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Abstract 

Working alongside four other mechanical and electrical engineering teams, this Major Qualifying 

Project aimed to manufacture a low profile, wall-mounted home speaker system. The main goal of our 

group was to prototype a low profile, force balanced, sealed passive radiator bass box with a low 

frequency response. By conducting background research in parallel with findings taken from the 2016-

2017 MQP, “The Synthesis and Design of a Small Speaker System,” initial designs were prototyped using 

additive manufacturing. Simulation tools and test equipment were then utilized to iterate and improve 

bass response of moving magnet transducers to reach an ideal design. Additionally, mechanically rotating 

speaker housings were designed for moving coil transducers, to assist in sound steering. The overall work 

completed in this project and the other sub-groups was finally assembled into the low profile wall-

mounted home speaker system. 
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Executive Summary 

Currently, speaker systems have dominated the consumer market ranging from Bluetooth 

headsets and ear buds, car audio systems, at-home speakers and commercially used speakers such as those 

in theaters. Often times however, larger speaker systems produce the best bass whereas smaller speakers 

sacrifice bass frequency for compactness and transportability. With a void in the market of small, bass 

producing speaker systems, a Major Qualifying Project (MQP) team was formed in the 2016/2017 

academic year to create a prototype of a small speaker that can produce bass frequencies. This year, 

another team of 17 mechanical and electrical engineers was formed to expand the research behind speaker 

systems and continue to produce ideations of slim, bass-producing speaker systems. The team was 

divided into five different sub-teams consisting of four mechanical engineering teams that would research 

different ideations and one electrical engineering group that would focus on the signal processing aspect 

of the project. Our team researched further into the 2016-17 MQP project The Synthesis and Design of a 

Small Speaker System.  

After researching the basics of speakers, different types of speaker enclosures/boxes, and passive 

radiators, a goal and several objectives were formed. The overall goal of this project was to design and 

improve a force balanced, sealed double passive radiator bass box that could be incorporated in the low 

profile home speaker system. This was done by expanding upon our research and designing a variety of 

speaker box models with SolidWorks. The models were analyzed with ANSYS to ensure ideal structural 

and material properties. The best models were then prototyped using an Objet Connex 260 3D printer 

which could print both flexible and rigid materials simultaneously. Once the prototypes were assembled 

they were then tested with a Polytec Scanning Vibrometer in order to determine the resonant frequencies, 

which are the frequencies with highest amplitude, and the structural integrity of the designs. They were 

also tested with an Instron MicroTester in order to verify material properties. Simultaneously to the 

designing and prototyping processes, a mass-spring-damper simulation model was created with Simscape 
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by MathWorks. This was done in order to be able to simulate each box design in order to analyze how the 

box prototypes should perform. 

Once final designs were reached, the transducers designed by the other sub-teams were 

incorporated into our boxes and housings. The speakers were the integrated with the rest of the low 

profile home speaker system with the help of all five sub-teams. The final projects and designs were then 

presented to Worcester Polytechnic Institute faculty, students, and alumni and to Bose Corporation. 
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Chapter 1: Introduction 

Currently, speaker systems have dominated the consumer market ranging from Bluetooth 

headsets and ear buds, car audio systems, at-home speakers and commercially used speakers such as those 

in theaters. Often times however, larger speaker systems produce the best bass whereas smaller speakers 

sacrifice bass frequency for compactness and transportability. With a void in the market of small, bass 

producing speaker systems, a Major Qualifying Project (MQP) team was formed in the 2016/2017 

academic year to create a prototype of a small speaker that can produce bass frequencies.  

In the 2017/2018 academic year, another team of 17 mechanical and electrical engineers was 

formed to expand their research behind speaker systems and continue to produce ideations of low-profile, 

enhanced bass-producing speaker systems. The team was divided into five different sub-teams. One team 

would focus on creating a slim, moving coil transducer designed to produce higher frequencies. One team 

would focus on creating a moving magnet transducer designed to produce low to mid-range frequencies. 

One team would focus on creating a resonant panel designed to produce the low bass frequencies. The 

electrical engineer team would focus on signal processing, sound steering, and electrical configuration of 

the overall system. Lastly, our mechanical engineer team would focus on creating enclosures/boxes to 

improve low to mid-range frequency response of the moving magnet transducers. Once all the teams had 

final designs, all of the speakers and hardware would be combined to create a low profile, home speaker 

system. 

  



13 
 

Chapter 2: Background 

2.1 Overview of Speakers 

As noted on Center Point Audio’s website, sound usually refers to frequencies between 20Hz-

20,000Hz, or the range that humans can hear [1]. When an object moves or vibrates, the kinetic energy 

released causes a fluctuation in air pressure and results in what humans hear as sound. A transducer 

converts electrical signals into acoustical energy by moving back and forth to create pressure fluctuations. 

Different transducer components aid in generating different frequencies.  

 
Figure 1: Basic components of a speaker [1] 

Figure 1 displays what a basic transducer is comprised of. The cone acts as the moving mass in 

the system by moving air. While the transducer is in motion, the spider and surround suspension act as a 

spring, helping to keep the voice coil aligned and to pull the cone back into place after moving forward. 

The magnet supplies the voice coil with a magnetic field that enables it to move and subsequently move 

the cone. Once an electrical signal is sent to the voice coil, an alternating magnetic field is generated 

which in turn, repels from the magnetic field from the magnet. These transducers can emit sound waves 
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not only detectable by the human ear but also infra-sound (very low frequencies) and ultrasound (very 

high frequencies). 

When a transducer is used in a larger stereo system, the system is often called a loudspeaker. To 

get a better understanding of a loudspeaker we must look at the components. All loudspeakers have a 

source. The source is a device, usually an electronic amplifier, which supplies power in the form of 

electrical energy. This electrical energy is sent to a driver, which is a transducer mechanism used to 

convert the electrical energy into mechanical energy. This driver is supported by a baffle, which is used to 

reduce or prevent radiation from the front of the driver diaphragm. These systems will be housed in an 

enclosure or “box”. This enclosure is used to allow sound to resonate, as well as preventing sound from 

the back side of the speaker to mix with sound from the front, creating distortion. The combination of a 

source, driver, baffle and speaker box form a direct-radiator loudspeaker system. For this loudspeaker to 

produce non directional sound, that is even sound in any direction, the sound wavelengths must be longer 

than the driver diaphragm diameter. This range of frequencies is called the piston range [2]. 

2.2 Speaker Enclosures/Boxes 

Many types of enclosures/boxes exist for enhancing/adjusting frequency response from 

transducers. Some of the most common include the closed box, the infinite baffle, the ported box (bass 

reflex), and the passive radiator box [3]. The closed box is the most simple where it has a closed box and 

the driver. Absorptive losses in this design are caused by the damping material inside the speaker cabinet 

[3]. Figure 2 shows an outline of a closed speaker box. 
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Figure 2: Closed speaker box [3] 

Infinite baffle enclosures is a type of sealed box where the enclosure’s volume is increased to infinity [3]. 

