how to exploit shared hardware resources in cloud

and mobile environments to perform quality of service attacks, privacy violations as

well as cryptographic key recovery attacks. We show that micro-architectural threats

including software side-channels leave modern computing systems vulnerable when

the underlying hardware is shared.

To demonstrate the severity of the threat, we implement attacks such as Flush+Reload,

Prime+Probe and Memory Bus locking. Further, we show all the necessary steps

to perform such attacks on cloud and mobile environment. We show that it is pos-

sible to recover information from co-located virtual machines running on the same

physical system, even though they are isolated by virtualization, ASLR and other

isolation techniques.

Note that in order to perform these side-channel attacks on cloud environment,
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the first challenge is to achieve co-location with a vulnerable target. While there

are studies investigating cloud co-location, previously known methods are now out-

dated. Side-channel leaks signaling the co-location have been eliminated and new

methods are required. For this purpose, we have developed 3 novel cloud co-location

techniques that exploit micro-architectural features to detect and verify co-location

under various scenarios.

After establishing that software side-channels pose a significant threat for the

modern computing systems and demonstrating such attacks on the cloud, we tackle

the problems of automation and scalability of such attacks. While practical and

quite powerful, mounting side-channel attacks is still akin to listening on a private

conversation in a crowded train station. The attacker needs to perform significant

manual labor to extract important features, de-noise and synchronize the leakage

trace. Here, we argue that there is a better alternative, the use of Machine Learning

(ML) systems to automate and scale the attack process and data analysis. With the

abundance of cheap computing power and the improvements made in implementa-

tion of ML algorithms, such automation is quite advantageous. We demonstrate that

classical machine learning methods as well as more complicated convolutional neu-

ral networks (CNN) can be trained to extract useful information from side-channel

leakage trace.

The use of ML, on the other hand, brings an inherent weakness, vulnerability

to adversarial learning (AL) methods. Here, in contrast to the previous literature,

we use this inherent weakness, as a defensive tool to cloak side-channel leakage.

We argue that by running a sister process alongside the original, it is possible to

cloak its side-channel trace from prying eyes. We demonstrate the viability of this

approach by first training highly accurate (99+% accuracy) CNN and other ML

models on side-channel leakage traces. We then test these classifiers against various
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AL methods and show that we can cause misclassification very efficiently by carefully

crafted adversarial samples.

Finally, we investigate defenses against AL to determine if an attacker can protect

itself from DeepCloak by applying adversarial re-training and defensive distillation.

We conclude that even in the presence of an intelligent adversary who employs such

techniques, AL methods still manage to fool the attacker’s model and can be used

to cloak processes.

1.1 Contributions

This dissertation demonstrates the viability of software side-channel attacks and

other micro-architectural threats to modern computing systems. In order to reliably

show the underlying threat, we tackled multiple challenges ranging from identifying

side-channel vulnerable software to finding bottlenecks in CPU pipelines.

Contributions can be summarized as follows;

� We show how to implement the Flush+Reload in native and virtualized sys-

tems to extract cryptographic keys, and recover information about the code

execution. We show that it is in fact possible and practical to detect, in

real-time, what software, library or a specific function is running on other vir-

tual machines running on the same platform and how this information can be

exploited.

� We implement Prime+Probe attack in native and virtualized systems to ex-

tract cryptographic keys across virtualization boundaries. In addition to that,

we show that Prime+Probe on the CPU last level cache allows both covert

channel communication and side-channel data extraction.
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� We solve the co-location detection problem on the cloud by proposing 3 novel

methods that rely on underlying shared hardware to reliably verify co-location

with specific targets as well as recover target IP address. We demonstrate the

viability of these methods by successfully implementing them on Amazon Web

Services, Google Compute Engine and Microsoft Azure IaaS clouds.

� We introduce QoS degradation attacks using micro-architectural features and

demonstrate them on both cloud and mobile environments. We design and

implement an Android app named Degrader to mount such an attack on mo-

bile systems. We show that through a background service, a malicious app

can cause performance degradation up to 90% on the app running on the

foreground. Moreover, we show that state-of-the-art malware detection tools

including Google Play Store’s bouncer fail to detect Degrader as malicious.

� We tackle the automation and scaling problems of side-channel attacks and

propose machine learning as a solution. We show that machine learning and

deep learning classifiers can be used to analyze side-channel leakage and ex-

tract meaningful information with high accuracy from high-dimensional side-

channel leakage traces. Our classifiers achieve accuracy of over 99+% for the

task of software detection from the system Hardware Performance Counter

(HPC) trace.

� We introduce the DeepCloak framework to mask the side-channel leakage of

security sensitive processes and protect against side-channel attacks. We take

advantage of the inherent weakness of machine learning systems to adversar-

ial samples and use it as a defensive tool against side-channel classifiers. We

show that by profiling a sensitive process’ HPC trace, we can craft an adver-

sarial perturbation that will change the overall system HPC trace and cause
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attacker’s classifier to misclassify. Moreover, we show that these perturbations

are lightweight and cause minimal overhead to the overall system. Finally, we

investigate potential methods that an attacker can use to harden the classifier

and show that even in the presence of adversarial re-training and defensive

distillation, DeepCloak defense succeeds.

1.1.1 The publications resulted in this dissertation

The research described in this dissertation is the result and combination of the

following peer-reviewed publications on various conferences and journals [1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The work presented in Chapter 4 are the result of

collaborative work with Gorka Irazoqui and resulted in the publication [3]. The work

presented in Chapter 5 is the result of collaborative work with Berk Gulmezoglu and

resulted in the publication [6]. Finally, the publications [5, 9] are the result of the

collaborative work with Berk Gulmezoglu and Gorka Irazoqui.
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Chapter 2

Background

This dissertation implements and explains various attacks and defenses that use

micro-architectural features of modern computing systems. In order to aid the

reader understand the work, we provide the necessary background information on

various subject such as the computer architecture, memory de-duplication, mobile

computing, atomic operations, machine learning and adversarial learning.

2.1 Computer Architecture

This chapter provides background information on computer architecture, the mem-

ory hierarchy, CPU caches, and hardware performance counters (HPC).

2.1.1 Memory Hierarchy

Modern computing systems consist of volatile CPU caches, Dynamic Random Access

Memory (DRAM) and non-volatile storage. As a program runs, its memory contents

are first loaded from the persistent storage drive into the DRAM. After that, as

the program executes, its code and data is loaded from the storage (slowest) to
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DRAM and then into the CPU caches and registers (fastest). Also, since the faster

memory elements are more costly than slower ones, their capacity is much smaller

in comparison.

2.1.1.1 CPU Cache

The CPU cache is a small memory element that is located between the main memory

and the CPU cores with the purpose of providing faster access to frequently used

memory. Modern CPUs have multiple levels of low-latency Static Random Access

Memory (SRAM) caches placed within the same silicon die as the CPUs. These

caches, also referred to as L1, L2 and L3 cache, provide high-speed access to a small

portion of an executable’ s memory. Upon a memory request, if the data resides in

the cache, a cache hit occurs and the data is loaded into the CPU registers rapidly.

If the memory line is not found in the first level of cache, the L1 cache, a cache miss

occurs and the data has to be fetched from lower level caches or the main memory.

Caches base their functionality on two main principles: the temporal and spatial

locality. Former predicts that recently accessed data is likely to be accessed again,

whereas the latter predicts that data in nearby memory locations to the accessed

data are also likely to be requested soon. Thus, when a cache miss occurs, the

memory controller fetches an entire memory block (cache line) containing both ac-

cessed and nearby memory locations. For instance, if a 32-bit unsigned integer is

requested from memory, the whole cache line of 64 Bytes is loaded into the cache in

participation of spatial locality.

2.1.2 Hardware Performance Counters

Hardware Performance Counters (HPCs), or Hardware Performance Events, are

special purpose registers that provide low-level execution metrics directly from the
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CPU. This low-level information is particularly useful during software development

to detect and mitigate performance bottlenecks before deployment. For instance,

the low number of cache hits and the high number of memory accesses can hint to

an improperly ordered loop. By re-ordering certain operations, a developer can sig-

nificantly improve the performance of the program. While there are many different

HPCs, the availability of a specific counter depends on the CPU model. Moreover,

the number of HPCs that can be monitored simultaneously depends both on the

CPU model and the selected HPCs. Since some HPCs are derived from others, their

use puts additional limitations to the monitoring process.

In addition to performance optimization, HPCs are also proven to be useful at

providing system health check and anomaly detection, including malware such as

ransomware and crypto-mining.

2.2 Memory De-duplication

Memory de-duplication is an optimization technique that is implemented in oper-

ating systems and virtual machine managers with the goal of utilizing the system

memory more efficiently. The basic idea is to merge identical pages used by dif-

ferent processes or virtual machines into one shared page with a Copy-on-Write

flag. After the merging, if one of the processes wants to modify this shared page,

a duplicate page is created and assigned to this process and separating it from the

shared page. The de-duplication is performed by first finding memory pages with

matching hashes and then comparing these pages for an exact match. This is espe-

cially effective in virtualized environments where multiple guest OSs are co-located

on the same physical machine and share hardware resources. Many variations of

de-duplication techniques are now implemented in OSs and hypervisors e.g. Ker-
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nel Samepage Merging (KSM) in Linux and Transparent Page Sharing (TPS) in

VMware etc. Although these implementations have slight differences, the under-

lying principle is the same; merging duplicate pages in memory to save memory

space.

Even though de-duplication is a great memory optimization technique, it opens

a source of side-channel leakage between processes. This leakage can be exploited

using the Flush+Reload method to extract sensitive information. While the memory

contents cannot be modified by this attack, the knowledge of the memory lines

that have been accessed can be exploited to gain access to secret information like

cryptographic keys. An adversary can monitor cache and memory accesses to enable

the recovery of such information. For this reason, albeit incredible memory savings

it provides, the memory de-duplication is disabled by all major public cloud service

providers e.g. Amazon EC2, Microsoft Azure, Google Compute Engine etc., and

only used in private clouds.

OpenSSL

Apache

Firefox

Apache

OpenSSL

OpenSSL

Apache

Firefox

Figure 2.1: Memory De-duplication Feature
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2.2.1 Kernel Same-page Merging (KSM)

KSM is a memory optimization feature that was first introduced in Linux kernel ver-

sion 2.6.32 [14] aiming at removing redundant copies of pages in system memory [16].

KSM works as follows; when the KSM agent finds a candidate page to be shared, it

creates a signature of this page and stores it in a de-duplication table. Each time

KSM generates a new signature, it is compared against the signatures stored in the

table. Whenever two pages with the same signature are found, KSM merges them.

By default, KSM in KVM scans 100 pages in every 200 milliseconds. This is why

any memory disclosure attack on KVM, has to wait for a certain time before the

de-duplication takes effect upon which the attack can be performed [18, 19, 20].

In virtualized systems, KSM works in a similar way to the one described above.

KVM, for example, uses the KSM mechanism for scanning the memory contents of

VMs. In this case, KSM performs memory merging techniques among VMs instead

of among processes. When a duplicate page from memory spaces of two VMs is

detected, the page is de-duplicated if it is declared as shareable. Moreover, the

client OS still performs KSM among the processes running inside it.

Using KSM, especially in a cloud environment translates into great memory

savings. For example, experimental implementations [15] show that it is possible

to run 50 Windows XP VMs with 1GB of RAM each on a physical machine with

just 16GB of RAM. This in turn reduces the power consumption and system cost

are significantly reduced for systems with multiple users. Using KSM, researchers

demonstrated that 30% of the total pages are used by two 1024MB RAM VMs [17].

Finally, KVM is not the only hypervisor that implements de-duplication. VMware

uses a similar technique called Transparent Page Sharing (TPS) with the goal of im-

proving performance among their VMs via memory de-duplication [21].
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2.3 Mobile Computing

With the advent of smartphones and mobile apps, computing systems evolved from

PCs to smaller, portable, hand-held devices. Every smartphone has a motherboard,

a CPU, DRAM, and I/O peripherals, just like a traditional computing system.

They contain firmware, OS, software applications, networking stack, display, key-

board/touchscreen and all the security problems that come with it.

There are numerous mobile operating systems such as Android, iOS, Blackberry

OS, Windows Mobile, Samsung Tizen, Symbian. However, in comparison to Android

and iOS, the market share of the rest of the operating systems are negligible. As

of now, Android has the largest market share and used throughout the world. In

the following, we provide overview of the Android and the permission management

system it employs to manage system resources.

2.3.1 Overview of Android Security

Android continues to dominate the smartphone market with an 82.8% share as

of 2015 Q2 [22]. Unsurprisingly, mobile malware development almost exclusively

focuses on the Android platform, with a combined total of 355 new families and

variants of malware found in 2014 [23, 24]. Due to the large number of different

resources such as sensors, camera, storage, GSM trans-receiver etc, Android malware

is diverse. For instance, some malware like SmsSend, SmsSpy, and FakeInst send

SMS to premium-rate numbers while others like Eropl exfiltrate personal data.

The Android platform is composed of three fundamental building blocks: the

device hardware, the Android OS, and the Android application runtime, each sit-

ting atop the previous. While Android is processor-agnostic, it can take advantage

of hardware-specific security features such as ARM v6 eXecute-Never when present.
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The Android OS, built on top of the Linux kernel, inherits its robust security ca-

pabilities. This includes the user-based permission model, process isolation, and

an extensible mechanism for secure inter-process communication (IPC). The Linux

kernel is responsible for executing core system services like process management,

network management, and memory access. The device resources, such as GPS,

telephony, and the camera, are all accessed through the OS [25].

In addition to inheriting Linux’s identity management system, Android also in-

herits the copy-on-write (COW) capability in its process creation mechanism. The

root process, called Zygote, pre-loads core resources that all Android processes will

use. COW allows Android to spawn new processes without memory duplication;

since these core resources are read-only, the libraries common to all processes will

only be stored in one location. This significantly reduces an application’s memory

footprint.

Prior to Android 5.0, the Dalvik VM and Android’s core native services and li-

braries comprised the Android application runtime. Dalvik was replaced by Android

Runtime (ART) in Android 5.0. Android applications are most commonly written

in Java, which is compiled to bytecode for the Java Virtual Machine (JVM), and

then translated to Dalvik bytecode. Native applications and libraries, such as those

managing audio, SSL, and graphics, are written in C and C++ to interface with the

OS more closely and achieve better performance. The Android application runtime

is contained within the Application Sandbox, a security environment which prevents

applications from interfering with each other and system services. The Application

Sandbox is implemented at the kernel level, and thus encapsulates and protects all

components sitting above the kernel.

The Application Sandbox is realized through two fundamental Linux features:

user-based access-control and memory isolation. The former implements standard
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file access rights by allowing each user to control who is allowed to read, write,

and execute their files. The Application Sandbox leverages this by assigning each

application it’s own unique user identifier (UID), thus preventing one application

from accessing the files of another. Android requires each application to be signed by

its developer before being uploaded to the Play Store. Applications that are signed

with the same key are assigned the same Linux UID within Android, bypassing

the isolation model provided by the Application Sandbox. This allows applications

to share data and application components. Since there is no central Certificate

Authority (CA) for developer private keys, it is the developer’s responsibility to

keep her private key secure. If she fails, adversaries can abuse the shared UIDs to

access sensitive information.

Further, system components are run as root, so no user-level application can

access or modify them. In Linux, each process is given its own virtual address space

as a form of memory isolation. Android takes advantage of this by running each

application as a separate process so no application can interfere with the memory

space of another. Theoretically, since all applications are sandboxed at the OS level,

memory corruption errors cannot compromise the device; they will only allow code

execution with the permissions of the vulnerable application. To break out of the

application sandbox, adversaries must compromise the kernel.

2.3.2 Android Permission System

Android employs permission management system to give apps access to various

hardware resources, sensors and data. While some of these permissions require user

consent, others do not. Before Android 6.0 (API 23), the permission consent was

set to be given at install time. Granting permissions at the install time meant that

apps listed all the permissions that they might require during execution and that
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the users raced to the install button without checking them. After Android 6.0,

permission requests are presented when the app needs that specific permission for

the first time. When the user is prompted, he/she can still deny the permission even

though the app is already installed and running. In cases when the user declines

to give the requested permission, some applications may keep working while others

crash outright or prompt the user until the permission is granted. Moreover, not

all permissions require user consent. Depending on the importance of information

or service that an app needs to access, permission might be granted automatically

without prompting the user. In the following, we explain these different types of

permissions and how they are handled by the Android operating system.

Normal Permissions: Normal permissions are used when apps require access

to data and resources that are not deemed sensitive by Android. For instance,

setting an alarm requires only Normal Permission and does require user consent

since there is no serious danger of a privacy leak by setting up an alarm. Because of

this, Normal Permissions do not require explicit user consent and are automatically

granted by the system. Note that the user can always review which permissions an

app uses, normal or not. While deemed safe and trusted, normal permissions can also

affect the operation of other apps. For instance, the KILL BACKGROUND PROCESSES

permission allows an app to shut down other apps using only their package name.

While this permission does not allow access to any sensitive data, it gives crucial

control over other apps in the system.

Dangerous Permissions: As explained in [26], any permission that is needed

to access a sensitive, private data of the user or service of the device, is classified

as Dangerous Permission. The data or the service that these permissions allow

access to are sensitive, and therefore require explicit user consent. For instance,

using the device camera requires Dangerous Permission since an app can access the
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camera and take unauthorized photos without the user’s consent. In comparison to

Normal Permissions, these type of permissions clearly carry a higher risk of privacy

violation. The following permission groups are considered dangerous permission

by the Android and require explicit user consent; Calendar, Camera, Contacts,

Location, Microphone, Phone, Sensors, SMS, and Storage.

Signature Level Permissions: These permissions are granted by the system to

apps only if the app requesting the permission has the same signature as the app

that declared that permission. If these signatures match, the system grants the

permission without prompting the user. Signature Level Permissions are vendor

dependent and are generally closed by hardware vendors.

2.4 Atomic Operations

Atomic operations are defined as indivisible, uninterrupted operations that appear

to the rest of the system as instant. While operating directly on memory or cache,

atomic operation prevents any other processor or I/O device from reading or writing

to the operating address. This isolation ensures computational correctness and pre-

vents race conditions. While instructions on single thread systems are automatically

atomic, there is no guarantee of atomicity for regular instructions in multi-threaded

systems. In these systems, an instruction can be interrupted or postponed in favor

of another task. During this interrupt, the data can be modified by another thread.

Hence the atomic operations are especially useful for multi-threaded systems where

multiple threads are running in parallel. ADD, AND, CMPXCHG and XOR are

some of the instructions defined in x86 architecture that can be executed atomically

with a lock prefix. Also, XCHG instruction executes atomically when operating on

a memory location, regardless of the LOCK use.
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Various different mechanism are implemented in memory controllers and CPUs

to ensure atomicity. For instance, in older x86 systems, the processor locks the

memory bus completely until the atomic operation finishes, whether the data resides

in the cache or in the memory. While ensuring atomicity, the process also results

in a significant performance penalty to the system. In newer systems prior to Intel

Nehalem and AMD K8, memory bus locking was modified to reduce this penalty.

In these systems, if the data resides in cache, only the cache line that the processed

data resides on is locked. This, ‘cache lock’ results in a very insignificant system

overhead compared to the performance penalty of memory bus locking. However,

when the data surpasses cache line boundaries and resides in two separate cache

lines, the memory controller cannot guarantee atomicity by locking a single cache

line. Instead, the memory bus is locked to ensure that no memory modifications

can be performed until the atomic operation completes.

After Intel Nehalem and AMD K8, shared memory bus was replaced with multi-

ple buses with non-uniform memory access bridge between them. While the system

gets rid of the memory bottleneck for multiprocessor systems, it also invalidates

memory bus locking. When a multi-line atomic cache operation needs to be per-

formed, all CPUs has to coordinate and flush their ongoing memory transactions.

This emulation of memory bus locking results in a significant performance hit.

On ARM processors, there are atomic instructions available in userspace as well.

Prior to ARM v6, SWP instruction was used to provide atomic read and writes.

Later, ARM v6k and ARM v7 introduced the LDREX and STREX instructions to

split the atomic memory update into two pieces and ensure atomicity [27]. When

an atomic memory update has to be executed, first the LDREX instruction is called

to load a word from the memory and tag the memory location as exclusive. This

operation immediately notifies the exclusive monitor, a simple state machine with
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two states; open and exclusive [28]. After the memory location is tagged as exclusive,

only the parties allowed by the exclusive monitor can store data to this location.

If any other process/user attempts to store data to the location, the request is denied

and an error state is returned. After the data is updated outside of the memory and

the updated data needs to be stored, the STREX instruction is called to conditionally

store to the memory location, the condition being the right to store to the location.

2.5 Cache Side-Channel Attacks

Side-channel attacks are defined as attacks that target the implementation of hard-

ware or software rather than an algorithm itself. For instance, the power consump-

tion of an SoC can leak information about the code running on the device. And

if the SoC is performing cryptographic operations, it would reveal valuable secrets

leading to a malicious recovery of secret keys.

Over the last decade, there has been a surge of micro-architectural attacks.

Low-level hardware bottlenecks and performance optimizations have shown to al-

low processes running on shared hardware to influence and retrieve information

about one another. For instance, cache side-channel attacks like Prime+Probe and

Flush+Reload exploit the cache and memory access time difference to recover fine-

grain secret information [29, 30, 31, 32]. In fact, researchers have shown that through

this leakage, it is possible to recover cryptographic keys [33, 34, 1, 9, 35, 36, 37, 38].

In these works, the attacker exploits micro-architectural leakages stemming from

data access time variations, e.g. when the data is retrieved from small but faster

caches as opposed to slower DRAM memory.

The timing differences between cache and memory accesses can be exploited by

a malicious co-located user to mount cache based side-channel attacks. Gaining
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information about the memory lines accessed by a process may leak sensitive data

dependent information leading to an unauthorized user discovering the secret key

used in symmetric encryption or guessing the plaintext sent by an independent user.

In general, all memory-dependent cryptographic algorithm implementations present

a potentially exploitable side-channel leakage.

Cache side-channel attacks have been categorized into three main groups: time

driven, trace driven, and access driven cache attacks. The classification is done

based on the capabilities that the attacker obtains. The most restrictive ones are

the time driven attacks, in which the attacker only can observe the aggregated time

profile of a process. On the other hand, access-driven attacks assume only to know

which sets of the cache have been accessed during an execution of the victim’s code.

Finally, trace-driven attacks are assumed to be able to collect the whole cache profile

when the targeted program is running.

Figure 2.2: Cache hierarchy of Intel Xeon x5355 processor (left) and AMD Opteron
K10 2347 processor (right).

Covert Channel vs Side-channel Attacks: The difference between a side-

channel attack and a covert channel is that former requires no collaboration from
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the victim while the latter implies that the two parties are willing to communicate.

What is common among the two is that the information is passed through not logical

channels but rather through side-channels e.g. CPU cache, DRAM, EM emanations

etc.

2.5.1 Flush+Reload (F+R) Attack

Flush+Reload is a powerful cache-based side-channel first studied in [39] where

Gullasch et al. demonstrated that it can be used to recover security sensitive infor-

mation such as AES secret keys. Later in 2013, Yarom et al. used it to recover RSA

encryption keys and named the attack Flush+Reload [31].
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Figure 2.3: Copy-on-Write Method

Shared Memory Non-shared Memory

Read Cached data read time* Physical I/O read time**

Write/Modify Copy time+cache write time Cache write time

The attack vector of the Flush+Reload is the memory de-duplication where mul-

tiple processes share the physical memory and point to same memory pages. When

the same memory page is mapped to multiple processes, a malicious process can

20



monitor the access of the others in two ways. First way is exploiting the difference

between memory and cache access times. The second is the access time difference

caused by the Copy-on-Write (CoW) command which copies the shared memory

space upon any modification by one of the users. The CoW operation in this case

will cause a longer access time due to the overhead of the copy and leak information

about the execution.

In short, the Flush+Reload attack can be summarized in three stages:

� Flushing stage: In this stage, the spy process flushes the targeted memory

lines from the cache hierarchies of all the cores using the clflush command.

This means that after this stage, the monitored memory lines will not be

present in any cache level of any core in the system. Instead, they will reside

in the main memory.

� Victim process run: After the monitored lines are flushed out of cache, the

attacker triggers the execution of victim code. If the victim program uses any

of the monitored lines, these lines will be loaded back into the corresponding

CPU core’s cache hierarchy, from the last level of cache to the first one. How-

ever, if the monitored memory lines are not accessed by the target program,

they will remain in the slower DRAM memory.

� Reloading stage: In this stage, the attacker checks the victim access to the

monitored lines by reloading them. If the lines are loaded fast i.e. are coming

from CPU cache, the attacker knows that these lines have been accessed by

the victim. On the other hand, if target lines reside in the main memory, the

reload time is going to be longer. Note that since the last level cache is shared

across cores, a spy process working in a different core can perform this attack

while running on a different core than the victim.
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2.5.1.1 Flush+Flush (F+F) Attack

F+F attack is a variant of the F+R attack that has been proposed by Gruss et al.

in [38]. Just like the F+R, the F+F attack also requires memory de-duplication and

shared memory between the attacker and the victim. F+R works as follows;

� Flushing stage: The attacker flushes the targeted memory lines from the

cache hierarchies of all the cores by using the clflush command.

� Target process stage: The attacker waits for a select period of time to allow

the victim to make accesses to the monitored memory lines. If the victim

accesses any of the monitored lines, the targeted data will be loaded from

DRAM memory to CPU caches. However, if none of the monitored memory

lines are accessed by the victim, they will remain in DRAM memory only.

� Re-flush stage: The attacker flushes the targeted memory lines and measures

the time of the flushing operation. If the monitored data/code reside in the

cache, the flush time is small. If it resides in the main memory i.e. it is not in

any of the CPU caches, then the re-flush takes longer. By measuring the re-

flush time, the attacker determines whether or not the victim made an access

to the monitored memory lines.

2.5.2 Prime+Probe (P+P) Attack

In modern computer systems, the physical memory is protected and not available

to the userspace applications. Instead, non-root users and processes can only access

their virtual addresses. In order to map these virtual addresses to physical addresses,

a memory address translation stage is required. On the other hand, this virtual to

physical address translation only applies to a part of the address and not all bits of
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the address are modified. For instance, the least significant plow bits of 2plow sized

memory pages are not translated and remain constant. These are called the page

offset, while the remaining part of the address is called the page frame number and

their combination makes the physical address.

The location of a memory block in the cache is determined by its physical address.

Usually, the physical address is divided into three different sections to access n-way

caches: the byte field, the set field, and the tag field. The length of the byte and

set fields are determined by the cache line size and the number of sets in the cache,

respectively. The more sets a cache has, the more bits are needed from the page

frame number to select the set that a memory block will occupy in the cache.

