
06EOLI-Z

IQP MJR-0032 —

Neural Networks for Financial Prediction

An Interdisciplinary Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted By:
Venera Varbanova

Submitted To:
Professor Michael Radzicki (Project Advisor)

Date: May 29, 2006
www.wpi.edu/—venera/IQP.pdf

venera@wpi.edu

Acknowledgements

I would like to express my great appreciation to Professor Michael Radzicki for his patience and

support.

i

Abstract
The purpose of this project is threefold: firstly, to make an overview of what artificial

neural networks are; secondly to demonstrate the process of building and testing a neural

network; and thirdly to examine and analyze the use of neural networks as a forecasting tool,

specifically a neural network's ability to predict future trends of a Stock Market Index and a

publicly traded NASDAQ stock.

ii

Executive Summary

The technology of artificial neural networks is relatively new. It is still in the phase of

constant research and improvement. Along other applications, a very intriguing topic of research

nowadays is the application of neural networks for financial markets prediction. In fact, there are

already some commercial tools available on the market, which claim to successfully use their

neural networks for financial markets prediction.

However, due to the theoretical great return opportunities that may arise from successful

neural networks, information on the inputs used, the architecture and logic of the neural networks

is not freely and widely published. Thus, this project is aiming to shed some light on what neural

networks are, what they can and cannot do, and how they can be utilized for stock market

forecasting. More specifically, given the information limitation, the main goal of this project is to

design and build a neural network prototype that can be used for stock market prediction.

There are a number of challenges that must be tackled in order to successfully deliver the

forecasting neural network prototype, yet training the network, as we shall see later in the paper,

is the most crucial part of the entire process. Any neural network could be only as good as the

training data it is given. As a result, much attention and time is given to deciding what this simple

neural network will be able to handle, and what kind of data and how much it should be given.

Through extensive research and analysis it was decided to build a multi-layer perception

neural network and train it on historical S&P 500 closing price data. The Methodology section of

this paper explains in detail the motivation behind this choice, and the technical details around

the simple prototype neural network. An analogical experiment was performed using Intel Corp

historical stock prices. Two applications were produced in the end, a S&P500 predictor, and an

INTC predictor.

iii

Testing the prototype network was the most exciting part of the project. Despite the

limited time available for training and testing of the network due to the prolonged design and

decision period, the test results were promising. The neural network showed that it has a sense of

direction of where the market is going, and the numerical predictions it produced were better than

expected.

In the process of building the network and doing literature review, many interesting ideas

of how to make a neural network work better were conceived. Those ideas are summarized in a

chapter on future directions towards the end of the paper, and may serve as a basis for future

work on extending this project.

iv

Table of Contents

1 	 Introduction 	 1
2 Background 	 3

2.1 The Stock Market 	 3
2.2 Fundamental and Technical Analysis 	 5
2.3 Market Predictability 	 7
2.4 Neural Networks in Investing and Trading 	 8
2.5 History of Neural Networks in Trading 	 9
2.6 Neural Networks Fundamentals 	 10

3 Methodology 	 19
3.1 	 Identifying Project Goals 	 20
3.2 Obtaining and Assessing Available Historical Market Data 	 20
3.3 Designing the System 	 22
3.4 Implementing the System 	 22
3.5 Tuning the System 	 23
3.6 Experiment Setup and Results 	 23

4 Future Directions 	 27
5 Impact on Society 	 29
6 Conclusion 	 33
Bibliography 	 34
Appendix A: Source Code 	 36

v

1 Introduction

Stock trading and investing are becoming ever more popular for the general public; in

fact, so popular that many people now act as part-time traders while they are employed at their

regular full-time jobs. The primary reason for the expanding popularity of trading is its improved

accessibility. Trading over the Internet, or e-trading, has revolutionized the way people buy and

sell stocks, and how they make their trading decisions. Computerization in general has had a huge

effect on the stock market.

In the beginning, it all happened down on the trading floor, where paper stocks were

bought and sold by the yelling and waving of stock brokers. Nowadays, the trend is for nearly

everything to be computerized: one of the biggest stock exchanges in the USA, the NASDAQ, is

completely computerized and the New York Stock Exchange (NYSE) has recently merged with

two fully computerized exchanges, Euronext and Archipelago. For some analysts, the merger

spells the end of the famous floor and some specialists speaking privately have said they feared

for their jobs under the merger plan (Merkuri, 2006).

Computerized or not, there are two schools of stock analysis that aid analysts and pseudo-

analyst to make buy and sell decisions. While fundamental analysis examines the financials of an

equity, technical analysis analyses stock's trading patterns through the use of charts, trend lines,

and many other mathematical analysis tools. With the advent of technology, technical analysis in

particular has been attracting more and more enthusiasts who have began trading and investing.

Thus, technical analysis is no longer done with a pen and pencil on the drawing board, but either

with the aid of heavy software packages that assist the traders in taking the right decisions, or

numerous web sites providing free technical analysis along with technical analysis education.

1

One of the newest technologies in aiding technical analysis is the neural network

technology. This paper will look into it closely, discussing what neural networks are, how they

are used by traders and investors, what they are good for, and where they fail. The paper will also

examine the effect of neural network over technical analysis and financial markets. Furthermore,

the paper will describe the design, development, and testing of a neural network prototype. In the

end, ways of improving the neural network will be discussed to provide future directions for

development.

2

2 Background

In this section, we will examine in more detail the two main concepts of this paper: the

stock market and neural networks. We are going to make a brief overview of each concept, and

then we are going to look into their intersection, that is, where neural networks come into play in

the stock trading world.

2.1 The Stock Market

When talking about "the stock market", we are referring to the organized trading of securities

through various exchanges and through the over-the-counter market. A "stock exchange" is a

specific form of a stock market, a physical location where stocks and bonds are bought and sold,

such as the New York Stock Exchange, NASDAQ or American Stock Exchange.

The New York Stock Exchange NASDAQ has no physical trading floor

Only publicly held company stock is traded on the stock market, and the associated

financial instruments (including stock options, convertibles and stock index futures). Participants

in the stock market range from small individual stock investors to large hedge fund traders, who

can be based anywhere.

3

Some exchanges are physical locations where transactions are carried out on a trading

floor, by a method known as open outcry. ' Such a stock exchange is The New York Stock

Exchange. The other type of exchange is a virtual kind, composed of a network of computers

where trades are made electronically via traders at computer terminals. Such a stock exchange is

the NASDAQ stock exchange.

The stock exchanges are the places where buyers and sellers meet (virtually or physically)

and decide on a price. Actual trades are based in the auction market fashion, that is, a potential

buyer "bids" a specific price for a stock and a potential seller "asks" a specific price for the stock.

When the bid and ask prices match, a sale takes place on a first come first serve basis if there are

multiple bidders or askers at a given price. The current bid price is the highest amount any buyer

is willing to pay and the current ask price is the lowest price at which someone is willing to sell.

For a trade to take place, there must be a matching bid and ask price. If there is a spread between

the ask and the bid price and no one steps in to buy or sell at the current price, a market maker, or

specialist on NYSE, will make the trade. Market makers and specialist are not only required to

make the trade when no buyer or seller changes their price, but they actually make their living by

trading the spread.

The price of a stock is driven up, when there are more buyers than sellers. Similarly, when

there are more sellers than buyers, the stock price goes down. The goal of each trader is to make a

profit, and one way to make a profit in the stock market is to buy a stock at a certain price, and

sell it later at a higher price. The higher the difference between the prices, the greater the profit is.

In order for this to happen, however, the trader should have made a series of right decisions: 1)

selecting a stock to trade; 2) selecting the moment to buy the stock; and 3) selecting the moment

to sell the stock.

' A situation in which traders are wildly throwing their arms up, waving, yelling, and signaling to each other.

4

Traders use numerous techniques to help them make the right decisions. The techniques

vary greatly; they range from rigorous mathematical analysis to following famous traders on TV

shows or supposedly helpful websites; from various visual and charting methods to relying on

advice from a co-worker; from applying chaos theory, genetic algorithms, evolutionary

computing, neural networks, and fuzzy logic to relying on the "gut feeling". Usually it is a

combination of all, or at least part, of the above.

2.2 Fundamental and Technical Analysis

There are a number of techniques for stock market trading, yet the analysis of financial

markets is broadly divided into two main disciplines: fundamental and technical analysis.

Fundamental analysis analyses trading or investing in financial markets by attempting to evaluate

the intrinsic (true) value of an equity by examining company financials. According to

fundamental analysis, if an equity is undervalued then the equity will go up in price and if the

equity is overvalued the future price will go in the opposite direction. In order to determine

whether an equity is undervalued or overvalued, a firm's financials are also compared by analysts

to those of their competitors and to the average values in the S&P 500 (or other appropriate

index). Based on industry, company and geopolitical news and financial data analysts forecast

expected earnings. Actual earnings relative to expected earnings (or "whisper" earnings)

significantly influence a stock's price.

Fundamental analysis assumes that all news and information is absorbed in the equity price.

It is generally accepted that fundamental analysis is applicable over the long run. Yet, especially

in the short term, the reality is that information is not disseminated perfectly and fundamental

analysis may not be reliable.

5

Technical analysis on the other hand, ignores financial analysis and concentrates only on

finding patterns through the use of charts, trend lines, support and resistance levels, and many

other mathematical analysis tools, in order to predict future movements in equity's price, and to

help identify trading opportunities. The basic foundations of technical analysis are that a stock's

current price discounts all information available in the market, that price movements are not

random, and that patterns in price movements, in very many cases, tend to repeat themselves or

trend in some direction. Technical analysis is the basis of all trading software packages available

(About.com. May, 2006).

Technical analysis utilizes a number of technical indicators which have been developed

over the years to guide the trading decision-making. Indicators are usually grouped based on their

use. Trend, momentum, volume and volatility indicators are the major price/volume indicator

categories that are utilized in technical analysis. Trend indicators are used to indicate the

direction of a trend. There are many trend indicators, yet some of the most widely used are

moving averages, directional movement indicators such as Average Directional Movement Index

(ADX) which indicates whether the market is trending or ranging, moving average oscillators

such as Moving Average Convergence Divergence (MACD) indicating, etc (About.com . May,

2006).