While this is impossible to build, it is sufficient to approximate. Figure 3 shows an outline of the infinite 

baffle.  

 
Figure 3: Infinite baffle [3] 

Ported box/bass reflex enclosures is a type of Helmholtz resonator (or a container of gas [air] with 

an open port) that becomes excited by the driver [3]. A simple example of this is blowing across the top 

neck of an empty bottle and creating a low sound output. The power capacity of such boxes is directly 

related to the volume of air that is displaced by the system driver, the transducer [4]. Additionally, in 

order to prevent noise generation and excessive losses, the port area needs to be large enough to 
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accommodate the volume displaced by the driver [4]. While this design does enhance the low frequency 

output, it also has some negative effects including poor transient response and extraneous noises 

stemming from the air flowing at the high output levels [3]. Figure 4 shows an outline of the ported box. 

 
Figure 4: Ported speaker box [3] 

Finally, the passive radiator box is a close relative to the ported-box system as it is capable of 

providing a similar low frequency performance. Instead of the open air tube, a diaphragm with a mass 

encloses the box. This diaphragm with the mass represent the passive radiator and it may be of any 

desired area, but it is preferable to that the diaphragm to have high compliance, which is the reciprocal of 

stiffness [2]. This prevents some of the negative effects of ported box including the extraneous noises at 

higher frequencies [3]. The passive radiator box is able to provide very low tuning frequencies provided 

there is enough volume [3]. Additionally, using the passive radiator system is of particular importance in 

compact systems where large air volume is difficult to realize [5]. Figure 5 shows an outline of a passive 

radiator box. 
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Figure 5: Passive radiator speaker box [3] 

2.3 Dual Passive Radiator 

 A passive radiator is a device used commonly in speaker systems to create better bass 

frequencies. Similar to a transducer, a passive radiator has a diaphragm and cone, but has no voice coil or 

magnet. According to US patent number 20150281844 A1 (invented and submitted by our project advisor 

Joe Stabile under Bose Corporation), multiple passive radiators can be incorporated into a speaker to 

increase bass frequencies [6].  

This design involves mounting the main driver of the speaker onto one of the passive radiators. 

By adding the transducer to the passive radiator and keeping the effective areas of both passive radiators 

the same, the passive radiator without the driver will vibrate more than the “loaded” passive radiator, but 

will cause the entire speaker to become force balanced [6]. This causes the passive radiator without the 

driver to have more of an effect on the acoustics than the other, which allows the speaker to output a 

wider range of frequencies and less vibrations. The lack of vibrations is caused by the lower moment of 

inertia due to the lower mass of the passive radiator without the driver, which causes the rocking 

frequency to be much higher than any frequency the speaker could reach.  Figure 6 exemplifies this to be 

true. This figure is a graph of displacement vs frequency for three different speakers. Line 81 represents a 

lightly loaded passive radiator, while line 83 shows a heavily loaded passive radiator [6]. In this graph, 
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the heavily loaded passive radiator is roughly six times the mass of the light passive radiator. Line 83 has 

a noticeably lower displacement than line 81, proving the concept that a heavily loaded passive radiator 

will have a lesser effect on frequency range than a lighter passive radiator [6]. Although the heavier 

passive radiator will have less displacement than the lighter one, both resonant frequencies stay the same 

at 75Hz. 

 
Figure 6: Displacement vs frequency for 3 different speakers [6] 

 To determine the effective area of a passive radiator one must first mount the passive radiator 

structure to a closed volume, then move the passive radiator structure in and out, while detecting pressure 

changes in the closed volume. In this case since both passive radiators are mounted to the same enclosure 

they will experience the same pressure [6]. This is a crucial aspect of the patent. Since force is equal to 

area multiplied by pressure, and the pressures are the same, matching the areas of the passive radiators 

results in a force balanced speaker system. 

Figure 7 shows the cross section of the basic dual passive radiator design. In this figure, 22 is the 

first passive radiator moving along vibration axis 18 in the direction of arrow 13. 22b is the interior 

surface of the radiator, while 22a is the exterior surface. 32 is the second passive radiator, and is 

considered the “loaded” passive radiator as speaker 40 sits upon it. Passive radiator 32 moves along 
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vibration axis 18 as well, in the direction of arrow 53. 24 and 34 are suspension elements that allow for 

the radiators to linearly vibrate on the axis of vibration. 46 is a stiff suspension element that restricts the 

speaker from moving itself along the vibration axis, but instead makes the entire passive radiator 32 

move. This design is new, as previous designs had the two passive radiators equal in mass. These designs 

are heavy and large, while this new design is much smaller and able to have less acoustic volume than 

needed before. 

 
Figure 7: Cross section view of a basic dual passive radiator design [6] 

Another feature of patent US 20150281844 A1 “Acoustic Device with Passive Radiators” is the 

possibility of mounting two speakers simultaneously onto the second passive radiator. To achieve this, the 

two speakers should be working at the same frequency and in phase, while having their center mass be 

collinear to the axis of vibration of the passive radiator which they are mounted on [6]. This axis of 

vibration must also coincide with the center of gravity of the second passive radiator. If these conditions 

are met, the principles described above will be the same. Figure 8 shows the cross section of this setup. 

The two passive radiators may have varying shapes if they both move in opposition to each other and 

have the same effective area. This is efficient, as it allows speaker’s to be very thin. As long as the 
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passive radiators have the same area, locations can also be varied. Figure 9 shows a possible setup in 

which the two passive radiators are almost co-planar to each other, allowing for minimal thickness.  

 
Figure 8: Cross section view of a double passive speaker box design with two transducers [6] 

 

 

 
Figure 9: Cross section view of a double passive radiator speaker box design with a raised bottom passive radiator [6] 

2.4 Review of 2016/2017’s Major Qualifying Project: The Synthesis and 

Design of a Small Speaker System 

 

The objective of The Synthesis and Design of a Small Speaker System was to implement two 

passive radiators into one speaker system that would be light and thin in design. In order to minimize the 

size of the system, the team stacked passive radiators on the front and back of the prototyped box. The 

team’s initial efforts aimed at researching speaker designs and passive radiators and at prototyping to gain 
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experience with the various 3D printers. The team focused on creating a passive radiator for an iPhone 6 

speaker for their first design. Figure 10 shows their test set up for this design. 

 
Figure 10: Test set up for recreating an iPhone 6 speaker [7] 

 

For their second design, the team used a penny as the mass for the rear passive radiator so that the 

speaker surround could vibrate better which would allow for better quality sound. Many iterations of this 

design were made with the main purpose of coming up with a design that would use the speaker itself as 

the mass for one of the passive radiators. Figure 11 shows one of their designs using a military headset 

speaker as the mass for the passive radiator. 