The Prime+Probe attack is a cache based spy process first described 10 years

ago by Osvik et al. [40]. The attack procedure consists of three main stages:

� Cache priming: In the priming stage, the attacker uses an eviction set and

fills all the ways of a cache set with own data, essentially priming it.

� Waiting for victims access: In the second stage, the attacker waits for a

certain time to let the victim use the previously primed cache. Victim’s access,

evicts attacker’s data from the primed set and pushes them to a lower levels

cache.

� Probing the primed blocks: In this stage, the attacker loads the previously

primed memory blocks. Some of the blocks (the ones that the victim did not

evict) will still reside in the cache, while the other ones will be evicted to

a lower level cache or the memory. The location of the probed data in the

memory hierarchy can be deduced by measuring its access time for each data

block. This is possible because the lower level cache and DRAM accesses are

slower than L1 cache accesses.
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2.5.2.1 Prime+Probe in the LLC

The Prime+Probe attack has been widely studied in upper level caches [34, 41],

but was first introduced for the LLC in [42, 43] with the use of hugepages. Unlike

regular memory pages that reveal only 12 bits of the physical address, hugepages

reveal 21 bits, allowing the LLC monitoring. Indeed, one of the main reasons why

Prime+Probe was not applied to LLC earlier is that regular (4KB) memory pages

limit the known physical address to 12 bits. This limitation makes the creation of

eviction sets much harder for large LLCs that consist of thousands of sets.

Although Prime+Probe has been known for many years, it was not until one

year ago when it was applied to the LLC. Some of the reasons why it was not trivial

to modify the Prime+Probe attack to the LLC are:

� Large cache: The LLC is usually in the order of MBs making it impractical

to prime the whole set.

� Unknown physical bits: Due to larger size of the LLC, the location of the

memory blocks in the LLC is unknown. With small caches (like the L1 cache),

the page offset provides enough information to infer the location in the cache,

as demonstrated in [40]. However, more sets the cache has, the more bits from

the pfn are needed to specify a location.

� LLC slices: In order handle several concurrent LLC accesses, Intel processors

usually divide their LLC in slices, with an unpublished slice selection algorithm

distributing the memory blocks among them. This means that even if it is

possible to calculate the cache set of an address, the cache slide still needs to

be located.

Indeed all of these complications can be handled to mount a LLC Prime+Probe

attack, as demonstrated in [42, 43]. The first issue can be solved by monitoring only

24



the target sets where the targeted memory block location is known. The second issue

can be solved by using hugepages as described in 2.5.2.2. Hugepages are usually in

the order of MBs, making the po larger than the usual 12 bits that is obtained with

regular pages. With 2MB pages, 21 bits of the page offset is visible and sufficiently

large to target modern LLC. Figure 2.4 represents the number of bits known to an

attacker using regular pages (12 bits) vs the number of bits known if he uses huge

size pages (21 bits).

Figure 2.4: Virtual to physical address mapping of an Intel x86 processor for regular
and hugepages

For CPUs with non-linear slice selection algorithms, it is harder to find the exact

location of the target code in the cache. For instance, with a 10 core machine with

20 MBs of cache, even if the last 6 bits of the set number is known, there are still

5 unknown bits. In addition, the data can be located in non-linearly or linearly

addressed slices of the cache. Hence, there are total 25 × 10 possible set-slice pairs

for a given virtual address. To find the correct set-slice pair, all 320 possibilities

must be profiled before an actual Prime+Probe side-channel attack.

As stated before, profiling a portion of the cache becomes more difficult when
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the LLC is divided into slices. However, as observed by [42], it is possible to create

an eviction set without knowing the algorithm implemented. This involves a step

prior to the attack where the attacker finds the memory blocks colliding in a specific

set/slice. This can be done by creating a large pool of memory blocks, and access

them until it is observed that one of them is fetched from the memory. The procedure

will be further explained in Section 6.2. A group of memory blocks that fill one

set/slice in the LLC will form an eviction set for that set/slice as demonstrated

in [44, 45, 46].

2.5.2.2 Cache Addressing and Virtual-Physical Memory Mapping

Modern processors use virtual memory to protect processes from accessing the phys-

ical memory directly. The OS manages the virtual to physical address translation.

The physical memory in most modern systems is divided into memory pages of 4KB

size. The page size plays a crucial role in the translation stage, since the number

of bits from the virtual address that have to be translated directly depends on it.

Indeed, if po is the page size in bytes, the lower log2(po) bits of the virtual address

are not translated by the Memory Management Unit (MMU) and will remain the

same in both the physical and virtual address. This portion of the address is called

the page offset. The rest of the address bits will be refereed to as virtual page frame

number and the page frame number before and after the translation respectively.

In order to efficiently perform this translation, modern processors have several

levels of Translation Lookaside Buffers (TLBs). The TLB is a special cache holding

the most recently fetched memory pages and their corresponding virtual page frame

numbers. This allows the system to first check the TLB for the requested page

translation, speeding up the page lookups.

Aimed at more efficient paging, most processors also allow hugepage allocations.
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Hugepages are substantially larger than regular pages and have a separate TLB. As

a result of this, a hugepage holds 2 MB of data while occupying a single TLB entry

in contrast to 512 entries would be needed with regular pages which in turn reduces

the number of TLB misses.

Memory Addressing in Cache: There are three widely used cache types:

direct mapped (each memory block can only go to one fixed location in the cache),

fully associative (a memory block can reside in any position in the cache) and set

associative (a memory block can reside in a subset of locations in the cache). We

will mainly focus on set associative caches since they are the most common choice

in modern processors. Set associative caches are defined by 3 main parameters: the

cache size s, the cache line length l and the number of ways w for each cache set.

Using these parameters, one can calculate the number of sets in the cache as:

ns = s/(w ∗ l)

As Figure 2.5 shows, each of the memory blocks (l size blocks) will reside in a

specific set in the cache, mainly defined by its physical address. For the address

translation, the physical address (pfn + po) is divided into three different parts.

The lowest log2(l) bits points to a specific location in a cache line. The following

log2(ns) bits indicates the set in which the data resides. The rest of the address bits

act as tag and used for matching the corresponding memory block.

2.6 Machine Learning

In this dissertation, we tackle the problems of automation and scalability as well as

mitigation of side-channel attacks. To this end, we employ machine learning, specif-

ically Convolutional Neural Networks and Adversarial Learning. Further, we test

the viability of our method against Adversarial Learning Defenses. In this chapter,
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Figure 2.5: Cache accesses when it is physically addressed.

we provide the necessary background material to aid the reader in understanding

the aforementioned concepts.

2.6.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are supervised, feed-forward artificial neural

networks used in classification tasks. The supervised learning indicating that the

data used to train the model is labeled and while the model does not require fea-

tures to be extracted beforehand, it does require the inputs of different classes to be

labeled. CNNs consist of layers of neurons with weights and biases that can learn

the important features of the input dataset without human intervention. CNNs do

not saturate easily and can reach high accuracy with more training data. Further,

they do not require data features to be identified or pre-processed before the train-

ing. Instead, relevant features are discovered and learned from the training dataset

automatically.

The disadvantage of using CNNs is that the models require a large number

of training samples and are computationally expensive to train. Even so, in the

past decade, it is shown that CNNs can surpass humans at many tasks that were
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previously considered nearly impossible to automate [47, 48, 49, 50, 51, 52]. This

breakthrough is fueled by both the increase of GPU powered parallel processing and

optimizations in CNNs.

Training a CNN model is done in three phases. First, the labeled dataset is split

into three parts; training, validation, and test data. The training data is fed to

the CNN with initial hyper-parameters and the classification accuracy is measured

using the validation dataset. Guided by the validation accuracy results, the hyper-

parameters are updated to increase the accuracy of the model while maintaining

its generality. After the model achieves the desired hyper-parameter optimization

level, it is tested with the test data and the final accuracy of the model is obtained.

2.6.2 Adversarial Learning

Adversarial Learning (AL) is a subfield of ML that studies the robustness of models

against adversarial inputs. It is a very active research area with a plethora of new

attacks, defenses and application cases emerging daily [53, 54, 55, 56, 57]. The vul-

nerability of AL samples stems from the underlying assumption that the training

and the test data comes from the same source and have consistent features. Studies

have shown, however, by introducing small external noise or what is commonly re-

ferred to as adversarial perturbations, it is possible to craft adversarial samples

and manipulate the output of ML models. In other words, by carefully crafting small

changes to an input, one can push it from the boundaries of one class to another.

Moreover, due to the high-dimensional space that the classifier operates in, very

small perturbations can be enough to push a sample to other classes. While there

are many different methods of crafting such perturbations, ideally they are desired

to be minimal and not easily detectable.

AL methods on classical ML classifiers (under both white-box and black-box sce-
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narios) have been known for quite some time [58, 59, 60, 61, 62, 63]. In 2013 Szegedy

et al. [64] introduced the first AL methods on DNNs, showing that very small pertur-

bations that are indistinguishable to the human eye can fool CNN image classifiers

such as the ImageNet. The perturbations in the study are calculated using the tech-

nique called Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). This

algorithm searches in the variable space to find parameter vectors (perturbations).

Later in 2014, Goodfellow et al. [65] improved the attack by using the Fast Gradient

Sign Method (FGSM) to efficiently craft minimally different adversarial samples.

Unlike the L-BFGS method, the FGSM is computationally conservative and allows

much faster perturbation crafting.

In 2016, Papernot et al. [66] further improved upon Goodfellow’s FGSM by using

Jacobian saliency maps to craft adversarial samples. Unlike the previous attacks,

the Jacobian saliency map attack (JSMA) does not modify randomly selected data

points or pixels in an image. Instead, it finds the points of importance with regards

to the classifier decision and then modifies these specific pixels. These points are

found by taking the Jacobian matrix of the loss function given a specific input

sample. The JSMA allows an attacker to craft adversarial samples by modifying

fewer data points in comparison to FGSM.

In 2016 [67, 68, 69], multiple new AL methods were discovered. Moreover, the

research showed that these adversarial samples are transferable i.e. perturbations

that can fool a model can also work on other models trained on the same task.

In [70], Papernot et al. showed that AL methods can also succeed under the black-

box attack scenario where an attacker has access only to the classification labels

and not the model parameters like weights, biases or the loss. This prevents the

attacker from using the gradient to craft a perturbation. However, it is still possible

to use the target model as an oracle that labels the inputs and then use these labeled
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images to train a clone classifier. Authors demonstrated the feasibility of the attack

on MetaMind and Deep Neural Network classifiers hosted by Amazon and Google.

With 84, 96 and 88% misclassification rates respectively, they were able to fool the

targeted classifiers.

In [71], researchers have shown that by iteratively morphing a structured input,

it is possible to craft adversarial samples against a PDF malware classifier. The

attack works by adding and/or removing compilable objects to a PDF and achieves

100% evasion rate. The attack assumes a black-box setting i.e. the attacker does not

have access to classification confidence scores and has to rely solely on the output.

The study acknowledges that the black-box attack scenario has a cost for obtaining

labeled data and uses the number of observations required to quantify this cost.

2.6.3 Defenses Against Adversarial Learning

Adversarial learning (AL) is a problem that plagues machine learning systems. In

order to harden machine learning models, some defenses have been proposed. Here,

some of the defenses against adversarial learning are listed, specifically, the adver-

sarial re-training, defensive distillation (DD) and gradient masking. These defenses

are an integral part of machine learning systems since an attacker capable of over-

coming AL would solve one of the fundamental problems of ML. Moreover, it is

known that these defenses can be overcome with new types of AL methods or sim-

ply by increasing the perturbation size. In short, AL and defenses against it remains

a very active research area.

2.6.3.1 Adversarial Re-training

The defense was first proposed by Szegedy et al. in 2013 [64]. Later in 2014,

Goodfellow et al. [65] improved the practicality of the method by showing how to
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craft adversarial samples efficiently using FGSM, making it easier to craft adversarial

samples. In this defense, the model is re-trained using adversarial samples. By doing

so, the model is ‘vaccinated’ against perturbations and can correctly classify them.

In other words, the method aims to teach perturbations to the model so that it

can generalize better and not be fooled by small perturbations. While this method

works successfully against a specific type of attack, it has been shown to fail against

attack methods that the model was not trained for.

2.6.3.2 Defensive Distillation

The DD has been proposed by Papernot et al. [72] in 2016 to protect DL models

against AL methods. The goal of this technique is to increase the entropy of the

prediction vector to protect the model from being easily fooled. The method works

by pre-training a model with a custom output layer. Normally, the softmax tem-

perature is set to be as small as possible to train a tightly fitted, highly accurate

model. In the custom layer, however, the temperature value is set to a higher value

to distill the probability outputs. The first model is trained with the training data

using hard labels i.e. the correct class label is set to ‘1’ and all other class labels are

set to ‘0’. After the model is trained, the training samples are fed into it and the

probability outputs are recorded as soft labels. Then these soft labels are used to

train the second, distilled model with the same training data. This process smooths

the model surface on directions that an adversary would use to craft perturbations.

This smoothing process increases the perturbation size required to fool the model

and invalidates some of the previously crafted adversarial samples. This smoothing

can be set to different levels by adjusting the temperature value. Note that however,

the DD can reduce the classification accuracy significantly if the temperature value

is set too high.
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2.6.3.3 Gradient Masking

The term gradient masking defense has been introduced in [70] to represent a group

of defense methods against adversarial samples. The defense works by hiding the

gradient information from the attacker to prevent it from crafting adversarial sam-

ples. Papernot et al. [70] however showed that the method fails under an oracle

access scenario. An attacker can query the classifier with enough samples to create

a cloned classifier. Since the clone and the original classifiers have correlated gradi-

ents, the attacker can use the gradient from the clone and craft adversarial samples,

bypassing the defense.
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Chapter 3

Related Work

This chapter discusses the latest related work in the literature of micro-architectural

attacks on cloud and mobile platforms. The listed works are categorized for co-

herency and discuss work directly related to this dissertation. In the following,

we discuss the related work on cache side-channel attacks, co-location detection

on cloud, branch prediction attacks, hardware performance counters and micro-

architectural attacks on mobile.

3.1 Cache Side-channel Attacks

Many applications being executed in a shared hardware introduces a potential threat

to the hardware and software sandboxing techniques. A malicious application can

monitor hardware access patterns to recover sensitive information. With the start-

ing points, micro-architectural side-channel attacks have been studied over the last

20 years. More specifically, cache side-channel attacks establish a relationship be-

tween the positions accessed in the cache and the data used by the victim. For

instance, the first examples of Prime+Probe attacks monitor the L1 cache to de-

duce information about the victim. However, since the L1 caches are core-private
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resources, early attacks were restricted to core co-located processes. This scenario

was deemed unrealistic in modern cloud systems. Consequently, micro-architectural

attacks did not receive much attention after the first practical realizations. How-

ever, with the increasing popularity of shared hardware systems, i.e. cloud and

mobile computing, the cache side-channel attack scenario of attacker and victim be-

ing able to run processes on the same hardware became realistic and the interest in

cache attacks peaked [73, 34]. Follow-up works overcame the issue of only targeting

core-private resources: attacks targeting the last-level cache (LLC) have now widely

been studied [31, 42, 43]. Since the LLC is shared across cores multi-core processors

it provided a suitable side-channel to run cross-core attacks. Further, the timing

difference between LLC and memory accesses is higher, making these attacks even

more robust.

In general, all the memory-dependent cryptographic algorithms may potentially

be exploited by cache attacks, if no countermeasures are provided. Motivated by

this observation, a number of researchers have targeted weakly designed software

algorithms. The first study considering cache-memory accesses as a covert channel

targeting the extraction of sensitive data was done by Hu [74]. However, it was not

until 1998 when Kelsey et al. [75] studied the cache hit ratio as a method to deploy

the first cache side-channel attacks. Page, in 2003 suggested theoretical methods

on cache side-channel attacks [76]. The application of these techniques to recover

information from the typical table lookup operations performed in symmetric ciphers

was first studied by Tsunoo et al. [77].

As early as in 2003, D. Brumley and Boneh [78] demonstrated timing side-channel

vulnerabilities in OpenSSL 0.9.7 [79], in the context of sandboxed execution in

VMMs. The study showed the recovery of RSA private keys from an OpenSSL-based

web server when victim and attacker ran in the same processor.
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Symmetric cryptography is a popular target of side-channel attacks, as demon-

strated in [33, 40, 80, 39]). One of the earliest, and most practical cache side-channel

attack was that of Bernstein’s 2005 cache timing attack against AES [33]. In this

work, Bernstein was able to recover an AES key due to micro-architectural timing

variations in the cache. In the same line, Bonneau et al. [80] showed how collisions

in the last round of AES can affect the overall time execution and give information

about the key used by the algorithm. These two attacks can be considered as time-

driven cache side-channel attacks since they obtain information by just looking at

the overall timing execution. At the same time, several new trace-driven attacks

were proposed. Osvik et al. [40] introduced two new side-channel techniques and

where able to extract AES keys: Evict and Time and Prime+Probe.

Acıiçmez showed that cache attacks not only work when they target the data

cache but also when they monitor the instruction cache [41] as well. He used the

Prime+Probe technique to monitor whether an RSA operation was calling square or

multiply operations, and thereby recovered the private key. Zhang et al. managed

to recover an ElGamal encryption key in a cloud scenario running XEN hypervisor

when the adversary is co-located in the same core [34]. They used the above-

described Prime+Probe technique.

In the more recent years, a new technique emerged for cache analysis: Flush+Reload.

The first work to utilize this technique was Gullasch et al. [39], in which they man-

aged to recover an AES encryption key by using the Complete Fair Scheduler to

block the encryption execution. In 2013, Yarom et al. [31] used the tool to recover

an RSA decryption key running in GnuTLS. Later they used the same technique to

recover an ECDSA decryption key from OpenSSL [82]. Irazoqui et al. [1] managed

to recover an AES encryption key in a real cloud scenario without the necessity of

blocking the AES execution (c.f. [39]). Lastly, Zhang et al. [83] demonstrated that
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Flush+Reload is also applicable in Product as a Service (PaaS) clouds by recovering

sensitive information from a co-located victim.

In addition to the attacks on public key cryptography schemes cache attacks also

have been applied to AES [43, 1], ECDSA [91], TLS messages [7], the number of

items in a shopping cart [83] or even the key strokes typed in a keyboard [35]. Even

further, they recently have been applied to PaaS clouds [83], across processors [92]

and in smartphones [36].

3.2 Co-location Detection on Cloud

In 2009, Ristenpart et al. [81] showed that it is possible to solve the co-location

problem in cloud environment and therefore use the same hardware resources as a

targeted victim. The study targeted EC2 Amazon Web services and demonstrated

that an attacker can obtain co-location with 40% chance. This work, for the first

time, opened the door for side-channel attacks in the cloud setting. Two years later,

Zhang et al. used the cache as a tool to determine whether a user is co-located

with someone else or not [73]. In the last few years several methods were proposed

to detect co-location on commercial clouds [93]. These works use methods such

as deducing co-location from instance and hypervisor IP address, hard disk drive

performance degradation, network latency, and L1 cache covert channel. However,

in response to these works, most of the proposed techniques have been closed by

public cloud administrators.

Bates et al. [93] demonstrated that a malicious VM can inject a watermark in

the network flow of a potential victim. In fact, this watermark would then be able

to broadcast co-residency information. Again, even though the technique proved to

be extremely fast (less than 10 seconds), it was never tested in commercial clouds.
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Zhang et al. [94] demonstrated that Platform as a Service (PaaS) clouds are also

vulnerable to co-residency attacks. They used the Flush+Reload cache side-channel

technique together with a non-deterministic finite automaton method to infer co-

location with a particular server. The technique proved to be effective in commercial

PaaS clouds like DotCloud or OpenShift, but would never work in IaaS clouds where

the memory de-duplication is not implemented, as in most of the commercial IaaS

clouds.

In 2015, Varadarajan et al. [95] investigated co-location detection in public clouds

by triggering and detecting performance degradation of a web server using the mem-

ory bus locking mechanism explored by Wu et al. in 2012 [96] to detect co-location.

Simultaneously Xu et al. [97] used the same memory bus locking mechanism to

explore co-location threat in Virtual Private Cloud (VPC) enabled cloud systems.

Moreover, architectural side-channels can be used to covertly communicate or signal

the presence of co-location as demonstrated in [98].

3.3 Branch Prediction Attacks

Time leakage in branch prediction units give rise to another class of side-channel at-

tacks as demonstrated by Acıiçmez et al. where the authors exploited key dependent

branches in an RSA computation of OpenSSL [99, 100, 101]. Recently B.B. Brumley

and Tuveri [102] demonstrated that the ladder computation in the popular ECDSA

implementation of OpenSSL 0.9.8o is vulnerable to timing attacks by extracting the

private key used in a TLS handshake. In these attacks, authors monitor whether

the outcome of a branch is miss-predicted, and use this information to deduce if the

branch has been taken or not in a square and multiply operation. These attacks

showed that by monitoring the execution time of a branch, an attacker can deduce
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if the victim had executed a branch or not and infer security sensitive information.

3.4 Hardware Performance Counters (HPC)

HPCs are used to provide fine-grained information about the execution of a process

in order to find bottlenecks and optimize the performance. However, this fine-

grained information can be also used as a side-channel leakage source to steal sensi-

tive information, as demonstrated in the works below. In [103] Alam et al. leverages

perf event API to detect micro-architectural side-channel attacks. In 2009, Lee et

al. [104] showed that HPCs can be used on cloud systems to provide real-time side-

channel attack detection. In [105, 106] researchers have shown that HPC can be

used to detect cache attacks. Moreover, Allaf et al. [107] used a neural network, de-

cision tree, and kNN to specifically detect Flush+Reload and Prime+Probe attacks

on AES.

Moreover, researchers have shown that by using the fine-grain information pro-

vided by HPCs, it is possible to violate personal privacy as well. In [108], Gulmezoglu

et al. show that HPC traces can be used to reveal the visited websites in a system.

The attack relies on ML techniques such as auto-encoder, SVM, kNN and decision

trees and works even on privacy conscious Tor browser.

3.5 Micro-architectural Attacks on Mobile Plat-

forms

Micro-architectural components have been widely exploited under non-virtualized

and virtualized scenarios. However, little work has been done on exploiting embed-

ded processors such as smartphones and tablets at the hardware level. Although
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time driven attacks have proven to be effective in ARM processors [109, 110], these

attacks have not been demonstrated on mobile platforms i.e. devices running a

mobile OS like Android or iOS. More recently, access-driven side-channel attacks

have been exploited to detect ARM Trust-Zone code usage in the L1 cache [111],

again not on a mobile platform. Finally in 2016, Lipp et al. [36] managed to run

micro-architectural attacks such as Prime+Probe and Flush+Reload on various An-

droid/ARM platforms, proving the practicality of these attacks on mobile devices.

In the attack, authors exploited timing differences of accesses from cache and mem-

ory to recover sensitive information like keystrokes using a non-suspicious app. Also

in 2016, Veen et al. [112] showed that the Rowhammer attack can be performed in

Android platforms, without relying on software bugs or user permissions.

Other than cache attacks, there are also other OS based side-channel attacks

targeting mobile platforms. These attacks take advantage of hardware related in-

formation provided by the OS to extract information. For instance, one can access

Linux public directories to monitor the data consumption of each process to build

a fingerprinting attack [113]. The network traffic is not the only feature that can

be exploited; e.g. per process memory statistics are given by the OS can also be

utilized to monitor what a victim application is doing [114] or even recover user’s

pictures [115].

As for countermeasures, very little work exists to eliminate side-channel attacks

implemented in mobile devices. However, there are studies showing that detecting a

malicious application is possible. For instance, [116] utilizes static analysis to iden-

tify code that executes GUI attacks, whereas [117] focuses on preventing memory-

related attacks (including memory bus side-channel attacks) by using ARM-specific

features.
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Chapter 4

Software Detection Through

Shared CPU Cache

Software updates and security patches have become a standard method to fix known

and recently discovered security vulnerabilities in deployed software. In public

servers, the use of outdated crypto libraries allow adversaries to exploit known

weaknesses and launch attacks with significant security impacts. The proposed

technique exploits leakages at the hardware level to first, determine if a specific

crypto library is running inside a co-located virtual machine (VM) and second to

discover the IP of the co-located target. To this end, we use the Flush+Reload

cache side-channel technique to measure the time it takes to call (load) a crypto

library function. Shorter loading times are indicative of the library already residing

in the memory and shared by the VM manager through memory de-duplication. We

demonstrate the viability of the proposed technique by detecting and distinguishing

various crypto libraries, including MatrixSSL, PolarSSL, GnuTLS, OpenSSL and

CyaSSL along with the IP of the VM running these libraries. In addition, we show

how to differentiate between various versions of libraries to better select an attack
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target as well as the applicable exploit. Our experiments show a complete attack

setup scenario with single-trial success rates of up to 90% under light load and up

to 50% under heavy load for libraries running in KVM.

4.1 Motivation

Cloud computing has become a major building block in today’s computing infras-

tructure. Many start-up and mid-scale companies such as Dropbox1 leverage the

ability to outsource and scale computational needs to cloud service providers (CSPs)

such as Amazon AWS2 or Google Compute Engine. Other companies may build their

computational infrastructure in the form of private clouds, harnessing cost savings

from resource sharing and centralized resource management within the company.

Nevertheless, one of the main concerns that are slowing the widespread use of such

Infrastructure as a Service (IaaS) technologies is potential security vulnerabilities

and privacy risks of cloud computing. Usually, CSPs use virtualization to allow mul-

tiple tenants to share the same underlying hardware. While the resource sharing

maximizes the utilization and drastically reduce cost, ensuring isolation of poten-

tially sensitive data between VMs instantiated by different and untrusted tenants

can be a challenge. Indeed, the main security principle in the design and implemen-

tation of virtual machine managers (VMMs) has been that of the process and data

isolation achieved through sandboxing. Although logical isolation ensures security

at the software level, a malicious tenant might still extract private information due

to leakage coming from side-channels such as shared hardware resources. In short,

hardware sharing creates an opening for various side-channel attacks developed for

non-virtualized environments. These powerful attacks are capable of extracting sen-

1Dropbox grew from nil to an astounding 175 million users from 2007 to 2013 [118].
2Amazon AWS generated $3.8 billion revenue in 2013 [119].
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sitive information, e.g. passwords and private keys, by profiling the victim process.

Until fairly recently, the common belief was that side-channel attacks were not

realistic in the cloud setting due to the level of access required to the cloud server,

e.g. control of process execution and more specifically the difficulty in co-locating

the attack process on the machine executing the victim’s process. This belief was

overturned in 2009 by Ristenpart et al. [81] who demonstrated that it is possible

to solve the co-location detection problem and extract sensitive data across VMs.

