
Cross-Layer Vulnerability Analysis of System-on-Chip

against Physical Hardware Attacks

Pantea Kiaei

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy

in
Electrical and Computer Engineering

July 2022

APPROVED:

Professor Patrick Schaumont, Advisor, Worcester Polytechnic Institute

Professor Lejla Batina, Committee Member, Radboud University

Professor Berk Sunar, Committee Member, Worcester Polytechnic Institute

Professor Shahin Tajik, Committee Member, Worcester Polytechnic Institute

This dissertation is dedicated to my parents.

Without their constant support, patience, and love the completion

of this work would not have been possible. They made me who I am.

At the same time, my thanks go to my sister who has always inspired me.

i

Abstract

Hardware attacks, such as power side-channel attacks, jeopardize the security of embed-

ded systems at a low cost. Protecting embedded systems against such attacks entails pro-

tecting hardware blocks, software programs, and the integration of hardware and software.

As the development of hardware and software is typically independent, novel cross-layer

protection mechanisms are desirable. The development of hardware and software itself has

its own complexities. A hardware designer or a software developer implements the hard-

ware or software in a high-level language, which is later optimized to the final product using

automated tools. These automated tools are chiefly concerned about optimizing a design for

better performance and can omit an inserted countermeasure at higher design abstraction

layers. Furthermore, it is essential to evaluate the vulnerability of a system before its deploy-

ment. Design-time leakage assessment techniques can find whether a design is vulnerable to

side-channel attacks. At the time of writing this dissertation, design-time leakage assessment

methodologies are not developed to automatically find the cause of an observed leakage in

hardware and software.

This dissertation contains three main contributions. First, we present cross-layer coun-

termeasures to protect embedded systems against power side-channel analysis and fault

injection. Through hardware-software co-designed protection mechanisms we are able to

ensure the implemented protections persist at the final product. Second, we introduce a

methodology to enable faster design-time leakage assessment. We further test the validity

of our design-time assessment compared to physical measurements by designing and fabric-

ating a custom chip. Last, we establish a technique to automatically pinpoint the cause of

a certain observed power side-channel leakage in hardware and software.

ii

Acknowledgments

My sincere gratitude goes to my advisor, Professor Patrick Schaumont, for his constant

trust and support during the five years of my Ph.D. studies. He has been a great example

of integrity and dedication in research. I learned all I know about being a researcher from

working in his lab and I will carry these lessons with me in my future career.

I also want to extend my heartfelt appreciation to my committee members Professor Lejla

Batina, Professor Berk Sunar, and Professor Shahin Tajik for their thoughtful feedback and

support in forming this dissertation.

It was my great honor to have the internship opportunities at USC Information Sciences

Institute, Riscure, and Apple. My thanks go to Dr. Travis Haroldsen, Jasper van Wouden-

berg, Dr. Cees-Bart Breunesse, and Joseph Lu for teaching me useful skills and broadening

my view in my career.

I’d like to thank the members of Secure Embedded Systems lab in Virginia Tech and

Vernam group at WPI. It was my honor to call you my colleagues and look up to you. Last

but not least, I want to thank my friends, near or far, who helped me greatly during the

recent challenging years.

iii

Contents

1 Introduction 4

1.1 Software Design Abstraction Layers . 5

1.2 Hardware Design Abstraction Layers . 8

1.3 Physical Attacks on HW-SW Architectures 11

1.4 Protecting Embedded Systems against PHAs 12

1.5 State of the Art . 14

1.6 Challenges in Protecting HW-SW Architectures 15

1.7 Contribution and Outline . 18

2 Parallel Synchronous Programming 24

2.1 Introduction . 24

2.2 Preliminaries . 26

2.2.1 Desired Timing Properties . 26

2.2.2 Bitslicing . 27

2.2.3 Synchronous FSMD . 28

2.3 Synthesis of Parallel Synchronous Software 29

2.4 Experimental Results . 32

2.5 Conclusion . 36

iv

3 Rewrite to Reinforce 37

3.1 Introduction . 37

3.2 Related Work . 38

3.3 Binary Rewriting . 40

3.3.1 Definition . 40

3.3.2 Static Binary Rewriting . 41

3.3.3 Comparison of Binary Rewriters . 42

3.4 Countermeasure Insertion Methodology . 43

3.4.1 Rewriting the Binary . 44

3.4.2 Faulter+Patcher Approach . 45

3.4.3 Hybrid Compiler-Binary Approach 48

3.4.4 Choosing the Right Method . 50

3.5 Experimental Results . 50

3.5.1 Local Protections . 51

3.5.2 Holistic Protection . 53

3.5.3 Case Studies . 56

3.6 Conclusion . 58

4 DOM ISA 59

4.1 Introduction . 59

4.2 Related Work . 61

4.3 Domain-Oriented Masking . 62

4.4 DOM ISA for RISC-V . 63

4.4.1 Separating protected execution from unprotected execution 63

4.4.2 Protecting the secure instructions . 64

4.5 Conclusion . 70

v

5 Skiva-V: Architecture Support for Bitslicing 71

5.1 Introduction . 71

5.2 Preliminaries . 74

5.2.1 Bitslicing . 74

5.2.2 Masking . 75

5.2.3 Redundant Computation . 76

5.3 Processor Support . 77

5.3.1 Instruction Definitions . 78

5.3.2 ISA-level Performance Analysis . 84

5.3.3 Implementation . 87

5.4 Coding Support . 90

5.5 Direct Memory Access with Transpose Support 91

5.5.1 T-DMA Functionality . 92

5.5.2 T-DMA Design . 93

5.5.3 Employing T-DMA . 95

5.5.4 Implementation . 96

5.6 System Integration . 96

5.7 Benchmark . 98

5.7.1 Cost of Transposition . 98

5.7.2 Cost of Redundant Computation . 101

5.7.3 Masked Implementations of LWC Ciphers 101

5.8 Conclusion . 104

6 Saidoyoki: Evaluating side-channel leakage in pre-and post-silicon setting105

6.1 Introduction . 105

6.2 Saidoyoki Platform . 107

vi

6.2.1 Saidoyoki PCB . 107

6.2.2 FAMEv2 ASIC . 111

6.2.3 Pico ASIC . 111

6.2.4 Related Work . 112

6.3 Pre-silicon Side-channel Leakage Estimation 112

6.3.1 Design flow for Hardware Targets . 112

6.3.2 Design flow for Software Targets . 114

6.4 Post-silicon Side-channel Leakage Measurement 114

6.5 Results . 115

6.5.1 Post-silicon evaluation of FAME SoC firmware 115

6.5.2 Pre-silicon evaluation of PICO SoC coprocessor 116

6.5.3 Pre-silicon evaluation of PICO SoC firmware 119

6.5.4 Performance Evaluation . 121

6.6 Conclusion . 121

7 Leverage the Average 123

7.1 Motivation . 123

7.2 Related Work . 125

7.3 Theoretical Background . 126

7.3.1 Power Side-Channel Analysis . 126

7.3.2 Simulating Power Traces . 127

7.3.3 Sampling Power Traces . 129

7.3.4 Empirical verification of theorems . 135

7.4 Case Studies . 138

7.4.1 Case Study 1: Software AES on a Pipelined Processor 138

7.4.2 Case Study 2: Hardware AES . 141

vii

7.5 Conclusion . 144

8 Generic Gate-Level Power Side-Channel Leakage Assessment 145

8.1 Introduction . 145

8.2 Related Work . 148

8.2.1 Power simulation for side-channel leakage analysis 148

8.2.2 Identification of the leakage source 150

8.3 Architecture Correlation Analysis . 151

8.3.1 Overall Methodology . 152

8.3.2 ACA for Specific Testing . 157

8.3.3 ACA for Non-specific Testing . 160

8.3.4 Implementation . 162

8.4 ACA on a Cryptographic Coprocessor . 163

8.4.1 Architecture Correlation Analysis . 164

8.4.2 Leaky Gate analysis . 168

8.4.3 Non-specific ACA . 169

8.5 ACA on RISC-V based SoC . 171

8.5.1 Architecture Correlation Analysis . 172

8.5.2 Leaky Gate Analysis . 174

8.6 ACA Performance Considerations . 178

8.7 Conclusions . 179

9 RootCanal 180

9.1 Introduction . 180

9.2 Preliminaries . 185

9.3 Methodology . 189

9.3.1 Step 1: Finding Leaky Time-Gate Tuples 190

viii

9.3.2 Step 2: Finding Leaky Units . 191

9.3.3 Step 3: Finding Leaky Instructions 197

9.4 Experimental Results . 198

9.4.1 Example 1: Value-based Leakage in a System-on-Chip 200

9.4.2 Example 2: Testing Bit-Sliced Data Encoding in Software Hiding . . 203

9.4.3 Example 3: Debugging Masking – across HW/SW Boundaries 206

9.4.4 Example 4: Debugging Masking – When The Compiler Trips Up . . . 211

9.4.5 Analysis of Results . 213

9.5 Conclusion . 215

ix

List of Tables

2.1 Instructions targeted by PSP synthesis . 32

2.2 Evaluated encryption ciphers and comparison of performance of the PSP and

normal implementations of them . 32

2.3 Evaluation of parallel synchronous examples on 48MHz Cortex-M4F processor 33

3.1 Local protection pattern for mov operations 51

3.2 Local protection pattern for cmp operations 51

3.3 Local protection for conditional jump operation 52

3.4 Qualitative overhead of the conditional branch hardening 56

3.5 Overhead of adding the protections . 58

4.1 DOM implementation of AND instruction. 66

4.2 DOM implementation of OR instruction. 67

4.3 DOM implementation of ADD instruction. 69

5.1 Opcode assignments in Skiva-V . 79

5.2 Immediate value assignment for redh/redl instructions. W represents the

word length (32 for the 32-bit and 64 for the 64-bit ISA). Source bits signifies

which bits in the source register are being replicated. 82

5.3 Immediate value assignment for ftchk instruction. 82

5.4 ISA-level performance evaluation of Skiva-V 32-bit instructions 88

x

5.5 ISA-level performance evaluation of Skiva-V 64-bit instructions 89

5.6 Reciprocal of performance (cycles/byte). The PRNG is assumed to have a

high enough throughput to not cause any reading delay. Tornado results are

for ARM Cortex-M4; Skiva-V results are for RISC-V RV32I with extensions. 101

5.7 Reciprocal of performance (cycles/byte). The PRNG is assumed to have a

high enough throughput to not cause any reading delay. 101

6.1 Performance factors for each of the case studies 121

7.1 Normalized complexity of power estimation time for three different design

sizes and four different frame widths. 128

7.2 Summary of sample types . 130

7.3 SR of CPA on key bytes in simulated traces for different number of averaged

constructive samples with SANR= 0.1 (averaged over 100 runs). 137

7.4 SR of CPA on key bytes in simulated traces for different ratio of destructive

to constructive samples with SANR=0.1 (averaged over 100 runs). 138

7.5 Speed-up of averaged RISC-V traces compared to 1s1cc 141

8.1 Normalized complexity of power estimation time for three different design

sizes and four different frame widths. 156

8.2 Pearson Correlation Threshold Levels as a function of test vectors m and

confidence . 158

8.3 Cell type and area for AES coprocessor . 164

8.4 Leaky Gate Identification for AES Coprocessor 168

8.5 Leaky Gate Identification using non-specific round-6 state bias 169

8.6 Cell type and area for RISC-V based SoC 172

8.7 Leaky Gate Identification for RISC-V based SoC 176

xi

8.8 ACA Performance for various steps in the flow. Performance numbers in user

seconds∗ for 1024 Vectors. 178

9.1 The non-specific tests used for RootCanal compare power traces from Group

1 against Group 2. NAMES in capitals denote inputs. The Node Bias test

uses Random INPUT in both groups. 188

9.2 Synthesis details for RISCV-SoC using Cadence Genus 199

9.3 Summary of leakage observed in examples 214

9.4 Execution time of RootCanal steps for each example 214

xii

List of Figures

1.1 Design abstraction layers in software development 5

1.2 Design abstraction layers in digital hardware 7

1.3 Block diagram of Picochip . 9

1.4 Layout of Picochip after place and route (P&R) in ICC2 10

1.5 Wire-bonded Picochip . 11

1.6 Addressed challenges in protecting embedded systems against hardware attacks. 17

2.1 Basic structure of a synchronous program . 28

2.2 GCD (a) Interface and (b) FSMD model . 30

2.3 Runtime of normal and PSP implementations of the GCD algorithm on 1000

random inputs. 35

3.1 Coverage percentage achieved over for the cover sizes of different sizes 40

3.2 Flowchart of the Faulter+Patcher approach 45

3.3 High-level overview of the Faulter+Patcher (lower half) and the Hybrid (upper

half) approaches . 49

3.4 Assembly code and CFG of a simple branch instruction 53

3.5 CFG of the example conditional branch hardening 54

4.1 Separating the datapath for protected instructions from the unprotected datapath. 65

xiii

5.1 Bitsliced data representation on 32-bit registers. bji represents jth share of

data bi. Shares of the same variable have the same color. 76

5.2 Bitsliced data representation on 64-bit registers. bji represents jth share of

data bi. Shares of the same variable have the same color. Parts enclosed in

dashed lines show the nine possible configurations in the 32-bit architecture

proposed in SKIVA [100] also shown separately in Figure 5.1. 77

5.3 (inv)tr2h and (inv)tr2l instructions. W represents the length of the re-

gisters which can be either 32 or 64 bits. All four instructions take two input

registers and store the results in the destination register. 80

5.4 Applying tr2l and tr2h instructions to four 4-bit registers iteratively in a but-

terfly pattern to transpose the bits for bitsliced implementation. To transpose

the bits back to their initial positions, we can apply invtr2l and invtr2h

from right to left. 80

5.5 subrot instruction. This instruction rotates d adjacent bits in a register

where d is decided from the immediate input and follows the masking scheme

(d ∈ {2, 4} for 32-bit ISA, d ∈ {2, 4, 8} for 64-bit ISA). 81

5.6 Example for redl/redh instructions with immediate value of 7. In both 32-

bit and the 64-bit ISA, immediate=7 means duplicating the upper half-word

(16 bits and 32 bits respectively for the 32-bit and 64-bit architectures) in the

complemented format. redh/redl copies the upper/lower half of the source’s

selected bits in its destination register. 83

5.7 Complementary logic operations on complementary redundant data. 83

5.8 High-level description of PSPCG steps. 87

5.9 Block diagram of the T-DMA module. 93

5.10 Stride algorithm used in T-DMA. n = ⌈WL
32
⌉ 95

xiv

5.11 Address-accessible 32bit registers for communicating with and programming

the T-DMA. Grey cells are unused. Backward transposition when Bwd=1, for-

ward otherwise. Complemented redundancy when Cmpl=1, direct redundancy

otherwise. 97

5.12 Integration of Skiva-V and T-DMA. 98

5.13 Number of clock cycles to transpose K adjacent bits of one register. 100

5.14 Number of clock cycles required to transpose K adjacent bits in K registers. . 100

6.1 (a) PICO Block diagram and (b) FAMEv2 Block diagram. 108

6.2 Photo of the Saidoyoki Board. 109

6.3 Block diagram of Saidoyoki Board. 110

6.4 Flow for SCL assessment of hardware . 113

6.5 Integration of Chipwhisperer and Saidoyoki 115

6.6 CPA HW on FAME executing AES firmware: (top) power traces identifying

portions of the first round (bottom) outcome of Correlation Power Analysis . 116

6.7 Gate-level Power simulation of an AES hardware coprocessor: (top) entire

encryption at two samples per cycle (bottom) zoom on first and second round

at 16 samples per cycle . 117

6.8 Correlation on the PICO HD AES pre-silicon trace with 16 samples per cycle 118

6.9 Sample simulated power trace of software AES running on PICO chip. This

trace includes only the first add round key and SBox in the first round of

encryption. 119

6.10 Correlation outcome on the PICO HW AES pre-silicon trace 120

xv

7.1 (a) Gate-level power estimation for side-channel leakage captures per-gate and

per-event switching power, leakage-power and internal power. (b) Gate-level

power estimation partitions time in frames and determines average circuit

power per frame to construct a power trace. 128

7.2 Correct key rank and SR of CPA attack on 256 noisy traces with different

SANR values for the four different key bytes. Solid (resp. dashed) lines show

results for non-averaged (resp. averaged) sampled traces. Averaged over 100

runs. 137

7.3 Flow of instructions in Listing 7.1 through five stages of RISC-V pipeline.

Highlighted cells show the leaking parts. 140

7.4 CPA ρ vs. sample number for locating the power leakage of last key byte

(B15) from coarse (1s50cc) to finer (1s1cc) traces for software AES running

on RISC-V. Grey lines are correlation values for incorrect key guesses and

black line is the correlation value for correct key guess. 141

7.5 Data path of the analyzed AES hardware accelerator. SB: SBox, SR: ShiftRows,

MC: MixColumns. 142

7.6 CPA ρ vs. sample number on last key byte (B15) for AES accelerator. Grey

lines are correlation values for incorrect key guesses and black line is the

correlation value for correct key guess. 143

8.1 (a) Post-silicon side-channel leakage assessment flow. (b) Proposed flow. . . 146

8.2 ACA Phase 1: Stimuli and Trace Generation for ACA 153

8.3 Event Density for two cycles of an 9,640-cell hardware AES design 154

8.4 Phase 2 (Leakage Time Interval) and Phase 3 (Leakage Impact Factor) com-

putation for specific ACA . 157

8.5 (left) Leakage Time Interval Detection (right) Architecture Correlation Analysis159

xvi

8.6 Phase 2 (Leakage Time Interval) and Phase 3 (Leakage Impact Factor) com-

putation for nonspecific ACA . 161

8.7 Block diagram of the AES encryption/decryption unit 163

8.8 Average Power Trace and Standard Deviation of AES Coprocessor in first round165

8.9 (left) CPA on AES Coprocessor traces reveals a correlation peak at about 75

traces (right) CPA on modified AES Coprocessor traces significantly delays

correlation peak disclosure to at least 250 traces. 166

8.10 Comparison of a power trace at 64 frames per cycle to a power trace at 2

frames per cycle. At lower frame counts, the power sample converges to

average power, and the frame size increases. 167

8.11 Leaky frames in round 6 for a non-specific test on all state bits concurrently. 170

8.12 Leaky gate ranks identified by non-specific test in ACA on AES coprocessor

sectioned into RTL design files. 171

8.13 Block diagram of the RISC-V based SoC including the AES coprocessor . . . 172

8.14 RISC-V driver software for AES Coprocessor 173

8.15 Power trace of the RISC-V based SoC . 174

8.16 Leaky Frame Selection in ACA on RISC-V based SoC 175

8.17 Gate-level netlist graph of the RISC-V SoC color coded with leaky gates’

correlation. Warmer colors correspond to higher correlations. 177

9.1 RootCanal is a pre-silicon side-channel leakage assessment technique to back-

annotate leaky (gate,cycle) tuples in an SoC design to high-level software or

hardware information. (a) RootCanal design flow integration (b) Example

application. 182

9.2 Overall RootCanal flow . 188

xvii

9.3 Block diagram of RISCV-SoC and its five-stage RISC-V processor. Resources

from different pipeline stages are shown in different colors in the processor

core. The gray blocks in the SoC (instruction and data memories) are modeled

in the testbench (not synthesized). 189

9.4 Layout of step 1 in RootCanal . 191

9.5 An example for timing path, fan-in register, fan-out register, and gate-level

netlist graph. 192

9.6 NGA uses fan-in and fan-out registers for each gate to determine its approx-

imate location in the design. 193

9.7 Layout of step 3 in RootCanal. The RTL design may need to be modified

to pass on the PC signal to all pipeline registers. The executable binary is

generated in the same way as in step 1. 198

9.8 (Example 1) Average simulated power trace for SoC programming and running

the AES hardware accelerator. The bottom X-scale links the power trace to

Listing 9.2 through the value of the program counter (Fetch stage). 200

9.9 (Example 2) Average simulated power traces and TVLA results for redundant

encoding schemes on bit-sliced PRESENT SBox 204

9.10 (Example 3) Average simulated power trace and TVLA result for the byte-

masked AES example . 207

9.11 Leaking circuit in byte-masked software AES 210

9.12 (Example 4) Average simulated power trace and TVLA result for bit-sliced

masked PRESENT SBox . 211

1

Glossary

CPA Correlation Power Analysis.

DMA Direct Memory Access.

DPA Differential Power Analysis.

DRC design rule checking.

EDA electronic design automation.

FI fault injection.

HA hardware attack.

HDL hadware description language.

IR intermediate representation.

ISA Instruction Set Architecture.

ISE Instruction Set Extension.

LVS layout versus schematic.

P&R place and route.

2

PCB printed circuit board.

PHA physical hardware attack.

RTL register-transfer level.

SCA side-channel analysis.

SoC System-on-Chip.

3

Chapter 1

Introduction

In today’s connected world, many tasks are done by embedded systems. These systems are

tightly constrained and often made for a single specific function. They can perform a diverse

set of tasks as simple as controlling the temperature of a room to the much more complex

task of driving vehicles. Even though some of these tasks can be done entirely by a hardware

chip (i.e. hardware-only architecture), embedded systems contain a micro-controller to run

software codes (i.e. hardware-software (HW-SW) architecture). Support for software in such

systems brings more flexibility to the design and enables possible future upgrades.

The simplicity and constrained nature of embedded systems make them appealing targets

for relatively low-cost attacks. For instance, an embedded system that runs a cryptographic

algorithm in software can be the target of a hardware attack. The attacker can find the key of

the cryptographic algorithm, knowing only pairs of input-output from the device, by injecting

faults during the operation of the software or performing power side-channel analysis. Many

of such systems rely on cryptography for security. However, even though cryptographic

algorithms are mathematically secure against cryptanalysis, their implementations can still

make them vulnerable to hardware attacks (HAs). An adversary with physical access to these

vulnerable implementations, can carry out physical hardware attacks (PHAs) and break

4

Source
Code

.c

Compiler
IR
.ll

Machine
Code
.exe

Figure 1.1: Design abstraction layers in software development

the cryptographic algorithms by finding their secret key. Even without physical access, an

attacker can carry out remote attacks for the same purpose. These attacks enable adversaries

to gain control over the systems (to run malicious code for example) or gain access to their

internal secret data.

Embedded systems have a layered design. In hardware attacks on embedded systems,

the hardware components are the direct target of the attack. However, the goal of the attack

could be to control the execution of the software or gain information about data internal

to the program. Therefore, in protecting HW-SW architectures against PHAs, there are

two main players involved; The hardware and the software. On top of that, each of these

components have their own abstraction layers during their development. The integration of

hardware and software and the multitude of design abstraction layers, make the vulnerability

assessment of such devices to PHAs challenging.

1.1 Software Design Abstraction Layers

Figure 1.1 shows the design abstraction levels in a software development project. A software

programmer normally writes a code in a high-level language (C, Java, Python, etc.). This

source code is the highest abstraction layer directly written by the programmer. The source

code can use libraries by their APIs and hide their complexity. To run this software on a

micro-controller, the source code should be converted to machine code to form the binary

5

file which will be stored in the program memory.

To generate the binary file, the source code will run through a cross-compiler for the target

micro-controller architecture. The compiler consists of several passes for optimization and

machine code generation. To make the compiler passes run more efficiently, the source code

is first translated into a compiler intermediate representation (IR). This new representation

also makes the compiler optimization passes applicable to different source code languages.

A compiler IR is a data structure that represents the source code and is designed to be

conducive to optimization and translation.

The last level of abstraction in the design of a software program is the machine code.

The machine code is stored in the program memory of the micro-controller. The binary code

will be fetched and executed by the micro-controller. This is the least human-readable layer

of software abstractions as it only consists of binary values. To make the contents of the

machine code more readable, disassemblers generate the assembly code from the binary file.

Since the compiler passes mainly optimize the binary code for either speed or code size

(at different levels), any implemented countermeasure against PHA in higher design layers

can potentially be missing in the binary code. For example, the following code snippet shows

a countermeasure inserted at the source code level. The goal of the else branch is to make

the execution time constant regardless of the value of try pwd. However, this branch causes

a dead code and will be eliminated at the IR level by compiler optimization passes. Similarly,

a countermeasure inserted at the IR level by optimization passes can be removed by code

generation passes.

6

RTL
Design

Post-Synthesis
Netlist

Post-Layout
Netlist

Transistor-Level
Netlist

Fabricated
Chip

Behavioral
Design Synthesis Place and Route Packaging

and Assembly

Figure 1.2: Design abstraction layers in digital hardware

char try pwd [5] ;

char pwd [5] = ”password” ;

unsigned c o r r e c t l e t t e r s = 0 ;

unsigned dummy = 0 ;

for (unsigned i=0 ; i<5 ; i++)

i f (try pwd [i]==pwd [i])

c o r r e c t l e t t e r s++;

else

dummy++;

i f (c o r r e c t l e t t e r s == 5)

unlock door () ;

It is therefore a challenge to ensure that the binary code indeed contains the required

countermeasures. In this dissertation, we show examples of novel countermeasure insertion

against PHA at different design abstraction layers and ensure they remain functional at the

machine code level.

7

1.2 Hardware Design Abstraction Layers

Figure 1.2 shows the abstraction layers in a digital hardware design process. In digital

hardware design cycle, once the system specifications are set, the behavioral model of the

circuit is prepared in hadware description languages (HDLs). Verilog, SystemVerilog, and

VHDL are the most commonly-used HDLs. This behavioral modeling is done in register-

transfer level (RTL).

The RTL is then run through synthesis electronic design automation (EDA) tool which

generates the gate-level netlist. The synthesis tool optimize an RTL design to meet the area,

power, and timing budgets while defining the design in terms of the given standard cell

library. Gate-level synthesis can therefore introduce new buffers into the design and omit or

combine some of the existing logic.

Next, the gate-level netlist will run through the P&R EDA tool to generate the layout

which is sent for fabrication and consists of several steps; Preparing the floorplan, place-

ment of cells and macros, synthesis of the clock tree, and routing the signals. After P&R,

technology-specific design rule checking (DRC) and layout versus schematic (LVS) checks are

run to make sure the implementation is ready for fabrication. The output of the P&R can

be taken either as a netlist, i.e., post-layout netlist, or at a lower abstraction level showing

the transistors and the RLC information of their connections, i.e., transistor-level.

All the previously mentioned abstraction layers (i.e., pre-silicon) are for preparing a

design for fabrication. During the fabrication process itself, process variation will cause dif-

ferent variations in the characteristics of transistors. Consequently the pre-silicon transistor-

level attributes do not exactly match the post-silicon attributes. The fabricated chip will

need a host board to run and communicate with the world. The integration of a chip into

a board can itself make more complex discrepancies between the pre-silicon model of the

circuit and the final running system.

8

picorv32

Bus Arbiter ASCONAES

RO Network
Controller GPIO UART SPI Flash

Control
SPI Master
Controller

Clock
Reset

1.8V Core Power
Core Ground

TRNG
Tests

3.3V IO Power
IO Ground

Picochip

Data
RAM

Figure 1.3: Block diagram of Picochip

Any countermeasure that is introduced to a hardware design, will inevitably go through

the aforementioned abstraction layers. It is therefore possible to see an implemented coun-

termeasure not being functional in the final taped out chip. This pronounces the importance

of design-time analysis of vulnerabilities. Furthermore, higher abstraction layers limit the

complexity of the modeled vulnerabilities. For example, at RTL level, the signal delays are

not modeled. Therefore, any vulnerability caused by such delays will be missed in a leakage

assessment carried out at the RTL level. In this dissertation, we present methods to find

sources of vulnerability against PHAs in hardware and link them to their causes in software.

An example hardware design flow. As an example, we demonstrate the design pro-

cedure for Picochip in the following. Picochip was designed with the goal of providing a

completely locally designed platform. The local design of this platform enabled experiments

in comparing pre- and post-silicon attributes of power side-channel leakage assessment. In

the first stage, the overall structure shown in Figure 1.3 was modeled in RTL format. Using

Synopsys Design Compiler (Synopsys DC) the RTL files were synthesized into the gate-level

netlist for TSMC 180nm standard cell library and frequency of 80MHz. The size of data

9

vdd3right

vss3right

ro_stream

vdd2right

vss2right

spi_clk0

spi_miso0

spi_mosi0

spi_csn0

spi_clk1

spi_miso1

spi_mosi1

spi_csn1

spi_clk2

spi_miso2

spi_mosi2

spi_csn2

spi_clk3

spi_miso3

spi_mosi3

spi_csn3

vdd1right

vss1right

vdd1left

gpio0

gpio1

gpio3

gpio4

gpio5

gpio6

gpio7

vss2left

clk

vdd2left

ro_cntrmsr_out_single_tri

ro_cntrmsr_out_single_mux

ro_cntrmsr_mux_spi_csn

ro_cntrmsr_mux_spi_mosi

ro_cntrmsr_mux_spi_miso

ro_cntrmsr_mux_spi_clk

vss3left

vdd3left

vss1left

ro_cntrmsr_tri_spi_csn

ro_cntrmsr_tri_spi_mosi

ro_cntrmsr_tri_spi_miso

ro_cntrmsr_tri_spi_clk

gpio2

vd
d3

to
p

vs
s3
to
p

re
se
t

vd
d2

to
p

vs
s2
to
p

fla
sh
_c
lk

fla
sh
_i
o0

fla
sh
_i
o1

fla
sh
_i
o2

fla
sh
_i
o3

fla
sh
_c
sb

vd
d1

to
p

vs
s1
to
p

vd
d3

bo
tt
om

vs
s3
bo

tt
om

vd
d2

bo
tt
om

vs
s2
bo

tt
om

se
r_
rx

se
r_
tx

tr
ng

vd
d1

bo
tt
om

vs
s1
bo

tt
om

Figure 1.4: Layout of Picochip after P&R in ICC2

10

(a) Wire-bonding Picochip to a package (b) Microscopic picture of a wire-bonded chip

Figure 1.5: Wire-bonded Picochip

RAM was 64kB. Next, the place and route was performed using Synopsys IC Compiler

II (Synopsys ICC2). In this step, first, the memory macros, IO pads, bond pads, and logic

cells were placed in a 3mm×5mm area. Next, the clock tree was generated to route the clock

signal. Other signals were routed next and filler cells were inserted to meet the minimum

metal density requirement of the foundry. The result of this step is shown in Figure 1.4.

After running final verification steps, namely DRC and LVS using Mentor Graphics Calibre,

the GDSII file was sent for fabrication. Once the chip was fabricated, we wire-bonded (Fig-

ure 1.5a) it to a package to be able to integrate it into a custom designed printed circuit

board (PCB) called Saidoyoki board detailed in Chapter 6. Figure 1.5b shows a microscopic

picture of wire-bonded Picochip.

1.3 Physical Attacks on HW-SW Architectures

PHAs are categorized into active and passive attacks [150]. In active attacks, also known as

fault injection (FI), the adversary makes changes to the device under attack to either gain

information about its internal state or disrupt its correct behavior. Faults can be injected

11

into devices using different techniques such as optical fault injection [147], electromagnetic

fault injection (EM-FI), voltage and clock glitching. Optical fault injection injects fault

by exposing silicon to high intensity light sources. This technique requires the chip to

decapsulated from the package. On the other hand EM-FI can inject faults through the

package, eliminating the need for chip decapsulation.

On the other hand, the adversary can carry out passive attacks, also known as side-

channel analysis (SCA), without any changes to the device by merely observing and meas-

uring its behavior given arbitrary known inputs. SCA can be performed by analyzing the

power consumption [37], electromagnetic emanation [68], or timing information [111] of the

device among other mediums of leakage.

When physical attacks are conducted on HW-SW architectures, even though the hard-

ware component is the immediate cause or effect of the attack, the main target of the attack

can be the software. For example, an attacker can temporarily tamper with the supplied

voltage to the device (voltage glitching fault injection) to cause the execution of an instruc-

tion in the software code to be skipped. As another instance, an adversary can measure

the power consumption of the device, given controlled inputs, to find the value of a secret

data used in the software code. In a HW-SW system, the machine code of the software is

fetched and executed on the group of transistors as building blocks of the hardware circuit.

Consequently, physical attacks on HW-SW architectures deal with a combination of abstrac-

tion layers in both the software and the hardware components. In this dissertation, among

different types of PHAs, our main focus is on power side-channel analysis.

1.4 Protecting Embedded Systems against PHAs

Power side-channel analysis attacks are able to find the secret data on a device because of the

contribution of the secret data to the power consumption of a device. The countermeasures

12

against such attacks can be classified into two groups: hiding and masking.

Hiding In a hiding countermeasure, the goal is to make the power consumption of a device

independent of the internal data by either randomizing or equalizing. Hiding countermeas-

ure can be implemented in both time and amplitude dimensions [117]. In time domain,

by shuffling the execution of operations or blocks the alignment of the power traces will

be disturbed and therefore post-processing the power traces will become challenging. In

amplitude domain, by reducing the signal to noise ratio (SNR) of the contribution of the

secret data to the power consumption, finding the correct key will become increasingly more

difficult for an adversary. A simple example of hiding countermeasure by equalizing the

power consumption is to perform the inverse of every operation in parallel. For example,

for a simple AND operation C = A&B, the inverse operation will be the OR operation on

inverted inputs C̄ = Ā|B̄. A more accurate way to equalize the power consumption is Wave

Dynamic Differential Logic (WDDL) [62].

Masking Masking breaks the dependency of the power consumption of a device on the

underlying secret data by randomizing the internal data. In Boolean masking for every input

data bit, a random bit is taken from a uniform distribution and XOR’ed with the data bit to

generate the masked shares. The operations are then all adjusted to work on the masked data

and generate the masked output. For example to apply masking to a simple AND operation

C = A&B, first two random numbers are generated R1 and R2 and the input shares are

calculated: A1 = R1, A2 = A ⊕ R1, B1 = R2, B2 = B ⊕ R2. There are multiple strategies

to calculate the output shares. Trichina [156] presented one of such implementations as:

C1 = (((R3 ⊕ (A1&B2))⊕ A2&B1)⊕ A2&B2)⊕ A1&B1, C2 = R3.

Several studies [60] have shown that glitches will break the security of normal masked

implementation. Other approaches were introduced including Threshold Implementation

13

(TI) [127] and Domain-Oriented Masking (DOM) [83] that can remain secure in the presence

of glitches.

1.5 State of the Art

Several previous work related to securing software against hardware attacks on embedded

systems work on fixing vulnerabilities at the assembly code (i.e. source code) of the soft-

ware program or the hardware components. This magnifies the importance of cross-layer

approach to secure HW-SW architectures. Rosita [141] finds vulnerabilities to power side-

channel analysis in HW-SW architectures through modelling the leakage at the assembly

code level using an extended version of ELMO [124]. It then fixes the observed leakage

by refreshing the masks. The underlying assumption in Rosita is that the software code is

already implementing masking as a countermeasure but may not be perfectly secure. Ros-

ita++ [140] extends Rosita for higher-order masked software programs.

COCO and PARAM address the power side-channel leakage observed in a HW-SW archi-

tecture at the hardware level. PARAM works at behavioral simulation at the RTL abstrac-

tion level while COCO proves the security of a masked design at post-synthesis gate-level.

Since the leakage from HW-SW architectures stem from the hardware, these approaches are

stronger in finding the cause of the leakage. More advanced architectures require new mask-

ing rules in software and changes to the hardware to ensure a secure implementation. These

complexities have been studied for a superscalar implementation of RISC-V, i.e. SweRV

core, [78] using REBECCA [30], a tool originally developed for formal verification of masked

hardware.

In the previous body of work, gate-level power simulation is considered costly and hence

researchers have developed tools and methodologies to model the power consumption of a

device. ELMO [124] is an instruction accurate power emulator for ARM Cortex-M0 devices.

14

The power leakage is estimated in ELMO based on the interaction between consecutive

instructions. ABBY [19] presents an automated methodology to generate leakage models

based on training.

The aforementioned contributions (with the exception of PARAM) all focused on finding

and fixing bugs in masked software implementations. Althoff et al. [4] on the other hand

present architecture support for intermittent hiding countermeasure in their work called

blinking. While PARAM is not limited to masked software, it applies the leakage assessment

at the RTL level which constrains the observed leakage at the behavioral model.

1.6 Challenges in Protecting HW-SW Architectures

Vulnerabilities to PHAs imply the necessity to implement countermeasures against such

attacks both in hardware and in software. A software developer will write the program source

code in a high level language potentially including protections against hardware attacks.

However, the software source code will go through many optimization and code generation

passes in the compiler to generate the binary file. Similarly, for a hardware designer it is most

straight-forward to implement countermeasures at the RTL level which will go through many

automated steps during synthesis and P&R to prepare the GDSII file ready for fabrication.

Moving from one abstraction layer to the next is done with automated tools (compiler

tool-chain for software and CAD tools for hardware). These tools are mainly developed with

the optimization for area or code size and speed in mind. As many of the countermeasures

against PHAs do not go hand in hand with the most optimized design, they might be

modified or completely lost during these automated processes. This necessitates assessment

of the vulnerabilities and inserted countermeasures until the lowest abstraction level possible.

Furthermore, ensuring the hardware design and the software design are protected sep-

arately does not guarantee that their integration in the complete HW-SW architecture will

15

be secure. It is essential to assess the vulnerabilities of a system prior to its employment.

Early leakage assessments of a design can be done by prototyping or simulation. Prototyping

a design on FPGAs can be done as soon as the RTL designs of the hardware components

are ready. However, the physical signature of the FPGA implementation of a design can

be different from its ASIC implementation simply because of their different building blocks.

Simulation-based leakage assessment on the other hand can overcome this downside of pro-

totyping while increasing the assessment time. Simulation-based leakage assessment has the

extra merit that it enables finding the source of every observed leakage in the hardware

components and software programs. The lack of hybrid tools and methodologies to assess

vulnerabilities in hardware connected to software brings more complexity to this task. Re-

lying solely on verified software masking does not guarantee a secure final HW-SW design.

As mentioned by Becker et al. [24], many of the provable secure masked software end up

having power side-channel leakage in a physical implementation. Traditionally, in embed-

ded systems, software was envisioned to bring flexibility and hardware to bring security and

performance to the system. This division of hardware and software roles has proven to be

imprecise with the emergence of HAs on HW-SW architectures. In this dissertation, we

address three challenges as shown in Figure 1.6.

Challenge 1. Preserving countermeasures across design abstraction layers. Due

to the intrinsic layered structure of embedded systems, when implementing countermeasures,

several abstraction layers should be considered. Any protection mechanism inserted at a

higher abstraction layer must be preserved at the lowest abstraction layer (final system).

Challenge 2. Simulating and emulating power consumption. As stressed before, it

is imperative to evaluate a HW-SW architecture holistically. Simulation-based approaches

capture a close-to-complete hardware and software integration in such architectures. One

16

?

?

?

Challenge 1

power simChallenge 2

Challenge 3

Software

ISA

RTL

Gate-level

Figure 1.6: Addressed challenges in protecting embedded systems against hardware attacks.

of the challenges of simulation-based leakage assessment is power modeling. Emulating

leakage is useful especially for commercial devices for which no hardware design source is

available. In this dissertation, we study ways to reduce the power simulation time at the

gate-level without affecting the accuracy of the simulated traces with respect to the power

side-channel leakage. Our simulation setup shows using the existing CAD tools to simulate

power traces for leakage assessment is practical. Using CAD tools has the advantage of

using the information provided in the standard cell library which is the best of the available

information to a designer at design time.

Challenge 3. Finding the cause of an observed vulnerability. Systematically finding

the cause of an observed side-channel leakage, regardless of whether or not the implementa-

tion contains a countermeasure, is yet to be developed.

17

Proposal. In this work, we address the mentioned challenges as described in the following:

1. To show the importance of simultaneously addressing different layers of abstraction to

protect HW-SW architectures, we employ hardware-software co-design methodologies

for protecting micro-architectures against power side-channel attacks. This proposal

addresses challenge 1.

2. We design and fabricate a chip to compare the simulation-based pre-silicon side-channel

leakage assessment with the physical post-silicon measurements. We use CAD tools

to simulate power consumption of a design and show techniques to reduce the power

simulation time without losing accuracy of leakage assessment. This proposal addresses

challenge 2.

3. We present simulation-time evaluation of side-channel leakage. Furthermore, we present

techniques to pinpoint the cause of an observed leakage in both hardware (at the

granularity of a gate) and software (at the granularity of the execution block of an

instruction). This proposal addresses challenge 3.

1.7 Contribution and Outline

In this dissertation, we address protecting the software running on a HW-SW architecture

against physical hardware attacks. Specifically, we have considered power side-channel at-

tacks, timing side-channel attacks, and fault injection attacks. As mentioned previously,

security assessment of HW-SW systems requires cutting through multiple abstraction layers

as well as linking the hardware and software components. Throughout this dissertation, we

address crossing abstraction layers in software and hardware.

Furthermore, previous works make implicit assumptions about simulated or emulated

power traces being similar to post-silicon traces. In this dissertation we put this assumption

to test; We design and fabricate the aforementioned Picochip in CMOS 180nm technology as

18

a platform for comparing pre-silicon simulation-based power leakage with post-silicon leak-

age. In the following we enumerate the main contributions and chapters of this dissertation.

Parallel Synchronous Programming (Chapter 2) - Challenge 1. In typical em-

bedded applications, the precise execution time of the program does not matter, and it is

sufficient to meet a real-time deadline. However, modern applications in information security

have become much more time-sensitive, due to the risk of timing side-channel leakage. The

timing of such programs needs to be data-independent and precise. We describe a paral-

lel synchronous software model, which executes as N parallel threads on a processor with

word-length N. Each thread is a single-bit synchronous machine with precise, contention-free

timing, while each of the N threads still executes as an independent machine. The resulting

software supports fine-grained parallel execution. In contrast to earlier work to obtain precise

and repeatable timing in software, our solution does not require modifications to the pro-

cessor architecture nor specialized instruction scheduling techniques. In addition, all threads

run in parallel and without contention, which eliminates the problem of thread scheduling.

We use hardware (HDL) semantics to describe a thread as a single-bit synchronous machine.

Using logic synthesis and code generation, we derive a parallel synchronous implementation

of this design. We illustrate the synchronous parallel programming model with practical

examples from cryptography and other applications with precise timing requirements. Par-

allel synchronous programming gives control over the execution time, normally perceived as

a hardware effect, to the software. This programming model serves as a hardware-software

co-design even though it does not involve any changes to the hardware.

Rewrite to reinforce (Chapter 3) - Challenge 1. Fault injection attacks are hardware

attacks that can cause errors in software. Countermeasures against fault attacks can be

implemented in hardware, software, or a combination of both. Software countermeasures

19

implemented by hand do not scale, and are error prone. Tooling to insert countermeasures

automatically can target different stages of the development life cycle.

We explore two possible approaches to inject countermeasures on the binary level, at the

end of the development life cycle. The first is an LLVM compiler stage where we implement

a countermeasure that automatically hardens conditional branches. The compiler stage is

then applied on the LLVM intermediate representation of a binary lifted by Revng, and

compiled back into a hardened binary using the compiler pass. The second approach injects

countermeasures directly into the machine code of a binary using the Ddisasm rewriting

framework, whose intermediate representation includes the original machine code. This work

compares applying countermeasures at two different design abstraction layers of the software;

Namely, binary code and the compiler intermediate representation. The comparison is made

in terms of security and efficiency.

Domain-oriented masking instruction set architecture (Chapter 4) - Challenge 1.

An important selling point for the RISC-V instruction set is the separation between ISA and

the implementation of the ISA, leading to flexibility in the design. We argue that for secure

implementations, this flexibility is often a vulnerability. With a hardware attacker, the side-

effects of instruction execution cannot be ignored. As a result, a strict separation between

the ISA interface and implementation is undesirable. We suggest that secure ISA may

require additional implementation constraints. As an example, we describe an instruction-

set for the development of power side-channel resistant software. This extended ISA serves

as a hardware-software co-design approach for protecting a micro-architecture against power

side-channel attacks.

Skiva-V (Chapter 5) - Challenge 1. The bitsliced programming model has shown to

boost the throughput of software programs. However, on a standard architecture, it exerts

20

a high pressure on register access, causing memory spills and restraining the full potential

of bitslicing. In this work, we present architecture support for bitslicing in a System-on-

Chip. Our hardware extensions are of two types; internal to the processor core, in the

form of custom instructions, and external to the processor, in the form of direct memory

access module with support for data transposition. We present a comprehensive performance

evaluation of the proposed enhancements in the context of several RISC-V ISA definitions

(RV32I, RV64I, RV32B, RV64B). The proposed 14 new custom instructions use 1.5× fewer

registers compared to the equivalent functionality expressed using RISC-V instructions. The

integration of those custom instructions in a 5-stage pipelined RISC-V RV32I core incurs

10.21% and 12.72% overhead respectively in area and cell count using the SkyWater 130nm

standard cell library. The proposed bitslice transposition unit with DMA provides a further

speedup, changing the quadratic increase in execution time of data transposition to linear.

Finally, we demonstrate a comprehensive performance evaluation using a set of benchmarks

of lightweight and masked ciphers. The Skiva-V System-on-Chip (SoC) is a show-case for

boosting the performance of protected software on an SoC by integrating secure hardware

extensions inside and outside of the processor core.

Saidoyoki (Chapter 6) - Challenge 2. Predicting the level and exploitability of side-

channel leakage from complex SoC design is a challenging task. We present Saidoyoki, a test

platform that enables the assessment of side-channel leakage under two different settings.

The first is pre-silicon side-channel leakage estimation in SoC, and it requires the use of fast

side-channel leakage estimation from a high-level design description. The second is post-

silicon side-channel leakage measurement and analysis in SoC, and it requires a hardware

prototype that reflects the design description. By designing an in-house SoC and next

building a side-channel leakage analysis environment around it, we are able to evaluate

design-time (pre-silicon) side-channel leakage estimates as well as prototype (post-silicon)

21

side-channel leakage measurements. The Saidoyoki platform hosts two different SoC, one

based on a 32-bit RISC-V processor and a second based on a SPARC V8 processor. In

this contribution, we highlight our design decisions and design flow for side-channel leakage

simulation and measurement, and we present preliminary results and analysis using the

Saidoyoki platform. We highlight that, while the post-silicon setting provides more side-

channel leakage detail than the pre-silicon setting, the latter provides significantly enhanced

test resolution and root cause analysis support. We conclude that pre-silicon side-channel

leakage assessment can be an important tool for the security analysis of modern Security

SoC.