 
Figure 11: Passive radiator with a military headset transducer as the mass [7] 

 



22 
 

In their third design a dual passive radiator system was explored. The areas of the passive 

radiators were designed to be the same so that the prototype would be force balanced (where  

𝐹𝑜𝑟𝑐𝑒 = 𝐴𝑟𝑒𝑎 × 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, with the internal pressure being the same for the front and rear passive 

radiators). Figure 12 shows one of their prototypes for this design. 

 
Figure 12: Initial prototype of a dual passive radiator [7] 

Their final design incorporated the concepts the team had learned from creating many iterations 

of prototypes. The design featured a front and rear passive radiator, with the speaker as the mass for the 

front passive radiator and a “racetrack” (a circular ring) as the mass for the rear passive radiator. Figure 

13 shows their final dual passive radiator design [7]. The project described in the following sections is an 

improvement and expansion of this. 
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Figure 13: 2016/2017 MQP's final dual passive radiator design [7] 

Chapter 3: Methods 

The goal of this project was to design and improve a force balanced, sealed double passive 

radiator bass box for a low profile home speaker system. The bass box would incorporate a moving 

magnet transducer designed by one of the other sub-teams. The bass box would be designated to produce 

frequencies from about 80 to 200 Hz in the final low profile home speaker system. 

3.1 Research Objectives 

1. Research thin speaker technology and develop an understanding of how speakers work and what 

direction the technology is heading in. 

Bottom Passive Radiator Top Passive Radiator Bottom Passive Radiator 
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2. Study 2016/2017 “Synthesis and design of a small speaker system” MQP’s prototype speakers 

and improve upon their designs. 

3. Based on our previous research design and fabricate a speaker box that is capable of producing 

low to mid-range bass and good sound quality. 

4. Model speaker systems to predict performance and to make parameter adjustment decisions. 

5. Collaborate with the other groups that are designing transducers and create speaker box designs 

for each that improve upon our previous designs. 

6. Design a speaker system frame that incorporates the other team’s transducers, our box designs, 

and sound steering technology. 

7. Come together collectively (all 5 sub-teams) as an MQP group and develop a final product, a low 

profile home speaker system. 

3.2 Design and Simulation 

In order to design each speaker box SOLIDWORKS® was utilized so that designs could easily 

be incorporated with the other sub-team’s transducer designs. Additionally, it was the Computer Aided 

Design (CAD) program that the team was the most familiar with. In order to prototype the best design, 

each team member created a design. Once there were multiple different designs, the team collaborated 

and combined the best features of each design in order to merge the designs into two prototypes. After the 

designs were finished, they were imported into ANSYS in order to simulate the operation after 

incorporating a transducer into the speaker box. ANSYS was chosen as the simulation software because it 

was relatively easy to learn and the SolidWorks models could be directly imported into the program. 

ANSYS was very helpful in determining the desired thickness and properties of the flexible surrounds 

that were incorporated into our box designs. Since multiple different transducers were designed and used 

in the speaker boxes, the top surround had to both support the weight of the transducer and be flexible 

enough to vibrate and create a specific frequency. A brief ANSYS tutorial is described in Appendix B. 
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3.3 Computer Modeling (PSpice/Simscape) 

 

Speaker systems can be designed to meet specific requirements, or to reach optimal performance. 

The designing process requires knowledge of speaker system components, how they perform, and their 

integration. The ability to predict how certain design-parameters affect the acoustic behavior is seen to of 

great value. It saves time, cost, and effort of prototyping and testing. As a result, multiple software 

programs, Cadence PSpice and Simscape toolbox in MATLAB, were investigated and used in acoustic 

modeling. This helped us to predict the acoustic behavior of our speaker system and to design our speaker 

box accordingly.  

3.3.1 Cadence PSpice 

Lumped parameter modeling is used to approximate the physical behavior of the speaker system. 

Cadence PSpice software, which is an electronic design software that is commercially free, allowed us to 

represent the mechanical system in the electric domain [8]. The modeling is called electro-mechano-

acoustic modeling and it enables us to predict the systems acoustic behavior. Figure 14 shows a simple 

transducer modelled in Cadence PSpice in mobility analogy, which is one of two main analogies to 

represent a mechanical system in the electric domain. The voltage, V2, corresponds to a power source to 

drive the transducer. R1 and L1 are the coil resistance and coil inductance, respectively. Three 

components, C1, L2, and R2, are shown in parallel and they represent the mass, compliance, and 

dissipative elements of the transducer, respectively [8].  
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Figure 14: A simple transducer modelled in Cadence PSpice in mobility analogy 

Additionally, further studies on passive radiators show how to accurately a single passive radiator 

system in the electrical domain. In Figure 15, Richard H. Small shows the model for a single passive 

radiator system and its important parameters.  

 

Figure 15: A single passive radiator system [2] 

The important parameters in this system are: 

 Rg and RE  which are the resistances of the coil 

 RES which is the resistance of the speaker 

 CMES which is the capacitance representing the speaker’s mass 

 LMES which is the inductance representing the speaker’s compliance 

 CMEP which is the capacitance representing the passive-radiator’s mass 

 LMEP which is the inductance representing the passive-radiator’s compliance 
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In order to gain more background knowledge on how a mechanical system and its components are 

translated into the electrical domain using mobility analogy, refer to Appendix J and Appendix M. 

3.3.2 Simscape 

Simulink is a software program within MathWork’s software program MATLAB that enables the 

user to design a system in a simulation environment. Simscape itself is a software program that operates 

within Simulink. Simscape enables users to model physical networks while incorporating different types 

of systems including electrical, gas, hydraulic, magnetic, mechanical, physical signals, thermal, thermal 

liquid, and two-phase fluid. One feature of these tools enables users to obtain a projected peak frequency 

response for a closed volume system. In order to become acquainted with the software, tutorials, 

instructional reports and phone conversations with an employee of MathWorks occurred.  

 In order to obtain a model that would produce an accurate peak frequency response prediction, 

basic models of a speaker system needed to be made. The first model created was a simple, mass-spring-

damper system, seen in Figure 16. Since the speaker and the passive radiators each have a mass, 

compliance and mechanical losses, a mass-spring-damper system can be used to symbolize each 

respective component. The spring represents the compliance and the damper represents the mechanical 

losses. In the model, the Ideal Force Source acts as a means of applying motion to the system. The Ideal 

Translational Motion Sensor converts the translational motion into velocity and position data that can be 

viewed and analyzed. In addition to a mass-spring-damper, each component incorporated an air spring as 

well, since both the speaker and the passive radiators act on air and vice versa. The air spring can be seen 

on the left side of Figure 17. The right side of the figure also explains what each component in the model 

represents. In order for the model to function, a signal is required. The chirp signal seen in Figure 16 is 

connected to a “Simulink-PS Converter” which converts a Simulink input signal into a physical signal 

output. The “PS-Simulink Converter” acts the opposite way, converting a physical signal input into a 

Simulink signal output. The ground, or “Mechanical Translational Reference,” is used to physically affix 
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a component to the frame of the speaker system. The “Solver Configuration” is required in order to 

analyze the system. 