Using the Amazon Elastic Compute Cloud (EC2) service as a case study, Ristenpart

et al. demonstrated that it is possible to identify when an attacker VM is co-located

on the same server with a potential victim and therefore using the same hardware as

the attacker VM. The work further shows that—once co-located—cache contention

between the VMs can be exploited to recover keystrokes across VM boundaries. By

solving the co-location problem, this initial result fueled further research in Cross-

VM side-channel attacks. Zhang et al. [34] utilized a cache side-channel attack

implemented across Xen VMs to recover an ElGamal decryption key from a victim

VM. The authors applied a hidden Markov model to process the noisy but high-

resolution information across VMs. Shortly thereafter, Yarom and Falkner showed

in [31] that RSA is also vulnerable, as well as ECDSA, as shown by Yarom and

Benger in [82]. Both attacks use the Flush+Reload technique that exploits the

shared L3 cache. It is important to note that since the L3 cache is shared among

cores, the attack works even if the victim and the attack processes are located on

different cores.

At the system level, one of the most significant consequence of these new high-

resolution cache side-channel attacks is that they expose new vulnerabilities in pop-

ular crypto libraries such as OpenSSL, which were previously considered secure. This

forced the crypto library developers to fix their implementations and release patches
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to mitigate these new attacks. It should be noted that side-channel attacks are just

one more threat to crypto libraries from a long list of vulnerabilities regardless of

whether the library is executed in VMs or natively. Therefore, it is crucial to use the

most recent version of the crypto libraries where most of the discovered vulnerabil-

ities have been already mitigated via a series of patches. Using an outdated crypto

library renders the server vulnerable with potentially devastating consequences.

Good examples of recently outdated crypto libraries are the ones susceptible to

Lucky 13 and the infamous Heartbleed attacks. In 2013, AlFardan et al. discovered

that most crypto libraries were vulnerable to a padding oracle attack that they

named Lucky 13 attack [120]. The attack was able to recover the messages sent in

TLS connections by just looking at the time difference caused by invalid padding

in digest operations. Although they showed only results in OpenSSL and GnuTLS,

most of the crypto libraries were affected by it. Patches were released immediately

by library developers. But using a non-patched version of any of these libraries

would still leave the door open to this MEE attack.

In 2014, Neel Mehta from the Google security team discovered a dangerous

security bug called Heartbleed in the popular OpenSSL crypto library [121]. In a

nutshell, Heartbleed vulnerability allows a malicious attacker to read more data

in the victim’s memory than it should, exposing sensitive information like secret

keys. The attack quickly became popular in the media and caused grave concern

among security researchers for such a simple yet severe vulnerability to go undetected

for many years. The cybersecurity columnist Joseph Steinberg argued that the

Heartbleed bug is the worst vulnerability found since commercial traffic began to

flow on the internet. Indeed, 17% of supposedly secure web servers were found to be

vulnerable to the attack. Soon after instances of Heartbleed attack were discovered

in the wild. For instance, the Canada Revenue Agency reported the theft of 900
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social security numbers [122]. In another instance, the UK parenting site Mumset

had several user accounts hijacked [123]. Most of the websites patched the bug

within days of its release, but it remains unclear whether the vulnerability has been

exploited before its public announcement. It is believed that some attackers might

have been exploiting the vulnerability for five months before Mehta’s discovery.

The Heartbleed vulnerability presents a striking example of the severe conse-

quences of using an outdated crypto library and a striking example of how people

ignore up-to-date software. One month after the Heartbleed bug was discovered,

300k of 600k systems were patched [124]. But the month after that only 9k ad-

ditional systems was patched leaving the remaining 300k systems still vulnerable.

This dramatic drop in the number of patched systems shows that the Heartbleed

patching is almost over even though the security risk still persists. In general, even

when more critical vulnerabilities are discovered, there is inherent inertia in patching

systems gives attackers a window of opportunity to penetrate computing systems.

During this narrow window an attacker has to first run a discovery phase where the

system is target computing platform through a series of tests to identify the most

vulnerable point of entry in the subsequent attack phase 3. During the first phase, it

is critical for the attacker remains stealthy. Therefore, a discovery tool that permits

such facility, i.e. covertly detecting a particular installation of an outdated crypto

library, will be an indispensable tool in the hands of an attacker.

Contributions

In this chapter, we introduce a method to detect the execution of specific software

co-residing in the same host across VM-boundaries. In particular, we show that

3Directly running the attack carries varying levels of risks of exposing the attack depending on
the nature of the attack.
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crypto libraries executed in a co-located server in the cloud can be detected with

high accuracy, and that specific versions of those libraries can also be distinguished

reliably. After this library detection stage, we show that the IP of the co-located

VM running the target library is also recoverable in a short time.

The technique can enable malicious parties, to covertly detect vulnerable crypto

libraries/versions prior to performing an attack. The detection method exploits

subtle leakages of timing information at the hardware level and runs rather quickly.

At the protocol level, the detection technique does not interfere with the target’s

usual operations. Therefore, the detection method is very hard to detect by the

target.

The very same detection technique can be used by cloud service providers to

gently detect vulnerable crypto libraries running in their clouds, and notify the

clients using these libraries. The detection technique is virtually non-interfering

and therefore will not cause any noticeable degradation in the client’s system. By

this, we show that cache side-channels can also be used in a constructive way to

improve the security of a cloud architecture. In essence, the technique we introduce

brings greater transparency in cloud systems.

In this chapter, we develop a method that detects whether a co-located VM is

running a specific crypto library and to furthermore determine the specific version of

the library as well as the IP address of the co-located VM. Described attack scenario

requires a detection technique that must work across cores to be realistic in a cloud

setting. For this purpose, we need to exploit a type of shared resource between cores

in multicore systems that leak private information. Several single core resources like

branch predictors and TLBs have been exploited in the past. However, information

about these shared resources in modern multi-core processors is scant at best, and

for most cases is not available to the public. In contrast, most modern processor
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caches can act as covert and side-channel and can be used for our detection method.

Specifically, contributions can be summarized as follows:

� We demonstrate that it is possible to detect and classify executed code across

VM boundaries with high accuracy

� We show how the developed method can be applied to determine the crypto

library being used by a co-located VM

� Our results show that a co-located VM can discover the use of outdated vul-

nerable versions of a library; This means that for the first time we show how

to distinguish between vulnerable and non-vulnerable crypto-library versions

across VMs

� We show that after detecting the cryptographic library, the IP address of

the co-located VM can be recovered in seconds to minutes depending on the

network size

� We present a test bench with a popular cloud hypervisor KVM that proves

the viability of our detection method

We present empirical results for detecting the execution of MatrixSSL, PolarSSL,

GnuTLS, OpenSSL and CyaSSL crypto libraries when running inside a VM in KVM,

as well as distinguishing and detecting specific versions of such libraries, in partic-

ular OpenSSL versions 0.9.7a, 0.9.8k, 1.0.0a, 1.0.1c, 1.0.1e, 1.0.1f, and 1.0.1g. Also,

we show the time required to recover the IP address of the co-located VM running

the aforementioned libraries. Our detection method obtains a success rate of up to

90% under low noise scenarios and a success rate of up to 50% under heavy load

scenarios while maintaining a negligible false-positive rate. This means that even

when the workload is sufficiently high, our detection method detects almost one out
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of two library calls made by the target, and virtually never incorrectly detects a

library.

As mentioned before, the motivations for detecting the execution of a specific

piece of software being used can be manifold. The knowledge of the crypto li-

brary being used can give crucial information to a co-located adversary. For ex-

ample, each crypto library has unique features and therefore can be used for fin-

gerprinting. Furthermore, common attacks are not addressed in the same way in

all the libraries. Some libraries have weaker patches than the others. This tool

gives to the attacker the ability to determine whether a library that a co-located

tenant is using is vulnerable against a certain type of attack. Here, we focus on

the most popular crypto libraries: GnuTLS, OpenSSL, PolarSSL, MatrixSSL and

CyaSSL [125, 126, 127, 128, 79]. These libraries have different cryptographic im-

plementations and from the side-channel point of view some of them can be more

secure than others. In this chapter, we give examples of why an attacker could

benefit from the knowledge of the crypto library being used.

AES: is the most popular block cipher in use today. Its implementation among the

different libraries varies, with OpenSSL having cache attack mitigation techniques

in their implementation such as bit slicing techniques, while other libraries such as

PolarSSL do not implement any technique to cope with cache leakage.

MEE attacks: The protection level of common attacks like Beast [129] and Lucky

13 [120] varies among different libraries. For example, we know that OpenSSL has

a real constant time implementation to avoid padding leakage, whereas CyaSSL or

GnuTLS do not [130, 120].

RSA: RSA is the most widely used public key cryptographic algorithm. Yarom

et.al [31] showed that GnuTLS was not protected against cache side-channel attacks.

Although a fix was added in the most recent version to address this leakage, an
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attacker can still detect calls to a specific non-patched version of the library.

Insecure encryption ciphers: While some crypto libraries such as CyaSSL does

not support weak encryption algorithms like DES-CBC, others do, e.g. OpenSSL. If

an attacker can detect the use of vulnerable libraries, our detection technique gives

an attacker a good opportunity to perform attacks against it.

The usage of crypto libraries is very typical in many processes performed by

a virtual machine. For instance, Mozilla web browser uses NSS (which could be

added to the detector) whereas Chrome browser uses GnuTLS. However, when a

downloading process in the command line is performed, OpenSSL is used as the

crypto library. Other applications like Steam use OpenSSL as well. This means

that the observer could easily detect one of those widely used libraries, and in

consequence, take advantage of any weakness present on it. Furthermore, This

cross-detection method applied to crypto libraries allows the observer to profile the

usage of certain applications (in case that the application is not using any other

shareable code), like the ones mentioned above.

4.2 Detection Method

Here we introduce our library detection method. We distinguish between two sce-

narios, for which the detection methods slightly differ:

� Library Detection: detecting whether a specific library is being used in a

co-located virtual machine

� Version Detection: detecting whether a particular version of a library is

running in a co-located VM.

The Library detection method works by exploiting information leaked through de-

duplication, detected by using the Flush+Reload technique. It is clear that each
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library has unique functions that are called when an SSL/TLS connection is per-

formed. This gives rise to a library identifying process.

4.2.1 Detection Stages

The detector performs library detection and version detection in several stages. De-

tailed steps of the detection method are as follows:

Unique Function Identification: The detector identifies functions that are called

when an SSL/TLS connection is established. The goal is to pick functions that are

unique to the library and therefore have potential in being mapped to a unique hash

during the de-duplication process while at the same time marking the event we wish

to be able to detect. For the crypto libraries we are targeting, we have pre-selected

the identification functions as follows:

� OpenSSL: SSL_CTX_new. This function creates the context variable to start

an SSL/TLS connection and is always called before a SSL/TLS connection.

� PolarSSL: ssl_set_authmode. This function is called to select the preferred

authentication mode in an SSL/TLS connection performed by PolarSSL at

the beginning of an SSL/TLS connection.

� GnuTLS: gnutls_global_init. Function for the initialization of GnuTLS

library variables and error strings that is called before the beginning of each

SSL/TLS connection.

� CyaSSL: CyaSSL_new. Every SSL/TLS connection is associated with a CyaSSL

object. This object is created by the CyaSSL_new function, and therefore has

to be called prior to each CyaSSL SSL/TLS connection.
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� MatrixSSL: matrixSslOpen. Opening library function performed by MatrixSSL

prior to any other SSL/TLS functions, making it suitable for our detection

method.

Offset Calculation: The detector has to calculate the offset of these functions with

respect to the beginning of the library since the ASLR moves the user address space

randomly. Functions such as dlopen allow to recover the starting virtual address

of the monitored library. By further obtaining the virtual address of a specific

function, the attacker can calculate the difference between the addresses hence the

offset. Another possibility for the attacker is to disable the ASLR in his own OS

and use the address corresponding to the targeted function directly.

Flush+Reload as Detection Method: The attacker uses the Flush+Reload

attack to detect whether a function from a shared library has been called or not.

If any other co-located VM use one of the functions that the attacker is trying to

detect, this will be present in the last level of cache and therefore the reload time

is going to be smaller. Hence the attacker can conclude that the library which

the function belongs to has been called. If it was not accessed, the function will

reside in main memory, having a bigger reload time. Figure 4.4 visualizes this last

statement via an experiment outcome. The figure shows the reload times of a certain

function when monitored by the Flush+Reload technique. The reload time, when a

co-located VM is calling it constantly (red bars), differs significantly from the case

where it is not called (blue bars). The difference is quite substantial, and if the

threshold is set correctly, the noise is very small. Finally, there are special cases

where the accesses cannot be detected. These access scenarios are as follows:

� Victim access occurs after the reload stage, and they do not overlap. In this

case, the access is not going to be detected by the Flush+Reload technique.
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� Victim access and Flush+Reload stage overlap. If the victim access was done

slightly before the reload stage, this access will be noticeable. However, if the

access was made slightly after the reload stage, it will not be detected.

� Some other process evicts the access prior to the reload stage, and therefore

this is not going to be detectable by the Flush+Reload technique.

4.2.2 Preventing Wrong Version Detection

The detection is performed by monitoring unique functions associated with a li-

brary/version. These are easy to find across libraries since OpenSSL does not use

the same function as any other library. However, this is not true for the version

detection scenario. The targeted functions in each version can experience three

different situations:

Different Versions, Same Page: Figure 4.1 shows the case where two different

OpenSSL versions are present and the targeted page (in which resides the targeted

function) is the same for both of them. Since the memory is divided into pages of 4

KB and KSM works computing hashes at the page level, both pages will create the

same hash and they would be merged. Therefore, an attacker would mispredict if

the call was made by OpenSSL version 1 or OpenSSL version 2. In this scenario, the

best route to take is to target another function that is not same in both libraries.

Different Versions, Different Functions: If the targeted functions to detect

are different even though previous pages are the same, the attacker has no risk on

mispredicting the versions, since KSM will never merge two different pages. This is

the case we present in Figure 4.2

Different Versions, Same Page, Different Offset: In another situation, the

functions are the same in both versions of the library, but since a modification has
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been done in some other previous page in the library, the offset will not be the same

anymore. Therefore the page address would be different and the result of the hash

operation applied to the pages will be different. In this case, the attacker would still

be able to recognize different versions even though they have the same function.

This is the situation presented in Figure 4.3.

We want to use a function that is called always in an SSL/TLS connections

and that establishes a relationship with one single specific library. In the cases

that we analyze, we keep using SSL_CTX_new because it meets both requirements.

We already discussed the first requirement above. To test if we satisfy the second

requirement, we analyze the function across all the libraries analyzed by our detector,

observing different outcomes. This function changes between some of the versions,

e.g. OpenSSL 0.9.8k and OpenSSL 1.0.1a, and does not change between versions,

e.g. OpenSSL 1.0.1e and OpenSSL 1.0.1f. However, the offset with respect to

a page boundary is different among all of them, making the digest from the hash

operation different for all of them. Therefore there is no risk that the hypervisor

will merge pages from different library versions.

4.3 IP Address Recovery

After determining the library running in the co-located VM, the attacker runs the

TLS handshake detector for that specific library and starts the IP address recovery

step. To recover the IP address of the co-located VM, the attacker starts sending

TLS communication requests to all IP addresses starting with her local subnet and

trying a wider range of addresses until a handshake is detected. When she triggers

the co-located target VM, the specific library detector that she ran beforehand

detects the TLS handshake. Only by observing the detector output and the IP
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Figure 4.1: KSM when two different versions have different pages, but the targeted
page is the same

scanner process, she can then pinpoint and recover the IP address at the time of

a detection hit. This step is scripted and requires varying times depending on the

detected library TLS setup time. In the worst case with the slowest library, it takes

less than 15 seconds to scan 255 different IP addresses for a match.

4.4 Additional Dangers of Version Detection

Version detection goes beyond library detection, as its main goal is to distinguish

between different versions of the same software family, such as a crypto library as

OpenSSL. There are several well-known vulnerabilities in certain OpenSSL versions

that can enable simple attacks if a malicious party becomes aware of an unpatched

implementation. When used on the cloud, an adversary can use the proposed tool
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Figure 4.3: KSM when an offset introduced by a modification in the library causes
differences on the hash operation.

to detect such outdated versions running in co-located VMs.

Thus, the knowledge of the version enables the adversary to choose the most
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Figure 4.4: Reload time when a co-located VM is using the targeted code (red) and
when it is not (blue) on KVM, Intel Xeon 2670

powerful attack against a specific library. Outdated versions of a specific crypto

library are common since each OS has its own default installation of a specific

version. For example, Ubuntu 12.04 uses OpenSSL 1.0.1 and Ubuntu 14.04 uses

OpenSSL 1.0.1f.

We work with seven OpenSSL versions; OpenSSL 0.9.7a, OpenSSL 0.9.8k,

OpenSSL 1.0.0a, OpenSSL 1.0.1c, OpenSSL 1.0.1e, OpenSSL 1.0.1f, OpenSSL

1.0.1g. In the following we list some of the popular vulnerabilities in different li-

braries and versions [131]. These are flaws that directly affect the mentioned version,

but of course, new flaws in more recent versions can be applied to the most outdated

ones.

� OpenSSL 0.9.7: This is the most outdated version that should not be used

under any circumstance. There are many attacks targeting this version, such as

AES cache attacks, branch prediction attacks in RSA or attacks on PKCS [132].

� OpenSSL 0.9.8k: Vulnerable to Denial of Service attacks, Kerberos crash

attacks or flaws in the handling of CMS structures.
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� OpenSSL 1.0.0a: Vulnerable to Buffer Overrun attacks in TLS, vulnerable to

modifications of stored session cache ciphersuites, DOS attacks due to GOST

parameters, memory leakage due to failure of byte clearing in SSL3.0, vulner-

able to Vaudenay’s padding oracle attack [133], weaknesses in the PKCS code

exploitable using Bleichenbacher’s attack [134].

� OpenSSL 1.0.1c: Vulnerable to Lucky 13 attack [120], DOS attack due to

failure in OCSP response, DOS attack on AES-NI supporting platform.

� OpenSSL 1.0.1e: Vulnerable to Flush+Reload ECDSA attack [31], and to

Heartbleed attack [121].

� OpenSSL 1.0.1f: Vulnerable to Flush+Reload ECDSA attack [31], and to

Heartbleed attack [121].

� OpenSSL 1.0.1g: Heartbleed fixed.

Heartbleed attack: The Heartbleed attack is a serious threat that was discovered

in OpenSSL. The bug allows a malicious attacker to steal sensitive information used

by SSL/TLS encryption. It compromises the secret keys used to identify the service

providers. The bug was addressed in OpenSSL 1.0.1g, which means that previous

versions of OpenSSL are still vulnerable to the attack. This compromises seriously

those users who are still using an outdated version of the popular OpenSSL library.

Our detection method allows an attacker to detect whether one of the vulnerable

versions is being used.

4.5 Experiment Setup and Results

Our measurement setup mimics the cloud setup found in commercial CSPs. All

experiments are performed on a machine featuring an eight-core Intel Xeon e5-2670
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v2 CPU, running at 2.5 GHz. This CPU is also commonly used by the m3 instances

of Amazon EC2. It features 32 KB of private L1 cache and 262 KB of private L2

cache per core, as well as 20 MB of L3 cache, shared among the cores. KVM is used

as hypervisor [135], whereas Ubuntu 12.04 is used for all the guest OSs. KVM’s KSM

feature is enabled for all experiments, scanning 100 pages each 200 milliseconds (the

default values). Virtual machine manager provides a graphic interface for VMs.

In our evaluation setup, we create and use three virtual machines. The first one,

VM1, acts as a user performing SSL/TLS connections with a library of its choice.

The second VM, VM2, acts as detector : VM2 aims at detecting the library and

specific version used by VM1. The last one, VM3, is used to simulate regular user

load and therefore add various levels of noise depending on the scenario:

� Noise-free: In the first scenario, the victim, VM1, establishes SSL connec-

tions, the detector, VM2 executes our script to detect the library/version being

called by the victim. No additional noise coming from a different VM is added,

i.e. VM3 is idle.

� Web browsing: In the second scenario, again the victim VM is performing

SSL connections while the detector VM tries to detect which library/version

he is using. However, in this case, a third VM is performing web-browsing

operations at the same time. It will run a script that opens a webpage every

5 seconds.

� File sharing: The third scenario is similar to the second one. In this case,

while the victim is running SSL/TLS operations and the detector VM tries

to run the detection script, a third Virtual Machine is going to be running a

script automatically downloads a 6 KB PDF file every 5 seconds.

� Media streaming: In our last case, we want a scenario in which the amount
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of CPU load introduced by the noise adder VM is significantly higher than in

the previous cases. In this scenario, while the detector VM and victim VM

are executing Flush+Reload and SSL/TLS connections respectively, at the

same time a third VM continuously streams a movie. To model this situation,

we used Netflix as our media streaming software. In particular, we installed

the Netflix-desktop version for Unix. Note that the content streamed via

Netflix is Digital Rights Management (DRM) protected, therefore encrypted.

For encryption, Netflix uses AES-128 in counter mode. The cryptographic

operation as well as the media decoding process create significant background

noise.

We characterize our noise scenarios in terms of 3 parameters; the additional CPU

load that is observed in the hypervisor due to this operations, the network traffic

created and the number of cache references in a minute. Table 4.1 summarizes

the observed values for each of the characteristics analyzed for the scenarios under

consideration. We used the Linux tool top to observe the CPU load increase, and

jnettop to observe the network traffic value kn bits per second, and finally we

use perf to calculate the number of cache references made in each scenario in one

minute. We observed that in terms of CPU load, both the web browsing scenario

and the file downloading scenario are similar to an increase of 25%. As expected,

the media streaming scenario creates more CPU load; almost 4 times more than

the previous two scenarios with an increase of around 95%. The situation changes

a little in terms of network traffic and cache references, with the file downloading

scenario with slightly less noise. We observe an increase in these two parameters

in the web-browsing scenario. Again for the media streaming scenario, we observe

a substantial increase in both parameters, making us believe that the detector will

decrease its efficiency under this scenario.
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Table 4.1: Noise parameters in different scenarios

Noise CPU Network Cache
Scenario load Traffic usage

(tx-rx) [references/min]

Noise free 0% 0 0
Web browsing 20-25% 3.67K-21K 115 × 106

File sharing 20-25% 600-1K 12.4 × 106

Streaming 95% 82K-5.8M 2, 300 × 106

In the experiments, we followed the approach of single-hit measurements meaning

that we calculated the probability of successfully detecting a single function call at

any time. It is important to note that the scanning process for all the crypto

libraries used in the experiments takes only 5 seconds. Therefore, an adversary can

easily amplify the detection rate of target library execution, even under heavy noise

scenarios by scanning multiple times either continuously or in short intervals.

For our experiment setup, the threshold to distinguish between accessed (func-

tion resides in the cache) and not accessed (function resides in the memory) functions

is 190 cycles. As it can be seen in Figure 4.4, this threshold is based on experimental

measurements and is sufficient to distinguish the two Gaussian distributions. Note

that this is a hardware specific threshold and will have to be tuned if the experi-

ments are performed on a different machine. The threshold value is easily obtained

by running the required library function on the target platform and measuring the

execution time using RDTSC(P) for both memory and cache access. In order to

ascertain that the function code resides in the memory and the obtained time be-

longs to the memory access, CLFLUSH instruction is used to flush the code from

all levels of cache.
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Table 4.2: Library detection experiment results under different levels of system
background noise.

Library Detection success rate per scenario
Noise free Web browsing File sharing Media streaming

CyaSSL 90% 85% 85% 50%
OpenSSL 77% 76% 79% 48%
MatrixSSL 71% 72% 76% 41%
PolarSSL 91% 88% 84% 50%
GnuTLS 83% 91% 86% 51%

False positives 0 0.2% 0.4% 0.4%

Table 4.3: Library version detection experiment results under different levels of
system background noise.

Library Noise free Web browsing File sharing Media streaming

OpenSSL 0.9.7a 79% 79% 78% 34%
OpenSSL 0.9.8k 85% 84% 87% 50%
OpenSSL 1.0.0a 83% 84% 82% 42%
OpenSSL 1.0.1c 85% 86% 85% 41%
OpenSSL 1.0.1e 80% 86% 84% 44%
OpenSSL 1.0.1f 76% 83% 80% 44%
OpenSSL 1.0.1g 82% 84% 90% 38%

False positives 0.14% 0.29% 0.29% 0.14%

Table 4.4: IP detection rate results.

Library
Number of

Connections per IP
Average Scan

Time for 255 IPs (sec)
Average

Detection Hits

CyaSSL 1 tries 5.57 3.5
OpenSSL 3 tries 6.86 0.77
MatrixSSL 1 tries 3.4 2.66
PolarSSL 3 tries 7.33 1.54
GnuTLS 3 tries 9.7 1.31

False positives 0 0.2% 0.4%

4.5.1 Library Detection

To determine the efficacy of the library detection method we surveyed five crypto li-

braries, i.e. OpenSSL 1.0.1 (OS), GnuTLS 26 2.12.14 (OS), MatrixSSL 3.6.1,

CyaSSL3.0.0 and PolarSSL 1.3.7. All the libraries are compiled as shared li-
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braries. For the purposes of this attack, we assume that one user runs an SSL/TLS

connection using one of these five libraries, and a second user has to detect which

one was run. We use typical functions that are used in regular SSL/TLS connec-

tions (such as library initialization or context creation functions). We run a script

that randomly chooses one of the libraries mentioned above and performs SSL/TLS

connections using the following tools:

� OpenSSL: s_client and s_server tools provided in the OpenSSL library.

� PolarSSL: ssl_client1 and ssl_server programs provided by PolarSSL to

perform the SSL/TLS connection.

� GnuTLS: anonymus authentication server and anonymus authentication client

examples provided by GnuTLS in [136, 137] for our test SSL connection.

� CyaSSL: client and server examples provided by CyaSSL to perform the

SSL/TLS connections.

� MatrixSSL: client and server apps provided by MatrixSSL that establish a

SSL connection between them.

We recorded a total of 100 calls per library. Results are presented in Table 4.2.

The success rate represents the percentage of correctly detected libraries. Incorrectly

detected libraries, i.e. false positives, are presented in the last row. The first thing

to notice here is that we have an exceptionally low false positive rate, ranging from 0

false positives observed in the noise-free scenario to 2 false positives in both the third

and forth noisy scenarios out of 500 calls. In the best case (noise-free scenario) the

success rate ranges between 70% and 90% depending on the library. Furthermore, in

the low noise scenarios these results do not change, meaning that this type of noise

would not affect the results. Finally, we observe that when the heavy load scenario
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is applied, we do not observe a significant increase in the wrong predictions, but we

observe a decrease in the success rate of the library detection. Detection rate goes

down from almost 90% to 50% in the best cases, and from 70% to 41% in the worst

cases. This means that even when the target is residing in a physical machine with

a heavy load, the detector can still detect the target library 50% of the time.