Leverage the Average (Chapter 7) - Challenge 2. Pre-silicon side-channel leakage

assessment is a useful tool to identify hardware vulnerabilities at design time, but it requires

many high-resolution power traces and increases the power simulation cost of the design. By

downsampling and averaging these high-resolution traces, we show that the power simulation

cost can be considerably reduced without significant loss of side-channel leakage assessment

quality. We introduce a theoretical basis for our claims. Our results demonstrate up to 6.5-

fold power-simulation speed improvement on a gate-level side-channel leakage assessment of

a RISC-V SoC. Furthermore, we clarify the conditions under which the averaged sampling

technique can be successfully used.

Non-specific Architecture Correlation Analysis (Chapter 8) - Challenge 3.

While side-channel leakage is traditionally evaluated from a fabricated chip, it is more time-

efficient and cost-effective to do so during the design phase of the chip. We present a meth-

odology to rank the gates of a design according to their contribution to the side-channel

leakage of the chip. The methodology relies on logic synthesis, logic simulation, gate-level

power estimation, and gate leakage assessment to compute a ranking. The ranking metric

22

can be defined as a specific test by correlating gate-level activity with a leakage model, or

else as a non-specific test by evaluating gate-level activity in response to distinct test vector

groups. Our results show that only a minority of the gates in a design contribute most of the

side-channel leakage. We demonstrate this property for several designs, including a hardware

AES coprocessor and a cryptographic hardware/software interface in a five-stage pipelined

RISC-V processor. This work enables a hardware designer to pinpoint the group of gates

that are the cause of leakage.

RootCanal (Chapter 9) - Challenge 3. Finding the root cause of power-based side-

channel leakage becomes harder when multiple layers of design abstraction are involved.

While side-channel leakage originates in processor hardware, the dangerous consequences

may only become apparent in the cryptographic software that runs on the processor. This

contribution presents RootCanal, a methodology to explain the origin of side-channel leakage

in a software program in terms of the underlying micro-architecture and system architecture.

We simulate the hardware power consumption at the gate level and perform a non-specific

test to identify the logic gates that contribute most side-channel leakage. Then, we back-

annotate those findings to the related activities in the software. The resulting analysis can

automatically point out non-trivial causes of side-channel leakages. To illustrate RootCanal’s

capabilities, we discuss a collection of case studies.

23

Chapter 2

Parallel Synchronous Programming

In this chapter, we present Parallel Synchronous Programming (PSP). PSP runs a state

machine on top of a processor and serves as a programming model to provide predictable

execution time. This work is published at IEEE Embedded Systems Letters [103]. Using

the developed automated tool to generate PSP code (PSPCG), we applied this model of

programming to a number of candidates in NIST’s Light Weight Cryptography workshop.

The results have been presented at NIST’s LWC workshop [96].

2.1 Introduction

Producing software with precise, repeatable timing is a challenging task. First, the soft-

ware application itself may have data-dependent processing complexity, such as with data-

dependent loops. Second, the execution time of the application on the processor may be

affected by the memory hierarchy and the run-time state of the processor. Third, the timing

of the execution may be affected by resource contention when several parallel threads share

the same processor resource. Among these three problems, the second and the third are most

difficult because they are outside of the control of the programmer. In cryptographic applic-

24

ations, data-dependent timing variations may be exploited as timing side-channel leakage,

either directly as an effect of data-dependent control flow, or indirectly as an effect of conten-

tion on shared processor resources. To avoid timing side-channels, we need data-independent

timing.

In this contribution, we propose a programming model that yields these timing charac-

teristics. We contrast our proposal with earlier work towards precise software timing for

embedded applications, PRET [113, 176]. A fundamental idea of PRET is to use instruction

scheduling to avoid resource contention in the processor in the pipeline. By spacing the in-

structions of timing-critical threads several cycles apart, stall-free execution is achieved in the

pipeline. As a consequence, the timing of individual threads is repeatable regardless of the

processor state. To ensure overall processor utilization, PRET combines multiple timing-

critical threads with time-interleaving and a customized instruction scheduling technique

[176].

Our insight in this chapter is that such time-sensitive threads can also be combined spa-

tially within a processor word, instead of temporally using interleaved instruction streams.

The advantage of spatially combining the threads (instead of using time-based interleaving)

is that we don’t need to adapt the processor for interleaved instruction execution. To im-

plement a spatial arrangement of threads, we organize each thread as a single-bit program,

and execute the overall application as a vectorized version of the single-bit program. We

emphasize that the proposed model goes beyond software bit-slicing [29], which is strictly

functional and ignores the control flow and the state within each slice.

To simplify the development of single-bit programs, we adopt a synchronous execu-

tion model. A single-bit program is captured as a synchronous Finite State Machine with

Datapath (FSMD), and the execution of this program follows a sequential schedule of the

bit-operations that define the FSMD. The vectorized form of the single-bit program is then

achieved with bitwise instructions over the processor word. The vectorized form is a parallel

25

synchronous program. Since each thread has its own state, each thread executes as an in-

dependent FSMD. However, the instruction count for one iteration of the overall program is

constant and repeatable, and therefore the execution time of these FSMD threads becomes

repeatable too. A prototype implementation of a synthesis tool starts from a Verilog input

specification and generates C code with inline assembly optimized for an embedded target.

We demonstrate several useful examples of parallel synchronous programming (PSP).

The outline of this chapter is as follows. Section 2.2 develops the cardinal components

of parallel synchronous programming. Section 2.3 discusses an example and proposes a code

generation methodology. Section 2.4 describes experimental results. Section 2.5 concludes

the contribution.

2.2 Preliminaries

We develop a software execution model that leads to repeatable, data-independent timing.

We first define what is meant by repeatable and data-independent timing in software. We

then describe software bitslicing, which can offer such timing characteristics for functions

(i.e., straight-line stateless programs). Next, we explain how to extend the semantics of

software bitslicing from straight-line programs to synchronous FSMD. The result is a Parallel

Synchronous Program (PSP).

2.2.1 Desired Timing Properties

Programs written as PSP aim for repeatable timing as well as data-independent timing. The

former is useful in real-time embedded software design, while the latter is useful for secure

systems design. We motivate and differentiate each property.

Edwards et al. make a distinction between repeatable timing and predictable timing [56].

Repeatable timing means that every correct execution of a program uses the same timing.

26

Repeatable timing is desired as a property of the program, not of the program running on

a specific processor. Repeatable timing is needed in the context of real-time applications

when timing jitter is a concern. For example, when a physical sensor must be read from

software at a specific sample rate, then the software needs to have repeatable timing. Jitter

is typically caused by resource contention and interrupts.

A second relevant domain for PSP is that of secure software. In recent years, a rich

collection of attacks have been found to exploit the implementation characteristics of secure

software rather than the program logic itself. The best known of these are side-channel

attacks and micro-architectural attacks, which rely on precise execution time measurement

[73]. To thwart these attacks, software with (secret-)data-independent timing is needed.

This is hard because modern micro-architectures are rife with architectural contention and

context-dependent timing. Even if there are no obvious dependencies in the program logic,

there may still be hidden dependencies in the micro-architecture. The cryptographic com-

munity is well aware of the risk of timing-based side-channel leakage, leading to the design

of so-called constant-time software that avoids data-dependencies in the program execution

time [3]. The resulting programs are not literally constant-time, but rather they adopt

data-independent control flow and memory access patterns.

We argue that software written as a Parallel Synchronous Program (PSP) provides re-

peatable timing as well as data-independent timing. PSP achieves these properties by com-

bining two concepts: software bitslicing and synchronous FSMD. The following subsections

introduce both.

2.2.2 Bitslicing

Software bitslicing was originally proposed for high throughput software implementations

[29]. In this model of programming, a program is expanded into 1-bit (Boolean) operations as

27

IEEE EMBEDDED SYSTEMS LETTERS 2

while true do
wait for clock tick;
outputs = eval(inputs, current state);
next state = update(inputs, current state);
current state = next state;

end

Fig. 1: Basic structure of a synchronous program

embedded software design, while the latter is useful for secure
systems design. We motivate and differentiate each property.

Edwards et al. make a distinction between repeatable timing
and predictable timing [4]. Repeatable timing means that
every correct execution of a program uses the same timing.
Repeatable timing is desired as a property of the program, not
of the program running on a specific processor. Repeatable
timing is needed in the context of real-time applications when
timing jitter is a concern. For example, when a physical sensor
must be read from software at a specific sample rate, then the
software needs to have repeatable timing. Jitter is typically
caused by resource contention and interrupts.

A second relevant domain for PSP is that of secure software.
In recent years, a rich collection of attacks have been found to
exploit the implementation characteristics of secure software
rather than the program logic itself. The best known of these
are side-channel attacks and micro-architectural attacks, which
rely on precise execution time measurement [5]. To thwart
these attacks, software with (secret-)data-independent timing
is needed. This is hard because modern micro-architectures
are rife with architectural contention and context-dependent
timing. Even if there are no obvious dependencies in the
program logic, there may still be hidden dependencies in
the micro-architecture. The cryptographic community is well
aware of the risk of timing-based side-channel leakage, leading
to the design of so-called constant-time software that avoids
data-dependencies in the program execution time [6]. The
resulting programs are not literally constant-time, but rather
they adopt data-independent control flow and memory access
patterns.

We argue that software written as a Parallel Synchronous
Program (PSP) provides repeatable timing as well as data-
independent timing. PSP achieves these properties by combin-
ing two concepts: software bitslicing and synchronous FSMD.
The following subsections introduce both.
B. Bitslicing

Software bitslicing was originally proposed for high
throughput software implementations [3]. In this model of
programming, a program is expanded into 1-bit (Boolean)
operations as follows. A k−bit variable with bits bk−1...b1b0
is distributed over k registers Rk−1...R1R0, such that register
Ri holds bit bi. An N−bit processor operates as an N−way
SIMD processor, processing N instances of the k−bit variable
in parallel, and storing these instances in k registers. Bitsliced
programs are Boolean programs written with bit-wise logic
operations. The rationale of bitslicing is that it guarantees
full utilization of the processor word-length. The absence of
control flow ensures that each iteration through a bitslice
function uses the same amount of instructions. In addition,

the absence of state (memory) in a bitslice function eliminates
cache timing effects. For this reason, bitslicing is often applied
in the context of developing programs that are constant-time
(in the cryptographic sense). However, software bitslicing is
insufficient as a general-purpose methodology for software.
Because bitslice functions do not have control flow, control
operations are typically emulated using non-bitsliced logic
surrounding bitsliced expressions. This prevents individual
slices from operating as independent threads of control. Bit-
slice programming essentially applies only to functions. The
management of the program state resides outside of the bitslice
logic.
C. Synchronous FSMD

We next describe how to introduce control flow and state
into software bitslicing. A Boolean (1-bit) program does not
offer the concept of an address space or control flow in-
structions. Therefore, we propose introducing the control flow
through the intermediary of a synchronous FSMD. FSMDs
are common in digital hardware design, and they are routinely
applied in register-transfer-level designs. An FSMD is a syn-
chronous model of computation combining a datapath and a
finite-state controller. Computations are done on the datapath
under control of the FSM [7]. Each synchronous clock cycle,
the FSM computes a single state transition and selects one
or more operations in the datapath. The execution of datapath
operations depends on the current state of the FSM, and the
state transition conditions in the FSM depend on the current
state of the datapath. Conditional control flow is expressed
using dataflow-like semantics: the datapath will compute both
the true and false case of the control condition, and the correct
result will be selected using multiplexing.

To map a synchronous FSMD into software, we adopt a
synchronous execution model as shown in Figure 1. Every
loop in this program corresponds to a single clock cycle
of the synchronous FSMD model. The software awaits the
occurrence of a clock tick to read all inputs and evaluate all
outputs concurrently [8]. The eval() function in Figure 1
computes the FSM next-state as well as the datapath next-
state. The update() function adjusts the current state of the
FSM and the datapath to the next. State update is handled
synchronously: each state variable in the synchronous FSMD
is split into two copies, the current state and the next state.
This avoids race conditions, and ensures that the program will
always compute the same result regardless of the scheduling
of eval() and update(). The PSP is implemented as N
parallel copies of the program of Figure 1, where every thread
is tied to the same global clock tick, and each thread is a 1-bit
program expressed as a synchronous FSMD.

III. SYNTHESIS OF PARALLEL SYNCHRONOUS SOFTWARE

We next demonstrate how to create PSP. We first describe
the example PSP design of a parallel greatest common divisor
program, and next discuss a design flow that synthesizes PSP
software from a synchronous FSMD description.

a) Example: Figure 2a shows the outline of a 4-bit GCD
module. We express the functionality of the GCD algorithm
as an FSMD model. After a start control pulse, the module
reads two 4-bit inputs a and b, and repeatedly subtracts

Figure 2.1: Basic structure of a synchronous program

follows. A k−bit variable with bits bk−1...b1b0 is distributed over k registers Rk−1...R1R0, such

that register Ri holds bit bi. An N−bit processor operates as an N−way SIMD processor,

processing N instances of the k−bit variable in parallel, and storing these instances in k

registers. Bitsliced programs are Boolean programs written with bit-wise logic operations.

The rationale of bitslicing is that it guarantees full utilization of the processor word-length.

The absence of control flow ensures that each iteration through a bitslice function uses

the same amount of instructions. In addition, the absence of state (memory) in a bitslice

function eliminates cache timing effects. For this reason, bitslicing is often applied in the

context of developing programs that are constant-time (in the cryptographic sense). However,

software bitslicing is insufficient as a general-purpose methodology for software. Because

bitslice functions do not have control flow, control operations are typically emulated using

non-bitsliced logic surrounding bitsliced expressions. This prevents individual slices from

operating as independent threads of control. Bitslice programming essentially applies only

to functions. The management of the program state resides outside of the bitslice logic.

2.2.3 Synchronous FSMD

We next describe how to introduce control flow and state into software bitslicing. A Boolean

(1-bit) program does not offer the concept of an address space or control flow instructions.

Therefore, we propose introducing the control flow through the intermediary of a synchronous

FSMD. FSMDs are common in digital hardware design, and they are routinely applied in

28

register-transfer-level designs. An FSMD is a synchronous model of computation combining

a datapath and a finite-state controller. Computations are done on the datapath under

control of the FSM [136]. Each synchronous clock cycle, the FSM computes a single state

transition and selects one or more operations in the datapath. The execution of datapath

operations depends on the current state of the FSM, and the state transition conditions in

the FSM depend on the current state of the datapath. Conditional control flow is expressed

using dataflow-like semantics: the datapath will compute both the true and false case of the

control condition, and the correct result will be selected using multiplexing.

To map a synchronous FSMD into software, we adopt a synchronous execution model

as shown in Figure 2.1. Every loop in this program corresponds to a single clock cycle of

the synchronous FSMD model. The software awaits the occurrence of a clock tick to read

all inputs and evaluate all outputs concurrently [41]. The eval() function in Figure 2.1

computes the FSM next-state as well as the datapath next-state. The update() function

adjusts the current state of the FSM and the datapath to the next. State update is handled

synchronously: each state variable in the synchronous FSMD is split into two copies, the

current state and the next state. This avoids race conditions, and ensures that the program

will always compute the same result regardless of the scheduling of eval() and update().

The PSP is implemented as N parallel copies of the program of Figure 2.1, where every

thread is tied to the same global clock tick, and each thread is a 1-bit program expressed as

a synchronous FSMD.

2.3 Synthesis of Parallel Synchronous Software

We next demonstrate how to create PSP. We first describe the example PSP design of a

parallel greatest common divisor program, and next discuss a design flow that synthesizes

PSP software from a synchronous FSMD description.

29

a b start

q done

4

4 4

GCD

IDLE

RUN

~start

start

a != b

a == b
areg breg

ar = a
ar = ar – br
ar = ar

br = b
br = br
br = br ‐ ar

a b

a == b

4

32

4

32

q[0]
q[1]
q[2]
q[3]

static
FLIP-FLOP

bitwise ops
AND,OR,NOT

int a[4], b[4], start

int q[4], *done

qa,b

(a)

(b)

gcd_PSP(..)

start
a>b

~(a>b)

a > b

b[0]
b[1]
b[2]
b[3]

a[0]
a[1]
a[2]
a[3]

Figure 2.2: GCD (a) Interface and (b) FSMD model

Example Figure 2.2a shows the outline of a 4-bit GCD module. We express the function-

ality of the GCD algorithm as an FSMD model. After a start control pulse, the module

reads two 4-bit inputs a and b, and repeatedly subtracts the smaller value from the larger

value until they are equal. A done pulse is generated to indicate completion of the algorithm.

A two-state control FSM drives the loading of two 4-bit registers a and b and their iterative

computation.

A PSP version of the GCD algorithm for a 32-bit processor executes 32 parallel copies of

the GCD. We create this software by converting the FSMD to a gate-level netlist using logic

synthesis. We target a generic technology with a logically complete set of primitive functions

(such as AND, OR and NOT) as well as a storage element such as a flip-flop (Figure 2.2b). The

30

outcome of the logic synthesis is a netlist in terms of logic elements. We then rewrite the

netlist as a sequential function by leveling the netlist according to data dependencies from

input to output. The logic cells are replaced by bit-wise operations, and the flip-flops are

replaced by static (or global) variables. The resulting function declaration is as follows.

gcd_PSP(int a[4], int b[4], // data input

int q[4], // data output

int start, // control in

int* done); // status out

Each invocation of this function corresponds to a single synchronous iteration (one clock

cycle of the synchronous FSMD). An important difference between the circuit of Figure 2.2a

and the PSP function in Figure 2.2b is the degree of parallelism; The circuit in Figure 2.2

computes a single GCD whereas the gcd PSP function is a software design that computes 32

concurrent GCD algorithms independently, each with their own start and done bits. The

inputs and outputs of gdc PSP are in bitsliced form. For example, a[2] contains the second

bit of 32 different inputs. Hence, a call to gcd PSP needs to transpose the input and output

arguments.

An Automated Flow We implemented a software synthesis flow for PSP that starts

from an FSMD description in a Verilog program. An open-source Verilog synthesis tool

[163] converts the FSMD into a netlist in terms of generic target technology for Boolean

logic and a state element. The target library for logic synthesis is adjusted in function of

the targeted processor. Table 2.1 demonstrates a sample mapping for several embedded

processors. The state elements (flip-flop) are mapped to static variables.

The netlist is then converted to software as follows. The netlist is topologically sorted,

from the primary inputs and flip-flop outputs to the primary outputs and the flip-flop inputs.

31

Table 2.1: Instructions targeted by PSP synthesis

processor suitable instructions for PSP
ARM Cortex-M4 AND, BIC, EOR, MOV, MVN, ORN, ORR
RISC-V AND, OR, XOR
MSP430 AND, BIC, BIS, XOR
AVR AND, COM, EOR, OR

Table 2.2: Evaluated encryption ciphers and comparison of performance of the PSP and
normal implementations of them

cipher properties
speed

(cycles/byte)
cipher block size key size rounds type PSP normal speedup

SIMON 128 128 68 Feistel 744.48 1315.63 1.7×
PRESENT 64 80 31 SPN 399.61 1069.06 2.6×
LED 64 64 32 SPN - - -
Midori 64 128 16 SPN 236.90 2233.38 9.4×

Next, each primitive gate is converted to a bitwise operation which is either emulated in C

or else added through inline assembly. We rely on the C compiler to create a sequential

schedule for the gate netlist that will minimize the register pressure on the processor. The

following section applies the automated flow on several examples.

2.4 Experimental Results

We analyze our flow and the resulting performance using several examples. We target the 48

MHz ARM Cortex-M4F processor, which comes with the Texas Instruments MSP432P401R

Launchpad and implements the ARMv7E-M architecture. Table 2.3 summarizes our results.

The numbers reported on this table are compiled with size optimization (-Os).

The first two examples, GCD and PWM, illustrate the general-purpose nature of PSP

as well as its real-time characteristics. For these examples, Table 2.3 lists the number of

processor clock cycles per synchronous cycle. Computing 32 parallel GCD’s thus takes 382

32

T
ab

le
2.

3:
E

va
lu

at
io

n
of

p
ar

al
le

l
sy

n
ch

ro
n

ou
s

ex
am

p
le

s
on

48
M

H
z

C
or

te
x
-M

4F
p

ro
ce

ss
or

p
e
r
fo
r
m

a
n
c
e
a
n
d

c
o
st

in
st
r
u
c
ti
o
n
s
b
r
e
a
k
d
o
w
n

e
x
a
m

p
le

n
u
m
b
e
r
o
f
c
y
c
le
s

(3
2

p
a
r
a
ll
e
l
r
u
n
s)

th
r
o
u
g
h
p
u
t

(K
b
p
s)

c
o
d
e
si
z
e

(K
b
)

A
N
D

O
R
R

B
IC

E
O
R

O
R
N

M
V
N

M
O
V

S
T
R

L
D
R

o
v
e
r
h
e
a
d

G
C
D

3
8
2

-
1
1
.8
8

2
8

3
4

6
9

7
8

2
1

2
8

7
3

5
4
.4
6
%

P
W

M
2
3
9

-
1
1
.8
2

2
9

2
0

1
1

6
2

8
0

2
3

3
9

4
4
.9
3
%

S
IM

O
N

b
it
-p
a
ra
ll
el

3
8
1
,1
7
5

5
1
5
.7
9

2
3
.4
0

9
0
7

4
7
0

1
8
0

3
6
7

2
7

4
1
8

1
0
3
3

2
0
0
2

6
0
.9
6
%

S
IM

O
N

b
it
-s
er
ia
l

1
5
,3
7
0
,1
9
0

1
2
.7
9

1
8
.8
1

8
5
4

3
1
3

2
3

1
6

1
9

1
3

7
5
9
3

6
8
6

5
0
.9
5
%

P
R
E
S
E
N
T

1
0
2
,3
0
1

9
6
0
.9
3

1
7
.7
9

2
2
6

2
8
2

6
0

1
1
9

7
0

3
2

2
4

4
5
4

8
6
1

6
2
.9
2
%

L
E
D

1
3
9
,9
4
9

7
0
2
.4
3

2
0
.2
9

3
7
9

3
0
1

8
0

3
9
5

6
0

6
0

1
3
8

5
5
6

1
2
5
8

6
0
.4
9
%

M
id
o
ri

6
0
,6
4
6

1
6
2
0
.9
5

1
8
.2
8

3
3
6

2
6
5

6
0

2
4
2

1
2
4

7
8

9
1

4
3
8

9
3
0

5
6
.9
0
%

33

clock cycles per synchronous cycle, i.e., per iteration of the GCD while-loop.

The Pulse Width Modulator (PWM) generates pulses with a fixed period while having

different duty cycles. The PSP version of this function in a 32-bit architecture can generate

32 pulses with varying cycles of duty at the same time. Our implementation demonstrates a

PWM with 8-bit resolution. The synchronous cycle of our PWM uses 239 ARM cycles, which

provides a minimum pulse width of 239
48MHz

= 4.98µs and a period of 28 × 239
48MHz

= 1, 275µs

or 784Hz.

The second group of examples are taken from cryptography [21, 32, 86, 13]. Their char-

acteristics are summarized in Table 2.2. SIMON 128/128 is a block cipher with the Feistel

structure and consists of 68 calls to the same round encryption routine. We used two dif-

ferent realizations of SIMON, the first one with a bit-parallel data-path and the second one

with a bit-serial data-path [8]. In traditional hardware design, bit-serial methodologies are

used to minimize area footprint at the expense of throughput. In the PSP execution model

of software, we expect the lower gate-count of a bit-serial input specification to translate to

fewer bit-wise operations in the program, and hence to a smaller code footprint. Further, we

expect the bit-serial PSP design to have a lower throughput due to the lower computational

effort done per synchronous clock cycle.

The first part of Table 2.3 shows that the models are small enough to fit on a simple

embedded architecture. Furthermore, we observe, similar to their hardware designs, the

bit-serial implementation of SIMON is 20% smaller than its bit-parallel counterpart in code

size, whereas the bit-parallel version is 40× faster and has a higher throughput than the

bit-serial version. The second part of Table 2.3 shows the overhead of data movements. The

overhead values reported are calculated as the number of move instructions (MOV, STR,

LDR) divided by the total number of instructions. Moving the data takes about 45-60% of

the entire instructions, which is expected for a straight-line program. For comparison, the

data-moving overhead for a regular (non-bitsliced) implementation of SIMON on NEON in

34

518
588
728
784
868
532
847
952
623
819
973
630
406

2401
616
518
714

3262
812

1099
595
672
581
448
455
931
497
504
595

1134
6048
3605
1540

504
2163

616
896

7504
539
700
875
714

1442
3073

931
679
630

1981
644
497
679
840
658

1050
5355
1295

90

900

9000

0 200 400 600 800 1000

N
um

 o
f C

yc
le

s

PSP
Normal

3200

4000

4800

5600

0 200 400 600 800 1000

Figure 2.3: Runtime of normal and PSP implementations of the GCD algorithm on 1000
random inputs.

the SUPERCOP benchmark [1] is 34%.

We compare our PSP designs of cryptographic ciphers with their available normal im-

plementations in Table 2.2. In the CRYPTREC lightweight project [44], SIMON-128/128

and Midori-64 ciphers are implemented in software for the RL78 16-bit microcontroller.

The throughputs of the PSP implementation of these ciphers in this work are respectively

almost 1.7× and 9.4× higher. PRESENT-80 is evaluated in the FELICS [54] project on

ARM Cortex-M3. Even though the implementation of PRESENT-80 in FELICS uses pre-

computed keys, still the runtime of our PSP implementation of this cipher plus its key gener-

ation is approximately 2.6× smaller. Furthermore, to show the repeatable-timing property of

PSP, we compare the runtime of the PSP and non-PSP implementations of GCD calculator

for 1000 random inputs. As shown in Figure 2.3, the PSP implementation has a quantized

runtime (with steps of length the runtime of one PSP function) whereas the runtime of the

normal GCD function varies with an average of 580.475 and a standard deviation of 1969.29

clock cycles.

35

2.5 Conclusion

We presented parallel synchronous programming as a high-throughput, fixed-time model of

programming, which is beneficial in safety-critical applications. We introduced an automated

method for PSP code generation that can be implemented without any dependency on

commercial tools. The PSP generation can be customized for the target processor to have a

better performance by defining custom libraries. Finally, through examples and discussions,

we demonstrated the potential of parallel synchronous software.

36

Chapter 3

Rewrite to Reinforce

In this chapter we present techniques to protect a binary code (without access to its source

code) against fault injection attacks. This work was presented at Design Automation Con-

ference (DAC) in 2021 [94].

3.1 Introduction

Nowadays, the Fault Injection (FI) hardware attacks are becoming more prevalent. Success-

ful fault attacks lead to information leakage [131], [114] or privilege escalation. While fault

injection is targeted at the hardware (e.g., clock glitching), consequences of the resulting

faults may affect the software running on a processor. For example, ARM’s secure boot can

be affected by voltage glitching to enable an attacker to load controlled values in the program

counter (PC) [154]. Furthermore, Vasselle et al. [158] show how laser injected faults can

bypass the secure bootloader on an android smartphone.

To defend against these attacks, an extensive amount of countermeasures have been

proposed that can be categorized in three groups [28], namely those that can be applied to

the software source code, those that are implemented within the compiler tool-chain, and

37

those that are directly applied to the execution binary. The first two categories require

access to the source code of the program which may not be practical in some scenarios. For

instance, binary-level protection is useful for legacy binary code, or for third-party library

code, or even for binary code for which the source code has been lost. In this chapter, we

target the problem of applying FI countermeasures when we do not have access to the source

code of the program. Knowing that applying countermeasures directly to the binary file is

not easy, we demonstrate how static binary rewriting approaches help with instrumenting

the program with our countermeasures. We apply and evaluate two static binary rewriting

schemes; One reassembleable disassembly and the other complete translation. Using the

reassembleable disassembly method, we demonstrate how we can apply simple fixes to the

binary file with low overhead. Using the full-translation to LLVM-IR approach, we show how

more complex countermeasures can be implemented exploiting the power of an intermediate

representation (IR).

The rest of the chapter is organized as the following: In Section 3.2, we discuss the

related work. In Section 3.3, we give a brief background on binary rewriting. In Section 3.4,

we introduce our countermeasure insertion methodologies. In Section 3.5, we show the

results of simple FI countermeasures implemented using our proposed approaches. Finally,

in Section 3.6, we conclude the chapter.

3.2 Related Work

While the bulk of fault countermeasures is based in detecting faults in redundant design,

researchers have made many different proposals regarding the format and abstraction level

of these redundancies. Some of the related work start from the source code and add the

countermeasure at that high level of abstraction. For instance, Lalande et al. [112] proposed

a counter-based approach in which a counter is incremented and checked after a set number

38

of instructions to detect jump attacks. In other works, the countermeasures are added at

compile time and require access to the source code. Barry et al. modified the LLVM back-

end for insertion of countermeasures against instruction-skip fault attacks. For this purpose,

they duplicated instructions based on whether the operation is idempotent [15]. Our focus

is on scenarios where the source code of the program is unavailable and we need to protect

the executable file against fault attacks. Given-Wilson et al. [79] propose a methodology

to detect vulnerabilities of program binaries to fault injection. In their methodology, they

annotate the source code with safety properties and detect vulnerabilities when these prop-

erties are shown to not be held using model-checking. Bréjon et al. [36] propose a framework

consisting of symbolic execution, static analysis, and model-checking to find vulnerabilities

in the binary file. Both of these works focus on finding vulnerabilities but once the vulnerab-

ilities are found, the source code should be accessible to add corresponding countermeasures.

De Keulenaer et al. [48] use the link-time optimizer tool Diablo [157] and look for patterns

of instructions in the assembly-level IR that are known to be vulnerable to fault injection

and replace them with hardened code. They show the approach of using the assembly-level

IR results in a more compact hardened code, compared to the compiler-level IR, which is

important for small embedded systems. In another work, O’sullivan et al. [130] propose a

lifting and rewriting methodology based on the SecondWrite tool [5] for hardening a binary

file against low-level software attacks such as buffer overflow attacks. Fault injection attacks

are not considered in their work.

In this project, we propose two different approaches to find the vulnerabilities in the

binary code against fault injection attacks and add corresponding countermeasures. As the

first contribution of this work, we propose a simulation-driven countermeasure insertion. In

this method, only the vulnerable parts of the binary file are patched and hence the overhead

of the protected code is decreased compared to a full application of the countermeasure. As

a second contribution, this work for the first time shows how lifting the binary to an IR can

39

Disassembler Structural Recovery Transformation Code Generation

1 2 3 4

Figure 3.1: Coverage percentage achieved over for the cover sizes of different sizes

help in adding countermeasures against fault attacks. We use two different IR levels to this

end and compare their resulting overhead.

3.3 Binary Rewriting

In this section, we will go through the publicly available binary rewriting solutions and com-

pare their approach with regard to structural recovery, data type extraction, and limitations

on supported architectures.

3.3.1 Definition

Binary rewriting is denoted as the process of modifying a compiled program in such a way

that it remains executable and functional without having access to the source-code. There

are two types of binary modifiers, static and dynamic. In the static approach, results of the

modification will be stored on a persistent memory like disk for future execution. However,

dynamic rewriting is applied during the program execution. In this work, we focus on static

binary rewriting technique and compare the tools following this scheme.

Based on Figure 3.1, from a high-level view, in the first step (1), a binary rewriter

receives a file in a binary stream format as input and passes it to the disassembler for

decoding the instructions, and retrieving global variables and sections. Decoded instructions

help step 2 in building the control and data flow, recovering data types, and function

boundaries to semantically enriching the context with metadata lost during the compilation.

Transformation step (3) modifies the target binary in a way that mutated output is a

40

working executable.

3.3.2 Static Binary Rewriting

There are three known rewriting schemes. The oldest one is based on detouring at assembly

level. Detouring works by hooking out the underlying instruction. There are two flavors

of the detouring technique, patch-based instrumentation and replica-based instrumentation.

Patch-based instrumentation replaces the instruction with an unconditional branch to a new

section containing instrumentation, replaced instruction, and a control flow transfer back

to the patch point. Detouring is a direct rewriting and is ISA dependant which makes the

approach inconvenient. This approach introduces a high performance degradation given the

two control transfers at patch points.

Replica-based instrumentation method inserts jump instructions to a replicated code sec-

tion containing both a copy of the original code and the instrumentation. All memory

references in this section are modified to maintain fewer control flow transfers between ori-

ginal and replicated section. While the performance of this approach is better compared to

the patch-based instrumentation, the size of the resulting binary is noticeably increased.

Reassembleable disassembly works by recovering relocatable assembly code, the instru-

mentation of which could be in-lined and reassembled back to a working binary. This ap-

proach first introduced by UROBOROS [161] and then expanded by improving on top of

the idea in Ramblr [160]. This approach enhances the performance since in-lined assembly

avoids inserting control flow changing instructions at instrumentation points. As a result,

performance penalty caused by jump instructions are alleviated in this technique.

Full-translation approach works upon translating a low-level machine code to a high-level

intermediate representation (IR) using a compiler-based front-end for architecture independ-

ent binary rewriting. This process is called lifting the binary and assembling the IR back

41

to a working executable is denoted as lowering. The advantage of lifting the binary to a

high-level IR are two fold. First, relying on IR makes the rewriting framework ISA-agnostic;

Second, working on a high-level IR provides the ability to apply program analysis techniques

like Value Set Analysis (VSA) [10] and optimization passes like Simple Expression Tracker

(SET) and Offset Shifted Register Analysis (OSRA) [53]. On the other hand, complete

translation suffers from changing the structural integrity such as cache locality and Control

Flow Graph (CFG).

While each approach has its own drawbacks and benefits, we focused our evaluation on

two recent research: Datalog Disassembly (Ddisasm) [66] for reassembling the disassembly

and Rev.ng [53] as the candidate for full-translation.

3.3.3 Comparison of Binary Rewriters

In this section, we briefly describe the reasons behind choosing the above-mentioned two

binary rewriters as our candidates. During the linking phase, linker replaces the symbolic

labels with concrete memory addresses which results in losing the relocation information.

Hence, to perform rewriting tasks, we need to recover the symbolic references from abso-

lute addresses. A process which is called symbolization. Symbolization aims to distinguish

whether an intermediate value belongs to a symbol or treat the value as a constant integer.

Comparing reassembling methods, Ramblr provided counter-examples in real-world bin-

aries for which the UROBOROS symbol categorization fails. UROBOROS scans the data

section linearly and considers any machine word-sized buffer whose integer representation

falls in a memory region as a memory reference. This assumption with the compiler optim-

ization introduces False-positive and False-negatives.

Ramblr improved the content classification by applying strong heuristics like localized

VSA and Intra-function data dependence analysis. To improve the binary rewriting results,

42

Ramblr depends heavily on symbolic execution for accurate CFG recovery which slows down

the rewriting process and brings up scalability issues.

Apart from Ramblr’s heuristics, Ddisasm incorporated register value analysis as an al-

ternative over traditional VSA. In addition, they introduced Data Access Pattern (DAP)

analysis which is a def-use analysis combined with the results of register value analysis for a

refined register value inference at any given data access point.

Rev.ng relies on full binary translation by lifting the binary to TCG (the IR used in

QEMU [27]) and para-lifting TCG to LLVM-IR to benefit from more advanced transform-

ation and analysis passes for CFG and function boundary recovery. While frameworks like

angr [159] use lifting to apply more advanced binary analysis on top of the intermediate-level

representation, they do not lower the resulting transformation back to the binary. Moreover,

Rev.ng heavily relies on code pointers for identifying function entry points and leverages

VSA for a more precise value boundary tracking.

As the rewriter tools to harden the binary code against fault injection, in this work, we

chose Ddisasm and Rev.ng to show the difference between two different rewriting schemes

for this purpose.

3.4 Countermeasure Insertion Methodology

For complex architectures, like x86-64, it is not straight forward to group the bits in the

binary file to form full instructions. Neither is it easy to group the instructions to form

basic blocks at this level of abstraction. Therefore, manipulating the binary file directly

is not trivial. We propose a procedure in which we use an open source disassembler and

binary manipulation tools as well as binary lifters to make the binary hardening process

more manageable.

43

3.4.1 Rewriting the Binary

Using the disassemblers and working on the assembly code, compared to the binary file,

can help in finding patterns of instructions and applying fixes locally. However, at the

assembly code level, the register allocation and memory usage are fixed. Therefore, applying

fixes at this level requires extra caution not to overwrite the allocated registers in use. A

favorable property of this level of hierarchy is that we know which part of the assembly code

corresponds to which part of the machine code exactly. We take advantage of this property

in our proposed methodology and build an iterative process that, using simulation of fault

effects, can locally apply countermeasures only to the parts that they are required.

While simple and small fixes can be applied at the assembly level, more complex fixes

are not easily applicable. In this case, a higher level of abstraction that enables modification

of the code and different types of analysis is useful. Since LLVM-IR is in Single Static

Assignment (SSA) [135] format and supports different levels of hierarchy (namely module,

function, basic-block, and instruction), we choose it as our high-level IR. Support of different

levels of hierarchy in the IR makes it easier to perform static analyses on the program.

Additionally, being a part of the LLVM tool-chain, has the advantage of being open-source,

having a big number of active contributors, and a well-maintained documentation. Despite

the aforementioned advantages, however, lifting the binary to such a high level of abstraction

will eliminate the mapping between the abstraction levels. This results from the fact that

the high level of abstraction lacks the low-level target-dependent information. Consequently,

applying targeted and local fixes to the binary files at this high level of abstraction is not

readily available.

In the following subsections, we discuss the mentioned approaches to countermeasure

injection.

44

binary

faulter

modified binary

emulator

faulty?end?
no

yes

patcher

start

fault model

vulnerability

good and bad inputs
no

patched binary

countermeasures

done

yes

faulter patcher

Figure 3.2: Flowchart of the Faulter+Patcher approach

3.4.2 Faulter+Patcher Approach

Our first approach injects countermeasures at the abstraction level of assembly code and

is thus able to patch the binary file in a targeted manner. Figure 3.2 shows the overall

scheme. In this approach, we have a fault simulation-driven, iterative method to mitigate

fault injection vulnerabilities in the binary file. The system consists of two main components:

a faulter and a patcher. The faulter is simulating faults under a certain fault model in a

target binary and produces a list of vulnerabilities, meaning faults where unwanted behavior

in the target binary is triggered. The patcher uses the list produced by the faulter to patch

the binary. The patcher will patch each fault vulnerability as localized as possible, without

affecting its surrounding code. The patched binary is then again run through the faulter

and patcher. We repeat this process until no more faults are present or can be fixed. In the

45

following, the faulter and the patcher are discussed in detail.

Faulter

For our purpose, fault injection vulnerabilities are vulnerabilities where an attacker, i.e. an

unauthorized user, is able to trigger a behavior in a target binary that should be reserved

only for authorized users. For example, consider a pincode checker that receives an input

pin and checks if the inserted value is correct. For a correct pin, the program will proceed

to run some sensitive operations. An attacker does not know the correct pincode, but may

be able to skip an instruction in the target binary such that the program will conclude the

inserted pin is correct and therefore run the sensitive operations. These faults are labeled

“successful faults”. Faults that do not trigger the unwanted behavior or cause the program

to crash are ignored.

We first choose a fault model that we want to protect our binary file against. Regardless

of the fault model, and the number of faults injected per run, the faulter takes a target binary

and two inputs; a “good” input and a “bad” input. For instance, in the pincheck example,

the “good” input is the correct pincode and the “bad” input is any value other than the

correct pincode. First, the “good” and the “bad” inputs are executed to see the difference of

execution traces between them. When running the target binary with the “bad” input, we

effectively can record a trace of all the instructions executed. For each offset in that trace,

taking the “single bit flip model” as an example, we run the target binary normally up to that

offset in the trace, flip a bit in the instruction at the trace offset, and then resume execution.

The target binary either crashes, executes as an incorrect input, or behaves differently (as a

correct input). If it behaves as a correct input, the trace offset and the fault that caused it,

in this case a bit offset into an instruction at the trace offset, is recorded.

We implemented this simple faulter in Python using the Qiling binary emulator package.

We fork each fault simulation to speed up the process. Our faulter supports x86-64 Linux

46

binaries only, but including support for other architectures supported by Unicorn should be

straightforward.

Patcher

The list of “successfult faults” coming out of the faulter is addressed locally in the patcher.

The patcher replaces the vulnerable patterns of instructions with known hardened patterns.

For example, consider a run of the faulter under the “instruction skip” fault model that

identified that at timestamp 40, the skipping of a mov instruction is a successful fault. A

local countermeasure is to perform the mov twice, or add a compare instruction to verify

the mov has been executed prior. Note that these countermeasures cause duplicate reads, as

redundancy is key to mitigate fault injection attacks.

We implemented a proof of concept patcher based on GrammaTech’s Ddisasm tool and

their Python binary manipulation libraries. The Ddisasm tool performs pointer analysis on

an executable and produces an IR in the form of GrammaTech Intermediate Representation

for Binaries (GTIRB) [138] that can then be manipulated and recompiled into an executable

by the Python GTIRB libraries.

Rinse and repeat

After running the faulter and the patcher once, we end up with a patched binary. Running

the faulter on the patched binary may reveal that, since we added code and changed distances

between instructions, we added new vulnerabilities. These new vulnerabilities then can be

addressed by running the patcher iteratively until a fixed point is reached.

47

3.4.3 Hybrid Compiler-Binary Approach

In our second approach, we inject countermeasures at the abstraction level of compiler IR. To

be able to implement more complex countermeasures, working at the level of assembly code is

cumbersome if not impractical. For example, consider a countermeasure where extra registers

are needed to hold some intermediate values. If the assembly code had been generated with

a high level of optimization and no register is available in the unprotected program, extra

steps should be taken to spill some data to the memory to make a few registers available

and load them back to the same registers after the countermeasure. This requires knowledge

of the state of the memory at different locations. However, there is no guarantee that these

steps are possible therefore implementing some countermeasures on certain programs might

not be feasible.

To overcome this problem, we propose a process as shown in the upper half of Figure 3.3.

This process consists of three steps; First, we transform the program from binary to a

compiler IR. Second, we implement the countermeasure on the IR. Last, we transform the

protected IR back to the executable binary format, hence, achieve the goal of protecting the

binary file. These steps are elaborated in the rest if this section.

Transforming to an intermediate representation

The goal of this step is to have a representation of the binary file which, while preserving the

functionality, is easier to modify and supports a format in which different types of analysis

can be performed. As discussed earlier, we choose LLVM-IR.

There are several open-source tools that are able to lift the binary file of different ar-

chitectures to the architecture-independent form of LLVM-IR. In this work, we use Rev.ng.

As mentioned in Section 3.3, Rev.ng is a binary analysis framework based on QEMU and

LLVM. As part of this framework, it is possible to extract the LLVM-IR of a program from

48

compiler IR

binary

compiler

binary

IR modified IR

binary
lifter

hardened binary

binary
rewriter

optimization* back-end*

faulter

patcher

Figure 3.3: High-level overview of the Faulter+Patcher (lower half) and the Hybrid (upper
half) approaches

its binary. The binary file can be for any of the x86, x86-64, ARM, MIPS, s390x, or AArch64

(WIP) architectures. In this project, without loss of generality, our focus is on the x86-64

architecture.

Implementing the countermeasure

After the lifting step is performed, we have the LLVM-IR representation of the algorithm.

Therefore the countermeasure can be implemented in the form of a combination of optimiza-

tion and/or back-end passes depending on the desired protection. If the protection algorithm

does not have any dependencies specific to the target architecture, the entire countermeasure

can be in the form of an optimization pass. Otherwise, back-end passes would be required.

Generating the protected executable

Finally, the protected IR needs to be compiled to an executable. In LLVM, the llc tool is

responsible for translating the LLVM-IR to an architecture-specific executable file. Specific

steps might need to be added in the form of back-end passes to make sure the implemented

countermeasures are retained unchanged through this process. Once the hardened binary

49

file is generated, we use the same faulter system to detect remaining vulnerabilities.

3.4.4 Choosing the Right Method

The targeted insertion of countermeasures in the Faulter+Patcher scheme makes the over-

head of the applied assurance smaller than a holistic approach. Furthermore, the mere act

of lifting the binary to LLVM-IR and translating it back to binary in the Hybrid approach

adds extra overhead to the program. This stems from the internal functions of the binary

rewriting tools, which in our case is Rev.ng. On the other hand, applying countermeasures

in the Hybrid approach is easily automated and is guaranteed to be feasible. The hierarchy

levels supported by LLVM-IR as well as its SSA format eases many static analyses such as

finding idempotent pieces, finding and replacing all the uses of a variable, and many more.

The aforementioned trade-off between these methods, makes each method suitable for a

different use case scenario. In size-constrained applications, such as programs for small em-

bedded systems, the Faulter+Patcher method is more favorable due to its smaller footprint.

In scenarios where the code size is not of critical concern, the Hybrid approach provides a

simpler and guaranteed assurance for inserting complex countermeasures.

3.5 Experimental Results

In this section, we show how our proposed approaches can apply countermeasures against a

chosen fault model. We first show the local protections that we add by our Faulter+Patcher

approach. We then demonstrate a holistic protection that can be used in our Hybrid ap-

proach. Finally, we show the results of the inserted countermeasures in our case studies.

50

Table 3.1: Local protection pattern for mov operations

Original Protected

mov rax, [rbx+4]
happyflow: ...

mov rax, [rbx+4]
cmp rax, [rbx+4]
je happyflow
call faulthandler
happyflow: ...

Table 3.2: Local protection pattern for cmp operations

Original Protected

cmp rbx, [rcx+4]
fallthrough: ...

lea rsp, [rsp-128]
cmp rbx, [rcx+4]
push rbx
pushfq
cmp rbx, [rcx+4]
pushfq
pop rbx
cmp rbx, [rsp]
je restore
call faulthandler
resotre:
popfq
pop rbx
lea rsp, [rsp+128]
fallthrough: ...

3.5.1 Local Protections

In the Faulter+Patcher approach, we are able to insert protected code patterns locally. The

following is the description of these redundant computation-based protections.

Protecting mov Instruction

To protect the mov operation against fault attacks, after executing the mov operation, the res-

ult of the two memory locations are compared and in case of an inconsistency, a faulthandler

is called (Table 3.1).

51

Table 3.3: Local protection for conditional jump operation

Original Protected

j<cond>jumptarget
fallthrough: ...
jumptarget: ...

j<cond>newjumptarget
lea rsp, [rsp-128]
push rcx
pushfq
set cl
cmp cl, 0
je newfallthroughjmp
call faulthandler
newfallthroughjmp:
popfq
pop rcx
j<cond>fallthrough
call faulthandler
newjumptarget:
lea rsp, [rsp-128]
push rcx
pushfq
set cl
cmp cl, 1
je newjumptargetjmp
call faulthandler
newjumptargetjmp:
popfq
pop rcx
j<cond>jumptarget
call faulthandler
fallthrough: ...
jumptarget: ...