To gain more background knowledge on the Simscape modeling process, see Appendix I.

 
Figure 16: A simple mass-spring-damper system created with Simscape 

 
Figure 17: Simscape component representation 
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3.4 3D Printing 

Once the speaker box/frame designs’ dimensions were final and the simulations and computer 

models were up to date, the speaker box prototypes were 3d printed using the Objet 260 Connex in WPI’s 

rapid prototyping design facility. Most of the speaker box prototypes were printed with two parts (the top 

assembly and bottom assembly). The advantage of using this printer was that it could print both flexible 

and rigid materials on the same prototype. This allowed for the flexible surrounds to be printed and 

already attached to the rigid box. The only assembly required after the prototypes were printed was to 

secure the top and bottom assemblies together (with silicone) and to secure the transducer to the top 

assembly’s surround (also done with silicone). Silicone was used because it was easy to apply, created a 

secure seal so that the box is air-sealed, and because it was easily removable. Additionally, since the rapid 

prototyping design facility was operated by the Academic Resources Center (ARC) at WPI, our team 

would send the STL files of our SolidWorks designs to the rapid prototyping lab and specify the materials 

that each part was to be printed from. For all of the speaker box prototypes, VeroClear or VeroWhite was 

used to print the rigid parts, and TengoBlackPlus was used to print the flexible parts. The thickness of the 

TengoBlackPlus was adjusted in order to adjust the stiffness of the surrounds depending on the transducer 

being used. The printing time varied for each of our prototypes but generally took 2-3 days for the 

prototypes to finish printing. See Table 1 for material properties [9].The printers build size was 255 x 252 

x 200 mm (10.0 x 9.9 x 7.9 in.) [9]. A brief 3D printing submission tutorial is shown in Appendix A. 

 

 

Table 1: Material properties of Objet materials used [9] 

Material VeroClear/VeroWhite TengoBlackPlus 

Color Clear/White Black 

Modulus of Elasticity 2000-3000 MPa - 

Flexural Strength 75-110 MPa - 
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Flexural Modulus 2200-3200 MPa - 

Tensile Strength 50-65 MPa 0.8-1.5 MPa 

HDT, C @ 0.45MPa 45-50 C - 

HDT, C @ 1.82MPa 45-50 C - 

Izod Notched Impact 20-30 J/M - 

Water Absorption 1.1-1.5% - 

Tg 52-54 C - 

Elongation at Break - 170-220% 

Compressive Set - 4-5% 

Shore Hardness (A) - 26-28 

Shore Hardness (D) 83-86 - 

Rockwell Hardness (M) 73-76 - 

Tensile Tear Resistance - 2-4 Kg/cm 

Polymerized Density 1.18-1.19 g/cm^3 1.12-1.13 g/cm^3 

Ash content  0.02-0.06% - 

 

3.5 Instron Testing 

To properly determine the numerical values for compliance needed in our PSpice and Simscape 

models, an Instron MicroTester was used for testing. The Instron performs many different tests, however 

to determine compliance, our group used a 3-point bending test in which deflection was recorded versus 

force. The prototypes were placed on a flat stand in the Instron machine, while a small probe slowly 

depressed. This is shown in Figure 18.  
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Figure 18: Instron MicroTester used for testing 

To determine the compliance of the passive radiators, first the speaker box assembly needed to be 

taken apart. Next, the half that needed to be tested would be placed on the Instron. To only apply force 

onto the “racetrack” of the passive radiator, a small plastic container would be used. This container had a 

radius that when placed face down on the racetrack, lied in the center. This allowed for the probe to be 

placed on the glass container, which in turn applied an evenly distributed load around the entire racetrack. 

The Instron machine would apply small increments of force from a range we chose. Often this range was 

zero to three Newtons. As the probe placed the load onto the container, deflection of the part was 

recorded. Since mechanical stiffness is force over displacement the data recorded by the Instron allowed 

us to determine the stiffness of the material in question. Knowing that compliance is the inverse of 

stiffness, we used this data to determine compliance of different materials such as the TangoBlackPlus 

and the Daffodil transducer. Then we added this data to the PSpice and ANSYS models to determine the 

behavior of the material at different frequencies and loads. 

3.6 Polytec Scanning Vibrometer Testing 

Once the speaker box was 3d printed, the Instron testing was completed, and the transducer was 

secured airtight to the box, the speaker assembly could be tested using WPI’s Polytec Scanning 

Top Instron probe 

Cylindrical plastic 

container 

Speaker box 

Bottom Instron support 

structure 

Cylindrical Glass container 
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Vibrometer. This machine used laser sensors to sense the vibrations of the speaker and passive radiator 

prototypes at specific frequencies, voltage, and sound signals. It is able to use the Doppler Effect in order 

to take non-contact vibration measurements. It can then convert these measurements to graphs and slow 

motion videos for analysis. 

For this process to work the speaker needed to be fixed in the vertical direction so that the lasers 

from the Vibrometer could sense the vibrations in the areas that were of interest. This requires a mount to 

hold the speaker in a fixed position on the lab bench. Our team improved upon 2016 MQP’s mount 

designs, shown in Figure 19 and Figure 20.  

 

Figure 19: Dual passive radiator mount   

for 2016/2017's improved final design 

Figure 20: 3D printed mount for a penny-wise speaker 

However, since our team expected to design prototypes with different dimensions, it was 

determined to take use of clamps to fix the prototype to the lab bench. These clamps allowed for a variety 

of diameters and worked just as well, if not better, than the mount that our team improved. 

For each of the speaker box prototypes dots of white-out were place at certain locations in order 

for more accurate laser scanning. Then a resonant frequency was determined using a chirp signal sent 

from the Scanning Vibrometer software. The resonant frequency was determined from the generated 

graph as shown in Figure 21. 
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Figure 21: Magnitude vs. frequency graph generated by the Polytec Scanning Vibrometer 

The speaker was then operated with this frequency and slow motion videos were generated 

showing the vibration map. An example is shown in Figure 22. Ideally the rigid parts of the speaker box 

shouldn't vibrate while the vibration of the passive radiators should show even vibration distribution. If 

this wasn’t the case our team would reassess the design and develop improvements on the next prototype. 

 

 

 
Figure 22: Screenshots of the final bottom passive radiator design generated by the Polytec Scanning Vibrometer 
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3.7 Communication with other Sub-teams and Redesigning 

The final product of this MQP, was a low profile speaker system, incorporating the work of the 

five different sub-teams. These sub-teams all have the main goal in mind during their individual work, 

and therefore it is necessary for each group to stay in contact with each other. Our sub-team’s main focus 

was to develop a speaker box to house an ultra-thin, moving magnet transducer, developed by another 

sub-team. With this in mind, it is very important that our group stays in contact with each transducer 

design group. By staying in contact with the moving magnet sub-team, our sub-team was able to create a 

speaker box design that could easily houses their new ultra-thin speaker designs. Staying in contact with 

their sub-team allowed for us to give and receive advice on ways to easily incorporate their design 

without having to drastically change our own design. Contact with the moving coil, resonant exciter, and 

the electrical group has allowed us to easily brainstorm and design prototypes for the final speaker 

system. Understanding what each group has been working on and designing gave a good understanding of 

different elements needed to incorporate into our final design. Additionally, weekly meetings between all 

sub-teams assisted with ensuring that everyone was communicating. 