Another thing to note hereis that since we are using the OpenSSL version provided

by the OS in the download script noise scenario, we are detecting some additional

calls of OpenSSL from the downloading step. However since these calls are made by

another VM and could be considered both correct or incorrect predictions, we did

not include them in the results.

4.5.2 OpenSSL Version Detection

The second scenario is where we have a version detection tool. We used 7 different

OpenSSL versions: OpenSSL 0.9.7a, OpenSSL 0.9.8k, OpenSSL 1.0.0a, OpenSSL 1-

.0.1c, OpenSSL 1.0.1e, OpenSSL 1.0.1f (previous to Heartbeat fix) and OpenSSL 1.0.1g

(heartbeat fixed). We have to be more specific here since we have to look for func-

tions that are different across libraries because otherwise, KSM would merge them

even if they are from different libraries. However in all the libraries analyzed, the

offset of the function that is being tested (SSL CTX new) with respect to the be-

ginning of a page is different, therefore KSM will never merge them, even when the

function is the same. SSL CTX new is a function that is always called in a new

SSL connection. We use the applications s_server and s_client that OpenSSL

provides for testing SSL connections. We run a script that randomly chooses one of

the above-mentioned versions of OpenSSL and performs a TLS connection.

Again we record 100 calls of each one of the version, 700 in total, in each one

of the scenarios. Again we are going to run 4 types of experiments: noise-free,
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web-browsing, download noise, and heavy Netflix load. Results are presented in

Tables 4.3. We see a similar pattern to the one we saw in the library detection.

For noise-free and low noise scenarios we observe that the success probability varies

from 76% to 90%. We have to remark that in this experiments we are not using the

OS provided version of OpenSSL (plain 1.0.1) since we did it in the previous tests

and therefore we do not detect the file downloads. One could always include this

version to the detectors and still, be able to detect it. Another observation is that

again, the wrong predictions are fairly low, with 2 wrong predictions in 700 library

calls in the worst case. Finally, we observe that when a heavy load is present in the

server, the success rate decreases to 50% in the best case and to 34% in the worst

case. This shows again that even though heavy load decreases the success rate, one

could still detect one library call out of three in the worst case.

4.5.3 IP Detection

For the IP detection experiments, we chose functions that run when a TLS commu-

nication handshake is triggered in each particular library. After the initial library

detection stage, we ran the IP detector script and the TLS handshake detector to

discover the co-located target VM’s IP address. To be able to scan a wide range

of IP addresses in a short time, we used the timeout command with the TLS client

handshake process to eliminate IP addresses with no active TLS servers. Note that

this timeout value had to be short enough to allow fast scanning of a large group of

IP addresses but also provide enough time to allow the TLS client to run necessary

pre-connection processes. To meet these two criteria, we tried different timeout val-

ues ranging from 0.001 milliseconds to 1 second for different libraries and determined

that 0.01 milliseconds was optimal.

As for TLS Client, we experimented with different TLS clients provided with
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libraries and determined that the OpenSSL client was the fastest one amongst the

inspected libraries. Therefore for the IP detection stage, we used OpenSSL TLS

client to trigger TLS handshake for all libraries. Table 4.4 shows the time it takes

to scan 255 IP addresses in the subnet to discover co-located victim VM, as well as

the average detection, hits from the co-located attacker VM during the IP detec-

tion stage. As seen from the table, for some libraries, namely OpenSSL, PolarSSL

and GnuTLS, 3 TLS connection attempts per IP is used while for CyaSSL and

MatrixSSL only 1 per IP is used. This is done in order to increase the detection

rate while keeping the average scan time within acceptable limits. As the results

show, all libraries except the OpenSSL have average detection hits over 1, meaning

that they are always detected when the TLS handshake is triggered. As for the

OpenSSL, even when 3 connections per IP are established, the detection rate is 0.77

on average and cannot be further increased by repeated measurements in acceptable

scan time limits. We believe that this is due to the fact that OpenSSL handles TLS

handshake faster than the detector has a chance to detect the handshake. The fact

that OpenSSL TLS client was fastest to establish connections in our test and the

scan time for 255 IPs was fastest for OpenSSL supports this reasoning.

4.6 Countermeasures against the Flush+Reload

There are many proposed countermeasures against the Flush+Reload attack and of

it’s variants that rely on memory de-duplication. In this chapter, we list some of

these countermeasures and give a brief explanation.
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Restricting the clFlush Access

Our detection method is based on the detector’s ability to flushing specific memory

lines from the cache with the clflush command. Prohibiting the usage of the

clflush command would prevent the attacker from implementing the Flush+Reload

attack. Note that disabling the clflush instruction will disrupt memory coherence

in devices where memory coherence is not supported. Also note that clflush-like

instructions can still be substituted by cache priming techniques, as in [138].

Disabling Memory De-duplication

Disabling de-duplication prevents the Flush+Reload based detection of executed

code. Even partial disabling, e.g. by marking crypto libraries (or any critical soft-

ware) to be excluded from de-duplication, can prevent the library detection with

minimal effect on performance. The main disadvantage of this countermeasure is

the lack of memory usage optimization, especially in multi-tenant systems. Keep in

mind that with de-duplication, it is shown to be possible to run over 50 Windows XP

guest VMs on a server with 16 GB RAM [15]. Also, note that other spy processes

like Prime+Probe may still succeed even when de-duplication is turned off.

Dedicated Hosting/Single Tenant Systems

Public clouds like Amazon EC2 can provide customers with dedicated hosts meaning

that only the VMs from a single customer will reside on the underlying hardware

platform and no hardware resource will be shared between customers. In this sce-

nario, no cache side-channel attacks can be implemented, since the attacker cannot

co-locate with a victim anymore.
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Diversifying the Execution Code

One possibility to mitigate cache side-channel attacks is to create different and

unique program traces (that perform identical computations) for different execu-

tions. This countermeasure, proposed in [139], will prevent the Flush+Reload

technique since the specific location of the function that the attacker wants to

monitor would be different for different users (and thus, libraries would never be

de-duplicated).

Degrading the Granularity of Timers

As cache timing side-channel attacks base their procedure on the accuracy of rdtscp-

like timers, an easy solution that cloud hypervisors can adopt is to eliminate the

access to fine-grain timers from guest VMs. Alternatively, as stated in [140], fine-

grain timers could introduce a certain amount of noise so that cache side-channel

attacks are no longer applicable. Note that this would only make the Flush+Reload

harder under certain attack scenarios. If the attack scenario permits, the attacker

can use increment counters by continuously incrementing a variable in a separate

execution thread and use the counter value as the timer.

Cache Partitioning

As suggested in [141], partitioning the cache is a hardware solution that would

mitigate any kind of cache side-channel attack. If the attacker and the victim have

associated different portions in the shared level of cache (effectively creating private

caches), no cache-based attacks are possible. Therefore allocating parts of the cache

to a specific VM or a process, even when de-duplication is enabled, would avoid any

cache leakage between VMs/processes. The downside of cache partitioning is that
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the cache utilization associated with each process decreases significantly, resulting

in serious performance penalties.

Randomizing Cache Loads

Another countermeasure is to add a random offset to the location of the sensitive

data when the CPU fetches data to the cache, as proposed in [141]. By adding an

offset, the physical memory would only have one copy of a shared page, but it would

add a random offset when being loaded into the cache. This random offset is private

for each processor VM. Therefore, an attacker would have to know the private offset

of the victim’s process to be able to access the same data and the cache set.

4.7 Conclusion

In this chapter, we presented a detection method to identify the execution of pieces

of software on a target’s VM across co-located VMs. While the technique is generic

and applies to cross-VM settings where de-duplication is enabled, our experiments

focused specifically on crypto libraries. We believe that this is a highly relevant use

case for the detection method since it enables an attacker to covertly carry out a

discovery phase with high precision and great speed.

We demonstrated the viability of the detector by identifying the crypto library

and the particular version used by a target. Our work shows that identifying a

specific library version being used by a co-located tenant is possible. This enables

an attacker to focus on the most viable vulnerability. One clear example is the

Heartbleed bug, which was not fixed until OpenSSL 1.0.1g and allows an attacker

to the extraction of private information.

We presented experiment results on OpenSSL versions under various noise sce-
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narios. We observed that in low-noise scenarios the detection rate is up to 90%,

whereas in heavy load scenarios the detection rate reaches up to 50%. Nevertheless,

we would like to emphasize that even in the worst case scenario with a heavy load,

the attacker gains knowledge about the used library after two or three library calls.

Finally, we outlined a number of countermeasures which would render the detection

technique obsolete.
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Chapter 5

Co-location Detection on Cloud

In this chapter, we focus on the problem of co-location as a first step of conducting

Cross-VM attacks such as Prime+Probe or Flush+Reload in commercial clouds. We

demonstrate and compare three co-location detection methods namely, cooperative

Last-Level Cache (LLC) covert channel, software profiling on the LLC and memory

bus locking. We conduct our experiments on three commercial clouds, Amazon

EC2, Google Compute Engine, and Microsoft Azure. Finally, we show that both

cooperative and non-cooperative co-location to specific targets on the cloud is still

possible on major cloud services.

5.1 Motivation

As the adoption of cloud computing continues to increase at a dizzying speed, so

has the interest in cloud-specific security issues. A new security issue due to cloud

computing is the potential impact of shared resources on security and privacy of

information. An example is the use of caches to circumvent ASLR [142], one of the

most common techniques to prevent control-flow hijacking attacks.

Several other works target the exploitability of cryptography in co-located sys-
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tems under increasingly generic assumptions. While early works such as [34] re-

quired attacker and victim to run on the same CPU core, latest works [43, 42] work

across cores and managed even to drop the memory de-duplication requirement of

Flush+Reload attacks [31, 91, 2, 4]. Besides extracting cryptographic keys, there

are plenty of other security issues explored in other related studies. Irazoqui et

al. [7] study the potential of reviving the partially fixed Lucky 13 attack [120] by

exploiting co-location.

All of the above attacks rely on the attacker’s ability to co-locate with a potential

victim. While co-location is an immediate consequence of the benefits of cloud

computing (better utilization of resources, lower cost through shared infrastructure

etc.), whether exploitable co-location is possible or easy has so far not been studied

in detail. In his seminal work, Ristenpart et al. [81] studied the general feasibility of

co-location in Amazon EC2, the most popular public cloud service provider (CSP)

then and now, in detail. However, the cloud landscape has changed significantly

since then: The EC2 has grown exponentially and operates data centers around

the globe. A myriad of competitors have popped up, all competing for the rapidly

growing customer base [143]. CSPs are also more aware of the potential security

vulnerabilities and have since worked on making their systems leak less information

across VM boundaries.

Furthermore, in their experiments, both co-located parties were colluding to

achieve co-location. That is, both parties were willingly involved in communicating

through the CPU cache with each other to verify co-location. While being of high

importance to show the feasibility in the first place, trying to co-locate with a specific

and most likely unwilling target can be considerably harder. Since that initial

work, until very recently only a little work has dealt with a more detailed study

on the difficulty of co-location. Therefore, we believe, the problem of co-location on
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cloud requires further in-depth analysis examining different detection methods under

diverse scenarios and access levels for the attacker. With this motivation, we have

discovered three co-location detection methods as; LLC Covert Channel, Software

Profiling on LLC, Memory Bus Locking. Below, the details of these methods are

provided.

5.2 Threat Models

Here we briefly outline two attacks scenarios for cross-VM attacks on public clouds.

The main difference between the two scenarios is whether the target is predeter-

mined or not. As we shall see, this makes a significant difference in terms of the

requirements and cost of a successful attack. We provide concrete examples for both

scenarios.

5.2.1 Random Victim Scenario

In the random victim scenario, we outline attack in four steps as follows:

1. Co-location: The attacker spins instances on the cloud until it is determined

that the instance is not alone; i.e. is co-located with another VM. Here the goal

is to maximize the probability and thereby reduce the cost of co-locating with

a viable target. Cheaper instances that use fewer CPU cores tend to share the

same hardware in greater numbers. Therefore these instances have a better

chance of co-location with other customers. Since we do not discriminate

between targets, this step is rather easy to achieve.

2. Vulnerable Software Identification: The attacker detects a software pack-

age in the co-located VM vulnerable to cross-VM attacks by monitoring cor-

responding LLC sets of libraries, e.g. an unpatched version of a crypto library.
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Cache access/performance and more broadly fingerprinting based techniques

do exist in the literature to make successful attacks in the cloud environ-

ment [19, 94, 3]. Here, instances with a lower number of tenants are less noisy

therefore have a higher success rate of library detection and the actual attack.

3. Cross-VM Secret Extraction: Here the attacker runs one of the cross-VM

attacks [5, 43] on the identified target. By exploiting cross-VM leakage the at-

tacker would be able to recover sensitive information ranging from specialized

pieces of information such as cryptographic keys to higher level information

such as browsing patterns, shopping cart, system load or any sensitive informa-

tion of value. Noise plays a significant role in the reliability of the extraction

technique. Since co-location (first step) is easy to achieve, it is (almost) always

advisable to opt for a less populated low noise instance to improve the chance

of a successful attack in the later steps.

4. Value Extraction: The result is some sensitive information that can be

turned into value with additional mild effort. For example, some information

is valuable in its own right and can be converted into money with little or

no effort, e.g, bitcoins, credit card information, credentials for online banking.

Some others require further effort such as TLS session encryption key (secret

key), e.g. for a Netflix streaming session. If the recovered secret is a private key

of a public key encryption scheme (e.g. RSA secret key used a TLS handshake)

the attacker needs the identity of the owner (website/company) to have further

use for the secret key. In this case, he may check the private key against public

key repositories for noise correction and target identification.
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5.2.2 Targeted Victim Scenario

This is the complementary scenario where we are given some identification informa-

tion about the target.

1. IP Extraction: The attacker wants to focus its cycles on a server or group

servers that belong to an individual, cloud-backed business, e.g. Dropbox or

Netflix, or group/entity, e.g. dissidents of a political party. Here we assume

that the attacker is capable of resolving the identification information to an

IP or group of IPs of the target. In practice, this can be achieved rather easily

by using public information and by using simple commonly available network

tools such as traceroute/tracepath, nmap etc.

2. Targeted Co-location: The attacker creates instances on the cloud until

one is co-located with the target instance on the same physical machine. The

identification information of the victim, e.g. IP address, is used for co-location

detection. For instance, using the IP the attacker can query the server creating

CPU load and then run co-location tests. While co-location detection will be

easier in this scenario due to the trigger; we will need many more trials to land

on the same physical machine as the victim1. Nevertheless, we can accelerate

targeted co-location by searching, for instance, only in the same cloud region as

the victim instance using the publicly available AWS IP lists [144]. Note that

while we applied this method to AWS, it also holds true for other public cloud

services. Further, we can obtain finer grain information about the target’s

location simply by running traceroute or tracepath on the victim IP.

1Note that if the physical machine is already filled with the maximum number of allowed
instances, then co-location may not be possible at all. In this case, a clever albeit costly strategy
would be to first mount a denial of service attack causing the target instance to be replicated and
then try co-locating with the replicas.

74



3. Vulnerable Software Identification: Since we know the identity of our

target, it is safe to assume that we have some rudimentary understanding of

the victim’s setup including OS, communication and security protocols used

etc. Even if this is not the case, it would be possible to run a discovery stage

to survey the victim machine using its IP and by detecting process fingerprints

through cross-VM leakage.

4. Value Extraction: The attacker exploits cross-VM leakage to recover sensi-

tive information. Further processing may allow enhancing the quality of the

recovered data using publicly available information. For instance, a noisy pri-

vate key can be processed with the aid of the public key contained in the

certificate belonging to the target to remove any imperfections.

5.3 LLC Covert Channel

The LLC is shared across all cores in most modern CPUs and is semi-transparent

to all VMs running on the same machine. By semi-transparent, we mean that all

VMs can utilize the entire LLC but cannot read each other’s data. We exploit this

behavior to establish a covert channel between VMs in the cloud. The covert channel

works by two VMs writing to a specific set-slice pair in the LLC and detecting each

other’s accesses. LLC set address can easily be deduced from the virtual addresses

available to VMs using hugepages as done in [43, 42, 5]. The cache slice, on the

other hand, cannot be determined with certainty unless the slice selection algorithm

of the CPU is known. However, the covert channel can still work by priming more

sets and accessing lines that go to the targeted set, regardless of its slice.
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5.3.1 Prime+Probe in LLC

In the LLC, the number of lines required to fill a set is equal to the LLC associativity.

However, when multiple users access the same set, one will notice that fewer than

20 lines are needed to trigger evictions. By running the following test concurrently

on multiple instances, we can verify co-location. The test works as follows:

� Calculate the set number by using the address bits that are not affected by

the virtual to physical address translation. Prime a memory block M0 in the

set.

� Access more memory blocks M1,M2, . . . ,Mn that go to the same set. Note

that since the slice selection algorithm for the specific CPU is necessary to

address a set/slice pair with certainty, the number of memory blocks n needs

to be larger than the set associativity times the number of slices.

� Access the memory block M0 and check for eviction from the LLC. If evicted,

we know that the required b memory blocks that fill the set are among the

accessed memory blocks M1,M2, . . . ,Mn.

� Starting from the last memory block accessed, remove one block and repeat

the above protocol. If M0 still has high access time, Mi does not reside in the

same slice. If b0 is now located in the cache, we know that bi resides in the

same cache slice as b0 and therefore go to the same set.

� Once the b memory blocks that fill a slice are identified, we just access addi-

tional memory blocks and check whether one of the primed b memory blocks

has been evicted, indicating that they collide in the same slice.

The covert channel works by continuously accessing data that goes to a specific

cache set and measuring the access time to determine if a newly accessed data has
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evicted an older entry from the set. Due to this continuous cache line creation,

when the second party makes accesses to the monitored set, they are detected. In

general, if there is no noise present, the number of lines that can go to a set without

triggering an eviction is equal to the associativity of the cache, assuming a first-in-

first-out (FIFO) cache replacement policy is employed.

When two VMs try to fill the same set, they have to access less number of data

blocks to fill the specified cache hence detecting the co-location. Using the number

of blocks necessary to fill a specific set with and without another instance interfering,

we calculate a co-location confidence ratio.

5.4 Software Profiling on LLC

The software profiling method works in a realistic setting with minimal assumptions.

The method works in a non-cooperative scenario where the target does not partici-

pate in covert communication and continues its regular operation. The method does

not require memory de-duplication or any form of shared libraries. It employs the

Prime+Probe to monitor and profile a portion of the LLC while a targeted software

is running. As for the memory addressing, we profile the targeted code address as

a relative address to the page boundary. Since the targeted library will be page

aligned, the target code’s relative address (the page offset) will remain the same

between runs. Using this information, we can reduce our search space in the detec-

tion stage. Therefore, we need to monitor only 320 different set-slice pairs such as

X mod 64 = Y where X is 320 different set numbers (since we have 10 cores and

32 different set numbers satisfying the equation) and Y is the first 6 bits (the first

6 bits of the LLC set number is directly converted to physical address) of the set

number for the desired function.
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For RSA detection, the slice selection algorithm of the CPU is required to locate

the targeted multiplication code in the LLC at a reasonable time. Without the

algorithm, it would take too much time to monitor potential cache sets. For our

experiments, we have used the algorithm that was reverse engineered in [5].

In summary, there are two stages to the software profiling on LLC;

� Profiling Stage: The first step of the profiling is to monitor the targeted

LLC sets while the profiled code, the software is not running. The purpose of

this stage is to measure the idle access time of 20 lines for each set to have a

threshold to detect whether there is a cache miss or not in the next stage.

� Detection Stage: We send RSA decryption requests to candidate IPs in

order to discover the IP address of the victim. After triggering the decryption

we begin to monitor the portion of LLC to detect accesses triggered by the

decryption. If we detect accesses in targeted set-slice pairs then we know

that the correct IP address is found. As a double check, in addition to the

RSA detection, we also detect AES encryption. In order to so, we monitor

another portion of the LLC where the AES T-tables potentially reside. And

if the victim is co-located with the attacker, we can detect and monitor these

T-table accesses.

5.5 Memory Bus Locking

This detection method uses the overall performance degradation of a system caused

by the memory bus locking to detect potential co-location. The memory bus locking

method exploits a cache coherency subroutine used to ensure atomicity of certain

operations. In the following, we explain these special instructions.
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5.5.1 Atomic Operations

Atomic operations are an integral part of modern computing systems. They are used

to implement mutex and semaphores, sustain cache coherency, avoid race conditions

and even serve interrupts. These instructions cannot be uninterrupted during their

execution and appear to the rest of the system as instant. As explained in more

detail in Section 2.4, the x86 architecture has many atomic instructions that can be

executed atomically with a lock prefix. Moreover, the XCHG instruction executes

atomically when operating on a memory location, regardless of the LOCK use.

Exotic Atomic Operations: are special atomic operations that work on un-

cacheable memory and trigger system-wide memory bus locking. The fact that some

addresses are uncacheable can be due to data in the operand spanning multiple cache

or memory lines as in the case of a word-tearing or it can be due to the operand

address corresponds to a reserved space on the physical memory. In any case, an

Exotic Atomic Operation triggers memory bus locking and flushing of the ongoing

memory operations in all of the CPUs of the system to ensure atomicity and data

coherence. As expected, this results in a heavy performance penalty to the over-

all system, especially the memory transactions. Moreover, since instructions might

take different clock cycles to execute, in order to maximize the flushing penalty, all

atomic instructions available to the platform should be tested to see how long each

instruction takes to complete. Since the flushing is succeeded with the atomic oper-

ation itself, the longer the instruction executes, the worse the performance hit to the

system becomes. In order to maximize the performance degradation, we tested all

atomic instructions available to the platforms and measured how long each instruc-

tion takes to execute. In our experiments, we have used the XADDL instruction

since it resulted in the strongest penalty to our test platforms. By triggering the

memory bus locking via exotic atomic operations, we slowdown a server process
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running in the cloud and detect co-location without cooperation from the victim

side.

5.5.2 Cache Line Profiling Stage

Our attack is CPU-agnostic and employs a short, preliminary cache profiling stage.

This stage eliminates the need for information like the cache line size and the cache

access time. Our purpose here is to obtain data addresses that span multiple cache

lines hence triggers a bus lock. First, we allocate a block of small, page-aligned

memory using malloc. After the allocation, we start performing atomic operations

on this block in a loop of 256 since no modern cache line is expected to be larger

than 256 bytes. In each loop, we move our access pointer by one and record atomic

operation execution times. When we observe a time larger than the pre-calculated

average, we record the address. After all 256 addresses are tested, we obtain a list of

addresses that span across multiple cache lines. Later during the locking stage, we

operate only on these addresses rather than a continuous array, making the attack

more efficient.

5.5.3 Dual Socket Results

Memory bus locking works on systems with multiple CPU sockets. Even further,

our tests reveal that the bus locking penalty clearly reveals whether the target and

the attacker run in the same socket or not. As seen in Figure 5.1, the memory

access time is clearly distinguishable between the same socket and different socket

locks on a dual socket system with two Intel Xeon E5-2609 v2 CPUs. Note that

this information is important for the attacker since an architectural attack using the

LLC requires the attacker and the target to be running in the same socket.
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Figure 5.1: The memory access times during a bus lock triggered with the XADDL
instruction showing when the attacker resides in the same socket (red) and different
sockets (blue).

5.6 Commercial Clouds Experiment Results

In all three aforementioned commercial clouds, we have launched 4 accounts with

20 instances per account, achieving co-location in each cloud. Also, note that we

only classify the instances running in the same CPU socket as co-located and ignore

the ones running on different sockets.

Amazon EC2: In Amazon EC2 we used m3.medium instance types that have

balanced CPU, memory and network performance. This instance type has 1 vCPU,

3.75 GB of RAM and 4 GB of SSD storage. According to Amazon EC2 Instance

Types web page [145], these instances use 10 core Intel Xeon E5-2670 v2 (Ivy Bridge)

processors.

Out of 80 instances launched, we have obtained 7 co-located pairs and one triplet

verified by the tests. Moreover, we have tried to co-locate with instances that have

launched previously. Surprisingly, we have been able to co-locate with instances

that have launched 6 months prior.

Google Compute Engine: In GCE, we used n1-standard-1 type instances

running on 2.6 GHz Intel Xeon E5 (Sandy Bridge), 2.5 GHz Intel Xeon E5 v2 (Ivy
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Bridge), or 2.3 GHz Intel Xeon E5 v3 (Haswell) processors according to [146]. Out

of 80 instances launched, we have obtained only 4 co-located pairs.

Microsoft Azure: In Azure, we used extra small A0 instance types with 1

virtual core, 750 MB RAM, maximum 500 IOPS, and 20 GB disk storage that is

specified as neither SSD nor HDD [147]. Out of 80 instances launched, we have

obtained only 4 instances that were co-located. However, this was partly due to

the highly heterogeneous CPU pool that Azure employs. Our first account had

instances with AMD Opteron CPUs while the second had Intel E5-2660 v1 and the

last two had Intel E5-2673 v3. Naturally, we could only achieve co-location among

instances that have the same CPU model. Out of 40 Intel E5-2673 v3 instances, we

detected 4 co-located instances.

5.6.1 LLC Covert Channel

In the following, we present the results of the LLC covert channel experiments. The

confidence ratio is highest at 1 as seen in Figure 5.2. There are 8 instances (meaning

4 pairs) that have higher than 50% confidence ratio among 80 and the co-located

pairs are found by binary search at the end. Hence, it is confirmed that they are

indeed co-located with each other.

5.6.2 LLC Software Profiling

We conducted the LLC Software Profiling experiments on the co-located Amazon

EC2 instances with 10 core E5-2670 v2 processors. As for the software target, in

order to demonstrate the versatility of the attack, we chose the RSA (Libgcrypt

version 1.6.2) that uses sliding window exponentiation and the AES (OpenSSL ver-

sion 1.0.1g, C implementation) that uses T-tables. Note that the detection method

is not limited to these targets since the attacker can run and profile any software

82



Instance Number
0 20 40 60 80

C
on

fid
en

ce
 R

at
io

0

0.5

1

Figure 5.2: GCE LLC Test Confidence Ratio Comparison

which uses shared library in his instance and perform the attack.

For RSA detection, the slice selection algorithm of the CPU is required to lo-

cate the targeted multiplication code in the LLC within a reasonable time. In our

experiments, we have used the algorithm that was reverse engineered by Inci et. al

in [5].

