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Abstract 
The purpose of this project is threefold: firstly, to make an overview of what artificial 

neural networks are; secondly to demonstrate the process of building and testing a neural 

network; and thirdly to examine and analyze the use of neural networks as a forecasting tool, 

specifically a neural network's ability to predict future trends of a Stock Market Index and a 

publicly traded NASDAQ stock. 
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Executive Summary 

The technology of artificial neural networks is relatively new. It is still in the phase of 

constant research and improvement. Along other applications, a very intriguing topic of research 

nowadays is the application of neural networks for financial markets prediction. In fact, there are 

already some commercial tools available on the market, which claim to successfully use their 

neural networks for financial markets prediction. 

However, due to the theoretical great return opportunities that may arise from successful 

neural networks, information on the inputs used, the architecture and logic of the neural networks 

is not freely and widely published. Thus, this project is aiming to shed some light on what neural 

networks are, what they can and cannot do, and how they can be utilized for stock market 

forecasting. More specifically, given the information limitation, the main goal of this project is to 

design and build a neural network prototype that can be used for stock market prediction. 

There are a number of challenges that must be tackled in order to successfully deliver the 

forecasting neural network prototype, yet training the network, as we shall see later in the paper, 

is the most crucial part of the entire process. Any neural network could be only as good as the 

training data it is given. As a result, much attention and time is given to deciding what this simple 

neural network will be able to handle, and what kind of data and how much it should be given. 

Through extensive research and analysis it was decided to build a multi-layer perception 

neural network and train it on historical S&P 500 closing price data. The Methodology section of 

this paper explains in detail the motivation behind this choice, and the technical details around 

the simple prototype neural network. An analogical experiment was performed using Intel Corp 

historical stock prices. Two applications were produced in the end, a S&P500 predictor, and an 

INTC predictor. 
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Testing the prototype network was the most exciting part of the project. Despite the 

limited time available for training and testing of the network due to the prolonged design and 

decision period, the test results were promising. The neural network showed that it has a sense of 

direction of where the market is going, and the numerical predictions it produced were better than 

expected. 

In the process of building the network and doing literature review, many interesting ideas 

of how to make a neural network work better were conceived. Those ideas are summarized in a 

chapter on future directions towards the end of the paper, and may serve as a basis for future 

work on extending this project. 
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1 Introduction 

Stock trading and investing are becoming ever more popular for the general public; in 

fact, so popular that many people now act as part-time traders while they are employed at their 

regular full-time jobs. The primary reason for the expanding popularity of trading is its improved 

accessibility. Trading over the Internet, or e-trading, has revolutionized the way people buy and 

sell stocks, and how they make their trading decisions. Computerization in general has had a huge 

effect on the stock market. 

In the beginning, it all happened down on the trading floor, where paper stocks were 

bought and sold by the yelling and waving of stock brokers. Nowadays, the trend is for nearly 

everything to be computerized: one of the biggest stock exchanges in the USA, the NASDAQ, is 

completely computerized and the New York Stock Exchange (NYSE) has recently merged with 

two fully computerized exchanges, Euronext and Archipelago. For some analysts, the merger 

spells the end of the famous floor and some specialists speaking privately have said they feared 

for their jobs under the merger plan (Merkuri, 2006). 

Computerized or not, there are two schools of stock analysis that aid analysts and pseudo- 

analyst to make buy and sell decisions. While fundamental analysis examines the financials of an 

equity, technical analysis analyses stock's trading patterns through the use of charts, trend lines, 

and many other mathematical analysis tools. With the advent of technology, technical analysis in 

particular has been attracting more and more enthusiasts who have began trading and investing. 

Thus, technical analysis is no longer done with a pen and pencil on the drawing board, but either 

with the aid of heavy software packages that assist the traders in taking the right decisions, or 

numerous web sites providing free technical analysis along with technical analysis education. 
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One of the newest technologies in aiding technical analysis is the neural network 

technology. This paper will look into it closely, discussing what neural networks are, how they 

are used by traders and investors, what they are good for, and where they fail. The paper will also 

examine the effect of neural network over technical analysis and financial markets. Furthermore, 

the paper will describe the design, development, and testing of a neural network prototype. In the 

end, ways of improving the neural network will be discussed to provide future directions for 

development. 
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2 Background 

In this section, we will examine in more detail the two main concepts of this paper: the 

stock market and neural networks. We are going to make a brief overview of each concept, and 

then we are going to look into their intersection, that is, where neural networks come into play in 

the stock trading world. 

2.1 The Stock Market 

When talking about "the stock market", we are referring to the organized trading of securities 

through various exchanges and through the over-the-counter market. A "stock exchange" is a 

specific form of a stock market, a physical location where stocks and bonds are bought and sold, 

such as the New York Stock Exchange, NASDAQ or American Stock Exchange. 

The New York Stock Exchange NASDAQ has no physical trading floor 

Only publicly held company stock is traded on the stock market, and the associated 

financial instruments (including stock options, convertibles and stock index futures). Participants 

in the stock market range from small individual stock investors to large hedge fund traders, who 

can be based anywhere. 
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Some exchanges are physical locations where transactions are carried out on a trading 

floor, by a method known as open outcry. ' Such a stock exchange is The New York Stock 

Exchange. The other type of exchange is a virtual kind, composed of a network of computers 

where trades are made electronically via traders at computer terminals. Such a stock exchange is 

the NASDAQ stock exchange. 

The stock exchanges are the places where buyers and sellers meet (virtually or physically) 

and decide on a price. Actual trades are based in the auction market fashion, that is, a potential 

buyer "bids" a specific price for a stock and a potential seller "asks" a specific price for the stock. 

When the bid and ask prices match, a sale takes place on a first come first serve basis if there are 

multiple bidders or askers at a given price. The current bid price is the highest amount any buyer 

is willing to pay and the current ask price is the lowest price at which someone is willing to sell. 

For a trade to take place, there must be a matching bid and ask price. If there is a spread between 

the ask and the bid price and no one steps in to buy or sell at the current price, a market maker, or 

specialist on NYSE, will make the trade. Market makers and specialist are not only required to 

make the trade when no buyer or seller changes their price, but they actually make their living by 

trading the spread. 

The price of a stock is driven up, when there are more buyers than sellers. Similarly, when 

there are more sellers than buyers, the stock price goes down. The goal of each trader is to make a 

profit, and one way to make a profit in the stock market is to buy a stock at a certain price, and 

sell it later at a higher price. The higher the difference between the prices, the greater the profit is. 

In order for this to happen, however, the trader should have made a series of right decisions: 1) 

selecting a stock to trade; 2) selecting the moment to buy the stock; and 3) selecting the moment 

to sell the stock. 

' A situation in which traders are wildly throwing their arms up, waving, yelling, and signaling to each other. 
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Traders use numerous techniques to help them make the right decisions. The techniques 

vary greatly; they range from rigorous mathematical analysis to following famous traders on TV 

shows or supposedly helpful websites; from various visual and charting methods to relying on 

advice from a co-worker; from applying chaos theory, genetic algorithms, evolutionary 

computing, neural networks, and fuzzy logic to relying on the "gut feeling". Usually it is a 

combination of all, or at least part, of the above. 

2.2 Fundamental and Technical Analysis 

There are a number of techniques for stock market trading, yet the analysis of financial 

markets is broadly divided into two main disciplines: fundamental and technical analysis. 

Fundamental analysis analyses trading or investing in financial markets by attempting to evaluate 

the intrinsic (true) value of an equity by examining company financials. According to 

fundamental analysis, if an equity is undervalued then the equity will go up in price and if the 

equity is overvalued the future price will go in the opposite direction. In order to determine 

whether an equity is undervalued or overvalued, a firm's financials are also compared by analysts 

to those of their competitors and to the average values in the S&P 500 (or other appropriate 

index). Based on industry, company and geopolitical news and financial data analysts forecast 

expected earnings. Actual earnings relative to expected earnings (or "whisper" earnings) 

significantly influence a stock's price. 

Fundamental analysis assumes that all news and information is absorbed in the equity price. 

It is generally accepted that fundamental analysis is applicable over the long run. Yet, especially 

in the short term, the reality is that information is not disseminated perfectly and fundamental 

analysis may not be reliable. 
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Technical analysis on the other hand, ignores financial analysis and concentrates only on 

finding patterns through the use of charts, trend lines, support and resistance levels, and many 

other mathematical analysis tools, in order to predict future movements in equity's price, and to 

help identify trading opportunities. The basic foundations of technical analysis are that a stock's 

current price discounts all information available in the market, that price movements are not 

random, and that patterns in price movements, in very many cases, tend to repeat themselves or 

trend in some direction. Technical analysis is the basis of all trading software packages available 

(About.com. May, 2006). 

Technical analysis utilizes a number of technical indicators which have been developed 

over the years to guide the trading decision-making. Indicators are usually grouped based on their 

use. Trend, momentum, volume and volatility indicators are the major price/volume indicator 

categories that are utilized in technical analysis. Trend indicators are used to indicate the 

direction of a trend. There are many trend indicators, yet some of the most widely used are 

moving averages, directional movement indicators such as Average Directional Movement Index 

(ADX) which indicates whether the market is trending or ranging, moving average oscillators 

such as Moving Average Convergence Divergence (MACD) indicating, etc (About.com . May, 

2006). 

Momentum indicators on the other hand measure the speed at which price is changing. 

Some of the most used momentum indicators are the Relative Strength Index (RSI) and The Slow 

Stochastic which are a popular momentum oscillators used to determine overbought/oversold 

levels. While trending indicators are considered lagging indicators, momentum indicators always 

precede price movements (Incrediblecharts.com . May, 2006). 

Volume indicators are used to confirm the strength of trends. Some of the volume 

indicators are the Force Index which combines price and volume into one value, attempting to 
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measure the force behind a move in price and the Volume Oscillator (VO) which identifies trends 

in volume. There are a number of other volume indicators that combine one or all of volume, 

price, or range (Incrediblecharts.com . May, 2006). 