3.8 Low Profile Home Speaker System Frame 

As the development process progressed, a frame that incorporated the hardware designed by all of 

the sub-teams was needed. This frame would serve to combine all of the transducer designs, the speaker 

box designs, the sensing technology, and the sound steering technology. 
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Chapter 4: Results 

4.1 Initial Improvements 

 

Our team first analyzed the speaker boxes that the 2016/2017 MQP created in order to improve 

upon their design and incorporate various transducers. Shown in Figure 23 is the final model from the 

2016 MQP. Figure 24 has the different parts labeled and can be referred to for the later designs. In this 

model the flexible material (TengoBlackPlus) is white and the rigid material (VeroWhite) is gray. In 

Figure 24 the bottom outer surround, the bottom inner surround, and the racetrack all make up the bottom 

passive radiator. Similarly, the top surround and the transducer both make up the top passive radiator. 

Figure 25 shows the top and bottom halves of the speaker box design. 

 

 

Figure 23: 2016/2017's final dual passive radiator speaker box [7] 
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Figure 24: Labeled cross section view of 2016/2017's final dual passive radiator design [7] 

 

Figure 25: Top and bottom half of 2016/2017's final dual passive radiator design [7] 

Our team first tested this design with the Polytec Scanning Vibrometer in order to assess how 

well the speaker box was working. After viewing the results it was noticed that the back rigid center of 

the box was vibrating too much and that the racetrack needed to be thicker. As a result, the racetrack was 
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increased from 1 mm to 3 mm in thickness and additional supports were added to the bottom assembly as 

shown in Figure 26. 

 

Figure 26: Improved bottom assembly for 2016/2017's final dual passive radiator design 

Before starting on new designs and further improvements, all of the sub-teams presented their 

work from the first quarter of the 2017-2018 school year at the Bose headquarters in Framingham 

Massachusetts. For our sub-team’s presentation, a slideshow and display was made (shown in Figure 27) 

that combined the work done on the various prototyped speakers so far. This was done to prove the 

capabilities of our project and to get input for our future work.  

 

Figure 27: Display made for Initial Bose Presentation incorporating 2016/2017’s designs and initial designs from this project 

 

Racetrack 

Added support 

structure 



38 
 

4.2 Computer Modeling 

 In this section, results from both PSpice and Simscape are discussed in detail to show the ultimate 

reasoning behind converting to use MatLab’s Simscape as our primary computer modeling software.  

4.2.1 PSpice 

 Early on in this project, PSpice was utilized for acoustic modeling. This helped was intended to 

assist us in predicting the acoustic behavior of our speaker system and to ultimately optimize our speaker 

box design. Initially, a simple transducer was modeled using PSpice and then compared to the speaker 

spec-sheet to confirm the validity of the PSpice model. The transducer modeled is the Satin2 40mm 

micro-driver that was used in the 2016-2017 designs. Figure 28 shows the spec-sheet for the micro-driver  

 

Figure 28: Satin2 40mm micro-driver spec-sheet 

 From Figure 28, Fs represents the resonant frequency of the micro-driver, which is confirmed by 

the results of the PSpice model shown in Figure 29.  
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Figure 29: PSpice Model and Results for Satin2 40mm Micro-diver 

 After the modeling the simple transducer and confirming the results from its spec-sheet, a single 

passive radiator system was modeled using the micro-driver. In this model, the passive radiators 

compromise the entire area of bottom of the speaker. Fs values for both the transducer and passive 

radiator were found. Figure 30 displays the model and Figure 31 shows that the Fs of the passive radiator 

(in white curve) is lower than the Fs of the transducer (in red curve), which is expected.  

 

Figure 30: PSpice model of the single passive radiator system 

 
Figure 31: PSpice Results for the single passive radiator system 
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 Now that we have modeled a single passive radiator system, we attempted to model a force 

balanced double passive radiator using PSpice. However, due to lack of literature on electro-mechno-

acoustic modeling of double passive radiator systems, the team has struggled to represent the system 

accurately to reflect the results from the scanning Vibrometer. Therefore, the team decided to switch to a 

more intuitive program where one can model speaker system physically in the mechanical domain 

without the need to switch between mechanical, acoustical, and electrical domains, which is done in 

PSpice. 

4.2.2 Simscape 

For the final Simscape design, a combination of hydraulic, mechanical, gas and thermal systems 

were utilized. The speaker and passive radiators were modeled by spring-mass-damper systems. The front 

passive radiator and the speaker were set-up as a double mass-spring-damper system, each connected to a 

“Translational Mechanical Converter,” or an air spring. The Translational Mechanical Converter acts as 

an interface between a mechanical translational and a gas network. The Translational Mechanical 

Converter inputs the translational mechanical network and outputs into three ports: a thermal conserving 

port, a gas conserving port, and a mechanical translation conserving port. Since the speaker system should 

not experience a lot of varying environmental changes, the thermal conserving port leads to an ideal 

insulator (or “perfect insulator”), which prevents heat exchange from occurring in the model. The 

mechanical translation conserving port is connected to the grounded reference point. The gas conserving 

port leads to Constant Volume Chamber that represents the volume of the speaker box. The rear passive 

radiator is set up as a single mass-spring-damper system with a Translational Mechanical Converter that 

leads to the same Constant Volume Chamber as the front passive radiator and speaker.  

Figure 32 presents the final Simscape design. An analysis input port is entered onto the signal that 

is inputted into the Ideal Force Source. The output port is located on the Rear Passive Radiator position 

chart. The analysis ports are used to perform a linear analysis of the model. Figure 33 presents the linear 

analysis of the final Simscape model using the parameter values from the Moving Magnet Design 1 
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Version 4, which is discussed later in the results section. The peak labeled represents a resonant frequency 

when the model was run. The resonant frequency calculated of the final moving magnet box design was 

103 Hz compared to the Polytec Scanning Vibrometer resonant frequency of 85 Hz. Although the 

Simscape model projected a resonant frequency that matched the calculated, the linear analysis performed 

for this box design was very similar to a linear analysis for a design that incorporated the Daffodil 

speaker. A MathWorks employee, Professor Stabile, and a member of the team reviewed the Simscape 

model and believed it was set up correctly, however, more improvements can be made to get a more 

accurate representation of the speaker system.   

  

Figure 32: Final Simscape design of a dual passive radiator speaker box with a moving magnet transducer 
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Figure 33: Linear analysis of the final dual passive radiator moving magnet box model 

 

4.3 Daffodil Transducer Incorporation 

The Daffodil transducers were obtained from Bose to assist with testing the prototypes. Figure 34 

shows one of the Daffodil transducers. It is about 24 mm (0.95 inches) in thickness. 