The first step of the profiling is to monitor the targeted LLC sets while the

profiled code, RSA is not running. After the regular operation of sets is observed,

the RSA request is sent to several IP addresses, starting from the attacker’s own

subnet. As soon as the request is sent, the profiling starts and traces are recorded by

the Prime+Probe. If the RSA decryption is running on the other VM, the pattern

of multiplication can be observed as in Figure 5.3. In general, the multiplication

is performed between 2000-8000 traces. In these traces, we look for the delta of

two profiles for each set-slice pair. In Figure 5.4, the difference between the two

profiles is illustrated for two co-located instances. Both figures show that there are

two set-slice pairs with significantly higher access times (4-8 cycles) on average of

10 experiments. Hence, it can be concluded that these two sets are used by RSA

decryption and this candidate instance is probably co-located with the attacker.
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Figure 5.3: Red and blue lines represent idle and RSA decryption/AES encryption
access times respectively

After we obtain IP addresses of several potential co-located instances, we trigger

AES encryption by sending random ciphertexts and at the same time monitoring

the LLC. For this part of the detection stage, since AES encryption is much faster

than RSA decryption we can only catch one access to monitored T-table position.

Hence, we send 100 AES encryption requests to each instance in the IP list. If we

observe 90% cache miss for one of the set-slice pairs, it can be concluded that the

AES encryption is performed by the co-located instance, as seen in Figure 5.3(b).
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(b) RSA Analysis for the second co-located instance

Figure 5.4: The difference of clock cycles between base and RSA decryption profiling
for each set-slice pairs over 10 experiments

5.6.3 Memory Bus Locking

The performance degradation due to the memory bus locking is application specific.

Therefore we tested various applications as seen in Table 5.1 to see how each one is

affected. As expected, applications with frequent memory accesses are more affected

by locking. For example, the GnuPG which mostly uses the ALU and does seldom

memory access slowed down by 29%. An Apache web server that frequently loads

content from memory, on the other hand, has a slowdown by the factor of 4.28.

In addition to specific software performance degradation, we also measured the
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Table 5.1: Application slowdown on an Intel Xeon 2640 v3 due to Memory Bus
locking triggered on a single core.

Process Normalized Execution Time

Apache 4.28x
PHP 0.1x
GnuPG 0.29x
HTTPerf 0.29x
Memory Access 5.38x
RAMSpeed int 5.01x
RAMSpeed fp. 4.88x
Media Stream 2.36x

effect of multiple locks executed in parallel. To do so, we have used the openmp

parallel programming API [148] and ran the lock in multiple threads. Figure 5.5(d)

shows the memory access times when 0 to 8 locks run in parallel. As the figure

shows, the first lock does slow down the memory accesses by 100% while the second

and third locks do not further degrade the memory performance. However, after

the fourth and fifth locking threads, we observe even stronger degradation.

5.6.4 Comparison of Detection Methods

As explained in Section 5.2, co-location can be exploited in both random and tar-

geted victim scenarios. An attacker can directly look for attack vectors to steal

information from her neighbors or go after a specific target and spin up instances

until co-located. However, if the detection method does not provide reliable results,

the attacker can discard the co-located instances or even have false positives due to

noise. Therefore a useful and efficient co-location detection method is essential.

The Table 5.2 shows that all three methods inspected in this study work with

high accuracy in a real commercial cloud setting. All methods work with minimal

requirements, no hypervisor access or specific hardware. In comparison, while the
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Figure 5.5: Memory access times with and without an active memory bus lock of
a) Amazon EC2 m3.medium instance b) GCE n1-standard1 instance c) Microsoft
Azure A0 instance d) Lab setup (Intel E5-2640 v3)

Table 5.2: Comparison of co-location detection methods. *OPD: Observed Perfor-
mance Degradation

Worst Case Average Best Case
Detection Method

Memory Bus Locking OPD* 0.1x 3.28x 6.1x
LLC Covert Channel 53% 73.5% 93%
LLC Software Profiling 50% 70% 90%

memory bus locking has the least clear co-location signal in the worst case, the

other two methods are more prone to the LLC noise. Also, as seen in Table 5.1

the memory bus locking gives more reliable results with applications with frequent

memory accesses. For the uncooperative co-location scenario, depending on the

workload of the target instance, one can use either the memory bus locking or the

software profiling to detect co-location with high accuracy.
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5.7 Conclusion

In conclusion, we represent three co-location detection methods working in the three

most popular commercial clouds (Amazon EC2, Google Compute Engine, Microsoft

Azure) and compare their efficiencies. In addition, for the first time, we have

achieved targeted co-locations in Amazon EC2 Cloud by applying the LLC soft-

ware profiling for AES and RSA processes. For the memory bus locking method, we

have observed that frequent memory accesses lead to more significant degradation.

As for the cache covert channel, we show that the method works in a cooperative

scenario with high accuracy. And finally, we presented the LLC software profiling

technique that can be used for a variety of purposes including co-location detection

without the help of memory de-duplication or cooperation from the victim side.
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Chapter 6

RSA Key Recovery on Cloud

Cloud services keep gaining popularity despite security concerns. While non-sensitive

data is easily trusted to the cloud, security-critical data and applications are not.

The main concern with the cloud is the shared resources like the CPU, memory and

even the network adapter that provide subtle side-channels to malicious parties. We

argue that these side-channels indeed leak fine-grained, sensitive information and

enable key recovery attacks on the cloud. Even further, as a quick scan in one of the

Amazon EC2 regions shows, a high percentage -55%- of users run outdated, leakage

prone libraries leaving them vulnerable to mass surveillance.

The most commonly exploited leakage in the shared resource systems stems from

the cache and the memory. High resolution and the stability of these channels allow

the attacker to extract fine-grained information. In this chapter, we develop a novel

co-location detection method and employ the Prime+Probe attack to retrieve an

RSA secret key from a co-located instance in Amazon EC2. Finally, we employ

noise reduction to deduce the RSA private key from the monitored traces. By

processing the noisy data we obtain the complete 2048-bit RSA key used during the

decryption.
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6.1 Motivation

Cloud computing services are more popular than ever with their ease of access, low

cost, and real-time scalability. With increasing adoption of cloud, concerns over

cloud-specific attacks have been rising and so has the number of research studies

exploring potential security risks in the cloud domain. The main enabler for cloud

security is the seminal work of Ristenpart et al. [81]. The work demonstrated the

possibility of co-location as well as the security risks that come with it. The co-

location is the result of resource sharing between tenant Virtual Machines (VMs).

Under certain conditions, the same mechanism can also be exploited to extract

sensitive information from a co-located victim VM, resulting in security and privacy

breaches. Methods to extract information from VMs have been intensely studied

in the last few years however remain infeasible within public cloud environments,

e.g. [83, 149, 3, 150]. The potential impact of attacks on crypto processes can

be even more severe since cryptography is at the core of any security solution.

Consequently, extracting cryptographic keys across VM boundaries has also received

considerable attention lately. Initial studies explored the Prime+Probe technique

on L1 cache [34, 151]. Though requiring the attacker and the victim to run on the

same physical CPU core simultaneously, the small number of cache sets and the

simple addressing scheme made the L1 cache a popular target. Follow up works

have step by step removed restrictions and increased the viability of the attacks.

The shared Last Level Cache (LLC) now enables true cross-core attacks [31, 91, 1]

where the attacker and the victim share the CPU, but not necessarily the CPU core.

Most recent LLC Prime+Probe attacks no longer rely on de-duplication [42, 43] or

core sharing, making them more widely applicable.

With the increasing sophistication of attacks, participants of the cloud indus-
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try ranging from Cloud Service Providers (CSPs) to hypervisor vendors, up all the

way to providers of crypto libraries have fixed many of the newly exploitable secu-

rity holes through patches [152, 153, 154]—many in response to published attacks.

However, many of the outdated cryptographic libraries are still in use, opening the

door for exploits. A scan over the entire range of IPs in the South America East

region yields that 55% of TLS hosts installed on Amazon EC2 servers have not

been updated since 2015 and are vulnerable to an array of more recently discovered

attacks. Consequently, a potential attacker such as a nation state, hacker group

or a government organization can exploit these vulnerabilities for bulk recovery of

private keys. Besides the usual standard attacks that target individuals, this en-

ables mass surveillance on a population thereby stripping the network from any level

of privacy. Note that the attack is enabled by our trust in the cloud. The cloud

infrastructure already stores the bulk of our sensitive data. Specifically, when an

attacker instantiates multiple instances in a targeted availability zone of a cloud,

she co-locates with many vulnerable servers. In particular, an attacker trying to

recover RSA keys can monitor the LLC in each of these instances until the pattern

expected by the exploited hardware level leakage is observed. Then the attacker can

easily scan the cloud network to build a public key database and deduce whom the

recovered private key belongs to. In a similar approach, Heninger et al. [155] scan

the network for public keys with shared or similar RSA modulus factors due to poor

randomization. Similarly, Bernstein et al. [156] compiled a public key database and

scanned for shared factors in RSA modulus commonly caused by broken random

number generators.

In this chapter, we explain all the necessary steps to recover RSA decryption

keys in the Amazon EC2 cloud and present our results. More precisely, we utilize

the LLC as a covert channel both to co-locate and perform a cross-core side-channel
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attack against a recent cryptographic implementation. Our results demonstrate

that even with complex and resilient infrastructures, and with properly configured

random number generators, cache attacks are a big threat in commercial clouds.

Contributions

This chapter presents a full key recovery attack on a modern implementation of

RSA in a commercial cloud and explores all steps necessary to successfully recover

both the key and the identity of the victim.

This attack can be applied under two different scenarios:

1. Targeted Co-location: In this scenario, we launch instances until we co-

locate with the victim as described in [95, 6]. Upon co-location the secret is

recovered by a cache enabled cross-VM attack.

2. Bulk Key Recovery: We randomly create instances and using cross-VM

cache attacks recover imperfect private keys. These keys are subsequently

checked and against public keys in the public key database. The second step

allows us to eliminate noise in the private keys and determine the identity of

the owner of the recovered key.

Unlike in earlier bulk key recovery attacks [155, 156] we do not rely on faulty random

number generators but instead exploit hardware level leakages.

Our specific technical contributions are as follows:

� We first demonstrate that the LLC contention based co-location detection

tools are plausible in public clouds

� We describe how to apply the Prime+Probe attack to the LLC and obtain

RSA leakage information from co-located VMs
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� Last, we present a detailed analysis of the necessary post-processing steps to

cope with the noise observed in a real public cloud setup, along with a detailed

analysis on the CPU time (at most 30 core-hours) to recover both the noise-free

key and the owner’s identity (IP).

6.2 Co-locating on Amazon EC2

In order to perform our experiments across co-located VMs, we first need to make

sure that they are running in the same server. We present the LLC as an exploitable

covert channel with the purpose of detecting co-location between two instances. For

the experiments, we launched 4 accounts (named A, B, C, and D) on the South

American Amazon EC2 region and launched 20 m3.medium instances in each of

these accounts, 80 instances in total.

On these instances, we performed our LLC co-location detection test and ob-

tained co-located instance pairs. In total, out of 80 instances launched from differ-

ent accounts, we were able to obtain 7 co-located pairs and one triplet. Account A

had 5 co-located instances out of 20 while B and C had 4 and 7 respectively. As

for account D, we had no co-location with instances from other accounts. Overall,

assuming that the account A is the target, next 60 instances launched in accounts B,

C, D have 8.3% probability of co-location with the target. Note that all co-locations

were between machines from different accounts. The experiments did not aim at

obtaining co-location with a single instance, for which the probability of obtaining

co-location would be lower.
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6.2.1 Revisiting Known Detection Methods

To achieve co-location, we first tried to reproduce Ristenpart et al.’s [81] work

where they achieved co-location on Amazon EC2 in 2009. In [81], the authors use

Hypervisor IP, Instance IP, Ping Test and Disk Drive Test as tools for co-location

detection. We have tried these methods as well and found that Amazon, in fact, did

a good job of fixing these attack vectors and they are no longer useful. Even though

these methods did not provide fruitful results in Amazon EC2, we believe that they

may still prove viable on other clouds. Therefore we explain our experience with

each of the aforementioned tests in the following.

Hypervisor IP: Using the traceroute tool, we collected first hop IP addresses

from our instances. The idea behind this collection is that instances located in

the same physical machine should have the same first hop address, presumably the

hypervisor IP. However, experiments show that there are only a few different first

hop IP addresses used for a large number of instances, only four for our 80 instances.

Also, with repeated measurements, we noticed that these addresses were actually

dynamic, rather than assigned IPs. Even further, we later confirmed by LLC test

results that co-located instances do not share the same first hop address, making

this detection method useless.

Instance IP: Like [81], we also checked for any possible algebraic relation or prox-

imity between our instance IP addresses. After detecting co-located instances with

the LLC test, we checked both internal and external IP addresses of co-located in-

stances and concluded that IP address assignment is random and does not leak any

information about co-location in Amazon EC2 anymore.

Ping Test: In a network, ping delay between two nodes depends on various fac-

tors such as network adapters of nodes, network traffic and most importantly the
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number of hops between the nodes. In [81], authors used this information to detect

co-location on the assumption that co-located instances have shorter ping delays.

By sending pings from each instance to all other 80, we obtained round trip net-

work delays for all instances. From each account, we sent 20 repeated pings and

obtained maximum, average and minimum ping times. We discarded the maximum

ping values since they are highly affected by network traffic and do not provide re-

liable information. Average and minimum ping values, on the other hand, are more

directly related to the number of hops between two instances. While co-location cor-

relates with lower ping times, it fails to provide conclusive evidence for co-location.

Figure 6.1 shows the heat map of our ping timings, dark blue indicating lower

and red representing high round trip times. Also, x and y-axes represent ping source

and target instances respectively. Visual inspection of the figure reveals: (i) Diag-

onal representing the self-ping (through external IP) time is clearly distinguishable

and low compared to the rest of the targets; (ii) Network delay of the source in-

stance affects the round trip time significantly, requiring an in-depth analysis to

find relatively close instances; (iii) Last 20 instances that belong to account D have

significantly lower and uniform overall ping delays than the rest of the accounts.

Figure 6.1: Ping time heat map for all 80 instances created using minimum ping
times for each source instance

In order to eliminate the delay stemming from the source instance, we decided
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Figure 6.2: Consistent number of neighbors according to their average and minimum
ping response times respectively

to find the 3 closest neighbors of each instance rather than applying a constant

threshold. After filtering strong outliers, we used multiple datasets with average

and minimum ping times to create a more reliable metric. For different datasets,

consistent closest neighbors to an instance indicate either co-location or sharing

the same subnet. Using three datasets taken at different times of day, we created

Figures 6.2(a) and 6.2(b) that show consistent close neighbors according to average

and minimum ping times respectively, for all 80 instances. As seen from figures,

network is highly susceptible to noise which consistency of ping times significantly.

As seen in Figure 6.2(a), apart from instance B17, no instance had consistent low

ping neighbors nearly enough to suspect a co-location. In conclusion, even though

the ping test reveals some information about the proximity of instance networks,

as seen from self-ping times, it is not fine-grain enough to be used for co-location

detection.

Disk Drive Benchmark: To replicate [81]’s disk drive test, we used the dd tool
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due to its file size and repetition flexibility. dd is a Unix command line utility

used to copy files, backup disks and perform disk benchmarks. In our performance

degradation tests, we used dd as a tool to measure disk performance under simul-

taneous heavy load from multiple instances and use the results to detect possible

co-locations. Using dd, we repeatedly wrote various size blocks of zeros to the disk

drive and measured the write speed. Also, in order to maximize the performance

degradation, we tried various file sizes ranging from 1 KB to 2 GB to find an opti-

mal detection point. Instances from all four accounts were scheduled to perform the

test at the same time. In order to achieve synchrony, we updated instance times to

time.nist.gov prior to each test. The aim of this test was to observe any poten-

tial performance degradations in disk write speeds due to two or more co-located

instances.

Figure 6.3: dd performance results for 2 GB, 200 MB, 20 MB and 1 MB blocks.

Our dd test results are presented in Figure 6.3 where the horizontal and vertical

axis represents the instance number and the disk write speed in MBps, respectively.

Note that, we did not include any results for files smaller than 1 MB since dd

does not provide stable results for such files. Figure 6.3 clearly shows that disk

performance is almost constant for all instances, including the co-located ones. This

means that either all 80 instances are using separate disk drives or more likely that
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every instance has its disk access bandwidth limited to a certain value to prevent

bottlenecks. In conclusion, the performance degradation in co-located instances is

unstable, negligibly low at about 2 ∼ 3 percent, and thus inconclusive.

6.2.2 The LLC Co-location Method

The LLC is shared across all cores of most modern Intel CPUs, including the In-

tel Xeon E5-2670 v2 used (among others) in Amazon EC2. Accesses to LLC are

thus transparent to all VMs co-located on the same machine, making it the perfect

domain for covert communication and co-location detection.

Our LLC test is designed to detect cache lines that are needed to fill a specific set

in the cache. In order to control the location that our data will occupy in the cache,

the test allocates and works with hugepages.1In normal operation with moderate

noise, the number of lines to fill one set is equal to LLC associativity, which is 20

in Intel Xeon E5-2670 v2 used in our Amazon EC2 instances. However, with more

than one user trying to fill the same set at the same time, one will observe that

fewer than 20 lines are needed to fill one set. By running this test concurrently

on a co-located VM pair, both controlled by the same user, it is possible to verify

co-location with high certainty. The test performs the following steps:

� Prime one memory block b0 in a set in the LLC

� Access additional memory blocks b1, b2, . . . , bn that occupy the same set, but

can reside in a different slice.

� Reload the memory block b0 to check whether it has been evicted from the

LLC. A high reload time indicates that the memory block b0 resides in the

1The co-location test has to be implemented carefully, since the heavy usage of hugepages
may yield into performance degradation. In fact, while trying to achieve a quadruple co-location,
Amazon EC2 stopped our VMs due to performance issues.
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RAM. Therefore we know that the required m memory blocks that fill a slice

are part of the accessed additional memory blocks b1, b2, . . . , bn.

� Subtract one of the accessed additional memory blocks bi and repeat the above

protocol. If b0 is still loaded from the memory, bi does not reside in the same

slice. If b0 is now located in the cache, it can be concluded that bi resides in

the same cache slice as b0 and therefore fill the set.

� Count the number of memory blocks needed to fill a set/slice pair. If the

number is significantly different from the associativity, it can be concluded

that we have cache contention across co-located VMs.

The LLC is not the only method that we have tried in order to verify co-location.

As detailed in Section 6.2.1, we have also tried the methods used in [81]. However,

the experiments show that the LLC test is the only decisive and reliable test that

can detect whether two of our instances are running in the same CPU in Amazon

EC2. We performed the LLC test in two steps as follows:

1. Single Instance Elimination: The first step of the LLC test is the elimi-

nation of single instances i.e. the ones that are not co-located with any other

in the instance pool. To do so, we schedule the LLC test to run at all in-

stances at the same time. Instances not detecting co-location is retired. For

the remaining ones, the pairs need to be further processed as explained in the

next step. Note that without this preliminary step, one would have to perform

n(n − 1)/2 pair detection tests to find co-located pairs, i.e. 3160 tests for 80

instances. This step yielded 22 co-located instances out of 80.

2. Pair Detection: Next we identify pairs for the possibly co-located instances.

The test is performed as a binary search tree where each instance is tested

against all the others for co-location.
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6.2.3 Unsuccessful Co-location Detection Methods

CPU Benchmarking: To create a bottleneck at the CPU level, we used the

Hardinfo CPU benchmark suite. The suite provides a wide range of benchmarks,

namely CryptoHash, Fibonacci number calculation, N-Queens test, FFT calculation,

and Raytracing. However, our experiments show that the instance isolation and the

resources management in Amazon EC2 prevents the test from creating noticeable

performance degradation hence indicating co-location.

AES-NI Benchmarking: AES-NI is the high-performance AES hardware module

found in most modern Intel processors including the ones used in Amazon EC2. The

Intel Xeon E5-2670 v2 datasheet [157] does not specify whether each core has its

own module or all cores use a single AES-NI module. We suspected that by creating

bottlenecks in the shared AES-NI module we could detect co-location. However, our

experiments revealed that the AES-NI modules are not shared between cores and

each CPU core uses its own module, making this method uses only for same-core

detection. This prevents the AES-NI benchmark to be used for co-location detection,

unless two instances are using the same physical core, as separate threads.

6.3 Tricks and Challenges of Co-location Detec-

tion

During our experiments on Amazon EC2, we have observed various problems and

interesting events related to the underlying hardware and software. Here we go over

these observations and discuss what to expect when experimenting on Amazon EC2.
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Hardware Complexity

Modern Amazon EC2 instances have much more advanced and complex hardware

components like 10 core, 20 thread CPUs and SSDs. Thus, our cache profiling

techniques have to be adapted to handle servers with multiple slices that feature

non-linear slice selection algorithms.

Co-located VM Noise

Compute cloud services including Amazon EC2 maintain a variety of services and

servers. Most user-based services, however, quiet down when users quiet down,

i.e. after midnight. Especially between 2 a.m. and 4 a.m. Internet traffic, as well

as computer usage, is significantly lower than the rest of the day. We confirmed

this assumption by measuring LLC noise in our instances and collected data from

6 instances over the course of 4 weekdays. Results are shown in Figure 6.4. LLC

noise and thus server load are at its peak around 8 p.m. and lowest at 4 a.m. We also
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Figure 6.4: LLC Noise over time of day, by day (dotted lines) and on average (bold
line).

measured the noise observed in the first 200 sets of the LLC for one day in Figure 6.5.

The y-axis shows the probability of observing a cache access by a co-located user
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other than victim during a Prime+Probe interval of the spy process (i.e. the attacker

cannot detect the cache access of the victim process). The measurements were taken

every 15 minutes. A constant noise floor at approx. 4.5% is present in all sets. Sets

0 and 3 feature the highest noise, but high noise (11%) is observed at the starting

points of other pages as well. In fact, certain set numbers (0,3,26,39,58) mod 64

seem to be predictably more noisy and not well suited for the attack.
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Figure 6.5: Average noise for the first 200 sets in a day. Red lines are the starting
points of pages.

Dual Socket machines

We did not find evidence of dual socket machines among the medium instances that

we used in both co-location and attack steps. Indeed once co-located, our LLC

co-location test always succeeded over time, even after a year. If the instances were

to reside in dual socket machines and the VM processes moved between CPUs, the

co-location test would have failed. However, even in that case, repeated experiments

would still reveal co-location just by repeating the test after a time period enough

to allow a socket migration.
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Placement Policy

During our experiments, we have observed that the instances launched within short

time intervals of each other were more likely to be co-located. To exploit the place-

ment policy and increase chances of co-location, one should launch multiple instances

in a close time interval with the target. Note that two instances from the same ac-

count are never placed on the same physical machine. While this increases the

probability of co-locating with a victim in a practical attack scenario, it also makes

it harder to achieve co-location for controlled experiments.

Hypervisor Hardware Obfuscation

In reaction to [81], Amazon has fixed information leakages about the underlying

hardware by modifying their Xen Hypervisor. Currently, no sensor data such as

fan speed, CPU and system temperature or hardware MAC address is revealed to

instances. Serial numbers and all other hardware identifiers are either emulated or

censored, mitigating any co-location detection using this information.

Instance Clock Decay

In our experiments using Amazon EC2, we have noticed that over time, system

clocks of these instances fallback. More interestingly, after detecting co-location

using the LLC test, we discovered that co-located instances have the same clock

degradation with 50 nanoseconds resolution. We believe that this information can

be used for co-location detection as well.
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Clock Differences Between Instances

In order to run performance degradation tests simultaneously, OS clocks in instances

must be synchronized. In order to assure synchronization during tests, we have

updated the system times using ntpdatetime.nist.gov command multiple times

during experiments to keep the synchronization intact. Note that without time

synchronization, we have observed differences in system times between instances of

up to a minute.

Instance Retirement

A very interesting feature of Amazon EC2 is instance retirement in case of perceived

hardware failure or overuse. Through constant resource monitoring, EC2 detects sig-

nificant performance degradation on one of the hardware components such as disk

drive, network adapter or a GPU card in a physical system, and marks the instance

for retirement. If there is no malfunction or hazardous physical damage to the under-

lying hardware, e-mail notifications are sent to all users who have instances running

on the physical machine. If there is such an immediate hardware problem, instances

are retired abruptly and a notification e-mail is sent to users afterward. We observed

this behavior on our triple co-located instances (across three accounts). While run-

ning our performance tests to create a bottleneck and determine co-location, we

received three separate e-mails from Amazon to the three involved accounts notify-

ing us that our instances A5, B7 and C7 had a hardware failure and are scheduled

for instance retirement. The important thing to note here is that, via our tests,

we have previously determined that these instances A5, B7, and C7 are co-located

on the same physical machine. We assume that our performance-based co-location

tests were the cause of the detected performance degradation in the system that
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raised flags with Amazon EC2 health monitoring system, resulting in the instance

retirement.

Network Scanning the Amazon EC2

We utilize the nmap tool to scan the entire Amazon EC2 network in South America,

which consists of 10 basic IP ranges, each one with different sizes. In particular,

we are looking for information on port 443. This will serve us to construct our

public key database in case the identity of the target is not known. The results are

presented in Figure 6.6. It can be observed that the distribution over the regions is

not uniform.

0

2000

4000

6000

8000

10000

12000

52
.6

7.
0.

0/
16

52
.9

5.
24

0.
0/

24

52
.9

5.
25

5.
0/

28

52
.9

4.
0.

0/
16

52
.2

07
.0

.0
/1

6

52
.2

32
.0

.0
/1

6

52
.2

33
.0

.0
/1

8

52
.2

33
.6

4.
0/

18
52

.2
33

.1
28

.0
/1

7
17

7.
71

.1
28

.0
/1

7

IP range

N
um

be
r 

of
 T

LS
 h

os
ts

Figure 6.6: Number of TLS hosts in the South American region of Amazon EC2 by
IP range

6.4 Cross-VM RSA Key Recovery

To prove the viability of the Prime+Probe attack in Amazon EC2 across co-located

VMs, we present an expanded version of the attack implemented in [42] by showing

105



its application to RSA. It is important to remark that the attack is not processor

specific, and can be implemented in any processor with inclusive last level caches.

In order to perform the attack:

� We make use of the fact that the offset of the address of each table position

entry does not change when a new decryption process is executed. Therefore,

we only need to monitor a subsection of all possible sets, yielding a lower

number of traces.

� Instead of the monitoring both the multiplication and the table entry set (as

in [42] for El-Gamal), we only monitor a table entry set in one slice. This

avoids the step where the attacker has to locate the multiplication set and

avoids an additional source of the noise.