Protecting the cmp Instruction

We can protect a cmp instruction against fault attacks by executing the comparison twice

and comparing their resulting flags (Table 3.2). To this end, we use the pushfq instruction

in x86-64 ISA which requires a valid stack pointer (rsp). Due to Intel’s red zone, we have

to subtract 128 bytes from rsp to jump out of the red zone.

Protecting the j<cond> operation

By hardening the conditional jump operations, we detect glitches that change the jump

condition. In the protected code shown in Table 3.3, we use the flags register and match this

52

cmp rs1, rs2

bne target2

...

target1:

...

target2:

...

BB1

C1 == T C1 == F

C1 = cmp_res

BB2 BB3

Figure 3.4: Assembly code and CFG of a simple branch instruction

to the expected flag in the jump-target and the fall-through of a branch.

3.5.2 Holistic Protection

In this section, we describe a conditional branch hardening method that we later use in

our case studies for the Hybrid countermeasure implementation approach.

Imagine a simple program that receives a pin code and only if the pin code is correct,

resumes the program to execute some operations. In the assembly code (equally the execut-

able file) of this program, there will be a comparison instruction to compare the inserted pin

code and its expected value, as well as a conditional branch that, based on the result of the

comparison, jumps to a successor basic block. Figure 3.4 shows the assembly code and the

control flow graph (CFG) of this branch operation.

In the case of Control Flow Integrity (CFI), going from BB1 to either of BB2 or BB3

does not raise any issues since they both are valid paths in the CFG. However, if an injected

fault results in taking the wrong branch, it will be an unnoticed fault. In this conditional

branch hardening method, our goal is to protect against this outcome of FI.

In this method, we assign a unique ID to each basic block (UIDBB) at compile time. We

then use an algorithm, h(UIDsrc, UIDdst, cmp res), which calculates a checksum at run-time

based on the fixed UIDs assigned to the source and destination blocks at compile-time, i.e.

53

BB1

C2 == T C2 == F

C1 = cmp_res
D1 = h(C1,UID1,2,3)
D2 = h(C1,UID1,2,3)
C2 = cmp_res

BB2_1

Correct Incorrect

Validate D1==N1

D1 = N1
D2 = N1

D1 = N2
D2 = N2

BB2

BB2_2

Correct Incorrect

Validate D2==N1

abort();

flt_resp2

BB3_1

Correct Incorrect

Validate D1==N2

BB3

BB3_2

Correct Incorrect

Validate D2==N2

abort();

flt_resp3

Figure 3.5: CFG of the example conditional branch hardening

UIDsrc and UIDdst, and the dynamically-evaluated compare result, cmp res. The calculated

checksum will be stored in a register and checked in the destination basic blocks. At the

destination blocks, since the expected cmp res for the taken edge is known, the expected

value of h is known. Therefore checking the evaluated value only requires reading the register

value and comparing it with the expected value. When the register does not contain the

expected value, we jump to a fault-response basic block.

The simplicity level of the h function can be decided based on the required security

properties of the program. As an example, we chose a simple option for h and implemented

the countermeasure as an optimization pass in the LLVM tool-chain. In this example, the

checksum is calculated as the XOR result of the UID of the taken destination block and that

of the source block (UIDdst⊕UIDsrc). The pseudo-code of the calculation procedure of this

54

checksum in LLVM is shown in Algorithm 1 where cmp res is the result of the comparison

for the conditional branch, and UIDTdst, UIDFdst, and UIDsrc are the UIDs assigned to

the true destination (the destination taken when the comparison result is true), the false

destination (the destination taken when the comparison result is false), and the source block

respectively. The mask shown on line 4 will have the value of all ones if the comparison

result is false and the value of all zeros if the comparison result is true. The checksum will

be located in one register and each of the destination blocks will evaluate whether the value

of the checksum is correct.

Furthermore, we made this evaluation duplicated; Figure 3.5 shows the CFG of this im-

plementation protecting the conditional branch shown in Figure 3.4. We run the comparison

instruction once (C1), and calculate the checksum based on its result and keep it in a register

(D1). We perform this calculation another duplicated time and keep the result in a new

register (D2). We then perform the comparison again and run the branch based on the result

of the second comparison (C2). As shown by the orange boxes, the expected value of the

checksum is different for the out-going edges of the source block (N1 vs. N2). In the destin-

ation blocks, we check both copies of the checksum stored in registers against the expected

values in a nested fashion. The green blocks show the nested checksum validations and the

blue blocks represent the fault-response. As a simple example, the fault-response can be

aborting the execution (in the flt respx basic blocks).

In this scenario, if the attacker tries to skip one of the comparison instructions or change

it to compute the inverse output, the checksum validation process will be able to catch the

injected error. If the adversary intends to bypass this process, they would need to inject the

exact same fault in both comparison results. In Section 3.5.3, we show a simulated analysis

of the effectiveness of this countermeasure.

The overall overhead of this countermeasure depends on the number of conditional

branches that we want to protect and therefore is highly application-specific. Table 3.4

55

Algorithm 1 Simple example algorithm for h

Input: cmp res, UIDTdst, UIDFdst, UIDsrc

Output: checksum
1: Generate unique checksums for edges :
2: constTdst ← UIDTdst ⊕ UIDsrc

3:

4: constFdst ← UIDFdst ⊕ UIDsrc

5: Calculate checksum of the branch :
6: cmp ext← zero extend(cmp res)
7:

8: mask ← cmp ext− 1
9:

10: checksum← (¬mask ∧ constTdst) ∨ (mask ∧ constFdst)

Table 3.4: Qualitative overhead of the conditional branch hardening

Before Protection After Protection
LLVM-IR x86-64 LLVM-IR x86-64

1 cmp
1 br

1 cmp
1 jx (cond. jump)

1 cmp
2 zext
2 sub
6 xor
2 or

4 and
1 br

4 switch

2 cmp
6 mov
2 sub
6 xor
2 or

6 and
2 test

4 jx (cond. jump)
5 jmp (uncond. jump)

shows how many instructions are required to replace a simple conditional branch by this

method. We implement the conditional branch hardening as an optimization pass in the

LLVM compiler tool-chain. Therefore, its translation will differ for different target archi-

tectures based on how the instruction-lowering is done for that architecture in the LLVM

back-end.

3.5.3 Case Studies

We choose two applications for the proof of concept of our proposed methods. The first

application is a simple pin-check program that receives an input password and checks the

correctness of the inserted password. The second application is a secure bootloader in which

56

the hash of the content of a memory location is calculated and compared with an expected

hash value.

For each case study, we use the faulter described in Section 3.4.2 with the two fault

models of “instruction skip” and “single bit flip” and verify that the code has vulnerabilities

to these fault models. All of these vulnerabilities were caused by the conditional jumps

(mov, cmp, and jmp instructions related to a jump operation) in the program. We then insert

the code patterns described in Section 3.5.1 using the Faulter+Patcher approach for each

vulnerable point and reevaluate the hardened binary file iteratively until confirmed that no

more vulnerabilities exist. Furthermore, we apply the conditional branch hardening coun-

termeasure from Section 3.5.2 using our Hybrid approach and verify that the vulnerabilities

have been mitigated. In the case of the “instruction skip” fault model, we were able to re-

solve all the vulnerabilities using the mentioned countermeasures. In the case of the “single

bit flip” fault model we were able to reduce the number of vulnerable points by 50% using

both methodologies.

Table 3.5 shows the overhead caused by the inserted countermeasure in each approach.

The overhead caused by the Hybrid approach is 2 to 5 times bigger than that of the iterative

method. This is an expected outcome since the Hybrid approach applies the countermeasure

to the entire program whereas the Faulter+Patcher approach only does so to the vulnerable

points. Furthermore, duplicating every instruction, which is the go-to protection scheme

against fault injection, implies at least 300% overhead in code size (since for each instruction,

it will add another copy of the instruction and a comparison procedure between their results).

Therefore, both of our methods perform better than a simple duplication scheme.

57

Table 3.5: Overhead of adding the protections

Case Study
Overhead in code size (%)
Faulter+Patcher Hybrid

pincheck 17.61 85.88
secure bootloader 19.67 48.67

3.6 Conclusion

In this work, we proposed two approaches for hardening the binary file against fault attacks

based on binary rewriting. In the first approach, we disassemble the binary file and insert

countermeasures which enables us to insert local countermeasure and keep the structure of

the original binary file. We propose an iterative and simulation-driven framework that only

inserts countermeasures to the vulnerable parts of the program. In the second approach, we

lift the binary file to LLVM-IR and insert countermeasures at a higher level of abstraction.

This enables us to implement more complex countermeasures and perform static analyses

on the program.

58

Chapter 4

Domain Oriented Masking Instruction

Set Extension

In this chapter, we introduce an extension to RISC-V ISA to provide support for domain

oriented masked software. This work was presented in the Workshop on Secure RISC-V

Architecture Design (SECRISC-V) in 2020 [102].

4.1 Introduction

In recent years, side-channel analysis (SCA) attacks have gained significant notoriety in the

field of computer security. In power SCA [110, 37], the attacker extracts a secret encryption

key using only the power consumption of a device running the cipher. In timing SCA, the

attacker exploits micro-architectural timing effects such as the last-level cache (LLC) access

[84, 172, 116], speculative execution [109], and out-of-order execution [115] for the same

purpose.

An important take-away from these side-channel attacks on standard processor architec-

tures is how these attacks exploit resource implementation effects that are abstracted away

59

from the software programmer. Indeed, modern computer architectures exceed at layering

and abstraction, and they hide the implementation details of hardware as much as possible.

There are strong motivations towards such layering, such as the performance optimization,

separation of the design concerns, and hiding of the design complexity. However, it is now

clear that this practice also creates many new vulnerabilities. Therefore, one can argue that

the root cause of such vulnerabilities is the ambiguity in the architecture specification. By

only specifying an interface (such as the ISA), the implementation leaves room for optim-

izations that may result in security vulnerabilities. This is particularly true for the secure

processor implementation. While the side-channel vulnerability of processor designs with

respect to power and timing is understood, we rarely see efforts at design time to deal with

the security implications of implementation effects.

This observation also holds for RISC-V [162]. The RISC-V Instruction Set Architec-

ture (ISA) is prominently concerned with the definition of instruction functionalities and

instruction types, mapping these instructions into opcodes, and so on. However, there is

no discussion on how these instructions should be implemented for (side-channel) security-

sensitive applications. On the other hand, since RISC-V is an open-source architecture, it is

a good platform for trying out secure extensions to ultimately identify fitting secure exten-

sions to include in the ISA. Gonzalez et al. [80] replicate Spectre attacks on the Berkeley

Out-of-Order Machine (BOOM) [6] and then propose mitigation techniques for this line of

attacks. Yu et al. [173] propose a data oblivious ISA extension which protects against timing

SCA attacks.

In this contribution, we present a power SCA resistant ISA for RISC-V and discuss the

important properties of the design. Our objective is to show that constraints in the ISA

implementation can contribute to the practical side-channel security.

60

4.2 Related Work

In this section, we introduce preliminaries in side-channel leakage mitigation and related

work in the design of instruction sets resistant against SCA.

Masking is a well-known countermeasure against power SCA. In this technique, the data

is broken into uniformly distributed shares and all the operations are adjusted to work on

the masked data. Masking breaks the relation between the power consumption and the

(unmasked) data. Masked designs can only be broken using a side-channel attack that

recombines the side-channel leakage of multiple shares. In higher-order masking, a single

data item is split into more than two shares; and there is consensus that the higher the

number of shares, the harder it is to exploit side-channel leakage.

Masking [117] has been employed to protect software against power SCA. Barthe et

al. propose an algorithm for nth-order masked implementations of multiplication providing

security against power SCA of up to (n − 1)th-order [17]. For AES, Rivain et al. propose

provably-secure higher-order masked algorithms [134]. However, later it was shown that the

leakage model for this design is based on assumptions that are hard to achieve in practice.

A careless implementer of the Rivain algorithm can still end up with a leaky design [11].

Therefore, even though in theory masking can be the ultimate solution for secure software

design, when it comes to implementing these algorithms, the programmer must be well-aware

of the processor implementation details to avoid unintentional leakage.

To alleviate the software designer’s part in effectively applying masking to a program,

Skiva [100] provides custom instructions that support masking as well as bitslicing and fault

detection to provide a combination of countermeasures which can be combined in a modular

fashion. However, to use Skiva, the program has to be bitsliced and the programmer should

pay special attention in allocating registers for their variables.

Another effort, by De Mulder et al. [49], applies Threshold Implementation (TI) [127]

61

to the complete hardware implementation of a RISC-V design. They show through Test

Vector Leakage Assessment (TVLA) technique [23] that their implementation provides the

expected (first-order) security. Even though not discussed in the paper, the overhead of such

protections is high. As an example, Nikova et al. [128] show that TI implementations of

typical cryptographic functions would require a much higher number of shares to guarantee

the required properties of TI.

Domain-Oriented Masking (DOM) [83] has shown to have a lower area overhead compared

to TI as well as a lower need for randomness. To the best of our knowledge, DOM has not

been applied to a processor before. In this work, we propose a DOM ISA for RISC-V which

provides security against first-order power SCA. Our approach is a hybrid one in the sense

that we do not apply DOM to the entire processor implementation, as was done with TI

[49]. Instead, we propose an ISA extension which is masked and explain the implementation

details. By this example, we illustrate how an ISA can adopt implementation constraints to

provide better security guarantees.

4.3 Domain-Oriented Masking

DOM is a masking technique that provides security against power SCA in a hardware im-

plementation. In DOM, like other masking schemes, the variables are broken into shares.

The order of protection decides the number of shares the variables are broken into. Here,

we discuss the first-order masking as it is the scheme we will apply to our ISA. The original

algorithm then should be adjusted to work on the input shares and generate the output

shares.

In first-order DOM, each variable is broken into two shares such that the xor result of the

shares retrieves the original variable and the shares are uniformly distributed. Therefore,

to generate the shares, we first generate a uniformly distributed random number, r, and

62

generate the shares of variable x as Ax = x ⊕ r and Bx = r. The exclusive or result of Ax

and Bx retrieves the variable x. Meanwhile, since r comes from a uniform distribution, both

shares are uniform.

As collision of the shares results in unmasking (and hence side-channel leakage), the

main challenge of masking an overall program is to avoid collisions. DOM handles this by

separating the shares as much as possible. For this purpose, DOM assigns separate domains

to shares; Ax belongs to domain A and Bx to domain B. Throughout an algorithm, share

domains are kept completely separate. Only when absolutely necessary to be combined,

shares are first remasked (refreshed) and only then they can be combined. In the following

section, we discuss how we apply this technique to an ISA.

4.4 DOM ISA for RISC-V

When adding secure (side-channel resistant) instructions to an existing unprotected pro-

cessor, care must be taken to not let shares collide unintentionally and cause side-channel

leakage (power or EM). We apply the following two design principles.

1. Keeping the secure and the unprotected parts of the processor implementation separate

from each other.

2. Protecting the secure part efficiently.

We address these two steps in the following subsections.

4.4.1 Separating protected execution from unprotected execution

Typical modern processor designs contain lots of redundant execution. For example, even

operations that are not meant to be executed by an opcode are executed, and only at the end

of the execute stage, the results of these operations are discarded (by not being stored). Since

these processors are implemented in Complementary Metal–Oxide Semiconductor (CMOS)

63

technology, any logic operation on the chip contributes to the power consumption. When it

comes to power SCA, we need strict control over the flow of information, including the flow

of secret shares. For instance, it has been shown how the rotation instruction on a share-

sliced design can cause unwanted leakage [69]. If the circuitry for the rotation instruction

is available in the unprotected datapath, and the data is share-sliced, without the means of

disabling the unprotected pipeline, the power consumption of this calculation will be present

and will contribute to the power leakage correlated with the secret data even if the result of

this instruction is not committed.

To implement a secure instruction set, we propose that a separate protected datapath

is created in the processor exclusively to support those secure instructions. The protected

datapath co-exists with the normal datapath, but is strictly separate from it, as shown

in Figure 4.1. The instruction under execution should be evaluated to activate either the

secure or the unprotected pipeline, therefore, the designer needs to build a circuit following

the decode stage to determine whether the decoded instruction is a secure one or not. Based

on the output of this circuit, either the secure pipeline or the normal pipeline is activated. In

Figure 4.1, a comparison circuit is added in the execute stage (coming right after the decode

stage) that disables/enables the corresponding parts of the datapath.

4.4.2 Protecting the secure instructions

In this work, we implement a small but universal set of instructions. We build a protected

ALU to support them. We protect the instructions using the DOM technique. In this work we

focus only on the ALU part of the CPU and assume all the other parts are already protected;

the register file is duplicated such that a separate register file is used for each share domain,

registers in the secure datapath which contain instruction operands are duplicated the same

as the register file, and all the load and store operands are refreshed to avoid accidental

64

ID
EX sec?

unprotected datapath

enable

enable

protected datapath

instr

Figure 4.1: Separating the datapath for protected instructions from the unprotected
datapath.

leakage through memory accesses. Additionally, for systems with data-cache support, the

caches are separate for each share domain.

DOM works on the concept of share domains; each variable is divided into shares and

the goal is to keep the shares of each domain separate from and independent of one another.

In this work, we operate on two domains, i.e. domain A and domain B. Therefore, each

variable is broken into two shares to be protected against first-order power SCA according

to the d -probing model [89]. Operations are divided into two categories; linear and non-

linear. Linear operations preserve the uniformity of their inputs for their outputs, which

is not the case for non-linear operations. As is mentioned by Nikova et al. [127], in linear

operations, each share of the output only depends on one share of each input, therefore, in

DOM implementation, there is no need for special attention as the separation is naturally

provided. This is not the case for non-linear operations and special steps should be taken for

their DOM implementation. We use the DOM-dep concept (viz. [83]) in which the inputs of

an operation are not required to be independent of each other. Throughout this section, we

65

Table 4.1: DOM implementation of AND instruction.

instruction x · y
domain A B
cycle 1
(Z0 req’d)

At1 = Ax · Ay

At2 = By ⊕ Z0

At3 = Ax · Z0

Bt1 = Bx ·By

Bt2 = Ay ⊕ Z0

Bt3 = Bx · Z0

cycle 2
(Z1 req’d)

Aq = At1 ⊕ Ax · At2 ⊕ At3 ⊕ Z1 Bq = Bt1 ⊕Bx ·Bt2 ⊕Bt3 ⊕ Z1

show the shares belonging to the domain A in blue, domain B in red, and neutral variables

in green. The universal set of instructions that we choose are enumerated in the following.

NOT As a linear instruction, q =∼ x is implemented as below and executed in one clock

cycle:

Aq =∼ Ax, Bq = Bx

XOR As another linear operation, q = x ⊕ y is implemented as follows and executed in

one clock cycle:

Aq = Ax ⊕ Ay, Bq = Bx ⊕By.

AND AND is a non-linear operation. The DOM-dep implementation of q = x · y is:

Aq = Ax · Ay ⊕ Ax · (By ⊕ Z0)⊕ Ax · Z0 ⊕ Z1,

Bq = Bx ·By ⊕Bx · (Ay ⊕ Z0)⊕Bx · Z0 ⊕ Z1;

where Z0 and Z1 are random bits (to see the justification of these algorithms refer to [83]).

To avoid unintentional leakage through glitches, we need to insert registers in the middle

of the calculation of these algorithms; this ensures the correct sequence of the operations

(remasking first and calculating across domains next). In the realm of processor instructions,

this results in a two-cycle instruction as shown in Table 4.1.

66

Table 4.2: DOM implementation of OR instruction.

instruction x + y
domain A B
cycle 1
(Z0 req’d)

At1 = Ax · Ay

At2 = By ⊕ Z0

At3 = Ax · Z0

Bt1 = Bx ·By

Bt2 = Ay ⊕ Z0

Bt3 = Bx · Z0

cycle 2
(Z1 req’d)

Aq = Ax ⊕ Ay ⊕ At1 ⊕ Ax · At2 ⊕ At3 ⊕ Z1 Bq = Bx ⊕By ⊕Bt1 ⊕Bx ·Bt2 ⊕Bt3 ⊕ Z1

OR We derive the DOM-dep implementation of OR in terms of XOR and AND as men-

tioned above, q = x + y = (x⊕ y)⊕ (x · y), which results to:

Aq = Ax ⊕ Ay ⊕ Ax · Ay ⊕ Ax · (By ⊕ Z0)⊕ Ax · Z0 ⊕ Z1,

Bq = Bx ⊕By ⊕Bx ·By ⊕Bx · (Ay ⊕ Z0)⊕Bx · Z0 ⊕ Z1;

where Z0 and Z1 are random bits. Similar to AND, OR also takes two cycles to execute as

shown in Table 4.2.

ADD From the implementation of AND and OR, we can conclude that the number of

cycles for the execution of an instruction depends on the multiplicative complexity [35] of

the instruction. Following the implementation of a Carry Look-Ahead Adder with inputs

X, Y , and C (carry) where the concepts of carry propagate (P) and carry generate (G)

are Pi = Xi ⊕ Yi, and Gi = Xi · Yi, and the sum (S) and carry-out (C) are calculated as

Si = Pi ⊕ Ci and Ci+1 = Gi + Pi · Ci, we find that the multiplicative complexity for the

carry-out of an n-bit adder is 2n, therefore, taking 4n clock cycles to run. Hence, using

secure ADD instructions causes significant drops in the performance.

The alternative would be for the software programmer to make a binary (Boolean) im-

plementation of the entire program, avoiding the usage of any ADD instruction. This will

not necessarily have a better performance than using an ADD instruction and it should be

decided for each application separately.

67

Bitslicing [29] is a type of programming common in secure software design where all

the data in the program running on a w-bit wide architecture are transposed into w 1-bit

values. For this type of programming, it could be helpful to have an instruction for a 1-bit

adder (taking 4 clock cycles to run). The two shares of the carry-out can be stored in two

special registers in the processor dedicated to the carry-outs of the ADD instruction. Hence,

implementing ADD instruction requires two special registers, Ac and Bc, to be added to the

processor. The ADD instruction then reads the contents of these registers as the carry-in at

the first cycle of its execution and updates it with the result of carry-out at its last execution

cycle. In this project, we opt for a 1-bit ADD instruction to calculate the sum (S) and

carry-out (Co) as S = x⊕ y ⊕ ci and Co = (x⊕ y) · ci + x · y. The DOM implementation of

S calculates

AS = Ax ⊕ Ay ⊕ Aci , BS = Bx ⊕By ⊕Bci ;

both of which can be calculated in the same clock cycle. To show the DOM implementation

of Co, we define z = x⊕ y, a = z · ci, and b = x · y. Therefore, we have Co = a + b and the

DOM implementation of Co calculates

Aa = (Ax ⊕ Ay) · Aci ⊕ (Ax ⊕ Ay) · (Bci ⊕ Z0)⊕ (Ax ⊕ Ay) · Z0 ⊕ Z1,

Ba = (Bx ⊕By) ·Bci ⊕ (Bx ⊕By) · (Aci ⊕ Z0)⊕ (Bx ⊕By) · Z0 ⊕ Z1,

Ab = Ax · Ay ⊕ Ax · (By ⊕ Z2)⊕ Ax · Z2 ⊕ Z3,

Bb = Bx ·By ⊕Bx · (Ay ⊕ Z2)⊕Bx · Z2 ⊕ Z3,

ACo = Aa ⊕ Ab ⊕ Aa · Ab ⊕ Aa · (Bb ⊕ Z4)⊕ Aa · Z4 ⊕ Z5,

BCo = Ba ⊕Bb ⊕Ba ·Bb ⊕Ba · (Ab ⊕ Z4)⊕Ba · Z4 ⊕ Z5.

The correct execution sequence of these operations is as shown in Table 4.3.

68

Table 4.3: DOM implementation of ADD instruction.

instruction (x⊕ y) · ci + x · y
domain A B

cycle 1
(Z0, Z2 req’d)

At1 = Ax ⊕ Ay

At2 = Bci ⊕ Z0

At3 = (Ax ⊕ Ay) · Z0

At4 = By ⊕ Z2

At5 = Ax · Z2

Bt1 = Bx ⊕By

Bt2 = Aci ⊕ Z0

Bt3 = (Bx ⊕By) · Z0

Bt4 = Ay ⊕ Z2

Bt5 = Bx · Z2

cycle 2
(Z1, Z3 req’d)

Aa = At1 · Aci ⊕ At1 · At2 ⊕ At3 ⊕ Z1

Ab = Ax · Ay ⊕ Ax · At4 ⊕ At5 ⊕ Z3

Ba = Bt1 ·Bci ⊕Bt1 ·Bt2 ⊕Bt3 ⊕ Z1

Bb = Bx ·By ⊕Bx ·Bt4 ⊕Bt5 ⊕ Z3

cycle 3
(Z4 req’d)

At6 = Bb ⊕ Z4

At7 = Aa · Z4

Bt6 = Ab ⊕ Z4

Bt7 = Ba · Z4

cycle 4
(Z5 req’d)

ACo = Aa ⊕ Ab ⊕ Aa · Ab ⊕ Aa · At6 ⊕ At7 ⊕ Z5 BCo = Ba ⊕Bb ⊕Ba ·Bb ⊕Ba ·Bt6 ⊕Bt7 ⊕ Z5

Mapping to opcodes

All the presented instructions are of register-register type (R-type). To be compatible with

the current and future states of RISC-V, we map these instructions to the custom-0 opcode

field (0001011) which will be avoided by the future standard extensions of the 32-bit format.

Furthermore, separating the opcode of our secure extension from other instructions will make

the secure comparator shown in Figure 4.1 simpler.

Recap

In this work, we studied the design principles for our ISA thwarting power based SCA.

The proposed small ISA extension, as an example to show how ISAs can be extended to

contain implementation details and requirements. For this case, where the attack model is

power-based SCA, DOM ISA specifies the following:

1. constraints on the flow of information in the system,

2. break-down of operations into sub-operations with constraints on their execution order,

3. constraints on the required number of random bits in each execution clock cycle.

Following the proposed ISA, the designers know the security requirements in implementation;

they know implementing this ISA requires the register file to be duplicated, they also know

69

they require a random number generator with the rate of two random bits per clock cycle

(for the ADD instruction). This way, the gap between the ISA definition and its physical

implementation is reduced.

4.5 Conclusion

We discussed how the current myriad of SCA attacks are caused in part by the ambiguity of

the processors’ design and how it can be beneficial to include secure design details in the ISA

of processors to avoid SCA attacks after implementation. To give an example, we proposed

an Instruction Set Extension for RISC-V which uses Domain-Oriented Masking to provide

security against first-order power SCA. Our ISE contains implementation considerations that

can bring closer the ISA and implementation of RISC-V.

70

Chapter 5

Skiva-V: Architecture Support for

Bitslicing

In this chapter, we introduce an instruction set extension for both 32 and 64 bit RISC-

V ISAs to support countermeasures against combined hardware attacks. We furthermore

integrate a DMA module into Skiva-V SoC to make the data transposition and movements

more efficient in bitsliced programs. This work is under review at IEEE Transactions on

Emerging Topics in Computing [95].

5.1 Introduction

Bitslicing was first introduced as a programming model to boost the throughput of the

software implementation of the Data Encryption Standard (DES) cryptographic algorithm

[29]. Since then, researchers have explored applications that can benefit from this model of

programming in security [132, 47, 45, 121] and dynamic word-length computation [164, 145]

among others.

Bitslicing is a software technique, and as such it does not require any changes to the

71

underlying design of the processor. However, bitsliced programs bear significant memory

spills due to their extensive amount of live registers [93]. Therefore, hardware support for

bitslicing can lead to a significant increase in performance of various bitsliced applications.

Today, many digital circuits have a SoC architecture. In such systems, hardware support

for bitslicing can be in the form of instruction extension in the processor implementation or it

can be a hardware module accessible by the processor through a bus. Our goal in this work is

to integrate both of these types of hardware support for bitslicing into an SoC. Even though

our focus is mostly on security applications, non-security related applications of bitslicing

can equally benefit from part of our proposed hardware extensions. For example, bitslicing

can support custom-precision computations on data [164] and can speed up multiplications

used in software-based neural networks [145]. All bitsliced applications (whether or not

related to security) require frequent transposition of data. We present two methods to speed

up this transposition: First, based on using custom instructions and second, based on using

a dedicated hardware module.

As the open-source RISC-V Instruction Set Architecture (ISA) is gaining more attention

both in research as well as in industry, domain-specific Instruction Set Extensions (ISEs) are

becoming more and more relevant [175, 153, 102]. In our previous work [100], we proposed

SKIVA, a 32-bit ISE for the SPARC V8 ISA. SKIVA supports protection against a combina-

tion of active and passive physical attacks, i.e., power SCA, fault injection, and timing SCA.

These protections are in the form of masking [117], redundant computation, and bitslicing.

In this work, we present the following contributions to further the level of hardware

support for bitslicing.

1. We port the ISE in SKIVA to RISC-V and call it Skiva-V1. Additionally, we propose

the 64-bit version of Skiva-V which supports extra security-related modes and add the

introduced instructions to the RISC-V GCC assembler.

1We will open-source the design files and the modified GCC compiler before the paper’s publication.

72

2. We compare the proposed Skiva-V ISE with the newly proposed bit-manipulation ISA

for RISC-V (RV32B, RV64B)2.

3. To support programming of Skiva-V, we rely on parallel synchronous programming (PSP)

[93]. We port a compiler for PSP to the newly proposed instructions, and compare the

performance of auto-generated bitsliced codes for masked implementations of light-weight

ciphers with their corresponding implementations in the literature.

4. Finally, we propose a Direct Memory Access (DMA) module, called T-DMA, which is

capable of transposing data as part of a memory block transfer. This capability of T-

DMA in itself shows how an extra-processor support for bitslicing can be beneficial for

any bitsliced implementation. However, we further tune this module to add support

for our security-related programming needs, namely on the fly masking and redundancy

generation/checking.

Our focus in this work is on the performance analysis of the proposed instructions. For

the security analysis of the custom instructions in SKIVA, we refer the reader to our previous

work [100]. Furthermore, we note that several authors have proposed a security analysis for

similar bitsliced masked software [82, 47, 51]. For our implementation-based evaluations,

we focus on the 32-bit version of Skiva-V instructions as the representative architecture to

highlight the advantage of the proposed instructions in an SoC.

The rest of the paper is as follows: Section 5.2 gives an overview of the concepts under-

lying the proposed system. Section 5.3 describes the definition of the custom instructions

in Skiva-V, their ISA-level performance analysis, and implementation footprint. Section 5.4

demonstrates how to generate bitsliced programs for Skiva-V. Section 5.5 presents our pro-

posed DMA module with support for transposing, masking, and duplicating the data. It

further describes its functionality, design, and synthesized implementation footprint. Sec-

tion 5.6 describes the integration of Skiva-V processor core and T-DMA into an SoC archi-

2https://github.com/riscv/riscv-bitmanip

73

https://github.com/riscv/riscv-bitmanip

tecture. Section 5.7 demonstrates benchmarks to emphasize the impact of hardware support

in performance of bitsliced and masked software. Finally, Section 5.8 concludes the paper.

5.2 Preliminaries

In this section, we provide preliminaries on the underlying programming concepts in this

work. We describe Bitslicing, Masking and Redundant Computation, while the reader

already familiar with these techniques can skip ahead to Section 5.3

5.2.1 Bitslicing

Bitslicing, first introduced by Biham [29], is a technique originally proposed to increase the

throughput of a program by running multiple instances of a code in parallel. In bitslicing,

all the variables are transposed so that each register contains only one bit of the variable.

For example, if a variable is 32 bits wide, in bitsliced program it will reside in 32 different

registers and use one bit of each. Each register of width ω then will have the capacity to hold

one bit of ω different variables. Consequently, the program needs to be adjusted to work on

one bit of its variables at a time. This implies that the adjusted (i.e., bitsliced) program can

only contain bit-wise logic operations. Therefore, the bitsliced program will be capable of ω

parallel computations.

A fully-bitsliced program needs to be flattened (no branches). In a flattened program, the

run-time of the program is known and data-independent. This property of bitslicing bene-

fits the security-sensitive programs as it averts timing side-channel leakage (i.e., correlation

between the run-time and the internal data of a program). Furthermore, bitslicing provides

a proper base to combine our masking and redundant computation schemes as described in

the next section.

74

5.2.2 Masking

Power-based SCA [110, 37], as a subset of active physical implementation attacks, has shown

vulnerabilities in the implementation of algorithms which are expected to be secure at the

algorithm level. In power SCA, the correlation between the power consumption and the

internal data is exploited to find information about the processed data. A widely-adopted

countermeasure against this type of attack is masking which tries to break this correlation.

In masking, each signal or variable is divided into shares that are independent from

the original data. The number of shares depends on the masking scheme. In the dth-order

masking scheme, each data bit is divided into d + 1 shares. Knowing any strict subset of

these shares will not disclose any information about the original data, while knowing all

of the shares can reproduce the original data. A simple way to generate these shares is

by applying Boolean masking. For instance, in Boolean masking for the 1st-order masking

scheme, a random bit r is generated (from a uniform distribution) per each original bit b.

The shares of the bit b will be computed as the tuple (b ⊕ r, r) where ⊕ is the exclusive-or

operation. Knowledge about one share (either r or b ⊕ r) will not give any information

about the original data b, however, by knowing both of these shares the original data can be

disclosed as the exclusive-or result of the two shares ((b⊕ r)⊕ r = b).

Once each data is broken into independently-distributed shares, the algorithm should

be modified to work on the shares of the inputs and the intermediate data to generate the

shares of the outputs. The operations in the algorithm are categorized into linear and non-

linear operations. An operation is linear if a uniform distribution of its inputs results in a

uniform distribution for its outputs. Masking is then applied to each operation according to

its linearity. In a linear operation, each share of the output can be implemented as a function

of at most one share of each input. This property, however, does not hold for non-linear

operations and there exists a vast body of research on how a non-linear operation can be

75

b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151D = 1

b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71

b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

RS = 1

RS = 2

RS = 4

RS = 1

RS = 2

RS = 4

RS = 1
RS = 2

RS = 4

{
D = 2{
D = 4{
Figure 5.1: Bitsliced data representation on 32-bit registers. bji represents jth share of data
bi. Shares of the same variable have the same color.

masked [17, 18, 25].

In this work, we break every algorithm into a combination of operations from the set

{XOR, XNOR, AND, NOT}. Since this set of operations is functionally complete, every operation

in the algorithm can be written as a combination of these operations. The AND operation

is therefore the only non-linear operation that can appear in the adjusted algorithm. We

follow the parallel masked multiplication method proposed by Barthe et al. [17] for our AND

operation and a normal masked implementation for our linear operations.

5.2.3 Redundant Computation

Fault injection [34] is another type of implementation attack. Redundant computation is a

technique to detect whether a fault has been injected in a circuit. In this technique, every

computation is done multiple times and the results are compared. A mismatch between the

results shows that a fault has happened. For n number of redundant computations, the

occurrence of up to n− 1 faults can be detected.

In Skiva-V, our goal is to combine countermeasures against both fault injection and

power SCA attacks. As shown in our previous work [100], when the redundant copies of the

data are in complementary format, the intensity of power side-channel leakage is decreased.

76

b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b481b491b501b511b521b531b541b551b561b571b581b591b601b611b621b631 b321b331b341b351b361b371b381b391b401b411b421b431b441b451b461b471 b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151
D = 1

b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71

b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14

b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b241b242b251b252b261b262b271b272b281b282b291b292b301b302b311b312 b161b162b171b172b181b182b191b192b201b202b211b212b221b222b231b232

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34b121b122b123b124b131b132b133b134b141b142b143b144b151b152b153b154 b81b82b83b84b91b92b93b94b101b102b103b104b111b112b113b114

D = 4

D = 8

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18

D = 2

b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18

RS = 2

RS = 1

RS = 4

RS = 8

RS = 1

RS = 2

RS = 4

RS = 8

RS = 1

RS = 2
RS = 4

RS = 8

RS = 1

RS = 2

RS = 4

RS = 8

{
{

{
{ b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18b61b62b63b64b65b66b67b68b71b72b73b74b75b76b77b78 b41b42b43b44b45b46b47b48b51b52b53b54b55b56b57b58

32-bit

Figure 5.2: Bitsliced data representation on 64-bit registers. bji represents jth share of data
bi. Shares of the same variable have the same color. Parts enclosed in dashed lines show the
nine possible configurations in the 32-bit architecture proposed in SKIVA [100] also shown
separately in Figure 5.1.

Therefore we support redundancy of two types: direct and complementary. In direct redund-

ancy, the redundant data is a direct (uninverted) copy of the original data, whereas, in the

complementary redundancy, half of the redundant copies will be in the inverted format to

balance the power consumption of the direct copies. Similar to SKIVA[100], the instructions

in Skiva-V can be used for both spatial and temporal redundancy to detect data faults and

control faults respectively. The spatial redundancy mode can be integrated into any bitsliced

program, whereas the temporal redundancy can be used in round-based applications where

half of the slices will be performing round i and the rest of the slices will be performing

round i + 1.

5.3 Processor Support

We present an instruction set extension (ISE) for both the 32-bit and the 64-bit RISC-V ISAs

called Skiva-V. The underlying data representations of Skiva-V are based on the masking

order (D) and the spatial redundancy (Rs). In our 32-bit ISE, we support nine different

configurations chosen from the sets D = {1, 2, 4} and Rs = {1, 2, 4}. For our 64-bit ISE, we

77

extend the 32-bit representations to add additional masking and redundancy modes. In this

new configuration, Skiva-V supports sixteen different configurations from D = {1, 2, 4, 8}

and Rs = {1, 2, 4, 8}. In all of these configurations, the D shares of the same variable reside

in the adjacent bits of a register. Next to the shares of one variable, will sit the shares of the

next variable for parallel computation. This pattern repeats in the same register Rs times

for redundant computation. Thus in each (D,Rs) configuration for the N -bit architecture,

Skiva-V supports p = N
D×Rs

parallel computations. Figure 5.1 and Figure 5.2 show all the

possible configurations in the 32-bit and 64-bit ISEs respectively. In these figures, the i

subscripts in bi data bits show different variables in parallel computation. To support both

direct and complementary redundancy, the even-numbered redundant copies can be either

inverted or direct.

In the rest of this section, we describe the instructions in Skiva-V, their implementation

details and footprint, and how programmers can employ them in their codes.

5.3.1 Instruction Definitions

Our proposed instruction set extension for RISC-V is divided into three groups: instructions

for bitsliced transposition, instructions for masked implementation, and instructions for re-

dundant computation. In the following subsections, we describe each instruction. Table 5.1

shows the assigned opcodes and formats of the instructions in Skiva-V. The instructions’

encodings in Skiva-V follow the RV32I base r-type and i-type instruction formats mentioned

in RISC-V ISA manual [7]. Each of the i-type instructions in Skiva-V has its own immediate

encoding that clarifies the masking order (required for subrot instruction) or the redundancy

scheme (required for redl/h and ftchk). We describe the immediate assignment of each

instruction with their definition in the rest of this section. The operations for transposing

data and duplicating the data according to the redundancy scheme require two destination

78

Table 5.1: Opcode assignments in Skiva-V

Instruction Type funct7 (instr 31-25) funct3 (instr 14-12) opcode (instr 6-0)

subrot i-type —- 0x0 0x0b (custom-0)
redl i-type —- 0x1 0x0b (custom-0)
redh i-type —- 0x2 0x0b (custom-0)
ftchk i-type —- 0x3 0x0b (custom-0)
andc32 (only in 64-bit ISA) r-type, logic 0x20 0x4 0x0b (custom-0)
andc16 r-type, logic 0x10 0x4 0x0b (custom-0)
andc8 r-type, logic 0x00 0x4 0x0b (custom-0)
xorc32 (only in 64-bit ISA) r-type, logic 0x21 0x4 0x0b (custom-0)
xorc16 r-type, logic 0x11 0x4 0x0b (custom-0)
xorc8 r-type, logic 0x01 0x4 0x0b (custom-0)
xnorc32 (only in 64-bit ISA) r-type, logic 0x22 0x4 0x0b (custom-0)
xnorc16 r-type, logic 0x12 0x4 0x0b (custom-0)
xnorc8 r-type, logic 0x02 0x4 0x0b (custom-0)
tr2l r-type, transposition 0x00 0x5 0x0b (custom-0)
tr2h r-type, transposition 0x10 0x5 0x0b (custom-0)
invtr2l r-type, transposition 0x01 0x5 0x0b (custom-0)
invtr2h r-type, transposition 0x11 0x5 0x0b (custom-0)

registers. However, multiple destination registers are not by default supported by RISC-V

ISA. Therefore, similar to the multiplication instructions, e.g., MUL and MULH, in RISC-V’s

“M” extension, we assign two different instructions for the lower and upper halves of the

result of redl/h, tr2l/h, and invtr2l/h operations.

Bitsliced transposition

We propose two instructions, i.e. tr2l rd, rs1, rs2 and tr2h rd, rs1, rs2, which, if

applied iteratively in the butterfly pattern, can transpose the data from normal represent-

ation to its bitsliced format. These instructions take two source registers and reorder their

bits in the destination register interchangeably. Instruction tr2l reorders the lower half of

the source registers while instruction tr2h reorders the upper half. To transpose the bitsliced

data back to its normal representation, we proposed the inverse of the above instructions,

i.e. invtr2l rd, rs1, rs2 and invtr2h rd, rs1, rs2. Figure 5.3 shows how these in-

structions work. As an example, Figure 5.4 shows how four 4-bit registers can be transposed

to their bitsliced positions in two iterations of applying these instructions. In general, for

N N -bit registers, it takes log2(N) iterations of applying the transposition instructions to

79

αβγδε

ε

ζηθ

θ

ικλμ

αδ ιμ

ν

ν

ξρφ

φ

tr2l invtr2l tr2h

w⁄2 w⁄2

w w

rs1

rs1

rs2
rs1
rs2

rs2
invtr2h

Figure 5.3: (inv)tr2h and (inv)tr2l instructions. W represents the length of the registers
which can be either 32 or 64 bits. All four instructions take two input registers and store
the results in the destination register.

a ab bc

c

d

d

e ef fg

g

h

h

i

i

j

j

l l

m

m

n

n

o op p

k k

a

b

c

d

e

f

g

h

i

j

l

m

n

o

p

k

: tr2h : tr2llegend

Figure 5.4: Applying tr2l and tr2h instructions to four 4-bit registers iteratively in a
butterfly pattern to transpose the bits for bitsliced implementation. To transpose the bits
back to their initial positions, we can apply invtr2l and invtr2h from right to left.

completely transpose the bits.

Masked implementation

In our masked data manipulations, we follow the parallel masked multiplication gadget by

Barthe et al. [17]. In this gadget, the shares of a variable are adjacent in a register and

during the calculations, we need to rotate the adjacent shares. Rotating parts of a register

independently is not part of the RISC-V ISA, however, in our masking schemes will be

executed quite often. Hence we add this instruction to Skiva-V. In our 32-bit (resp. 64-bit)

representation, Skiva-V supports masked implementation with 2 and 4 (resp. 2, 4, and 8)

shares. Therefore we need to be able to rotate 2 and 4 (resp. 2, 4, and 8) consecutive bits in

a 32-bit (resp. 64-bit) register. Therefore, we add an instruction (subrot rd, rs1, imm)

80

d d d d

. . .

Figure 5.5: subrot instruction. This instruction rotates d adjacent bits in a register where
d is decided from the immediate input and follows the masking scheme (d ∈ {2, 4} for 32-bit
ISA, d ∈ {2, 4, 8} for 64-bit ISA).

which takes a source register and an immediate value. If the immediate value is 2/4(/8 in

64-bit ISA) respectively 2/4(/8 in 64-bit ISA) consecutive bits will be rotated. Figure 5.5

shows how this instruction works.

Note. When using the subrot instruction, one must be careful not to use the same

register for both the input and the result (i.e. rs1 ̸= rd) since this will result in overwriting

the shares of the same variable and transiently reducing the intended order of masking

scheme. Fortunately, compilers support this type of criteria in their code generation process

and we can ensure this property will be held by adding it to the back-end of the compiler

(code generator) as a criteria specific to the subrot instruction.

Redundant computation

As mentioned in Section 5.2, Skiva-V supports both direct and complementary redundant

computations. Direct redundancy enables fault detection while complementary redundancy

also reduces the intensity of power side-channel leakage. To prepare data for redundant

representation, we introduce instructions redl rd, rs1, imm and redh rd, rs1, imm to

copy data (both directly and in inverted manner) in the same register. The immediate

field in these instructions decides which part of the input register has to be copied and

whether it should follow direct redundancy or complementary redundancy. Table 5.2 shows

the immediate value assignment for each redundancy mode.

To demonstrate in more detail how the bits are duplicated in the destination register,

Figure 5.6 demonstrates the result of redh and redl instructions when their immediate value

81

Table 5.2: Immediate value assignment for redh/redl instructions. W represents the word
length (32 for the 32-bit and 64 for the 64-bit ISA). Source bits signifies which bits in the
source register are being replicated.

Redundancy (Rs) Source bits redh/redl imm.

2 direct W-1:0 2
2 compl. W-1:0 3
4 direct W/2-1:0 4
4 compl. W/2-1:0 5
4 direct W-1:W/2 6
4 compl. W-1:W/2 7
8 direct (only in 64-bit ISA) 15-0 8
8 compl. (only in 64-bit ISA) 15-0 9
8 direct (only in 64-bit ISA) 31-15 10
8 compl. (only in 64-bit ISA) 31-15 11
8 direct (only in 64-bit ISA) 47-32 12
8 compl. (only in 64-bit ISA) 47-32 13
8 direct (only in 64-bit ISA) 63-48 14
8 compl. (only in 64-bit ISA) 63-48 15

Table 5.3: Immediate value assignment for ftchk instruction.

Redundancy (Rs)
ftchk immediate

32-bit 32-bit (compl. result) 64-bit 64-bit (compl. result)

2 direct 2 10 2 3
2 compl. 3 11 18 19
4 direct 4 12 4 5
4 compl. 5 13 20 21
8 direct (only in 64-bit ISA) NA NA 8 9
8 compl. (only in 64-bit ISA) NA NA 24 25

is 7. According to Table 5.2, this means the bits in the range [W-1:W/2] (W=32 for 32-bit

ISA and W=64 for 64-bit ISA) should be duplicated in a complementary format.