Volatility Indicators are used to confirm price behavior. Some of the volatility indicators 

are the Chaikin indicator and the Volatility Ratio. The Chaikin indicator measures volatility as 

the trading range between high and low for each period. The Volatility Ratio is designed to 

highlight breakouts from a trading range (Incrediblecharts.com. May, 2006). 

Furthermore, there a hundreds of indicators and new ones are being developed constantly 

as traders search for a better guidance. Yet, none of the above indicators are used by themselves 

or are suited to all markets thus technical analysts use a combination of indicators in different 

market conditions. The craft in technical analysis is therefore exactly in the ability to understand 

and interpret correctly the many technical indicators. Thus each technical analysis is as good as 

the interpreter and therefore considerable amount of time must be spent in learning the principles 

of technical analysis and how it can be used to properly interpret technical indicators. 

Because financial markets are extremely complex and human abilities are limited, software 

models and packages are constantly being developed. Software packages that will better and 

more accurately find and interpret market conditions and forecast market prices. The neural 

networks are one of the latest trends in applying new technologies for market prediction in order 

to rip profits from market inefficiency. The complexity of the neural networks seems to 

theoretically be very promising for application in the complex financial markets. 

2.3 Market Predictability 

Before any financial tool for market forecasting is developed one has to answer on the 

fundamental question whether market prices are predictable at all? Economists are somewhat 
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split over this question. According to the Efficient Market Hypothesis (EMH) developed in 1965 

by E. Fama, the financial markets are unpredictable. The EMH, in its weak form, asserts that the 

price of an asset reflects all of the information that can be obtained from past prices of the asset, 

i.e. the movement of the price is unpredictable. The best prediction for a price is the current price 

and the actual prices follow what is called a random walk. The EMH is based on the assumption 

that all news is promptly incorporated in prices; since news is often unpredictable, prices are 

unpredictable. Since 1965, the EMH has had broad acceptance in the financial and academic 

communities. 

On the other side, much effort has been expended trying to disprove the EMH. Current 

prevailing opinion is that the theory has been disproved S.J. Taylor in his "Modeling Financial 

Time Series" published in 1994, and L. Ingber in his "Statistical mechanics of nonlinear non- 

equilibrium financial markets: Applications to optimized trading" (1996) advocate that the capital 

markets are not efficient. The market inefficiency thus suggests that financial markets are 

predictable (Taylor, 1994; Ingber, 1996). In this paper we make the assumption that markets are 

predictable and inefficient in order to develop a neural network for financial prediction. 

2.4 Neural Networks in Investing and Trading 

Neural networks have undoubtedly already entered the financial world, and are currently 

used by many big financial firms as an aid to forecasting, classification, decision-making, trading, 

and many others. New applications of the neural networks technology are constantly being 

discovered, and the financial field is no exclusion. 

Why do some people trust a technology to take the trading decisions for them, and not their 

minds? One answer is that technology lacks emotion, and emotion often hurts the trading process. 

For this reason, many traders make an intelligent trading system learn their trading strategies, 
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their decision rules, their rules of thumb, and then let the system make decisions based solely on 

those strategies and rules. By integrating technology human weaknesses, that is, emotions such as 

greed and fear that often rule financial markets, are excluded. Indeed, it may be unnatural for a 

human to let a system decide for him, but in the trading world, this often pays off. 

A second answer is the real advantage of neural networks to technical traders, that is, the 

neural network's ability to recognize patterns - especially patterns that are not obvious to the 

human eye. Technical trading is all about identifying patterns. Classification of stocks into out- 

performers and others types is also a unique ability of neural networks, but its full potential 

power is yet undiscovered. 

2.5 History of Neural Networks in Trading 

Artificial neural networks have proven to be a useful tool for prediction of non-linear time 

series, such as financial time series, and for classification of patterns, such as the patterns in the 

stock market price movements. Thus, from the very beginning of the neural networks research, 

there were significant endeavors to successfully apply the neural network technology to the 

financial markets, motivated by great potential profitability. 

The earliest work in neural computing goes back to the 1940's when McCulloch and Pitts 

introduced the first neural network computing model. In the 1950's, Frank Rosenblatt's work 

resulted in a two-layer network, the perceptron, which was capable of learning certain 

classifications by adjusting connection weights. Although the perceptron was successful in 

classifying certain patterns, it had a number of limitations. The perceptron was not able to solve 

the classic XOR (exclusive or) problem. Such limitations led to the decline of the field of neural 

networks 

In 1969, it became apparent that it was important for neural nets to solve nonlinear 
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classifications (i.e., to adjust the weights and minimize the errors in nonlinear weighting 

functions in neural nets with more than two layers). In 1974, Paul Werbos solved the nonlinear 

classification problem by inventing the "backward propagation of errors" technique for his 

Harvard Ph.D. dissertation. Once the nonlinear classification problem was solved, people began 

applying neural nets to many problems, including equity trading. 

During the 1990s, there was a boom in the application of neural nets to trading, but there 

weren't too many successes. Lots of institutions spent lots of money, but the results were not very 

good. One of the main reasons neural nets produced poor results during the 1990s was that the 

engineers who were writing the code did not adequately understand trading, and the traders using 

the neural nets did not adequately understand the underlying programming and computer science. 

During the bear market of 2000-2003, many traders and institutions lost money and did not 

have the resources to pour into neural net research, even though neural net technology and 

computer speed were improving daily. Nowadays (2005-2006) articles in financial journals and 

papers are expressing their optimism on neural networks, saying: "Now is the time to revisit 

neural networks." During the years, it became clear to the financial professionals and researchers 

that the key to developing a good neural network for trading is to first have a trading system that 

works without the neural network. Once a system is found to work, a neural network can improve 

it. 

2.6 Neural Networks Fundamentals 

A first wave of interest in neural networks (also known as "connectionist models" or 

"parallel distributed processing") emerged after the introduction of simplified neurons by 

McCulloch and Pitts in 1943 (McCulloch & Pitts, 1943). These neurons were presented as 
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models of biological neurons and as conceptual components for circuits that could perform 

computational tasks. 

The interest in neural networks re-emerged only after some important theoretical results 

were attained in the early eighties (most notably the discovery of error back-propagation), and 

new hardware developments increased the processing capacities. This renewed interest is 

reflected in the number of scientists, the amounts of funding, the number of large conferences, 

and the number of journals associated with neural networks. Nowadays most universities have a 

neural networks group, within their psychology, physics, computer science, or biology 

departments. 

Artificial neural networks can be most adequately characterized as "computational 

models" with particular properties such as the ability to adapt or learn, to generalize, or to cluster 

or organize data, and which operation is based on parallel processing. However, many of the 

above mentioned properties can be attributed to existing (non-neural) models; the intriguing 

question is to which extent the neural approach proves to be better suited for certain applications 

than existing models. To date an equivocal answer to this question is not found. 

An artificial network consists of a pool of simple processing units which communicate by 

sending signals to each other over a large number of weighted connections. 

A set of major aspects of a parallel distributed model can be distinguished: 

n A set of processing units ('neurons,' cells'); 

n A state of activation for every unit, which is equivalent to the output of the unit; 

n Connections between the units. Generally each connection is defined by a 

weight which determines the effect which the signal of the sending unit has on 

the receiving unit; 
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n A propagation rule, which determines the effective input of a unit from its 

external inputs; 

n An activation function, which determines the new level of activation based on 

the effective input and the current activation (i.e., the update); 

n An external input (a.k.a. bias, offset) for each unit; 

n A method for information gathering (the learning rule); 

n An environment within which the system must operate, providing input signals 

and (if necessary) error signals. 

Each processing unit (often called "neuron" after its biological inspiration or "node") 

performs a relatively simple job: receive input from neighbors or external sources and use this to 

compute an output signal which is propagated to other units. Apart from this processing, a second 

task is the adjustment of the weights. The system is inherently parallel in the sense that many 

units can carry out their computations at the same time. 

Within neural systems it is useful to distinguish three types of units: input units which 

receive data from outside the neural network, output units which send data out of the neural 

network, and hidden units whose input and output signals remain within the neural network. 

In most cases we assume that each unit provides an additive contribution to the input of 

the unit with which it is connected. The total input to a unit is simply the weighted sum of the 

separate outputs from each of the connected units plus a bias or offset term. The contribution for 

positive weight is considered as an excitation and for negative weight as inhibition. In some cases 

more complex rules for combining inputs are used, in which a distinction is made between 

excitatory and inhibitory inputs. We call units with a propagation rule sigma units. 

We also need a rule which gives the effect of the total input on the activation of the unit. 

We need a function which takes the total input and the current activation and produces a new 
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value of the activation of the unit. Often, the activation function is a non-decreasing function of 

the total input of the unit although activation functions are not restricted to non-decreasing 

functions. Generally, some sort of threshold function is used: a hard limiting threshold function (a 

sgn function), or a linear or semi-linear function, or a smoothly limiting threshold. For this 

smoothly limiting function often a sigmoid (S-shaped) function is used (Figure 1). 

FIGURE 1: Activation Functions 

sgn 	 semi-linear 	 sigmoid 

A neural network topology refers to the pattern of connections between the units and the 

propagation of data. As for this pattern of connections, the main distinction we can make is 

between: 

n Feed-forward networks (our case), where the data flow from input to output 

units is strictly feed-forward. The data processing can extend over multiple 

(layers of) units, but no feedback connections are present, that is, connections 

extending from outputs of units to inputs of units in the same layer or previous 

layers. 

n Recurrent networks that do contain feedback connections. Contrary to feed- 

forward networks, the dynamical properties of the network are important. In 

some cases, the activation values of the units undergo a relaxation process such 

that the network will evolve to a stable state in which these activations do not 
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change anymore. In other applications, the change of the activation values of the 

output neurons is significant, such that the dynamical behavior constitutes the 

output of the network (Pearlmutter, 1990). 