The attack targets a sliding window implementation of RSA-2048 where each po-

sition of the pre-computed table will be recovered. We will use Libgcrypt 1.6.2 as

our target library, which not only uses a sliding window implementation but also

uses CRT and message blinding techniques [158]. The message blinding process

is performed as a side-channel countermeasure for chosenciphertext attacks, in

response to studies such as [89, 88].

We use the Prime+Probe side-channel technique to recover the positions of the

table T that holds the values c3, c5, c7, . . . , c2
W−1 where W are the window size. For

CRT-RSA with 2048 bit keys, W = 5 for both exponentiations dp, dq. Observe that,

if all the positions are recovered correctly, reconstructing the key is a straightforward

step.

Recall that we do not control the victim’s user address space. This means that

we do not know the location of each of the table entries, which indeed changes

from execution to execution. Therefore we will monitor a set hoping that it will be
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accessed by the algorithm. However, our analysis shows a special behavior: each

time a new decryption process is started, even if the location changes, the offset

field does not change from decryption to decryption. Thus, we can directly relate a

monitored set with a specific entry in the multiplication table.

The knowledge of the processor in which the attack is going to be carried out

gives an estimation of the probability that the set/slice we monitor collides with the

set/slice the victim is using. For each table entry, we fix a specific set/slice where not

much noise is observed. In the Intel Xeon E5-2670 v2 processors, the LLC is divided

into 2048 sets and 10 slices. Therefore, knowing the lowest 12 bits of the table

locations, we will need to monitor one set/slice that solves s mod 64 = o, where s is

the set number and o is the offset for a table location. This increases the probability

of probing the correct set from 1/(2048·10) = 1/20480 to 1/((2048·10)/64) = 1/320,

reducing the number of traces to recover the key by a factor of 64. Thus our spy

process will monitor accesses to one of the 320 set/slices related to a table entry,

hoping that the RSA encryption accesses it when we run repeated decryptions.

Thanks to the knowledge of the non-linear slice selection algorithm, we can easily

change our monitored set/slice if we see a high amount of noise in one particular

set/slice. Since we also have to monitor a different set per table entry, it also helps

us to change our eviction set accordingly.

The threshold is different for each of the sets since the time to access different

slices usually varies. Thus, the threshold for each of the sets has to be calculated

before the monitoring phase. In order to improve the applicability of the attack, the

LLC can be monitored to detect whether there are RSA decryptions or not in the

co-located VMs as proposed in [6]. After it is proven that there are RSA decryptions

the attack can be performed.

In order to obtain high-quality timing leakage, we synchronize the spy process
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and the RSA decryption by initiating a communication between the victim and

attacker, e.g. by sending a TLS request. Note that we are looking for a particular

pattern observed for the RSA table entry multiplications, and therefore processes

scheduled before the RSA decryption will not be counted as valid traces. In short,

the attacker will communicate with the victim before the decryption. After this

initial communication, the victim will start the decryption while the attacker starts

monitoring the cache usage. In this way, we monitor 4,000 RSA decryptions with

the same key and same ciphertext for each of the 16 different sets related to the 16

table entries.

We investigate a hypothetical case where a system with dual CPU sockets is used.

In such a system, depending on the hypervisor CPU management, two scenarios can

play out; processes moving between sockets and processes assigned to specific CPUs.

In the former scenario, we can observe the necessary number of decryption samples

simply by waiting over a longer period of time. In this scenario, the attacker would

collect traces and only use the information obtained during the times the attacker

and the victim share sockets and discard the rest as missed traces. In the latter

scenario, once the attacker achieves co-location, as we have in Amazon EC2, the

attacker will always run on the same CPU as the target hence the attack will succeed

in a shorter span of time.

6.5 Leakage Analysis Method

Once the online phase of the attack has been performed, we proceed to analyze the

leakage observed. There are three main steps to process the obtained data. The first

step is to identify the traces that contain information about the key. Then we need

to synchronize and correct the misalignment observed in the chosen traces. The last
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step is to eliminate the noise and combine different graphs to recover the usage of

the multiplication entries. Among the 4,000 observations for each monitored set,
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Figure 6.7: Different sets of data where we find a) trace that does not contain
information b) trace that contains information about the key

only a small portion contains information about the multiplication operations with

the corresponding table entry. These are recognized because their exponentiation

trace pattern differs from that of unrelated sets. In order to identify where each

exponentiation occurs, we inspected 100 traces and created the timeline shown in

Figure 6.7(b). It can be observed that the first exponentiation starts after 37% of

the overall decryption time. Note that among all the traces recovered, only those

that have more than 20 and less than 100 peaks are considered. The remaining ones

are discarded as noise. Figure 6.7 shows measurements where no correct pattern
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was detected (Fig. 6.7(a)), and where a correct pattern was measured (Fig. 6.7(b)).

In general, after the elimination step, there are 8−12 correct traces left for each

set. We observe that data obtained from each of these sets corresponds to 2 con-

secutive table positions. This is a direct result of CPU cache prefetching. When a

cache line that holds a table position is loaded into the cache, the neighboring table

position is also loaded due to cache locality principle.

For each graph to be processed, we first need to align the creation of the look-up

table with the traces. Identifying the table creation step is trivial since each table

position is used twice, taking two or more time slots. Figure 6.8(a) shows the table

access position indexes aligned with the table creation. In the figure, the top graph

shows the correct table accesses while the rest of the graphs show the measured

data. It can be observed that the measured traces suffer from misalignment due to

noise from various sources e.g. RSA or co-located neighbors.

To fix the misalignment, we take the most common peaks as a reference and

apply a correlation step. To increase efficiency, the graphs are divided into blocks

and processed separately as seen in Figure 6.8(a). At the same time, Gaussian

filtering is applied to peaks. In our filter, the variance of the distribution is 1 and

the mean is aligned to the peak position. Then for each block, the cross-correlation is

calculated with respect to the most common hit graph i.e. the intersection set of all

graphs. After that, all graphs are shifted to the position where they have the highest

correlation and aligned with each other. After the cross-correlation calculation and

the alignment, the common patterns are observable as in Figure 6.8(b). Observe

that the alignment step successfully aligns measured graphs with the true access

graph at the top, leaving only the combining and the noise removal steps. We

combine the graphs by simple averaging and obtain a single combined graph.

In order to get rid of the noise in the combined graph, we applied a threshold
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Figure 6.8: 10 traces from the same set where a) they are divided into blocks for
a correlation alignment process b) they have been aligned and the peaks can be
extracted

filter as can be seen in Figure 6.9(a). We used 35% of the maximum peak value

observed in graphs as the threshold value. Note that a simple threshold was sufficient

to remove noise terms since they are not common between graphs.
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Now we convert scaled time slots of the filtered graph to real-time slot indexes.

We do so by dividing them with the spy process resolution ratio, obtaining the

Figure 6.9(b). In the figure, the top and the bottom graphs represent the true

access indexes and the measured graph, respectively.

Also, note that even if additional noise peaks are observed in the obtained graph,

it is very unlikely that two graphs monitoring consecutive table positions have noise

peaks at the same time slot. Therefore, we can filter out the noise stemming from

the prefetching by combining two graphs that belong to consecutive table positions.

Thus, the resulting indexes are the corresponding timing slots for look-up table

positions.

The very last step of the leakage analysis is finding the intersections of two

graphs that monitor consecutive sets. By doing so, we obtain accesses to a single

table position as seen in Figure 6.10 with high accuracy. At the same time, we have

a total of three positions in two graphs. Therefore, we also get the positions of the

neighbors. A summary of the result of the leakage analysis is presented in Table 6.1.

We observe that more than 92% of the recovered peaks are in the correct position.
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Figure 6.10: Combination of P+P results of two LLC sets.

However, note that by combining two different sets, the wrong peaks will disappear

with high probability, since the chance of having wrong peaks in the same time slot

in two different sets is very low.

Table 6.1: Successfully recovered peaks on average in an exponentiation

Average Number of traces/set 4000
Average number of correct graphs/set 10
Wrong detected peaks 7.19%
Missdetected peaks 0.65%
Correctly detected peaks 92.15%
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Chapter 7

A Micro-architectural QoS Attack

on Smartphones

Smartphone apps need optimal performance and responsiveness to rise among nu-

merous rivals on the market. Further, some apps like media streaming or gaming

apps cannot even function properly with a performance below a certain threshold.

In this chapter, we present the first performance degradation attack on Android

OS that can target rival apps using a combination of logical channel leakages and

low-level architectural bottlenecks in the underlying hardware.

To show the viability of the attack, we design a proof-of-concept app and test

it on various mobile platforms. The attack runs covertly and brings the target to

the level of unresponsiveness. With less than 10% CPU time in the worst case, it

requires minimal computational effort to run as a background service and requires

only the UsageStats permission from the user. We quantify the impact of our attack

using 11 popular benchmark apps, running 44 different tests. The measured QoS

degradation varies across platforms and applications, reaching a maximum of 90%

in some cases. The attack combines the leakage from logical channels with low-
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level architectural bottlenecks to design a malicious app that can covertly degrade

Quality of Service (QoS) of any targeted app. Furthermore, our attack code has a

small footprint and is not detected by the Android system as malicious. Finally,

our app can pass the Google Play Store malware scanner, Google Bouncer, as well

as the top malware scanners in the Play Store.

7.1 Motivation

Smartphones are now integrated into all facets of our lives—facilitating our daily

activities from banking to shopping and from social interactions and to monitoring

our vital health signs. These services are supported by numerous apps built by

an army of developers. The mobile ecosystem is growing at an astounding rate

with more than 2.4 million apps as of September 2016 [159], running on billions of

devices. According to [160], more than a million new Android devices are activated

worldwide, downloading billions of apps and games each month. Moreover, app

revenue totaled to 45 billion dollars in 2015, proving a lucrative business. App

developers big and small are under enormous competition trying to get a foothold

in this growing market and a share of the huge revenue. As expected, there is fierce

competition amongst competing apps with similar functionality trying to earn a top

ranking in the app store.

In such a cutthroat market, competing app vendors have a strong incentive

to cheat to get ahead in the competition. In the mobile app market, a strong

delivery channel is the app store where apps which have received high user ratings

are featured on the main page, and ones with low ratings are essentially buried in the

listings and thus have become invisible to the users. Therefore, if an app developer

can force a negative user experience during the use of a competitor’s app, that could
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essentially render the competing app invisible.

To prevent malicious interference mobile platform vendors commonly implement

app level sandboxing. For instance, on the Application Fundamentals web page,

Google states that: “Each process has its own virtual machine (VM), so an app’s

code runs in isolation from other apps.” [161]. While the first part of this statement

is correct, the second part is not. Android apps running on a system share the same

underlying physical hardware and therefore are not truly isolated from each other.

This lack of physical isolation can be exploited, giving an app advantage over a

competitor’s app. Victim app’s operations can be manipulated, degraded or even

brought to a halt. This would be particularly destructive in real-time applications

such as trading, online gaming, and live streaming.

Malware in Android devices is generally separated into five categories as follows;

Information Leakage, Privilege Escalation, Financial Charge, Ransomware, and Ad-

ware. Here, we introduce a new category, Quality of Service (QoS) attacks. QoS

attacks aim to degrade and or disrupt the functionality of legitimate services. In

this case, we aim to degrade the performance of other apps installed on the same

mobile device using similar techniques as micro-architectural attacks. Here, we show

that such an exploit is indeed practical. We introduce a technique that exploits ar-

chitectural bottlenecks, in combination with logical channel leakages to degrade the

performance of victim apps. The attack app does not require any root or peripheral

access privileges as needed in sensor-enabled attacks. Also, the performance foot-

print of the attack code is very low, the attack is not detected by any malicious code

monitor. We quantify the performance degradation with a wide variety of bench-

marks on various platforms. Since our attack vector only employs a widely used

feature of modern microprocessors, i.e. memory bus locking, the degradation attack

is hard to detect and mitigate. Furthermore, our app passed the Google Play Store
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malware scan and an additional 23 of the most popular malware scanners listed in

the Play Store. This shows evidence that new threats do not necessarily fit into

traditional malware definitions and require more in-depth analysis with a broader

perspective.

Contributions

This chapter presents and explores all the necessary steps to successfully implement a

Quality of Service (QoS) attack on mobile devices running Android OS. Specifically,

in this chapter we,

� present the first QoS attack on Android OS that combines architectural bot-

tlenecks and logical channel leakages to significantly degrade the performance

of a victim app.

� show that our attack is stealthy and hard to mitigate by showing that it cannot

be detected by the Android OS, Google Play Store malware scan or malware

scanner apps. Further, the attack exploits the memory bus locking, a widely

used feature of modern microprocessors hence is hard to mitigate.

� test and quantify the QoS degradation caused by our attack using the most

popular benchmarks in the Play Store.

7.2 The QoS Attack Methodology

In order to perform the QoS attack on Android, we need to overcome two separate

problems: 1) Detecting when the victim app is in active use i.e. in the foreground.

2) Performing an Exotic Atomic Operation and triggering a memory bus lock.
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The first part of the attack is crucial to ensure that the user does not suspect

the attacker app as the culprit behind the slowdown but rather blames it on the

victim app. If the attacker was to trigger memory bus locking continuously, even

from the background, it would appear as the system altogether has a performance

problem. Or even worse, the user could trace the slowdown back to the attacker app

and uninstall it, rather than the victim app and defeat the purpose of the attack.

Therefore, the first problem the attacker has to overcome is detecting the victim

app launch.

The second part of the attack is degrading the victim app’s performance when-

ever it is active. The attacker can achieve this by performing Exotic Atomic Opera-

tions that trigger memory bus locking, resulting in significant performance overhead

to the system. By triggering the lock while the victim app is running, the attacker

can flush the ongoing memory operations in the CPU, disrupting the victim app’s

operation for over 10K cycles. By continuously doing this while the victim app is

in the foreground, the attacker can lead the user to think that the victim app has

sub-optimal performance and consequently uninstall it.

Our attack consists of the following steps;

1. Launch the attacker app, create a Sticky background service meaning that

the service will stay active even if the attacker app is closed or even shut down

by the user.

2. Run cache profiling tool to obtain spanning addresses to perform Exotic Atomic

Operations.

3. Check for victim app launch from the background service. Wait until the user

puts the victim app in the foreground.
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4. When the victim launch is detected, start the Exotic Atomic Operation

loop, degrading the QoS of the targeted app.

5. Keep the loop running until the target app is no longer in the foreground.

Stop the QoS degradation attack and release the system bottleneck as soon as

the user quits the victim app.

6. Repeat until the user removes the victim app.

In the following, we describe the details of our attack as well as the design and

implementation of our attacker app.

Detecting Victim Launch

In order to know when the targeted app is running, we use logical channels that

are available to apps in Android OS. However, as Android OS evolved, some of these

channels have been closed by the deprecated APIs. In the following, we show how

to deduce the foreground app in different versions of Android OS, through various

channels.

pre-Android 5.0 (API Level 21)

In Android 5.0 (API 21), it is possible to get the list of running apps on the

device as well as the foreground app. By using the runningAppProcess method

from the ActivityManager class, an app can get the list as well as a binary value

LRU that holds whether or not the app is the least recently used app. By continuously

monitoring the LRU value of a process, an attacker detects when the victim app is

in the foreground.

Android 5.0+ (API Level 21+)

With Android 5.0 and forward, Android OS limited access to other apps due

to privacy and malware concerns. After the deprecation of the APIs to retrieve

running apps, the background apps are now hidden to user level apps. Evidently,
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Play Store still has many applications like Task Managers, Memory Optimizers etc.

that can detect apps running in the system. The question is if the running apps are

hidden, how do these Task Managers still retrieve the list of running. The answer

lies in logical channel leakages. Here we discuss various methods that can be used

to retrieve running apps and subsequently the foreground app.

Package Usage Stats Permission: With UsageStats class added in Android 5.0,

apps can obtain various information such as the Last Time Used (LTU), package

name and total time spent in the foreground about all the apps running on the

device. Although there is no information provided about whether or not an app is

in the foreground, it is still possible to infer this information using other data as

follows. Using the getLastTimeUsed function, it is possible to check when an app,

the victim, in this case, was put in the foreground by the user. Note that this value

is updated as soon as the user puts the app in the foreground. However, during

the use of the app in the foreground, the LTU value remains constant. The value

is again updated when the user changes activities and puts the victim app to the

background. Using this information, one can monitor the LTU value of an app as

shown in Algorithm 1 and deduce the foreground activity of the victim app.

Algorithm 1: Victim app detection algorithm

function the foreground Check();

while SwitchON// The start service switch do
if inUse && !inUse old then

isActive = TRUE; // Victim app put in the foreground

if isActive then
lock(); // Bus locking function
inUse old = inUse;
inUse = Check Usage();
if inUse && !inUse old then

isActive = FALSE; // Victim app put off foreground
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Timing the killBackgroundProcesses Function: After Android 5.0 (API Level

21), some of the Task Managers in the Play Store changed the way they worked to

keep their functionality. Instead of getting the list of running apps, they now retrieve

the list of all installed apps using the system provided getInstalledApplication

function. Then using the killBackgroundProcesses, go over the whole list and try

to kill all listed apps using app package names. Note that this function requires the

KILL BACKGROUND PROCESSES permission and kills only the apps that were running.

In our attack scenario, we can improve this method to detect whether the vic-

tim app is in the foreground. For the apps in the list that were not running, the

function simply moves the next item. An attacker can periodically call this func-

tion, time each call, and kill the victim app. If the call of the function is above

a certain threshold, the attacker can then deduce that the victim app was indeed

running. Furthermore, if the victim app is in the foreground, the function cannot

kill it at all. By detecting such unsuccessful kill requests, the attacker can de-

duce when the victim is in the foreground. Moreover, this method requires an only

the KILL BACKGROUND PROCESSES function that is Normal Permission and does not

require explicit user consent.

Monitoring Hardware Resources: Hardware resources in Android devices are

shared hence accessible to all apps (given the permission). However, even with

legitimate access rights, two apps cannot use certain resources simultaneously. For

instance, the camera can only be accessed by a single app at any given time. So,

when two apps try to access the camera API at the same time, only the first one

is served while the second one receives a busy respond. This shared resource allows

an attacker to monitor access to a hardware API and detect when a competitor app

is in use.

Getting the List of Running Services: After Android 5.0, the list of running

121



apps became hidden while the list of running services did not. Using this informa-

tion, it is possible to check whether an installed application has any active service

indicating recent use. While a low-grain estimation, this information can still be

used to detect whether an app has run recently. This method is especially useful in

cases where victim app services launch after the app comes to the foreground.

Reading the System Logs: In Android, many events including warnings, errors,

crashes, and system-wide broadcasts are written to the system log. The operating

system along with apps write to this log. Using this information, an attacker de-

termines which apps have written to the log recently and monitor the victim app

usage. Note that, since Android 4.1 (API level 16), system logs are accessible by

only system/signature level apps meaning that third-party apps cannot read system

logs.

Niceness of Apps: Another way of detecting foreground app, is using getRunning-

AppProcess and to check niceness of apps. When the app is in the foreground, nice-

ness value decreases to give the user a smoother experience. Therefore by constantly

monitoring the niceness value of an app, one can defer the foreground activity of a

target app.

7.2.1 Cache Line Profiling Stage

Our attack is CPU-agnostic and employs memory bus locking regardless of the total

cache size, cache line size or the number of cache sets. We achieve this by detecting

uncacheable memory blocks with a quick, preliminary cache profiling stage. The

profiling eliminates the need to know the CPU specifications e.g. the cache line size.

Moreover, the Java code in Android apps is compiled to run on the JVM, resulting

in changes to the cache addresses. By employing this profiling stage, however, we

can ignore address changes at the runtime.
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In order to obtain a data block that spans multiple cache lines, we first allo-

cate a block of page-aligned memory using AtomicIntegerArray object from the

java.util.concurrent.atomic class. Note that the size of this array should be

large enough to contain multiple uncacheable addresses but not so large that it would

trigger an Out-of-Memory (OOM) error and crash the app. In our experiments we

have used array length of 1024K to satisfy both conditions.

After the allocation, choose the ideal atomic operation to be used with the

memory bus locking. While there are many atomic operations to choose from, it

is most beneficial for the attacker to choose the operation that takes the longest

time to perform. Since the memory bus lock remains active until the atomic op-

eration is fully completed, longer operations result in stronger degradation to the

system. In order to maximize the performance penalty, we have tested various op-

erations such as compareAndSet, decrementAndGet, addAndGet, AndDecrement

and getAndIncrement. Our results showed that the getAndIncrement operation

was taking the longest time (10K-12K nanoseconds) hence was selected to be used

in the attack. After choosing the atomic operation, we first operate continuously

on a single address to get a baseline execution time. After the baseline execution

time is established -without the bus locking- we start performing on the array as

described in Algorithm 2. Starting from the beginning of the allocated array, we

increment the array index by one in each loop and record the execution time. When

a significantly longer execution time is detected, it is evident that the address is

uncacheable or spanning multiple cache lines, therefore triggering the memory bus

lock. After all the addresses are tested and the spanning ones recorded, we obtain

a list of addresses that satisfy the Exotic Atomic Operation condition. We later

use these addresses to lock the memory bus in our QoS degradation attack. Note

that it is not necessary to obtain a long list since the attacker can de-allocate the
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array and reuse the same addresses.

Algorithm 2: Cache line detection algorithm

arr = Atomic Integer Array of length array length Output: List of cache
line spanning addresses

for each i smaller than array length do
startTime = System.nanoTime();
value = arr.getAndIncrement(i);
operation time = System.nanoTime() - startTime;
if operation time¿Pre calculated average then

exotic address[index++] = i;

Timing the Operations: To time the performed atomic operations, we use the

system provided nanotime() function. In theory, this function returns the JVM’s

high-resolution timer in nanoseconds. However in practice, due to numerous delays

stemming from both hardware and software, we have observed varying timer reso-

lutions. With the test devices that are used in experiments, best timer resolutions

that we have observed were 958, 468, 104 and 104 nanoseconds on Galaxy S2, Nexus

5, Nexus 5X and Galaxy S7 Edge respectively. Considering that the aforementioned

devices have CPUs running in the range of 1.2 to 2.26 GHz and assuming that the

devices were running at the highest possible CPU speeds, we can estimate the timer

resolution in CPU cycles. By multiplying each CPU clock with the minimum timer

resolution in nanoseconds, we get 223, 187, 1057 and 1149 CPU cycles of timer res-

olution for each device. While the low-resolution timer would present a problem for

cache attacks, it is sufficient to distinguish between regular and Exotic Atomic Op-

erations. Remember that we are measuring the execution time of atomic operations

on different memory addresses to detect uncacheable addresses where this operation

will incur a heavy timing penalty. In average, the regular atomic operations take

around 1686, 1610, 844 and 369 nanoseconds in our test platforms. While Exotic

Atomic Operations take around 3000-20000 nanoseconds as shown in Figure 7.1.
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Since the gap between the two is large enough, we can distinguish between the two

using the nanotime() timer.

Figure 7.1: Histograms of regular (blue) and exotic (red) atomic operation of the
test devices, Galaxy S2, Nexus 5, Nexus 5x and Galaxy S7 Edge respectively.

7.2.2 Attacker App Design and Implementation

We have designed a simple, lightweight proof-of-concept app to turn the performance

penalty into an attack and tested it on various platforms and target apps. The

app is designed to work on all devices that have Android 5.0 (API level 21) or

a newer version of Android. According to [162] this covers 58.4% percent of all

Android devices as of November 2016. Since the app a proof-of-concept, it uses the

Package Usage Stats permission. This permission allows the app to get the list of

running apps their last active times. Note that this permission opens a prompt and

requires the user to explicitly give permission to the app. Our app has a simple

interface that includes two activities. The first activity prompts the user to give

the necessary permission after which the user can open the second activity. As

seen in Figure 7.2, the app opens with an activity that shows disclaimer. On this
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activity screen Figure 7.2.2, the user has to give the necessary Package Usage Stats

permission to the app or otherwise the app will not enter the app selection activity.

To give the permission, the user only has to click on the ”Give Ordinary Permissions”

button and will automatically be forwarded to the necessary system settings page.

After the permission is obtained, the user can return to the opening activity and

click on the Go To App Selection Screen. On the app selection activity, as shown

in Figure 7.2(b), the user can select any of the apps that were used in the last 24

hours as the target. After that, the user clicks on the ”Start Slowdown Service”

switch and the selected app name is passed to the background service. Now, the

background service of the attacker app continuously monitors the list of used apps.

When the selected app is detected to be put in the foreground, the service starts

the attack and degrades the target’s performance. The QoS attack continues until

the user exits the selected app.

7.3 Experiment Setup and Results

In this chapter, we give the details of our experiment setup, the devices that we

have tested our attack on and finally present the performance degradation observed

by the selected benchmarks apps.

7.3.1 Experiment Setup

In order to test the level of degradation in the quality of service that the attack can

cause, we performed experiments on various smartphones. Also, since regular An-

droid apps generally do not provide performance statistics, we have used benchmarks

to quantify the QoS degradation. In our experiments, we have collected performance

measurements with and without the attacker app running in the background.

126



Figure 7.2: Attacker app interface.

As test platforms, we have used four different mobile devices namely Galaxy S2,

Nexus 5, Nexus 5X and Galaxy S7 Edge. We have selected these devices to show

the viability of the attack on different mobile CPUs. Also to add variety, we have

updated these devices to different versions of Android. We have updated Galaxy S2,

Nexus 5 and Nexus 5X and Galaxy S7 Edge to Android 4.1.2 (API Level 16), 5.1.1

(API Level 22), 6.0.1 (API Level 23), 6.0.1 (API Level 23) respectively. As expected,

we were able to perform our attack on all test devices, regardless of what version

of Android they had running. Note that we have not used any unofficial Android

distribution, ROM or side-loaded any patches. All the test devices use their stock

Android ROMs without any modification. We present the detailed specifications of
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the devices in Table 7.1.

Since all Android devices employ a type of battery optimization, we wanted to

make sure that our experiments would not be affected by this in any way. Therefore,

to ensure optimal performance, all the experiments were performed while the test

devices were fully charged and connected to a power outlet. Furthermore, Android

monitors the data from the temperature sensors and adjusts the system performance

to prevent overheating. To prevent any slowdown due to high temperature, we have

placed the test devices apart from each other made sure that they are properly

ventilated.