Momentum indicators on the other hand measure the speed at which price is changing.

Some of the most used momentum indicators are the Relative Strength Index (RSI) and The Slow

Stochastic which are a popular momentum oscillators used to determine overbought/oversold

levels. While trending indicators are considered lagging indicators, momentum indicators always

precede price movements (Incrediblecharts.com . May, 2006).

Volume indicators are used to confirm the strength of trends. Some of the volume

indicators are the Force Index which combines price and volume into one value, attempting to

6

measure the force behind a move in price and the Volume Oscillator (VO) which identifies trends

in volume. There are a number of other volume indicators that combine one or all of volume,

price, or range (Incrediblecharts.com . May, 2006).

Volatility Indicators are used to confirm price behavior. Some of the volatility indicators

are the Chaikin indicator and the Volatility Ratio. The Chaikin indicator measures volatility as

the trading range between high and low for each period. The Volatility Ratio is designed to

highlight breakouts from a trading range (Incrediblecharts.com. May, 2006).

Furthermore, there a hundreds of indicators and new ones are being developed constantly

as traders search for a better guidance. Yet, none of the above indicators are used by themselves

or are suited to all markets thus technical analysts use a combination of indicators in different

market conditions. The craft in technical analysis is therefore exactly in the ability to understand

and interpret correctly the many technical indicators. Thus each technical analysis is as good as

the interpreter and therefore considerable amount of time must be spent in learning the principles

of technical analysis and how it can be used to properly interpret technical indicators.

Because financial markets are extremely complex and human abilities are limited, software

models and packages are constantly being developed. Software packages that will better and

more accurately find and interpret market conditions and forecast market prices. The neural

networks are one of the latest trends in applying new technologies for market prediction in order

to rip profits from market inefficiency. The complexity of the neural networks seems to

theoretically be very promising for application in the complex financial markets.

2.3 Market Predictability

Before any financial tool for market forecasting is developed one has to answer on the

fundamental question whether market prices are predictable at all? Economists are somewhat

7

split over this question. According to the Efficient Market Hypothesis (EMH) developed in 1965

by E. Fama, the financial markets are unpredictable. The EMH, in its weak form, asserts that the

price of an asset reflects all of the information that can be obtained from past prices of the asset,

i.e. the movement of the price is unpredictable. The best prediction for a price is the current price

and the actual prices follow what is called a random walk. The EMH is based on the assumption

that all news is promptly incorporated in prices; since news is often unpredictable, prices are

unpredictable. Since 1965, the EMH has had broad acceptance in the financial and academic

communities.

On the other side, much effort has been expended trying to disprove the EMH. Current

prevailing opinion is that the theory has been disproved S.J. Taylor in his "Modeling Financial

Time Series" published in 1994, and L. Ingber in his "Statistical mechanics of nonlinear non-

equilibrium financial markets: Applications to optimized trading" (1996) advocate that the capital

markets are not efficient. The market inefficiency thus suggests that financial markets are

predictable (Taylor, 1994; Ingber, 1996). In this paper we make the assumption that markets are

predictable and inefficient in order to develop a neural network for financial prediction.

2.4 Neural Networks in Investing and Trading

Neural networks have undoubtedly already entered the financial world, and are currently

used by many big financial firms as an aid to forecasting, classification, decision-making, trading,

and many others. New applications of the neural networks technology are constantly being

discovered, and the financial field is no exclusion.

Why do some people trust a technology to take the trading decisions for them, and not their

minds? One answer is that technology lacks emotion, and emotion often hurts the trading process.

For this reason, many traders make an intelligent trading system learn their trading strategies,

8

their decision rules, their rules of thumb, and then let the system make decisions based solely on

those strategies and rules. By integrating technology human weaknesses, that is, emotions such as

greed and fear that often rule financial markets, are excluded. Indeed, it may be unnatural for a

human to let a system decide for him, but in the trading world, this often pays off.

A second answer is the real advantage of neural networks to technical traders, that is, the

neural network's ability to recognize patterns - especially patterns that are not obvious to the

human eye. Technical trading is all about identifying patterns. Classification of stocks into out-

performers and others types is also a unique ability of neural networks, but its full potential

power is yet undiscovered.

2.5 History of Neural Networks in Trading

Artificial neural networks have proven to be a useful tool for prediction of non-linear time

series, such as financial time series, and for classification of patterns, such as the patterns in the

stock market price movements. Thus, from the very beginning of the neural networks research,

there were significant endeavors to successfully apply the neural network technology to the

financial markets, motivated by great potential profitability.

The earliest work in neural computing goes back to the 1940's when McCulloch and Pitts

introduced the first neural network computing model. In the 1950's, Frank Rosenblatt's work

resulted in a two-layer network, the perceptron, which was capable of learning certain

classifications by adjusting connection weights. Although the perceptron was successful in

classifying certain patterns, it had a number of limitations. The perceptron was not able to solve

the classic XOR (exclusive or) problem. Such limitations led to the decline of the field of neural

networks

In 1969, it became apparent that it was important for neural nets to solve nonlinear

9

classifications (i.e., to adjust the weights and minimize the errors in nonlinear weighting

functions in neural nets with more than two layers). In 1974, Paul Werbos solved the nonlinear

classification problem by inventing the "backward propagation of errors" technique for his

Harvard Ph.D. dissertation. Once the nonlinear classification problem was solved, people began

applying neural nets to many problems, including equity trading.

During the 1990s, there was a boom in the application of neural nets to trading, but there

weren't too many successes. Lots of institutions spent lots of money, but the results were not very

good. One of the main reasons neural nets produced poor results during the 1990s was that the

engineers who were writing the code did not adequately understand trading, and the traders using

the neural nets did not adequately understand the underlying programming and computer science.

During the bear market of 2000-2003, many traders and institutions lost money and did not

have the resources to pour into neural net research, even though neural net technology and

computer speed were improving daily. Nowadays (2005-2006) articles in financial journals and

papers are expressing their optimism on neural networks, saying: "Now is the time to revisit

neural networks." During the years, it became clear to the financial professionals and researchers

that the key to developing a good neural network for trading is to first have a trading system that

works without the neural network. Once a system is found to work, a neural network can improve

it.

2.6 Neural Networks Fundamentals

A first wave of interest in neural networks (also known as "connectionist models" or

"parallel distributed processing") emerged after the introduction of simplified neurons by

McCulloch and Pitts in 1943 (McCulloch & Pitts, 1943). These neurons were presented as

10

models of biological neurons and as conceptual components for circuits that could perform

computational tasks.

The interest in neural networks re-emerged only after some important theoretical results

were attained in the early eighties (most notably the discovery of error back-propagation), and

new hardware developments increased the processing capacities. This renewed interest is

reflected in the number of scientists, the amounts of funding, the number of large conferences,

and the number of journals associated with neural networks. Nowadays most universities have a

neural networks group, within their psychology, physics, computer science, or biology

departments.

Artificial neural networks can be most adequately characterized as "computational

models" with particular properties such as the ability to adapt or learn, to generalize, or to cluster

or organize data, and which operation is based on parallel processing. However, many of the

above mentioned properties can be attributed to existing (non-neural) models; the intriguing

question is to which extent the neural approach proves to be better suited for certain applications

than existing models. To date an equivocal answer to this question is not found.

An artificial network consists of a pool of simple processing units which communicate by

sending signals to each other over a large number of weighted connections.

A set of major aspects of a parallel distributed model can be distinguished:

n A set of processing units ('neurons,' cells');

n A state of activation for every unit, which is equivalent to the output of the unit;

n Connections between the units. Generally each connection is defined by a

weight which determines the effect which the signal of the sending unit has on

the receiving unit;

1 1

n A propagation rule, which determines the effective input of a unit from its

external inputs;

n An activation function, which determines the new level of activation based on

the effective input and the current activation (i.e., the update);

n An external input (a.k.a. bias, offset) for each unit;

n A method for information gathering (the learning rule);

n An environment within which the system must operate, providing input signals

and (if necessary) error signals.

Each processing unit (often called "neuron" after its biological inspiration or "node")

performs a relatively simple job: receive input from neighbors or external sources and use this to

compute an output signal which is propagated to other units. Apart from this processing, a second

task is the adjustment of the weights. The system is inherently parallel in the sense that many

units can carry out their computations at the same time.

Within neural systems it is useful to distinguish three types of units: input units which

receive data from outside the neural network, output units which send data out of the neural

network, and hidden units whose input and output signals remain within the neural network.

In most cases we assume that each unit provides an additive contribution to the input of

the unit with which it is connected. The total input to a unit is simply the weighted sum of the

separate outputs from each of the connected units plus a bias or offset term. The contribution for

positive weight is considered as an excitation and for negative weight as inhibition. In some cases

more complex rules for combining inputs are used, in which a distinction is made between

excitatory and inhibitory inputs. We call units with a propagation rule sigma units.

We also need a rule which gives the effect of the total input on the activation of the unit.

We need a function which takes the total input and the current activation and produces a new

12

value of the activation of the unit. Often, the activation function is a non-decreasing function of

the total input of the unit although activation functions are not restricted to non-decreasing

functions. Generally, some sort of threshold function is used: a hard limiting threshold function (a

sgn function), or a linear or semi-linear function, or a smoothly limiting threshold. For this

smoothly limiting function often a sigmoid (S-shaped) function is used (Figure 1).

FIGURE 1: Activation Functions

sgn 	 semi-linear 	 sigmoid

A neural network topology refers to the pattern of connections between the units and the

propagation of data. As for this pattern of connections, the main distinction we can make is

between:

n Feed-forward networks (our case), where the data flow from input to output

units is strictly feed-forward. The data processing can extend over multiple

(layers of) units, but no feedback connections are present, that is, connections

extending from outputs of units to inputs of units in the same layer or previous

layers.

n Recurrent networks that do contain feedback connections. Contrary to feed-

forward networks, the dynamical properties of the network are important. In

some cases, the activation values of the units undergo a relaxation process such

that the network will evolve to a stable state in which these activations do not

13

change anymore. In other applications, the change of the activation values of the

output neurons is significant, such that the dynamical behavior constitutes the

output of the network (Pearlmutter, 1990).