In cases where our data is in complementary redundancy format, we need a logic operation

f(.) to calculate f(.) on the direct copies and the inverse (f(.)) on the complemented copies

to result in complemented outputs according to DeMorgan’s theorem. Figure 5.7 shows

the structure of complementary logic operations. Therefore, Skiva-V has logic instructions

andcn , xorcn , and xnorcn that calculate the logic operation and its inverse on part of the

data in their source registers. In the 32-bit (resp. 64-bit) instruction set, n can have the

value of 8 and 16 (resp. 8, 16, and 32) to operate in direct/complementary format on n

consecutive bits.

82

D C B A

C C C C

imm = 7

D D D D

redl

redh

source

dest {
Figure 5.6: Example for redl/redh instructions with immediate value of 7. In both 32-bit
and the 64-bit ISA, immediate=7 means duplicating the upper half-word (16 bits and 32 bits
respectively for the 32-bit and 64-bit architectures) in the complemented format. redh/redl
copies the upper/lower half of the source’s selected bits in its destination register.

. . .f(.) f(.) f(.)f(.)

. . . 2Rs-1Rs 1

: inverted copy
: direct copy

legend

Figure 5.7: Complementary logic operations on complementary redundant data.

Finally, we propose an instruction in Skiva-V to check if the redundant copies of the data

agree. The ftchk rd, rs1, imm instruction will check the redundant copies in the source

register based on the immediate value and set the corresponding bit in the destination

register to one if the copies of data do not agree (i.e. a fault is detected). To have continuity

in the direct and complementary redundancy, the result of ftchk operation can be in the

complementary format where the comparison result is copied both directly and inversely in

the destination register.

Table 5.3 shows the immediate value encodings for the ftchk instruction. For example,

if Rs = 4 and direct redundancy in the 32-bit ISA, i.e., immediate value is either 4 or 12,

the comparison flags are calculated and stored in the destination register (rd) based on the

83

source register (rs) as follows for the least significant 8 bits:

rd[i] = (rs[i]⊕ rs[i + 8])||

(rs[i]⊕ rs[i + 16])||

(rs[i]⊕ rs[i + 24]);

∀i ∈ [0, 7]

The same calculated results will be duplicated directly (when immediate value is 4) or in

inverse format (when immediate value is 12) to fill the remaining 16 bits of the destination

register (rd).

5.3.2 ISA-level Performance Analysis

We evaluate our instruction set extension on RISC-V for its performance. For each proposed

instruction, we write a C code defining the functionality of the instruction. On an imple-

mentation of Skiva-V, this C code corresponds to only one instruction. We cross compile the

C code with GCC once for RV32I and RV64I instruction sets and once for the RISC-V with

bit-manipulation extension (RV32B and RV64B) 3. While GCC with B-extension currently

only supports 31 out of 95 proposed instructions in the bit-manipulation draft, it is the only

tool available for automatic use of the instructions in the B-extension. Furthermore, a visual

inspection of the instructions in this extension confirms that there is no exact match for the

instructions in Skiva-V.

As an example, Listing 5.2 and Listing 5.3 show the assembly codes for ftchk instruc-

tion with immediate value of 2 (Rs = 2 with direct redundancy) for RV32I and RV32B

respectively. These assembly codes are generated by compiling the C code in Listing 5.1

3C equivalent codes and compiled assemblies for RV32/64I/B are accessible at https://github.com/

Secure-Embedded-Systems/Skiva-V

84

https://github.com/Secure-Embedded-Systems/Skiva-V
https://github.com/Secure-Embedded-Systems/Skiva-V

Listing 5.2: Assembly code of the Skiva-
V ftchk instruction with immediate value
of 2 mapped to RV32I ISA

s l l i a5 , a0 ,16
s r l i a5 , a5 ,16
s r l i a0 , a0 ,16
xor a0 , a5 , a0
s l l i a5 , a0 ,16
or a0 , a5 , a0

Listing 5.3: Assembly code of the Skiva-
V ftchk instruction with immediate value
of 2 mapped to RV32B ISA

s r l i a5 , a0 , 16
pack a0 , a0 , x0
xor a0 , a0 , a5
s l l i a5 , a0 ,16
or a0 , a5 , a0

with RISC-V’s open-source GCC compiler and flags -march=rv32g and -march=rv32gb re-

spectively. As the assembly codes show, the pack instruction in B-extension can replace the

first two instructions in Listing 5.2 therefore reducing the total number of instructions by

one.

Listing 5.1: C equivalent for 32bit ftchk with immediate value of 2

u in t 32 t f t chk2 (u i n t 32 t r s1) {

u in t 32 t rd ;

u i n t 32 t compare ;

compare = (r s1 & 0 x 0 0 0 0 f f f f) ˆ

((r s1 & 0 x f f f f 0 0 0 0) >> 16) ;

rd = compare | (compare << 16) ;

return rd ;

}

As another example, the C equivalent for 64bit ftchk instruction with immediate value

of 18 (complementary redundancy Rs = 2 with direct output) is shown in Listing 5.4.

The compiled assembly codes for RV32I and RV32B are shown in Listing 5.5 and Listing 5.6

respectively. Similar to the previous example, the first two instructions for RV64I are replaced

by one pack instruction from RV64B. Additionally, xor and not instructions are replaced

85

Listing 5.4: C equivalent for 64bit ftchk with immediate value of 18

u in t 64 t f t chk18 64 (u in t 64 t r s1) {
u in t 64 t rd ;
u i n t 64 t compare ;

compare = ˜(r s1 & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f) ˆ
((r s1 & 0 x f f f f f f f f 0 0 0 0 0 0 0 0) >> 32) ;

rd = compare | (compare << 32) ;

return rd ;
}

Listing 5.5: Assembly code of the Skiva-
V ftchk instruction with immediate value
of 18 mapped to RV64I ISA

s l l i a5 , a0 ,32
s r l i a5 , a5 ,32
s r l i a0 , a0 ,32
xor a5 , a5 , a0
not a5 , a5
s l l i a0 , a5 ,32
or a0 , a0 , a5

Listing 5.6: Assembly code of the Skiva-
V ftchk instruction with immediate value
of 18 mapped to RV64B ISA

s r l i a5 , a0 , 32
pack a0 , a0 , x0
xnor a0 , a0 , a5
s l l i a5 , a0 ,32
or a0 , a5 , a0

by the xnor instruction in the B-extension.

Table 5.4 and Table 5.5 show the number of instructions from RISC-V ISA to implement

the Skiva-V instructions. Based on our calculations, each of the 32-bit/64-bit Skiva-V opera-

tion replaces on average 22.34/29.98 instructions from the RV32/RV64 ISA and 21.84/29.59

instructions from the RV32B/RV64B ISA. All the proposed instructions pass the criteria

of replacing a minimum of three instructions. The general reason for this poor behavior of

RV32/64I/B is the required fine-grained operations at bit-level.

Although the reported numbers for RV32B and RV64B are not significantly different

from RV32I and RV64I, the real advantage of the RISC-V’s bit-manipulation extension can

be much bigger but not yet supported by the GCC code generator. For instance, rev.p

rd, rs, 1 in RV32B/RV64B is functionally equivalent to subrot rd, rs, 2 in Skiva-V

32/64-bit. However, this was the only instance we found in the bit-manipulation extension

86

Custom
library
.lib

PSPCG Flow

.v

Synchronous
program Synthesis

tool

Boolean
operation

graph
Leveler

Boolean
program

C
generator

Target
ISA
.c

.c

Parallel sync
core

1

2 3

Software
program

Synchronous
model

Fwd transpose
Parallel sync

core
Bwd transpose

Bitsliced C program

.c

Figure 5.8: High-level description of PSPCG steps.

that was obviously equivalent to the instructions in Skiva-V.

Furthermore, we calculate the number of registers each instruction-equivalent code snip-

pet uses on RV32I/RV32B and RV64I/RV64B as a measure of register pressure. We calculate

the register use of each code snippet and compare it to that of its corresponding custom in-

struction. We make the worst case scenario assumption on the register usage in Skiva-V cus-

tom instruction that each r-type instruction (namely andcn , xorcn , xnorcn , (inv)tr2l/h)

uses 3 distinct registers and each i-type instruction (namely subort, redl/h, ftchk) uses 2

distinct registers. As shown in Table 5.4 and Table 5.5, even under our pessimistic assump-

tion, on average, Skiva-V custom instructions use 1.47×/1.65× fewer registers compared to

RV32I/RV64I and 1.58×/1.75× fewer registers compared to RV32B/RV64B ISA.

5.3.3 Implementation

We integrate the 32-bit Skiva-V instructions into an in-order, five-stage pipeline implement-

ation of the RISC-V RV32I ISA. For this implementation, we use the open-source BRISC-V

[12] core. This core consists of five pipeline stages, namely fetch, decode, execute, memory,

and write-back. The simplicity of the Skiva-V ISE architecture, enables the easy integration

of the instructions which only affect the decode stage, the ALU unit in the execute stage,

and the control unit of the processor. The changes applied to the processor are to decode

the added instructions (in the decode stage according to the assigned opcodes in Table 5.1),

execute them in the ALU (in execute stage), and bypass their outputs to the next instruc-

tions in case of dependency (from write back stage to decode stage) to reduce the number of

87

Table 5.4: ISA-level performance evaluation of Skiva-V 32-bit instructions

Skiva-V 32
RV32I RV32B

of instr reg. use # of instr reg. use

tr2h rd, rs1, rs2 115 2× 115 2×
tr2l rd, rs1, rs2 115 2× 115 2×
invtr2h rd, rs1, rs2 115 2× 114 2×
invtr2l rd, rs1, rs2 115 2× 115 2×
subrot rd, rs, 2 9 1.5× 9 1.5×
subrot rd, rs, 4 9 1.5× 9 1.5×
redl rd, rs, 2 4 1× 3 1×
redh rd, rs, 2 4 1.5× 4 1.5×
redl rd, rs, 3 5 1× 4 1.5×
redh rd, rs, 3 5 1.5× 4 1.5×
redl rd, rs, 4 7 1.5× 7 1.5×
redh rd, rs, 4 8 1.5× 8 1.5×
redl rd, rs, 5 9 1.5× 9 1.5×
redh rd, rs, 5 11 1.5× 11 1.5×
redl rd, rs, 6 8 1.5× 8 1.5×
redh rd, rs, 6 8 1.5× 8 1.5×
redl rd, rs, 7 11 1.5× 11 1.5×
redh rd, rs, 7 10 2× 10 2×
ftchk rd, rs, 2 6 1× 5 1.5×
ftchk rd, rs, 3 6 1× 5 1.5×
ftchk rd, rs, 4 16 1.5× 16 1.5×
ftchk rd, rs, 5 17 2× 16 2.5×
ftchk rd, rs, 10 7 1× 6 1.5×
ftchk rd, rs, 11 8 1.5× 8 1.5×
ftchk rd, rs, 12 17 1.5× 17 1.5×
ftchk rd, rs, 13 19 2× 16 2.5×
andc16 rd, rs1, rs2 7 1× 6 1.67×
xorc16 rd, rs1, rs2 3 1× 3 1×
xnorc16 rd, rs1, rs2 4 1× 4 1×
andc8 rd, rs1, rs2 13 1.33× 13 1.33×
xorc8 rd, rs1, rs2 13 1.33× 11 1.33×
xnorc8 rd, rs1, rs2 11 1.33× 9 1.33×

inserted bubbles in the pipeline. These modifications to the processor design do not affect

the critical path of the circuit and therefore render the maximum clock frequency unchanged.

Furthermore, to evaluate the area footprint of these instructions, we synthesize the

Skiva-V implementation using the open SkyWater 130nm standard cell library4. The imple-

mentation of the five-stage RV32I ISA without Skiva-V extension has an area of 88356.25um2

and a cell count of 5006. After adding the Skiva-V instructions, the area and cell count in-

crease to 97381.07um2 and 5643 showing a 10.21% and 12.72% increase in area and cell count

respectively.

4https://github.com/google/skywater-pdk

88

Table 5.5: ISA-level performance evaluation of Skiva-V 64-bit instructions

Skiva-V 64
RV64I RV64B

of instr reg. use # of instr reg. use

tr2h rd, rs1, rs2 244 2.33× 243 2.33×
tr2l rd, rs1, rs2 243 2.33× 244 2.33×
invtr2h rd, rs1, rs2 244 2.33× 243 2.33×
invtr2l rd, rs1, rs2 246 2.67× 247 2.33×
subrot rd, rs, 8 9 1.5× 9 1.5×
subrot rd, rs, 4 9 1.5× 9 1.5×
subrot rd, rs, 2 9 1.5× 9 1.5×
redh rd, rs, 10 15 1.5× 15 1.5×
redl rd, rs, 10 16 1.5× 16 1.5×
redh rd, rs, 11 17 2× 17 2×
redl rd, rs, 11 19 2× 19 2×
redh rd, rs, 12 16 1.5× 16 1.5×
redl rd, rs, 12 16 1.5× 16 1.5×
redh rd, rs, 13 19 2× 19 2×
redl rd, rs, 13 19 2× 19 2×
redh rd, rs, 14 16 1.5× 16 1.5×
redl rd, rs, 14 16 1.5× 16 1.5×
redh rd, rs, 15 18 2.5× 18 2.5×
redl rd, rs, 15 19 2× 19 2×
redh rd, rs, 2 4 1× 4 1×
redl rd, rs, 2 4 1× 3 1×
redh rd, rs, 3 5 1× 5 1.5×
redl rd, rs, 3 5 1× 4 1.5×
redh rd, rs, 4 7 1.5× 7 1.5×
redl rd, rs, 4 8 1.5× 7 2×
redh rd, rs, 5 13 2× 13 2×
redl rd, rs, 5 11 1.5× 10 2×
redh rd, rs, 6 8 1.5× 8 1.5×
redl rd, rs, 6 9 1.5× 8 2×
redh rd, rs, 7 10 2× 10 2×
redl rd, rs, 7 13 2× 13 2×
redh rd, rs, 8 16 1.5× 16 1.5×
redl rd, rs, 8 15 1.5× 15 1.5×
redh rd, rs, 9 19 2× 19 2×
redl rd, rs, 9 17 2× 17 2×
ftchk rd, rs, 18 7 1× 5 1.5×
ftchk rd, rs, 19 8 1.5× 7 2×
ftchk rd, rs, 20 20 2.5× 18 2.5×
ftchk rd, rs, 21 21 2.5× 19 2.5×
ftchk rd, rs, 24 39 2.5× 36 3×
ftchk rd, rs, 25 39 2.5× 36 3×
ftchk rd, rs, 2 6 1× 5 1.5×
ftchk rd, rs, 3 7 1× 6 1.5×
ftchk rd, rs, 4 18 2× 18 2×
ftchk rd, rs, 5 19 2× 19 2×
ftchk rd, rs, 8 36 2× 36 2×
ftchk rd, rs, 9 36 2× 36 2×
andc32 rd, rs1, rs2 7 1× 6 1.33×
xorc32 rd, rs1, rs2 4 1× 4 1×
xnorc32 rd, rs1, rs2 4 1× 3 1.33×
andc16 rd, rs1, rs2 9 1.33× 9 1.33×
xorc16 rd, rs1, rs2 4 1× 4 1×
xnorc16 rd, rs1, rs2 4 1× 4 1×
andc8 rd, rs1, rs2 9 1.33× 9 1.33×
xorc8 rd, rs1, rs2 4 1× 4 1×
xnorc8 rd, rs1, rs2 4 1× 4 1×

89

5.4 Coding Support

One of the challenges for bitsliced programming is its code generation. For SKIVA program-

ming, we adopt Parallel Synchronous Programming (PSP), a model that directly maps into

bitsliced programs and integrates control logic into bitsliced code [93]. Examples of parallel

synchronous programs have since been shown in software implementation of light-weight en-

cryption ciphers [96] and variable-precision multiplication used in neural networks [145]. In

this section, we demonstrate how bitsliced programs are a subset of the parallel synchronous

programs and therefore the automated code generator for PSP (i.e. PSPCG) can be used

to automate the generation of bitsliced code.

PSP is semantically similar to a synchronous finite state machine with datapath (FSMD).

Parallel synchronous programs consist of a core function with a status output that shows

when the results are ready. This core function will be called iteratively until the status output

shows the execution is done, while each iteration corresponds to a synchronous evaluation

of the PSP design [93].

while (! s ta t done) {

c o r e f (inputs , &outputs , &s ta t done) ;

}

Bitslicing becomes a subset of PSP by unfolding the loop and adding it into the logic

of the core function. This results in a flattened function containing only logic operations in

bitsliced format. Hence we can use the same automatic PSP code generation methodology

(PSPCG) for bitsliced codes.

As Figure 5.8 shows, to generate the bitsliced code of a software program using PSPCG,

first a synchronous model of the program is needed. This synchronous model in PSPCG

flow is encoded as a Verilog file. Once ready, we feed the synchronous model of the program

(1) as well as the description of the instructions in our target ISA to PSPCG. These

target instructions should be provided in two formats, one following liberty file (used for

90

describing logic libraries) (2) and the other as inline assembly in C (3). Given these

inputs, PSPCG internally synthesizes the given synchronous model to construct a Boolean

operation graph and levels the graph to generate a Boolean program. In its last stage, the

parallel synchronous core of the given model is generated as a C function. By prepending

the forward transposition of the input data and appending the backward transposition of

the results to the generated C function we will have the complete bitsliced C code.

Coding for Skiva-V

To generate bitsliced code for Skiva-V, we follow the PSPCG method as mentioned previ-

ously. In our custom library for the synthesis step, we use general logic cells AND, OR, XOR,

and NOT. In our C code, we expand each of these general instructions as a sequence consisting

of Skiva-V instructions in the form of inline assembly depending on the desired redundancy

and masking scheme. The expanded instructions will implement the secure gadgets used for

masking and redundant computation. For instance, in the 32-bit architecture, for the first-

(resp. third-) order masking with no redundancy, each AND operation will be replaced by the

sequence of assembly instructions shown in Listing 5.7 (resp. Listing 5.8).

Finally, we add the proposed instructions to the RISC-V GCC assembler. This way, the

mnemonics of the new instructions are recognized by the assembler and will be automatically

mapped to the correct opcodes in the executable file5.

5.5 Direct Memory Access with Transpose Support

In this section, we describe the Transpose DMA (T-DMA) functionality, design, and the area

footprint of the synthesized circuit. T-DMA is capable of performing the same operations

as Skiva-V’s instructions (inv)tr2l, (inv)tr2h, redl, redh, ftchk on the fly on up to

5We will open-source the modified GCC for Skiva-V before paper’s publication.

91

Listing 5.7: First-order masked imple-
mentation of AND operation. Inputs are
at a1,a5, random numbers are at a0,a4,
the output is written in a6.

xor t0 , a1 , a0
subrot s0 , a0 , 2
xor t2 , t0 , s0
xor s0 , s0 , s0
and a7 , a5 , t2
subrot t5 , t2 , 2
and t1 , t5 , a5
xor t5 , t5 , t5
xor t3 , a4 , a7
xor t4 , t3 , t1
subrot t6 , a4 , 2
xor a6 , t6 , t4

Listing 5.8: Third-order masked imple-
mentation of AND operation. Inputs are
at a2,a4, random numbers are at a3,a5,
the output is written in a1.

xor s2 , a3 , a2
subrot s4 , a2 , 4
xor s3 , s2 , s4
xor s4 , s4 , s4
and a0 , s3 , a5
subrot t0 , s3 , 4
and a6 , t0 , a5
subrot s0 , a5 , 4
and a7 , s0 , s3
subrot t2 , t0 , 4
and t1 , t2 , a5
xor t0 , t0 , t0
xor s0 , s0 , s0
xor t2 , t2 , t2
xor t3 , a4 , a0
xor t4 , t3 , a6
xor t5 , t4 , a7
subrot s1 , a4 , 4
xor t6 , t5 , s1
xor a1 , t6 , t1

32 consecutive memory locations at once.

5.5.1 T-DMA Functionality

The proposed T-DMA module is capable of the following:

• Transposing/Reverse transposing an arbitrary number of memory locations (up to

thirty-two) starting from a source address and storing the result in given addresses

starting from an arbitrary destination address.

• Generating/Removing the masking shares of data in the source address according to

the given Skiva-V working mode.

• Generating/Removing the redundancy for the data stored in given source address ac-

cording to the given Skiva-V working mode.

92

Controller

Datapath

Transposer

32

32

register
file

R
em

ov
e

R
ed

un
da

nc
y

R
ed

un
da

nc
y

U
nm

as
k

M
as

k

PRNG

FIFO

redundancy
error

config

R
A

M

R
A

M
pr

oc
es

so
r T-DMA

Figure 5.9: Block diagram of the T-DMA module.

• Checking for consistency between the redundant copies of the data stored in a given

memory address.

5.5.2 T-DMA Design

Figure 5.9 shows the design of our proposed T-DMA module. The T-DMA module consists

of a controller and a datapath. The system’s processor will program the T-DMA by writing

to the controller. Programming the DMA includes telling the controller the D, Rs, direct/-

complementary redundancy, source memory address, destination memory address, number

of memory locations, number of valid bits in each location, and whether we need to {mask

and duplicate} the data or {unmask, and check and remove the redundancy}.

The controller, then, sets the signals for the datapath to perform the transformations.

At the core of the T-DMA’s datapath design, is the transposer with a register file of thirty-

two 32-bit registers (128 bytes) tuned for a 32-bit micro-architecture. Once the T-DMA

starts the memory transfer, it will load the data residing in a programmable number of

locations starting from a source address into the register file. While transferring the data

from the system’s RAM, the existing redundancy and masking will be removed for backward

transposition. In case of a forward transposition, the removal of redundancy and masking

93

are turned off and the masking shares for each bit of the data are generated based on the

programmed number of shares (D ∈ {1, 2, 4}). We use the Cellular Automata-based PRNG6

to generate the randomness required for masking the data.

Once the masking shares are generated, the data is formatted according to the pro-

grammed redundancy scheme (Rs ∈ {1, 2, 4} and direct/complementary copy configuration)

and stored in the destination memory locations.

To perform the reverse transposition, the transposer first checks for the correctness of the

redundant data. Once the correctness is ensured, it removes the redundancy and unmasks

the data. Finally, the dis-transposed data will be saved to the destination addresses.

The output of the datapath is stored in a First In, First Out (FIFO) memory. This

memory stores the address and data of each output to be sent to the system’s RAM. In

our implementation, the FIFO is 256 bytes with 32 entries of 64 bits wide (to store the

concatenated 32-bit address and 32-bit data). Once the transposition is done, T-DMA

starts writing each entry of the FIFO to the system’s RAM.

Despite only having a 32×32 register file in its transposer, T-DMA is capable of trans-

posing up to < 216 distinct data each of length < 212 bits by being programmed only once.

This feature is enabled by the stride algorithm (Figure 5.10). Following the stride algorithm,

the data is divided into blocks, each containing a maximum of 32 distinct data. Each data

is of a programmable word length WL < 212. Each block is divided into offsets containing

up to 32 bits of up to 32 distinct data. Figure 5.10 shows this structure. T-DMA iterates

over all the offsets in a block. It takes the first offset containing the least significant bits

of each data in a block to load the transposer’s register file. Subsequently, T-DMA offloads

the transposed data to the memory. The hexagons in Figure 5.10 represent this offloading.

It then moves to the next offset containing the next 32 significant bits of the data in the

block. Once all the bits of the data in the current block are transposed and stored in the

6https://github.com/secworks/ca_prng

94

https://github.com/secworks/ca_prng

Word addr: 0

n

2n

.

.

.

31n

1

n+1

2n+1

.

.

.

31n+1

n-1

2n-1

3n-1

.

.

.

32n-1

…

Offset: 0 1 n-1
Distinct data 32b

Distinct data 32b+1

Distinct data 32b+2

Distinct data 32b+31

.

.

.

Block: b

Figure 5.10: Stride algorithm used in T-DMA. n = ⌈WL
32
⌉

destination addresses, it moves to the next block. In our implementation, 32-bit parts of the

same data are at consecutive addresses therefore the distinct data in each offset are not in

consecutive addresses, rather they are n = ⌈WL
32
⌉ words apart. In each configuration of the

T-DMA there are ⌈WC
32
⌉ blocks to transpose. The same structure applies to both forward

and backward transposition.

5.5.3 Employing T-DMA

To use the T-DMA, first, the source address should be written in the controller through

the processor. In our implementation, a little-endian architecture is assumed therefore the

source address is considered to hold the least significant 32 bits of the data. In addition,

masking order (D), redundancy order (Rs), word length (WL), and word count (WC) are

written to a 32-bit configuration register containing 2 bits for holding D (0 for D = 1,

1 for D = 2, and 2 for D = 3), similarly 2 bits for holding Rs, 16 bits for WC, and

12 bits for WL. Through writing to another configuration register, it is specified whether

the redundancy scheme is direct or complementary and whether we are running forward

or backward transposition. Lastly, the seed for the on-chip PRNG is also provided to the

95

controller. Once this configuration is complete, the T-DMA will start operating by receiving

the destination register in a specific addressable register inside the controller.

As mentioned previously, the controller is capable of checking the correctness of the

redundant data. The result of this check is written to a read-only (by the processor) status

register. After the completion of T-DMA’s job, the processor can read the status register to

confirm the correctness of the redundant data. Furthermore, while the T-DMA is running, a

busy flag will be held high in another status register. Using this status register, the processor

will know when the T-DMA is ready for the next data transfer. Figure 5.11 shows the control

and status registers in T-DMA.

5.5.4 Implementation

To evaluate the size of T-DMA, we synthesize the circuit for SkyWater 130nm standard cell

library. The T-DMA implementation shows a total area of 161524.07um2 and a cell count

of 9017 with the FIFO being the biggest contributor occupying more than 50% of the total

area.

5.6 System Integration

To integrate Skiva-V processor and the T-DMA, we make the T-DMA implementation pro-

grammable from the processor by making all the aforementioned configuration and status

registers in the controller address-accessible. Figure 5.11 shows these registers.

Every memory access from the memory stage of the pipeline goes through the memory

interface. Figure 5.12 shows the connection between the modules in the integrated system.

The memory interface detects whether the address is within the range of T-DMA or data

memory.

In case of addressing the T-DMA, memory interface starts the transmission with the T-

96

Offset Register
0x00 Source Address
0x04 Config 1
0x08 Config 2
0x0C PRNG Seed
0x10 Destination Address
0x14 Error Status
0x18 Busy Status

31 29 27 15

Config 1 D Rs WL WC

1 0

Config 2 Unused Cmpl Bwd

Figure 5.11: Address-accessible 32bit registers for communicating with and programming the
T-DMA. Grey cells are unused. Backward transposition when Bwd=1, forward otherwise.
Complemented redundancy when Cmpl=1, direct redundancy otherwise.

DMA which can include programming the T-DMA (write) or accessing its status bits (read).

When the processor is trying to access the data memory, the interface module communicates

with the memory arbiter.

Memory arbiter takes care of prioritizing memory accesses from the processor core and

T-DMA. When T-DMA is programmed to access the data memory, memory arbiter prior-

itizes T-DMA’s memory access over the memory access requests from the processor core.

Therefore, the processor core will insert bubbles into its pipeline while waiting for the result

of its memory access.

Implementation

We synthesize the integrated system (Figure 5.12) for the SkyWater 130nm standard cell

library and measure the total area of 270,152.09um2 and a total cell count of 14204. Sub-

tracting the synthesized area of the Skiva-V and T-DMA (reported in the previous sections)

from the integrated system, consisting of the memory arbiter module and the added logic to

97

Mem Interface

Skiva-V

T-DMA

Mem
Arbiter

Data
Mem

Instr.
Mem

Integrated System

Figure 5.12: Integration of Skiva-V and T-DMA.

the memory interface module, the integration adds around 11,246.95um2 (4.16% overhead)

to the overall area.

5.7 Benchmark

In the following, we run all the experiments on our integrated system. We demonstrate the

advantage of hardware support for data transposition, the performance cost of redundant

computation, and the benefit of instruction-support for performance of masked implement-

ations.

5.7.1 Cost of Transposition

To characterize the overhead of transposition more thoroughly, we evaluate the cost of trans-

position in our implemented system in terms of the required number of clock cycles. We

write a program in which K (2 ≤ K ≤ 32) adjacent bits in a 32-bit register need to be

transposed to reside in 1 bit of K registers. We run the same program in three different

settings: using only standard RV32I instructions, using Skiva-V’s transpose instructions, i.e.,

tr2l and tr2h, and using the T-DMA. We compare the first two cases in terms of number

of required instructions and all three cases in terms of number of clock cycles.

98

Using the instructions in Skiva-V provides between 3× to 10× decrease in the number

of instructions depending on the value of K. Furthermore, as Figure 5.13 shows, for each

K, the number of clock cycles required to transpose K adjacent bits in a 32-bit register is

reduced between 3× to 6× using the Skiva-V instructions. T-DMA and Skiva-V perform

closely in this scenario with T-DMA having a better performance for K ≥ 19. This is due to

the overhead of programming the T-DMA module (29 clock cycles). Increasing the number

of bits to transpose, causes an increase in run-time of the transposition using the T-DMA

by 7 and using the Skiva-V instructions by 9 clock cycles. Therefore, for transposing only a

few adjacent bits, the programmer is better off using the Skiva-V operations.

These results confirm the benefits of the transpose instructions in Skiva-V. However,

to demonstrate the benefits of having the T-DMA, we run another experiment in which

K ∈ {2, 4, 8, 16, 32} bits in K registers need to be transposed. Figure 5.14 shows that as K

increases, the run-time of this transposition increases linearly (14k + 19, R2 = 1) using the

T-DMA but quadratically using the instructions in Skiva-V (1.54k2 − 4.3k + 64.9, R2 = 1)

and RV32I (55.1k2 + 125k − 469, R2 = 1).

Depending on the application, a designer can choose between deploying Skiva-V instruc-

tions or the T-DMA module. If the core is expected to have many applications running

concurrently, using T-DMA will take the load off the processor core which will prevent ex-

ecution overlap. On the other hand, application-specific hardware accelerators will reduce

the power consumption of the circuit compared to running the application on the processor

(general-purpose). Furthermore, in cases where there is streaming data coming in, which

needs to be transposed, using the T-DMA will perform faster and will not occupy the pro-

cessor resources.

99

Number of bits to transpose (K)

N
um

be
r o

f c
lo

ck
 c

yc
le

s

0

100

200

300

400

500

600

700

800

900

0 4 8 12 16 20 24 28 32

RV32I Skiva-V T-DMA

Figure 5.13: Number of clock cycles to transpose K adjacent bits of one register.

Figure 5.14: Number of clock cycles required to transpose K adjacent bits in K registers.

100

Table 5.6: Reciprocal of performance (cycles/byte).
The PRNG is assumed to have a high enough throughput to not cause any reading delay.
Tornado results are for ARM Cortex-M4; Skiva-V results are for RISC-V RV32I with
extensions.

Cipher
D=1 (no masking) D=2 (first-order masking) D=4 (third-order masking)

Tornado Skiva-V Speed-up Tornado Skiva-V Speed-up Tornado Skiva-V Speed-up

ASCON 101 159.677 0.633 - 717.495 - 3070 1988.903 1.544
GIFT 358 441.941 0.810 - 1378.141 - 11080 3435.656 3.225

5.7.2 Cost of Redundant Computation

The redundant computation schemes affect the throughput of an execution as they reduce

the number of parallel runs of a bitsliced software. For instance, when Rs = 2 each bit of

data is copied twice in the same register therefore reduces the number of parallel runs by

half. In general, in an Rs redundant scheme, the number of parallel runs will be divided by

Rs therefore the throughput of the bitsliced software will also be divided by Rs.

5.7.3 Masked Implementations of LWC Ciphers

Table 5.7: Reciprocal of performance (cycles/byte).
The PRNG is assumed to have a high enough throughput to not cause any reading delay.

Cipher
D=2 (first-order masking) D=4 (third-order masking)

RV32I Skiva-V Speed-up RV32I Skiva-V Speed-up

ASCON 767.989 717.495 1.070 2547.578 1988.903 1.281
GIFT 1434.078 1378.141 1.041 4178.469 3435.656 1.216

We take the finalists of the NIST’s Light-Weight Cryptography (LWC) competition that

mention masking as their design options; ASCON [55] and GIFT-COFB [14]. We generate

the masked implementation of their permutations (shown in Listing 5.9 and Listing 5.10) for

D ∈ {1, 2, 4} number of shares using the discussed code-generation method (Section 5.4). In

the D=1, D=2, and D=4 settings, we support 32, 16, and 8 parallel executions respectively.

We run the generated programs on Skiva-V system and calculate the number of cycles.

101

Listing 5.9: ASCON permutation

void ascon perm (int∗ s ta te , int∗ round const) {
for (i = 0 ; i <12; i++) {

add constant (s ta te , round const [i]) ;
s u b s t i t u t i o n (s t a t e) ;
l i n e a r d i f f u s i o n (s t a t e) ;

}
}

Listing 5.10: GIFT permutation

void g i f t pe rm (int∗ s ta te , int∗ key) {
for (i = 0 ; i <40; i++) {

s u b c e l l s (s t a t e) ;
perm bits (s t a t e) ;
add roundkey (s tate , key) ;
key update (key) ;

}
}

To supply the required randomness, we assume that the system has access to a pseudo-

random number generator (PRNG) with a high throughput so that accessing a random

number is equivalent to reading a register. Listing 5.7 and Listing 5.8 show the assembly

code for masked 2-input AND instruction with D=2 and D=4 masked shares which follow the

scheme described by Barthe et al. [17] and use the subrot instruction available in Skiva-V

for rotation of shares sitting adjacently in the registers. Note that in this section, we do

not perform any redundant computation, i.e., Rs = 1. In case of using complementary

redundancy, the corresponding complementary logic instructions (described in Section 5.3.1)

would replace the and and xor operations in Listing 5.7 and Listing 5.8.

Table 5.6 reports the number of cycles per byte calculated as c
s×p

where c is the number

of clock cycles, s is the size of the state of the cipher in bytes (320
8

for ASCON and 128
8

for

GIFT-COFB), and p is the number of parallel runs.

We compare our results with a similar work, Tornado [26], which reports the same cycles/-

byte metric for the masked implementations (with the same fast assumption on the PRNG)

102

of the same permutations of the LWC candidates but on Cortex-M4. Table 5.6 highlights

the advantage of having hardware support for bitslicing. First, for an unmasked implement-

ation (D=1), Tornado reports higher performance. Note that we assume the data is already

in bitsliced (and masked if D ̸= 1) format hence the transposition is not included in our

measurements. Therefore, for unmasked implementations, the Skiva-V instructions are not

used and the comparison is between the RISC-V RV32I and Cortex-M4 ISAs and the code

generation process. Thus, the higher performance reported by Tornado can be attributed to

the more advanced nature of Cortex-M4 ISA compared to the RISC-V ISA and to the code

generation tool. Second, for a third-order masked implementation (D=4), we observe that

Skiva-V can result in 1.5× and 3.2× speedup for ASCON and GIFT-COFB respectively.

Since Tornado does not report first-order masking results, we were not able to compare with

Skiva-V for the D=2 setting. Moreover, we calculate the gained speed-up using Skiva-V

instruction set over standard RV32I instruction set. As Table 5.7 shows, for both of the con-

sidered ciphers, Skiva-V provides a better performance and the gain in performance increases

as the masking order increases.

We further analyze this data in terms of added number of clock cycles per unit increase in

the masking order. This criterion depends on the cipher algorithm and the implementation

of the algorithm. Since our goal is to compare the implementations, and not the cipher

algorithms, we compare this criterion for ASCON and GIFT separately. For this purpose,

we make a linear regression of the cycles/byte vs. number of shares (D) as reported in

Table 5.6.

The trend-line of the linear regression for ASCON’s perfomance is 613D−476 for Skiva-V

and 990D− 889 for Tornado. This means increasing the order of masking by one, will cause

613 extra clock cycles for Skiva-V and 990 for Tornado (1.6× increase compared to Skiva-V).

The same experiment for GIFT’s performance shows a trend-line of 1002D − 587 for

Skiva-V and 3574D − 3216 for Tornado. For this cipher, the increase of clock cycles is

103

more significant than ASCON which can be attributed to the multiplicative complexity of

its algorithm. Furthermore, for an increase of one in the masking order, Tornado is affected

by a 3.6× higher increase in the required clock cycles than Skiva-V.

As bitslicing has been shown to be useful for post-quantum applications [146], Skiva-V

can help further boost the performance and security of such ciphers. As future work, we

study usage of Skiva-V for post-quantum and asymmetric key algorithms.

5.8 Conclusion

In this contribution, we demonstrated how selected hardware techniques can significantly

enhance the performance of bitslice software programs. By creating custom hardware to

speed up frequent bit-level manipulation instructions, we illustrated a reduction on the

register pressure for software bitslicing, and a performance boost over two state of the art

bitsliced lightweight cipher designs. We demonstrated hardware support in the form of ISE

as well as a stand-alone T-DMA peripheral. We presented synthesis results for the complete

design in 130nm standard cells, and estimate the area overhead of the proposed extensions

to be less than 5% at SoC level.

104

Chapter 6

Saidoyoki: Evaluating side-channel

leakage in pre-and post-silicon setting

In this chapter, we introduce two in-house designed chips and compare their pre-silicon

simulation-based power side-channel leakage assessments with measured post-silicon evalu-

ations. This work was presented at IEEE International System-on-Chip Conference (SOCC)

in 2021 [98].

6.1 Introduction

Power-based side-channel leakage is a known vulnerability in security SoC, yet it is hard to

predict the amount of side-channel leakage at design-time. The fundamental reason is that

the source of the vulnerability, namely data-dependency in the power dissipation of a design,

is found at every abstraction level in the system stack [39]. For example, a design may appear

perfectly side-channel resistant at RTL level, yet due to imperfections of the implementation

at gate-level or below, the ideal side-channel leakage properties of RTL break down and cause

side-channel leakage in the form of glitches [119] or cross-talk [75]. This strongly suggests

105

that extensive verification of side-channel leakage properties, at every abstraction level of

the design, is crucial. In fact, contemporary provably secure countermeasures against side-

channel leakage always assume a leakage model, a set of assumptions that must be supported

by the implementation to deliver the security properties claimed. These leakage models (and

their correctness for a given implementation) are an ongoing area of research [52].

Design-time verification of power-based side-channel leakage can be supported through

power modeling and simulation. But at lower abstraction levels, power modeling is complex,

and it comes with steep trade-offs between simulation time and resolution. Therefore, in the

absence of comprehensive leakage modeling and/or efficient power simulation, the current

design practice in side-channel resistant design in many cases still relies on prototyping.

A prototype provides a real-life design test-case that can be measured and evaluated from

a power side-channel leakage perspective. Field Programmable Gate Arrays (FPGA) are

often selected as a prototyping target. However, the low level structure of FPGA does not

reflect the gate-level netlist that is mapped on it, and therefore the FPGA may not be the

best choice for the study of ASIC side-channel leakage behavior at low level. To compare

the power side-channel leakage of a gate level netlist model to that of a prototype, ASIC

technology with standard cells provides a better match.

In our recent research, we have designed several ASICs as a byproduct (and often as

a proof of concept) of our experimental work. FAMEv2 (Fault Aware Microprocessor Ex-

tensions) is an SoC with fault-sensing capability based around a LEON-3 core. PICO is a

similar SoC based around a 32-bit RISC-V core. Both SoCs contain several coprocessors as

well as on-chip RAM, and they are built in 180nm standard cells. Most importantly, they

are in-house designs, so we have access to all design information down to layout level.

To study the problem of pre-silicon vs post-silicon side-channel leakage modeling, we

integrated both of these SoCs in a test platform. The Saidoyoki board provides a program-

ming interface to download applications to either chip, and supports high-bandwidth power

106

measurement of each individual chip. The purpose of Saidoyoki is to validate a design flow

for pre-silicon side-channel leakage estimation, by providing estimations next to actual side-

channel leakage measurements. Our long term objectives are to understand and address

two crucial shortcomings of side-channel leakage estimation from high-level models: (a) false

positives, where the side-channel leakage estimation on the pre-silicon design model indicates

side-channel leakage that cannot be confirmed by measurements; (b) false negatives, where

the side-channel leakage estimation on the pre-silicon design does not show side-channel

leakage while the measurements confirm the opposite. Both problems are hard and, to our

knowledge, still unsolved.

The remainder of this chapter is organized as follows. In Section 6.2, we introduce the

Saidoyoki platform at system-level, including the design decisions on the PCB to instrument

it for side-channel leakage measurement, as well as a brief overview of the ASIC designs.

Section 6.3 describes pre-silicon side-channel leakage estimation techniques. We describe the

design flow used for the SoC power estimation, and handle several practical challenges related

to design complexity. Section 6.4 describes post-silicon side-channel leakage measurement

using the Saidoyoki board. Section 6.5 describes several experiments using Saidoyoki, and

the analysis of the results obtained so far. Section 6.6 concludes the chapter.

6.2 Saidoyoki Platform

This section describes the features of the Saidoyoki platform, including the platform archi-

tecture, and the system architecture of the chips. We also compare with related work.

6.2.1 Saidoyoki PCB

A side-channel measurement setup includes a test target, a means to digitize power side-

channel leakage, and a side-channel campaign controller. The controller exchanges stimuli

107

LEON3 RAM
128KB SPI Debug

UART

User
UART GPIO IRQ

CTL Sensors

Timer AES AES+Keymill

Bridge

APB

AHB

PICO
RV32

RAM
64KB

SPI
Flash

SPI
Master

GPIO AES ASCON UART Sensors

TRNG
Test

(a) (b)

Figure 6.1: (a) PICO Block diagram and (b) FAMEv2 Block diagram.

with the test target, and while the target executes the stimuli, the target’s power signature

is captured. Afterwards, the campaign controller collects the power signatures and performs

side-channel analysis. A PCB to support a test target thus has to provide multiple functions,

including (a) providing easy access to the power consumption of the target, (b) real-time

data input/output to exchange test stimuli with the campaign controller, (c) debugging of

programmable/reconfigurable targets, and optionally, (d) adjusting target voltage/clock to

study the impact of environmental factors. The Saidoyoki PCB was developed to support

the PICO and FAME (Figure 6.1) chips as targets for side-channel measurement campaigns,

and it supports all functions enumerated above.

Figure 6.2 and Figure 6.3 show the photo and the block diagram of the board respectively.

The board is connected to the side-channel campaign controller with a single USB connection

to multiplex multiple data and control channels used in a campaign (FT4232HL USB Bridge

IC). These control channels include a UART debug connection for FAMEv2, a shared user

UART, a shared SPI to program flash memories, and an I2C control channel for clock

configuration.

108

PICO FAMEv2

Figure 6.2: Photo of the Saidoyoki Board.

The side-channel leakage of each ASIC is captured by measuring voltage drop over a

shunt resistor. The signal is also amplified through a differential broadband opamp, one for

each ASIC. Saidoyoki uses a single 5V power supply that is regulated into a fixed 3V3 supply

and an adjustable 1V8 supply. The adjustable supply feeds the ASIC core and can be varied

between 1V and 2V. This rail is also split into two using ferrite beads and then connected

to each chip independently. A precise shunt resistor is inserted into each branch of the 1.8V

rail for power measurement.

The flash chips connected to PICO and FAMEv2 are externally programmable through

USB. The board has several 3-point slider switches to physically switch the flash chips from

109

I2C SPI UART UART

USB Bridge

Clock
gen.

swsw

sw

sw

Flash Flash

Micro USB

sw

sw

SMA
Connector

Switch
Channel-busy LED

array

sw

Potentiometer

AMPAMP

PICO FAME
v2

GPIO(0-7)

RO_SPIs
(TRI - MUX)

SPI(0-3)

GPIO(0-3)

SCAN - WD

CHECK(1-3)

ALR

TRIG(0-3)

TRIG(0-3)

Power
Regulation

clk_in

usr_uart

flash_spi

3V3
1V8
(adj)

clk_in

usr_uart

flash_spi

3V3
1V8
(adj)

5V

Adj
Fix

3V3 1V8
(adj)

dsu_uart

Figure 6.3: Block diagram of Saidoyoki Board.

external configuration to ASIC configuration. In the ASIC configuration, the ASIC will boot

from the firmware configured in the flash chips.

Saidoyoki also includes a clock generation IC (SI5351A-B-GTR), which is able to generate

configurable clock frequencies for the ASICs between 2.5KHz and 200MHz. The clock can

also be provided from an external source through an SMA connector.

Finally, the Saidoyoki board supports low-level debugging tasks by bringing every chip

pin out on a jumper header or an SMA connector. Additionally, the GPIO ports in each

ASIC are visible through LEDs.

110

6.2.2 FAMEv2 ASIC

The FAMEv2 ASIC is a 180nm SoC with a LEON3 core and 128 kByte of internal memory,

and several coprocessors. The program can execute either from on-chip SRAM or else from

off-chip flash through an SPI flash ROM. A debug unit, controlled through an on-chip Debug

UART, provides program loading, monitoring, breakpoints. The coprocessors are isolated

from the processor through a bus bridge. All coprocessors exclusively operate as bus slaves,

and communicate with the software through memory-mapped registers. FAME contains

cryptographic accelerators for symmetric-key encryption (AES and AES+, a hardened ver-

sion of AES) and pseudo-random stream generation (KeyMill). The sensors in FAME detect

timing faults injected through clock glitching and voltage glitching. A detailed description

of the fault detection mechanisms, and their integration with software, was presented earlier

[174].

6.2.3 Pico ASIC

The PICO ASIC is a 180nm SoC with a RISCV (RV32) core and 64 kByte of internal

memory, and several coprocessors. The program exclusively runs from off-chip flash through

a Quad-SPI flash ROM. The system is integrated on a single bus. All coprocessors run as

bus slaves and communicate with the RISC-V software through memory-mapped registers.

PICO contains cryptographic accelerators for symmetric-key encryption (AES), authentic-

ated encryption (ASCON), and hardware testing of true random bitstreams (TRNG test).

The sensors in PICO detect fault injection as well as side-channel leakage. The FPGA proto-

type design of the sensors was presented earlier [169]. Furthermore, the high-level description

of the sensors on PICO ASIC was presented earlier [107].

111

6.2.4 Related Work

Several other solutions have been proposed for high-bandwidth power monitoring of hard-

ware. The SASEBO series of side-channel analysis boards [67], originally developed by AIST,

is the oldest and arguably best known implementation. One version of SASEBO, SASEBO-

R, is the only open source board to support an ASIC. The SAKURA series of boards [85], also

by AIST, are based on Kintex-7/Spartan-6 FGPA or chip card microcontroller. The FOBOS

from GMU [2] is an FPGA-based board oriented towards benchmarking. The HAHA board

from U Florida [165] is a hybrid FPGA/microcontroller board oriented towards education.