A neural network has to be configured such that the application of a set of inputs produces 

(either "direct" or via a relaxation process) the desired set of outputs. Various methods to set the 

strengths of the connections exist. One way is to set the weights explicitly, using a priori 

knowledge. Another way is to 'train' the neural network by feeding it teaching patterns and letting 

it change its weights according to some learning rule. 

We can categorize the learning paradigms in two distinct sorts. These are: 

n Supervised learning (our case) or Associative learning in which the network is 

trained by providing it with input and matching output patterns. These input- 

output pairs can be provided by an external teacher, or by the system which 

contains the network (self-supervised). 

n Unsupervised learning or Self-organization in which an (output) unit is trained 

to respond to clusters of pattern within the input. In this paradigm the system is 

supposed to discover statistically salient features of the input population. Unlike 

the supervised learning paradigm, there is no a priori set of categories into which 

the patterns are to be classified; rather the system must develop its own 

representation of the input stimuli. 

Here is some additional clarification of the most important neural network terminology: 

n Output vs. activation of a unit. Since there is no need to do otherwise, we 

consider the output and the activation value of a unit to be one and the same 

thing. That is, the output of each neuron equals its activation value. 
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n Bias, offset, threshold. These terms all refer to a constant (i.e., independent of 

the network input but adapted by the learning rule) term which is input to a 

unit. They may be used interchangeably, although the latter two terms are 

often envisaged as a property of the activation function. Furthermore, this 

external input is usually implemented (and can be written) as a weight from a 

unit with activation value 1. 

n Number of layers. In a feed-forward network, the inputs perform no 

computation and their layer is therefore not counted. Thus a network with one 

input layer, one hidden layer, and one output layer is referred to as a network 

with two layers. This convention is widely though not yet universally used. 

n Representation vs. learning. When using a neural network one has to 

distinguish two issues which influence the performance of the system. The 

first one is the representational power of the network; the second one is the 

learning algorithm. 

Below is an introduction of one of the most popular kinds of neural networks, the one that 

is used for the experiments in this project, namely the multi-layer feed-forward network. As its 

name suggests, it is a feed-forward network with layers of processing units. The central idea 

behind the learning of this network is that the errors for the units of the hidden layer are 

determined by back-propagating the errors of the units of the output layer. For this reason the 

method is often called the back-propagation learning rule. Back-propagation can also be 

considered as a generalization of the delta rule for non-linear activation functions and multilayer 

networks (Figure 2). 
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FIGURE 2: Feed-Forward Network 

A feed-forward network has a layered structure. Each layer consists of units which receive 

their input from units from a layer directly below and send their output to units in a layer directly 

above the unit. There are no connections within a layer. The inputs are fed into the first layer of 

hidden units. The input units are merely `fan-out' units; no processing takes place in these units. 

The activation of a hidden unit is a function of the weighted inputs plus a bias. The output of the 

hidden units is distributed over the next layer of hidden units, until the last layer of hidden units, 

of which the outputs are fed into a layer of output units. 

Although back-propagation can be applied to networks with any number of layers, just as 

for networks with binary units it has been shown (Hornik, Stinchcombe, & White, 1989; 

Funahashi, 1989; Cybenko, 1989; Hartman, Keeler, & Kowalski, 1990) that only one layer of 

hidden units suffices to approximate any function with finitely many discontinuities to arbitrary 

precision, provided the activation functions of the hidden units are non-linear (the universal 

approximation theorem). In most applications a feed-forward network with a single layer of 

hidden units is used with a sigmoid activation function for the units (Figure 1). 

16 



Back-propagation is relatively easy to explain and understand. Here is one non- 

mathematical explanation of back-propagation. When a learning pattern is clamped, the 

activation values are propagated to the output units, and then the actual network output is 

compared with the desired output values. We usually end up with an error in each of the output 

units. Let's call this error e(o) for a particular output unit o. We have to bring e(o) to zero. The 

simplest method to do this is the greedy method: we strive to change the connections in the neural 

network in such a way that, next time around, the error e(o) will be zero for this particular 

pattern. We know from the delta rule that, in order to reduce an error, we have to adapt its 

incoming weights. 

FIGURE 3: Back-Error Propagation 
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Despite the success of the back-propagation learning algorithm, there are some aspects 

which make the algorithm not guaranteed to be universally useful. Most troublesome is the long 

training process. This can be a result of a non-optimum learning rate and momentum. A lot of 

advanced algorithms based on back-propagation learning have some optimized method to adapt 
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this learning rate, as will be discussed in the next section. Outright training failures generally 

arise from two sources: network paralysis and local minima, but these are not going to be 

discussed here. 

How good are multi-layer feed-forward networks really? As it will be shown in the 

experiments later in the paper, the approximation of the network is not perfect. The resulting 

approximation error is influenced by: 

1. The learning algorithm and number of iterations. This determines how good the 

error on the training set is minimized. 

2. The number of learning samples. This determines how good the training samples 

represent the actual function. 

3. The number of hidden units. This determines the 'expressive power' of the network. 

For "smooth" functions only a few number of hidden units are needed, for wildly 

fluctuating functions more hidden units will be needed. 

Because of time and computing power constraints, for this project the sample size will be 

relatively small, as well as the number of hidden units. The quality of the produced network is not 

expected to be very high, but it will be enough to demonstrate the potential of the neural 

networks technology. 
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3 Methodology 

In this section, we will examine in details how to design, build, train, test, and finally use a 

neural network. As we shall see, there is no single right design and there is not single right testing 

strategy. In fact, it is not so important what the design is. What is of utmost importance, though, 

is the training process and the data that is used for it. A neural network should not memorize, it 

should generalize, and whether it is the former case, or the latter, entirely depends on the training 

process. Even if the training process is correct and consistent, the neural network is still a useless 

tool without the right training data. 

In order to choose the right training data, we should be very clear on what we expect the 

network to be able to go. If we give it the right data and we train it properly, the network will 

give back results in return. But if we incorrectly conclude that there is a certain pattern in a set of 

data, and there is not one, then we are confusing our network, and the network will not able to 

generalize anything, or will not be able to extract the pattern that does not even exist. By this 

point it should be clear that building a working neural network is not trivial. An effective training 

process may take many days, and even months. Selecting and preprocessing appropriate training 

data may also take very long. Even when we succeed with training data selection, and with the 

training process, we cannot say "Here is the complete product" and leave it on the shelf. The 

neural networks made for dynamic systems like the stock market require daily, if not hourly 

maintenance, depending on their goal and usage. A smart thing would be to automate these 

processes, so that the neural network users only have to worry about how to interpret the neural 

network results. 
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3.1 Identifying Project Goals 

The main goal of this project was to design and build a prototype neural network, and 

demonstrate the applicability of the neural network model in predicting financial markets. The 

prototype model was tested on predicting a stock market index, and a stock. 

3.2 Obtaining and Assessing Available Historical Market Data 

Ideally, any neural network should be trained on all data which is available, such as 

opening price, closing price, high for the day, low for the day, volume, and all available technical 

numeric indicators. The more kinds of relevant input data are included in the model, the better the 

accuracy of the model predictions. However, the trade-off is that the model becomes very 

complex, and the time to train the model and the computing power requirements sharply rise. 

For the prototype neural network build for this project, it was decided to use a reduced 

amount of data, namely 280 data points, in order to minimize training time and demand for 

computing power. The S&P 500 stock market index was chosen for the stock market index 

version of the model, and the Intel Corporation stock, which is traded on NASDAQ as INTC, was 

chosen for the stock version of the model. For the S&P 500 predictor, the data chosen for training 

was from January 1975 to February 1976. For the INTC predictor, the data chosen was from 

April 2005 to May 2006. Each of those sets contained 280 data points, which were selected to be 

the closing prices for the day. 
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3.3 Designing the System 

The neural network model has 3 layers: 1 input layer, 1 hidden layer, and 1 output layer. 

The decision to include only one hidden layer was based the literature review. Systems with more 

than one hidden layer are more prone to overfitting the data than those with 1 hidden layer. Also, 

the training time increases dramatically when more hidden layers are added, making the 

experiments too prolonged in time to perform, or requiring unavailable computing resources. 

The input layer has 30 input nodes. This means the neural network uses data from 30 days 

back to make its prediction for the new day. The hidden layer has 10 hidden nodes. The number 

of nodes in the hidden layer is usually determined by the amount of training data. Since in my 

case, the training data was minimized, the number of hidden nodes was kept small as well. The 

output layer has one node, namely the forecasting closing price for the next business day. 

The 280 data points available are distributed among the training, evaluation, and test set 

as follows: 

[30-179] TRAINING SET 

[180-259] TEST SET 

[260-279] EVALUATION SET 

The window size, that is, the size of the input vector, was 30 and that is why the training set 

begins from 30, not from 0. 

3.4 Implementing the System 

The implementation details, the source code, and the relevant technical details are all 

described in the Appendix on Programming Details. 
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3.5 Tuning the System 

After the system was ready and able to run, a lot of initial tests were performed. They 

helped remove some of the source code issues, and determine the needed preprocessing of the 

data. The data was preprocessed by division by 100. Performing this preprocessing of the data 

allowed the neural network to finish training faster, as the computed error was minimized faster. 

The need for saving the results to an output file, in addition to showing them on the screen, was 

observed, and so code to produce a formatted output file was added. The output file was 

formatted such that it would be ready to be imported in Excel or some other spreadsheet software 

system. The file contains 2 columns, Predicted and Actual, and it is very easy to plot a chart and 

see how successful the neural network was at predicting. Another way of assessing the system 

would be to see if the direction of change of the predicted values followed the actual direction of 

change. The difference between the predicted and actual direction change would be used to 

determine the error rate using any spreadsheet software. 