A neural network has to be configured such that the application of a set of inputs produces

(either "direct" or via a relaxation process) the desired set of outputs. Various methods to set the

strengths of the connections exist. One way is to set the weights explicitly, using a priori

knowledge. Another way is to 'train' the neural network by feeding it teaching patterns and letting

it change its weights according to some learning rule.

We can categorize the learning paradigms in two distinct sorts. These are:

n Supervised learning (our case) or Associative learning in which the network is

trained by providing it with input and matching output patterns. These input-

output pairs can be provided by an external teacher, or by the system which

contains the network (self-supervised).

n Unsupervised learning or Self-organization in which an (output) unit is trained

to respond to clusters of pattern within the input. In this paradigm the system is

supposed to discover statistically salient features of the input population. Unlike

the supervised learning paradigm, there is no a priori set of categories into which

the patterns are to be classified; rather the system must develop its own

representation of the input stimuli.

Here is some additional clarification of the most important neural network terminology:

n Output vs. activation of a unit. Since there is no need to do otherwise, we

consider the output and the activation value of a unit to be one and the same

thing. That is, the output of each neuron equals its activation value.

14

n Bias, offset, threshold. These terms all refer to a constant (i.e., independent of

the network input but adapted by the learning rule) term which is input to a

unit. They may be used interchangeably, although the latter two terms are

often envisaged as a property of the activation function. Furthermore, this

external input is usually implemented (and can be written) as a weight from a

unit with activation value 1.

n Number of layers. In a feed-forward network, the inputs perform no

computation and their layer is therefore not counted. Thus a network with one

input layer, one hidden layer, and one output layer is referred to as a network

with two layers. This convention is widely though not yet universally used.

n Representation vs. learning. When using a neural network one has to

distinguish two issues which influence the performance of the system. The

first one is the representational power of the network; the second one is the

learning algorithm.

Below is an introduction of one of the most popular kinds of neural networks, the one that

is used for the experiments in this project, namely the multi-layer feed-forward network. As its

name suggests, it is a feed-forward network with layers of processing units. The central idea

behind the learning of this network is that the errors for the units of the hidden layer are

determined by back-propagating the errors of the units of the output layer. For this reason the

method is often called the back-propagation learning rule. Back-propagation can also be

considered as a generalization of the delta rule for non-linear activation functions and multilayer

networks (Figure 2).

15

FIGURE 2: Feed-Forward Network

A feed-forward network has a layered structure. Each layer consists of units which receive

their input from units from a layer directly below and send their output to units in a layer directly

above the unit. There are no connections within a layer. The inputs are fed into the first layer of

hidden units. The input units are merely `fan-out' units; no processing takes place in these units.

The activation of a hidden unit is a function of the weighted inputs plus a bias. The output of the

hidden units is distributed over the next layer of hidden units, until the last layer of hidden units,

of which the outputs are fed into a layer of output units.

Although back-propagation can be applied to networks with any number of layers, just as

for networks with binary units it has been shown (Hornik, Stinchcombe, & White, 1989;

Funahashi, 1989; Cybenko, 1989; Hartman, Keeler, & Kowalski, 1990) that only one layer of

hidden units suffices to approximate any function with finitely many discontinuities to arbitrary

precision, provided the activation functions of the hidden units are non-linear (the universal

approximation theorem). In most applications a feed-forward network with a single layer of

hidden units is used with a sigmoid activation function for the units (Figure 1).

16

Back-propagation is relatively easy to explain and understand. Here is one non-

mathematical explanation of back-propagation. When a learning pattern is clamped, the

activation values are propagated to the output units, and then the actual network output is

compared with the desired output values. We usually end up with an error in each of the output

units. Let's call this error e(o) for a particular output unit o. We have to bring e(o) to zero. The

simplest method to do this is the greedy method: we strive to change the connections in the neural

network in such a way that, next time around, the error e(o) will be zero for this particular

pattern. We know from the delta rule that, in order to reduce an error, we have to adapt its

incoming weights.

FIGURE 3: Back-Error Propagation

Output Layer

Forward
Network
Activation

Hidden Layer

t
Input Layer

Back
Error
Prop a-
gation

.401d

Despite the success of the back-propagation learning algorithm, there are some aspects

which make the algorithm not guaranteed to be universally useful. Most troublesome is the long

training process. This can be a result of a non-optimum learning rate and momentum. A lot of

advanced algorithms based on back-propagation learning have some optimized method to adapt

17

this learning rate, as will be discussed in the next section. Outright training failures generally

arise from two sources: network paralysis and local minima, but these are not going to be

discussed here.

How good are multi-layer feed-forward networks really? As it will be shown in the

experiments later in the paper, the approximation of the network is not perfect. The resulting

approximation error is influenced by:

1. The learning algorithm and number of iterations. This determines how good the

error on the training set is minimized.

2. The number of learning samples. This determines how good the training samples

represent the actual function.

3. The number of hidden units. This determines the 'expressive power' of the network.

For "smooth" functions only a few number of hidden units are needed, for wildly

fluctuating functions more hidden units will be needed.

Because of time and computing power constraints, for this project the sample size will be

relatively small, as well as the number of hidden units. The quality of the produced network is not

expected to be very high, but it will be enough to demonstrate the potential of the neural

networks technology.

18

3 Methodology

In this section, we will examine in details how to design, build, train, test, and finally use a

neural network. As we shall see, there is no single right design and there is not single right testing

strategy. In fact, it is not so important what the design is. What is of utmost importance, though,

is the training process and the data that is used for it. A neural network should not memorize, it

should generalize, and whether it is the former case, or the latter, entirely depends on the training

process. Even if the training process is correct and consistent, the neural network is still a useless

tool without the right training data.

In order to choose the right training data, we should be very clear on what we expect the

network to be able to go. If we give it the right data and we train it properly, the network will

give back results in return. But if we incorrectly conclude that there is a certain pattern in a set of

data, and there is not one, then we are confusing our network, and the network will not able to

generalize anything, or will not be able to extract the pattern that does not even exist. By this

point it should be clear that building a working neural network is not trivial. An effective training

process may take many days, and even months. Selecting and preprocessing appropriate training

data may also take very long. Even when we succeed with training data selection, and with the

training process, we cannot say "Here is the complete product" and leave it on the shelf. The

neural networks made for dynamic systems like the stock market require daily, if not hourly

maintenance, depending on their goal and usage. A smart thing would be to automate these

processes, so that the neural network users only have to worry about how to interpret the neural

network results.

19

3.1 Identifying Project Goals

The main goal of this project was to design and build a prototype neural network, and

demonstrate the applicability of the neural network model in predicting financial markets. The

prototype model was tested on predicting a stock market index, and a stock.

3.2 Obtaining and Assessing Available Historical Market Data

Ideally, any neural network should be trained on all data which is available, such as

opening price, closing price, high for the day, low for the day, volume, and all available technical

numeric indicators. The more kinds of relevant input data are included in the model, the better the

accuracy of the model predictions. However, the trade-off is that the model becomes very

complex, and the time to train the model and the computing power requirements sharply rise.

For the prototype neural network build for this project, it was decided to use a reduced

amount of data, namely 280 data points, in order to minimize training time and demand for

computing power. The S&P 500 stock market index was chosen for the stock market index

version of the model, and the Intel Corporation stock, which is traded on NASDAQ as INTC, was

chosen for the stock version of the model. For the S&P 500 predictor, the data chosen for training

was from January 1975 to February 1976. For the INTC predictor, the data chosen was from

April 2005 to May 2006. Each of those sets contained 280 data points, which were selected to be

the closing prices for the day.

20

inorder_sp500_75_to_now - Chartl - Microsoft Woiks Spieadsheet

„Ffe Eck View Format Tools Window Help

[Arial 	 q Cin 	 is a I 	 B I U

S&P500 (2 Jan 75 to 9 Feb 76)

120

100

80

60

40

20

-•- close

Press ALT to choose commands.

eso

FIGURE 4: S & P 280 day chart

FIGURE 5: INTEL 280 day chart

File Edit View Format Tools Window Help

Arial 	 v 10
	

q 	 GI a fa Gb B I 1.! 	 'a
INTC (20 Apr 05 to 27 May 06)

30

25

20

15

10

5

• close

Press ALT to choose commands.

21

3.3 Designing the System

The neural network model has 3 layers: 1 input layer, 1 hidden layer, and 1 output layer.

The decision to include only one hidden layer was based the literature review. Systems with more

than one hidden layer are more prone to overfitting the data than those with 1 hidden layer. Also,

the training time increases dramatically when more hidden layers are added, making the

experiments too prolonged in time to perform, or requiring unavailable computing resources.

The input layer has 30 input nodes. This means the neural network uses data from 30 days

back to make its prediction for the new day. The hidden layer has 10 hidden nodes. The number

of nodes in the hidden layer is usually determined by the amount of training data. Since in my

case, the training data was minimized, the number of hidden nodes was kept small as well. The

output layer has one node, namely the forecasting closing price for the next business day.

The 280 data points available are distributed among the training, evaluation, and test set

as follows:

[30-179] TRAINING SET

[180-259] TEST SET

[260-279] EVALUATION SET

The window size, that is, the size of the input vector, was 30 and that is why the training set

begins from 30, not from 0.

3.4 Implementing the System

The implementation details, the source code, and the relevant technical details are all

described in the Appendix on Programming Details.

22

3.5 Tuning the System

After the system was ready and able to run, a lot of initial tests were performed. They

helped remove some of the source code issues, and determine the needed preprocessing of the

data. The data was preprocessed by division by 100. Performing this preprocessing of the data

allowed the neural network to finish training faster, as the computed error was minimized faster.

The need for saving the results to an output file, in addition to showing them on the screen, was

observed, and so code to produce a formatted output file was added. The output file was

formatted such that it would be ready to be imported in Excel or some other spreadsheet software

system. The file contains 2 columns, Predicted and Actual, and it is very easy to plot a chart and

see how successful the neural network was at predicting. Another way of assessing the system

would be to see if the direction of change of the predicted values followed the actual direction of

change. The difference between the predicted and actual direction change would be used to

determine the error rate using any spreadsheet software.