The Chip Whisperer is a low-cost measurement environment with FPGA-based and micro-

controller based target boards [129]. The majority of these boards are oriented at studying

side-channel leakage in a (configurable or programmable) test target. With Saidoyoki, since

we have full knowledge of the test target’s internal design, we can evaluate side channel

leakage in either pre-silicon or else post-silicon side-channel leakage evaluation scenario’s.

6.3 Pre-silicon Side-channel Leakage Estimation

In a pre-silicon setting, power-based side-channel leakage is estimated through a time-based

simulation of the power consumption of the target.

6.3.1 Design flow for Hardware Targets

There are many solutions towards capturing side-channel leakage by simulation [39]. Fig-

ure 6.4 describes the steps for a hardware target such as for example a coprocessor in one of

the SoCs. The Saidoyoki flow starts from a gate-level netlist, obtained from the FAME/PICO

chip design or else through RTL synthesis of the design flows. Through a suitable testing

scenario, a set of testing stimuli are defined. For classic DPA/CPA analysis of cryptographic

112

SoC Architecture
Description (RTL)

synthesis

Gate‐level
Netlist

time‐based
power sim

simulation

Stimuli

Testing
Scenario

Activity SC Evaluation

Traces

Layout Parasitics

tech

Figure 6.4: Flow for SCL assessment of hardware

hardware, for example, one selects a fixed key and a set of random plaintext/ciphertext.

Specific or non-specific TVLA tests, on the other hand, require a combination of random

and fixed key/plaintext inputs [152]. The activity files created from hardware simulation

are used by a time-based power simulation tool, which provides a trace for every input test

vector. Finally, the stimuli, activity files and traces are used as input for the side-channel

evaluation. Our prototype implementation supports Cadence Genus or Synopsys Design

Compiler, Cadence XCelium or Mentor ModelSim, and Cadence Joules respectively as syn-

thesis, simulation, and power estimation tool. The side-channel evaluation is a customized

Chipwhisperer script.

There is a trade-off between the level of simulation detail, and the ability of a design model

to capture different causes and sources of side channel leakage. The gate-level abstraction

provides reasonable accuracy. Because of the post-silicon artifacts available in Saidoyoki, we

prefer lower simulation abstraction levels to investigate and verify lower-level effects.

113

6.3.2 Design flow for Software Targets

To ensure sufficient accuracy with software and SoC firmware targets, we extend the hard-

ware based flow and simulate the microprocessor as a gate-level design as well. The main

challenge is to convert the firmware into a form that can be integrated into the SoC hard-

ware simulation. We compile the firmware into a binary that is used to initialize the on-chip

memory at the start of the simulation. By compiling input test vectors (key, input) as hard-

coded constants in the firmware binary, we also eliminate complex input/output schemes

during simulation.

To enable testing only specific parts of the firmware, we make use of the GPIOs on the

SoC as triggers. We set a GPIO pin high right before the point of interest and reset it to

low right after. In the test bench module, during simulation, we monitor the trigger signal

and log its set and reset time stamps. Later, in power trace generation phase, we generate

the power trace only for the logged time period.

6.4 Post-silicon Side-channel Leakage Measurement

Measuring side-channel leakage in the post-silicon setting requires a campaign controller

to measure power from the PICO or FAME chips on Saidoyoki while they execute a test

application. We use a Chipwhisperer kit [129] integrated as in Figure 6.5. Chipwhisperer

uses synchronous sampling and generates a clock signal for the target. This allows the side-

channel leakage to be captured with low overhead of one to four times the target clock. A

campaign executes a large collection of encryption operations on the target, with different

input stimuli. For each operation, Chipwhisperer sends an input plaintext. The target

responds with a trigger when the cryptographic operation starts. Chipwhisperer then collects

the power signal and finally performs side-channel leakage analysis or assessment.

114

DPA/CPA
(Jupyter) CW

ChipWhisperer

Saidoyoki

FAME/PICO

Flash
plaintext
clock
trigger

power
ADC

Figure 6.5: Integration of Chipwhisperer and Saidoyoki

6.5 Results

In this section, we describe three experiments performed using the Saidoyoki board. The

first is a post-silicon side-channel leakage analysis on FAME; the second and third are a

pre-silicon side-channel leakage analysis on PICO. In each case, we used AES encryption as

the target algorithm, with the SubBytes output as the leakage model.

6.5.1 Post-silicon evaluation of FAME SoC firmware

Figure 6.6 (top) shows a power signal captured from the first round of AES encryption

running on the LEON3 core in the FAME chip. Typically, post-silicon traces are very noisy

and it’s not easy to visually recognize the different portions of the algorithm. However, since

the code on the target is fully known, it’s easy to determine when each function executes. In

this campaign, the FAME target runs at 4MHz and the side-channel is sampled at 16 MHz.

Each trace contains 24,400 points. Figure 6.6 (bottom) shows a correlation plot obtained

from running CPA on key byte 7 on the traces of 25,000 encryptions. The correlation plot

shows two spikes: one of them when the SubBytes output is computed and stored in memory,

and a second when ShiftRows reads that result and moves it to another memory location.

115

Figure 6.6: CPA HW on FAME executing AES firmware: (top) power traces identifying
portions of the first round (bottom) outcome of Correlation Power Analysis

While this type of side-channel analysis is a standard operation, it is not without its pitfalls.

The black-box nature of the power signal, as well as the high level of noise, requires careful

tuning of the measurement parameters.

6.5.2 Pre-silicon evaluation of PICO SoC coprocessor

A significant advantage of Saidoyoki is its ability to support pre-silicon side-channel leakage

assessment using gate-level power simulation. There is a trade-off between the speed of

116

key/plaintext
loading round 1

round 2
round 3

round 4
round 5

round 6
round 7

round 8
round 9

round 10

Figure 6.7: Gate-level Power simulation of an AES hardware coprocessor: (top) entire en-
cryption at two samples per cycle (bottom) zoom on first and second round at 16 samples
per cycle

a campaign (determined by the speed of gate-level simulation) and the noise level of the

side-channel leakage. In a pre-silicon setting, we capture only a fraction of the traces that

are collected in a post-silicon setting. On the other hand, the absence of noise implies that

side-channel leakage assessment or analysis will converge much quicker.

Figure 6.7 shows the result of a gate-level simulation of the AES coprocessor in the PICO

chip. The top plot is a simulation at two power samples per clock cycle, while the bottom

plot is a simulation at 16 power samples per clock cycle. The resolution of the power trace

can thus be easily adjusted without penalty on the noise level. Increasing the resolution

117

Figure 6.8: Correlation on the PICO HD AES pre-silicon trace with 16 samples per cycle

of a simulated power trace has a different effect as well: at higher resolutions, fewer gates

contribute to a single power sample. This is because a gate-level simulation properly models

the switching time of each gate, and at sub-cycle resolution, different gates will switch at

different time instants.

Figure 6.8 shows a CPA result on 400 simulated traces, showing a sharp correlation peak

in cycle 2 of round 1. While the length of a simulation trace is in principle unbounded (when

compared to the limited length of a sample buffer in a post-silicon setup), in practice we aim

to make the traces as short as possible to minimize the simulation time overhead. Choosing

the proper time window of simulation can be a challenge when the source of side-channel

leakage is unknown. On the other hand, in a pre-silicon simulation, we can undersample

the power consumption, as the simulator will accumulate power over multiple cycles without

adding (physical) noise or precision. The third experiment, discussed next, builds on this

property.

118

0 200 400 600 800 1000
Sample

0.4190

0.4195

0.4200

0.4205

0.4210

0.4215

0.4220

0.4225

Po
we

r (
W

)

Power Trace of Software AES on PICO Chip

Figure 6.9: Sample simulated power trace of software AES running on PICO chip. This
trace includes only the first add round key and SBox in the first round of encryption.

6.5.3 Pre-silicon evaluation of PICO SoC firmware

We experiment with the software implementation of AES encryption in ECB mode running

on the PicoRV32 core in PICO chip. As we aim to target the SubBytes in the first round, we

set a GPIO pin high before the first key addition and reset it to low after the SBox in first

round. We use a Python script that generates random plaintexts and automatically generates

the C code with hard-coded palintext values. Furthermore, we store the plaintext values in

a text file for later use in side-channel analysis. We simulate the AES software running

on the synthesized netlist of PICO with 180nm CMOS standard cell library. We run the

simulation with a clock frequency of 80MHz and store the switching activity information in

Value Change Dump (VCD) format. Using Joules, we compute the power trace for each

VCD file. As an example, Figure 6.9 shows the plot of one of the generated power traces. As

PicoRV32 is a non-pipelined architecture, even a small portion of the AES algorithm (first

AddRoundKey and SubBytes of the first round) takes about 79k clock cycles to execute.

119

Figure 6.10: Correlation outcome on the PICO HW AES pre-silicon trace

Our power computation tool, Joules, can generate a maximum of 1000 samples per power

trace. Each VCD file expands over around 990us, therefore, generating one power trace per

VCD file results in a power trace with a sample rate of around 1MHz. While this is a strong

under-sampled power trace for a device running at 80MHz (one sample per eighty clock

cycles), CPA is able to find the private key with only 60 traces. Figure 6.10 shows the CPA

result with Hamming Weight as the power model on 60 simulated traces, showing a sharp

correlation peak (close to perfect correlation) in the first round SubBytes region.

With the simulation and VCD generation taking about 30 seconds and the power compu-

tation taking about 4 minutes, it took us less than five minutes to generate one power trace

for our software implementation of AES. This experiment was performed as a single-thread

process on an Intel Xeon Gold 6248 server.

120

Table 6.1: Performance factors for each of the case studies

V.A V.B V.C
Pre/Post Silicon Post Pre Pre

ASIC FAME PICO PICO
Target AES SW AES HW AES SW

Correlation Peak 0.1 0.36 0.99

Number of Traces 25,000 400 60
Samples per Cycle 4 16 1/80
Samples per Trace 24,400 200 1000

Capture Time per Trace (s) 0.06 0.55 260
Assessment Time per Byte (s) 660 <1 <1

6.5.4 Performance Evaluation

Table 6.1 summarizes our experiments. As this table shows, the correlation peaks in a

software implementation are significantly higher than that of hardware implementations

while also requiring orders of magnitude fewer traces even for an under-sampled trace. The

capture time per trace in a post-silicon measurement is much faster than that of pre-silicon

simulation, however, because of the reduced SNR in a physical implementation, a successful

attack requires much more traces and thus takes more time to reveal each byte of the secret

key.

6.6 Conclusion

The pre-silicon tooling of side-channel leakage is rapidly catching up with the more traditional

post-silicon prototyping strategy. The main advantage of pre-silicon techniques is that design

flaws can be fixed at a low cost. There are two open challenges, both of them related

to the accuracy by which pre-silicon modeling can reflect post-silicon measurement. False

positive errors occur when pre-silicon tooling identifies side-channel leaks that are practically

unexplotable in post-silicon context. False negative errors occur when pre-silicon tooling fails

121

to identify exploitable leaks. Both of them are practical challenges, and will require a detailed

comparison of pre-silicon models with post-silicon measurement.

122

Chapter 7

Leverage the Average

In this chapter, we present a methodology to reduce the power simulation time without

loss of accuracy with respective to power side-channel leakage assessment. This work was

presented at the Great Lakes Symposium on VLSI (GLSVLSI) in 2022 [99].

7.1 Motivation

Power side-channel attacks (PSCA) are a threat to computing systems and it is imperative

that vulnerabilities of hardware products to PSCA are detected as early as possible during

a chip design. To study such vulnerabilities, a designer must obtain high-resolution power

traces of the design for a large number of test-vectors, and apply statistical analysis on

those power traces. Two common solutions to early side-channel leakage assessment are

hardware prototyping and simulation. Each solution presents unique challenges as they

make a different trade-off between the speed of collecting high-resolution power traces and

the fidelity of their predicted power traces to those of the actual chip. Hardware prototyping

using FPGAs is a popular technique that can be applied as soon as the RTL code is available.

The power traces of the actual chip under development can be predicted by measuring the

123

power traces of the FPGA. However, ensuring fidelity to the actual chip power traces is

a challenge because of the fundamental difference between the building blocks of FPGAs

(configurable logic) and those of ASIC designs (standard cell libraries). Power simulation

of the actual gate-level netlist using CAD tools can ensure a higher fidelity to the actual

chip under development. Furthermore, the simulated power traces are noiseless and thus

represent the observation of the best-equipped attacker. A major disadvantage of simulation

is that the power simulation time increases drastically at the lower abstraction levels of

design. Furthermore, simulation-based power side-channel leakage assessment can show the

presence of leakage in a design, however, it cannot guarantee the absence of leakage.

In this chapter, we describe a technique to decrease the power simulation time without

raising the abstraction level of the simulation. Our method is to reduce the sample rate of

the simulated power traces of a design, from one sample per clock cycle down to one sample

over multiple clock cycles. Each of the resulting power samples thus represents the average

power consumption over multiple clock cycles. We observe that reducing the sample rate in

this manner significantly decreases the power simulation time. In addition, we show that

the resulting traces at a reduced sample rate still return meaningful side-channel leakage

assessment results. We derive the precise conditions under which this averaged sampling

technique can be applied to side-channel leakage assessment. We also apply our results to

several realistic case studies including a hardware crypto-coprocessor and a pipelined RISC-V

processor.

Power simulation is commonly performed at three different abstraction levels: RTL,

gate-level (post-synthesis/ post-layout), and transistor-level. RTL and gate-level power sim-

ulations use event-driven simulation traces in combination with power estimators, while

transistor-level power simulations are based on analog simulation. We apply our averaged

sampling methodology at the gate-level, as it provides a middle ground with manageable

simulation time and sufficient accuracy [167]. For example, using Composite Current Source

124

(CCS) delay model in synthesis has shown to generate power and timing estimates compar-

able to that of the analog transistor-level [57]. In addition, the fidelity of gate-level power

simulation can be increased by replacing the post-synthesis Standard Delay Format (SDF)

file for a post-layout SDF file, generated after place and route of the chip under development,

without any changes to the power simulation.

We study the averaged sampling technique as follows. In the next section, we review

related work in pre-silicon side-channel leakage assessment. In Section 7.3, we describe the

basic concepts of averaged sampling and explain its effect on Correlation Power Analysis

(CPA), a technique for side-channel leakage assessment. Section 7.4 introduces our case

studies, including a pipelined RISC-V, and a hardware coprocessor design. We then conclude

this work.

7.2 Related Work

At the early stages of a hardware design, after behavioral simulation/verification, power side-

channel leakage (PSCL) can be investigated at the RTL-level to find and harden vulnerable

parts of the design. For this purpose, both RTL-PSC [87] and Param [90] use the switching

activity from RTL simulation to model the power consumption of a design.

Šijačić et al. [143] introduce a simplified model of power consumption called marching

stick model (MSM) for faster less accurate modeling of power side-channel. As they point

out, this model is useful for RTL-level simulations and can reduce the trace generation time

significantly. However, it cannot capture the effects modeled by CAD tools in post-synthesis

and later stages of the design. Furthermore, they demonstrate the most time-consuming

part of the PSCL at design time is the power simulation using CAD tools.

The use of CAD tools for gate-level simulation is adopted in ACA [166] and Karna [148].

ACA finds the leaky gates in the gate-level netlist and replaces them locally with hardened

125

structures. Karna finds the leaky parts of the implementation and replaces each gate with

their lower-power versions if available in the standard cell library. Recently, the authors of

Saidoyoki[92] showed simulated power traces can provide sufficient information for successful

attacks with very few downsampled traces which greatly reduces the power simulation time

as the bottleneck of using power simulation CAD tools in PSCL assessment at design-time.

Most pre-silicon PSCL assessment tools have explored the different abstraction layers

(RTL, gate-level, transistor-level) [38]. To the best of our knowledge, our work is the first to

study power simulation cost from the dimension of time resolution and its implication on pre-

silicon PSCL assessment. As increasingly more researchers are emphasizing the integration

of PSCL evaluation into ASIC design flow, it is crucial to study the implication of simulated

power traces using CAD tools on leakage analysis.

7.3 Theoretical Background

7.3.1 Power Side-Channel Analysis

Problem Statement. PSCAs find sensitive information processed in a device by a divide

and conquer approach. Even cryptographic modules with long secret keys are susceptible

to such attacks. In AES-128 (128-bit secret key) for instance, a PSCA can focus on finding

one byte of the key at a time and therefore reduce the search space from 2128 to 16 × 28.

In our evaluations, we focus on CPA as the most prominent form of PSCA. However, the

same conclusions can be made for other statistical moment-based measures of leakage such

as DPA [110] and TVLA [22]. We specifically avoid TVLA in our evaluations to prevent the

known false-positive issues related to this test [151] to affect our conclusions.

DPA. Differential power analysis (DPA) [110] reveals secret values (subkeys) based on

a statistical method by comparing the means of two large sets of power traces. A key

126

hypothesis is assumed to be correct when the difference exhibits a distinct peak.

CPA. Correlation power analysis (CPA) [37] finds all the subkeys processed on a device

by assuming a leakage model for the device. Through calculating the Pearson correlation

coefficient (ρ) between the collected power dissipation from the device for random known

inputs and the constructed leakage for each subkey guess, an attacker finds the correct subkey

as the one resulting in the highest absolute ρ value.

7.3.2 Simulating Power Traces

Side-channel leakage assessment requires accurate modeling of the statistical properties of

data-dependent power effects, and requires power consumption analysis over many differ-

ent test-vectors. The data-dependent power effects that may count as side-channel leakage

include data-dependent logic transitions, glitches, static leakage, propagation delays, and

parasitic coupling. We use gate-level power modeling, as it is able to capture most of

the data-dependent logic effects, while at the same time being much more efficient than

transistor-level (SPICE-level) simulation. Time-based gate-level power modeling is suppor-

ted in commercial tools such as Cadence Joules and Synopsys Primepower.

A brief review of time-based gate-level power estimation follows. A simulated power side-

channel analysis campaign on a circuit collects N power traces of K frames each, for a total of

N.K power estimations. Each power estimation determines the average power consumption

of the circuit within that frame. At gate level, the circuit power consumption includes three

components: switching power, internal power, and leakage power (Figure 7.1). These factors

are determined over each gate in the design, and the per-gate contributions are added up

to yield circuit power. The switching power of a gate depends on the per-frame toggle rate

of the output pin(s) and the capacitive load of the output pin(s). The internal gate power

depends on the per-frame, per-pin input toggle rate. The gate leakage power depends on the

127

Pgate = Pswitch + Pinternal + Pleak

time

frames

1 2 3 4

Pavg, frame

time

Pchip Psimulated

(a)

(b)

Pswitch

Pinternal

Pleak

Figure 7.1: (a) Gate-level power estimation for side-channel leakage captures per-gate and
per-event switching power, leakage-power and internal power. (b) Gate-level power estima-
tion partitions time in frames and determines average circuit power per frame to construct
a power trace.

Table 7.1: Normalized complexity of power estimation time for three different design sizes
and four different frame widths.

Frames 1 Counter 8 Counters 32 Counters

1 1.0 7.5 22.7
10 1.3 8.5 32.0
100 3.6 29.7 139.3
1000 20.8 202.6 969.1

per-frame state-dependent leakage power. The power simulator uses a technology library to

reflect proper scaling factors for each gate configuration and the circuit operating conditions

(temperature, voltage).

The power traces in a simulated power side-channel analysis campaign are obtained in

two steps. First, a logic-level simulation records the gate and net activities for each of the N

test vectors in a Value Change Dump (VCD) format. Next, the VCD stimuli are analyzed

for the gate-level netlist to obtain per-frame power traces.

128

We observe that a larger frame window size may shorten the power estimation time, and

illustrate this effect in Table 7.1. Three different designs containing one, eight or thirty-

two 32-bit counters are implemented in SkyWater 130nm standard cells. Next, their power

consumption over a 10-million clock cycle testbench is estimated by Cadence Joules (v20.01).

We computed traces containing 1, 10, 100, and 1000 frames. Table 7.1 shows a strong

dependence of power estimation time over design size, which is expected: larger designs

contain more events, and therefore take more time for power estimation. However, Table 7.1

also shows a strong dependence over the number of frames. Indeed, all events corresponding

to a single gate or net within the same frame are accumulated into the toggle rate for that

frame. Reducing the number of frames over a set of events results in reducing the number

of times a power model will be computed. This observation encourages us to investigate the

impact of downsampling on the quality of side-channel leakage assessment. Clearly, power

traces with fewer samples provide a simulation time advantage; the question is if they are

still useful to identify side-channel leakage.

7.3.3 Sampling Power Traces

In this section, we discuss non-averaged and averaged sampling. Non-averaged sampling is

prevalent in power measurement using oscilloscopes where each power sample is a snapshot

of the power consumption in a moment of time. Averaged sampling is how power simulation

tools produce traces where each sample is the averaged power consumption of the design

during the time interval of a frame. In the following, we give a mathematical model for

each sampling type and study its implications on DPA and CPA as a measure of leakage

assessment. A summary of the analyses is given in Table 7.2. Note that we do not perform

averaging as an extra step in our proposed method. Rather, we start from the averaged

traces as the output of commercial power simulators.

129

Table 7.2: Summary of sample types

Sampling Type Power Model Implications for DPA Implications for CPA

1) Non-averaged Equation 7.1 Theorem 1 Theorem 2
2) Averaged - Constructive Equation 7.3 Theorem 4 Theorem 5
3) Averaged - Destructive Equation 7.5 Theorem 6 Theorem 7

Non-Averaged Sampling

In non-averaged sampling, we use the following model for each power sample:

Pn,ts = α.ζ(xn, kcts) + rn,ts + µr (7.1)

where Pn,ts denotes the power consumption at time sample ts of the nth power trace, α is an

unknown constant, ζ(xn, kcts) is the selection function dependent on the controllable variable

in trace n (xn) and the correct key in time sample ts. We model the algorithmic noise as a

zero-mean random noise rn,ts and a constant unknown bias µr.

This model is similar to the model used by Fei et al. [65]. However, each trace may

contain leakage of multiple key bytes, so that one trace can correlate with different correct

key values. An example is the SubBytes function in the AES-128 algorithm, which will

process 16 key bytes in every round.

Implications for DPA attack. Following the non-averaged sampling in Equation 7.1,

we arrive at Theorem 1.

Theorem 1. In non-averaged sampling, a sufficiently large number of power traces is required

for a DPA attack to be successful.

Proof. Expanding the difference of means for the power consumption at time ts we have:

En[Pn,ts | ζn = 1]− En[Pn,ts | ζn = 0]

= α + En[rn,ts | ζn = 1]− En[rn,ts | ζn = 0]

130

where ζn is short for ζ(xn, kcts). With a sufficient number of traces, limN→∞(En[rn,ts]) = 0

therefore the difference of means criteria is unaffected by the algorithmic noise.

Implications for CPA attack. Next, we derive the performance of a CPA attack on

non-averaged traces.

Theorem 2. In non-averaged sampling, a sufficiently large number of traces is required for

CPA attack to be successful.

Proof. The correlation coefficient between the selection function with key guess and the

power trace is the covariance between the two sets divided by their standard deviations:

ρ =

∑N
j=1

((
∆ζj,kg

)
(Pj,ts − En[Pn,ts])

)√∑N
j=1

(
∆ζj,kg

)2∑N
j=1 (Pj,ts − En[Pn,ts])

2
(7.2)

where kg is the key guess, and ∆ζj,kg = ζ(xj, kg)− En[ζ(xn, kg)]. The only term affected by

the random noise in ρ is Pj,ts − En[Pn,ts] = α.∆ζj,kcts + rj,ts − 1
N

∑N
n=1 rn,ts where ∆ζj,kcts =

ζ(xj, kcts)− 1
N

∑N
n=1 ζ(xn, kcts). Because of the dependence of Pj,ts on random noise (rj,ts), the

covariance term is imprecise and requires sufficiently large number of traces to converge.

Averaged Sampling

In averaged sampling, the power sample for time interval (ts1 , ts2) in the nth power trace is:

Pn,ts1 ,ts2
= Ets∈(ts1 ,ts2)[Pn,ts]

= α.Ets∈(ts1 ,ts2)[ζ(xn, kcts)] + Ets∈(ts1 ,ts2)[rn,ts] + µr.

We separately analyze two scenarios in the following: 1) only one key value is processed

during the time interval, 2) multiple key values are processed during the time interval.

131

Case 1) One key value during the time interval

If a single key value (kB1) is processed during the interval (ts1 , ts2), the power sample in this

interval will be:

Pn,ts1 ,ts2
= α.ζ(xn, kB1) + Ets∈(ts1 ,ts2)[rn,ts] + µr. (7.3)

Theorem 3. With enough time samples processing the same key value, the averaged power

samples are shifted by the constant bias in the algorithmic noise.

Proof. For a sufficiently long interval, we have:

lim
∆ts→∞

Ets∈(ts1 ,ts1+∆ts)[rn,ts] = 0.

In practice, given a long enough time interval correlating to one key value, i.e., ∆B1 =

ts2 − ts1 > ∆thr, we have:

Pn,tB1
,tB1

+∆B1
≈ α.ζ(xn, kB1) + µr. (7.4)

Definition 1 (constructive samples). Since power samples corresponding to the same key

value make the correlation between the power trace and key value stronger by removing the

random noise, we name them constructive samples.

Implications for DPA attack. Assuming the averaged power samples we derive The-

orem 4.

Theorem 4. Given enough constructive samples in a power trace by design, DPA requires

fewer traces to succeed using averaged sampling.

Proof. Depending on the design, if there are enough constructive samples to average out

the random noise (∆B1 > ∆thr), power samples will follow Equation 7.4. In this case, the

132

difference of means criteria used in DPA requires much fewer traces to recover the key.

However, if the design does not provide sufficient constructive samples (∆B1 < ∆thr), the

power samples follow Equation 7.3 and difference of means is:

En[Pn,ts1 ,ts2
| ζn = 1]− En[Pn,ts1 ,ts2

| ζn = 0]

= α + Ets∈(ts1 ,ts2)(En[rn,ts | ζn = 1])

− Ets∈(ts1 ,ts2)(En[rn,ts | ζn = 0]).

where ζn is short for ζ(xn, kB1). Therefore in order for DPA to be successful, a sufficiently

large number of traces is required to bring the average of rn,ts close to zero.

Implications for CPA attack. Assuming averaged sampling of constructive samples,

the following theorem holds.

Theorem 5. Given enough constructive samples in a power trace by design, averaged sampling

will require fewer traces for CPA to succeed than non-averaged sampling.

Proof. The correlation coefficient between the selection function with key guess and the

power trace is the same as Equation 7.2 replacing the power samples with Equation 7.3.

Given enough constructive samples to be averaged in the interval (ts1 , ts2), we have:

Pj,ts1 ,ts2
− En[Pn,ts1 ,ts2

] = α. (ζ(xj, kB1)− En[ζ(xn, kB1)]) .

Therefore, the correlation is not affected by the algorithmic noise and CPA can converge

with fewer traces.

However, without enough constructive samples, we have:

Pj,ts1 ,ts2
− En[Pn,ts1 ,ts2

] = α. (ζ(xj, kB1)− En[ζ(xn, kB1)])

+ Ets∈(ts1 ,ts2)[rj,ts − En[rn,ts]].

133

Therefore a sufficiently large number of traces is required for the random noise to reach its

zero mean and render CPA successful.

Case 2) Multiple key values during the time interval

We assume key value kB1 is processed in the first part of the interval (ts1 , tsm) and other key

values from the set {kB1}′ (kB1 ̸∈ {kB1}′) are processed in the rest of the interval (tsm , ts2).

To further simplify the analysis, we assume the time samples in interval (tsm , ts2) correspond

to processing the same key value k′
B1
̸= kB1 . The power sample in interval (ts1 , ts2) can be

written as:

Pn,ts1 ,ts2
= α.ζ(xn, kB1) + α.ζ(xn, k

′
B1

)

+ Ets∈(ts1 ,ts2)[rn,ts] + µr.

(7.5)

Definition 2 (destructive samples). Since the power samples corresponding to different key

values being processed makes the correlation between the power trace and the secret key value

weaker, we name them destructive samples.

Implications for DPA attack. Assuming more than one key value is processed in a

power trace, we derive Theorem 6.

Theorem 6. Averaging destructive time samples diminishes the success probability of DPA

attack even with a large number of power traces.

Proof. Following the simplified averaged sample in Equation 7.5, the difference of means

134

used in DPA is:

En[Pn,ts1 ,ts2
| ζn = 1]− En[Pn,ts1 ,ts2

| ζn = 0]

= α + α.(ζ ′n |ζn=1 −ζ ′n |ζn=0)

+ Ets∈(ts1 ,ts2)(En[rn,ts | ζn = 1])

− Ets∈(ts1 ,ts2)(En[rn,ts | ζn = 0])

where ζn and ζ ′n are short for ζ(xn, kB1) and ζ(xn, k
′
B1

) respectively. Since ζ ′n |ζn=1 and

ζ ′n |ζn=0 are not predictable, even with a sufficiently large number of traces for the random

noise to reach its mean value of zero, still the DPA can be inconclusive.

Implications for CPA attack. Similarly, Theorem 7 is derived for CPA attack.

Theorem 7. Averaging destructive samples diminishes the success probability of CPA attack

even with a large number of power traces.

Proof. The correlation coefficient between the selection function and the power trace is the

same as the previous case. Similarly, following the simplified averaged sample in Equa-

tion 7.5, we have:

Pj,ts1 ,ts2
− En[Pn,ts1 ,ts2

] = α.∆ζj,kB1
+ α.∆ζj,k′B1

+ Ets∈(ts1 ,ts2)[rj,ts − En[rn,ts]]

where ∆ζj,kB = ζ(xj, kB)− En[ζ(xn, kB)]. Therefore, even with enough traces to cancel out

the random noise, the term α.∆ζj,k′B1
greatly impairs the correlation.

7.3.4 Empirical verification of theorems

Setup. Following the assumption that at each clock trigger there is a rush of current in the

circuit, we generate power traces in the shape of sawtooth function where the amplitude is

135

a function of the current level and the period is similar to the system clock period. This

model follows the so-called Delta-I noise [81] and is similar to the model used by Tiran et al.

[155]. SCA attacks, like DPA and CPA, exploit the dependency of the power consumption

of a circuit on the secret data as well as a controlled data. To make our generated power

traces applicable to such attacks, we further make the amplitude of the samples in each

trace dependent on a function of a secret and a controlled byte. For our traces, we choose

fn,ts = xor(xn, kts) where xn is the controlled value for the nth trace and kts is the secret value

for the time sample ts. Each trace corresponds to one controlled value and contains 64 clock

cycles. This is similar to measured traces in practice where an attacker feeds a device with

known inputs and acquires one trace for each given input. Every 16 consecutive clock cycles

correspond to one key byte value (constructive). These traces are interpolated in Matlab up

to a continuous-time power trace such that we can create both a non-averaged sample trace

(oscilloscope) as well as an averaged sample trace (CAD power simulation) from the same

source version. We generate 256 such traces, one for each controlled byte value.

Experiment 1 - averaged vs. non-averaged sampling. For each of the 256 traces,

we generate noisy continuous-time traces with Signal-to-Algorithmic Noise Ratio (SANR)1

values of {10, 5, 1, 0.5, 0.25, 0.1}. For each SANR value we create two power traces from

the same source data: a non-averaged sampled version with two samples per clock cycle,

and an averaged sampled version with two frames per clock cycle. We run CPA on the

two sets of noisy traces for each key byte separately and calculate the rank of the correct

key value. We repeat the same process of noisy trace generation, sampling, and CPA 100

times and report the average correct key rank and average success rate (SR) calculated as

SR = number of successful attacks
total number of attacks

in Figure 7.2.

This experiment shows a substantial improvement of averaged traces over non-averaged

1We differentiate between the SNR pertaining to the measurement noise and the SNR pertaining to the
algorithmic noise, calling the latter Signal-to-Algorithmic Noise Ratio (SANR). Algorithmic noise is any
signal not correlated with the target of the attack.

136

SANR

C
or

re
ct

 K
ey

 R
an

k

S
uc

ce
ss

 R
at

e

1

2

4
6

10

20

40

0.00

0.25

0.50

0.75

1.00

0.1 0.5 1 5 10

SR - averaged
SR - non-averaged

Rank - averaged
Rank - non-averaged

Figure 7.2: Correct key rank and SR of CPA attack on 256 noisy traces with different SANR
values for the four different key bytes. Solid (resp. dashed) lines show results for non-
averaged (resp. averaged) sampled traces. Averaged over 100 runs.

traces. For example, attacks on averaged traces approach a success rate of 1 as soon as

SANR> 0.5, while non-averaged traces achieve the same success rate only at SANR> 10.

Experiment 2 - constructive samples. For the same set of power traces with

SANR=0.1 (weakest SANR), we average up to 16 clock cycles corresponding to the same key

byte (constructive samples). We report the SR of CPA attack to compare the different levels

of constructive averaging in Table 7.3. As this table shows, as we average more constructive

samples, it becomes more likely to find the correct key.

Table 7.3: SR of CPA on key bytes in simulated traces for different number of averaged
constructive samples with SANR= 0.1 (averaged over 100 runs).

Constructive SR byte 1 SR byte 2 SR byte 3 SR byte 4

2 0.68 0.61 0.68 0.66
4 0.78 0.78 0.79 0.71
8 0.83 0.92 0.83 0.81
16 0.92 0.96 0.9 0.95

Experiment 3 - destructive samples. We average 16 constructive cycles for each

key byte and add up to 16 destructive cycles to the averaged sample to study the effect of

destructive samples on CPA results. Table 7.4 shows the SR decreases as more destructive

137

samples are added, attesting to Theorem 7.

Table 7.4: SR of CPA on key bytes in simulated traces for different ratio of destructive to
constructive samples with SANR=0.1 (averaged over 100 runs).

Destructive
Constructive

SR byte 1 SR byte 2 SR byte 3 SR byte 4

0 0.93 0.93 0.91 0.9
0.25 0.87 0.79 0.86 0.86
0.5 0.58 0.6 0.68 0.68
0.75 0.39 0.36 0.62 0.57
1 0.04 0.03 0.06 0.07

7.4 Case Studies

In the following case studies, we show how different hardware designs affect the level of

averaging that can be done without loss of precision. Our case studies contain a pipelined

microprocessor running software AES, and an AES hardware accelerator. We chose AES-128

as its vulnerabilities are well-understood in the literature, and therefore this case makes a

good driver for our experiments.

7.4.1 Case Study 1: Software AES on a Pipelined Processor

For our pipelined processor, we use the five-stage BRISC-V2 implementation of RISC-V

RV32I ISA (integrated into a system-on-chip [91]). The five stages in this core are instruction

fetch, instruction decode and operand access, execution, memory access, and write back.

We synthesize the design for the open standard cell library SkyWater 130nm and 50MHz

frequency using Cadence Genus. In each gate-level simulation, we load the binary file of

the compiled AES software code into the program memory of the processor, feed a new

plaintext into the simulation, and collect the vcd file. We then simulate the power traces of

2https://ascslab.org/research/briscv/index.html

138

https://ascslab.org/research/briscv/index.html

the SubBytes step in the first round using Cadence Joules. In the leakage assessment step,

we run CPA on the simulated traces with a leakage model of the Hamming weight of the first

round SBox output, i.e., HW(SBox(k⊕p)) where k is the key byte and p is the corresponding

plaintext byte.

Listing 7.1 shows the assembly code for SubBytes running on RISC-V. In this code, the

SBox is implemented as a table look-up. Iterating 16 times by two nested loops, line 10

loads the SBox result for each state byte and line 11 stores the result in the memory location

of the state byte. According to the tested leakage model (HW(SBox(k⊕p))), both lines 10

and 11 will leak. The leakage will stem from any sequential or combinatorial part of the

processor handling the SBox output.

Listing 7.1: Assembly code of AES SubBytes for RISC-V

1 250 : l u i a1 , 0 x1

2 254 : addi a1 , a1 ,1032 # s t a t e address

3 258 : addi a3 , a1 , 4

4 25 c : addi a1 , a1 ,20

5 260 : l u i a2 , 0 x1

6 264 : addi a2 , a2 ,212 # sbox address

7 268 : addi a5 , a3 ,−4 # s t a r t loop 1

8 26 c : lbu a4 , 0 (a5) # s t a r t loop 2

9 270 : add a4 , a2 , a4

10 274 : lbu a4 , 0 (a4) # load sbox byte

11 278 : sb a4 , 0 (a5) # s t o r e sbox byte

12 27 c : addi a5 , a5 , 1

13 280 : bne a5 , a3 ,26 c # end loop 2

14 284 : addi a3 , a3 , 4

15 288 : bne a3 , a1 ,268 # end loop 1

Figure 7.3 demonstrates the data dependency of instr. 11 on instr. 10 causing a stall

in cycle 3 (data dependency between decode and execute stage in cycle 2) and another stall

in cycle 4 (data dependency between decode and memory stage in cycle 3). Furthermore,

there is a one-cycle delay for memory load instructions, which causes instr. 10 to stall

139

Clock Cycle Fetch Decode Execute Memory Write Back

1 F11 D10 - - W9

2 F12 D11 E10 - -

3 stall stall flush M10 -

4 stall stall stall M10 flush

5 F12 D11 stall stall W10

6 F13 D12 E11 stall stall

7 F14 D13 E12 M11 stall

8 stall stall flush M12 W11

Figure 7.3: Flow of instructions in Listing 7.1 through five stages of RISC-V pipeline. High-
lighted cells show the leaking parts.

in the memory stage cycle 4 and subsequently flush in the write-back stage. Once instr.

10 reaches the write-back stage, its result is forwarded to instr. 11 in the decode stage.

Consequently, this pipeline diagram demonstrates that cycles 3 through 7 cause leakage of

the HW(SBox(k⊕p)) during the highlighted cells. Therefore, power samples taken from these

cycles are constructive samples for our leakage model. Since we have a 5-cycle window of

constructive samples and we don’t control the starting point of averaged samples, we average

3 clock cycles to ensure only constructive samples are averaged.

We simulate 1k power traces for RISC-V running the aforementioned assembly code and

simulated traces with 1 sample per clock cycle (1s1cc) and 1 sample per 3 clock cycles (1s3cc).

CPA on both trace sets resulted in ρ > 0.999999 for every key byte. The achieved high

correlation despite the downsampled traces is thanks to the constructive samples. Therefore,

using the downsampled 1s1cc and 1s3cc traces, we can still find the leakage with highest

possible correlation while reducing the power simulation time by 1.86×.

Additionally, we simulate traces with even fewer samples (1 sample every 10, 20, 30,

40, and 50 cycles) to compare their correlation results in CPA. Although CPA is still able

to reveal all key bytes successfully, the correlation coefficients for the heavily downsampled

traces (1s10cc, 1s20cc, 1s30cc, 1s40cc, and 1s50cc) reduce. We can use heavily downsampled

140

0 10 20 30 40 50 60 70

Samples

0.0

0.1

0.2

0.3

0.4

C
o
rr

e
la

ti
o
n

1s10cc B15 0.475638 at 42

0 100 200 300 400 500 600 700

Samples

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

1s1cc B15 1.000000 at 434

0 2 4 6 8 10 12 14

Samples

0.0

0.1

0.2

0.3
C

o
rr

e
la

ti
o
n

1s50cc B15 0.302771 at 8

0 5 10 15 20 25 30 35

Samples

0.0

0.1

0.2

0.3

0.4

C
o
rr

e
la

ti
o
n

1s20cc B15 0.394123 at 21

Figure 7.4: CPA ρ vs. sample number for locating the power leakage of last key byte (B15)
from coarse (1s50cc) to finer (1s1cc) traces for software AES running on RISC-V. Grey lines
are correlation values for incorrect key guesses and black line is the correlation value for
correct key guess.

traces to quickly locate the leaky time periods and gradually increase the sample rate on

the leaky regions to find more localized leaky points and therefore reduce the simulation

time. For instance, Figure 7.4 shows correlation coefficients from CPA on the last key byte

of AES running on RISC-V. Table 7.5 shows the performance gain from increasing number

of averaged samples for the same number of traces (normalized to 1s1cc).

Table 7.5: Speed-up of averaged RISC-V traces compared to 1s1cc

Num. of Averaged Clock Cycles 1s10cc 1s20cc 1s30cc 1s40cc 1s50cc

Simulation Speed-up 3.35× 4.86× 5.45× 5.78× 6.50×

7.4.2 Case Study 2: Hardware AES

In the next experiment, we shift our focus from constructive samples to destructive samples.

We consider a hardware accelerator for AES-128 that runs 4 SBoxes in parallel in each

141

SW0

SW1

SW2

SW3

SB

SB

SB

SB

SR
XOR

MC

P

C

K

128

328SubBytes
ma

ma

ma

ma

mb

mc

Figure 7.5: Data path of the analyzed AES hardware accelerator. SB: SBox, SR: ShiftRows,
MC: MixColumns.

clock cycle, therefore, destructive samples are intrinsically present in each power sample.

Figure 7.5 shows the structure of the AES implementation. Each AES round is executed in

5 clock cycles. The first four clock cycles each execute 4 SBoxes (grey shade in Figure 7.5).

The ma (resp. mb) multiplexers choose which 32bit part of the state (SW0 through SW3)

should be updated (resp. calculated) through the SBox modules. The last clock cycle

executes the rest of the blocks in succession (SR, MC, and AddRoundKey) following which ma

multiplexers choose the appropriate update values for each state word. mc sets the correct

input for the AddRoundKey step, i.e., plaintext (P) at the start, MC output for the first 9

rounds, and SR output for the last round. We synthesize the AES module for SkyWater

130nm standard cell library and 50MHz clock frequency using Cadence Genus and simulate

1k downsampled (1s1cc, 1s2cc, 1s3cc, 1s4cc) post-synthesis gate-level power traces using

Cadence Joules.

In the first round of AES, each SW register will overwrite the first AddRoundKey output

with its corresponding SBox output. Therefore, for CPA, we use HD(k⊕p,SBox(k⊕p)) as

the leakage model. Figure 7.6 shows the CPA correlation result for the last subkey as an

example. The correlation values have drastically reduced and in some cases (e.g. 1s4cc

for subkey 15) the CPA fails. This example shows that a secure hardware designer should

142

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Samples

0.00

0.05

0.10

0.15

C
o
rr

e
la

ti
o
n

1s2cc B15 0.146412 at 3

0 1 2 3 4 5 6 7

Samples

0.0

0.1

0.2

0.3

C
o
rr

e
la

ti
o
n

1s1cc B15 0.304404 at 6

0.0 0.2 0.4 0.6 0.8 1.0

Samples

0.000

0.025

0.050

0.075

0.100

0.125

C
o
rr

e
la

ti
o
n

1s4cc B15 0.114132 at 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Samples

0.00

0.05

0.10

0.15

C
o
rr

e
la

ti
o
n

1s3cc B15 0.146412 at 2

Figure 7.6: CPA ρ vs. sample number on last key byte (B15) for AES accelerator. Grey
lines are correlation values for incorrect key guesses and black line is the correlation value
for correct key guess.

avoid combining destructive samples in the power analysis stage to prevent false negative

conclusions in the assessments.

Discussion. As shown experimentally and theoretically, a secure hardware designer

can take advantage of constructive samples in a design to downsample traces and reduce

the power simulation time which is the bottleneck for pre-silicon PSCL assessment. At the

same time, the designer should be aware that averaging destructive samples can lead to

false negative conclusions in leakage assessment. Fortunately, classifying power samples as

constructive or destructive is straightforward for well-known algorithms and implementations

such as the ones analyzed in our case studies. However, additional preprocessing may be

needed for unknown designs. For instance, using specific test vectors that only exercise

part of the key and applying statistical tests to tag a given power sample as destructive or

constructive. In our future work, we study techniques that can help a designer classify power

samples as such for certain leakage criterion.

143

7.5 Conclusion

We studied the implication of averaged sampling for pre-silicon side-channel leakage assess-

ment. We introduced the concept of constructive and destructive samples as categories of

power samples which will facilitate or hinder the leakage assessment of a certain sensitive

data. We showed how using downsampling in designs for which the constructive samples are

well understood aid in reducing power simulation time without significant loss in precision.

In future work, we will study tests that can categorize samples as constructive or destructive

to be applied to less-known designs.

144

Chapter 8

Generic Gate-Level Power

Side-Channel Leakage Assessment

In this chapter, we introduce a methodology to find power side-channel leakage at design-

time using simulated power traces at gate-level and rank the gates in the design according

to their contributions to the leakage. This work is under review at IEEE Transactions on

Emerging Topics in Computing [105].

8.1 Introduction

Power-based side-channel leakage occurs when a secure chip performs operations that depend

on an internal secret value such as a secret key. An adversary who observes the chip power

consumption can derive the internal secret value through differential analysis techniques

that correlate a power model of the secret activity with the observed power consumption. In

recent years, side-channel vulnerabilities have risen to prominence and successful side-channel

attacks have been demonstrated on a wide range of devices from small IoT devices to large

cloud computing systems. Therefore, the evaluation of the power-based side-channel leakage

145

Tape‐out

(a) (b)

Verification Cycle, e.g.
Add Countermeasures

Verification Cycle, e.g.
Add Countermeasures

Synthesis

Backend Design

RTL

Synthesis

RTL

Power
Simulation

Power
Measurement

Leakage
Assessment

GL Leakage
Assessment

Backend Design

Tape‐out

Figure 8.1: (a) Post-silicon side-channel leakage assessment flow. (b) Proposed flow.

has become a critical component in the design flow of secure chips. It is particularly helpful to

perform side-channel leakage assessment prior to manufacturing because it reduces the cost

of post-manufacturing testing, and it reduces the probability of side-channel vulnerabilities

in the chip tape-out.

Figure 8.1 compares the Side-channel Leakage Assessment (SLA) process of a post-silicon

assessment flow with a pre-silicon assessment flow. The starting point is identical in both

cases and assumes that a RTL description of the design under consideration is available. With

a post-silicon SLA flow, the RTL design is first prototyped into a physical implementation.

Power measurements are then collected from the design and statistically tested to confirm

the presence of side-channel leakage or to estimate the quantity of side-channel leakage.

In a pre-silicon strategy, the RTL design is synthesized into a gate-level netlist including

optional parasitic effects from place-and-route. Next, power traces are simulated and then

statistically tested to confirm the presence of side-channel leakage.