Table 7.1: Specifications of the test devices used in experiments

Galaxy S2 Nexus 5 Nexus 5X Galaxy S7 Edge

Android Version 4.1.2 5.1.1 6.0.1 6.0.1
API Level 16 22 23 23
SoC Exynos 4 Snapdragon 800 Snapdragon 808 Snapdragon 820

ARM Core Cortex-A9 Krait 400
4xCortex-A53

+ 2xCortex-A57
4x Kryo

Number of Cores 2 4 4+2 2+2
CPU Clock (GHz) 1.2 2.26 1.4 + 1.8 1.6 + 2.15
Big-Little no no yes yes
CPU Architecture 32-bit 32-bit 64-bit 64-bit
ARM version v7-A v7 v8-A v8-A

7.3.2 Test Targets: Performance Benchmarks

In order to quantify the level of degradation caused by the attack, we have used

benchmarks apps, performing various tests. With these tests, we have measured the

performance of the devices performing high-level operations such as 3D processing,

2D image processing, streaming as well as low-level tests like ALU computations,

memory read and write access time, bandwidth and latency.

To prevent any bias and provide a fair comparison, we have used the top down-
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loaded benchmarks in the Google Play store. In total, we have used 11 benchmark

apps. Other than the CPU Prime Benchmark, all of these benchmarks has numer-

ous available tests to score different aspects of the device. For instance, the AnTuTu

Benchmark performs 3D computation, CPU, RAM, and UX (User Experience) tests

to measure different aspects of the device performance, providing a separate score

for each category. Including these tests, we have monitored the QoS strength of

our app with 45 different tasks. Note that while some of the benchmark apps like

3DMark, GeekBench, GFXBench, and PCMark were not available for the older

Galaxy S2 running Android 4.1.2, rest was available to all of the tested devices.

Complete list of benchmarks that we have used is as follows; 3DMark (Ice

Storm Unlimited, Slingshot Unlimited), AnTuTu Benchmark (3D, CPU, RAM, UX),

Benchmark&Tuning, CF-Bench (Java, Native, Overall), CPU Prime Benchmark,

Geekbench 4, GFXBench GL (ALU 2, Driver 2, Manhattan 3.0, Texturing, T-

Rex), PassMark Performance Test Mobile (2D Graphics, 3D Graphics, CPU, Disk,

RAM, System), PCMark (Storage, Word, Work 2.0), Quadrant Standard (CPU,

I/O, Memory, Overall), Vellamo (Browser - Chrome, Metal, Multi-Core).

7.3.3 Degradation Results

As mentioned earlier, regular Android apps generally do not output performance

statistics. While the slowdown result of the attack and other effects are visible to

the human eye, the visual slowdown is not quantifiable. To overcome this problem,

we have decided to use benchmarks that can output system performance at any

given time. To demonstrate and quantify the performance degradation caused by

our QoS attack on different functions of the system and apps, we have used nu-

merous benchmarks. This allowed us to measure system performance both with

(degraded performance) and without (baseline performance) the attack running in
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the background, giving us a clear contrast for each test device. Here, we present

these results.

Our results show that we can significantly degrade the QoS of various apps. As

shown in Figure 7.3, test benchmarks show varying levels of performance degrada-

tion, up to 90.98% compared to the baseline results. Also, it is evident that different

test devices show diverse levels of degradation due to the difference in the underlying

hardware. For instance, Nexus 5 has an average degradation of about 20% while

Nexus 5X has about 45%.

Figure 7.4 shows how much performance degradation was observed by each

benchmark when targeted by the attack. It is evident that almost all benchmarks

show strong degradation in performance. Also, as mentioned before, one of our test

devices, the Galaxy S2 with Android 4.1.2 did not support all of the benchmarks.

These unavailable tests are shown with 0% degradation in the figure. In Figure 7.5,

we represent normalized benchmark results i.e. ratio of degraded performance to

baseline results. Note that like Figure 7.4, benchmarks are numbered as in Table 7.2.

Names of the benchmark suites and the specific tests are given in Table 7.2.

Note that, while many of these benchmarks have subtest, they are not represented

for clarity. Instead of giving results for each subtest, we only represent the average

degradation. Finally, benchmark scores vary greatly depending on the computation

power of the device as expected. Therefore, we represent degradation percentages

rather than actual scores.

7.3.4 Stealthiness of the Attacker App

Our attack is hard to detect and runs with a minimal footprint on the system.

During our experiments, we have continuously monitored the CPU usage of our

app through Android Monitor provided by the Android Studio. We have observed
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Figure 7.3: Quartile representation of benchmark performance degradations. Ver-
tical axis represents performance degradation percentage compared to the baseline
and red lines mark the average degradation.

Figure 7.4: Performance degradation percentages of benchmarks on test devices,
Galaxy S2, Nexus 5, Nexus 5x and Galaxy S7 Edge respectively. Red dashed lines
represent the maximum possible degradation, i.e. 100%. Benchmarks are numbered
as in Table 7.2.

that our app has low CPU usage, even at the times of performing Exotic Atomic

Operations continuously. For all the tested devices, CPU usage of the attacker app

never exceeded 10% mark, showing light CPU usage.

To show that our app is stealthy and can pass modern malware scanners, we
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Figure 7.5: Normalized benchmark results of test devices, Galaxy S2, Nexus 5,
Nexus 5x and Galaxy S7 Edge respectively. Red dashed lines represent baseline
performance for each benchmark while blue lines represent results under attack.
Benchmarks are numbered as in Table 7.2.

have used 23 of the most popular malware scanners on the Google Play Store. At

the time of testing, none of the malware scanners (see Appendix 7.3.4) were able to

detect our attacker app as malware even though it was causing significant distress

to the operation of the device. We believe that this is due to the following reasons:

1. Unlike other micro-architectural attacks e.g. Rowhammer and cache attacks

(Flush+Reload Evict&Reload, Prime+Probe etc.), our QoS attack does not

require evicting memory blocks from the cache. Since it does not require

eviction or continuous monitoring of a specific memory block, there is no

continuous data access.

2. The memory bus trigger does not have to run at a high frequency to achieve

performance degradation. In fact, a single bus lock results in a performance

bottleneck for over 12395, 9766, 6128 and 4693 nanoseconds on average on our

test devices, as shown in Figure 7.1. So, as long as the attacker can trigger

the bus lock about every 10K+ cycles, the system will stay in a continuous
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Table 7.2: QoS attack performance degradation quantified by various benchmarks.

Benchmark
Galaxy
S2 %

Nexus 5
%

Nexus 5X
%

Galaxy
S7 Edge %

1. 3DMark (Ice Storm Unlimited Graphics Average) NA 21.15 54.78 33.36
2. 3DMark (Ice Storm Unlimited Physics Average) NA 23.82 52.73 32.87
3. 3DMark (Slingshot Unlimited Graphics Average) NA 10.00 66.67 41.91
4. 3DMark (Slingshot Unlimited Physics Average) NA 16.67 33.33 26.57
5. AnTuTu Benchmark (3D) NA 5.25 62.25 38.12
6. AnTuTu Benchmark (CPU) 49.90 6.36 11.44 10.18
7. AnTuTu Benchmark (RAM) 37.97 6.83 9.08 2.84
8. AnTuTu Benchmark (UX) 40.93 13.34 17.81 39.40
9. Benchmark & Tuning (CPU) 48.43 52.61 51.53 19.06
10. Benchmark & Tuning (I/O) 45.08 35.65 31.97 52.87
11. Benchmark & Tuning (Memory) 48.13 48.56 56.14 34.96
12. CF-Bench (Java) 47.11 19.48 44.94 19.63
13. CF-Bench (Native) 40.61 18.61 43.55 26.73
14. CF-Bench (Overall) 42.59 19.01 44.16 22.00
15. CPU Prime Benchmark 53.66 47.73 69.19 13.85
16. Geekbench 4 (Compute Overall) NA 25.61 51.96 16.12
17. Geekbench 4 (Multi-C Overall) NA 3.96 31.36 19.69
18. Geekbench 4 (Single-C Overall) NA 39.62 58.52 29.50
19. GFXBench GL (ALU 2 (Frames)) NA 0.31 69.20 49.54
20. GFXBench GL (ALU 2 Offscreen (Frames)) NA 4.63 68.99 49.26
21. GFXBench GL (Driver 2 Overhead (Frames)) NA 34.50 34.50 47.74
22. GFXBench GL (Driver 2 Overhead Offscreen (Frames)) NA 34.98 34.47 47.98
23. GFXBench GL (Manhattan 3.0 (Frames)) NA 16.78 57.48 33.53
24. GFXBench GL (Manhattan 3.0 Offscreen (Frames)) NA 16.11 21.43 33.17
25. GFXBench GL (Texturing (MTexels/s)) NA 3.01 67.18 53.94
26. GFXBench GL (Texturing Offscreen (MTexels/s)) NA 0.81 65.84 51.11
27. GFXBench GL (T-Rex Offscreen) 11.71 7.50 50.17 39.06
28. GFXBench GL (T-Rex) 9.02 12.82 59.37 31.98
29. PassMark Performance Test Mobile (2D Graphics) 49.66 30.33 30.12 45.03
30. PassMark Performance Test Mobile (3D Graphics) 15.55 8.69 11.18 25.34
31. PassMark Performance Test Mobile (CPU) 53.75 34.23 69.71 30.95
32. PassMark Performance Test Mobile (Disk) 39.80 90.98 39.98 34.14
33. PassMark Performance Test Mobile (RAM) 39.74 26.45 17.50 38.98
34. PassMark Performance Test Mobile (System) 35.89 20.09 20.89 34.28
35. PCMark (Storage) NA 11.89 12.00 5.96
36. PCMark (Work 2.0) NA 5.03 10.40 11.47
37. PCMark (Work) NA 6.00 10.54 8.66
38. Quadrant Standard (CPU) 50.31 22.03 71.50 34.26
39. Quadrant Standard (I/O) 39.12 32.28 44.94 39.56
40. Quadrant Standard (Memory) 43.30 23.06 43.69 34.68
41. Quadrant Standard (Overall) 38.88 22.65 63.78 34.23
42. Vellamo (Browser - Chrome) 37.62 11.06 16.08 10.70
43. Vellamo (Metal) 37.42 18.07 25.24 0.68
44. Vellamo (Multi-Core) 40.08 14.50 36.66 13.54

state of a bottleneck. The fact that the attacker issues only 1 CPU instruction

every 10K+ cycles, keeps the CPU load minimal. If a user was to use a task

manager to inspect CPU usages of different apps or check the system logs

to do the same, he/she would only see CPU use of unsuspecting 10% by the

attacker app. In addition to that, remember that the memory bus locking
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part of our attack is active only when the target app is in the foreground. So,

unless the target device supports split screen and multitasking, and both the

task manager and the victim app support split screen, the user cannot even

observe this 10% percent load. While the bus locking is not active, the load

of our background service is nominal, between 0.01% and 1%.

3. The current malware and anti-virus scanners are not adequately suited to

detect micro-architectural attacks or bottlenecks. In these types of attacks,

the attack surface and threat models are completely different from those of

classical malware.

4. The attack is hard to detect with dynamic or static analysis techniques because

the attacker app performs legitimate data operations and does not attempt

to access any unauthorized APIs or data. Any app can perform atomic op-

erations and trigger the bus lock without an ill-intent. Therefore it is not

practical to simply detect these instructions. Further, the attacker app does

not contain any information like the package name of the victim app which

could give away the attack during static analysis. As for dynamic analysis,

the scanner would have to trigger a bus lock which would require running the

victim app which may not be possible if the victim is later provided to the

app via the web connection. Finally, since no compute intensive operation like

increment counters are used in the attack, it would be so very hard to observe

the degradation during the scan and tag it as malware.

Complete List of Malware Scanners 360 Security - Antivirus Boost, Anti Spy

(SpyWare Removal), AntiVirus FREE 2016 - Android, Avira Antivirus Security,

Bitdefender Antivirus Free, CCleaner, Clean Master (Boost & AppLock), CM Se-

curity AppLock AntiVirus, Comodo Mobile Security, Dr. Safety - BEST FREE
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ANTIVIRUS, Droidkeeper - Free Antivirus, FireAMP Mobile, FREE Spyware &

Malware Remover, GO Security, Antivirus AppLock, Hidden Device Admin Detec-

tor, Kaspersky Antivirus & Security, Lookout Security & Antivirus, Malware Sleuth,

Malwarebytes Anti-Malware, McAfee SpyLocker Remover, Mobile Security & An-

tivirus, Norton Security and Antivirus, Open Vaccine, Security & Power Booster

-Free, Stubborn Trojan Killer.

7.4 Detection and Mitigation

In order to detect and mitigate this attack, we propose the following countermea-

sures. Atomic Operation Alignment Check: The operating system can inspect

atomic operation operands for uncacheable memory addresses. When such an ad-

dress is detected, the OS that can increment the count of recent atomic operations

on uncacheable addresses. If the count reaches a preselected threshold, then the

OS can give the app issuing these atomic operations a timeout or shut it down

altogether. Though this countermeasure would incur a performance overhead, the

penalty would be smaller than bus locking. Alternatively, the OS can move the

operating data to a cacheable address and prevent bus locks.

Memory Bandwidth Monitoring: The operating system can periodically moni-

tor memory bandwidth and stop or slow down any process that triggers bus locking

frequently. In the case of an active attack, this method would allow the OS to

detect the culprit and stop the process/app while allowing non-attack locks to be

performed as usual.

Closing Inter-app Logical Channel Leaks: As discussed in Section 7.2 in detail,

there are numerous ways to know which apps are installed or running on an Android

device. When this information is obtained by the attacker, it is a matter of resource
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monitoring (through logical or side-channels) to detect victim launch. So, if an

attacker cannot obtain any information about installed or running apps on the

device, then the detection stage would rely only on more noisy side-channels like

shared hardware monitoring. While this countermeasure would strongly impact

existing apps using information like installed apps, it would also make the detection

part of the attack more difficult.

Restricting Access to UsageStats: UsageStats permission is used by numerous

apps that need to monitor user’s app usage. For instance, a mobile data opera-

tor might want to check which apps are currently active so that they can disable

the data usage counter for a specific app e.g. Youtube or Netflix. However, it is

also dangerous permission in the sense that it looks innocent to a naive user but

has crucial consequences as demonstrated. So, instead of removing this permis-

sion altogether, making it a signature/system level permission would protect this

critical information while allowing trusted parties e.g. data operators to keep the

functionality.

7.5 Conclusion

In conclusion, we show that low-level architectural attacks are a real threat in mobile

devices. Battery, compute power and storage restrictions of mobile devices require

strong optimizations and create very suitable candidates for these types of attacks.

Further, combining architectural attacks with logical channel leakages open a wide

range of exploits for malicious parties. In this chapter, we have shown that mali-

cious parties can exploit the underlying shared hardware to degrade or even halt

operations of other apps using this combination and inter-app interactions have to

be controlled carefully.
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7.6 Ethical Concerns and Responsible Disclosure

The attacker app that we have designed is uploaded to the Google Play Store and

since it is not detected as malware by the Play Store, it is currently available for

download. Since the app causes a performance degradation to the overall system, we

have clearly warned users in the install page that this is an experimental app aiming

to degrade the performance of the overall system and should be used with caution.

We hope that this warning will be sufficient to prevent any accidental installations

that might result in unwanted performance degradation. Further, to prevent hogging

of the system resources, we have significantly limited the performance degradation

power of the app by decreasing the frequency of memory bus lock triggers. Finally,

we have informed the Android security team of our findings in advance to this

publication and made our bug submission through the AOSP bug report portal.
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Chapter 8

Machine Learning for and against

Side-channel Attacks

8.1 Motivation

Side-channel attacks (SCA) require analysis of large amounts of noisy data with

human interpretation and intuition. This requirement presents a challenge for au-

tomation and scalability of SCAs. In a real-world scenario, it is not practical for

an attacker to spend long periods of time to find a side-channel vulnerable target,

obtain leakage traces and then analyze these traces to recover sensitive information

that may or may not be there. Such a task however is perfectly suited for modern

machine learning (ML). Moreover, Adversarial Learning, a subfield of ML, can be

utilized to create smart noise with minimal changes to the input but change the

output of ML systems drastically. Taking advantage of this, we propose to retrofit

Adversarial Learning as a countermeasure to side-channel attacks. In this chapter,

we show in detail how ML can be utilized both to perform side-channel attacks and

to prevent them.
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In the last decade, ML solutions have been applied to variety of tasks such as

image classification [52, 51, 163], speech recognition [49], lip reading [50], verbal

reasoning, self-driving cars, playing competitive video games [164, 165] and even

writing novels [166]. As expected with any booming technology, it is also utilized by

malicious actors. For instance, there have been cases of AI-generated content on the

Internet boards to create or shift public opinion by social engineering. The latest

known example being the AI-generated fake comments on the FCC net-neutrality

boards where millions of AI-generated comments were posted [167, 168]. These

messages were grammatically and semantically sound and not easily detectable as

crafted. Another malicious use of AI is for spam and phishing attacks. Using the

sentiment analysis, hackers are now crafting tailored phishing e-mails that have

higher ‘yield’ rates than ones written by humans [169, 170]. Beyond crafting seman-

tically sound text, modern AI system can even participate in hacking competitions

where human creativity and intuition was thought to be irreplaceable.

According to a survey among cybersecurity experts [171], the use of AI for cyber-

attacks will inevitably become more common over time and the academic literature

already shows the use of ML for SCA. In 2011, Hospodar et al. [172] demonstrated

the first use of ML, LS-SVM specifically, on a power SCA on AES, showing that the

ML approach yields better results than traditional template attacks. Later, Heuser

et al. [173] showed the superiority of multi-class SVM for noisy data in compari-

son to the template attacks. In 2012, Zhang et al. [34] demonstrated the use of

multi-class SVM to extract RSA decryption keys from noisy side-channel leakage

trace. In addition to SVMs, Neural Networks (NN) is also a popular tool among

side-channel researchers. Martinasek et al. [174, 175] showed that NNs could be

used to classify AES keys from power measurements with a success rate of 96%.

In 2015, Beltramelli [176] used LSTM NN to collect meaningful keystroke data via
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motions of the smart-watch user. In 2016, Maghrebi et al. [177] compared four DL

based techniques with template attacks to attack an unprotected AES implementa-

tion using power consumption and showed that CNN outperforms template attacks.

Finally in 2017, Gulmezoglu et al. [108] showed that ML can be used to extract

meaningful information from the cache side-channel to recover web traffic.

The most straightforward countermeasure against side-channel attacks is to

drown the sensitive computation with noise to cloak it from the attacker. How-

ever, this defense method is computationally expensive. In this chapter, we show

that we can do much better than adding random noise. By using adversarial learning

(AL), we can craft significantly smaller, intelligent noise to accompany processes.

By using AL, we achieve a better cloaking effect with much smaller changes to the

trace and minimal overhead to the system. Also, the proposed defense does not

require the redesign of the software or the hardware stacks, making it practically

deployable. In addition to that, it can be deployed as an opt-in service that users

can enable or disable at wish, depending on the sensitivity of specific computations.

In summary, as stated in [178], attacking an ML system is easier than defending

it. We exploit this advantage and flip the position of the attacker and defender

to use AL as a defensive tool. In this chapter, we propose the use of AL to cloak

side-channel leakage of processes and to protect them from ML-capable adversaries.

Contributions

In this dissertation, we list micro-architectural threats to modern computing systems

by presenting attacks, providing experiment results and proposing countermeasures.

This work shows the beneficial use of adversarial learning against ML equipped

side-channel attackers and proposes a framework to efficiently cloak side-channel

leakage. In addition, potential methods to bypass this defense have been tested and
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proven ineffective. Specifically in this chapter we;

� show that processes running on a shared system can be accurately identified by

a deep learning (DL) or a classical ML classifier by their side-channel leakage.

To demonstrate, we classify 20 types of processes using readily available, high-

resolution HPCs.

� investigate the effects of various leakage trace parameters like the number of

features, samples, and data collection intervals on the classifier accuracy.

� use various AL methods to craft perturbations to test and quantify the effi-

ciency of each method against the side-channel classifier.

� show how to execute AL perturbations side-by-side with the original process to

cloak the side-channel leakage. We show that this is a strong defense against

an AI-equipped attacker.

� show that even when an attacker hardens her classifier against AL with adver-

sarial re-training and defensive distillation, AL methods can overcome these

defenses and still fool the side-channel classifier.

8.2 Training Classifiers to Process Side-channel

Leakage

There are many types of side-channel leakage such as EM, power, timing etc. Even

for micro-architectural leakage, it may be stemming from the CPU cache, DRAM

or Hardware Performance Counters (HPCs). This leakage can be extracted using

various attack methods like Flush+Reload, Prime+Probe or by requesting data
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directly from the OS. In this study, we chose to use HPCs as our leakage source to

be processed by a machine learning classifier.

8.2.1 Profiling Software using HPC Traces

HPCs are special purpose registers that provide detailed information on low-level

hardware events in computer systems. These counters periodically count specified

event like cache accesses, branches, TLB misses and many others. This information

is intended to be used by developers and system administrators to monitor and fine-

tune the performance of applications. The availability of a specific counter depends

on the architecture and model of the CPU. Among many available HPCs, we have

selected the following 5 for the classification task;

1. Total Instructions: the total number of retired i.e. executed and completed

CPU instructions.

2. Branch Instructions: the number of branch instructions (both taken and

not taken).

3. Total Cache References: the total number of L1, L2, and L3 cache hits

and misses.

4. L1 Instruction Cache Miss: the occurrence of L1 cache instruction cache

misses.

5. L1 Data Cache Miss: the occurrence of L1 cache data cache misses.

We have selected these HPCs to cover a wide selection of hardware events with

both coarse and fine-grain information. For instance, the Total Instructions does

not directly provide any information about the type of instructions being executed.

However, the execution time is dependent on the type of instructions even if the

data is loaded from the same cache level. The time difference translates indirectly
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into the total instructions executed in the given time period and leaks information.

The Branch Instructions HPC provides valuable information about the exe-

cution flow of a program. Whether the branches are taken or not taken, the total

number of branches in the executed program remains constant for a given input and

execution path. This constant in the leakage trace helps eliminate noise elements

and increases classification accuracy.

The Total Cache References HPC provides similar information to the Branch

Instructions HPC in the sense that it does not leak information about the finer

details like the specific cache set or even the cache level. However, it carries infor-

mation regarding the total memory access trace of the program. Regardless of the

data being loaded from the CPU cache or the memory, the total number of cache

references will remain the same for a given process.

The L1 Instruction Cache Miss and the L1 Data Cache Miss HPCs provide

fine-grain information about the Cold Start misses on the L1 cache. Since the L1

cache is small, the data in this cache level is constantly replaced with new data, in-

crementing these counters. Moreover, separate counters for the instruction and the

data misses allows the profiler to distinguish between arithmetic and memory inten-

sive operations and increases the profile accuracy. Finally, all five of the HPCs are

interval counters meaning that they count specific hardware events within selected

time periods.

8.2.2 Experiment Setup

Classifier models are trained and tested on a workstation with 10-core Intel i7-7900X

CPU, two Nvidia 1080Ti GPUs (Pascal architecture), and 64 GB of RAM. Training

is performed using the GPUs to utilize parallelism and decrease training time. On

the software side, the classifier model is coded using Keras v2.1.3 with Tensorflow-
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GPU v1.4.1 back-end and other Python3 packages such as Numpy v1.14.0, Pandas,

Sci-kit, H5py etc.

Side-channel (the HPC) traces are collected from a server with Intel Xeon E5-

2670 v2 CPU, running Ubuntu 16 LTS. This specific CPU model has 85 possible

hardware events of which 50 are available to user-space. To access these HPCs,

the QuickHPC [179] tool is used. QuickHPC is developed by Marco Chiappetta to

collect high-resolution HPC data using the PAPI back-end. It provides a fast and

easy-to-use interface to HPCs.

8.2.3 Classifier Design and Implementation

Here, we give the details of the design and implementation of classifiers that can

identify processes using the system HPC trace. To show the viability of such classi-

fier, we chose 20 different ciphers from the OpenSSL 1.1.0 library as the classification

target. Note that these classes include ciphers with both very similar and extremely

different performance traces e.g. AES-128, ECDSAB571, ECDSAP521, RC2, and

RC2-CBC. Moreover, we also trained models to detect the version of the OpenSSL

library for a given cipher. For this task, we used OpenSSL versions 0.9.8, 1.0.0,

1.0.1, 1.0.2 and 1.1.0.

8.2.3.1 Classical ML Classifiers

Here, we refer to non-neural network classification methods as classical ML classi-

fiers. In order to contrast classical ML methods with CNNs, we trained a number

of different models using the Matlab Classification Learning Toolbox. The trained

classifiers include SVMs, decision trees, kNNs and variety of ensemble methods.
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8.2.3.2 CNN Classifier

We designed and implemented the CNN classifier using Keras with Tensorflow-GPU

back-end. The model has a total of 12 layers including the normalization and the

dropout layers. In the input layer, the first convolution layer, there are a total of

5000 neurons to accommodate the 10 milliseconds of leakage data with 5000 HPC

data points. Since the network is moderately deep but extremely wide, we used

2 convolution and 2 MaxPool layers to reduce the number dimensions and extract

meaningful feature representations from the raw trace.

In addition to convolution and MaxPool layers, we used batch normalization

layers to normalize the data from different HPC traces. This is a crucial step since

the hardware leakage trace is heavily dependent on the system load and scales with

overall performance. Due to this dependency, the average execution time of a pro-

cess, or parts of a process can vary from one execution to another. Moreover, in

the system-wide leakage collection scenario, the model would train over this system

load when it should be treated as noise. If not handled properly, the noise and the

shifts in the time domain results in over-fitting the training data with the dominant

average execution time, decreasing the classification rate. By using the batch nor-

malization layer, the model learns the features within short time intervals and the

relation between different HPC traces. On the output layer, we use 20 neurons with

softmax activation, representing 20 classes of processes. Finally, we use Categorical

Cross-entropy loss function with the Adam Optimizer to train the model.

The CNN classifier is constructed using the layers given below;

1. Convolution layer (50, (10,1))

2. MaxPool Layer (10,1)

3. Batch Normalization Layer

4. Dropout Layer (0.25)
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5. Convolution Layer (100, (10,1))

6. MaxPool Layer (10,1)

7. Batch Normalization Layer

8. Dropout Layer (0.25)

9. Flatten Layer

10. Dense Layer (400)

11. Dropout Layer (0.25)

12. Dense Layer (20)

The classifiers are trained to identify 20 classes of crypto ciphers as well as five

different versions of OpenSSL, as detailed in Section 8.2.3. Unless otherwise stated,

the classifier is trained with data from the cipher implementations of OpenSSL 1.1.0,

the same version we use to craft adversarial samples against in later experiments.

Moreover, to show the versatility of the classifier i.e. that it is not limited to a

certain process type or a library, we trained models to classify 20 different ciphers

from OpenSSL versions 0.9.8, 1.0.0., 1.0.1, 1.0.2 and 1.1.0. Further, we trained

models to distinguish between different versions of the same process e.g. OpenSSL

1.0.0 implementation of AES-128-CBC vs any other version of the OpenSSL.