3.6 Experiment Setup and Results

Both experiments were performed using the same source code. The difference between the

two experiments is that for the first experiment, the array in backprop.cpp was filled with 280

S&P500 historical values, while for the second experiment, the 280 closing prices of Intel Corp

(symbol: INTC) were used. Before entering the data in backprop.cpp file for each experiment, all

closing prices were first divided by 100 to minimize the time to compute the total error.

Technology used for performing the tests:

All the tests were performed in exclusion (one by one) on a high processing power laptop

23

102

101

100

99

98

97

96

95

• predicted 	 actual

with Intel T2400 Core Duo processor, 1GB RAM, abundance of disk space (-80GB), so the

times for training shown here may be better than if the system was run on an average personal

computer.

Experiment 1:

FIGURE 6: S & P 280 predicted vs. actual results

Press ALT to choose commands.

Data used: 280 daily closing prices of S&P500 starting 2 Jan 1975.

Preprocessing: Yes, division by 100.

Time to train: About 6 hours of full CPU utilization.

Result: Overall follows the trend, achieves success rate of 56% (error rate is 44%), numerical

price predictions not very accurate.

Warning: Is that only possible when the actual direction is up? Will it ever suggest "down" by

itself before the real trend goes down?

Problem: The numerical predictions are always below in price then the actual data.

24

Possible reason: Not given enough data so that the network could catch the "speed" of the stock

market that is, prices go up faster than the network projects.

Solution: More training data - at least several years.

Error Rate computed: 44%

Experiment 2:

FIGURE 7: INTEL predicted vs. actual results

Data used: 280 daily most recent closing prices of the INTC stock.

Preprocessing: Yes, division by 100.

Time to train: About 2 hours of full CPU utilization.

Result: Follows the trend, relatively low error rate, better numerical price predictions, error rate =

33%, success rate = 67%.

25

Warning: the data the neural network had to predict did not have many ups and downs, the

pattern was smoother than in the first experiment, so it is possible this is the reason for the

better numeric estimations.

NOTE: For more information on the experiment results, please refer to the attached

spreadsheets, which contain plots of the data, error rate computation, and more.

26

4 Future Directions

Here are briefly listed a few suggestions that could be used for further work on this project:

n A full planned statistical experiment with the neural network which would further

prove or disprove the effectiveness of the network.

n Comparative experiment between the neural network and a linear forecasting tool

which would further prove or disprove the greater effectiveness of the network

compared to the effectiveness of available linear forecasting models.

n Comparative experiment between different neural network methods, based on

convergence rate, prediction accuracy, training time requirements and stability of

results.

Here are some suggested design improvements/experiments.

n Train the neural network on a prolonged period of data (i.e. several years).

n Increase the number of nodes in the hidden layer. Doing so should increase the

accuracy of the system.

n Increase the number of hidden layers in the neural network.

n Change the neural network design from a feed-forward one to a recurrent one.

Doing so could improve the performance of any time series forecasting network.

n Have the system output its forecast alongside a number indicating its own level of

confidence in its prediction. Reject/ignore results whenever the system has low

confidence in its prediction.

27

n Make the neural network read the input data from a CSV file; do not store the

training data in an internal array. This would allow for an easy retraining of the

neural network with new data.

n Automate the neural network training and retraining process, so that the neural

network is periodically retrained with new data from a data feed.

Try hybrid or alternative methods:

n Symbolic processing, which filters noise and could help a recurrent neural network

(RNN) model work better, as it is proven RNNs can learn simple grammars.

n Recurrent neural networks, which provide for stronger expression of the temporal

relationship of the data points; RNNS could infer rules and construct a deterministic

finite state automata.

n Self-organizing modeling.

n Genetic algorithms and neural networks.

n Evolutionary computing, genetic algorithms, and neural networks.

n Neural networks and chaos theory.

n Neural networks and fuzzy logic.

n Neural networks and Bayesian statistical models.

n Have a group of neural network and other models vote independently, and produce a

voting result on which the prediction is based.

28

5 Impact on Society

Technology has evolved so quickly in the recent decades that it is now obvious that the trend

of applying technology to virtually every aspect of life is going to continue well into the future.

The impact of technology on stock trading and investing could be observed in the mergers of

international stock exchanges, the increased number of people who are trading stocks and

derivatives, the increased number of part-time day traders, the increased number of discount

brokers online offering trade execution at lower fees, the new and improved trading systems

which incorporate innovative technologies like neural networks and evolutionary computing, and

provide for more profitability.

A recent series of mergers on non-electronic stock exchanges with fully electronic ones is

very indicative of the direction in which the financial world is going. There are apparent moves

by NASDAQ to acquire the London Stock Exchange. At the same time, the NYSE Group (owner

of the New York Stock Exchange) offered 8 billion euros ($10.2b) in cash and shares for

Euronext on May 22, 2006, outbidding a rival offer for the European Stock exchange operator

from Germany's Deutsche Borse, the German stock market. The new entity, to be called NYSE

Euronext, intends to form the world's first global stock market, with continuous trading of stocks

and derivatives over a 21-hour time span. It is also important to mention Archipelago's

acquisition by the NYSE Group. The Archipelago Exchange is a fully electronic stock exchange

that agreed to merge with the New York Stock Exchange in April 2005 to form the for-profit

NYSE Group. Thus, globalization and computerization are a strong trend in the financial world,

and this trend is to a great extend driven by the advancement of technology.

Another clear trend is that more and more people are executing trades online. Low-

commission equity trading seems to have been the catalyst for the online brokerage revolution,

29

and is the dominant securities product sold online. Another motivation besides the low

commission is the execution speed of the trades.

The impact of electornic trading technology on the financial markets, and indirectly on the

society as a whole, could be summarized in four main points. First, electronic trading technology

is cost-efficient, both in the sense that it lowers start-up costs for new systems and reduces

continuing operating costs substantially. Second, electronic trading technology changes the

dynamics of the marketplace by removing physical constraints such as geography and thus

increasing number of participants in a market. Third, electronic trading technology has a great

potential for disintermediating the markets, allowing buyers and sellers to meet directly. Finally,

electronic trading technology has blurred the distinction between broker-dealers and exchanges

(Unger, 1999).

Nowadays, thanks again to the advancement of technology and technical analysis, and of

their availability and accessibility online, many people whose day job involves work with a

computer which is connected to the Internet are acting as part-time traders while at work. This is

a controversial practice, since it distracts the workers and reduces their efficiency.

Yet another trend is the increasing usage of trade management platforms, and their

integration with innovative technologies like the neural network technology, or evolutionary

computing. Most of those systems are still not fully mature, but it will not be a big surprise if

several years (or maybe decades) from now a close-to-perfection trading system with a very

powerful neural network is available to the general public. It is very probable that such system is

very profitable in its early years of adoption, but as its popularity increases and more people start

using this same trading system with the same neural net (or another technology) integrated with

it, a lot of people will be trying to execute the exact same trades, and the result from that will be

greatly reduced profitability. Or maybe another scenario will take place. If the system is greatly

30

customizable, then it is less likely the situation described about would occur. For example, if the

trading system is integrated with a neural network whose training and/or architecture are

customizable, then it is very unlikely that the systems would produce the same results. Neural

networks are very sensitive to the amount and quality and the type of the training data, as well as

to their internal architecture, so it will be unlikely that two networks produce the same result.

It will be interesting to observe in the future how, and if, the neural networks technology

significantly impacts technical trading and, conversely, how the changing nature of equity,

derivative, commodity, bond, currency, etc. markets (i.e., their increasingly interrelated and

computerized nature) drives innovations in technical trading such as neural nets. The neural

networks technology is expected to improve technical trading, as it would provide for the

discovery of time series financial data patterns not readily visible to the human eye. At the same

time, the changing nature of the stock exchanges from non-computerized to completely

computerized would likely increase the understanding, and consequently, the usage and

profitability of technical trading, which is turn will stimulate further research and improvement of

technical trading models such as neural net, genetic algorithms, and evolutionary computing

models.

In the most extreme case, when all traders use real-time, intelligent trading systems and

ideally trained and configured neural networks, all profit opportunities the markets create would

immediately be exploited, and the Efficient Market Hypothesis would hold true. In other words,

if everybody traded with the perfect trading system using the perfect neural network, absorbing

all news in the second it arrives, then nobody will be able to predict the market. Fortunately, this

is not likely to become reality.

31

In conclusion, the financial industry is becoming more and more dependent on advanced

computer-technologies in order to maintain competitiveness in a global economy. Neural

networks represent an exciting technology with a wide scope for potential applications, ranging

from routine credit assessment operations to driving of large scale portfolio management

strategies. Some of these applications have already resulted in dramatic increases in productivity,

and have thus had a positive effect on society. The hope is that neural networks would prove to

be worth the investment in research and development, and would be well-understood and

properly used by traders, investors, educators, researchers, and many others.

32

6 Conclusion

Artificial neural networks are universal and highly flexible function approximators first

used in the fields of cognitive science and engineering. In recent years, neural network

applications in finance for such tasks as pattern recognition, classification, and time series

forecasting have dramatically increased. However, the large number of parameters that must be

selected to develop a neural network forecasting model have meant that the design process still

involves much trial and error. The purpose of this project was to provide an introduction to neural

networks, and demonstrate how a prototype forecasting neural network is designed, created, and

evaluated. The impact of neural networks and trading technologies on society were examined.

The two instances of the model build had different performance, although the architecture

and parameters of both instances were the same, only the training data was different. This clearly

demonstrated the importance on the quality of the training data on the performance of the

network. The flexibility of the model was also shown, as single model suited two different

predictors. Finally, the forecasting potential of the neural network technology was demonstrated,

as such a simple system as the one build for this project had success rate of 56% for the first

experiment on predicting S&P500, and 67% on predicting INTC. Clearly, the neural networks

technology is a powerful one, and its full potential is yet to be uncovered.

33

Bibliography:

Andrew W., MacKinlay Craig. A Non-Random Walk Down Wall Street. Princeton University
Press, 1999.

Back A.D., Tsoi A.C., FIR and HR synapses, a new neural network architecture for time
series modeling. Neural Computation, 3(3):375-385, 1991.