146

These two flows appear similar from a macro-level objective, but they have very different

properties. A post-silicon flow is expensive because of the extra prototyping step, which

slows down the verification cycle. The statistical tests are applied globally on the measured

leakage of the overall design. In a large and complex design, it therefore remains difficult to

pinpoint the leakage source.

In contrast, a pre-silicon flow makes use of simulated power traces, and it is able to

perform side-channel leakage assessment at a fine granularity. In this paper, we present a

side-channel leakage assessment methodology with a resolution of a single gate. The simu-

lated traces of the pre-silicon flow are noiseless, and therefore they represent the attacker with

the best possible observation. Due to the absence of noise, a pre-silicon flow can work with

a fraction of the number of power traces compared to a post-silicon flow. On the downside,

a pre-silicon flow must make a trade-off between accuracy and simulation speed. We use a

gate-level power simulation methodology that is able to capture many technology-dependent

effects (such as glitches [127] and static leakage [125]). Some side-channel leakage effects,

including those based on coupling [42] or the long-wire effect [74], require a simulation accur-

acy beyond what gate-level power simulation can offer. Our proposed flow offers gate-level

side-channel leakage assessment but makes no assertion of leakage below that abstraction

level.

This paper presents the following contributions. We describe a methodology called Ar-

chitecture Correlation Analysis (ACA) which determines the side-channel leakage of a design

at the granularity of a single gate. The basic principle of ACA has been initially proposed

in our previous work [63, 170]. This paper serves as an extension to our original publication.

In this extended work, we propose two different side-channel leakage assessment techniques

for use in ACA. The first one is based on a specific test and it demonstrates the presence of

correlation between a specific power model and individual logic gates. The second is based

on a non-specific test that ranks a gate’s power according to its ability to distinguish between

147

two distinct groups of test vectors. The specific test is used to identify the gates that enable

a specific side-channel attack, while the non-specific test is used to make a generic assessment

on how much potentially harmful leakage can be produced by a gate. We apply our proposed

ACA leakage assessment technique to two case studies: a cryptographic AES coprocessor,

and the driver software for that coprocessor when running on a five-stage pipelined RISC-V

processor. The side-channel leakage properties of AES are already well understood, and our

experiments are specifically aimed at the ability of pre-silicon leakage assessment to identify

the source of side-channel leakage.

The remainder of the paper is organized as follows. The next section describes related

work. Section 3 provides the overall methodology of Architecture Correlation Analysis

(ACA), highlighting both the specific and the non-specific testing strategy. We also dis-

cuss a prototype implementation of the flow. Section 4 applies our proposed methodology to

a cryptographic coprocessor. Section 5 applies the methodology to cryptographic driver soft-

ware running on a RISC-V processor. Section 6 evaluates the performance of the proposed

methodology. We then conclude the paper.

8.2 Related Work

Gate-level side-channel leakage assessment is built on two components of design automation:

(a) power simulation under a set of selected test vectors, and (b) identification of a leakage

source at the sub-module level or gate level. We discuss related work on each of these two

aspects.

8.2.1 Power simulation for side-channel leakage analysis

To simulate a design’s power consumption, one needs a model of the design implementation

details to estimate the power of the physical implementation under a set of test vectors. The

148

model can be constructed at different abstraction levels, and there is a trade-off between

modeling detail and simulation performance. Buhan et al. review many of the recent pro-

posals to simulate side-channel leakage [39] and here we only describe the most representative

ones.

The origin of side-channel leakage power simulation is found in simulators for smart

cards, starting with PINPAS [50]. The objective of these instruction-level simulations is

to generate a power trace corresponding to a software application running on an embed-

ded micro-controller. These simulators are processor-specific, and require knowledge of the

internal design of the processor. Recent research efforts have addressed power model con-

struction techniques to handle the case when the internal design is unknown. This includes

ELMO [122] and ROSITA [142] for power, and EMSIM [139] for Electromagnetic Radiation.

In our approach, we build on the basic assumption that the hardware source code is available.

It is now commonly understood that instruction-level power modeling by itself is in-

adequate to accurately capture all aspects of power-based side-channel leakage, and that

additional modeling detail is required to capture circuit-level effects. The CASCADE power

simulation flow aims at a comprehensive simulation of power traces at the gate-level [144],

while making the argument that gate-level power simulation hits a sweet spot for the known

power-based side-channel leaks. A similar flow (and argument) is found in SCRIPT [126].

However, transistor-level power simulation has been investigated as well to address specific

side-channel leakage assessments with a limited scope in time and in design size [133]. More

recently, power simulation for side-channel analysis is starting to appear in commercial tool-

ing.

149

8.2.2 Identification of the leakage source

By simulating power with a structural model, it becomes feasible to identify the source

component of side-channel leakage. In traditional measurement-based side-channel leakage

analysis, this type of analysis is not possible because the design under test remains a black

box. We review several recent proposals aimed at identifying the structural source of side-

channel leakage, starting at low abstraction levels.

Karna partitions the gates of a design according to a spatial grid over the circuit layout

[61]. A gate-level simulation leads to a power trace per grid cell. A leakage metric then ranks

different cells according to their contribution to the side-channel leakage. The resolution of

the Karna method depends on the granularity of the grid cells on the layout, since all logic

cells within the same grid cell receive the same leakage score. The Karna authors include

around 150 logic cells in one grid cell. Another tool, RTL-PSC. works at the register-transfer

level of abstraction [88]. RTL-PSC analyzes the power in terms of transitions on the state

variables of a design, while sub-cycle effects such as glitches and the effects of physical routing

are abstracted out. The leakage metric ranks the different modules of a design. A similar

register-transfer level analysis tool is PARAM [64], where the authors identify the sources of

side-channel leakage in a processor’s micro-architecture.

Another view on the problem of leakage source identification is to formally prove that

a design meets a predefined side-channel leakage criteria. This technique works well for

designs based on masking, a countermeasure based on secret-sharing. One example is Coco,

which combines event-driven simulation with a SAT-solver-based verification of the statistical

distribution of the secret shares [76]. Strictly speaking, these tools do not simulate the power

consumption, but they verify the statistical properties of design activity.

Compared to this related work, ACA creates a ranking of the cells in the design according

to their contribution to side-channel leakage, with a user-defined leakage metric. ACA can

150

handle both specific and non-specific leakage testing. ACA is processor-independent as well

as technology-independent. ACA builds a flow on commercially available synthesis and power

simulation tooling. To the best of our knowledge, no such tool has been presented by earlier

work.

8.3 Architecture Correlation Analysis

In this section, we outline the strategy of Architecture Correlation Analysis. The objective

of ACA is to identify a ranking among the cells1 of a design according to their contribution

to side-channel leakage. The cell ranking does not have to reflect the absolute level of side-

channel leakage generated by a cell. Knowing just a relative ranking already provides critical

insight into the parts of a design that are most prone to side-channel attacks.

Traditional side-channel leakage assessment uses the overall power consumption of a

design to make an assessment on the global design. In contrast, ACA uses not only the

overall power consumption but also the internal design construction details to make an

assessment of leakage on a part of a design and to rank these local assessments. ACA uses

gate-level power simulation in order to capture power events with sub-cycle accuracy as

well as structural effects such as wire-loading and static leakage. The challenge of ACA is

to perform such a gate-level side-channel leakage assessment with reasonable accuracy but

without exhaustively generating the power consumption trace for each individual cell in the

design.

Side-channel leakage assessment aims to minimize assumptions regarding the specific

strength and know-how of the attacker. This leads to the use of specific and non-specific

tests. A specific test for side-channel leakage uses a high-level power model that the adversary

would presumably use in a Differential Power Analysis. A non-specific test uses two groups of

1We use the term cell over gate as it reflects better the technology encountered in standard-cell based IC
design. A single cell often corresponds to multiple primary gates.

151

inputs and aims to demonstrate a statistically distinguishable power consumption difference

between those two groups. The Test Vector Leakage Assessment (TVLA) methodology

provides guidance on the selection of the two groups of input vectors [58]. Both specific

and non-specific tests have their merits and limitations. Specific tests are limited by specific

assumptions on the capabilities and activities of the attacker, but provide specific assertions

on the existence of a side-channel attack. Non-specific tests avoid such assumptions, but

they are unable to assert the existence of a side-channel attack that can exploit the leakage.

We, therefore, present an ACA methodology for either approach.

8.3.1 Overall Methodology

The ACA methodology includes three phases: (a) activity trace and power trace generation,

(b) leakage time interval selection, and (c) leakage impact factor evaluation. The first phase is

common to specific and non-specific tests, while the second and third phases differ according

to the testing strategy. We will discuss each phase separately.

Figure 8.2 describes the common first phase of specific and non-specific ACA, covering lo-

gic synthesis, gate-level simulation, and gate-level power simulation. The design parameters,

shown in italic, include the testing strategy, the target technology, the target cycle period,

and the frame size. The frame size is the time step used in the traces of the power simulator.

All of the intermediate results of the flow are used by later phases of ACA.

Logic synthesis transforms the input RTL under a given performance constraint (speed/area)

into a gate-level netlist. Next, the gate-level netlist is simulated for a set of test vectors

while recording the circuit activity for each net in the design over the simulation time win-

dow of interest. The type and number of test vector stimuli depend on the assessment type

(specific/non-specific) and the acceptable statistical uncertainty of the leakage assessment

result. We will address the selection of test vectors in the next subsections.

152

Logic Synthesis

RTL

gate‐level circuit
test‐vector
stimuli

Gate Level
Simulation

(per‐vector)
circuit activity

Gate Level
Power Sim

(per‐vector)
power traces

(per‐vector)
average

gate power

testing
strategy

tech

tech
cycle period

tech
frame size

Output To phase 2 (LTI)

Output To phase 3 (ACA)

Input Design Parameters

Phase1: Activity Trace and Power Trace Generation

Figure 8.2: ACA Phase 1: Stimuli and Trace Generation for ACA

Two factors greatly help in reducing the number of test vectors for a side-channel leakage

assessment. The first factor is that power simulation is noiseless so that each test vector and

internal design state needs to be simulated only once. The second factor is that each simu-

lation run can be isolated from the next by re-initializing the design in between simulation

runs. In a typical side-channel leakage assessment, we gather between a few hundred and a

few thousand simulated traces and we aim for a turn-around of all three phases of ACA in

less than 24 hours.

The gate-level power simulation estimates the time-varying power consumption of the

design for each test vector as follows. First, the simulation time window is partitioned into

153

10

20

30

40

50

60

70

80
Ev
en

t
D
en

si
ty

Time (ns)

530 535 540 545 550 555 560 565

clock

per‐cell
power model

Frame

A
ve
ra
ge
 P
o
w
er

in‐frame events

in‐frame
Pavg

Figure 8.3: Event Density for two cycles of an 9,640-cell hardware AES design

frames. Next, for each frame, the gate-level power simulator computes the average power of a

gate as a combination of the switching power, the internal power, and the leakage power. The

gate switching power depends on the per-frame output toggle rate and the capacitive loading

at the gate output. The gate internal power depends on the per-frame, per-pin input toggle

rate. The gate leakage power depends on the per-frame state-dependent leakage power. All

these factors are scaled by the technology selection and by the gate type. The sum of all

these factors for all active gates within the frame determines the average frame power.

154

The frame size is an important selection parameter of the gate-level power simulation.

The frame size determines the smallest time interval analyzed by the ACA flow for side-

channel leakage. Each single cell in a design typically switches over a time interval much

smaller than the clock cycle, and much smaller than the frame size. A single frame will thus

contain the leakage of many different cells. A smaller frame size helps in detecting power

variations caused by a specific cell. Figure 8.3 illustrates this point in further detail. The

top half of the figure is an event density plot for two cycles from a hardware AES design

containing 9,640 cells. The cycle time of this design is 10ns, and after each up-going clock

edge, there is about 5ns of activity as the combinational cells settle to the new register

output. In this simulation, there are about 10,000 events in the first clock cycle, and 6,500

events in the second clock cycle. To estimate the power, we select 8 frames per clock cycle

(as an example). The power simulator will then compute the power per frame by analyzing

the events within that frame. The power trace will thus contain 8 points per clock cycle, and

side-channel leakage must be detected by power variations on any of these points. Clearly,

with a smaller frame size, fewer events will contribute to that frame, so that it becomes

easier to identify which events (and which cells) are a root cause of side-channel leakage.

On the other hand, a large frame size is beneficial because it improves simulation time. We

demonstrate this effect with the following experiment. A design containing 1, 4 resp. 16 AES

S-boxes is driven by a set of counters that each count from 0 to 255. We determine the power

estimation cost for a 256-cycle test-bench under various frame sizes. The total simulated

time remains 256 cycles for each case, and therefore a smaller frame size requires more frames

to be computed. Table 8.1 demonstrates that the power simulation cost significantly depends

not only on the design size, but also on the number of frames.

In a practical assessment of hardware, we over-sample the clock cycle at least several

times, in order to run the analysis on sub-cycle events. However, with long-running, complex

simulations, we have already successfully down-sampled the frame size to as much as 80 clock

155

Table 8.1: Normalized complexity of power estimation time for three different design sizes
and four different frame widths.

Samples/cycle # Frames 1 SBOX 4 SBOX 16 SBOX

1/256 1 1.0 1.72 4.54
1 256 6.9 23.5 93.8
2 512 11.1 37.1 149.4
4 1000 13.17 45.6 184.8

Skywater 130nm power simulation with Cadence Joules

cycles per frame, while still being able to demonstrate side-channel leaks [97]. Successfully

finding side-channel leaks in an under-sampled power trace is due to the averaged sampling

technique employed by power simulation tools [99].

In Phase 2 and Phase 3 of the ACA flow, we aim to identify the cells’ individual con-

tribution to side-channel leakage. The challenge is to complete this task using only the

global power traces. Indeed, the generation of per-cell power traces has quadratic complex-

ity (namely design size× frame count) and is therefore not scalable to large applications.

We solve this with a two-step approach. First, using the global power traces, we identify

the leakage time interval, the time window within which a design leaks information. Next,

within the leakage time interval, we use the activity traces to identify the contribution of

an individual cell to a design-level leak. Therefore, Phase 2 and Phase 3 of the ACA flow

are defined as Leakage Time Interval Selection and Leakage Impact Factor Computation re-

spectively. Leakage Time Interval Selection uses design-global power traces, while Leakage

Impact Factor computation uses per-cell event traces.

To test individual cells for side-channel leakage, we can use two different testing scenarios.

In the following sections, we clarify each testing scenario separately.

156

Phase 2:
Leakage Time Interval Selection

Phase 3:
Leakage Impact Factor Computation

(per‐vector)
power traces

specific
leakage model

Specific Test
e.g. DPA, CPA

leakage time interval

Specific ACA

leakage time
interval

(per‐vector)
circuit activity

gate‐level correlation

Weight Factors

Leakage Impact Factor

Specific test

Figure 8.4: Phase 2 (Leakage Time Interval) and Phase 3 (Leakage Impact Factor) compu-
tation for specific ACA

8.3.2 ACA for Specific Testing

Figure 8.4 describes the two steps to apply ACA using a specific test. The specific test

requires the definition of a leakage model, similar to the leakage model used in Differential

Power Analysis or Correlation Power Analysis. The leakage model is correlated with the

simulated power consumption to identify a window of high correlation as the Leakage Time

Interval (LTI), the time window during which a design leaks. Next, each individual cell is

ranked by computing its correlation to the leakage model within the LTI.

157

Table 8.2: Pearson Correlation Threshold Levels as a function of test vectors m and confid-
ence

Confidence Level m=600 m=1000 m=2000

99% ± 0.105 ± 0.081 ± 0.058
95% ± 0.080 ± 0.062 ± 0.044
90% ± 0.067 ± 0.052 ± 0.037

Leakage Time Interval for Specific Testing

Given a cipher which computes an internal result Vk = f(K,Ck) with a partial key K and

a controlled input Ck from k-th test vector, a possible leakage model L(Vk) is the Hamming

Weight HW (Vk). Alternately, for an internal tuple (V 1k, V 2k) = f(K,Ck), the leakage

model can be expressed as the Hamming Distance HD(V 1k, V 2k). We then compute the

correlation between the leakage model L(Vk) or L(V 1k, V 2k) and the simulated power Pk[n]

for each frame n of the simulated power traces:

ρ[n] =
cov(L(Vk), Pk[n])

σLσP

(8.1)

The LTI consists of the set of frames for which the absolute correlation is above a given

threshold.

LTI = {n} : abs(ρ[n]) > ρthreshold (8.2)

The choice of the threshold is a sensitivity parameter that must be chosen such that the

LTI covers design activity that contains a likely correlation peak. Table 8.2 shows several

examples of threshold levels as a function of the number of test vectors m and the confidence

level. As expected, a requirement for higher confidence or the use of fewer traces will increase

the confidence interval, which means that stronger correlation peaks must be identified before

the frame is flagged as leaky and added to the LTI.

158

Frame

A
ve
ra
ge
 P
o
w
er

C
o
rr
el
at
io
n

threshold

threshold

Leaky Frame(s)

Leakage Time Interval (LTI)

Ev
en
t
Tr
ac
e

LTI

L(V) Toggle Trace
H

Event Toggle Trace(s)
Ki

Architecture Correlation cell i
Ci = Ki.H

Leakage Impact Factor
Fi = Ci Pi / PT

Figure 8.5: (left) Leakage Time Interval Detection (right) Architecture Correlation Analysis

Leakage Impact Factor for Specific Testing

Within the LTI, we compute the contribution of each individual cell to the leakage. This

contribution is quantified in the Leakage Impact Factor (LIF), which is a dimensionless

number that expresses the relative amount of side-channel leakage from a cell.

The LIF of a cell is computed as the correlation of cell output activity and leakage model

activity. The LTI is a set of frames that are considered leaky (Figure 8.5, left). To investigate

the cell leakage, the LTI is superimposed over the activity trace. For each net (or each net-

driving cell), we then compute a toggle trace as follows. When a given net switches during

the LTI, then that transition is counted as a +1 toggle. When a given net does not include

such a transition in the LTI, then that is counted as a -1 toggle. Hence, the activity of each

net i under test vector j is converted to a bi-valued signal Kij with values {-1, +1}. To

compute the architecture correlation Ci of net i, Kij is multiplied with the toggle trace Hj

of the leakage model L(V) (Figure 8.5, right).

159

Ci =
∑

stimuli

Kij.Hj (8.3)

This correlation can be computed for every frame within the LTI. A high value in Ci

indicates a strong correlation between the cell activity and the leakage model, and hence a

strong indication that the cell contributes side-channel leakage. All cells in the design are

ranked according to their Ci from most leaky to least leaky. We also include an additional

weighing factor for each Ci, defined as the ratio of the cells’ average power consumption Pi

during the LTI over the total average power consumption of all gates PT . This increases the

weight of high-drive cells with a high correlation. This leads to the weighed per-cell LIF Fi:

Fi = Ci
Pi

PT

(8.4)

Unlike computing a gate’s power for every frame, computing a gate’s average power over

all frames is relatively quick (Table 8.1). Therefore, the weighing process is scalable. Each

LIF factor is bound to a specific cell within a specific frame in the LTI. Hence, for a design

with G gates and J leaky frames, the list of LIF factors contains G×J entries. These entries

are sorted by LIF value to determine the overall leakage ranking.

8.3.3 ACA for Non-specific Testing

When a specific test is hard to apply, or when the number of leakage models L(V) becomes

too numerous, it may be helpful to apply a more generic non-specific test for leakage. We can

run ACA using a non-specific leakage model following a strategy as in Figure 8.6. Similar to

TVLA, non-specific ACA requires the definition of two groups of stimuli. These two groups

should exhibit some systematic difference in the design behavior. For example, Goodwill et

al. suggest AES test vectors that are random for group 1, while introducing a specific bias

160

Phase 2:
Leakage Time Interval Selection

Phase 3:
Leakage Impact Factor Computation

group 1
power traces

Specific Test
e.g. DPA, CPA

leakage time interval

Non‐Specific
ACA

gate‐level correlation

Weight Factors

Leakage Impact Factor

Non‐Specific test

group 2
power traces

leakage time
interval

(per‐vector)
circuit activity

Figure 8.6: Phase 2 (Leakage Time Interval) and Phase 3 (Leakage Impact Factor) compu-
tation for nonspecific ACA

within a middle-round state for group 2. Using these two vector groups, ACA then follows

the same two-step strategy as for specific testing. First, the LTI is computed to bound the

leakage in time, and next the LIF per gate is computed. The testing statistic is adjusted to

a non-specific test.

Leakage Time Interval for Non-Specific Testing

The test-statistic compares the distribution of power values at a specific frame between two

test vector groups. One solution is to use a Welch-t statistic, which tests the difference

between the mean values of both groups. Another solution is to measure the correlation

of the power value to the group number. We use the leakage model N = groupid, with

groupid equal to -1 for vectors from group 1, and +1 for vectors from group 2. With this

leakage model, we can compute a non-specific test statistic as a correlation value that can be

161

compared against a threshold value ρthreshold. With P [n] the power consumed during frame

n, the correlation is given by:

ρ[n] =
cov(N,P [n])

σNσP

(8.5)

The LTI is then defined using the same method as in Equation 8.2.

Leakage Impact Factor for Non-Specific Testing

Once the LTI is fixed, we proceed with computing the LIF using a similar strategy as for the

specific test. The LTI is superimposed over the activity trace of the design. A net transition

during the LTI counts as a +1 toggle, and an absence of transition counts as a -1 toggle. We

compute the architecture correlation Ci of net i by correlating the toggle trace Kij with the

groupid Nj.

Ci =
∑

stimuli

Kij.Nj (8.6)

Again, a high value in Ci indicates a strong correlation between the cell activity and the

non-specific leakage model, and hence flags the cell Ci as leaky. To find a cell’s non-specific

leakage impact factor Fi, a weighing factor is introduced as in Equation 8.4.

The advantage of the non-specific test over the specific test is that no high-level leakage

model is necessary. For example, we have used non-specific tests based on one or more

state bytes at a middle round being 0 or else random. In the experimental results, we will

demonstrate the selectivity of both the specific as well as the non-specific ACA method.

8.3.4 Implementation

Our flow is fully realized in commercial tooling along with customized scripting to implement

the statistical post-processing. We use Cadence Genus 20.1 for logic synthesis from RTL,

162

Encryption

Keymem

Decryption

SBOX4

FSM

128

32

input

IV

output
key

Bus Interface

ctl

Figure 8.7: Block diagram of the AES encryption/decryption unit

Cadence XCelium 20.09 for functional simulation, and Cadence Joules 10.1 for gate-level

power simulation. Computation of ACA LIF and LTI is scripted on top of the Jlsca toolbox2.

We have used Skywater 130nm standard cells as technology targets during experiments.

8.4 ACA on a Cryptographic Coprocessor

In this section, we describe the application of ACA on an AES encryption/decryption copro-

cessor. The architecture selected for analysis is typical for a medium-throughput accelerator

residing in an embedded SoC. The coprocessor handles encryption and decryption and uses

an offline key schedule, which computes the roundkeys once upon loading of the key. A

single round takes 5 clock cycles. In the first four cycles, the coprocessor computes 16 Sbox

lookups in sets of 4, and in the fifth clock cycle, the remainder of the round is computed.

The encryption/decryption core is encapsulated by a bus interface which contains software-

2https://github.com/Riscure/Jlsca

163

https://github.com/Riscure/Jlsca

Table 8.3: Cell type and area for AES coprocessor

Type Cell Count Area (%)

Sequential 2,479 51.8
Logic 7,161 48.2
Total 9,640 100.0

accessible registers and a controller. The bus interface handles various modes of operation

for the coprocessor. We synthesized this coprocessor for SkyWater 130nm standard cell

technology and a 50MHz clock. Table 8.3 reports the type and number of cells used in the

design, as well as their relative area.

8.4.1 Architecture Correlation Analysis

Stimuli selection plays an important role in ACA, as it enables a designer to choose which

part of a design will be exercised. In this analysis, we will focus on Architecture Correlation

Analysis for a single key byte in the AES coprocessor. The objective of the ACA is to

determine which cells, among the 9,640 cells in the design, contribute to side-channel leakage

of this key byte. We explicitly differentiate this objective (finding leaky gates) from a more

traditional side-channel analysis of the hardware. There is no doubt that there is side-channel

leakage in this design. However, the object of this experiment is to find what cells are most

responsible for this leakage?

Results

We performed ACA as follows. We selected a set of 1024 vectors under a random plaintext

and a constant key. Next, we ran a gate-level simulation and a gate-level power simulation

for ACA. Figure 8.8 shows the average power trace of the first round at 64 frames per

clock cycle, as well as the (sign-flipped) standard deviation. The clarity of this power trace

illustrates the strength of noiseless simulation and outlines each clock cycle of operation as

164

Round 1
Cycle 1

Round 1
Cycle 2

Round 1
Cycle 3

Round 1
Cycle 4

Round 1
Cycle 5

Average

Stdev

Figure 8.8: Average Power Trace and Standard Deviation of AES Coprocessor in first round

well as the location of power variations. In this simulation, there are 512 frames in each

power trace.

We next ran ACA using a specific leakage model on the Hamming Weight of the SBOX

output of the first key byte. We selected a specific leakage model on the Hamming Weight

of the SBOX output of the first state byte. We identify the LTI with a ρthreshold of 0.2,

which flags 230 frames out of the 512 frames as containing potentially leaky samples. By

correlating the transitions by cells within LTI with the specific leakage models, 412 cells are

then flagged as leaky. This group represents 4.3 % of the total number of 9,640 cells. We

will analyze the relation of these 412 cells to the overall AES coprocessor in Section 8.4.2.

165

0 50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

CPA on original AES traces

0 50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1.0

CPA on AES traces
with leaky-gate power removed

Figure 8.9: (left) CPA on AES Coprocessor traces reveals a correlation peak at about 75
traces (right) CPA on modified AES Coprocessor traces significantly delays correlation peak
disclosure to at least 250 traces.

Result Verification

The assertion made by ACA is that the side-channel leakage under the selected leakage

model is primarily caused by these 412 cells. To verify the correctness of the selection, we

performed the following verification. We re-ran the simulation while collecting individual

power traces for each cell for all vectors and all frames. The per-cell power traces of the 412

selected leaky cells are then subtracted from the overall power traces to construct a modified

set of power traces. Next, we apply a Correlation Power Analysis (CPA) on the original

trace set as well as on the modified trace set, with the results summarized in Figure 8.9(left:

unmodified set, right: modified set). For the modified set, the number of measurements to

disclosure increases with a factor of 3.

We emphasize that this CPA experiment only verifies the selection of leaky cells. ACA

is not a countermeasure but a detection tool. One cannot remove an arbitrary cell from a

netlist without substituting it with an equivalent cell with identical functionality. However,

ACA is useful in conjunction with countermeasure tools that protect individual cells or

subsets of cells, such as Karna [61] or STELLAR [46]. A second observation is that a power

166

Figure 8.10: Comparison of a power trace at 64 frames per cycle to a power trace at 2 frames
per cycle. At lower frame counts, the power sample converges to average power, and the
frame size increases.

simulation that collects an individual power trace for every gate is extremely complex both

in disk space and in time. We found the overhead of single-gate power tracing (compared

to standard ACA) to be around 4 orders of magnitude in disk storage and one order of

magnitude in simulation time, and worsening with design size. The high cost of per-gate

power tracing highlights the strength of ACA to use per-gate activity traces, which are a

byproduct of functional verification.

Impact of Frame Size

We also performed an ACA analysis at a frame size of 2 frames per cycle rather than 64

frames per cycle. Figure 8.10 shows the effect on the power trace. At wide frame size, the

power converges to the average of the smaller frame size. In our experiments, we found

that a wide frame size is less precise to pick out leaky gates. For the same trace set as the

previous experiment, the 2-frame-per-cycle version flags only 122 cells (as opposed to 412

167

Table 8.4: Leaky Gate Identification for AES Coprocessor

Module File # Cells Sequential

Top-level aes comp core.v 5 0
Decryption aes comp decipher block.v 29 0
Encryption aes comp encipher block.v 204 26
Keymem aes comp key mem.v 1 0
SBOX comp sbox.v 130 0
Bus Interface picoaes.v 22 10

cells) as leaky.

However, the use of a wider frame size may still have advantages. The 122 cells that are

found at a wider frame size are a subset of the 412 cells found at a smaller frame size, with

an exception of a single cell. Furthermore, there is a significant performance gain in power

simulation time at wider frame sizes (Section 8.6). We can thus think of power simulations

at wide frame sizes as a quick assessment to determine the LTI and to scan the overall

properties of side-channel leakage in the design.

8.4.2 Leaky Gate analysis

We analyzed the type and nature of the 412 cells that are being flagged as leaky by ACA,

under the specific leakage model of the SBOX output. The direct analysis of the gate-level

netlist is cumbersome because the synthesized netlist is flattened, and because most gates

have non-descriptive names such as g136941. However, it is possible to direct the synthesis

tool to keep track of the originating line of RTL code that results in a specific gate. This

way, we found that the 412 cells come from 47 unique sites in the RTL code. This allows

the user to identify the RTL source code location of the leakage, and Table 8.4 summarizes

the identified gates by RTL source file. 21 leaky cells are not identified by their RTL origin

and are not listed in the table.

The list of cells in Table 8.4 is intriguing. ACA is able to identify non-trivial leakage,

168

Table 8.5: Leaky Gate Identification using non-specific round-6 state bias

Module File # Cells Sequential

Top-level aes comp core.v 79 0
Decryption aes comp decipher block.v 351 0
Encryption aes comp encipher block.v 1172 128
Keymem aes comp key mem.v 0 0
SBOX comp sbox.v 870 0
Bus Interface picoaes.v 277 0

often occurring as a result of the integration of cryptographic functions. The following

example illustrates this point. In the Bus interface, the IV register is flagged as a source of

leakage, which is unexpected. However, upon inspection of the code, it can be shown that

the IV register senses every output value of the encryption module. Furthermore, due to

the sequential nature of the computation, the encryption module reflects intermediate round

values, including each individual SBOX output. The results in SBOX-related leakage appear

at the IV register. The identification of individual RTL files and line numbers as leaky, based

on a gate-level simulation, is an important debugging tool in the hands of the designer.

8.4.3 Non-specific ACA

We illustrate how ACA identifies leaky cells with a non-specific leakage model. In the

following example, we create a non-specific test on the state variable in round 6 of the

encryption. We use two sets of test vectors, and both contain random plaintext and key

values. However, the second group contains specially selected (plaintext, key) pairs that

create an all-zero round-6 state variable. Such pairs are easy to create: select a random key,

and decrypt an all-zero state starting at round 4 of the decryption. The resulting plaintext

is the sought starting value.

Using non-specific ACA we can identify the gates that are most affected by this bias, and

thus the gates that are responsible for side-channel leakage. Figure 8.11 illustrates the LTI

169

Figure 8.11: Leaky frames in round 6 for a non-specific test on all state bits concurrently.

on round 6, where the bias occurs. The majority of the frames (251 out of 385 in the trace)

are flagged as part of LTI. Furthermore, after ranking the cells, we identify 2,812 unique

cells as correlated with the round-6 state bias. This is much more than the 412 cells selected

using a specific leakage model on the first key byte. However, this result is not unexpected:

zero-forcing an entire state word (128 bits) where the expected value would be random is

a very significant bias, which has an impact throughout the datapath. Table 8.5 shows the

distribution of the 2,812 cells over the design.

Among the flagged leaky cells 2,498 gates were traced back to their RTL design files.

Figure 8.12 illustrates the rank of flagged leaky gates from each design file with rank=1

belonging to the leakiest gate in the design.

We caution that a strongly biased test, such as this all-zero round-6 non-specific test,

always results in aggressive leaky cell selection. However, a weaker form of the test is easy

to define, for example by biasing only a single state byte of round 6. The non-specific ACA

test lets a user evaluate the impact of an arbitrarily chosen bias in the cipher.

170

0 500 1000 1500 2000 2500
Gate index

0

500

1000

1500

2000

2500

Le
ak

y
ga

te
 ra

nk

ae
s_
co
m
p_

co
re
.v aes_comp_encipher_block.v comp_sbox.v aes_comp

_decipher
_block.v

picoaes.v

Figure 8.12: Leaky gate ranks identified by non-specific test in ACA on AES coprocessor
sectioned into RTL design files.

8.5 ACA on RISC-V based SoC

To investigate the scalability of ACA we also applied the methodology on the SoC shown

in Figure 8.13. A 5-stage pipelined RISC-V core (fetch, decode, execute, memory, write-

back) integrates a collection of peripherals including the memory-mapped AES coprocessor

discussed in Section 8.4. In a typical access sequence, the RISC-V software uploads a key

and a block of plaintext to the coprocessor, and then uses the control/status register of the

coprocessor to start the encryption and monitor the completion flag. The RISC-V software

then retrieves a block of ciphertext. This design is considerably more complicated than the

stand-alone AES design, and covers a software and a hardware component. Table 8.6 shows

171

AES

RISC‐V UART DMA

Memory Interface

Timer

External
Memory

GPIO

Figure 8.13: Block diagram of the RISC-V based SoC including the AES coprocessor

Table 8.6: Cell type and area for RISC-V based SoC

Type Cell Count Area (%)

Sequential 8,091 51.5
Logic 21,484 48.5
Total 29,575 100.0

synthesis results for SkyWater 130nm standard cells at 50MHz clock. The overall design is

three times larger than the AES coprocessor by itself.

8.5.1 Architecture Correlation Analysis

In this test, we are investigating the hardware/software interface between the RISC-V soft-

ware and the AES coprocessor. Therefore, we apply ACA with a specific leakage model

using the Hamming Weight on the output of the pre-whitening round. This will enable the

monitoring of any interactions between the plaintext and the key on the path from software

to the hardware coprocessor. Figure 8.14 shows a portion of the driver software. In a 32-

bit architecture, a 128-bit block is loaded using 4 consecutive memory-mapped writes. The

driver first loads 4 plaintext words, followed by 4 key words. Next, the coprocessor control

register is configured to run a single block encryption. The software then goes into a polling

loop waiting for the coprocessor to complete operation, about 50 clock cycles later.

172

Figure 8.14: RISC-V driver software for AES Coprocessor

l i a4 , 8
lw a3 , 0 (a4) ; load p l a i n t x t [0]
sw a3 , 4 (a5) ; STALL
lw a3 , 4 (a4) ; load p l a i n t x t [1]
sw a3 , 8 (a5) ; STALL
lw a3 , 8 (a4) ; load p l a i n t x t [2]
sw a3 , 1 2 (a5) ; STALL
lw a4 , 1 2 (a4) ; load p l a i n t x t [3]
sw a4 , 1 6 (a5) ; STALL
l i a4 ,24
lw a3 , 0 (a4) ; load key [0]
sw a3 , 2 0 (a5) ; STALL
lw a3 , 4 (a4) ; load key [1]
sw a3 , 2 4 (a5) ; STALL
lw a3 , 8 (a4) ; load key [2]
sw a3 , 2 8 (a5) ; STALL
lw a4 , 1 2 (a4) ; load key [3]
sw a4 , 3 2 (a5) ; STALL
l i a4 , 6
sw a4 , 0 (a5) ; c o n t r o l
l i a4 , 4
sw a4 , 0 (a5) ; s t a r t
l i a3 , 1

. L121 :
lw a4 , 6 8 (a5)
bne a4 , a3 , . L121

Results

We selected a set of 1024 vectors under a random plaintext and a constant key. We then

ran a gate-level simulation and a gate-level power simulation at 5 frames per clock cycle.

Figure 8.15 shows a sample power trace from the simulation. The testbench covers software

activity as well as hardware activity. The hardware activity uses considerably more power

than software because of the higher parallelism of the hardware coprocessor implementation.

However, because of the noiseless simulation, the overall operation is visible with remarkable

173

Figure 8.15: Power trace of the RISC-V based SoC

clarity. The trace starts with the software transmitting a key value, followed by a plaintext

value. Figure 8.15 shows a series of 8 notches in the power trace which correspond to reduced

power consumption. These are caused by pipeline stall operations on the RISC-V processor

(Figure 8.14 lines 3, 5, 7, 9, 12, 14, 16, 18). Next, the software triggers the hardware AES

execution, which runs the key schedule followed by 10 rounds. Finally, the RISC-V software

retrieves the ciphertext.

We next ran ACA using the aforementioned specific leakage model on the Hamming

Weight of the input of round 1. We identify the LTI with a ρthreshold of 0.2, which flags 91

frames out of the 710 frames as containing potentially leaky samples. By correlating the

transitions by cells within LTI with the specific leakage model, 1,298 cells are then flagged

as leaky. This group represents 4.38 % of the total number of 29,575 cells.

8.5.2 Leaky Gate Analysis

Figure 8.16 shows the distribution of leaky frames over the testbench. The leakage model is

HW (key ⊕ pt). Remarkably, the bulk of the leaky frames occurs during the software driver

activity, while the key is being loaded into the coprocessor. In addition, there is also leakage

174

Load KEY Round 1

Figure 8.16: Leaky Frame Selection in ACA on RISC-V based SoC

during the first round of the encryption, which is expected.

ACA demonstrates that the RISC-V processor, the memory bus, and the memory-

mapped AES coprocessor are all potential contributors to side-channel leakage. The origin

of such leakage is caused by the interaction of values over shared storage and interconnect.

The leakage occurs in the processor micro-architecture because the driver software writes

the key after the plaintext. There is a minor hint of this issue in the software driver itself.

The first key byte is loaded in register a3, which still contains a portion of plaintext. This

leads to distance-based leakage conforming to the leakage model.

175

Table 8.7: Leaky Gate Identification for RISC-V based SoC

Module File # Cells Seq

AES Coprocessor
AES top aes comp core.v 2 0
Decryption aes comp decipher block.v 21 0
Encryption aes comp encipher block.v 27 14
KeyMem aes comp key mem.v 1 0
Bus Interface aes top.v 130 112
SBOX comp sbox.v 108 0

RISC-V
ALU ALU.v 332 0
Control control unit.v 2 0
Control controller.sv 10 0
Memory memory arbiter.v 11 0
Memory memory interface.v 3 0
Pipeline pipeline register.v 66 31
Regfile regFile.v 248 248

Peripherals
GPIO gpio top.v 3 0
DMA Bus Control s axi controller.sv 3 0
UART simpleuart.v 3 0
DMA transposer.sv 3 0
DMA ca prng.v 4 0
DMA dma top.v 6 0
DMA fifo dma.sv 3 0
DMA fifo.v 2 0
DMA tDMA.sv 2 0

Table 8.7 shows the distribution of the 1,298 leaky cells over the design. There are

indeed a large number of leaky gates located within the RISC-V processor. We analyze two

examples below.

The highest-ranked leaky gate (with a correlation of 0.463) in the SoC is the pipeline

register of the memory stage which, in its data-path components, transfers the contents of

the second source register and the result of the ALU from the execute to the memory stage.

Even for instructions that do not need ALU operation, the ALU result is written with the

176

Figure 8.17: Gate-level netlist graph of the RISC-V SoC color coded with leaky gates’
correlation. Warmer colors correspond to higher correlations.

addition of the two source operands. Therefore the same transitional leakage discussed for

a3 register can occur for the ALU result register.

The leakage from the peripherals is caused by the transmission of key and plaintext on

the memory interface. At the connection point of each peripheral module to the memory

interface there are multiplexers to decide whether the transmitted data should be admitted

to the current peripheral. Such interconnect logic can manifest Hamming weight leakage of

the plaintext and key.

Additionally, we form the gate-level netlist graph (introduced in Section 9.3.2) of the SoC

under study. As shown in Figure 8.17, the graph is color coded by the leaky gates’ correlation

177

Table 8.8: ACA Performance for various steps in the flow. Performance numbers in user
seconds∗ for 1024 Vectors.

AES Coprocessor RISC-V based SoC

Gate-level Synthesis 392 1,201
Simulation 2,436 6,996
Power Estimation

64 frames/cycle 7,862
2 frames/cycle 1,557
5 frames/cycle 31,201

Correlation Analysis <60 <60

∗Xeon Gold 6248 CPU @ 2.50GHz, 384G Workstation

with the warmer colors demonstrating higher correlation. The correlations are calculated by

ACA while running the aforementioned software driver for the AES coprocessor shown in

Figure 8.14. The graph is further reduced by merging the neighboring nodes that have the

same correlation value. The final graph has 711 nodes and 2310 edges. The flow of colors in

this graph confirms that the ranks of the gates change gradually among the adjacent gates.

In other words, sudden jumps in the colors of the connected nodes are rarely encountered.

These examples demonstrate that ACA is a powerful debugging tool, as it can highlight

side-channel leakage of the gate-level implementation at the RTL level.

8.6 ACA Performance Considerations

ACA adds a new design step to the overall design flow, and thus the cost of running ACA in

comparison to other tools in the design flow must be considered. Table 8.8 summarizes the

runtime performance of ACA analysis. There are three major components that consume the

bulk of the execution time: logic synthesis, functional gate-level simulation, and gate-level

power simulation. The ACA correlation component is minor and typically takes less than

a minute to complete. Overall, we observe that gate-level power simulation is a dominant

178

factor that is more complex than gate-level synthesis and gate-level simulation. The overall

runtime is strongly affected by the design size and the total number of frames per trace. On

the plus side, the power simulation step is embarrassingly parallel. Each test vector can be

run independently from the other. In our experiments, we did not use any parallel execution.

8.7 Conclusions

Gate-level leakage assessment is a tool that supports a designer to identify leaky gates in a

pre-silicon design context. Our methodology relies on industry-standard tools including logic

synthesis, gate-level simulation, and gate-level power estimation, together with scripting

on the intermediate results. Architecture Correlation Analysis, the underlying detection

technique to support gate-level leakage assessment, can serve as a verification technique

as well as as a basis for countermeasure design. In particular, by moving the leaky gates

flagged by ACA into a separate power domain, a low-cost countermeasure may be enabled

that requires only selective replacement of cells in a design.

179

Chapter 9

RootCanal

In this chapter, we introduce a technique to find the cause of an observed power side-

channel leakage at gate-level in both software and hardware. This work will appear in IACR

Transactions on Cryptographic Hardware and Embedded Systems (TCHES) 2022 [104].

9.1 Introduction

A smart card application is a firmware program running on a microcontroller with cryp-

tographic accelerators. In such a system, the analysis of power-based side-channel leakage

spans multiple layers of design abstraction, including the hardware and the software. Both

hardware and software play a role in analyzing, understanding, and mitigating this power-

based side-channel leakage. While the smart card software manipulates the secrets of the

application, it is the smart card hardware that lets those secrets escape through physical

side-channel leakage.

The root-cause analysis of side-channel leakage refers to the set of design activities that

help a designer understand the origin of side-channel leakage in terms of each of the relevant

design abstraction levels in hardware or software. Root-cause analysis is challenging because

180

of two reasons. First, the interface between hardware and software, the instruction-set archi-

tecture (ISA), hides important implementation details such as the micro-architecture state,

the memory hierarchy, and the system-level interconnect. As a result, it is notoriously diffi-

cult to explain all the side-channel leakage from the software alone. Second, the complexity

of modern embedded systems is enormous. A single chip may contain hundreds of thousands

of standard cells and hard macros, that jointly implement a processor, memory, peripher-

als, and cryptographic hardware accelerators. Any of these standard cells is a potential

contributor to side-channel leakage.

In this contribution, we propose RootCanal, a methodology to identify the origin of side-

channel leakage from a white-box implementation of an embedded System-on-Chip design

that contains hardware and software. In a pre-silicon white-box design, every detail is known

– typically with gate-level accuracy – but no physical realization is available. The meth-

odology aims to assist the hardware designer during the pre-silicon design phase to build

insight into the implementation factors that will cause side-channel leakage. RootCanal re-

places or extends the traditional side-channel leakage assessment on an FPGA prototype

with simulation-based design automation of the actual design target. The main advantage

of using the white-box implementation is that there is no ambiguity on the cause of power

variations in the hardware, as we simulate a high-resolution power simulation at gate-level

accuracy for the overall design.

The RootCanal method in a nutshell Figure 9.1 captures the main purpose of Root-

Canal. A hardware designer wishes to build insight into the factors of hardware and software

that cause side-channel leakage in an SoC design that may include a processor, memory, and

hardware accelerators. RootCanal starts from the design source code (HDL and software)

and proceeds in two steps. First, using a non-specific leakage detection method on the syn-

thesized gate-level netlist, RootCanal determines a list of (gate, cycle) tuples during which

181

Software

Hardware

Instruction-set Architecture

MEM CRYPTO
RISC

Power

time

...
sw a4,0(a5)
addi a3, zero,1
lw a4,68(a5)
bne a4, a3, 7d8
...

memory stage leaks

(gate,cycle) leaks

Synthesis

Simulation

ACA

RTL

SW

Compiler/Loader

RootCanal

Leaky
(gate,cycle) tuples

Leaky instructions (SW)
or modules (RTL)

(a) (b)

Figure 9.1: RootCanal is a pre-silicon side-channel leakage assessment technique to back-
annotate leaky (gate,cycle) tuples in an SoC design to high-level software or hardware in-
formation. (a) RootCanal design flow integration (b) Example application.

the design shows side-channel leakage. Second, RootCanal maps the list of leaky gate tuples

into high-level design information as follows. A leaky tuple within a processor maps into

the corresponding instruction of the embedded software that causes the leakage. A leaky

tuple outside a processor maps to the module and HDL source code location of the RTL

construction that causes the leakage. From this high-level design information, the designer

learns about the root cause of the leakage in terms of the design’s source code.

Benefits from RootCanal RootCanal tests the SoC side-channel leakage before tape-out,

resulting in high prototyping cost savings. The use of gate-level power simulation offers high

accuracy and low ambiguity on the amount and origin of the power consumption variations

(with some limitations as discussed below). RootCanal uses a non-specific testing method

on the simulated power traces and evaluates a broad spectrum of power-based side-channel

leakage covering the SoC hardware, the micro-architecture, and the software. RootCanal can

182

be used in practical applications such as testing if the integration of hardware modules in an

SoC may cause side-channel leakage and testing if a software-based countermeasure works

on the SoC hardware. The main contribution of RootCanal is to locate the source of side-

channel leakage of a design in terms of the source code of the design1. Indeed, there is a

significant semantic gap between a gate-level netlist and its high-level specification from RTL

of software [9].