 

Figure 34: Daffodil transducer obtained from Bose Corporation 

4.3.1 Daffodil Box Design 1  

Daffodil Box Design 1 Version 1 

Design 1 version 1 (D1:V1), was a simple prototype used for proof of concept. It was used to 

familiarize our group with the fabrication process involved in creating prototypes, as well as testing a 
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more powerful transducer, than the one used in 2016/2017. The new transducer used, given to us by the 

Bose team, and was referred to as the Daffodil. To incorporate this new Daffodil transducer into our dual 

passive radiator design, D1:V1 was based off 2016/2017’s speaker box design however, several changes 

were made. 2016/2017’s team had shaped the top passive radiator to fit the profile of the transducer they 

were using. Since the new Daffodil transducer did not fit the circular shape used for 2016/2017’s design, 

a new passive radiator needed to be designed for the top. The new passive radiator fit the oval profile of 

the Daffodil, but had a different area than 2016/2017’s design. This involved changing the size of the 

bottom passive radiator to properly match the area of the new oval top passive radiator. The new racetrack 

needed to be larger in area, so the overall diameter was increased. Last, due to the bigger thickness of the 

Daffodil transducer, the overall height of D1:V1 was increased from 14.7 mm to 28.56 mm. This increase 

in thickness, as well as the increase in diameter (from 118.86 mm to 169.58 mm), lead D1:V1 to have 

roughly twice the acoustic volume of 2016/2017’s design. Polytec Scanning Vibrometer testing was 

performed on D1:V1 and resulted with scans of the front and back passive radiators shown in appendix D. 

These scans, while promising for the first test scans, showed a lack of support which caused sound 

distortion. In an ideal box design, the passive radiators will oscillate, while the rest of the box will remain 

rigid. As seen in the scans, the passive radiators do oscillate, however, due to the thinness of the walls, so 

do areas of the speaker box. Figure 35 shows the CAD model of this design. Figure 36 shows the labeled 

cross section view of this design. Figure 37 the 3D printed prototype of this design. See Table 2 for the 

specifications of this design. Figure 38 shows two Polytec Scanning Vibrometer scans of this design with 

a Daffodil transducer. Figure 39 shows two slow motion video screen shots of this design with a Daffodil 

transducer. 
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Figure 35: Daffodil Box Design 1 Version 1 CAD model 

 

Figure 36: Labeled section view of Daffodil Box Design 1 Version 1 
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Figure 37: Daffodil Box Design 1 Version 1 3D Printed Prototype 

Table 2: Daffodil Box Design 1 Version 1 Specifications 

Daffodil Box Design 1 Version 1 Specifications 

Objet Materials Rigid: VeroClear; Flexible: TengoBlackPlus 

Overall Thickness 32.45 mm (1.28 inches) 

Overall Diameter 161.9 mm 

Intended Transducer Daffodil 

Top Surround Thickness 1 mm 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness 3 mm 

Bottom Wall Thickness 1 mm 

Top Wall Thickness 1.77 mm 

Approx. Air Volume 28.16 cubic inches 

(461466.57 mm^3) 3d Printed Yes 

Resonant Frequency -- 

Additional Features ● Bottom wall cross support 

● Modified Top Surround 

● Adjusted Air volume & Passive areas 
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Figure 38: Daffodil Box Design 1 Version 1 Polytec Scanning Vibrometer scans 

 

Figure 39: Daffodil Box Design 1 Version 1 Polytec Scanning Vibrometer slow motion video screen shots 
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Daffodil Box Design 1 Version 2 

Daffodil Box Design 1 Version 2 (D1:V2) was similar to D1:V1, with several modifications. In 

an effort to stiffen the speaker box and create a better quality of sound, D1:V2 was created. D1:V2 

changed the bottom wall thickness from 1mm to 2mm. This added stiffness was done in hopes of 

preventing the undesired movement in D1:V1, therefore making the passive radiators more efficient. 

Based on ANSYS simulations and testing, the top surround was also increase to 2 mm in thickness in 

order to add support for the flexible material to support the Daffodil transducer. Lastly to add even more 

rigidity to the speaker box, curved ribbed supporting was added to the center of the bottom plate. This 

was done to keep the bottom wall fixed and rigid, as in previous scans the entire bottom wall had 

oscillated with the passive radiator. Figure 40 shows a labeled cross section view of this design and 

Figure 41 shows the 3D printed assembly. Table 1 lists the specifications of this design. Figure 42 and 

Appendix E shows the Polytec Vibrometer scan data from this design. This was the final version of this 

design. 
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Figure 40: Daffodil Box Design 1 Version 2 labeled CAD model 

 

Figure 41: Daffodil Box Design 1 Version 2 3D printed prototype 
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Table 3: Daffodil Box Design 1 Version 2 Specifications 

Daffodil Box Design 1 Version 2 Specifications 

Objet Materials Rigid: VeroClear; Flexible: TengoBlackPlus 

Overall Thickness 31.56 mm (1.24 inches) 

Overall Diameter 149.47 mm 

Intended Transducer Daffodil 

Top Surround Thickness 2 mm 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness 3 mm 

Bottom Wall Thickness 2 mm 

Top Wall Thickness 2 mm 

Approx. Air Volume -- 

3d Printed Yes 

Resonant Frequency -- 

Additional Features ● Bottom wall thickness increased 

● Top surround thickness increased 

● Added curved support ribs 
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Figure 42: Daffodil Design 1 Version 2 sample Polytec Scanning Vibrometer scan 

4.3.2 Daffodil Box Design 2 

Daffodil Box Design 2 Version 1 

This prototype was designed simultaneously to Design 1 to allow the team to determine what the 

best design to use was. Similar to the first design, this design’s thickness and diameter were also 

increased to incorporate the Daffodil transducer. The major difference with this design was that the 

“wings” of the Daffodil transducer were removed and an additional ring was attached to the Daffodil. 

This allowed for the top surround to retain its circular shape. Figure 43 shows this design and its cross 

section. Table 4 shows the specifications of this design.  
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Figure 43: Daffodil Box Design 2 Version 1 labeled cross section view 

Table 4: Daffodil Box Design 2 Version 1 Specifications 

Daffodil Box Design 2 Version 1 Specifications 

Objet Materials Rigid: VeroClear; Flexible: TengoBlackPlus 

Overall Thickness 30.95 mm (1.22 inches) 

Overall Diameter 124 mm 

Intended Transducer Daffodil 

Top Surround Thickness 1 mm 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness / weight 3 mm / 3.51 g 

Bottom Wall Thickness 1 mm 

Top Wall Thickness 1 mm 

Approx. Air Volume -- 
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3d Printed Yes 

Resonant Frequency -- 

Additional Features  

 

Daffodil Box Design 2 Version 2 

After analysis with the Polytec Scanning Vibrometer, it was determined that the bottom half 

needed more support. So, ribs were added that connected the center walls to the rigid bottom wall of the 

box. Another modification to this design was the incorporation of a twist lock fit to secure the top and 

bottom assemblies. The twist lock fit worked by first lining up the extruded pegs on the top assembly with 

their respective slots on the bottom assembly and subsequently twisting the entire assembly together. This 

design performed better but still needed more support. Figure 44 shows this design’s cross section view 

and Figure 45 shows the 3d printed prototype. Table 5 lists this design’s specifications. Figure 46 and 

Appendix F shows Polytec Vibrometer scans of this design.  