Bartlmae K., Gutjahr S., Nakhaeizadeh G. [1997] "Incorporating Prior Knowledge About
Financial Markets Through Neural Multitask Learning", University of Karlsruhe, Germany.

Caldwell, R.B. [1994] Design of Neural Network-based Financial Forecasting Systems: Data
Selection and Data Processing. NEUROVE$T JOURNAL, Vol.2, No.5, pp. 12-20.

Cheng W., Wagner L., and Lin C. [1996] "Forecasting the 30-year U.S. Treasury Bond with a
System of Neural Networks, NeuroVe$t Journal, January/February 1996.

Chuah, K. L. [1992] A Nonlinear Approach to Return Predictability in the Securities Markets
Using Feedforward Neural Network, Ph.D. dissertation, Washington State University.

"Fundamental vs Technical Analysis." About.com .
http://daytrading.about.com/cs/charts/a/anylisis.htm . accessed May 23, 2005.

Gately, E. [1995] "Neural Networks for Financial Forecasting", John Wiley & Sons, Inc. New
York, NY, USA.

Ingber L. Statistical mechanics of nonlinear nonequilibrium financial markets: Applications to
optimized trading. Mathematical Computer Modeling, 1961.

Ivakhnenko, A.G., Muller, J. A. [] "Recent Developments of Self-Organizing Modeling in
Prediction and Analysis of Stock Market", Glushkov Institute of Cybernetics, Ukraine.

Kaastra I., Boyd M. [1995] "Designing a neural network for forecasting financial and economic
time series", Canada.

Kamijo, K. and Tanigawa, T. [1990] "Stock Price Pattern Recognition: A Recurrent Neural
Network Approach," Proc. of the IJCNN, San Diego, Ca, pp. 215-221.

Kehagias A., Petridis V. Time series segmentation using predictive modular neural networks.
Neural Computation, 9:1691-1710, 1997.

Kimoto, T., and Asakawa, K. [1990] "Stock Market Prediction System with Modular Neural
Networks," Proceedings of the IJCNN, San Diego, Ca, pp. 1-6.

34

Kutsurelis, J.E. [1998] "Forecasting Financial Markets Using Neural Networks: An Analysis of
Methods and Accuracy", NASA, 1998.

Malkiel, B.G. A Random Walk Down Wall Street. Norton, New York, NY, 1996.

Merkuri, Ervin. Policy and Management Paper: Transformation at the New York Stock Exchange:
A Constructive Review. The Heinz School Review. 7 Apr 2006.
http://journal.heinz.cmu.edu/Current/NYSE/nyse7.html . accessed May 27, 2006.

Mukherjee S., Osuna E., Girosi F. Nonlinear prediction of chaotic time series using support
vector machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, IEEE Workshop
on Neural Networks for Signal Processing VII, page 511. IEEE Press, 1997.

NEUROVE$T JOURNAL [1995] Special issue on Data Selection and Preprocessing, Vol.3,
No.6.

Principe J.C., Kuo J-M. Dynamic modeling of chaotic time series with neural networks.
In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information
Processing Systems, 7, pages 311-318. MIT Press, 1995.

Ruggiero Jr., Murray A. Futures magazine: "Neural Networks: Where They are Now". April
2006.

Russell S., Norvig P. (1995) Artificial Intelligence: A Modern Approach, Prentice Hall Series in
Artificial Intelligence. Englewood Cliffs, New Jersey.

Saad E.W., Prokhorov Danil V., Wunsch II D. C. Comparative study of stock trend prediction
using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural
Networks, 9(6):1456, November 1998.

Taylor S.J., Modeling Financial Time Series. J. Wiley & Sons, Chichester, 1994.

"Technical Indicators." Incrediblecharts.com .
http://www.incrediblecharts.com/technical/indicator_basics.htm . accessed May 23, 2005.

Tchaban, Griffin, Taylor. (1997) A Comparison between Single and Combined Back Propagation
Neural Networks in the Prediction of Turnover. Dept. of Comput. Sci., Univ. Coll. Chester
(UK).

Unger, Laura. Impact of Electronic Trading on the Securities Markets. U.S Securities and
Exchange Commission. October 28, 1999.
http://www.sec.gov/news/speech/speecharchive/1999/spch313.htm accessed June 1, 2006.

Zemke S. [2003] "Data Mining for Prediction. Financial Series Case", Ph.D. thesis, The Royal
Institute of Technology, Sweden.

35

Appendix A: Source Code

The source code for this project is based loosely upon code by Karsten Kutza from

ww.geocities.com/CapeCanavera1/1624/bpn.html . The code is written in C++ using Microsoft

Visual Studio .NET as a development environment.

Net (short for neural network) is a C++ class providing a generic interface

for training and executing simple back-propagation neural networks, for performing

a variety of tasks.

The source code consists of the following files:

1) Net.h - a header file defining the NeuralNetwork namespace.

2) Net.cpp - defines the neural network interface.

3) NetLayer.cpp - defines a neural network layer interface.

4) backprop.cpp - supports training and running of the neural network.

5) stdafx.cpp - automatically generated by Visual Studio .NET.

6) stdafx.h - automatically generated by Visual Studio .NET.

For each experiment, part of the source code is changed, namely the contents of the

historical data array, the name of the binary file containing the neural network,

and the name of the output file which contains the results from running the network.

RUNNING THE NEURAL NETWORKS

Use sp500-predictor.exe to run the s&p500 predictor. It may make up to several hours

to train the network, and produce results. The results will be generated both on the black screen

36

which appears when one runs the exe file, and into a file named results-sp500.txt, whose location

is the same as the exe file's location.

To better analyze the results, open the exe file with Microsoft Excel or Microsoft Works

or other spreadsheet software able to handle data in CSV (comma separated values) format.

Best visual effect is achieved by selecting both columns together with the titles "predicted"

and "actual", and invoking a charting tool.

Apart from the text file with results, we should not forget there is the black window, in

which the program is writing its status. We know that the neural network has finished executing

when the message "Press any key to continue..." comes up in the botton of the window. This lets

one look at the results on the screen, including the minimized error, and the final error. After

pressing a key, the window disappears, that is, the predictor quits.

Running the intc-predictor.exe is completely analogical.

PROGRAMMING AND DESIGN DETAILS

The neural network class itself is the class NeuralNetwork::Net. It depends on the class

NeuralNetwork::NetLayer, both of which are defined in Net.h. The file backprop.cpp is a sample

of using Net to train a system to predict stock market prices.

Seed the random number generator (if you wish to randomize weights).

Create an instance of NeuralNetwork::Net, passing in the number of layers, number of

perceptrons in each layer, momentum factor, learning rate, and gain for the sigmoid function.

Randomize or clear weights, whichever is desirable, with Net::randomizeWeights() or

Net::clearWeights().

Create a class (or two, or more) inheriting from NeuralNetwork::ExampleFactory and

implement getExample, which returns via its parameters a new input/output pair each time it's

37

called, and numExamples, which is an estimate of the total number of unique examples. Create

an instance of one of these classes for your training set (the set the network attempts to minimize

error on) and an instance of one of these classes for your test set (the set used to identify

overtraining). These will be passed to autotrain.

Use Net::autotrain() to train the network to its optimum error level on the test set. It will

perform a specified number of epochs, then test if error on the test set has exceeded minimum

error times the specified cut off error. If so, it will consider training done, and return with the

network configured to the weights that gave best results on the test set. Otherwise, it will repeat.

If you will not train the network again (without saving and reloading it), you can call

Net::doneTraining() to dispose of temporary storage used during training.

Run the neural network on new cases using Net::run(), which simply takes an input and produces

an output.

If you wish to save your network for future sessions, use Net::save() with a binary-mode

std::ostream. Load it again using the Net constructor taking a binary-mode istream.

Since you might wish to observe the progress of your network's training, you may #define the

symbol NEURAL_NET_DEBUG to view the total error each time it is calculated for the test set.

When this starts to go up, training is nearing completion.

FUTURE DIRECTIONS ON SOURCE CODE IMPROVEMENT

In the future, some of these things could be done to improve the neural network.

n Add support for a callback to be called each time the test error is calculated, rather

than just a debug trace, so end-users can view progress.

n Add support for delta functions other than the sigmoid function.

n Add support for more direct training, when more control is needed.

38

n Add better optimization techniques.

SOURCE CODE LISTING

1) Net.h - a header file defining the NeuralNetwork namespace.

2) Net.cpp - defines the neural network interface.

3) NetLayer.cpp - defines a neural network layer interface.

4) backprop.cpp - supports training and running of the neural network.

5) stdafx.cpp - automatically generated by Visual Studio .NET.

6) stdafx.h - automatically generated by Visual Studio .NET.

1) Net.h - a header file defining the NeuralNetwork namespace.

/**

Declares everything in the NeuralNetwork namespace: declares the Net
class representing the entire network, the NetLayer class representing
a single layer of the network, and defines several I/O helpers,
accessors, and fixed parameters.
**

#ifndef _NET_H_
#define NET _H_

#include <iostream>
#include <string.h>

namespace NeuralNetwork
{

/1 The floating-point type used in computations. Using float
I/ makes negligible speed difference.
typedef double real;

/1 Useful for reading raw (stored byte-for-byte) objects off an istrearn
template <class T>

inline void readRaw(std::istream& in, T& obj)
{

in.read(reinterpret_cast<char*>(&obj), sizeof(T));
}

1/ Useful for reading raw (stored byte-for-byte) arrays off an istream
template <class T>

inline void readRawArray(std::istream& in, T* array, int size)

39

{

in.read(reinterpret_cast<char*>(array), sizeof(T)*size);
}

// Useful for storing objects raw (byte-for-byte) on an ostream
template <class T>

inline void writeRaw(std::ostream& out, const T& obj)
{

out.write(reinterpret_cast<const char*>(&obj), sizeof(T));
}

I/ Useful for storing arrays raw (byte-for-byte) on an ostream
template <class T>

inline void writeRawArray(std::ostream& out, const T* array, int size)

out.write(reinterpret cast<const char*>(array), sizeof(T)*size);
}

/1 A layer of a neural network, used by NeuralNetwork::Net
class NetLayer

public:
// Creates a new net layer with the given number of units,
// and the given immediately-preceding layer (0 for none).
NetLayer(int initUnits, NetLayer* prevLayer);