Limitations of using a Power Simulation RootCanal supports a pre-silicon scenario

using simulated power traces from a gate-level model of the SoC. This requirement brings

two caveats. First, power simulation tools are orders of magnitude slower when compared to

measurements from a physical prototype. Although a power simulation delivers a noiseless

trace, which significantly reduces the number of traces needed for a reliable statistical test

of side-channel leakage, the time spent by RootCanal on power simulation of an SoC is

still dominant compared to logic synthesis and logic simulation time. However, our results

show that current commercial tooling for power simulation is sufficiently powerful to handle

complete SoC analysis of power-based side-channel leakage. Second, no simulation-based

method can guarantee that the implementation will be completely free from side-channel

leakage since no simulation reflects the actual physical detail of the implementation with

total accuracy. RootCanal uses post-synthesis gate-level power simulation, which captures

technology-specific static, dynamic and internal gate-level power as well as sub-cycle timing

effects such as glitches. However, post-synthesis power simulation does not capture capacitive

coupling effects, and it does not capture off-chip factors such as coupling effects from a chip

package or a PCB. The accuracy limitations of post-synthesis power simulation imply that

false negatives in leakage detection are possible. However, the simulation-based method

suffers no false positives: a side-channel leak identified by RootCanal in simulation will also

1We refer to the designer as a hardware designer to emphasize that we are dealing with a pre-silicon
scenario. But this designer may very well be writing test software for the SoC processor too.

183

occur in the physical implementation.

Related Work The modeling of side-channel leakage has received significant interest in

recent years. Buhan et al. partition the world of side-channel assessment tooling according

to the availability of silicon [40]. Pre-silicon tooling estimates side-channel leakage through

simulation, while post-silicon tooling builds side-channel leakage models from measurements.

Both types of tools serve different purposes. Pre-silicon techniques are helpful while validat-

ing the side-channel leakage of new hardware designs. Post-silicon techniques can handle the

analysis of commercial-off-the-shelf (COTS) chips for which no design internals are publicly

available, which may help software side-channel verification.

RootCanal belongs to the category of pre-silicon tools, which have traditionally focused

on hardware-level simulations. Le Corre et al. use an HDL simulation of a Cortex-M3 core to

build a leakage model [43]. Their MAPS simulator captures the impact of micro-architecture

level pipeline registers on the side-channel leakage from software. While specific to ARM

Cortex-M3, this effort was among the first to show the utility of processor-aware modeling

tools to predict the side-channel leakage properties of software. In the PARAM design,

Arsath et al. use simulation for prediction of side-channel leakage in a processor design.

They rank each processor module according to the level of contributed side-channel leakage.

Several other authors have proposed techniques to locate the source of side-channel leakage

in a hardware design, such as RTL-PSC [59], Architecture Correlation Analysis [168], and

KARNA [149]. These tools rank the activities of hardware elements according to a localized

leakage score.

Several groups propose formal verification for the verification of masking-based counter-

measures [31, 16, 108]. These pre-silicon tools vary in their support for underlying leakage

models, but all use formal techniques to sidestep simulation and instead use symbolic tech-

niques to demonstrate statistical independence of probability distributions. Gigerl et al. ap-

184

plied formal verification of masked hardware implementations to analyze micro-architectures

that execute masked software implementations [77, 78]. This work highlights the need and

benefits of including the hardware details in the verification process of masked software.

In the post-silicon tooling, grey-box models capture the micro-architecture sources of

side-channel leakage in significant detail [123, 141, 120, 20]. Gao et al. proposed a novel

test of completeness to measure the quality of side-channel leakage models of processors in

the grey-box case [72]. We see the post-silicon work as complementary to RootCanal that

handles pre-silicon analysis.

Outline In the next section, we review preliminary relevant concepts that support Root-

Canal. Section 3 presents the methodology with specific attention to the process of translat-

ing leaky gates in hardware to leaky instructions in software. Section 4 applies RootCanal to

four different case studies. We conclude the paper in Section 5.

9.2 Preliminaries

We address three preliminary concepts in support of RootCanal. First, the root cause

analysis of side-channel leakage must eventually point out an element in the software or

hardware specification of the SoC. We will define the abstraction levels of concern in the

design hierarchy, paying attention to the tension between an SoC’s specification in source

code and its realization in logic gates and instruction opcodes. Second, we will describe the

properties of the gate-level power simulation used by RootCanal and we highlight its benefits

and limitations. Third, we will review Architecture Correlation Analysis (ACA) [168], which

is used by RootCanal to identify the source of side-channel leakage in hardware. We will

also describe an extension of ACA so that it can test non-specific leakage.

185

Design Hierarchy RootCanal’s input is a System-on-Chip design in a synthesizable Hard-

ware Description Language (HDL) and embedded software running on the SoC processor.

We define a software specification as the assembly-level source code. RootCanal flags side-

channel leakage at the granularity of an individual logic gate and then propagates this up the

hierarchy to a level accessible to a designer. RootCanal will resolve ambiguities such as over-

lapped instruction execution in software and multiple-instantiated modules in the hardware

design hierarchy. RootCanal also deals with discrepancies between the static source code

manipulated by the designer, and the runtime view on the system simulated and analyzed

by the methodology.

Power Simulation A RootCanal user will study the side-channel leakage over a given

system-level simulation interval, such as the rounds of a cipher. In the RootCanal prototype,

we use Cadence Joules as a power simulator. The system simulation interval is partitioned

into multiple frames so that RootCanal obtains equally-spaced power samples over the sys-

tem simulation interval. The Joules power simulator analyzes the gate-level activity of the

design over each frame in the system simulation interval to determine the average power con-

sumption of each gate within each frame. The technology-dependent gate-level power model

of Joules captures switching power, internal power, and leakage power. In our experiments,

we used a frame interval smaller than or equal to the clock period of the design under test.

The Joules power simulator takes every event within a frame into account to determine

the per-frame power estimate. For example, even at a low sample rate of one frame per

clock cycle, the power estimate for the frame still includes the power consumption caused

by glitches, a known cause of side-channel leakage [118]. The Joules power simulator models

the capacitive loading of gates with wire-load models during the initial high-level design.

Joules also uses capacitive loading estimated from the actual routing when the design layout

is available. A limitation of the Joules power simulator is that it ignores cross-coupling

186

capacitance, which may be responsible for masking order reduction on masked designs [42].

Architecture Correlation Analysis Architecture Correlation Analysis (ACA) is a tech-

nique to rank the gates in a hardware design according to their contribution to the side-

channel leakage. The gates are ranked based on a specific-leakage test using a leakage

model, or a non-specific leakage test [106]. RootCanal builds on top of non-specific ACA.

For a non-specific test, the stimuli are taken from two groups, leading to two groups of power

traces. The evaluation works in two steps.

1. Non-specific ACA compares the two groups of power traces with a Welch’s t-test and

flags the collection of frames over which a design leaks (|t| > 4.5) as the Leakage Time

Interval (LTI).

2. Non-specific ACA computes a toggle trace for each gate during the Leakage Time

Interval. A toggle trace encodes a gate’s output transitions over the LTI, where +1

indicates the presence of at least one transition and -1 indicates the absence. Non-

specific ACA correlates the toggle trace with the stimulus group identifier, which is -1

for a stimulus from the first group and +1 for a stimulus from the second group. This

group correlation thus expresses how consistently the activity of a gate predicts the

group during the leakage time interval. Unlike [106], the ranking used by RootCanal

does not apply gate weighing factors; we found their impact on ranking accuracy to

be minor compared to the overhead of computing them.

The leakage ranking of the gates is established by sorting the gates according to their group

correlation.

A designer using RootCanal will adjust the test stimuli according to the side-channel

leakage property under evaluation. The two groups of stimuli create an internal statistical

bias in the gate-level design that is subsequently detected by RootCanal. Table 9.1 shows

the stimuli used for the experimental work of the paper. A Value Leakage test evaluates if

187

✓
✘ ✘
✓

Step 1

RTL

Tech

Testing
strategy

Leaky tuple
Tl = (tl , gl)

SW code

…

Netlist Graph Analysis

Leaky unit
(ul)

Leaky stage
(sl)

…

Step 2

Time Instr

… …Time Instr

… …Time Instr

… …Time Instr

… …
F
Time Instr

… …

D
E
M

W

Leaky
instruction

(Il)

Leaky time
(tl)

Step 3 (if ul inside processor core)

Figure 9.2: Overall RootCanal flow

a sensitive input value will appear as side-channel leakage in SoC hardware or software, and

is evaluated as a fixed-versus-fixed value test. A Node Bias test evaluates the state of an

internal circuit node by partitioning random input stimuli in two groups according to the

internal node. This test helps to evaluate a hiding countermeasure. Finally, in a Masking

test, a designer tests the correct implementation of a masking scheme using a fixed-vs-random

test for input values. The current RootCanal prototype only considers first-order leakage.

Extending RootCanal to higher-order leakage testing will require extending non-specific ACA

with higher-order testing criteria [137].

Table 9.1: The non-specific tests used for RootCanal compare power traces from Group 1
against Group 2. NAMES in capitals denote inputs. The Node Bias test uses Random
INPUT in both groups.

Test Group 1 Group 2 Purpose

Value Leakage Fixed VALUE1 Fixed VALUE2 Testing of VALUE Leakage
Node Bias internal bit=0 internal bit=1 Testing of Hiding
Masking Random INPUT Fixed INPUT1, INPUT2, .. Testing of Masking

188

RISC-V DMA

UART

Bus Interface

GPIO AES

I
mem

D
mem

instruction

fetch

FD

P
C

in
st

r

Control Unit

flush, stall

Reg.

File

instruction

decode

P
C

o
p
er

an
d

DE

m
em

flush, stall, …

ALU

P
C

stall

A
L

U
 r

es
u
lt

m
em

EM

mem

issue

mem

receive

bus

intfc

P
C

flush

A
L

U
 r

es
u
lt

lo
ad

 d
at

a

MW

write_data

write_data

A
LU

 re
su

lt
A

LU
 re

su
lt

bus

intfc

b
ra

n
ch

Figure 9.3: Block diagram of RISCV-SoC and its five-stage RISC-V processor. Resources
from different pipeline stages are shown in different colors in the processor core. The gray
blocks in the SoC (instruction and data memories) are modeled in the testbench (not syn-
thesized).

9.3 Methodology

RootCanal finds the source (in hardware and software) of power side-channel leakage from

an SoC by a three-step process. Figure 9.2 shows the overall structure of the RootCanal

methodology. Root cause analysis starts by performing a gate-level side-channel leakage

assessment on the design to obtain a set of leakage tuples Tl = (tl, gl), with tl and gl indicating

the time and gate that cause side-channel leakage (Step 1 in Figure 9.2).

Knowing the leaky gate (gl) without its relation to the RTL design does not provide the

secure hardware designer with useful information about the design. Therefore, we introduce

a Netlist Graph Analysis (NGA) methodology to find the unit in the design to which the

leaky gate gl belongs, i.e., a leaky unit ul. In case the processor core in the SoC is pipelined,

189

NGA also reports the pipeline stage to which gl belongs, i.e., leaky stage sl (Step 2 in

Figure 9.2)

Furthermore, when the leakage stems from inside the processor core, it is helpful to know

which instruction (or interaction of a group of instructions) has caused the observed leakage.

To find the instructions causing a specific leakage tuple Tl = (tl, gl), we log the instructions

per clock cycle (per pipeline stage) and find the instruction running in the processor (in the

leaky stage sl) during the leaky time tl (Step 3 in Figure 9.2).

In the rest of this section, we elaborate each step of RootCanal. We first describe how

the leaky tuples are detected. We further explain how these tuples are translated into the

leaky unit of the circuit and instructions that cause the leakage. Throughout this section

we use RISCV-SoC (Figure 9.3) as the running example. We refer to the pipeline stages

as F, D, E, M, and W which respectively stand for fetch, decode, execute, memory, and

write-back. We refer to the pipeline stage registers in two-letter words showing the pipeline

stages surrounding the register (e.g. EM is the pipeline register between stages E and M as

shown in Figure 9.3)

9.3.1 Step 1: Finding Leaky Time-Gate Tuples

In the first step (Figure 9.4), RootCanal uses ACA to find the leakage tuples. First, the

software source code is compiled and loaded on the synthesized netlist. Next, we prepare

two groups of stimuli depending on the planned type of non-specific test (Table 9.1). We

then simulate the netlist’s switching activity using the Cadence Xcelium simulator and save

the result in value change dump (VCD) format. Using a power simulator, Cadence Joules,

we then collect the power traces for all chosen stimuli. ACA then analyzes the power traces

and the VCD files to determine the leaky time-gate tuples.

190

link &

compile

exec.
binarySW code

RTL design
synthconstraints

tech library
netlist

load bin.

to netlist

GCC

Genus

Xcelium

programmed
SoC netlist

gate-level

sim

chosen stimuli

switching
activity
vcd

Xcelium

power

sim

Joules

power
traces ACA

Python

Leaky tuples
Tl = (tl , gl)

Figure 9.4: Layout of step 1 in RootCanal

9.3.2 Step 2: Finding Leaky Units

To do a root-cause analysis of the leakage, we need to trace back the location of each leaky

gate in the design. Commercial synthesis tools and open-source synthesis tools, such as

Yosys, support tracking of each gate in the synthesized netlist to their RTL source file. In

our tool-chain, for example, we use Cadence Genus for gate-level synthesis, which supports

the synthesis attribute hdl track filename row col to trace the location of each gate in

the synthesized netlist back to the RTL source file.

However, there are two problems with the source code tracking in synthesis tools. First,

the reported RTL location can be incorrect for highly-optimized circuits. For example, in

our experiments with RISCV-SoC (Figure 9.3), we observed many gates in the netlist being

attributed mistakenly to the ALU in the processor core. Second, the tools only record the

source RTL file name (and line number) of the lowest hierarchy level. Therefore, gates be-

longing to different instances of the same module appear to come from the same RTL source.

For example, the RISC-V core in Figure 9.3 uses a common pipeline register module (defined

in pipeline register.v) in every pipeline stage; therefore, the tool traces the synthesized

gates from pipeline registers in different stages to the same pipeline register.v RTL file.

191

R1

C1

C2 R2

N2

N1
N3

N4

N5

N6 N7

fan-in
register

fan-out
registertiming

path

(a) Example circuit

R1

C1

C2 R2

N2

N1
N3

N4

N5

N6 N7

fan-in
register

fan-out
registertiming

path N1
N3

R1 N4C1

N2
C1 N6

N5

C2

C2

N7R2

(b) Corresponding netlist graph

Figure 9.5: An example for timing path, fan-in register, fan-out register, and gate-level
netlist graph.

The first problem can be reduced or possibly overcome by preserving the hierarchy of

some modules in the design. However, for our purpose, this solution is suboptimal. It

interferes with the default synthesis flow and prevents the highest level of optimization of

the circuit (incurring higher delay and area). Instead, we introduce a Netlist Graph Analysis

(NGA) methodology to detect the source of a synthesized gate in a design, which overcomes

both of the mentioned problems.

Definitions

We use the following definitions to describe NGA.

Timing path. A path, in the gate-level netlist, starting from the output of a sequential

cell and ending at the input of a sequential cell. The red dashed line in Figure 9.5a shows a

timing path consisting of the nets {N3, N4, N6}.

Fan-in register. Register R is a fan-in register to logic cell C if there is a path in the

gate-level netlist from the output of R to the input of C. In Figure 9.5a, R1 is a fan-in

register for cells C1 and C2.

192

.

...
...

fan-in

registers

src1
src2

srcn

...
Leaky gate

(gl)...
fan-out

registers

snk1
snk2

snkm

...
...

...
fan-in

registers

src1
src2

srcn

...
Leaky gate

(gl)
fan-out

registers

snk1
snk2

snkm

...

...
...

fan-in
registers

src1
src2

srcn

...
Leaky gate

(gl)
fan-out
registers

snk1
snk2

snkm

...

...
...

fan-in
registers

(src)

src1
src2

srcn

...
Leaky gate

(gl)

fan-out
registers

(snk)

snk1
snk2

snkm
..

Figure 9.6: NGA uses fan-in and fan-out registers for each gate to determine its approximate
location in the design.

Fan-out register. Register R is a fan-out register to logic cell C if there is a path in the

gate-level netlist from the output of C to the input of R. In Figure 9.5a, R2 is a fan-out

register for cells C1 and C2.

Gate-level netlist graph. A directed graph representation of the gate-level netlist in

which nodes represent the nets of the netlist and the edges connect all cell inputs (barring

the input clock) to the cell’s output. Figure 9.5b shows the netlist graph for the circuit in

Figure 9.5a.

Netlist Graph Analysis

NGA finds the design unit of a gate in the netlist by locating the gate’s fan-in registers and

fan-out registers and then inferring the gate’s design unit from the registers’ design units.

Synthesis tools optimize the combinatorial logic between registers to increase the maximum

frequency of the design. This optimization may omit/combine much of the combinatorial

logic in the design. However, the sequential cells remain in the final netlist, and they offer

a stable connection between the RTL and gate-level netlist. Our graph analysis technique

relies on the register instance names in the synthesized netlist. These names reveal the

register’s location in the design (including module instance, hierarchy, and original RTL

name). Some synthesis tools preserve the register names by default, while other synthesis

tools require a synthesis switch. To locate the fan-in and fan-out registers for gates in a

circuit, we add a step at the end of synthesis to report the starting and ending point of

193

Algorithm 2 Single-Phase NGA for an SoC with Multi-Cycle Processor

Input: src, snk ▷ src = fanin(gl), snk = fanout(gl)
Output: design unit to which gl belongs
procedure single phase nga(src, snk)

if (src ⊆ IPk) and (snk ⊆ IPk) then
return IPk

else
return B ▷ B: bus interface

end if
end procedure

timing paths containing each gate in the netlist.

For each given leaky gate gl, NGA reports its corresponding leaky unit ul (or leaky stage

sl) by using a set of design-specific rules. NGA views an SoC as a set of IPs connected to

each other through a bus (B): SoC = {IP1, ..., IPn, B}. Each IP in the SoC is outlined by

its registers: IPi = {ri,1, ..., ri,m}. The unit ul for each leaky gate gl is detected by comparing

the set of fan-in and fan-out registers for gl with the registers in the IPs. In Figure 9.6, we

label fan-in registers as srci and fan-out registers as snki. The set of rules and the steps

involved in NGA varies based on whether the processor core in the SoC is multi-cycle or

pipelined.

Multi-cycle processor core. A multi-cycle processor core executes only a single instruc-

tion at a time. Therefore, simply knowing the leaky gate gl is from inside the processor core

is enough to locate the instruction causing the leakage at time tl. To find the design unit

ul to which gl belongs, we treat a multi-cycle processor core like any other IP in the SoC.

Algorithm 2 determines the design unit for a given leaky gate gl, given the set of its fan-in

and fan-out registers (src and snk respectively). If all of gl’s srcs and snks are from the

same IP, gl resides in that IP. Otherwise, it belongs to the bus interface.

194

Algorithm 3 Phase A of NGA for pipelined processor

Input: src, snk ▷ src = fanin(gl), snk = fanout(gl)
Output: design unit to which gl belongs
procedure nga phase a(src, snk)

if (src ⊆ IPk) and (snk ⊆ IPk) then
return IPk

else if ({src ∪ snk} ⊆ ∪n
k=1IPk) then

return B (IP to IP) ▷ B: bus interface
else if ((∃i srci ∈ CPU) and (∃i srci ∈ ∪nk=1IPk))

or ((∃i snki ∈ CPU) and (∃i snki ∈ ∪nk=1IPk)) then
return B (interconnect between IP and processor)

else
return ∅

end if
end procedure

Pipelined processor core. A pipelined processor supports overlapped execution of in-

structions, with each instruction allocated to a different pipeline stage at a given clock cycle.

Therefore, we need to know to which stage of the pipeline gl belongs in order to associate a

leaky gate with a leaky instruction. In an SoC with a pipelined processor, we differentiate

between the processor core and the other IPs: SoC = {IP1, ..., IPn, B, CPU}. A three-phase

NGA procedure is able to detect the unit ul for a leaky gate gl: (Phase A) Detect whether

gl is inside the processor; (Phase B) Detect the pipeline stage for gl; and (Phase C) Ensure

gl is not from the processor’s control unit.

NGA Phase A. We first identify using Algorithm 3 whether gl belongs to IPs other

than the processor. If all the srcs and snks for gl are from the same IP, gl belongs to that

IP. If all srcs and snks are from different IPs not including the CPU , gl belongs to the bus

interface between IPs. If either of the srcs or snks is from the CPU , while the other set is

from the IPs, gl is from the bus interface between the CPU and IP s. If gl is not identified

as belonging to IPs (Algorithm 3 returns ∅), we use phase B and phase C of NGA to detect

the pipeline stage sl for a leaky gate gl.

195

Algorithm 4 Phase B of NGA for pipelined processor

Input: netlist graph, gl
Output: pipeline stage to which gl belongs
procedure nga phase b(netlist graph, gl)

path wb← dijkstra path(netlist graph, gl, piperegMW)
r0 ← first reg(path wb)
if r0 ∈ piperegk+1 then ▷ piperegk+1: pipeline register after stagek

return stagek
else if r0 ∈ GPR then ▷ GPR: set of general purpose registers in reg. file

return W ▷ W : write-back stage
end if

end procedure
procedure first reg(path)

for edge ∈ path do
if edge is register then

return edge
end if

end for
end procedure

NGA Phase B. NGA finds the pipeline stage to which gl belongs as follows. First,

find the fan-out register in the path from gl to the committing stage of the pipeline (write-

back in Figure 9.3). Next, detect possible combination of different pipeline stages from gl’s

fan-in and fan-out registers. Algorithm 4 shows the procedure for phase B of NGA. For this

phase, we build the graph from the gate-level netlist and find the shortest path from the

output of gl to the output of the MW pipeline register using Dijkstra’s algorithm. Taking

the shortest path, prevents finding the path going through the control unit. We then find

the first pipeline or general-purpose register (r0) along this shortest path. If r0 is a general

purpose register (from the register file), gl belongs to the write-back stage. If r0 is a pipeline

register, the stage right before r0 is the stage where gl resides, unless gl is from the control

unit.

196

Algorithm 5 Phase C of NGA for pipelined processor

Input: stagek, src ▷ stagek = nga phase b(netlist graph, gl), src = fanin(gl)
Output: pipeline stage or control unit to which gl belongs
procedure nga phase c(stagek, src)

if src ⊆ {∪nk=1IPk ∪ piperegk} then ▷ piperegk: pipeline register before stagek
return stagek

else if (∃i, j srci ̸= srcj) and (stagek = D) then
return C (can be related to operand forwarding)

else if (∃i, j srci ̸= srcj) then
return C ▷ C: control unit

end if
end procedure

NGA Phase C. Phase C of NGA detects whether gl is from the control unit. The

control unit has inputs/outputs from/to all pipeline stages and breaks the independence

between stages (Figure 9.3). We follow Algorithm 5 and use the fan-in registers for gl and

the detected stagek from phase B to decide whether gl resides in the control unit.

If all of gl’s fan-in registers align with the detected stagek, we conclude gl belongs to

stagek. Otherwise, if fan-in registers to gl come from different units, gl belongs to the

control unit. For example, assume that a gate belongs to the operand forwarding logic. In

that case, the leakage observed from the gate can originate from any stage (or combination

of stages) that forwards data to the leaky gate (D,E,M,W).

9.3.3 Step 3: Finding Leaky Instructions

Figure 9.7 illustrates step 3 of RootCanal. To find the instruction that has caused a par-

ticular leakage, we use a log of instructions from the processor core simulation. In case

of a multi-cycle core, we log the program counter (PC) at every clock cycle. In case of a

pipelined processor, we log the PC for each stage separately. To support PC logging for the

processor core in Figure 9.3, we instrument the EM and MW stage registers with the PC

signal (highlighted in yellow in Figure 9.3) for an RTL simulation of the SoC running the

197

exec.
binary

disassemble

RTL simsample stimulus

disassembly

PC log
per stage

time/unit

matching

From step 2
Leaky unit/stage

(ul / sl)

From step 1
Leaky time

(tl)

PC

matching

leaky
stage &

PC

Leaky
instruction

(Il)

GCC

Xcelium

Python

Python

RTL design*

Figure 9.7: Layout of step 3 in RootCanal. The RTL design may need to be modified to
pass on the PC signal to all pipeline registers. The executable binary is generated in the
same way as in step 1.

programmed software.

With a log of instructions executed by clock cycle, it is straightforward to map the

leaky time tl (from step 1) and unit/stage ul/sl (from step 2) and find the leaky PC. By

disassembling the software binary file and looking up the leaky PC, the leaky instruction

(Il) is identified. When the detected ul is outside the processor core, the instruction in the

memory stage is flagged as the leaky instruction.

9.4 Experimental Results

This section demonstrates RootCanal’s capabilities using practical examples of pre-silicon

side-channel assessment. RootCanal uses simulated power traces at the gate level. Therefore,

RootCanal supports the side-channel leakage assessment of SoCs, including evaluating (first-

order) masking and hiding countermeasures at the level of software, RTL design, or gate level.

We highlight the ability of RootCanal to back-annotate the source of leakage from the gate

level to higher-level source code where a designer can interpret and act upon it. The following

four examples illustrate RootCanal’s capabilities in pre-silicon root-cause analysis of side-

198

channel leakage. We start with analyzing the interaction between embedded software and

a cryptographic hardware accelerator. Next, we demonstrate the impact of complementary

data encoding on the hiding properties of software. Finally, we present two cases where

RootCanal finds first-order flaws in masked software. Using RootCanal, we establish that

these masking flaws originate not from programming errors but side-effects in the underlying

hardware and compiler infrastructure.

The experiments study the power side-channel leakage in an SoC2. The SoC holds a

RISC-V processor, an AES-128 hardware accelerator, and a collection of peripherals in-

cluding DMA, UART and GPIO (Figure 9.3). The RISC-V processor has five pipeline

stages: instruction fetch, instruction decode and register access, execution, memory access,

and write-back. Using Cadence Genus, we synthesize this design with SkyWater 130nm

standard cell library for 50MHz frequency. RootCanal can be used with any standard cell

library for which the individual cell’s power and timing characteristics are available (Liberty

format). The SkyWater library is open source and therefore represents a low threshold for

access. Table 9.2 shows the details for synthesis. The data and instruction memory blocks

are modeled in the testbench and are not included in synthesis. The post-synthesis netlist

is used for all of the following experiments.

Table 9.2: Synthesis details for RISCV-SoC using Cadence Genus

Standard Cell Library Frequency Sequential Cells Logic Cells Total Cells

SkyWater 130nm 50MHz 8155 20742 29872

2Source codes, design files, scripts, and results for all experiments are available at https://github.com/
Secure-Embedded-Systems/rootcanal-ches2022.

199

https://github.com/Secure-Embedded-Systems/rootcanal-ches2022
https://github.com/Secure-Embedded-Systems/rootcanal-ches2022

2.5 3.0 3.5 4.0 4.5 5.0 5.5 Time (us)
0

10

20

30

40

780 7a4 7c4 7e0 7fc PC (Fetch)

Figure 9.8: (Example 1) Average simulated power trace for SoC programming and running
the AES hardware accelerator. The bottom X-scale links the power trace to Listing 9.2
through the value of the program counter (Fetch stage).

9.4.1 Example 1: Value-based Leakage in a System-on-Chip

The first example demonstrates the straightforward case of value-based leakage. The example

shows how a designer can study the side-channel impact of a secret value moving around in

the SoC architecture.

Setup

In this testbench, the RISC-V core reads a secret key and plaintext from memory, transfers

these as 32-bit words to the AES accelerator, starts the accelerator, waits for its completion,

and finally moves the ciphertext from the AES accelerator to memory. We simulate power

consumption traces of this testbench given two groups of inputs. In the first group, we fix

the key to all zeros while feeding 512 random plaintexts. In the second group, we set the key

to all ones while providing 512 random plaintexts. By calculating Welch’s t-test between the

two groups of traces, we identify the leaky time samples caused by a difference in key-value.

Listing 9.1 and Listing 9.2 show the C code and the corresponding assembly snippet gen-

erated with the RISC-V GCC (10.2.0) compiler with -O1 optimization flag. RootCanal ob-

tains power traces for the 1024 test vectors using Cadence Joules (one frame per clock cycle).

200

int main () {
// f i x e d expec ted memory address f o r key
int∗ key = (int ∗)0 x00000008 ;
// f i x e d expec ted memory address f o r pt
int∗ pt = (int ∗)0 x00000018 ;
// f i x e d expec ted memory address f o r c t
int∗ ct = (int ∗)0 x00000028 ;

t r i g g e r h i g h () ;

a e s ba s e add r e s s [1] = key [0] ; // send key word 0
a e s ba s e add r e s s [2] = key [1] ; // send key word 1
a e s ba s e add r e s s [3] = key [2] ; // send key word 2
a e s ba s e add r e s s [4] = key [3] ; // send key word 3

a e s ba s e add r e s s [5] = pt [0] ; // send p l a i n t e x t word 0
a e s ba s e add r e s s [6] = pt [1] ; // send p l a i n t e x t word 1
a e s ba s e add r e s s [7] = pt [2] ; // send p l a i n t e x t word 2
a e s ba s e add r e s s [8] = pt [3] ; // send p l a i n t e x t word 3

a e s ba s e add r e s s [0] = 0x00000006 ; // r e s e t and s t a r t AES
a e s ba s e add r e s s [0] = 0x00000004 ; // undo r e s e t

while (a e s ba s e add r e s s [1 7] != 0x00000001) ; // p o l l f o r AES complet ion

// Read r e s u l t from coprocessor and wr i t e to memory :
for (i =0; i <4; i++)

ct [i] = ae s ba s e add r e s s [13+ i] ;

t r i g g e r l ow () ;
}

Listing 9.1: Firmware used for running the AES accelerator to simulate power traces

Figure 9.8 shows the average simulated power trace for the activity shown in Listing 9.2.

RootCanal uses the power traces to determine the leaky instructions and the leaky hardware

modules in the design by following Architecture Correlation Analysis and Netlist Graph

Analysis.

Results

As expected for an unprotected implementation, there are numerous leaky time intervals

with extremely high t-values as high as 5.109.

Leakage from Software Listing 9.2 summarizes the leakage sources identified by Root-

Canal from the perspective of the software, i.e., based on leakage from cells inside the pro-

201

00000740 <main>:
. . .
780 : lw a3 , 0 (a4) # FDEMW # load key word 0 from RAM
784 : sw a3 , 4 (a5) # FDEMW # send key word 0 to AES
788 : lw a3 , 4 (a4) # FDEMW # load key word 1 from RAM
78c : sw a3 , 8 (a5) # FDEMW # send key word 1 to AES
790 : lw a3 , 8 (a4) # FDEMW # load key word 2 from RAM
794 : sw a3 , 1 2 (a5) # FDEMW # send key word 2 to AES
798 : lw a4 , 1 2 (a4) # FDEMW # load key word 3 from RAM
79c : sw a4 , 1 6 (a5) # FDEMW # send key word 3 to AES
7a0 : addi a4 , zero , 24 # FDEMW
7a4 : lw a3 , 0 (a4) # FDEMW # load pt word 0 from RAM
7a8 : sw a3 , 2 0 (a5) # FDEMW # send pt word 0 to AES
7ac : lw a3 , 4 (a4) # FDEMW # load pt word 1 from RAM
7b0 : sw a3 , 2 4 (a5) # FDEMW # send pt word 1 to AES
7b4 : lw a3 , 8 (a4) # FDEMW # load pt word 2 from RAM
7b8 : sw a3 , 2 8 (a5) # FDEMW # send pt word 2 to AES
7bc : lw a4 , 1 2 (a4) # FDEMW # load pt word 3 from RAM
7c0 : sw a4 , 3 2 (a5) # FDEMW # send pt word 3 to AES
7c4 : addi a4 , zero , 6 # FDEMW
7c8 : sw a4 , 0 (a5) # FDEMW # as s e r t s t a r t s i g n a l
7 cc : addi a4 , zero , 4 # FDEMW
7d0 : sw a4 , 0 (a5) # FDEMW # dea s s e r t s t a r t s i g n a l
7d4 : addi a3 , zero , 1 # FDEMW
7d8 : lw a4 , 6 8 (a5) # FDEMW # read AES s ta tu s s i g n a l
7dc : bne a4 , a3 , 7 d8 # FDEMW # i f AES not done loop back
7e0 : lw a4 , 5 2 (a5) # FDEMW # read ct word 0 from AES
7e4 : sw a4 , 4 0 (zero) # FDEMW # sto r e ct word 0 to RAM
7e8 : lw a4 , 5 6 (a5) # FDEMW # read ct word 1 from AES
7 ec : sw a4 , 4 4 (zero) # FDEMW # sto r e ct word 1 to RAM
7 f0 : lw a4 , 6 0 (a5) # FDEMW # read ct word 2 from AES
7 f4 : sw a4 , 4 8 (zero) # FDEMW # sto r e ct word 2 to RAM
7 f8 : lw a5 , 6 4 (a5) # FDEMW # read ct word 3 from AES
7 f c : sw a5 , 5 2 (zero) # FDEMW # sto r e ct word 3 to RAM
. . .

Listing 9.2: (Example 1) Assembly code of the firmware for AES accelerator.
Blue letters indicate leaky pipeline stages.

cessor core. The primary source of side-channel leakage stems from instructions that load

the key from memory (instr. 780, 788, 790, 798), namely in the memory stage by ac-

cessing RAM (FDEMW) and in the write-back stage by writing into the processor register file

(FDEMW). Additional leakage stems from writing the key values to the AES hardware acceler-

ator (instr. 784, 78c, 794, 79c), namely from the decode (FDEMW), execute (FDEMW), and

memory stages of these instructions. Indeed, each instruction reads a secret-key part from

the register file in the decode stage, moves it through the execute stage to the memory stage,

and finally writes it to the AES coprocessor register.

RootCanal flags two additional leaky instructions immediately following the key loading

202

(instr. 7a4, 7a8). These leakages are from different pipeline stages but map to the same

time sample. They are both caused by overwriting a storage buffer in the memory stage,

which causes transitional leakage from the key-value (remaining from instr. 79c) to the

first plain-text word. The output of this buffer is forwarded to the decode stage (operand

forwarding), resulting in the leakage in the decode stage of the next instruction 7a8.

Leakage from Hardware In addition to the instructions listed above, RootCanal also

flags the following hardware modules as leaky:

1. While reading the key from memory, gates from the bus structure show leakage.

2. When the processor writes the secret key to the AES accelerator, the bus interconnec-

tions and interfaces of the SoC modules attached to the bus (DMA, UART, and AES)

generate side-channel leakage.

3. When AES is running, gates in the AES core create leakage.

This first example on analysis of known leakage serves as a sanity check for the method-

ology. Thanks to the automated back-annotation, RootCanal reduces the manual overhead

in the analysis of side-channel leakage.

9.4.2 Example 2: Testing Bit-Sliced Data Encoding in Software

Hiding

The second example demonstrates how RootCanal helps evaluate redundancy encoding

schemes. Redundancy schemes are popular as fault-detection technique but the redundancy

itself may be a source of side-channel leakage. Using RootCanal, a designer can compare

alternate encodings.

203

7f8 828 PC (Fetch)

Sample

7bc 7d4

bit 0 bit 1

Figure 9.9: (Example 2) Average simulated power traces and TVLA results for redundant
encoding schemes on bit-sliced PRESENT SBox

Setup

We use RootCanal to compare the side-channel impact of two fault encoding schemes presen-

ted in SKIVA [101]. SKIVA proposed two bit-sliced redundancy schemes to detect faults.

The redundant copy can be either a direct copy or an inverted version of the reference slice.

The rationale for the latter scheme, complementary redundancy, is that it creates a hid-

ing effect that may lead to lower side-channel leakage than direct redundancy. Bit-sliced

software computations use bit-wise instructions. To compute complementary redundant bit-

slices and perform fault checking, SKIVA introduces new instructions. We integrated these

instructions into our RISC-V SoC.

We compare three bit-sliced implementations of the PRESENT SBox [33]. They use

no redundancy (32 parallel runs), direct redundancy (16 parallel runs), and complementary

redundancy (16 parallel runs), respectively. The input data is random but replicated appro-

priately according to each implementation’s selected redundancy scheme (no redundancy,

204

Unprot . Red . Red .
Direc t Complementary
FDEMW FDEMW FDEMW

. . .
7bc : lw a4 , 8 (a1) # FDEMW FDEMW FDEMW
7c0 : xo r i t5 , a4 ,−1 # FDEMW FDEMW FDEMW
7c4 : xo r i t1 , t4 ,−1 # FDEMW FDEMW FDEMW
7c8 : and t1 , t1 , a4 # FDEMW FDEMW FDEMW
7cc : xor a4 , a3 , a5 # FDEMW FDEMW FDEMW
7d0 : xo r i t1 , t1 ,−1 # FDEMW FDEMW FDEMW
7d4 : xor t1 , t1 , a4 # FDEMW FDEMW FDEMW
7d8 : sw t1 , 0 (a0) # FDEMW FDEMW FDEMW
. . .

Listing 9.3: (Example 2) Assembly code of the leaky parts of bit-sliced PRESENT SBox
calculating bit 0 of output. Blue letters indicate leaky pipeline stages.

Unprot . Red . Red .
Direc t Complementary
FDEMW FDEMW FDEMW

. . .
7 f 4 : lw t1 , 1 2 (a1) # FDEMW FDEMW FDEMW
7 f8 : xo r i t1 , t1 ,−1 # FDEMW FDEMW FDEMW
7 f c : x o r i t2 , t2 ,−1 # FDEMW FDEMW FDEMW
800: and t1 , t1 , t2 # FDEMW FDEMW FDEMW
. . .
810 : and a4 , a4 , t3 # FDEMW FDEMW FDEMW
814 : and t0 , a5 , t0 # FDEMW FDEMW FDEMW
818 : xo r i a4 , a4 ,−1 # FDEMW FDEMW FDEMW
81c : and a4 , a4 , t0 # FDEMW FDEMW FDEMW
820 : xo r i t1 , t1 ,−1 # FDEMW FDEMW FDEMW
824 : xo r i a4 , a4 ,−1 # FDEMW FDEMW FDEMW
828 : and a4 , t1 , a4 # FDEMW FDEMW FDEMW
82 c : sw a4 , 4 (a0) # FDEMW FDEMW FDEMW
. . .

Listing 9.4: (Example 2) Assembly code of the leaky parts of bit-sliced PRESENT SBox
calculating bit 1 of output. Blue letters indicate leaky pipeline stages.

direct redundancy, and complementary redundancy). We feed the same 1024 random inputs

to each scheme and simulate power traces. Figure 9.9 shows the average simulated traces

over all inputs.

Results

We use the node bias test on a single output bit of the PRESENT SBox, which will split the

1024 test traces into two groups of roughly equal size. The bit-sliced computation evaluates

32 or 16 SBoxes in parallel, depending on the redundancy level. Hence, rather than deciding

205

the group on a single output bit, we use a majority vote over the corresponding output bit

of all parallel SBoxes. We do the same experiment for bit 0 and bit 1 of the four-bit output

of PRESENT SBox.

As shown in Figure 9.9, the maximum t-value (at sample number 33 and 47 for output bit

0 and 1 respectively) is the highest for direct redundancy and the lowest for complementary

redundancy. Furthermore, the leaky frame count for output bit 0 (resp. output bit 1) is 6, 7,

and 5 (resp. 29, 32, and 13) for unprotected, direct redundancy, and complementary redund-

ancy schemes. Thus, the side-channel leakage level degrades when using direct redundancy

and improves when using complementary redundancy.

Leakage from Software Listing 9.3 and Listing 9.4 show the parts of the assembly codes

that cause leakage and the leaky stages detected for each instruction by RootCanal in each

redundancy scheme for calculating bit 0 and bit 1 of the PRESENT SBox output. The direct

redundancy scheme degrades the side-channel leakage over the unprotected scheme because

more pipeline stages and instructions are affected. The complementary redundancy scheme

reduces the side-channel leakage but does not eliminate it. As an imperfect hiding-based

countermeasure, this is an expected result.

9.4.3 Example 3: Debugging Masking – across HW/SW Bound-

aries

The third example describes the analysis of a masking flaw across the boundaries of hardware

and software. Using RootCanal we identified the cause and were able to formulate a potential

solution.

206

350 352 354 356 358 360 362 364

2

3

4
Po

we
r (

m
W

)

350 352 354 356 358 360 362 364
Time (us)

0

5

10

15

T-
va

lu
e

Figure 9.10: (Example 3) Average simulated power trace and TVLA result for the byte-
masked AES example

Setup

We analyze an open-source byte-masked software implementation3 of AES [171] that was

previously shown to suffer from transition-based leakage [141, 70]. We analyze the power side-

channel leakage of the initial AddRoundKey and the first round SubBytes. Listing 9.5 shows

the assembly code for the body of the loops in addRoundKey masked and subBytes masked

functions (RISC-V GCC (10.2.0) with -O1 optimization flag). To evaluate this masked

implementation, we use the non-specific fixed vs. random TVLA on 1024 random inputs

and 1024 fixed inputs. The testbench reseeds PRNG with different and random initial states

for each power simulation to ensure that different masks are used for different power traces.

3https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation/tree/master/

Byte-Masked-AES

207

https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation/tree/master/Byte-Masked-AES
https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation/tree/master/Byte-Masked-AES

000009b4 <addRoundKey masked>:
. . .
9 cc : lbu a2 , 0 (a4) # FDEMW # load s t a t e byte
9d0 : lbu a5 , 0 (a3) # FDEMW # load RoundKey masked byte
9d4 : xor a5 , a5 , a2 # FDEMW # sta t e ˆ RoundKey masked
9d8 : andi a5 , a5 ,255 # FDEMW # (s t a t e ˆ RoundKey masked) & 0 x f f
9dc : sb a5 , 0 (a4) # FDEMW # update s t a t e
9e0 : addi a4 , a4 , 1 # FDEMW
. . .

00000 c84 <subBytes masked>:
. . .
c90 : lbu a5 , 0 (a0) # FDEMW # load s t a t e
c94 : andi a5 , a5 ,255 # FDEMW # sta t e & 0 x f f
c98 : add a5 , a4 , a5 # FDEMW
c9c : lbu a5 , 352 (a5) # FDEMW # load Sbox masked
ca0 : sb a5 , 0 (a0) # FDEMW # update s t a t e
ca4 : addi a0 , a0 , 1 # FDEMW
ca8 : bne a0 , a3 , c90 # FDEMW # i f not done loop back
. . .

Listing 9.5: (Example 3) Assembly code of the byte-masked AES.
Blue letters indicate leaky pipeline stages.

Results

We perform the fixed vs. random TVLA test three times, each time with a new randomly

chosen fixed value. Figure 9.10 shows the average power trace with the result of the TVLA

test, taken as the maximum t-value for each sample among the three tests.

Leakage from Software RootCanal marks instruction 9dc from the addRoundKey masked

function and instruction ca0 from the subBytes masked function as the origin of side-channel

leakage. In both cases, leakage happens during the memory stage of the instruction, pointing

at leakage from the bus connection to the RAM. The sb (store byte) instructions in consec-

utive iterations of both of the loops overwrite the previous state byte. For instance, in the

208

first iteration of the loop, the sb instruction at 9dc writes V0 to RAM.

V0 = (state[0]⊕Mask[6])⊕RoundKey masked[0][0]

= (state[0]⊕Mask[6])⊕ (RoundKey[0][0]⊕Mask[6]⊕Mask[4])

= state[0]⊕RoundKey[0][0]⊕Mask[4]

In the next iteration of the loop, the sb instruction at 9dc writes V1 to RAM.

V1 = (state[1]⊕Mask[7])⊕RoundKey masked[0][1]

= (state[1]⊕Mask[7])⊕ (RoundKey[0][1]⊕Mask[7]⊕Mask[4])

= state[1]⊕RoundKey[0][1]⊕Mask[4]

The TVLA analysis hints at transitional leakage from this memory write operation.

Indeed, this transitional leakage is proportional to the distance from V0 to V1 which is

dependent on the plain (unmasked) values of two state and RoundKey bytes.

V0 ⊕ V1 = (state[0]⊕RoundKey[0][0]⊕Mask[4])

⊕ (state[1]⊕RoundKey[0][1]⊕Mask[4])

= state[0]⊕RoundKey[0][0]⊕ state[1]⊕RoundKey[0][1]

In a similar fashion, instruction ca0 in consecutive loop iterations causes transitional

leakage. For instance, during the last iteration of the loop, two consecutive masked SBox

209

d_mem_data_in

Memory stage

DMA

Bus
RAM

data_in

interface_d_mem_data_in_reg

Figure 9.11: Leaking circuit in byte-masked software AES

values S0 and S1 are stored in memory, causing transitional leakage proportional to S0⊕S1.

S0 = sbox[state[14]⊕RoundKey[0][14]]⊕Mask[5]

S1 = sbox[state[15]⊕RoundKey[0][15]]⊕Mask[5]

S0 ⊕ S1 = sbox[state[14]⊕RoundKey[0][14]]⊕ sbox[state[15]⊕RoundKey[0][15]]

Leakage from Hardware RootCanal can also explain why this transitional leakage res-

ulting in unmasking occurs. To store data to the memory, the processor will first store

the data in an interface register as part of the bus access protocol. The contents of this

register will then move to the net connected to the data input port of the memory. Fig-

ure 9.11 shows a simplified diagram of the bus interface circuit. RootCanal flags the

components shown in red as the root cause of side-channel leakage. These components

include the interface d mem data in reg register as well as the multiplexer (implemen-

ted as sky130 fd sc hd a22o 1 gate from SkyWater 130nm standard cell library). Leak-

age from this part of the circuit is present when instruction 9dc (resp. ca0) is in the

memory stage of the processor pipeline during the execution of addRoundKey masked (resp.

subBytes masked) function.

To avoid the aforementioned leakages, the contents of the interface d mem data in reg

210

8 10 12 14 16 18 20 22

2

3

4

5
Po

we
r (

m
W

)

8 10 12 14 16 18 20 22
Time (us)

0

2

4

6

T-
va

lu
e

Figure 9.12: (Example 4) Average simulated power trace and TVLA result for bit-sliced
masked PRESENT SBox

register should be cleared (zeroized or randomized [71]) between consecutive iterations of

the loops in both functions. A simple software approach, for example, is to insert dummy

store operations at the end of each iteration, sending random data to this register.

9.4.4 Example 4: Debugging Masking –When The Compiler Trips

Up

The final example demonstrates a masking flaw introduced by compiler optimization.

RootCanal identifies the location of the leakage in software, and through inspection we were

able to explain its cause.