3.6 Experiment Setup and Results 

Both experiments were performed using the same source code. The difference between the 

two experiments is that for the first experiment, the array in backprop.cpp was filled with 280 

S&P500 historical values, while for the second experiment, the 280 closing prices of Intel Corp 

(symbol: INTC) were used. Before entering the data in backprop.cpp file for each experiment, all 

closing prices were first divided by 100 to minimize the time to compute the total error. 

Technology used for performing the tests: 

All the tests were performed in exclusion (one by one) on a high processing power laptop 
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Experiment 1:  

FIGURE 6: S & P 280 predicted vs. actual results 

Press ALT to choose commands. 

Data used: 280 daily closing prices of S&P500 starting 2 Jan 1975. 

Preprocessing: Yes, division by 100. 

Time to train: About 6 hours of full CPU utilization. 

Result: Overall follows the trend, achieves success rate of 56% (error rate is 44%), numerical 

price predictions not very accurate. 

Warning: Is that only possible when the actual direction is up? Will it ever suggest "down" by 

itself before the real trend goes down? 

Problem: The numerical predictions are always below in price then the actual data. 
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Possible reason: Not given enough data so that the network could catch the "speed" of the stock 

market that is, prices go up faster than the network projects. 

Solution: More training data - at least several years. 

Error Rate computed: 44% 

Experiment 2:  

FIGURE 7: INTEL predicted vs. actual results 

Data used: 280 daily most recent closing prices of the INTC stock. 

Preprocessing: Yes, division by 100. 

Time to train: About 2 hours of full CPU utilization. 

Result: Follows the trend, relatively low error rate, better numerical price predictions, error rate = 

33%, success rate = 67%. 
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Warning: the data the neural network had to predict did not have many ups and downs, the 

pattern was smoother than in the first experiment, so it is possible this is the reason for the 

better numeric estimations. 

NOTE: For more information on the experiment results, please refer to the attached 

spreadsheets, which contain plots of the data, error rate computation, and more. 
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4 Future Directions 

Here are briefly listed a few suggestions that could be used for further work on this project: 

n A full planned statistical experiment with the neural network which would further 

prove or disprove the effectiveness of the network. 

n Comparative experiment between the neural network and a linear forecasting tool 

which would further prove or disprove the greater effectiveness of the network 

compared to the effectiveness of available linear forecasting models. 

n Comparative experiment between different neural network methods, based on 

convergence rate, prediction accuracy, training time requirements and stability of 

results. 

Here are some suggested design improvements/experiments. 

n Train the neural network on a prolonged period of data (i.e. several years). 

n Increase the number of nodes in the hidden layer. Doing so should increase the 

accuracy of the system. 

n Increase the number of hidden layers in the neural network. 

n Change the neural network design from a feed-forward one to a recurrent one. 

Doing so could improve the performance of any time series forecasting network. 

n Have the system output its forecast alongside a number indicating its own level of 

confidence in its prediction. Reject/ignore results whenever the system has low 

confidence in its prediction. 
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n Make the neural network read the input data from a CSV file; do not store the 

training data in an internal array. This would allow for an easy retraining of the 

neural network with new data. 

n Automate the neural network training and retraining process, so that the neural 

network is periodically retrained with new data from a data feed. 

Try hybrid or alternative methods: 

n Symbolic processing, which filters noise and could help a recurrent neural network 

(RNN) model work better, as it is proven RNNs can learn simple grammars. 

n Recurrent neural networks, which provide for stronger expression of the temporal 

relationship of the data points; RNNS could infer rules and construct a deterministic 

finite state automata. 

n Self-organizing modeling. 

n Genetic algorithms and neural networks. 

n Evolutionary computing, genetic algorithms, and neural networks. 

n Neural networks and chaos theory. 

n Neural networks and fuzzy logic. 

n Neural networks and Bayesian statistical models. 

n Have a group of neural network and other models vote independently, and produce a 

voting result on which the prediction is based. 
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5 Impact on Society 

Technology has evolved so quickly in the recent decades that it is now obvious that the trend 

of applying technology to virtually every aspect of life is going to continue well into the future. 

The impact of technology on stock trading and investing could be observed in the mergers of 

international stock exchanges, the increased number of people who are trading stocks and 

derivatives, the increased number of part-time day traders, the increased number of discount 

brokers online offering trade execution at lower fees, the new and improved trading systems 

which incorporate innovative technologies like neural networks and evolutionary computing, and 

provide for more profitability. 

A recent series of mergers on non-electronic stock exchanges with fully electronic ones is 

very indicative of the direction in which the financial world is going. There are apparent moves 

by NASDAQ to acquire the London Stock Exchange. At the same time, the NYSE Group (owner 

of the New York Stock Exchange) offered 8 billion euros ($10.2b) in cash and shares for 

Euronext on May 22, 2006, outbidding a rival offer for the European Stock exchange operator 

from Germany's Deutsche Borse, the German stock market. The new entity, to be called NYSE 

Euronext, intends to form the world's first global stock market, with continuous trading of stocks 

and derivatives over a 21-hour time span. It is also important to mention Archipelago's 

acquisition by the NYSE Group. The Archipelago Exchange is a fully electronic stock exchange 

that agreed to merge with the New York Stock Exchange in April 2005 to form the for-profit 

NYSE Group. Thus, globalization and computerization are a strong trend in the financial world, 

and this trend is to a great extend driven by the advancement of technology. 

Another clear trend is that more and more people are executing trades online. Low- 

commission equity trading seems to have been the catalyst for the online brokerage revolution, 
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and is the dominant securities product sold online. Another motivation besides the low 

commission is the execution speed of the trades. 

The impact of electornic trading technology on the financial markets, and indirectly on the 

society as a whole, could be summarized in four main points. First, electronic trading technology 

is cost-efficient, both in the sense that it lowers start-up costs for new systems and reduces 

continuing operating costs substantially. Second, electronic trading technology changes the 

dynamics of the marketplace by removing physical constraints such as geography and thus 

increasing number of participants in a market. Third, electronic trading technology has a great 

potential for disintermediating the markets, allowing buyers and sellers to meet directly. Finally, 

electronic trading technology has blurred the distinction between broker-dealers and exchanges 

(Unger, 1999). 

Nowadays, thanks again to the advancement of technology and technical analysis, and of 

their availability and accessibility online, many people whose day job involves work with a 

computer which is connected to the Internet are acting as part-time traders while at work. This is 

a controversial practice, since it distracts the workers and reduces their efficiency. 

Yet another trend is the increasing usage of trade management platforms, and their 

integration with innovative technologies like the neural network technology, or evolutionary 

computing. Most of those systems are still not fully mature, but it will not be a big surprise if 

several years (or maybe decades) from now a close-to-perfection trading system with a very 

powerful neural network is available to the general public. It is very probable that such system is 

very profitable in its early years of adoption, but as its popularity increases and more people start 

using this same trading system with the same neural net (or another technology) integrated with 

it, a lot of people will be trying to execute the exact same trades, and the result from that will be 

greatly reduced profitability. Or maybe another scenario will take place. If the system is greatly 
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customizable, then it is less likely the situation described about would occur. For example, if the 

trading system is integrated with a neural network whose training and/or architecture are 

customizable, then it is very unlikely that the systems would produce the same results. Neural 

networks are very sensitive to the amount and quality and the type of the training data, as well as 

to their internal architecture, so it will be unlikely that two networks produce the same result. 

It will be interesting to observe in the future how, and if, the neural networks technology 

significantly impacts technical trading and, conversely, how the changing nature of equity, 

derivative, commodity, bond, currency, etc. markets (i.e., their increasingly interrelated and 

computerized nature) drives innovations in technical trading such as neural nets. The neural 

networks technology is expected to improve technical trading, as it would provide for the 

discovery of time series financial data patterns not readily visible to the human eye. At the same 

time, the changing nature of the stock exchanges from non-computerized to completely 

computerized would likely increase the understanding, and consequently, the usage and 

profitability of technical trading, which is turn will stimulate further research and improvement of 

technical trading models such as neural net, genetic algorithms, and evolutionary computing 

models. 

In the most extreme case, when all traders use real-time, intelligent trading systems and 

ideally trained and configured neural networks, all profit opportunities the markets create would 

immediately be exploited, and the Efficient Market Hypothesis would hold true. In other words, 

if everybody traded with the perfect trading system using the perfect neural network, absorbing 

all news in the second it arrives, then nobody will be able to predict the market. Fortunately, this 

is not likely to become reality. 
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In conclusion, the financial industry is becoming more and more dependent on advanced 

computer-technologies in order to maintain competitiveness in a global economy. Neural 

networks represent an exciting technology with a wide scope for potential applications, ranging 

from routine credit assessment operations to driving of large scale portfolio management 

strategies. Some of these applications have already resulted in dramatic increases in productivity, 

and have thus had a positive effect on society. The hope is that neural networks would prove to 

be worth the investment in research and development, and would be well-understood and 

properly used by traders, investors, educators, researchers, and many others. 
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6 Conclusion 

Artificial neural networks are universal and highly flexible function approximators first 

used in the fields of cognitive science and engineering. In recent years, neural network 

applications in finance for such tasks as pattern recognition, classification, and time series 

forecasting have dramatically increased. However, the large number of parameters that must be 

selected to develop a neural network forecasting model have meant that the design process still 

involves much trial and error. The purpose of this project was to provide an introduction to neural 

networks, and demonstrate how a prototype forecasting neural network is designed, created, and 

evaluated. The impact of neural networks and trading technologies on society were examined. 