 

 

Figure 44: Daffodil Box Design 2 Version 1 labeled cross section view 
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Figure 45: Daffodil Box Design 2 Version 1 3D printed prototype 

 

 

Table 5: Daffodil Box Design 2 Version 1 specifications 

Daffodil Box Design 2 Version 2 Specifications 

Objet Materials Rigid: VeroClear; Flexible: TengoBlackPlus 

Overall Thickness 30.95 mm (1.22 inches) 

Overall Diameter 125.1 mm 

Intended Transducer Daffodil 

Top Surround Thickness 1 mm 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness/weight 3 mm 

Bottom Wall Thickness 1.11 mm 

Top Wall Thickness 1 mm 

Approx. Air Volume -- 

3d Printed Yes 

Resonant Frequency -- 

Additional Features ● Support ribs 

● Twist lock 
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Figure 46: Daffodil Box Design 2 Version 2 sample Polytec Scanning Vibrometer Scans 

Daffodil Box Design 2 Version 3 

The third version of this design added even more support. The ribs were increased in size and a 

circular rib was added in the center that attached to the outer ribs. ANSYS simulations showed better 

structural support and harmonic response of the speaker box. Figure 49 shows the maximum deflection to 

be around 1.2 x 10-5 meters. Figure 50 shows almost no vibration of the rigid material when it undergoes 

a frequency up to 500 Hz. This design performed much better than the previous versions. The resonant 

frequency of this design was determined to be approximately 90 Hz. Appendix G shows the Polytec scans 

of this design. Figure 47 shows this design’s cross section view and Figure 48 shows the 3D printed 

prototype with the Daffodil transducer in the center. Table 6 lists this design’s specifications. Figure 51 

and Figure 52 show Polytec Scanning Vibrometer scans of this design. This prototype is also 

demonstrated at the following link: 

 

https://drive.google.com/open?id=1Iz0bv0b8V8wMSGFa4t1IgWRlhfo8XVYP 

 

https://drive.google.com/open?id=1Iz0bv0b8V8wMSGFa4t1IgWRlhfo8XVYP
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While it will be heard through a second set of speakers, the video does a good job at comparing first the 

Daffodil transducer alone and then the Daffodil transducer enclosed it this speaker box design. 

 

Figure 47: Daffodil Box Design 2 Version 3 cross section view 

   

Figure 48: Daffodil Box Design 2 Version 3 3D Printed Prototype 

Support ribs 

Daffodil Transducer 

Bottom Passive 

Radiator 
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Figure 49: ANSYS structural simulation of Daffodil Box Design 2 Version 3 

 

Figure 50: ANSYS harmonic response simulation of Daffodil Box Design 2 Version 3 
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Table 6: Daffodil Box Design 2 Version 3 Specifications 

Daffodil Box Design 2 Version 3 Specifications 

Objet Materials Rigid: VeroClear; Flexible: TengoBlackPlus 

Overall Thickness 27.55 mm (1.08) inches 

Overall Diameter 125.1mm 

Intended Transducer Daffodil 

Top Surround Thickness 1.5 mm 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness / weight 3mm / 3.55g 

Bottom Wall Thickness 1.41 mm 

Top Wall Thickness 1 mm 

Approx. Air Volume 5.67 cubic Inches 

3d Printed Yes 

Resonant Frequency 90 Hz 

Additional Features ● Improved support ribs 

● Adjusted top surround 
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Figure 51: Daffodil Box Design 2 Version 3 sample front Polytec Scanning Vibrometer scan 

 

Figure 52: Daffodil Box Design 2 Version 3 sample back Polytec Scanning Vibrometer scan 
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4.4 Moving Magnet Transducer Incorporation 

4.4.1 Moving Magnet Box Design 1 

Moving Magnet Box Design 1 Version 1 

This design was made to house the Moving Magnet sub-team’s transducer design. This new box 

incorporated all design features gathered from earlier prototypes. It additionally raised the bottom passive 

radiator and added perimeter slots in order to reduce thickness and improve sound quality, respectively, as 

shown in Figure 53. The slots were to allow sound generated by the back passive radiator to escape out 

the front and not be cancelled out by any surface the speaker is mounted too.  Learning from previous 

prototypes, the top surround’s thickness was increased to 1.5 mm thick to accommodate for the extra 

weight that the Moving Magnet transducer introduces, since stiffness is proportionally related to the 

thickness raised to the third power. Curved ribbing was added to the inside surface of the speaker box for 

additional rigidity. To allow this part to print it was designed as two parts with a lock fit mechanism to 

hold it together. The overall thickness of this prototype was approximately 21 mm (or 0.827 in). Below, 

the cross section view of this design is shown which incorporates the Moving Magnet transducer. Table 7 

lists this design’s specifications. This design was not 3d printed because the final Moving Magnet 

transducer design was not finalized. 
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Figure 53: Moving Magnet Box Design 1 Version 1 cross section view 

Table 7: Moving Magnet Box Design 1 Version 1 Specifications 

Moving Magnet Box Design 1 Version 1 Specifications 

Overall Thickness 23.14 mm (0.911 inches) 

Overall Diameter 152.36 mm 

Intended Transducer Moving Magnet 

Top Surround Thickness 1.5 mm 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness / weight 3 mm / 4.57 g 

Bottom Wall Thickness 2 mm 

Top Wall Thickness 1 mm 

Approx. Air Volume -- 

3d Printed No 

Resonant Frequency -- 
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Additional Features ● Raised double passive 

● First design to incorporate the moving 

magnet transducer 

● Curved ribs 

● Slots on outer perimeter for improved 

sound quality 

 

Moving Magnet Box Design 1 Version 2 

Version 2 of the Moving Magnet transducer box design raised the bottom passive radiator up 

further and subsequently increased the diameter to maintain the air volume. The maximum thickness of 

this design is remained at 21 mm (or 0.827 in). Figure 54 shows this design and Figure 55 shows the cross 

section view. 

 

Figure 54: Moving Magnet Box Design 1 Version 2 CAD model 
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Figure 55: Moving Magnet Box Design 1 Version 2 cross section view 

Additionally, a housing to fit a single box/transducer was designed in order for testing. The 

intended purpose of the housing was to allow sound to travel from the bottom passive radiator to the front 

side of the speaker. Figure 56 shows this frame design with the box/Moving Magnet transducer it and 

Figure 57 shows the cross-section view with the housing. Table 8 lists the specifications of this design. 