211

stat ic void i sw mult (u i n t 32 t ∗ res , const u in t 32 t ∗op1 , const u in t 32 t ∗op2) {
int i , j ;
u i n t 32 t rnd ;

for (i =0; i<MASKINGORDER; i++) {
r e s [i] = 0 ;

}

for (i =0; i<MASKINGORDER; i++) {
r e s [i] ˆ= op1 [i] & op2 [i] ;

for (j=i +1; j<MASKINGORDER; j++) {
rnd = get random () ;
r e s [i] ˆ= rnd ;
r e s [j] ˆ= (rnd ˆ (op1 [i] & op2 [j])) ˆ (op1 [j] & op2 [i]) ;

}
}

}

Listing 9.6: (Example 4) ISW multiplication used in non-linear operations in the bit-sliced
masked PRESENT SBox

Setup

In this experiment, we analyze the power side-channel leakage of RISC-V SoC while running

bit-sliced masked implementation of the SBox used in the PRESENT cipher. We generate the

masked bit-sliced PRESENT SBox using the usuba compiler following the instructions from

Tornado [26]. The non-linear operations in the generated code use the masked multiplication

introduced by Ishai et al. [89] (isw mult() shown in Listing 9.6 and Listing 9.7 compiled by

RISC-V GCC and -O1 flag). As our leakage test, we use the non-specific fixed vs. random

TVLA on 1024 random and 1024 fixed inputs.

Results

Figure 9.12 shows the average of the simulated power traces and the TVLA result.

Leakage from Software RootCanal flags instructions 160, 164, 168 from the isw mult

function as causes of leakage. Leakage from instruction 160 has a micro-architectural cause.

The ALU result in the processor is switching from op2[1] & op1[0] (instr. 154) to op2[0]

& op1[1] (instr. 160). Even though different registers are used in these two instructions

212

. . .
140 : sw a5 , 0 (s0) # FDEMW # re s [0] = (op1 [0] & op2 [0]) ˆ rnd
144 : lw a5 , 4 (s2) # FDEMW # a5 = op2 [1]
148 : lw a4 , 0 (s1) # FDEMW # a4 = op1 [0]
14 c : and a5 , a5 , a4 # FDEMW # a5 = op2 [1] & op1 [0]
150 : lw a4 , 4 (s0) # FDEMW # a4 = re s [1] (a4 = 0)
154 : xor a5 , a5 , a4 # FDEMW # a5 = (op2 [1] & op1 [0]) ˆ 0
158 : lw a4 , 0 (s2) # FDEMW # a4 = op2 [0]
15 c : lw a3 , 4 (s1) # FDEMW # a3 = op1 [1]
160 : and a4 , a4 , a3 # FDEMW # a4 = op2 [0] & op1 [1]
164 : xor a5 , a5 , a4 # FDEMW # a5 = (op2 [1] & op1 [0]) ˆ (op2 [0] & op1 [1])
168 : xor a5 , a5 , a0 # FDEMW # a5 = a5 ˆ rnd
16 c : sw a5 , 4 (s0) # FDEMW # re s [1] = a5
170 : lw a4 , 4 (s2) # FDEMW # a4 = op2 [1]
174 : lw a3 , 4 (s1) # FDEMW # a3 = op1 [1]
178 : and a4 , a4 , a3 # FDEMW # a4 = op2 [1] & op1 [1]
17 c : xor a5 , a4 , a5 # FDEMW
180 : sw a5 , 4 (s0) # FDEMW # re s [1] = a5
. . .

Listing 9.7: (Example 4) Assembly code of the bit-sliced masked PRESENT SBox.
Blue letters indicate leaky pipeline stages.

(leakage not expected at ISA level), being two consecutive ALU instructions, their interme-

diate results collide in the pipeline registers.

The order of operations in the ISW multiplication gadget between the C code and the

compiler-generated assembly reveals the reason for the observed leakage from instructions

164, 168. Line 15 in the source code of isw mult first refreshes the partial product (op1[i]

& op2[j]) and only after this randomization, combines it with the other partial product

(op1[j] & op2[i]). However, the compiler has changed the order of this combination as

reordering consecutive xor operations is functionally correct due to xor’s associative property

(line 11 in Listing 9.7). The multiplication operands now depend on different shares of the

same variable, which creates side-channel leakage.

9.4.5 Analysis of Results

A major advantage of RootCanal is that it provides a systematic mechanism to present the

outcome of side-channel assessment in a format that is easier to understand for a designer.

In the pre-silicon white-box environment, the objective is not only to confirm the presence

213

Table 9.3: Summary of leakage observed in examples

Example Leaky Gates Leaky Frames Leaky Instructions

Example 1 9665 558 10
Example 2 - unprot (bit 0 / bit 1) 978/814 6/29 5/10
Example 2 - direct (bit 0 / bit 1) 1733/3157 7/32 5/11
Example 2 - compl (bit 0 / bit 1) 1717/2712 5/13 3/5
Example 3 68 28 2
Example 4 2706 3 3

Table 9.4: Execution time of RootCanal steps for each example

Example Synthesis Simulation Power Sim ACA Back Annotation Total

Example 1 20m 42 s 2h 14m 31s 9h 10m 6s 14m 17s 22m 55s 12h 22m 31s
Example 2 20m 13 s 13h 25m 45s 19h 57m 17s 10m 24s 8m 46s 1d 10h 2m 25s
Example 3 20m 1s 21h 24m 27s 2d 7h 24m 57s 17m 45s 15s 3d 5h 27m 25s
Example 4 22m 4h 42m 09s 22h 35m 35s 6m 5s 3m 3s 1d 3h 48m 52s
∗Xeon Gold 6248 CPU @ 2.50GHz, 384G Workstation

of side-channel leakage, but also to explain it. Table 9.3 illustrates the data reduction we

achieved for each design example. The design complexity of our RISC-V SoC is 29,872 cells

overall. In each of the examples, we are able to reduce a large collection of leaky gates to

only a handful of processor RISC-V instructions. The leakage assessment results for the

examples depend on every component of the technology stack, including compiler, micro-

architecture, and standard-cell library. Hence, changing any component of the stack may

affect the results. In all our design examples, we found that 1K test vectors is sufficient

to produce clear conclusions on a non-specific test. The relatively low number of traces is

explained by the noiseless simulation, and the limited design complexity (below 100K gates).

A pre-silicon technique brings up the important question of design tool performance. We

measure the execution time for each step involved in RootCanal by example in Table 9.4. The

synthesis step is common among the examples. The simulation step and power simulation

step complexity depend on the size of the netlist and on the length of the testbench. The

complexity of ACA depends on the size of the netlist, the number of samples in power traces,

214

and the number of leaky samples. The complexity of the back-annotation step depends on

the number of leaky gates and on the size of the netlist. There are multiple knobs available to

reduce the power simulation time. First, the power simulation is embarrassingly parallel over

the input vectors. Second, with additional designer input, the time window and the design

size can be decreased to a specific region of input, at the risk of possibly missing a source

of leakage by human error. Third, commercial power simulation tools are in our experience

not yet optimized for side-channel assessment, leading to large stimuli and result file sizes.

Hence, power simulation techniques could be tuned. Finally, one could reduce the accuracy

of the simulation and use for example toggle counts instead of gate-level power models. This

last option has limited advantage because it reduces the capability of RootCanal to identify

leakage sources.

9.5 Conclusion

Design automation is a crucial ingredient to scaling up successful design techniques for a large

community of designers. The advent of pre-silicon side-channel leakage assessment tools may

mean significant cost savings for new designs. But these savings can only be realized when

the output of the tools is accessible to the broader hardware design community. Root-

Canal demonstrates the feasibility of automatically determining the cause of side-channel

leakage at an abstraction level accessible to a designer. Like a source-level software debugger

that enables a programmer to debug software source code instead of machine instructions,

RootCanal aims to be a source-level side-channel leakage debugger. Future improvements to

RootCanal include improving the accuracy of power simulation with cross-coupling effects,

extending the toolbox of the non-specific tests, and extending the methodology for super

scalar architectures.

215

Bibliography

[1] Implementation of SIMON and SPECK lightweight block ciphers for the SUPERCOP
benchmark toolkit. https://github.com/nsacyber/simon-speck-supercop/tree/

master/crypto_stream/simon128128ctr/neon. Accessed: 10-12-2019.

[2] Abubakr Abdulgadir, William Diehl, and Jens-Peter Kaps. An open-source platform
for evaluation of hardware implementations of lightweight authenticated ciphers. In
David Andrews, René Cumplido, Claudia Feregrino, and Marco Platzner, editors, 2019
International Conference on ReConFigurable Computing and FPGAs, ReConFig 2019,
Cancun, Mexico, December 9-11, 2019, pages 1–5. IEEE, 2019.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Mi-
chael Emmi. Verifying constant-time implementations. In Thorsten Holz and Stefan
Savage, editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016, pages 53–70. USENIX Association, 2016.

[4] Alric Althoff, Joseph McMahan, Luis Vega, Scott Davidson, Timothy Sherwood, Mi-
chael Taylor, and Ryan Kastner. Hiding intermittent information leakage with architec-
tural support for blinking. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), pages 638–649. IEEE, 2018.

[5] Kapil Anand, Matthew Smithson, Aparna Kotha, Khaled Elwazeer, and Rajeev Barua.
Decompilation to compiler high ir in a binary rewriter. University of Maryland, Tech.
Rep, 2010.

[6] Krste Asanovic, David A Patterson, and Christopher Celio. The berkeley out-of-
order machine (BOOM): An industry-competitive, synthesizable, parameterized RISC-
V processor. Technical report, University of California at Berkeley Berkeley United
States, 2015.

[7] Krste Asanovic and Andrew Waterman. The risc-v instruction set manual. In Priv-
ileged Architecture, Document Version 20190608-Priv-MSU-Ratified, volume 2. RISC-
V Foundation, 2019.

[8] Aydin Aysu, Ege Gulcan, and Patrick Schaumont. SIMON says: Break area records
of block ciphers on FPGAs. IEEE Embedded Systems Letters, 6(2):37–40, 2014.

216

https://github.com/nsacyber/simon-speck-supercop/tree/master/crypto_stream/simon128128ctr/neon
https://github.com/nsacyber/simon-speck-supercop/tree/master/crypto_stream/simon128128ctr/neon

[9] Leonid Azriel, Julian Speith, Nils Albartus, Ran Ginosar, Avi Mendelson, and Christof
Paar. A survey of algorithmic methods in IC reverse engineering. J. Cryptogr. Eng.,
11(3):299–315, 2021.

[10] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86 executables.
In International conference on compiler construction, pages 5–23. Springer, 2004.

[11] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software implementations.
In International Conference on Smart Card Research and Advanced Applications, pages
64–81. Springer, 2014.

[12] Sahan Bandara, Alan Ehret, Donato Kava, and Michel A Kinsy. Brisc-v: An open-
source architecture design space exploration toolbox. arXiv preprint arXiv:1908.09992,
2019.

[13] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low
energy. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 411–436. Springer, 2015.

[14] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim,
and Yosuke Todo. Gift: a small present. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 321–345. Springer, 2017.

[15] Thierno Barry, Damien Couroussé, and Bruno Robisson. Compilation of a counter-
measure against instruction-skip fault attacks. In Proceedings of the Third Workshop
on Cryptography and Security in Computing Systems, pages 1–6, 2016.

[16] Gilles Barthe, Sonia Beläıd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Grégoire,
and François-Xavier Standaert. maskverif: Automated verification of higher-order
masking in presence of physical defaults. In Kazue Sako, Steve A. Schneider, and Peter
Y. A. Ryan, editors, Computer Security - ESORICS 2019 - 24th European Symposium
on Research in Computer Security, Luxembourg, September 23-27, 2019, Proceedings,
Part I, volume 11735 of Lecture Notes in Computer Science, pages 300–318. Springer,
2019.

[17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-
Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of masking schemes
and the bounded moment leakage model. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 535–566. Springer, 2017.

[18] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun. Ho-
rizontal side-channel attacks and countermeasures on the ISW masking scheme. In
International Conference on Cryptographic Hardware and Embedded Systems, pages
23–39. Springer, 2016.

217

[19] Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina. Abby: Automating
the creation of fine-grained leakage models. Cryptology ePrint Archive, 2021.

[20] Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina. ABBY: automat-
ing the creation of fine-grained leakage models. IACR Cryptol. ePrint Arch., page
1569, 2021.

[21] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason Smith,
and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[22] G. T. Becker et al. Test vector leakage assessment (tvla) methodology in practice. In
International Cryptographic Module Conference, 2013.

[23] George Becker, J Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, G Ken-
worthy, T Kouzminov, A Leiserson, M Marson, Pankaj Rohatgi, et al. Test vector
leakage assessment (TVLA) methodology in practice. In International Cryptographic
Module Conference, volume 1001, page 13, 2013.

[24] Arthur Beckers, Lennert Wouters, Benedikt Gierlichs, Bart Preneel, and Ingrid
Verbauwhede. Provable secure software masking in the real-world. In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages 215–235.
Springer, 2022.

[25] Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thil-
lard, and Damien Vergnaud. Randomness complexity of private circuits for multiplic-
ation. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 616–648. Springer, 2016.

[26] Sonia Beläıd, Pierre-Evariste Dagand, Darius Mercadier, Matthieu Rivain, and
Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure masked
bitsliced implementations. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 311–341. Springer, 2020.

[27] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, volume 41, page 46, 2005.

[28] Nicolas Belleville, Karine Heydemann, Damien Couroussé, Thierno Barry, Bruno
Robisson, Abderrahmane Seriai, and Henri-Pierre Charles. Automatic application of
software countermeasures against physical attacks. In Cyber-Physical Systems Security,
pages 135–155. Springer, 2018.

[29] Eli Biham. A fast new DES implementation in software. In International Workshop
on Fast Software Encryption, pages 260–272. Springer, 1997.

218

[30] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard,
and Johannes Winter. Formal verification of masked hardware implementations in the
presence of glitches. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 321–353. Springer, 2018.

[31] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard,
and Johannes Winter. Formal verification of masked hardware implementations in the
presence of glitches. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science,
pages 321–353. Springer, 2018.

[32] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher. In Pascal Pail-
lier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems
- CHES 2007, pages 450–466, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[33] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. Present: An ultra-
lightweight block cipher. In International workshop on cryptographic hardware and
embedded systems, pages 450–466. Springer, 2007.

[34] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of check-
ing cryptographic protocols for faults. In International conference on the theory and
applications of cryptographic techniques, pages 37–51. Springer, 1997.

[35] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques with
applications to cryptology. Journal of Cryptology, 26(2):280–312, 2013.

[36] Jean-Baptiste Bréjon, Karine Heydemann, Emmanuelle Encrenaz, Quentin Meunier,
and Son-Tuan Vu. Fault attack vulnerability assessment of binary code. In Proceedings
of the Sixth Workshop on Cryptography and Security in Computing Systems, pages 13–
18, 2019.

[37] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In International workshop on cryptographic hardware and embedded
systems, pages 16–29. Springer, 2004.

[38] I. Buhan et al. Sok: Design tools for side-channel-aware implementions. arXiv preprint
arXiv:2104.08593, 2021.

[39] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. Sok: Design tools
for side-channel-aware implementations. Cryptology ePrint Archive, Report 2021/497,
2021. https://ia.cr/2021/497.

219

https://ia.cr/2021/497

[40] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. Sok: Design tools
for side-channel-aware implementions. CoRR, abs/2104.08593, 2021.

[41] Paul Caspi, Stavros Tripakis, and Pascal Raymond. Synchronous programming., 2007.

[42] Zhimin Chen, Syed Haider, and Patrick Schaumont. Side-channel leakage in masked
circuits caused by higher-order circuit effects. In Jong Hyuk Park, Hsiao-Hwa Chen,
Mohammed Atiquzzaman, Changhoon Lee, Tai-Hoon Kim, and Sang-Soo Yeo, editors,
Advances in Information Security and Assurance, Third International Conference and
Workshops, ISA 2009, Seoul, Korea, June 25-27, 2009. Proceedings, volume 5576 of
Lecture Notes in Computer Science, pages 327–336. Springer, 2009.

[43] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural power sim-
ulator for leakage assessment of cryptographic software on ARM cortex-m3 processors.
In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-Channel Analysis
and Secure Design - 9th International Workshop, COSADE 2018, Singapore, April
23-24, 2018, Proceedings, volume 10815 of Lecture Notes in Computer Science, pages
82–98. Springer, 2018.

[44] CRYPTREC Lightweight Cryptography Working Group. CRYPTREC Cryptographic
Technology Guideline (Lightweight Cryptography), CRYPTREC Report March 2017.

[45] Joan Daemen, Michael Peeters, and Gilles Van Assche. Bitslice ciphers and power
analysis attacks. In International Workshop on Fast Software Encryption, pages 134–
149. Springer, 2000.

[46] Debayan Das, Mayukh Nath, Baibhab Chatterjee, Santosh Ghosh, and Shreyas Sen.
STELLAR: A generic EM side-channel attack protection through ground-up root-cause
analysis. In IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2019, McLean, VA, USA, May 5-10, 2019, pages 11–20. IEEE, 2019.

[47] Wouter de Groot, Kostas Papagiannopoulos, Antonio de La Piedra, Erik Schneider,
and Lejla Batina. Bitsliced masking and arm: Friends or foes? In International Work-
shop on Lightweight Cryptography for Security and Privacy, pages 91–109. Springer,
2016.

[48] Ronald De Keulenaer, Jonas Maebe, Koen De Bosschere, and Bjorn De Sutter. Link-
time smart card code hardening. International Journal of Information Security,
15(2):111–130, 2016.

[49] Elke De Mulder, Samatha Gummalla, and Michael Hutter. Protecting RISC-V against
side-channel attacks. In 2019 56th ACM/IEEE Design Automation Conference (DAC),
pages 1–4. IEEE, 2019.

[50] Jerry den Hartog, Jan Verschuren, Erik P. de Vink, Jaap de Vos, and W. Wiersma.
PINPAS: a tool for power analysis of smartcards. In SEC, pages 453–457, 2003.

220

[51] Siemen Dhooghe and Svetla Nikova. My gadget just cares for me - how nina can prove
security against combined attacks. In Stanislaw Jarecki, editor, Topics in Cryptology
– CT-RSA 2020, pages 35–55, Cham, 2020. Springer International Publishing.

[52] Siemen Dhooghe and Svetla Nikova. My gadget just cares for me - how NINA can prove
security against combined attacks. In Stanislaw Jarecki, editor, Topics in Cryptology
- CT-RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020, San Fran-
cisco, CA, USA, February 24-28, 2020, Proceedings, volume 12006 of Lecture Notes in
Computer Science, pages 35–55. Springer, 2020.

[53] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. rev.ng: a unified binary
analysis framework to recover CFGs and function boundaries. In Proceedings of the
26th International Conference on Compiler Construction, pages 131–141, 2017.

[54] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl,
and Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things.
Journal of Cryptographic Engineering, 9(3):283–302, 2019.

[55] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon
v1. 2. Submission to the CAESAR Competition, 2016.

[56] Stephen A. Edwards, Sungjun Kim, Edward A. Lee, Isaac Liu, Hiren D. Patel, and
Martin Schoeberl. A disruptive computer design idea: Architectures with repeatable
timing. In 27th International Conference on Computer Design, ICCD 2009, Lake
Tahoe, CA, USA, October 4-7, 2009, pages 54–59. IEEE Computer Society, 2009.

[57] T. El Motassadeq. Ccs vs nldm comparison based on a complete automated correl-
ation flow between primetime and hspice. In 2011 Saudi International Electronics,
Communications and Photonics Conference (SIECPC), pages 1–5. IEEE, 2011.

[58] Goodwill et al. A testing methodology for side-channel resistance validation. In NIST
non-invasive attack testing workshop, volume 7, pages 115–136, 2011.

[59] He et al. RTL-PSC: automated power side-channel leakage assessment at register-
transfer level. In 37th IEEE VLSI Test Symposium, VTS 2019, Monterey, CA, USA,
April 23-25, 2019, pages 1–6, 2019.

[60] Mangard et al. Side-channel leakage of masked cmos gates. In Cryptographers’ Track
at the RSA Conference, pages 351–365. Springer, 2005.

[61] SLPSK et al. Karna: A gate-sizing based security aware eda flow for improved
power side-channel attack protection. In Proceedings of the International Conference
on Computer-Aided Design, ICCAD 2019, Westminster, CO, USA, November 04-07,
2019.

221

[62] Tiri et al. A logic level design methodology for a secure dpa resistant asic or fpga
implementation. In Proceedings Design, Automation and Test in Europe Conference
and Exhibition, volume 1, pages 246–251. IEEE, 2004.

[63] Yao et al. Architecture correlation analysis: Identifying the source of side-channel
leakage at gate-level. In IEEE International Symposium on Hardware Oriented Security
and Trust (HOST 2020). IEEE, 2020.

[64] Muhammad Arsath K. F, Vinod Ganesan, Rahul Bodduna, and Chester Rebeiro.
PARAM: A microprocessor hardened for power side-channel attack resistance. In
2020 IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2020, San Jose, CA, USA, December 7-11, 2020, pages 23–34. IEEE, 2020.

[65] Y. Fei et al. A statistics-based fundamental model for side-channel attack analysis.
IACR Cryptol. ePrint Arch., 2014:152, 2014.

[66] Antonio Flores-Montoya and Eric Schulte. Datalog disassembly. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020.

[67] Research Institute for Secure Systems (RISCEC/AIST). Evaluation environment for
side-channel attacks. https://www.risec.aist.go.jp/project/sasebo/. Accessed
7/26/2021.

[68] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:
Concrete results. In International workshop on cryptographic hardware and embedded
systems, pages 251–261. Springer, 2001.

[69] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing: Friend or
foe? IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
152–174, 2020.

[70] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing: Friend or foe?
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):152–174, 2020.

[71] Si Gao, Ben Marshall, Dan Page, and Thinh Pham. Fenl: an ise to mitigate ana-
logue micro-architectural leakage. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 73–98, 2020.

[72] Si Gao and Elisabeth Oswald. A novel completeness test and its application to side
channel attacks and simulators. IACR Cryptol. ePrint Arch., page 756, 2021.

[73] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. J. Cryptographic
Engineering, 8(1):1–27, 2018.

222

https://www.risec.aist.go.jp/project/sasebo/

[74] Ilias Giechaskiel, Ken Eguro, and Kasper B. Rasmussen. Leakier wires: Exploiting fpga
long wires for covert- and side-channel attacks. ACM Trans. Reconfigurable Technol.
Syst., 12(3), aug 2019.

[75] Ilias Giechaskiel, Ken Eguro, and Kasper Bonne Rasmussen. Leakier wires: Exploiting
FPGA long wires for covert- and side-channel attacks. ACM Trans. Reconfigurable
Technol. Syst., 12(3):11:1–11:29, 2019.

[76] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick Bloem.
Coco: Co-design and co-verification of masked software implementations on cpus. In
Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, pages 1469–1468. USENIX Association,
2021.

[77] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick Bloem.
Coco:{Co-Design} and {Co-Verification} of masked software implementations on
{CPUs}. In 30th USENIX Security Symposium (USENIX Security 21), pages 1469–
1468, 2021.

[78] Barbara Gigerl, Robert Primas, and Stefan Mangard. Secure and efficient software
masking on superscalar pipelined processors. In International Conference on the The-
ory and Application of Cryptology and Information Security, pages 3–32. Springer,
2021.

[79] Thomas Given-Wilson, Annelie Heuser, Nisrine Jafri, and Axel Legay. An automated
and scalable formal process for detecting fault injection vulnerabilities in binaries.
Concurrency and Computation: Practice and Experience, 31(23):e4794, 2019.

[80] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and K Asanovic. Replicating
and mitigating spectre attacks on an open source risc-v microarchitecture. In Third
Workshop on Computer Architecture Research with RISC-V (CARRV 2019), 2019.

[81] J. L. Gonzalez et al. Low delta-i noise cmos circuits based on differential logic and
current limiters. IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, 46(7):872–876, 1999.

[82] Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-Xavier
Standaert. Secure multiplication for bitslice higher-order masking: Optimisation
and comparison. In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-
Channel Analysis and Secure Design - 9th International Workshop, COSADE 2018,
Singapore, April 23-24, 2018, Proceedings, volume 10815 of Lecture Notes in Computer
Science, pages 3–22. Springer, 2018.

[83] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order. IACR Crypto-
logy ePrint Archive, 2016:486, 2016.

223

[84] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+ flush:
a fast and stealthy cache attack. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 279–299. Springer, 2016.

[85] Hendra Guntur, Jun Ishii, and Akashi Satoh. Side-channel attack user reference archi-
tecture board sakura-g. In 2014 IEEE 3rd Global Conference on Consumer Electronics
(GCCE), pages 271–274, 2014.

[86] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The led block cipher.
In International workshop on cryptographic hardware and embedded systems, pages
326–341. Springer, 2011.

[87] M. He et al. Rtl-psc: Automated power side-channel leakage assessment at register-
transfer level. In 2019 IEEE 37th VLSI Test Symposium (VTS), pages 1–6. IEEE,
2019.

[88] Miao Tony He, Jungmin Park, Adib Nahiyan, Apostol Vassilev, Yier Jin, and Mark Mo-
hammad Tehranipoor. RTL-PSC: automated power side-channel leakage assessment
at register-transfer level. In VTS, pages 1–6, 2019.

[89] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Annual International Cryptology Conference, pages 463–
481. Springer, 2003.

[90] M. A. KF et al. Param: A microprocessor hardened for power side-channel attack
resistance. In 2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pages 23–34. IEEE, 2020.

[91] P. Kiaei et al. Architecture support for bitslicing. Cryptology ePrint Archive, Report
2021/1236, 2021. https://ia.cr/2021/1236.

[92] P. Kiaei et al. Saidoyoki: Evaluating side-channel leakage in pre-and post-silicon
setting. IEEE International System-on-Chip Conference (SOCC), 2021.

[93] P. Kiaei and P. Schaumont. Synthesis of parallel synchronous software. IEEE Embedded
Systems Letters, pages 1–1, 2020.

[94] Pantea Kiaei, Cees-Bart Breunesse, Mohsen Ahmadi, Patrick Schaumont, and Jasper
Van Woudenberg. Rewrite to reinforce: Rewriting the binary to apply countermeas-
ures against fault injection. In 2021 58th ACM/IEEE Design Automation Conference
(DAC), pages 319–324. IEEE, 2021.

[95] Pantea Kiaei, Tom Conroy, and Patrick Schaumont. Architecture support for bitsli-
cing. Cryptology ePrint Archive, Paper 2021/1236, 2021. https://eprint.iacr.org/
2021/1236.

224

https://ia.cr/2021/1236
https://eprint.iacr.org/2021/1236
https://eprint.iacr.org/2021/1236

[96] Pantea Kiaei, Archanaa S Krishnan, and Patrick Schaumont. Parallel synchronous code
generation for second round light weight candidates. NIST Lightweight Cryptography
Workshop, 2020.

[97] Pantea Kiaei, Zhenyuan Liu, Ramazan Kaan Eren, Yuan Yao, and Patrick Schaumont.
Saidoyoki: Evaluating side-channel leakage in pre- and post-silicon setting. Cryptology
ePrint Archive, Report 2021/1235, 2021. https://ia.cr/2021/1235.

[98] Pantea Kiaei, Zhenyuan Liu, Ramazan Kaan Eren, Yuan Yao, and Patrick Schaumont.
Saidoyoki: Evaluating side-channel leakage in pre-and post-silicon setting. Cryptology
ePrint Archive, 2021.

[99] Pantea Kiaei, Zhenyuan Liu, and Patrick Schaumont. Leverage the average: Averaged
sampling in pre-silicon side-channel leakage assessment. In Proceedings of the 2022 on
Great Lakes Symposium on VLSI, 2022.

[100] Pantea Kiaei, Darius Mercadier, Pierre-Evariste Dagand, Karine Heydemann, and
Patrick Schaumont. Custom instruction support for modular defense against side-
channel and fault attacks. In International Workshop on Constructive Side-Channel
Analysis and Secure Design, pages 221–253. Springer, 2020.

[101] Pantea Kiaei, Darius Mercadier, Pierre-Evariste Dagand, Karine Heydemann, and
Patrick Schaumont. Custom instruction support for modular defense against side-
channel and fault attacks. In Guido Marco Bertoni and Francesco Regazzoni, editors,
Constructive Side-Channel Analysis and Secure Design, pages 221–253, Cham, 2021.
Springer International Publishing.

[102] Pantea Kiaei and Patrick Schaumont. Domain-oriented masked instruction set archi-
tecture for risc-v. IACR Cryptol. ePrint Arch., 2020:465, 2020.

[103] Pantea Kiaei and Patrick Schaumont. Synthesis of parallel synchronous software. IEEE
Embedded Systems Letters, 13(1):17–20, 2021.

[104] Pantea Kiaei and Patrick Schaumont. SoC Root Canal!: Root Cause Analysis of Power
Side-Channel Leakage in System-on-Chip Designs. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), 2022.

[105] Pantea Kiaei, Yuan Yao, Zhenyuan Liu, Nicole Fern, Cees-Bart Breunesse, Jasper
Van Woudenberg, Kate Gillis, Alex Dich, Peter Grossmann, and Patrick Schaumont.
Gate-level side-channel leakage assessment with architecture correlation analysis. arXiv
preprint arXiv:2204.11972, 2022.

[106] Pantea Kiaei, Yuan Yao, Zhenyuan Liu, Nicole Fern, Cees-Bart Breunesse, Jasper
Van Woudenberg, Kate Gillis, Alex Dich, Peter Grossmann, and Patrick Schaumont.
Gate-level side-channel leakage assessment with architecture correlation analysis, 2022.
https://arxiv.org/abs/2204.11972.

225

https://ia.cr/2021/1235
https://arxiv.org/abs/2204.11972

[107] Pantea Kiaei, Yuan Yao, and Patrick Schaumont. Real-time detection and ad-
aptive mitigation of power-based side-channel leakage in soc. arXiv preprint
arXiv:2107.01725, 2021.

[108] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical independence
and leakage verification. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Korea, December
7-11, 2020, Proceedings, Part I, volume 12491 of Lecture Notes in Computer Science,
pages 787–816. Springer, 2020.

[109] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre attacks:
Exploiting speculative execution. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 1–19. IEEE, 2019.

[110] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Annual
International Cryptology Conference, pages 388–397. Springer, 1999.

[111] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Annual International Cryptology Conference, pages 104–113.
Springer, 1996.

[112] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. Software counter-
measures for control flow integrity of smart card c codes. In European Symposium on
Research in Computer Security, pages 200–218. Springer, 2014.

[113] Edward A. Lee, Jan Reineke, and Michael Zimmer. Abstract PRET machines. In
2017 IEEE Real-Time Systems Symposium, RTSS 2017, Paris, France, December 5-8,
2017, pages 1–11. IEEE Computer Society, 2017.

[114] Régis Leveugle, A Calvez, Paolo Maistri, and Pierre Vanhauwaert. Statistical fault
injection: Quantified error and confidence. In 2009 Design, Automation & Test in
Europe Conference & Exhibition, pages 502–506. IEEE, 2009.

[115] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown.
arXiv preprint arXiv:1801.01207, 2018.

[116] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level cache
side-channel attacks are practical. In 2015 IEEE symposium on security and privacy,
pages 605–622. IEEE, 2015.

[117] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Re-
vealing the secrets of smart cards, volume 31. Springer Science & Business Media,
2008.

226

[118] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage of
masked CMOS gates. In Alfred Menezes, editor, Topics in Cryptology - CT-RSA
2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA,
USA, February 14-18, 2005, Proceedings, volume 3376 of Lecture Notes in Computer
Science, pages 351–365. Springer, 2005.

[119] Stefan Mangard and Kai Schramm. Pinpointing the side-channel leakage of masked
AES hardware implementations. In Louis Goubin and Mitsuru Matsui, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2006, 8th International Workshop,
Yokohama, Japan, October 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in
Computer Science, pages 76–90. Springer, 2006.

[120] Ben Marshall, Dan Page, and James Webb. MIRACLE: micro-architectural leakage
evaluation A study of micro-architectural power leakage across many devices. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):175–220, 2022.

[121] Seiichi Matsuda and Shiho Moriai. Lightweight cryptography for the cloud: exploit
the power of bitslice implementation. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 408–425. Springer, 2012.

[122] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical tools for
side channel aware software engineering: ‘grey box’ modelling for instruction leakages.
In USENIX Security Symposium, pages 199–216, 2017.

[123] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical tools for
side channel aware software engineering: ’grey box’ modelling for instruction leakages.
In Engin Kirda and Thomas Ristenpart, editors, 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017, pages 199–216.
USENIX Association, 2017.

[124] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical tools for
side channel aware software engineering:’grey box’modelling for instruction leakages.
In 26th USENIX Security Symposium (USENIX Security 17), pages 199–216, 2017.

[125] Amir Moradi. Side-channel leakage through static power - should we care about in
practice? In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware
and Embedded Systems - CHES 2014 - 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer
Science, pages 562–579. Springer, 2014.

[126] Adib Nahiyan, Jungmin Park, Miao He, Yousef Iskander, Farimah Farahmandi,
Domenic Forte, and Mark Tehranipoor. Script: A cad framework for power side-
channel vulnerability assessment using information flow tracking and pattern genera-
tion. ACM Trans. Des. Autom. Electron. Syst., 25(3), may 2020.

227

[127] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implementations
against side-channel attacks and glitches. In International conference on information
and communications security, pages 529–545. Springer, 2006.

[128] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implementation
of non-linear functions in the presence of glitches. In International Conference on
Information Security and Cryptology, pages 218–234. Springer, 2008.

[129] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source platform
for hardware embedded security research. In Emmanuel Prouff, editor, Constructive
Side-Channel Analysis and Secure Design - 5th International Workshop, COSADE
2014, Paris, France, April 13-15, 2014. Revised Selected Papers, volume 8622 of Lecture
Notes in Computer Science, pages 243–260. Springer, 2014.

[130] Pádraig O’sullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev Barua,
and Angelos D Keromytis. Retrofitting security in cots software with binary rewriting.
In IFIP International Information Security Conference, pages 154–172. Springer, 2011.

[131] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique against
spn structures, with application to the aes and khazad. In International workshop on
cryptographic hardware and embedded systems, pages 77–88. Springer, 2003.

[132] Chester Rebeiro, David Selvakumar, and ASL Devi. Bitslice implementation of AES.
In International Conference on Cryptology and Network Security, pages 203–212.
Springer, 2006.

[133] Francesco Regazzoni, Stéphane Badel, Thomas Eisenbarth, Johann Großschädl, Axel
Poschmann, Zeynep Toprak Deniz, Marco Macchetti, Laura Pozzi, Christof Paar,
Yusuf Leblebici, and Paolo Ienne. A simulation-based methodology for evaluating
the dpa-resistance of cryptographic functional units with application to CMOS and
MCML technologies. In Proceedings of the 2007 International Conference on Embed-
ded Computer Systems: Architectures, Modeling and Simulation (IC-SAMOS 2007),
Samos, Greece, July 16-19, 2007, pages 209–214, 2007.

[134] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of aes.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages
413–427. Springer, 2010.

[135] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. Global value numbers
and redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 12–27, 1988.

[136] Patrick R Schaumont. A practical introduction to hardware/software codesign. Springer
Science & Business Media, 2012.

228

[137] Tobias Schneider and Amir Moradi. Leakage assessment methodology. In Tim Güneysu
and Helena Handschuh, editors, Cryptographic Hardware and Embedded Systems –
CHES 2015, pages 495–513, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[138] Eric Schulte, Jonathan Dorn, Antonio Flores-Montoya, Aaron Ballman, and Tom John-
son. Gtirb: intermediate representation for binaries. arXiv preprint arXiv:1907.02859,
2019.

[139] Nader Sehatbakhsh, Baki Berkay Yilmaz, Alenka G. Zajic, and Milos Prvulovic. EM-
Sim: A microarchitecture-level simulation tool for modeling electromagnetic side-
channel signals. In HPCA, pages 71–85, 2020.

[140] Madura A Shelton, Lukasz Chmielewski, Niels Samwel, Markus Wagner, Lejla Batina,
and Yuval Yarom. Rosita++: Automatic higher-order leakage elimination from cryp-
tographic code. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 685–699, 2021.

[141] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus Wagner,
and Yuval Yarom. Rosita: Towards automatic elimination of power-analysis leakage
in ciphers. arXiv preprint arXiv:1912.05183, 2019.

[142] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus Wagner,
and Yuval Yarom. Rosita: Towards automatic elimination of power-analysis leakage
in ciphers. In NDSS, 2021.

[143] D. Šijačić et al. Towards efficient and automated side-channel evaluations at design
time. Journal of Cryptographic Engineering, 10(4):305–319, 2020.

[144] Danilo Sijacic, Josep Balasch, Bohan Yang, Santosh Ghosh, and Ingrid Verbauwhede.
Towards efficient and automated side-channel evaluations at design time. J. Cryptogr.
Eng., 10(4):305–319, 2020.

[145] R. Singh, T. Conroy, and P. Schaumont. Variable precision multiplication for software-
based neural networks. In 2020 IEEE High Performance Extreme Computing Confer-
ence (HPEC), pages 1–7, 2020.

[146] Richa Singh, Saad Islam, Berk Sunar, and Patrick Schaumont. An end-to-end analysis
of emfi on bit-sliced post-quantum implementations. arXiv preprint arXiv:2204.06153,
2022.

[147] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks. In
International workshop on cryptographic hardware and embedded systems, pages 2–12.
Springer, 2002.

[148] P. Slpsk et al. Karna: A gate-sizing based security aware eda flow for improved
power side-channel attack protection. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2019.

229

[149] Patanjali SLPSK, Prasanna Karthik Vairam, Chester Rebeiro, and V. Kamakoti.
Karna: A gate-sizing based security aware EDA flow for improved power side-channel
attack protection. In David Z. Pan, editor, Proceedings of the International Confer-
ence on Computer-Aided Design, ICCAD 2019, Westminster, CO, USA, November
4-7, 2019, pages 1–8. ACM, 2019.

[150] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard. Sys-
tematic classification of side-channel attacks: A case study for mobile devices. IEEE
Communications Surveys & Tutorials, 20(1):465–488, 2017.

[151] F.-X. Standaert. How (not) to use welch’s t-test in side-channel security evaluations. In
International Conference on Smart Card Research and Advanced Applications, pages
65–79. Springer, 2018.

[152] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel security
evaluations. IACR Cryptol. ePrint Arch., 2017:138, 2017.

[153] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and Luca Benini.
Design and evaluation of smallfloat simd extensions to the risc-v isa. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 654–657, 2019.

[154] N. Timmers, A. Spruyt, and M. Witteman. Controlling pc on arm using fault injection.
In 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages
25–35, 2016.

[155] S. Tiran et al. A model of the leakage in the frequency domain and its application to
cpa and dpa. Journal of Cryptographic Engineering, 4(3):197–212, 2014.

[156] Elena Trichina. Combinational logic design for aes subbyte transformation on masked
data. Cryptology EPrint Archive, 2003.

[157] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter, and Koen
De Bosschere. Diablo: a reliable, retargetable and extensible link-time rewriting frame-
work. In Proceedings of the Fifth IEEE International Symposium on Signal Processing
and Information Technology, 2005., pages 7–12. IEEE, 2005.

[158] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and S. Ermeneux. Laser-
induced fault injection on smartphone bypassing the secure boot-extended version.
IEEE Transactions on Computers, 69(10):1449–1459, 2020.

[159] Fish Wang and Yan Shoshitaishvili. Angr-the next generation of binary analysis. In
2017 IEEE Cybersecurity Development (SecDev), pages 8–9. IEEE, 2017.

[160] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen,
Paul Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Making reassembly
great again. In NDSS, 2017.

230

[161] Shuai Wang, Pei Wang, and Dinghao Wu. Uroboros: Instrumenting stripped binaries
with static reassembling. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 1, pages 236–247. IEEE,
2016.

[162] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi. The risc-
v instruction set manual. volume 1: User-level isa, version 2.0. Technical report,
CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCES, 2014.

[163] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

[164] Shixiong Xu and David Gregg. Bitslice vectors: A software approach to customiz-
able data precision on processors with simd extensions. In 2017 46th International
Conference on Parallel Processing (ICPP), pages 442–451. IEEE, 2017.

[165] Shuo Yang, Shubhra Deb Paul, and Swarup Bhunia. Hands-on learning of hardware
and systems security. ASEE, 9(2):1–25, 2021.

[166] Y. Yao et al. Architecture correlation analysis (aca): identifying the source of side-
channel leakage at gate-level. In 2020 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 188–196. IEEE, 2020.

[167] Y. Yao et al. Verification of power-based side-channel leakage through simulation. In
2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWS-
CAS), pages 1112–1115, 2020.

[168] Yuan Yao, Tarun Kathuria, Baris Ege, and Patrick Schaumont. Architecture correl-
ation analysis (ACA): identifying the source of side-channel leakage at gate-level. In
2020 IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2020, San Jose, CA, USA, December 7-11, 2020, pages 188–196. IEEE, 2020.

[169] Yuan Yao, Pantea Kiaei, Richa Singh, Shahin Tajik, and Patrick Schaumont. Pro-
grammable RO (PRO): A multipurpose countermeasure against side-channel and fault
injection attack. CoRR, abs/2106.13784, 2021.

[170] Yuan Yao, Tuna Tufan, Tarun Kathuria, Baris Ege, Ulkuhan Guler, and Patrick
Schaumont. Pre-silicon architecture correlation analysis (paca): Identifying and mit-
igating the source of side-channel leakage at gate-level. IACR Cryptol. ePrint Arch.,
2021:530, 2021.

[171] Yuan Yao, Mo Yang, Conor Patrick, Bilgiday Yuce, and Patrick Schaumont. Fault-
assisted side-channel analysis of masked implementations. In 2018 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 57–64. IEEE,
2018.

231

http://www.clifford.at/yosys/

[172] Yuval Yarom and Katrina Falkner. Flush+ reload: a high resolution, low noise, l3
cache side-channel attack. In 23rd USENIX Security Symposium (USENIX Security
14), pages 719–732, 2014.

[173] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W Fletcher. Data
oblivious ISA extensions for side channel-resistant and high performance computing.
In NDSS, 2019.

[174] Bilgiday Yuce, Chinmay Deshpande, Marjan Ghodrati, Abhishek Bendre, Leyla
Nazhandali, and Patrick Schaumont. A secure exception mode for fault-attack-resistant
processing. IEEE Trans. Dependable Secur. Comput., 16(3):388–401, 2019.

[175] Alexander Zeh, Andy Glew, Barry Spinney, Ben Marshall, Daniel Page, Derek Atkins,
Ken Dockser, Markku-Juhani O Saarinen, Nathan Menhorn, and Richard Newell. Risc-
v cryptographic extension proposals.

[176] Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. Flexpret: A pro-
cessor platform for mixed-criticality systems. In 20th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2014, Berlin, Germany, April 15-17,
2014, pages 101–110. IEEE Computer Society, 2014.

232

	Introduction
	Software Design Abstraction Layers
	Hardware Design Abstraction Layers
	Physical Attacks on HW-SW Architectures
	Protecting Embedded Systems against PHAs
	State of the Art
	Challenges in Protecting HW-SW Architectures
	Contribution and Outline

	Parallel Synchronous Programming
	Introduction
	Preliminaries
	Desired Timing Properties
	Bitslicing
	Synchronous FSMD

	Synthesis of Parallel Synchronous Software
	Experimental Results
	Conclusion

	Rewrite to Reinforce
	Introduction
	Related Work
	Binary Rewriting
	Definition
	Static Binary Rewriting
	Comparison of Binary Rewriters

	Countermeasure Insertion Methodology
	Rewriting the Binary
	Faulter+Patcher Approach
	Hybrid Compiler-Binary Approach
	Choosing the Right Method

	Experimental Results
	Local Protections
	Holistic Protection
	Case Studies

	Conclusion

	DOM ISA
	Introduction
	Related Work
	Domain-Oriented Masking
	DOM ISA for RISC-V
	Separating protected execution from unprotected execution
	Protecting the secure instructions

	Conclusion

	Skiva-V: Architecture Support for Bitslicing
	Introduction
	Preliminaries
	Bitslicing
	Masking
	Redundant Computation

	Processor Support
	Instruction Definitions
	ISA-level Performance Analysis
	Implementation

	Coding Support
	Direct Memory Access with Transpose Support
	T-DMA Functionality
	T-DMA Design
	Employing T-DMA
	Implementation

	System Integration
	Benchmark
	Cost of Transposition
	Cost of Redundant Computation
	Masked Implementations of LWC Ciphers

	Conclusion

	Saidoyoki: Evaluating side-channel leakage in pre-and post-silicon setting
	Introduction
	Saidoyoki Platform
	Saidoyoki PCB
	FAMEv2 ASIC
	Pico ASIC
	Related Work

	Pre-silicon Side-channel Leakage Estimation
	Design flow for Hardware Targets
	Design flow for Software Targets

	Post-silicon Side-channel Leakage Measurement
	Results
	Post-silicon evaluation of FAME SoC firmware
	Pre-silicon evaluation of PICO SoC coprocessor
	Pre-silicon evaluation of PICO SoC firmware
	Performance Evaluation

	Conclusion

	Leverage the Average
	Motivation
	Related Work
	Theoretical Background
	Power Side-Channel Analysis
	Simulating Power Traces
	Sampling Power Traces
	Empirical verification of theorems

	Case Studies
	Case Study 1: Software AES on a Pipelined Processor
	Case Study 2: Hardware AES

	Conclusion

	Generic Gate-Level Power Side-Channel Leakage Assessment
	Introduction
	Related Work
	Power simulation for side-channel leakage analysis
	Identification of the leakage source

	Architecture Correlation Analysis
	Overall Methodology
	ACA for Specific Testing
	ACA for Non-specific Testing
	Implementation

	ACA on a Cryptographic Coprocessor
	Architecture Correlation Analysis
	Leaky Gate analysis
	Non-specific ACA

	ACA on RISC-V based SoC
	Architecture Correlation Analysis
	Leaky Gate Analysis

	ACA Performance Considerations
	Conclusions

	RootCanal
	Introduction
	Preliminaries
	Methodology
	Step 1: Finding Leaky Time-Gate Tuples
	Step 2: Finding Leaky Units
	Step 3: Finding Leaky Instructions

	Experimental Results
	Example 1: Value-based Leakage in a System-on-Chip
	Example 2: Testing Bit-Sliced Data Encoding in Software Hiding
	Example 3: Debugging Masking – across HW/SW Boundaries
	Example 4: Debugging Masking – When The Compiler Trips Up
	Analysis of Results

	Conclusion