The two instances of the model build had different performance, although the architecture 

and parameters of both instances were the same, only the training data was different. This clearly 

demonstrated the importance on the quality of the training data on the performance of the 

network. The flexibility of the model was also shown, as single model suited two different 

predictors. Finally, the forecasting potential of the neural network technology was demonstrated, 

as such a simple system as the one build for this project had success rate of 56% for the first 

experiment on predicting S&P500, and 67% on predicting INTC. Clearly, the neural networks 

technology is a powerful one, and its full potential is yet to be uncovered. 
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Appendix A: Source Code 

The source code for this project is based loosely upon code by Karsten Kutza from 

ww.geocities.com/CapeCanavera1/1624/bpn.html . The code is written in C++ using Microsoft 

Visual Studio .NET as a development environment. 

Net (short for neural network) is a C++ class providing a generic interface 

for training and executing simple back-propagation neural networks, for performing 

a variety of tasks. 

The source code consists of the following files: 

1) Net.h - a header file defining the NeuralNetwork namespace. 

2) Net.cpp - defines the neural network interface. 

3) NetLayer.cpp - defines a neural network layer interface. 

4) backprop.cpp - supports training and running of the neural network. 

5) stdafx.cpp - automatically generated by Visual Studio .NET. 

6) stdafx.h - automatically generated by Visual Studio .NET. 

For each experiment, part of the source code is changed, namely the contents of the 

historical data array, the name of the binary file containing the neural network, 

and the name of the output file which contains the results from running the network. 

RUNNING THE NEURAL NETWORKS 

Use sp500-predictor.exe to run the s&p500 predictor. It may make up to several hours 

to train the network, and produce results. The results will be generated both on the black screen 
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which appears when one runs the exe file, and into a file named results-sp500.txt, whose location 

is the same as the exe file's location. 

To better analyze the results, open the exe file with Microsoft Excel or Microsoft Works 

or other spreadsheet software able to handle data in CSV (comma separated values) format. 

Best visual effect is achieved by selecting both columns together with the titles "predicted" 

and "actual", and invoking a charting tool. 

Apart from the text file with results, we should not forget there is the black window, in 

which the program is writing its status. We know that the neural network has finished executing 

when the message "Press any key to continue..." comes up in the botton of the window. This lets 

one look at the results on the screen, including the minimized error, and the final error. After 

pressing a key, the window disappears, that is, the predictor quits. 

Running the intc-predictor.exe is completely analogical. 

PROGRAMMING AND DESIGN DETAILS 

The neural network class itself is the class NeuralNetwork::Net. It depends on the class 

NeuralNetwork::NetLayer, both of which are defined in Net.h. The file backprop.cpp is a sample 

of using Net to train a system to predict stock market prices. 

Seed the random number generator (if you wish to randomize weights). 

Create an instance of NeuralNetwork::Net, passing in the number of layers, number of 

perceptrons in each layer, momentum factor, learning rate, and gain for the sigmoid function. 

Randomize or clear weights, whichever is desirable, with Net::randomizeWeights() or 

Net::clearWeights(). 

Create a class (or two, or more) inheriting from NeuralNetwork::ExampleFactory and 

implement getExample, which returns via its parameters a new input/output pair each time it's 
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called, and numExamples, which is an estimate of the total number of unique examples. Create 

an instance of one of these classes for your training set (the set the network attempts to minimize 

error on) and an instance of one of these classes for your test set (the set used to identify 

overtraining). These will be passed to autotrain. 

Use Net::autotrain() to train the network to its optimum error level on the test set. It will 

perform a specified number of epochs, then test if error on the test set has exceeded minimum 

error times the specified cut off error. If so, it will consider training done, and return with the 

network configured to the weights that gave best results on the test set. Otherwise, it will repeat. 

If you will not train the network again (without saving and reloading it), you can call 

Net::doneTraining() to dispose of temporary storage used during training. 

Run the neural network on new cases using Net::run(), which simply takes an input and produces 

an output. 

If you wish to save your network for future sessions, use Net::save() with a binary-mode 

std::ostream. Load it again using the Net constructor taking a binary-mode istream. 

Since you might wish to observe the progress of your network's training, you may #define the 

symbol NEURAL_NET_DEBUG to view the total error each time it is calculated for the test set. 

When this starts to go up, training is nearing completion. 

FUTURE DIRECTIONS ON SOURCE CODE IMPROVEMENT 

In the future, some of these things could be done to improve the neural network. 

n Add support for a callback to be called each time the test error is calculated, rather 

than just a debug trace, so end-users can view progress. 

n Add support for delta functions other than the sigmoid function. 

n Add support for more direct training, when more control is needed. 
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n Add better optimization techniques. 

SOURCE CODE LISTING 

1) Net.h - a header file defining the NeuralNetwork namespace. 

2) Net.cpp - defines the neural network interface. 

3) NetLayer.cpp - defines a neural network layer interface. 

4) backprop.cpp - supports training and running of the neural network. 

5) stdafx.cpp - automatically generated by Visual Studio .NET. 

6) stdafx.h - automatically generated by Visual Studio .NET. 

1) Net.h - a header file defining the NeuralNetwork namespace. 

/********************************************************************** 

Declares everything in the NeuralNetwork namespace: declares the Net 
class representing the entire network, the NetLayer class representing 
a single layer of the network, and defines several I/O helpers, 
accessors, and fixed parameters. 
********************************************************************** 

#ifndef _NET_H_ 
#define NET _H_ 

#include <iostream> 
#include <string.h> 

namespace NeuralNetwork 
{ 

/1 The floating-point type used in computations. Using float 
I/ makes negligible speed difference. 
typedef double real; 

/1 Useful for reading raw (stored byte-for-byte) objects off an istrearn 
template <class T> 

inline void readRaw(std::istream& in, T& obj) 
{ 

in.read(reinterpret_cast<char*>(&obj), sizeof(T)); 
} 

1/ Useful for reading raw (stored byte-for-byte) arrays off an istream 
template <class T> 

inline void readRawArray(std::istream& in, T* array, int size) 
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{ 

in.read(reinterpret_cast<char*>(array), sizeof(T)*size); 
} 

// Useful for storing objects raw (byte-for-byte) on an ostream 
template <class T> 

inline void writeRaw(std::ostream& out, const T& obj) 
{ 

out.write(reinterpret_cast<const char*>(&obj), sizeof(T)); 
} 

I/ Useful for storing arrays raw (byte-for-byte) on an ostream 
template <class T> 

inline void writeRawArray(std::ostream& out, const T* array, int size) 

out.write(reinterpret cast<const char*>(array), sizeof(T)*size); 
} 

/1 A layer of a neural network, used by NeuralNetwork::Net 
class NetLayer 

public: 
// Creates a new net layer with the given number of units, 
// and the given immediately-preceding layer (0 for none). 
NetLayer(int initUnits, NetLayer* prevLayer); 

// Loads this layer from a stream where it was previous saved with save() 
NetLayer(std:istream& in, NetLayer* initPrevLayer); 

// Frees buffers used to hold weights, etc. 
—NetLayer(); 

// Gets number of perceptrons in this layer 
int getUnits() const; 

Gets the output of the outputNumith perceptron in this layer 
real getOutput(int outputNum) const; 

1/ Sets the error on the output of the given perceptron 
void setError(int errorNum, real value); 

1/ Initialises weights of edges going into this layer to random values 
void randomizeWeights(); 

1/ Initialises weights of edges going into this layer to zero 
void clearWeightsO; 

// Saves weights for later restoring by restore Weights. Only one 
// set of weights can be saved, usually the best seen so far. 
void saveWeights(); 

// Restores the set of weights most recently saved by saveWeights. 
void restore Weights(); 

// Propagates outputs of the previous layer to the outputs of this layer 
void propagate(real gain); 
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// Propagates error from this layer back to the previous layer, 
// in. preparation for adjustWeights, which uses the error info. 
void backpropagate(real gain); 

I/ Computes error of the outputs of this layer from a given set of 
// target values, stores these, and returns the mean square error of 
// them all. Usually used on output layer. 
real computeError(real gain, real target[]); 

// Adjusts weights in order to decrease the error as established 
/1 by previous computeError/backpropagate calls. 
void adjustWeights(real momentum, real learningRate); 

1/ Gets the values outputted by the perceptrons in this layer and 
// places them in the array outputsHolder 
void getOutputs(real* outputsHolder); 

/1 Sets the values outputted by the perceptrons in this layer 
void setOutputs(real* newValues); 

// Saves network so it can be later loaded by the (istream&) constructor 
void save(std::ostream& out); 

/1 Deallocates storage used only during training 
void doneTraining(); 

private: 
/1 Gets the weight on the weightnum'th edge coming into unit unitNum 
real& getWeight(int unitNum, int weightNum); 
// Gets the delta-weight on the weightnum'th edge coming into unit un itN um  
real& getDWeight(int unitNum, int weightNum); 

private: 
int units; 	 // number of units in this layer 
int weightsPerUnit; II number of conns going into each unit 
real* output; 	 II output of ith unit 
real* error; 	 // error term of ith unit 
real* weight; 	 connection weights to ith unit 
real* weightSave; // saved weights for stopped training 
real* dWeight; 	 // last weight deltas for momentum 
NetLayer* prevLayer; II Pointer to next layer 

// A buffer used and allocated only once for efficiency 
real* weightIntermediate; 

); 

II Gets number of perceptrons in this layer 
inline int NetLayer::getUnits() const 

return units; 
} 

II Gets the output of the outputNum'th perceptron in this layer 
inline real NetLayer::getOutput(int outputNum) const 
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return output[outputNum]; 
} 