8.2.4 Classification Results

8.2.4.1 Classical ML Classifiers

In our training of ML classifiers, the first challenge was the fact that the side-

channel leakage data is extremely wide. We have chosen to train our models with

samples consisting of 1000 data points per HPC with 5 HPCs total. This parameter

selection is done empirically to provide good cloaking coverage and train highly

accurate models as explained in Section 8.2.4.2. Using 1000 data points with 10
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micro-second intervals per HPC allows us to obtain useful data in a short observation

window. Nevertheless, 5000 dimensions are unusually high for classifiers, especially

for a multi-class (20) classifier. To find the optimal setting for the hardware leakage

trace, we tried different parameters with each classifier. For instance, in the case

of decision trees, we have trained the ‘Fine Tree’, ‘Medium Tree’ and ‘Coarse Tree’

classifiers, allowing 5, 20, and 100 splits (leaves in the decision tree) respectively.

For the case of Gaussian SVM, fine, medium and coarse refers to the kernel scale set

to sqrt(P)/4, sqrt(P) and sqrt(P)*4 respectively. As for the kNN, the parameters

refer to the number of neighbors and the different distance metrics. Results for

the classical ML classifiers are presented in Table 8.1 and show that these models

can, in fact, classify processes using their HPC traces. Note that the Quadratic

Discriminant did not converge to a solution before PCA hence no score is given in

the table.

8.2.4.2 CNN Classifier

For the CNN classifier, we firstly investigated the effect of the number of HPCs

collected and trained our models for 100 epochs with data from a varying number

of HPCs. Not surprisingly, even with only 1 HPC, our CNN classifier achieved 81%

validation accuracy, although after a high number of epochs. Moreover, after the

30th epoch, the model over-fitted the training data i.e. the validation accuracy

started to drop while the training accuracy kept increasing. When we increased the

number of HPCs collected, our models became much more accurate and achieved

over 99% validation accuracy as seen in Figure 8.2. Moreover, when we use the

data from all 5 HPCs, our model achieved 99.8% validation accuracy in less than

20 epochs. While our validation accuracy saturates even with only 2 HPCs, Total

Instructions and Branch Instructions we have decided to use all 5 of them. We
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Table 8.1: Application classification results for the classical ML classifiers with and
without PCA feature reduction.

Classification Method Without With PCA
PCA (99.5% variance)

Fine Tree 98.7 99.9
Medium Tree 85.4 94.8
Coarse Tree 24.9 25
Linear Discriminant 99.6 99.7
Quadratic Discriminant N/A 99.4
Linear SVM 99.9 98.2
Quadratic SVM 99.9 96.9
Cubic SVM 99.9 94.3
Fine Gaussian SVM 40 88.2
Medium Gaussian SVM 98.3 92.1
Coarse Gaussian SVM 99.7 13.4
Fine kNN 96.8 11.1
Medium kNN 94.9 7.8
Coarse kNN 85.5 5.2
Cosine kNN 92.5 19.6
Cubic kNN 85.2 7.7
Weighted kNN 95.9 8.3
Boosted Trees 99.2 99.8
Bagged Trees 99.9 94.8
Subspace Discriminant 99.8 99.7
Subspace kNN 84.8 88.1
RUSBoosted Trees 76 92.8

Best 99.9 99.9

made this decision because, in a real-world attack scenario, an attacker might be

using any one or more of the HPCs. Since it would not be known which specific

hardware event(s) an attacker would monitor, we decided to use all 5, monitoring

different low-level hardware events to provide a comprehensive cloaking coverage.

To determine the optimum number of features per HPC, we have trained multiple

models with varying input sizes. As shown in Figure 8.1, the validation accuracy

saturates at 1000 and 2000 features and the validation loss increases after 1000

features. For this reason, we chose to use 1000 features for our experiments.

After deciding to use data from 5 HPCs, we investigated how the number of
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training samples affects the CNN classifier validation accuracy. For that, we have

trained 6 models with a varying number of training samples. For the first model, we

have used only 100 samples per class (2000 samples in total) and later on trained

models with 300, 1000, 3000, 10000 and 30000 samples per class. In the first model,

we achieved 99.8% validation accuracy after 40 epochs of training. When we trained

models with more data, we have reached similar accuracy levels in much fewer

epochs. To make a good trade-off between the dataset size and training time, we

have opted to use 1000 samples per class. This model reaches 100% accuracy with

20 epochs of training as shown in Figure 8.3. Finally, our last model achieved 100%

accuracy just after 4 epochs when trained with 30000 samples per class.
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Figure 8.1: Results for the CNN classifier trained using varying number of features.
Models reach highest validation accuracy with 1000 and 2000 features.

We also verified that different versions of OpenSSL can be distinguished for each

cipher. For each of the 20 analyzed ciphers, we built classifiers to identify to which of

the five analyzed versions they belong. Figure 8.4 presents the classification results

of the two models trained using 1-5 HPC traces respectively. As cipher updates

between versions can be very small, the added information from sampling several
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Figure 8.2: Results of CNN classifiers trained with varying number of HPCs. Even
using data from a single HPC trace is enough to achieve high accuracy top-1 clas-
sification rate, albeit taking longer to train.

HPCs is useful to obtain high classification rates, as can be seen from the results.
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Figure 8.3: Results of CNN classifiers trained with 100 and 1000 samples per class.
The first model reaches 99% accuracy in 40 epochs. When the number of samples
per class is increased to 1000, we achieve same accuracy in a few epochs of training.
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Figure 8.4: Results of the CNN trained for OpenSSL version detection, using varying
number of HPCs. When trained with only a single HPC, the validation accuracy
saturates at 61%. When all 5 HPCs are used, the validation accuracy reaches 99%.
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8.3 DeepCloak, A Framework to Cloak Side-channel

Leakage

In previous chapters, we have demonstrated that side-channel leakage can be pro-

cessed by both classical machine learning models and convolutional neural networks.

Here, we propose Deepcloak as a countermeasure against such processing. We argue

that, due to the heavy manual processing overhead of side-channel attacks, it is very

likely that malicious parties will resort to using machine learning. With the use of

machine learning, attackers can both automate and scale side-channel attacks, es-

pecially in cloud environment. In this tangent, we propose to exploit an inherent

machine learning weakness, vulnerability to adversarial learning, as a way to defend

against such attackers.

DeepCloak provides a framework to profile security sensitive code and crafts

adversarial noise that will cloak the code’s side-channel leakage. DeepCloak achieves

this creating executable adversarial perturbations on the system. Our goal is to

show that side-channel classifiers, specifically the complex and powerful DL-based

classifiers, can be successfully fooled by utilizing AL as a defensive tool. To validate

this hypothesis, we first train DL-based classifiers using real side-channel leakage.

Then, we show the classification accuracy degradation as the result of AL methods.

And finally, we show that even if the DL-based classifier is aware of the DeepCloak

and applies adversarial re-training or defensive distillation, the outcome does not

change and the defense holds. In our experiments, we take the following steps:

1. Train the process classifier C using side-channel leakage.

2. Craft AL samples δ to cloak the user processes and force C to misclassify.

3. Train a new classifier C’ with defenses against AL; Defensive Distillation and
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Adversarial Re-training.

4. Test previously crafted AL samples δ against the hardened classifier C’. Then

craft and test new AL samples δ′ against the hardened classifier C’ and show

that the AL method still succeeds.

5. Show the use of code gadgets to execute the necessary perturbations on an

x86 system.

Δ`

Δ

C`

C

Alice Eve

Process

X

X

X

X 

X  

Ω

Ω+δ

Applying
Defenses

δ

δ` Ω+δ`

Hardened classifier

Unprotected classifier

Figure 8.5: The outline of the cloaking methodology.

We outline this methodology in Figure 8.5. In the first stage, Alice, the defender

runs the process X, creating the leakage Ω. Eve, the attacker monitors the leakage

and identifies the process X via the classifier, C. Then, Alice crafts and executes the

perturbation δ in a separate thread alongside X, forcing C to misclassify X as X′.

Eve then hardens C with AL defenses. Now, Eve can classify δ′ + Ω partially correct.

In the final stage, Alice first tests the previously crafted adversarial samples against

Eve’s hardened classifier C’. Then, Alice updates her adversarial sample crafting

target to fool C’ rather than the original classifier C. Alice crafts δ′ against C′, and

X is again misclassified.
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We apply this methodology to a scenario where an attacker trains a CNN to

classify running processes using the system HPC leakage trace as the input. This

information is extremely useful to the attacker since it helps to choose a specific

attack or even pick a vulnerable target from many. Once a vulnerable target is found,

then the attacker can perform micro-architectural or application-specific attacks. To

cloak this information leakage, the defender attempts to mask the process signature.

The masking should not interfere with the running process or create too much

overhead to the overall system. This is why crafting minimal perturbations is crucial

to the practicality of our proposed defense.

The attacker periodically collects five HPC values for 10 milliseconds total with

10-microsecond intervals. This results in a total of 5000 data points per trace.

Later, the trace is fed into classical machine learning and DL classifiers. In this

chapter, we explain our choice of the specific HPCs, the application-classifier design

and implementation details, the AL methods applied to these classifiers. We finally

test the efficiency of adversarial re-training and defensive distillation against our

cloaking method.

8.3.1 Adversarial Learning Attacks

AL remains an important open research problem in AI. Traditionally, AL is used

to trick AI classifiers and test model robustness against malicious inputs. Here,

however, we propose to use AL as a defensive tool to mask the side-channel trace of

applications and protect against micro-architectural attacks and privacy violations.

In the following, we explain the specific AL methods that we have used. We consider

the following attacks:

� Additive Gaussian Noise Attack (AGNA): Adds Gaussian Noise to the

input trace to cause misclassification. The standard deviation of the noise is
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increased until the misclassification criteria are met. This AL method is ideal

to be used in the cloaking defense due to the ease of implementation of the all-

additive perturbations. A sister-process can actuate such additional changes in

the side-channel trace by simply performing operations that increment specific

counters like cache accesses or branch instructions.

� Additive Uniform Noise Attack (AUNA): Adds uniform noise to the input

trace. The standard deviation of the noise is increased until the misclassification

criteria are met. Like the AGNA, this attack is also easy to implement as a

sister-process due to its additive property.

� Blended Uniform Noise Attack (BUNA): Blends the input trace with Uni-

form Noise until the misclassification criteria are met.

� Contrast Reduction Attack (CRA): Calculates perturbations by reducing

the ‘contrast’ of the input image until a misclassification occurs. In the case of

the side-channel leakage trace, the method smooths the trace by reducing the

distance between the minimum and the maximum HPC counts within the trace.

� Gradient Attack (GA): Uses the loss gradient with regards to the input trace.

The magnitude of the added gradient is increased until the misclassification cri-

teria are met. The attack only works when the model gradient is available.

� Gaussian Blur Attack (GBA): Adds Gaussian Blur to the input trace until a

misclassification occurs. Gaussian blur smooths the input trace and reduces the

amplitude of outliers. Moreover, this method reduces the resolution of the trace

and cloaks the fine-grain leakage.

� Fast Gradient Sign Method (FGSM) [65]: The method has been proposed

by Goodfellow et al. in 2014. FGSM works by adding the sign of the elements of

156



the gradient of the cost function with regards to the input trace. The gradient sign

is then multiplied with a small constant that is increased until a misclassification

occurs.

� L-BFGS-B Attack (LBFGSA) [180]: The attack utilizes the modified Broyden-

Fletcher-Goldfarb-Shanno algorithm, an iterative method for solving unconstrained

nonlinear optimization problems, to craft perturbations that have minimal dis-

tance to the original trace. The attack morphs the input to a specific class.

However, in our experiments, we did not target a specific class and chose random

classes as the target.

� Saliency Map Attack (SMA) [181]: Works by calculating the forward deriva-

tive of the model to build an adversarial saliency map. This map reveals which

input features e.g. pixels in an image, have a stronger effect on the targeted mis-

classification. Using this information, an adversary can modify only the features

with high impact on the output and produce minimal perturbations.

� Salt and Pepper Noise Attack (SPNA): Works by adding Salt and Pepper

noise (also called impulse noise) to the input trace until a misclassification occurs.

For images, salt and pepper values correspond to white and black pixels respec-

tively. For the side-channel leakage trace, however, these values correspond to the

upper and the lower bounds in the trace.

8.3.2 AL Results on the Unprotected Model

After training and testing our side-channel classifier model, we proceeded to craft

adversarial samples against this unprotected classifier. There are numerous publicly

available libraries like Cleverhans [182], Foolbox [183] and IBM’s ART [184], that

can create adversarial samples against a given ML model. As long as the same
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adversarial attack method is used, there is no difference between the produced ad-

versarial perturbation. In our study, we have used the Foolbox library. Note that,

it is also possible to create these perturbations with other libraries or manually, as

the adversarial attacks are independent of the specific library used. The Foolbox

library provides numerous AL attack methods and provides an easy to use API.

For a given adversarial sample crafting method, the Foolbox calculates the neces-

sary perturbations on a given input sample-classifier model pair to ‘fool’ the given

model. Detailed information about these attacks can be found in Section 8.3.1.

Table 8.3 presents the classification accuracy of perturbed samples. As the results

show, almost all test samples are misclassified by the classifier model with very high

accuracy at over 86%. Another important metric for the AL is the L1-norm distance

(L1D) and the L2-norm distance (L2D) of the perturbed input from the original.

These metrics quantify the size of the changes i.e. perturbations made to the original

trace by various AL methods. The difference between the L1D and the L2D is that

the latter is more sensitive to the larger changes due to the square operation. For

instance, if a perturbation requires a significant change in 1 sample point among

the 5000 features, it will have a stronger impact in the final L2D value than average

change distributed over a few points. L1D, however, is more dependent on the

overall change in the trace, i.e. all 5000 sample points have the same impact on the

final distance. Our results show that with most AL methods, perturbation L1D is

around or well below 1% and within the ideal range. Remember, the smaller the

perturbation, easier it is to actuate it as a cloaking process.

8.3.3 AL Results on the Hardened Model

Here we present the results of the AL methods on the hardened classifier models

to show the robustness of our cloaking mechanism against classifiers hardened with
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Table 8.2: Classification confidence and L1D results of the unprotected CNN clas-
sifier.

Adversarial
Attack

Original Sample
Classification
Confidence.

Perturbed Sample
MisClassification

Confidence.

L1D

AGNA 99 96 0.00294
AUNA 99 97 0.00292
BUNA 99 99 0.05000
CRA 99 99 0.05254
GBA 99 97 0.00080
GSA 99 99 0.00499
LBFGSA 99 86 0.00025
SMA 99 92 0.00001
SPNA 99 96 0.01528

Adversarial Re-training and DD. To recap the scenario, Alice the defender wants to

cloak her process by adding perturbations to her execution trace so that eavesdrop-

per Eve cannot correctly classify what Alice is running. Then Eve notices or predicts

the use of perturbations on the data and hardens her classifier model against AL

methods using adversarial re-training and DD.

To test the attack scenario on hardened models, we first craft 100,000 adversarial

samples per AL method against the unprotected classifier. Then we harden the

classifier with the aforementioned defense methods and feed the adversarial samples.

Here, we aim to measure the level of protection provided by the adversarial re-

training and the DD methods.

As presented in Table 8.6, the application of both adversarial re-training and

DD invalidates some portion of the previously crafted adversarial samples. For

the adversarial re-training, the success rate varies between 99% (FGSM) and 4%

(SPNA). In other words, 99% of the adversarial samples crafted using FGSM against

the unprotected model are invalid on the hardened model. As for the DD, the

rate ranges from 61% up to 100%. Impressively, 100% of the adversarial samples

crafted using the BUNA are ineffective against the DD hardened model at distillation
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Table 8.3: Classification confidence of unprotected and hardened (with adversarial
re-training) classifiers under AL.

Classification Conf. Misclassification Conf.
Unprotected

Classifier
Hardened
Classifier

Unprotected
Classifier

Hardened
Classifier

AGNA 100 92 99.4 82
AUNA 100 91 99.25 82
BUNA 100 96 99.66 93
CRA 100 97 98.83 98
FGSM 99.24 88 99.65 97
GBA 100 93 99.32 74
LBFGSA 100 89 96.04 97
SLSQPA 100 89 100 72
SMA 100 88 95.66 63
SPNA 100 92 100 74

Table 8.4: L1-norm and L2-norm distances of adversarial samples crafted against
unprotected and hardened (Adversarial Re-training) classifiers.

Unprotected Hardened Classifier
Classifier (Adv. Re-training)

L1D L2D L1D L2D

AGNA 0.00055 1.33E-06 0.00294 1.7E-05
AUNA 0.00063 1.26E-06 0.00332 1.7E-05
BUNA 0.00073 1.05E-06 0.05 3.7E-05
CRA 0.00142 4.29E-06 0.04999 3E-05
FGSM 4.93E-05 2.46E-09 0.00398 8.9E-07
GBA 0.00022 2.34E-07 0.00071 9.1E-06
LBFGSA 0.00178 2.54E-05 0.00596 4.1E-08
SLSQPA 0.49939 0.332691 0.00031 32.9833
SMA 5.53E-05 8.87E-08 0.00008 1.1E-07
SPNA 0.0002 0.000199 0.08268 0.1139

Table 8.5: Average L1Ds of perturbations crafted against hardened classifiers.

Adversarial
Method

Unprotected
Model

Adversarial
Re-trained

DD with
T=1

DD with
T=5

DD with
T=10

DD with
T=30

DD with
T=50

DD with
T=100

AGNA 0.0029 0.0029 0.0004 0.0006 0.0106 0.0045 0.018 0.0043
AUNA 0.0029 0.0033 0.0003 0.0007 0.0111 0.0051 0.0179 0.0045
BUNA 0.05 0.05 0.0499 0.082 0.1029 0.0501 0.1638 0.0775
CRA 0.0525 0.05 0.05 0.0855 0.1078 0.05 0.2799 0.0745
FGSM 0.005 0.006 0.005 0.1367 0.0248 0.0106 0.0167 0.0055
GBA 0.0008 0.0007 0.0006 0.0006 0.0499 0.0017 0.0006 0.0008
LBFGSA 0.0003 0.0003 0.0053 0.0002 0.0021 0.0009 0.0052 0.0092
SMA 7E-06 8E-05 3E-05 7E-05 4E-05 1E-05 1E-05 2E-05
SPNA 0.0153 0.0827 0.0106 0.0036 0.018 0.0026 0.02 0.0198
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Table 8.6: Effectiveness of adversarial re-training and DD on 100,000 previously
crafted adversarial samples. The results show what percentage of previously suc-
cessful adversarial samples are ineffective on the hardened models.
Adversarial
Attack

Adversarial
Re-training

DD with
T=1

DD with
T=2

DD with
T=5

DD with
T=10

DD with
T=20

DD with
T=30

DD with
T=40

DD with
T=50

DD with
T=100

AGNA 42 77 60 70 83 83 63 64 62 75
AUNA 43 77 60 70 83 82 63 65 61 75
BUNA 94 92 92 91 94 94 94 96 94 100
CRA 94 95 99 94 94 94 94 99 88 95
FGSM 99 91 90 91 99 99 99 95 99 98
GA 97 99 72 83 99 99 96 80 90 90
GBA 84 83 84 88 82 94 93 91 93 88
LBFGSA 51 76 63 63 78 87 65 65 63 71
SMA 26 71 50 52 62 82 49 47 32 48
SPNA 4 84 76 78 94 93 76 79 73 80

temperature T=100.

Also, adversarial samples have up to 29% lower misclassification confidence com-

pared to the unprotected model. The adversarial samples are still misclassified with

high confidence, in the range of 63-98%.

In short, by using the adversarial re-training or the DD, Eve can indeed harden

her classifier against AL. However, keep in mind that Alice can observe or predict

this behavior and introduce new adversarial samples targeting the hardened models.

Below, we discuss the results of our experiments against such hardened models.

8.3.3.1 Adversarial Re-training

After training the DL classifier model and crafting adversarial samples, we use these

perturbations as training data and re-train the classifier. The motivation here is to

teach the classifier model to detect these perturbed samples and correctly classify

them. With this re-training stage, we expect to see whether we can ‘immunize’ the

classifier model against given AL methods. However, as the results in Table 8.3 show,

all of the AL methods still succeed albeit requiring marginally larger perturbations.

Moreover, while we observe a drop in the misclassification confidence, it is still quite

high at over 63% i.e. Eve’s classifier can be fooled by adversarial samples.
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8.3.3.2 Defensive Distillation

To implement defensive distillation, we have used the technique proposed in [72]

and trained hardened models with DD at various temperatures ranging from 1 to

100. Note that while the DD has already been proven broken [185], we include it

in our study to show the change of the adversarial perturbation size and do not

suggest it as a proper defense against adversarial samples. Our results show that,

even if the eavesdropper Eve hardens her classifier with DD, it is still prone to AL

methods albeit requiring larger perturbations in some cases. In Table 8.5, we present

the perturbation size as L1D i.e. the L1-norm distance, of various attack methods

on both unprotected and hardened models. Our results show that the application

of DD indeed provides some level of robustness to the model and increases the

perturbation sizes. However, this behavior is erratic compared to the adversarial

re-training defense i.e. the L1D is significantly higher at some temperatures while

much smaller for others. For instance, the L1D for the AUNA perturbations against

the unprotected model is 0.00292 in average for 100,000 adversarial samples. L1D for

the same attack drops to 0.00033 when DD is applied with temperature T=1. This

in turn practically makes Eve’s classifier model easier to fool. The same behavior is

observed with the adversarial samples crafted using AGNA and GBA as well. For

the cases that DD actually hardens Eve’s model against adversarial samples, the

L1D is still minimal. Hence, Alice can still successfully craft adversarial samples

with minimal perturbations and fool Eve’s model.

8.3.4 Perturbation Execution

After the user process is profiled and an appropriate perturbation has been calcu-

lated, the defender needs to execute this perturbation. In order to do so, one can
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either modify and fake the system HPC output through the OS/VMM or execute

carefully crafted code snippets. Assuming an unprivileged user without the ability

to modify the system HPC directly, we show the following methods to modify HPCs

by execution. By using the methods below, one can execute AL perturbations and

manipulate the overall system HPC trace. Since the attacker profiles the overall

system execution trace, she cannot filter these modifications caused by our cloaking

process.

The perturbation execution gadgets are assumed to run concurrently to the

original process either as separate processes or threads. Each of the HPCs used

in the profiling can be manipulated as explained below. Moreover, if the defender

wants to implement a non-additive AL perturbation and decrease a specific HPC,

the NOP instruction can be inserted into the program code. Whenever the NOP

instruction is executed, it would halt the original process hence decrease HPC over

a certain time period.

� Total Instructions: Execution and retirement of any instruction increments

this HPC. If no instructions are executed and the CPU is stalled, this counter

does not increase.

� Branch Instructions: Execution of any of the following x86 branch instruc-

tions can be used to increment this HPC; JNE (Jump if not equal), JE (Jump

if equal), JG (Jump if greater), JLE (Jump if less than or equal), JL (Jump

if less than), JGE (Jump if greater or equal).

� Total Cache References: A simple looped access to a cached variable in-

creases this counter. Note that this HPC counts the access attempts to all

cache levels. Moreover, even if the operation results in a cache miss, the

attempt still counts as a cache reference and the count is incremented.
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� L1 Instruction Cache Miss: The ClFlush instruction can be used to flush

a previously executed instruction code e.g. a function, from the cache. Later,

when this piece of code is executed again, it will cause a cache miss and

increases the counter.

� L1 Data Cache Miss: This HPC can be incremented via multiple different

methods. For instance, pointer-chasing buffers can be used to ensure cache

misses. Alternatively, one can use the ClFlush instruction to flush previously

accessed data from the cache and force a cache miss.
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Chapter 9

Conclusion

Side-channel leakage on shared hardware systems poses a real and present danger to

the security and the privacy of users. Even when the software is perfectly isolated,

co-located tenants still share the underlying hardware. As we demonstrated in this

thesis, the software isolation is not sufficient and shared resources leave cloud and

mobile systems vulnerable to side-channel and QoS attacks. To demonstrate that

side-channel attacks are now practical threats, we set out to implement such an

attack on an actual cloud, outside of the controlled lab environment. In order to

perform a side-channel attack on cloud, we tackled the co-location detection problem

and devised 3 new methods to reliably detect co-location. Then we applied the

Prime+Probeattack to recover an RSA secret key from a co-located virtual machine

that was running on the same system. In addition to side-channels, we introduced

and demonstrated a practical QoS attack. We implemented the attack within an

Android app and showed that it is practical to successfully develop and deploy such

a malware. The developed app was scanned by state-of-the-art malware scanners

but none of the scanners were able to detect it as malicious.

Next, we showed that it is possible for malicious actors to utilize ML to over-
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come automation and scalability challenges of side-channel attacks. By using ML,

we showed how to efficiently recover information from multiple victims in much

shorter time. Considering the wide adoption of AI across many disciplines, it would

be naive to think that malicious actors do not already use ML. To this end, we

argued that we can be proactive and proposed the DeepCloak framework. As the

side-channel literature shows, there is a clear need for users to cloak their execution

fingerprints from the underlying shared system. With the DeepCloak framework, we

took the first step in this direction. Specifically, by making novel, defensive use of

adversarial crafting we introduced a new cloaking defense against the side-channel

leakage. We demonstrated the threat that side-channel leakage poses by using leak-

age profiles of different processes to train highly accurate ML and DL classifiers.

We further investigated the effects of different parameters on the learning rate and

testing accuracy. While side-channel leakage is a strong threat to shared hardware

systems, we showed that the leakage can be efficiently cloaked using carefully crafted

adversarial perturbations. Moreover, we investigated classifier hardening methods

that can potentially help an attack to bypass our defense. We showed that even if

DD or adversarial re-training is used, we can still cloak the side-channel leakage.

We showed that AL perturbations can be executed as a sister-process, running side-

by-side with the original and force misclassification to the attacker’s model without

significant overhead. The adversarial crafting-based cloaking mechanism that we

have outlined in the DeepCloak can enable cloud users to have higher levels of secu-

rity on demand for sensitive operations. Moreover, the efficiency of this defense can

be improved for shared hardware systems like the cloud. Finally, to the best of our

knowledge, this work is the first use of adversarial crafting for defensive purposes

against side-channel attacks. We envision the same approach to be useful in other

application scenarios.
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[8] Berk Gülmezoğlu, Mehmet Sinan İnci, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Cross-VM Cache Attacks on AES. IEEE Transactions on
Multi-Scale Computing Systems, 2(3):211–222, 2016.

167
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