// Loads this layer from a stream where it was previous saved with save()
NetLayer(std:istream& in, NetLayer* initPrevLayer);

// Frees buffers used to hold weights, etc.
—NetLayer();

// Gets number of perceptrons in this layer
int getUnits() const;

Gets the output of the outputNumith perceptron in this layer
real getOutput(int outputNum) const;

1/ Sets the error on the output of the given perceptron
void setError(int errorNum, real value);

1/ Initialises weights of edges going into this layer to random values
void randomizeWeights();

1/ Initialises weights of edges going into this layer to zero
void clearWeightsO;

// Saves weights for later restoring by restore Weights. Only one
// set of weights can be saved, usually the best seen so far.
void saveWeights();

// Restores the set of weights most recently saved by saveWeights.
void restore Weights();

// Propagates outputs of the previous layer to the outputs of this layer
void propagate(real gain);

40

// Propagates error from this layer back to the previous layer,
// in. preparation for adjustWeights, which uses the error info.
void backpropagate(real gain);

I/ Computes error of the outputs of this layer from a given set of
// target values, stores these, and returns the mean square error of
// them all. Usually used on output layer.
real computeError(real gain, real target[]);

// Adjusts weights in order to decrease the error as established
/1 by previous computeError/backpropagate calls.
void adjustWeights(real momentum, real learningRate);

1/ Gets the values outputted by the perceptrons in this layer and
// places them in the array outputsHolder
void getOutputs(real* outputsHolder);

/1 Sets the values outputted by the perceptrons in this layer
void setOutputs(real* newValues);

// Saves network so it can be later loaded by the (istream&) constructor
void save(std::ostream& out);

/1 Deallocates storage used only during training
void doneTraining();

private:
/1 Gets the weight on the weightnum'th edge coming into unit unitNum
real& getWeight(int unitNum, int weightNum);
// Gets the delta-weight on the weightnum'th edge coming into unit un itN um
real& getDWeight(int unitNum, int weightNum);

private:
int units; 	 // number of units in this layer
int weightsPerUnit; II number of conns going into each unit
real* output; 	 II output of ith unit
real* error; 	 // error term of ith unit
real* weight; 	 connection weights to ith unit
real* weightSave; // saved weights for stopped training
real* dWeight; 	 // last weight deltas for momentum
NetLayer* prevLayer; II Pointer to next layer

// A buffer used and allocated only once for efficiency
real* weightIntermediate;

);

II Gets number of perceptrons in this layer
inline int NetLayer::getUnits() const

return units;
}

II Gets the output of the outputNum'th perceptron in this layer
inline real NetLayer::getOutput(int outputNum) const

41

return output[outputNum];
}

/1 Sets the error on the output of the given perceptron
inline void NetLayer::setError(int nodeNum, real value)

error[nodeNum] = value;
}

/1 Sets the values outputted by the perceptrons in this layer
inline void NetLayer::setOutputs(real* newValues)
{

memcpy(output+1, newValues, sizeof(real)*units);
}

I/ Gets the values outputted by the perceptrons in this layer and
// places them in the array outputsllolder
inline void NetLayer::getOutputs(real* outputsHolder)
{

memcpy(outputsHolder, output+l, sizeof(real)*units);
}

1/ Gets the weight on the weightnum'th edge coming into unit unitNum
inline real& NetLayer::getWeight(int unitNum, int weightNum)

return weight[unitNum*weightsPerUnit + weightNum];
}

1/ Gets the delta-weight on the weightnum'th edge coming into unit unitNum
inline real& NetLayer::getDWeight(int unitNum, int weightNum)
{

return dWeight[unitNum*weightsPerUnit + weightNum];
}

/I Saves weights for later restoring by restore Weights. Only one
// set of weights can be saved, usually the best seen so far.
inline void NetLayer::saveWeights()
{

memcpy(weightSave, weight, (units+ 1)*weightsPerUnit*s izeof(real));
}

// Restores the set of weights most recently saved by saveWeights.
inline void NetLayer::restoreWeights()

memcpy(weight, weightSave, (units+1)*weightsPerUnit*sizeof(real));

// Generates training/test examples for the network. Inherit from this
II and pass instances of that subclass into autotrain and test.
class ExampleFactory

public:
// Fills the given arrays with input values and expected output
// values based on the next training example. Training values
// should each be enumerated once on average per numOfExamples
// calls.

42

virtual void getExample(int inputSize, real* input,
int outputSize, real* output) = 0;

// Returns number of training examples. If randomly generated,
pick something large but reasonable.

virtual int numExamples() = 0;
1 ;

II A complete multilayer feed-forward neural network
class Net

public:
// Creates a new feed-forward neural network with the given number of
// layers with the specified number of nodes in each, and the learning
// rate, momentum factor, and gain of the sigmoid function.
Net(int layers, int layerSizes[],

real momentumFactor, real learningRate, real gain);

I/ Loads a network from a stream where it was previous saved with save()
Net(std::istream& in);

/1 Frees all memory allocated for network
—Net();

// initializes all weights in network to random values
void randomizeWeightsO;

// initializes all weights in network to zero
void clearWeightsO;

1/ Automatically trains the network until its performance on the
// test set appears to have achieved a maximum. Returns total
// error on the test set at completion.
II - epochsBetweenTests establishes how many tests are done between
// test set checks for accuracy.
// - cutOffError establishes how much worse, as a multiple, error has
// to be than the minimum error seen before we stop training. Must be >1.
real autotrain(ExampleFactory &trainingExamples,

ExampleFactory &testExamples,
int epochsBetweenTests = 10,
float cutOffError = 1.1);

II Runs the network on an input and feeds it forward to produce an
// output. For usage after training with autotrain.
void run(real* input, real* output);

II Tests the network using the given example set, returning total error
real test(ExampleFactory &testExamples);

// Deallocates storage used only during training
void doneTrainingO;

1/ Saves network to a stream, to be read back in with the istream& constructor
void save(std::ostream& out);

private:

43

/7 Saves weights for later restoring by restoreWeights. Only one
/7 set of weights can be saved, usually the best seen so far.
void saveWeights();

// Restores the set of weights most recently saved by saveWeights.
void restoreWeights();

// Propagates inputs of the net all the way through to outputs
void propagate();

// Backpropagates output errors all the way back through the network
void backpropagate();

// Computes and stores error of output layer and each of its components
void computeOutputError(real* target);

// Adjusts all weights in network to decrease error recorded by
/1 previous calls to backpropagate or computeOutputError.
void adjustWeights();

/1 Sets the values of the inputs to the network
void setInputs(real* inputs);

II Gets the outputs and places them in the array outputs
void getOutputs(real* outputs);

II Trains a single training example once
void simpleTrain(real* input, real* expectedOutput);

// Trains for a given number of epochs on an entire training set
void train(int epochs, ExampleFactory &trainingExamples);

private:
int 	 numLayers; // number of layers
NetLayer** layer; 	 // layers of this net
NetLayer* inputLayer; /1 input layer
NetLayer* outputLayer; /1 output layer
real 	 momentumFactor; // momentum factor
real 	 learningRate; // learning rate
real 	 gain; 	 1/ gain of sigmoid function
real 	 error; 	 // total net error

1/ These are used as temporary buffers in member funcs,
// allocated once in the constructor for efficiency.
real* 	 input;
real* 	 expectedOutput;
real* 	 actualOutput;

1 ;

#endif /* #ifndef NET H */

2) Net.cpp - defines the neural network interface.

/**

44

Implementation of the class handling the entire network. The
training algorithm is mainly contained here.
**,

#include "Net.h"
#include "stdafx.h"

#ifdef NEURAL_NET_DEBUG
#include <iostream>
#endif

using namespace NeuralNetwork;

II Creates a new feed-forward neural network with the given number of
// layers with the specified number of nodes in each, and the learning
I/ rate, momentum factor, and gain of the sigmoid function.
Net::Net(int layers, int layerSizes[],

real initLearningRate = 0.25,
real initMomentumFactor = 0.9,
real initGain = 1.0)
:momentumFactor(initMomentumFactor),
learningRate(initLearningRate),
gain(initGain)

{

Allocate and initialise layers
numLayers = layers;
layer = new NetLayer*[layers];
layer[0] = new NetLayer(layerSizes[0], 0);
for (int i=1; i<layers; i++)
{

layer[i] = new NetLayer(layerSizes[i], layer[i-1]);
}

inputLayer = layer[0];
outputLayer = layer[layers-1];

/I Allocate these here to avoid massive allocation slowdowns later
int inputSize = inputLayer->getUnits();
input = new real[inputSize];
int outputSize = outputLayer->getUnits();
actualOutput = new real[outputSize];
expectedOutput = new real[outputSize];

// Let weights initially be random
randomizeWeights();

I/ Loads a network from a stream where it was previous saved with save()
Net::Net(std::istream& in)

II Allocate and initialise layers
readRaw(in, numLayers);
readRaw(in, momentumFactor);
readRaw(in, learningRate);
readRaw(in, gain);

45

layer = new NetLayer*[numLayers];
layer[0] = new NetLayer(in, 0);
for (int i=1; i<numLayers; i++)
{

layer[i] = new NetLayer(in, layer[i-1]);
}

inputLayer = layer[0];
outputLayer = layer[numLayers- 1];

I/ Allocate these here to avoid massive allocation slowdowns later
int inputSize = inputLayer->getUnits();
input = new real[inputSize];
int outputSize = outputLayer->getUnits();
actualOutput = new real[outputSize];
expectedOutput = new real[outputSize];

}

1/ Saves network to a stream, to be read back in with the istream& constructor
void Net::save(std::ostream& out)
{

writeRaw(out, numLayers);
writeRaw(out, momentumFactor);
writeRaw(out, learningRate);
writeRaw(out, gain);

// Save each layer
for (int i=0; i<numLayers; i++)

layer[i]->save(out);
}

}

/1 Frees all memory allocated for network
Net::—Net()

for (int i=0; i<numLayers; i++)

delete layer[i];

delete[] layer;

delete[] input;
delete[] actualOutput;
delete[] expectedOutput;

}

1/ Initializes all weights in network to random values
void Net::randomizeWeights()