/1 Sets the error on the output of the given perceptron 
inline void NetLayer::setError(int nodeNum, real value) 

error[nodeNum] = value; 
} 

/1 Sets the values outputted by the perceptrons in this layer 
inline void NetLayer::setOutputs(real* newValues) 
{ 

memcpy(output+1, newValues, sizeof(real)*units); 
} 

I/ Gets the values outputted by the perceptrons in this layer and 
// places them in the array outputsllolder 
inline void NetLayer::getOutputs(real* outputsHolder) 
{ 

memcpy(outputsHolder, output+l, sizeof(real)*units); 
} 

1/ Gets the weight on the weightnum'th edge coming into unit unitNum 
inline real& NetLayer::getWeight(int unitNum, int weightNum) 

return weight[unitNum*weightsPerUnit + weightNum]; 
} 

1/ Gets the delta-weight on the weightnum'th edge coming into unit unitNum 
inline real& NetLayer::getDWeight(int unitNum, int weightNum) 
{ 

return dWeight[unitNum*weightsPerUnit + weightNum]; 
} 

/I Saves weights for later restoring by restore Weights. Only one 
// set of weights can be saved, usually the best seen so far. 
inline void NetLayer::saveWeights() 
{ 

memcpy(weightSave, weight, (units+ 1 )*weightsPerUnit*s izeof(real)); 
} 

// Restores the set of weights most recently saved by saveWeights. 
inline void NetLayer::restoreWeights() 

memcpy(weight, weightSave, (units+1)*weightsPerUnit*sizeof(real)); 

// Generates training/test examples for the network. Inherit from this 
II and pass instances of that subclass into autotrain and test. 
class ExampleFactory 

public: 
// Fills the given arrays with input values and expected output 
// values based on the next training example. Training values 
// should each be enumerated once on average per numOfExamples 
// calls. 
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virtual void getExample(int inputSize, real* input, 
int outputSize, real* output) = 0; 

// Returns number of training examples. If randomly generated, 
pick something large but reasonable. 

virtual int numExamples() = 0; 
1 ; 

II A complete multilayer feed-forward neural network 
class Net 

public: 
// Creates a new feed-forward neural network with the given number of 
// layers with the specified number of nodes in each, and the learning 
// rate, momentum factor, and gain of the sigmoid function. 
Net(int layers, int layerSizes[], 

real momentumFactor, real learningRate, real gain); 

I/ Loads a network from a stream where it was previous saved with save() 
Net(std::istream& in); 

/1 Frees all memory allocated for network 
—Net(); 

// initializes all weights in network to random values 
void randomizeWeightsO; 

// initializes all weights in network to zero 
void clearWeightsO; 

1/ Automatically trains the network until its performance on the 
// test set appears to have achieved a maximum. Returns total 
// error on the test set at completion. 
II - epochsBetweenTests establishes how many tests are done between 
// test set checks for accuracy. 
// - cutOffError establishes how much worse, as a multiple, error has 
// to be than the minimum error seen before we stop training. Must be >1. 
real autotrain(ExampleFactory &trainingExamples, 

ExampleFactory &testExamples, 
int epochsBetweenTests = 10, 
float cutOffError = 1.1); 

II Runs the network on an input and feeds it forward to produce an 
// output. For usage after training with autotrain. 
void run(real* input, real* output); 

II Tests the network using the given example set, returning total error 
real test(ExampleFactory &testExamples); 

// Deallocates storage used only during training 
void doneTrainingO; 

1/ Saves network to a stream, to be read back in with the istream& constructor 
void save(std::ostream& out); 

private: 
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/7 Saves weights for later restoring by restoreWeights. Only one 
/7 set of weights can be saved, usually the best seen so far. 
void saveWeights(); 

// Restores the set of weights most recently saved by saveWeights. 
void restoreWeights(); 

// Propagates inputs of the net all the way through to outputs 
void propagate(); 

// Backpropagates output errors all the way back through the network 
void backpropagate(); 

// Computes and stores error of output layer and each of its components 
void computeOutputError(real* target); 

// Adjusts all weights in network to decrease error recorded by 
/1 previous calls to backpropagate or computeOutputError. 
void adjustWeights(); 

/1 Sets the values of the inputs to the network 
void setInputs(real* inputs); 

II Gets the outputs and places them in the array outputs 
void getOutputs(real* outputs); 

II Trains a single training example once 
void simpleTrain(real* input, real* expectedOutput); 

// Trains for a given number of epochs on an entire training set 
void train(int epochs, ExampleFactory &trainingExamples); 

private: 
int 	 numLayers; // number of layers 
NetLayer** layer; 	 // layers of this net 
NetLayer* inputLayer; /1 input layer 
NetLayer* outputLayer; /1 output layer 
real 	 momentumFactor; // momentum factor 
real 	 learningRate; // learning rate 
real 	 gain; 	 1/ gain of sigmoid function 
real 	 error; 	 // total net error 

1/ These are used as temporary buffers in member funcs, 
// allocated once in the constructor for efficiency. 
real* 	 input; 
real* 	 expectedOutput; 
real* 	 actualOutput; 

1 ; 

#endif /* #ifndef NET H */ 

2) Net.cpp - defines the neural network interface. 

/********************************************************************** 
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Implementation of the class handling the entire network. The 
training algorithm is mainly contained here. 
**********************************************************************, 

#include "Net.h" 
#include "stdafx.h" 

#ifdef NEURAL_NET_DEBUG 
#include <iostream> 
#endif 

using namespace NeuralNetwork; 

II Creates a new feed-forward neural network with the given number of 
// layers with the specified number of nodes in each, and the learning 
I/ rate, momentum factor, and gain of the sigmoid function. 
Net::Net(int layers, int layerSizes[], 

real initLearningRate = 0.25, 
real initMomentumFactor = 0.9, 
real initGain = 1.0) 
:momentumFactor(initMomentumFactor), 
learningRate(initLearningRate), 
gain(initGain) 

{ 

Allocate and initialise layers 
numLayers = layers; 
layer = new NetLayer*[layers]; 
layer[0] = new NetLayer(layerSizes[0], 0); 
for (int i=1; i<layers; i++) 
{ 

layer[i] = new NetLayer(layerSizes[i], layer[i-1]); 
} 

inputLayer = layer[0]; 
outputLayer = layer[layers-1]; 

/I Allocate these here to avoid massive allocation slowdowns later 
int inputSize = inputLayer->getUnits(); 
input = new real[inputSize]; 
int outputSize = outputLayer->getUnits(); 
actualOutput = new real[outputSize]; 
expectedOutput = new real[outputSize]; 

// Let weights initially be random 
randomizeWeights(); 

I/ Loads a network from a stream where it was previous saved with save() 
Net::Net(std::istream& in) 

II Allocate and initialise layers 
readRaw(in, numLayers); 
readRaw(in, momentumFactor); 
readRaw(in, learningRate); 
readRaw(in, gain); 
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layer = new NetLayer*[numLayers]; 
layer[0] = new NetLayer(in, 0); 
for (int i=1; i<numLayers; i++) 
{ 

layer[i] = new NetLayer(in, layer[i-1]); 
} 

inputLayer = layer[0]; 
outputLayer = layer[numLayers- 1 ]; 

I/ Allocate these here to avoid massive allocation slowdowns later 
int inputSize = inputLayer->getUnits(); 
input = new real[inputSize]; 
int outputSize = outputLayer->getUnits(); 
actualOutput = new real[outputSize]; 
expectedOutput = new real[outputSize]; 

} 

1/ Saves network to a stream, to be read back in with the istream& constructor 
void Net::save(std::ostream& out) 
{ 

writeRaw(out, numLayers); 
writeRaw(out, momentumFactor); 
writeRaw(out, learningRate); 
writeRaw(out, gain); 

// Save each layer 
for (int i=0; i<numLayers; i++) 

layer[i]->save(out); 
} 

} 

/1 Frees all memory allocated for network 
Net::—Net() 

for (int i=0; i<numLayers; i++) 

delete layer[i]; 

delete[] layer; 

delete[] input; 
delete[] actualOutput; 
delete[] expectedOutput; 

} 

1/ Initializes all weights in network to random values 
void Net::randomizeWeights() 

/1 Simply call randomizeWeights on each layer except the first 
for (int layerNum=1; layerNum < numLayers; layerNum++) { 

layer[layerNum]->randomizeWeights(); 

} 
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// Initializes all weights in network to zero 
void Net::clearWeights() 

/1 Simply call randomize Weights on each layer except the first 
for (int layerNum=1; layerNum < numLayers; layerNum++) 

layer[layerNum]->clearWeightsO; 

} 

II Saves weights for later restoring by restore Weights. Only one 
// set of weights can be saved, usually the best seen so far. 
void Net::saveWeights() 

/I Simply call saveWeights on each layer except the first 
for (int layerNum=1; layerNum < numLayers; layerNum++) { 

layer[layerNum]->saveWeightsO; 

} 

II Restores the set of weights most recently saved by save Weights. 
void Net::restoreWeightsO 
{ 

1/ Simply call restoreWeights on each layer except the first 
for (int layerNum=1; layerNum < numLayers; layerNum++) { 

layer[layerNum]->restoreWeightsO; 

} 

// Propagates inputs of the net all the way through to outputs 
void Net::propagate() 

// Simply call propagate on each layer except the first 
for (int layerNum=1; layerNum < numLayers, layerNum++) { 

layer[layerNum]->propagate(gain); 
} 

} 

/7 Backpropagates output errors all the way back through the network 
void Net::backpropagate() 
{ 

// Simply call backpropagate on the layers in reverse order, 
// except the first, thus driving error back from output to input. 
for (int layerNum=numLayers-1; layerNum > 0; layerNum--) { 

layer[layerNum]->backpropagate(gain); 

II Computes and stores error of output layer and each of its components 
void Net::computeOutputEn -or(real* target) 

II Just ask outputLayer to compute its error against target 
error = outputLayer->computeError(gain, target); 

} 
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Adjusts all weights in network to decrease error recorded by 
1/ previous calls to backpropagate or computeOutputError. 
void Net::adjustWeights() 

// Simply call adjustWeights on each layer except the first 
for (int layerNum=1; layerNum < numLayers; layerNum++) { 

layer[layerNum]->adjustWeights(momentumFactor, learningRate); 