/1 Simply call randomizeWeights on each layer except the first
for (int layerNum=1; layerNum < numLayers; layerNum++) {

layer[layerNum]->randomizeWeights();

}

46

// Initializes all weights in network to zero
void Net::clearWeights()

/1 Simply call randomize Weights on each layer except the first
for (int layerNum=1; layerNum < numLayers; layerNum++)

layer[layerNum]->clearWeightsO;

}

II Saves weights for later restoring by restore Weights. Only one
// set of weights can be saved, usually the best seen so far.
void Net::saveWeights()

/I Simply call saveWeights on each layer except the first
for (int layerNum=1; layerNum < numLayers; layerNum++) {

layer[layerNum]->saveWeightsO;

}

II Restores the set of weights most recently saved by save Weights.
void Net::restoreWeightsO
{

1/ Simply call restoreWeights on each layer except the first
for (int layerNum=1; layerNum < numLayers; layerNum++) {

layer[layerNum]->restoreWeightsO;

}

// Propagates inputs of the net all the way through to outputs
void Net::propagate()

// Simply call propagate on each layer except the first
for (int layerNum=1; layerNum < numLayers, layerNum++) {

layer[layerNum]->propagate(gain);
}

}

/7 Backpropagates output errors all the way back through the network
void Net::backpropagate()
{

// Simply call backpropagate on the layers in reverse order,
// except the first, thus driving error back from output to input.
for (int layerNum=numLayers-1; layerNum > 0; layerNum--) {

layer[layerNum]->backpropagate(gain);

II Computes and stores error of output layer and each of its components
void Net::computeOutputEn -or(real* target)

II Just ask outputLayer to compute its error against target
error = outputLayer->computeError(gain, target);

}

47

Adjusts all weights in network to decrease error recorded by
1/ previous calls to backpropagate or computeOutputError.
void Net::adjustWeights()

// Simply call adjustWeights on each layer except the first
for (int layerNum=1; layerNum < numLayers; layerNum++) {

layer[layerNum]->adjustWeights(momentumFactor, learningRate);

}

II Sets the values of the inputs to the network
void Net::setlnputs(real* inputs)
{

it Sets output values of input-layer perceptrons, which is input
I/ of network
inputLayer->setOutputs(inputs);

}

/1 Gets the outputs and places them in the array outputs
void N e t : :getOutputs(real* outputs)
{

1/ Gets output of output-layer perceptrons, which is output of
1/ network
outputLayer->getOutputs(outputs);

}

/1 Trains a single training example once
void Net::simpleTrain(real* input, real* expectedOutput)

II See first what the network produces now tbr the input
// and see how far off it is.
setlnputs(input);
propagate();
computeOutputError(expectedOutput);

1/ Backpropagate that error data and then adjust the weights based
// on it to reduce total error as quickly as possible.
backpropagate();
adjustWeights();

}

Li Trains for a given number of epochs on an entire training set
void Net::train(int epochs, ExampleFactory &trainingExamples)

int inputSize = inputLayer->getUnits();
int outputSize = outputLayer->getUnits();

I/ Train on each training example an average of epochs times
for (int n=0; n < epochs*trainingExamples.numExamples(); n++)

trainingExamples.getExample(inputSize, input, outputSize, expectedOutput);
simpleTrain(input, expectedOutput);

}

}

I/ Tests the network using the given examples, returning total error
real Net::test(ExampleFactory &testExamples)

48

{

int inputSize = inputLayer->getUnits();
int outputSize = outputLayer->getUnits();

real totalError = 0;

1/ Run network once on each example, adding error each time to a
I/ running total.
for (int n=0; n < testExamples.numExamples(); n++) {

testExamples.getExample(inputSize, input, outputSize, expectedOutput);
run(input, actualOutput);
computeOutputError(expectedOutput);
totalError += error;

std::cout << "Error: " << totalError << std::endl;
return totalError;

}

/1 Automatically trains the network until its performance on
// the test set appears to achieve a maximum. Returns total
// error on the test set after completion.
/1 - epochsBetweenTests establishes how many tests are done between
// test set checks for accuracy.
/I - cutOffError establishes how much worse, as a multiple, error has
II to be than the minimum error seen before we stop training. Must be >1.
real Net::autotrain(ExampleFactory &trainingExamples,

ExampleFactory &testExamples,
int epochsBetweenTests,
float cutOffError)

{

II Get initial error with current weight set
real minTestError = test(testExamples);
real testError = minTestError;

while (testError <= cutOffError*minTestError) {
// Train for a while on the training examples
train(epochsBetweenTests, trainingExamples);

II How good is network now? Save weights if it's the best
/1 we've seen so far on the test set.
testError = test(testExamples);
if (testError < minTestError) {

saveWeights();
minTestError = testError;

}

}

/1 Restore weights so performance on test set is best we ever saw restoreWeights();

return minTestError;
}

// Runs the network on an input and feeds it forward to produce an
1/ output. For usage after training with autotrain.
void Net::run(real* input, real* output)

49

{

setlnputs(input);
propagate();
getOutputs(output);

}

1/ Deallocates storage used only during training
void Net::doneTraining()
{

II Simply call doneTraining() on each layer
for (int layerNum=0; layerNum < numLayers; layerNum++) {

layer[layerNum]->doneTraining();

}

3) NetLayer.cpp - defines a neural network layer interface.
**

Implements a single layer of the network, handling propagation through
that layer as well as serialization of that layer.
**/

#include "Net.h"
#include "stdafx.h"
#include <stdlib.h>
#include <math.h>
#include <string.h>

using namespace NeuralNetwork;

static const float BIAS = 1.0f;

I/ Gets a uniform random value in [Low, High]
static real RandomEqualReal(real Low, real High)
{

return ((real) rand() / RAND MAX) * (High-Low) + Low;
}

1/ Creates a new net layer with the given number of units,
I/ and the given immediately-preceding layer (0 for none).
NetLayer::NetLayer(const int initUnits,

NetLayer* initPrevLayer)
: units(initUnits), prevLayer(initPrevLayer)

{

output = new real[units+1];
error = new real[units+1];

if (prevLayer)

weightsPerUnit = prevLayer->getUnitsO+l;

int weightArraySize = (units+1)*weightsPerUnit;
weight = new real[weightArraySize];
weightSave = new real[weightArraySize];
dWeight = new real[weightArraySize];

else

50

{

weightsPerUnit = 0;
weight = 0;
weightSave = 0;
dWeight = 0;

weightIntermediate = new real[weightsPerUnit+1];

output[0] = BIAS;
}

/1 Loads this layer from a stream where it was previous saved with save()
NetLayer:NetLayer(std::istream& in, NetLayer* initPrevLayer)
: prevLayer(initPrevLayer)

readRaw(in, units);

output = new real[units+1];
error = new real[units+1];

if (prevLayer)

weightsPerUnit = prevLayer->getUnits()+1;

int weightArraySize = (units+1)*weightsPerUnit;
weight = new real[weightArraySize];
weightSave = new real[weightArraySize];
dWeight = new real[weightArraySize];
clearWeights();
readRawArray(in, weight, weightArraySize);

1
else

weightsPerUnit = 0;
weight = 0;
weightSave = 0;
dWeight = 0;

weightIntermediate = new real[weightsPerUnit+1];

output[0] = BIAS;
}

1/ Saves network so it can be later loaded by the (istream&) constructor
void NetLayer::save(std::ostream& out)

writeRaw(out, units);

if (prevLayer)

writeRawArray(out, weight, (units+1)*weightsPerUnit);
}

1

51

I/ Frees buffers used to hold layer info
NetLayer::—NetLayer()

delete[] output;
delete[] error;

if (weight)

delete[] weight;
delete[] weightSave;
delete[] dWeight;

}

delete [] weightlntermediate;
}

/1 Initialises weights of edges going into this layer to random values
void NetLayer::randomizeWeights()
{

for (int i=0; i < (units+1)*weightsPerUnit; i++)

weight[i] = RandomEqualReal(-0.5, 0.5);
dWeight[i] = 0;

}

}

// Initialises weights of edges going into this layer to random values
void NetLayer::clearWeights()
{

for (int i=0; i < (units+1)*weightsPerUnit; i++)

weight[i] = 0;
dWeight[i] = 0;

}

1/ Propagates outputs of the previous layer to the outputs of this layer
void NetLayer::propagate(real gain)

real* currentWeight = &getWeight (1,0);

for (int unitNum=1; unitNum <= units; unitNum++)
{

real sum = 0;
for (int outputNum=0; outputNum < weightsPerUnit; outputNum++) {

sum += *currentWeight * prevLayer->getOutput(outputNum);
currentWeight++;

}
output[unitNum] = 1 / (1 + exp(-gain * sum));

1
}

1/ Propagates error from this layer back to the previous layer.
// in preparation for adjustWeights, which uses the error info.
void NetLayer::backpropagate(real gain)
{

52

int prevUnits = prevLayer->getUnits();

for (int prevUnitNum=prevUnits; prevUnitNum != 0; prevUnitNum--) {
real out = prevLayer->getOutput(prevUnitNum);
real err = 0;
for (int unitNum=1; unitNum <= units; unitNum++)

err += get Weight(unitNum, prevUnitNum) * error[unitNum];

prevLayer->setError(prevUnitNum, gain * out * (1-out) * err);
}

}

I/ Computes error of the outputs of this layer from a given set of
// target values, stores these, and returns the mean square error of
// them all. Usually used on output layer.
real NetLayer::computeError(real gain, real target[])

real out, err;
real totalError = 0;

real* currentTarget = target + 0;
real* currentOutput = output + 1;
real* currentError = error + 1;

for(int unitNum=units; unitNum != 0; unitNum--)

out = *currentOutput;
err = *currentTarget - out;
*currentError = gain * out * (1-out) * err;
totalError += err*err;
currentOutput++;
currentTarget++;
currentError++;

}

return 0.5 *totalError;
}

Adjusts weights in order to decrease the error as established
/1 by previous computeError/backpropagate calls.
void NetLayer::adjustWeights(real momentum, real learningRate)

int localWeightsPerUnit = weightsPerUnit;

real* currentWeight = &getWeight (units,prevLayer->getUnits());
real* cun-entDWeight = &getDWeight (units,prevLayer->getUnits());

for (int prevUnitNum=0; prevUnitNum < weightsPerUnit; prevUnitNum++) {
weightIntermediate[prevUnitNum+ 1] = learningRate * prevLayer->getOutput(prevUnitNum);

for (int unitNum=units; unitNum != 0; unitNum--)
for (int prevUnitNum=localWeightsPerUnit; prevUnitNum != 0; prevUnitNum--) {

real newDeltaWeight = weightlntermediate[prevUnitNum] * error[unitNum];
real oldDeltaWeight = *currentDWeight,
*cun-entDWeight = newDeltaWeight;

53

*currentWeight += newDeltaWeight + momentum*oldDeltaWeight;
currentDWeight--;
currentWeight--;

}

}

}

// Deallocates storage used only during training
void NetLayer::doneTraining()
{

delete[] error;
error = 0;
delete[] dWeight;
dWeight = 0;
delete[] weightSave;
weightSave = 0;

}

4) backprop.cpp - supports training and running of the neural network.
/**
Forecasting Neural Network Prototype. Trained on 280 days worth of closing price data and then predicts over later
days and finds accuracy of those predictions.

This is the file which contains the main function to be executed. The rest of the files just define classes and rules, and
are used by this file.

Development environment used: Microsoft Visual Studio .NET
**;

#include "stdafx.h"
#include "Net.h"
#include <time.h>
#include <string.h>
#include <stdlib.h>
include <fstream>
#include <iostream>

using namespace NeuralNetwork;

/I Number of days we have historical closing data for
const int NUM_DAYS = 280;

// Number of previous days given to the network to help predict
const int WINDOW SIZE = 30;

/1 Closing price at the end of each workday for each of 280 days in order
/1 Starting date: January 2, 1975
// Number of weeks we have data on: 56
// Note: The prices have been preprocessed so that they are handled
// more easily by the neural network. The preprocessing action: divide the
// price by 100; reason: make the error smaller, and the training faster
real Prices [NUM_DAYS] =

0.7023,0.7071,0.7107,0.7102,0.7004,

54

0.7117,0.7261,0.7231,0.7168,0.7214,
0.7205,0.7096,0.7108,0.707,0.7174,
0.7207,0.7298,0.7537,0.7603,0.7726,
0.7621,0.7698,0.7782,0.7761,0.7895,
0.7856,0.7863,0.7836,0.7858,0.7992,
0.8101,0.815, 0.8093,0.8144,0.8221,
0.8262,0.8144,0.7953,0.8037,0.8077,
0.8159,0.8303,0.8356,0.839,0.8369,
0.843,0.8495,0.8436,0.8359,0.8374,
0.8476,0.8601,0.8513,0.8434,0.8361,
0.8339,0.8142,0.8206,0.8359,0.8385,
0.8336,0.8264,0.8243,0.8151 ,0.8088,
0.8035,0.8099,0.8284,0.8377,0.8418,
0.856,0.863,0.866,0.8725,0.863,
0.8723,0.8709,0.8612,0.8604,0.8662,
0.8623,0.8564,0.873,0.881,0.8922,
0.9008,0.8864,0.8908,0.8956,0.9053,
0.9061,0.9158,0.9227,0.9141,0.9043,
0.9053,0.9007 ,0.8906,0.8939,0.9058,
0.9034,0.8971,0.8968,0.9115,0.9258,
0.9289,0.926,0.9269,0.9248,0.9121,
0.9044,0.9055,0.9008,0.9052,0.9146,
0.9058,0.9039,0.9202,0.9261,0.9362,
0.9419,0.9462,0.9481,0.9481,0.9519,
0.9485,0.9418,0.9436,0.9354 ,0.9339,
0.948,0.9481,0.9466,0.9519,0.9561,
0.9461,0.9363,0.932,0.9244,0.9145,
0.9018,0.9007,0.8929,0.8869,0.8819,
0.8883,0.8875,0.8799,0.8715,0.8623,
0.8625,0.863,0.8602,0.8655,0.8712,
0.8597,0.856,0.8636,0.862,0.8495,
0.8322,0.8307 ,0.8428,0.8506,0.8396,
0.8443,0.864,0.8688,0.8548,0.8603,
0.862,0.8562,0.8589,0.846,0.8379,
0.8345,0.833,0.8288,0.8209,0.8237,
0.8406,0.8588,0.8507,0.8494,0.8574,
0.8564,0.8619,0.8503,0.8387,0.8293,
0.8382,0.8595,0.8688,0.8677, 0.8794,
0.8837,0.8821,0.8946,0.8928,0.8923,
0.8937,0.8886,0.8982,0.9056,0.9071,
0.9124,0.8983,0.8973,0.9051,0.8939,
0.8931,0.8904,0.8809,0.8851,0.8915,
0.8955,0.8933,0.8934,0.8987,0.9119,
0.9104,0.9097,0.9146,0.91,0.8998,
0.8964 ,0.8953,0.897,0.9071,0.9094,
0.9124,0.9067,0.8933,0.876,0.8784,
0.8682,0.8707,0.873,0.8808,0.878,
0.8783,0.8809,0.8893,0.8915,0.8943,
0.888,0.8814,0.8873,0.8946,0.9025,
0.9013,0.8977,0.9019,0.909,0.9258,
0.9353,0.9395,0.9458 ,0.9495,0.9633,
0.9557,0.9713,0.9661,0.97,0.9832,
0.9886,0.9824,0.9804,0.9921,0.9968,
0.9907,0.9853,1.0011,1.0086,1.0087,
1.0118,1.0191,1.0039,0.9946,0.9962

1;

55

1/ Returns a sequence of examples whose desired outputs run 'from a
1/ given lower index to a given upper index in the array above.
1/ Uses the Factory design pattern studied in CS 4233. OBJECT-ORIENTED ANALYSIS AND DESIGN.
class ArrayRangeExampleFactory : public ExampleFactory {
public:

ArrayRangeExampleFactory(int initLower, int initUpper)
: currentExample(initLower), lower(initLower), upper(initUpper)

{ }
void getExample(int inputSize, real* input, int outputSize, real* output)
{

memcpy(input, &Prices[currentExample-WINDOW_SIZE],
WINDOW_SIZE*sizeof(real));

output[0] = Prices[currentExample];
currentExample++;
if (currentExample > upper)

currentExample = lower;
1
int numExamples() return upper-lower+1;

private:
int currentExample;
int lower, upper;

};

1/ Ranges in the Prices array of training set, test set, and evaluation set
1/ Here:
1/ [30-179] TRAINING SET
1/ [180-259] TEST SET
I/ [260-279] EVAL SET
const int TRAIN_LWB = WINDOW_SIZE;
const int TRAIN_UPB = 179;
const int TEST_LWB = 180;
const int TEST_UPB = 259;
const int EVAL_LWB = 260;
const int EVAL_UPB = NUM DAYS - 1;

1/ Creates a neural network to predict the closing price for a day given the
I/ previous WINDOW_SIZE days of closing price data, and demonstrates the results
II on the eval set.
int _tmain(int argc, _TCHAR* argv[])
{

using std::cout;
using std::endl;

srand(35233);

Net *net;

// Create a new network with 1 hidden layer with 10 nodes, WINDOW_SIZE inputs, 1 output
/I Visually it would look like this:
// 30 Input Nodes -> 10 Hidden Nodes -> 1 Output Node
int layerSizes[] = { WINDOW_SIZE, 10, 1 };
net = new Net(3, layerSizes, 0.05, 0.5, 1.0);

56

I/ Show the time at which the training was over
char dateStr [9];

char timeStr [9];
_strdate(dateStr);
_strtime(timeStr);

cout << "Training starting: " << dateStr<< ", " << timeStr<< endl;

// Initialize to random weights, then autotrain with training and test sets
net->randomizeWeights();
ArrayRangeExampleFactory training(TRAIN_LWB, TRAIN UPB);
ArrayRangeExampleFactory test (TEST_LWB, TEST_UPB);
real error = net->autotrain(training, test, 10, 1.05f);
I/ Warning: executing the three lines above may take up to a few days

I! Show final test set error, which should be virtually minimized
cout << "Final test set error: " << error << endl;

net->doneTraining();

Show the time at which the training was over
char dateStr2 [9];

char timeStr2 [9];
_strdate(dateStr2);

strtime(timeStr2);
cout << "Training started: " << dateStr<< ", " << timeStr<< endl;
cout << "Training finished: " << dateStr2<< ", " << timeStr2 << endl;

/I Save the results to a file
FILE* 	 f;
f = fopen("results-sp500.txt", "w");
//fprintf(f, 	 Traing started (Yos, %s\n Training ended %s %s\n", dateStr, timeStr, dateStr2, timeStr2);
fprintf(f, "Predicted, Actual \n");

/I Compare results on the evaluation set
for (int i=EVAL_LWB; i < EVAL_UPB, i++)

real output[1];
net->run(&Prices [i-WIN DOW_ SIZE], output);
cout.precision(4);
1/ Reverse the preprocessing
cout << "Predicted: " << output[0]* 100 << ", Actual: " << Prices[i]* 100 << endl;
//Write the results to a file
fprintf(f, "%0.3f, %0.3f \n", output[0]*100,Prices[i]*100);

}

/I Done writing results to the file
// In order to map the results to a chart, change the extention of the file
II from txt to csv, and open the file with Excel or Microsoft Works
// Select both columns, and use the charting tool to view the chart
fclose(f);

I/ Save the neural network to a binary file
std::ofstream out("sp500.nnw", std::ios::binary);
net->save(out);

57

/1 Make the system wait for a key to be pressed
system("PAUSE");
return 0;

5) stdafx.cpp - automatically generated by Visual Studio .NET.

// stdafx.cpp : source file that includes just the standard includes
backprop.pch will be the pre-compiled header

// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

/1 TODO: reference any additional headers you need in STDAFX.H
// and not in this file

6) stdafx.h - automatically generated by Visual Studio .NET.

/1 stdafx.h : include file for standard system include files,
/1 or project specific include files that are used frequently, but
II are changed infrequently

#pragma once

#include <iostream>
#include <tchar.h>
#include "Net.h"

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64