} 

II Sets the values of the inputs to the network 
void Net::setlnputs(real* inputs) 
{ 

it Sets output values of input-layer perceptrons, which is input 
I/ of network 
inputLayer->setOutputs(inputs); 

} 

/1 Gets the outputs and places them in the array outputs 
void N e t : :getOutputs(real* outputs) 
{ 

1/ Gets output of output-layer perceptrons, which is output of 
1/ network 
outputLayer->getOutputs(outputs); 

} 

/1 Trains a single training example once 
void Net::simpleTrain(real* input, real* expectedOutput) 

II See first what the network produces now tbr the input 
// and see how far off it is. 
setlnputs(input); 
propagate(); 
computeOutputError(expectedOutput); 

1/ Backpropagate that error data and then adjust the weights based 
// on it to reduce total error as quickly as possible. 
backpropagate(); 
adjustWeights(); 

} 

Li Trains for a given number of epochs on an entire training set 
void Net::train(int epochs, ExampleFactory &trainingExamples) 

int inputSize = inputLayer->getUnits(); 
int outputSize = outputLayer->getUnits(); 

I/ Train on each training example an average of epochs times 
for (int n=0; n < epochs*trainingExamples.numExamples(); n++) 

trainingExamples.getExample(inputSize, input, outputSize, expectedOutput); 
simpleTrain(input, expectedOutput); 

} 

} 

I/ Tests the network using the given examples, returning total error 
real Net::test(ExampleFactory &testExamples) 
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{ 

int inputSize = inputLayer->getUnits(); 
int outputSize = outputLayer->getUnits(); 

real totalError = 0; 

1/ Run network once on each example, adding error each time to a 
I/ running total. 
for (int n=0; n < testExamples.numExamples(); n++) { 

testExamples.getExample(inputSize, input, outputSize, expectedOutput); 
run(input, actualOutput); 
computeOutputError(expectedOutput); 
totalError += error; 

std::cout << "Error: " << totalError << std::endl; 
return totalError; 

} 

/1 Automatically trains the network until its performance on 
// the test set appears to achieve a maximum. Returns total 
// error on the test set after completion. 
/1 - epochsBetweenTests establishes how many tests are done between 
// test set checks for accuracy. 
/I - cutOffError establishes how much worse, as a multiple, error has 
II to be than the minimum error seen before we stop training. Must be >1. 
real Net::autotrain(ExampleFactory &trainingExamples, 

ExampleFactory &testExamples, 
int epochsBetweenTests, 
float cutOffError) 

{ 

II Get initial error with current weight set 
real minTestError = test(testExamples); 
real testError = minTestError; 

while (testError <= cutOffError*minTestError) { 
// Train for a while on the training examples 
train(epochsBetweenTests, trainingExamples); 

II How good is network now? Save weights if it's the best 
/1 we've seen so far on the test set. 
testError = test(testExamples); 
if (testError < minTestError) { 

saveWeights(); 
minTestError = testError; 

} 

} 

/1 Restore weights so performance on test set is best we ever saw restoreWeights(); 

return minTestError; 
} 

// Runs the network on an input and feeds it forward to produce an 
1/ output. For usage after training with autotrain. 
void Net::run(real* input, real* output) 

49 



{ 

setlnputs(input); 
propagate(); 
getOutputs(output); 

} 

1/ Deallocates storage used only during training 
void Net::doneTraining() 
{ 

II Simply call doneTraining() on each layer 
for (int layerNum=0; layerNum < numLayers; layerNum++) { 

layer[layerNum]->doneTraining(); 

} 

3) NetLayer.cpp - defines a neural network layer interface. 
********************************************************************** 

Implements a single layer of the network, handling propagation through 
that layer as well as serialization of that layer. 
**********************************************************************/ 

#include "Net.h" 
#include "stdafx.h" 
#include <stdlib.h> 
#include <math.h> 
#include <string.h> 

using namespace NeuralNetwork; 

static const float BIAS = 1.0f; 

I/ Gets a uniform random value in [Low, High] 
static real RandomEqualReal(real Low, real High) 
{ 

return ((real) rand() / RAND MAX) * (High-Low) + Low; 
} 

1/ Creates a new net layer with the given number of units, 
I/ and the given immediately-preceding layer (0 for none). 
NetLayer::NetLayer(const int initUnits, 

NetLayer* initPrevLayer) 
: units(initUnits), prevLayer(initPrevLayer) 

{ 

output = new real[units+1]; 
error = new real[units+1]; 

if (prevLayer) 

weightsPerUnit = prevLayer->getUnitsO+l; 

int weightArraySize = (units+1)*weightsPerUnit; 
weight = new real[weightArraySize]; 
weightSave = new real[weightArraySize]; 
dWeight = new real[weightArraySize]; 

else 
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{ 

weightsPerUnit = 0; 
weight = 0; 
weightSave = 0; 
dWeight = 0; 

weightIntermediate = new real[weightsPerUnit+1]; 

output[0] = BIAS; 
} 

/1 Loads this layer from a stream where it was previous saved with save() 
NetLayer:NetLayer(std::istream& in, NetLayer* initPrevLayer) 
: prevLayer(initPrevLayer) 

readRaw(in, units); 

output = new real[units+1]; 
error = new real[units+1]; 

if (prevLayer) 

weightsPerUnit = prevLayer->getUnits()+1; 

int weightArraySize = (units+1)*weightsPerUnit; 
weight = new real[weightArraySize]; 
weightSave = new real[weightArraySize]; 
dWeight = new real[weightArraySize]; 
clearWeights(); 
readRawArray(in, weight, weightArraySize); 

1 
else 

weightsPerUnit = 0; 
weight = 0; 
weightSave = 0; 
dWeight = 0; 

weightIntermediate = new real[weightsPerUnit+1]; 

output[0] = BIAS; 
} 

1/ Saves network so it can be later loaded by the (istream&) constructor 
void NetLayer::save(std::ostream& out) 

writeRaw(out, units); 

if (prevLayer) 

writeRawArray(out, weight, (units+1)*weightsPerUnit); 
} 

1 
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I/ Frees buffers used to hold layer info 
NetLayer::—NetLayer() 

delete[] output; 
delete[] error; 

if (weight) 

delete[] weight; 
delete[] weightSave; 
delete[] dWeight; 

} 

delete [] weightlntermediate; 
} 

/1 Initialises weights of edges going into this layer to random values 
void NetLayer::randomizeWeights() 
{ 

for (int i=0; i < (units+1)*weightsPerUnit; i++) 

weight[i] = RandomEqualReal(-0.5, 0.5); 
dWeight[i] = 0; 

} 

} 

// Initialises weights of edges going into this layer to random values 
void NetLayer::clearWeights() 
{ 

for (int i=0; i < (units+1)*weightsPerUnit; i++) 

weight[i] = 0; 
dWeight[i] = 0; 

} 

1/ Propagates outputs of the previous layer to the outputs of this layer 
void NetLayer::propagate(real gain) 

real* currentWeight = &getWeight (1,0); 

for (int unitNum=1; unitNum <= units; unitNum++) 
{ 

real sum = 0; 
for (int outputNum=0; outputNum < weightsPerUnit; outputNum++) { 

sum += *currentWeight * prevLayer->getOutput(outputNum); 
currentWeight++; 

} 
output[unitNum] = 1 / (1 + exp(-gain * sum)); 

1 
} 

1/ Propagates error from this layer back to the previous layer. 
// in preparation for adjustWeights, which uses the error info. 
void NetLayer::backpropagate(real gain) 
{ 
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int prevUnits = prevLayer->getUnits(); 

for (int prevUnitNum=prevUnits; prevUnitNum != 0; prevUnitNum--) { 
real out = prevLayer->getOutput(prevUnitNum); 
real err = 0; 
for (int unitNum=1; unitNum <= units; unitNum++) 

err += get Weight(unitNum, prevUnitNum) * error[unitNum]; 

prevLayer->setError(prevUnitNum, gain * out * (1-out) * err); 
} 

} 

I/ Computes error of the outputs of this layer from a given set of 
// target values, stores these, and returns the mean square error of 
// them all. Usually used on output layer. 
real NetLayer::computeError(real gain, real target[]) 

real out, err; 
real totalError = 0; 

real* currentTarget = target + 0; 
real* currentOutput = output + 1; 
real* currentError = error + 1; 

for(int unitNum=units; unitNum != 0; unitNum--) 

out = *currentOutput; 
err = *currentTarget - out; 
*currentError = gain * out * (1-out) * err; 
totalError += err*err; 
currentOutput++; 
currentTarget++; 
currentError++; 

} 

return 0.5 *totalError; 
} 

Adjusts weights in order to decrease the error as established 
/1 by previous computeError/backpropagate calls. 
void NetLayer::adjustWeights(real momentum, real learningRate) 

int localWeightsPerUnit = weightsPerUnit; 

real* currentWeight = &getWeight (units,prevLayer->getUnits()); 
real* cun-entDWeight = &getDWeight (units,prevLayer->getUnits()); 

for (int prevUnitNum=0; prevUnitNum < weightsPerUnit; prevUnitNum++) { 
weightIntermediate[prevUnitNum+ 1] = learningRate * prevLayer->getOutput(prevUnitNum); 

for (int unitNum=units; unitNum != 0; unitNum--) 
for (int prevUnitNum=localWeightsPerUnit; prevUnitNum != 0; prevUnitNum--) { 

real newDeltaWeight = weightlntermediate[prevUnitNum] * error[unitNum]; 
real oldDeltaWeight = *currentDWeight, 
*cun-entDWeight = newDeltaWeight; 
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*currentWeight += newDeltaWeight + momentum*oldDeltaWeight; 
currentDWeight--; 
currentWeight--; 

} 

} 

} 

// Deallocates storage used only during training 
void NetLayer::doneTraining() 
{ 

delete[] error; 
error = 0; 
delete[] dWeight; 
dWeight = 0; 
delete[] weightSave; 
weightSave = 0; 

} 

4) backprop.cpp - supports training and running of the neural network. 
/********************************************************************** 
Forecasting Neural Network Prototype. Trained on 280 days worth of closing price data and then predicts over later 
days and finds accuracy of those predictions. 

This is the file which contains the main function to be executed. The rest of the files just define classes and rules, and 
are used by this file. 

Development environment used: Microsoft Visual Studio .NET 
**********************************************************************; 

#include "stdafx.h" 
#include "Net.h" 
#include <time.h> 
#include <string.h> 
#include <stdlib.h> 
# include <fstream> 
#include <iostream> 

using namespace NeuralNetwork; 

/I Number of days we have historical closing data for 
const int NUM_DAYS = 280; 

// Number of previous days given to the network to help predict 
const int WINDOW SIZE = 30; 

/1 Closing price at the end of each workday for each of 280 days in order 
/1 Starting date: January 2, 1975 
// Number of weeks we have data on: 56 
// Note: The prices have been preprocessed so that they are handled 
// more easily by the neural network. The preprocessing action: divide the 
// price by 100; reason: make the error smaller, and the training faster 
real Prices [NUM_DAYS] = 

0.7023,0.7071,0.7107,0.7102,0.7004, 
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0.7117,0.7261,0.7231,0.7168,0.7214, 
0.7205,0.7096,0.7108,0.707,0.7174, 
0.7207,0.7298,0.7537,0.7603,0.7726, 
0.7621,0.7698,0.7782,0.7761,0.7895, 
0.7856,0.7863,0.7836,0.7858,0.7992, 
0.8101,0.815, 0.8093,0.8144,0.8221, 
0.8262,0.8144,0.7953,0.8037,0.8077, 
0.8159,0.8303,0.8356,0.839,0.8369, 
0.843,0.8495,0.8436,0.8359,0.8374, 
0.8476,0.8601,0.8513,0.8434,0.8361, 
0.8339,0.8142,0.8206,0.8359,0.8385, 
0.8336,0.8264,0.8243,0.8151 ,0.8088, 
0.8035,0.8099,0.8284,0.8377,0.8418, 
0.856,0.863,0.866,0.8725,0.863, 
0.8723,0.8709,0.8612,0.8604,0.8662, 
0.8623,0.8564,0.873,0.881,0.8922, 
0.9008,0.8864,0.8908,0.8956,0.9053, 
0.9061,0.9158,0.9227,0.9141,0.9043, 
0.9053,0.9007 ,0.8906,0.8939,0.9058, 
0.9034,0.8971,0.8968,0.9115,0.9258, 
0.9289,0.926,0.9269,0.9248,0.9121, 
0.9044,0.9055,0.9008,0.9052,0.9146, 
0.9058,0.9039,0.9202,0.9261,0.9362, 
0.9419,0.9462,0.9481,0.9481,0.9519, 
0.9485,0.9418,0.9436,0.9354 ,0.9339, 
0.948,0.9481,0.9466,0.9519,0.9561, 
0.9461,0.9363,0.932,0.9244,0.9145, 
0.9018,0.9007,0.8929,0.8869,0.8819, 
0.8883,0.8875,0.8799,0.8715,0.8623, 
0.8625,0.863,0.8602,0.8655,0.8712, 
0.8597,0.856,0.8636,0.862,0.8495, 
0.8322,0.8307 ,0.8428,0.8506,0.8396, 
0.8443,0.864,0.8688,0.8548,0.8603, 
0.862,0.8562,0.8589,0.846,0.8379, 
0.8345,0.833,0.8288,0.8209,0.8237, 
0.8406,0.8588,0.8507,0.8494,0.8574, 
0.8564,0.8619,0.8503,0.8387,0.8293, 
0.8382,0.8595,0.8688,0.8677, 0.8794, 
0.8837,0.8821,0.8946,0.8928,0.8923, 
0.8937,0.8886,0.8982,0.9056,0.9071, 
0.9124,0.8983,0.8973,0.9051,0.8939, 
0.8931,0.8904,0.8809,0.8851,0.8915, 
0.8955,0.8933,0.8934,0.8987,0.9119, 
0.9104,0.9097,0.9146,0.91,0.8998, 
0.8964 ,0.8953,0.897,0.9071,0.9094, 
0.9124,0.9067,0.8933,0.876,0.8784, 
0.8682,0.8707,0.873,0.8808,0.878, 
0.8783,0.8809,0.8893,0.8915,0.8943, 
0.888,0.8814,0.8873,0.8946,0.9025, 
0.9013,0.8977,0.9019,0.909,0.9258, 
0.9353,0.9395,0.9458 ,0.9495,0.9633, 
0.9557,0.9713,0.9661,0.97,0.9832, 
0.9886,0.9824,0.9804,0.9921,0.9968, 
0.9907,0.9853,1.0011,1.0086,1.0087, 
1.0118,1.0191,1.0039,0.9946,0.9962 

1; 
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1/ Returns a sequence of examples whose desired outputs run 'from a 
1/ given lower index to a given upper index in the array above. 
1/ Uses the Factory design pattern studied in CS 4233. OBJECT-ORIENTED ANALYSIS AND DESIGN. 
class ArrayRangeExampleFactory : public ExampleFactory { 
public: 

ArrayRangeExampleFactory(int initLower, int initUpper) 
: currentExample(initLower), lower(initLower), upper(initUpper) 

{ } 
void getExample(int inputSize, real* input, int outputSize, real* output) 
{ 

memcpy(input, &Prices[currentExample-WINDOW_SIZE], 
WINDOW_SIZE*sizeof(real)); 

output[0] = Prices[currentExample]; 
currentExample++; 
if (currentExample > upper) 

currentExample = lower; 
1 
int numExamples() return upper-lower+1; 

private: 
int currentExample; 
int lower, upper; 

}; 

1/ Ranges in the Prices array of training set, test set, and evaluation set 
1/ Here: 
1/ [30-179] TRAINING SET 
1/ [180-259] TEST SET 
I/ [260-279] EVAL SET 
const int TRAIN_LWB = WINDOW_SIZE; 
const int TRAIN_UPB = 179; 
const int TEST_LWB = 180; 
const int TEST_UPB = 259; 
const int EVAL_LWB = 260; 
const int EVAL_UPB = NUM DAYS - 1; 

1/ Creates a neural network to predict the closing price for a day given the 
I/ previous WINDOW_SIZE days of closing price data, and demonstrates the results 
II on the eval set. 
int _tmain(int argc, _TCHAR* argv[]) 
{ 

using std::cout; 
using std::endl; 

srand(35233); 

Net *net; 

// Create a new network with 1 hidden layer with 10 nodes, WINDOW_SIZE inputs, 1 output 
/I Visually it would look like this: 
// 30 Input Nodes -> 10 Hidden Nodes -> 1 Output Node 
int layerSizes[] = { WINDOW_SIZE, 10, 1 }; 
net = new Net(3, layerSizes, 0.05, 0.5, 1.0); 
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I/ Show the time at which the training was over 
char dateStr [9]; 

char timeStr [9]; 
_strdate( dateStr); 
_strtime( timeStr ); 

cout << "Training starting: " << dateStr<< ", " << timeStr<< endl; 

// Initialize to random weights, then autotrain with training and test sets 
net->randomizeWeights(); 
ArrayRangeExampleFactory training(TRAIN_LWB, TRAIN UPB); 
ArrayRangeExampleFactory test (TEST_LWB, TEST_UPB); 
real error = net->autotrain(training, test, 10, 1.05f); 
I/ Warning: executing the three lines above may take up to a few days 

I! Show final test set error, which should be virtually minimized 
cout << "Final test set error: " << error << endl; 

net->doneTraining(); 

Show the time at which the training was over 
char dateStr2 [9]; 

char timeStr2 [9]; 
_strdate( dateStr2); 

strtime( timeStr2 ); 
cout << "Training started: " << dateStr<< ", " << timeStr<< endl; 
cout << "Training finished: " << dateStr2<< ", " << timeStr2 << endl; 

/I Save the results to a file 
FILE* 	 f; 
f = fopen("results-sp500.txt", "w"); 
//fprintf(f, 	 Traing started (Yos, %s\n Training ended %s %s\n", dateStr, timeStr, dateStr2, timeStr2); 
fprintf(f, "Predicted, Actual \n"); 

/I Compare results on the evaluation set 
for (int i=EVAL_LWB; i < EVAL_UPB, i++) 

real output[1]; 
net->run(&Prices [i-WIN DOW_ SIZE], output); 
cout.precision(4); 
1/ Reverse the preprocessing 
cout << "Predicted: " << output[0]* 100 << ", Actual: " << Prices[i]* 100 << endl; 
//Write the results to a file 
fprintf(f, "%0.3f, %0.3f \n", output[0]*100,Prices[i]*100); 

} 

/I Done writing results to the file 
// In order to map the results to a chart, change the extention of the file 
II from txt to csv, and open the file with Excel or Microsoft Works 
// Select both columns, and use the charting tool to view the chart 
fclose(f); 

I/ Save the neural network to a binary file 
std::ofstream out("sp500.nnw", std::ios::binary); 
net->save(out); 
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/1 Make the system wait for a key to be pressed 
system("PAUSE"); 
return 0; 

5) stdafx.cpp - automatically generated by Visual Studio .NET. 

// stdafx.cpp : source file that includes just the standard includes 
backprop.pch will be the pre-compiled header 

// stdafx.obj will contain the pre-compiled type information 

#include "stdafx.h" 

/1 TODO: reference any additional headers you need in STDAFX.H 
// and not in this file 

6) stdafx.h - automatically generated by Visual Studio .NET. 

/1 stdafx.h : include file for standard system include files, 
/1 or project specific include files that are used frequently, but 
II are changed infrequently 

#pragma once 

#include <iostream> 
#include <tchar.h> 
#include "Net.h" 
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