 

Raised Bottom 

Passive Radiator 
Moving Magnet 

Transducer 

Top Surround 
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Figure 56: Daffodil Box Design 1 Version 2 with housing 

 

Figure 57: Daffodil Box Design 1 Version 2 with housing cross section view 

 

Table 8: Moving Magnet Box Design 1 Version 2 Specifications 

Moving Magnet Box Design 1 Version 2 Specifications 

Overall Thickness 19.39 mm (0.76 inches) 

Housing 
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Overall Diameter 164.48 mm 

Intended Transducer Moving Magnet 

Top Surround Thickness 1.5 mm 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness / weight 3 mm / 4.65g 

Bottom Wall Thickness 2 mm 

Top Wall Thickness 1 mm 

Approx. Air Volume -- 

3d Printed No 

Resonant Frequency -- 

Additional Features ● Added a separate frame for the 

transducer/box combination to sit in 

● Thicker bottom wall 

 

 

Moving Magnet Box Design 1 Version 3 

Design 1 Version 3 of the Moving Magnet Box design had several changes from the last version. 

The Moving Magnet transducer was replaced in the SolidWorks Model with an updated version. This 

required that the overall thickness increase slightly to 22.39 mm. Additionally, the air volume inside the 

box was adjusted to be slightly larger than the Daffodil transducer box design 2 Version 3. This design 

also had a separate support structure to support a Daffodil transducer in place of the moving magnet 

transducer because the moving magnet transducer was still being fabricated. This was the first prototype 

of the raised bottom double passive that was 3d printed. Figure 58 and Figure 59 shows the CAD models 

of this prototype and Figure 60 shows the 3d printed prototype. As a note, the top surface of this speaker 

box cracked due to cleaning. It was repaired with sealing cement but the next designs will have the wall 
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thickness increased from 1mm to 2mm to prevent this from occurring again. Table 9 lists the 

specifications of this design. 

 

Figure 58: Moving Magnet Box Design 1 Version 3 cross section 

 

Figure 59: Moving Magnet Box Design 1 Version 3 cross section with housing 
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Figure 60: Moving Magnet Box Design 1 Version 3 3D printed prototype 

After testing the speaker box with the Daffodil transducer siliconed to the box, a few areas were 

found that need improvement. First, since the area of the top and bottom passive radiators increased a 

significant amount, the measured resonant frequency was much higher (~140 Hz) than the 90 Hz as 

measured in the “non-raised” bottom passive design. As a result a large nut (~120 grams) was added to 

the transducer to increase its weight as shown in Figure 61. After retesting with the Vibrometer there was 

a slight decrease in the resonant frequency to ~137. The thickness of the top of the box may have also 

interfered with the Scanning Vibrometer results. Because of this, a cylinder of wood was laser cut and 

glued onto the top of the box as shown in Figure 61. This was retested with the Polytec Scanning 

Vibrometer and a slightly lower resonant frequency was attainted. 
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Figure 61: Moving Magnet Box Design 1 Version 3 modified assembly 

  

 

 

Table 9: Moving Magnet Box Design 1 Version 3 Specifications 

Moving Magnet Box Design 1 Version 3 Specifications 

Objet Materials Rigid: VeroClear; Flexible: TengoBlackPlus 

Overall Thickness 22.39mm (0.881 inches) 

Overall Diameter 186.16 mm 

Intended Transducer Moving Magnet or Daffodil 

Top Surround Thickness 1.5 mm 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness / weight 2 mm / 8.75 g 

Bottom Wall Thickness 2 mm 
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Top Wall Thickness 2 mm 

Approx. Air Volume 13.86 cubic inches 

3d Printed Yes 

Resonant Frequency ~137 Hz 

Additional Features ● Additional support for the Daffodil 

transducer 

● Improved frame 

 

Moving Magnet Box Design 1 Version 4 

This version was the planned version to go into the final speaker system design, so six of these 

boxes were printed. It was similar to version 3 except that its top and bottom rigid walls were increased to 

3 mm thick each, the curved ribs were decreased in size, the top surround was adjusted to 1.75 mm thick, 

and the design was slightly thicker to allow for the moving magnet transducer. The overall thickness of 

this design was about 24.4 mm thick and its overall diameter was about 186 mm. Figure 62 shows the 

CAD model of this design and Figure 63 shows its labeled cross section view. This design was printed 

without the housing as the housing did not have a significant effect on the sound quality during testing. 

Once the design was printed, a moving magnet transducer was implemented into it, wires were attached, 

and the box was sealed. This assembly process is shown in Figure 64. Table 10 lists the specifications for 

this design. This design was then tested with the Scanning Vibrometer. The Scanning Vibrometer test 

results showed a resonant frequency of about 90 Hz on both the front and back of all 6 of the 3d printed 

speaker boxes as shown in Figure 65, Figure 66, Figure 67 and appendix H. This scan video can also be 

viewed at the following link: 

https://drive.google.com/open?id=1WZ2H-48rz9f6G-4-BQBPhbK_ETDZUoj8 

 

https://drive.google.com/open?id=1WZ2H-48rz9f6G-4-BQBPhbK_ETDZUoj8
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Figure 62: Moving Magnet Final Design 1 Version 4 CAD model 
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Figure 63: Moving Magnet Final Design 1 Version 4 cross section view 
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Figure 64: Assembly steps of the final Moving Magnet Box Design 

1) Moving Magnet Transducer 

2) Double Passive Radiator Box 

3) Seal Transducer in top half of the box and connect 

wires 

4) Seal Top and bottom halves of speaker box 
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Table 10: Moving Magnet Box Design 1 Version 4 Specifications 

Moving Magnet Box Design 1 Version 4 Specifications 

Objet Materials Rigid: VeroWhite; Flexible: TengoBlackPlus 

Overall Thickness 22.39 mm (0.881 inches) 

Overall Diameter 186.16 mm 

Intended Transducer Moving Magnet 

Top Surround Thickness 1.75 mm (flat) & 1.5mm (curved) 

Bottom Surrounds Thickness 0.5 mm 

Racetrack Thickness / weight 2 mm / 8.75g 

Bottom Wall Thickness 3 mm 

Top Wall Thickness 3 mm 

Approx. Air Volume 15.38 cubic Inches 

3d Printed Yes (x6) 

Resonant Frequency ~85 - 90 Hz  

Additional Features ● Thicker top and bottom walls 

● Shortened ribs 

●  
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Figure 65: Moving Magnet Box Final Design 1 Version 4 Polytec Scanning Vibrometer scan with resonant frequency at ~85 Hz 
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Figure 66: Moving Magnet Box Final Design 1 Version 4 Polytec Scanning Vibrometer scan slow motion video screen shot of 

bottom passive radiator at 85 Hz 

 

 

Figure 67: Moving Magnet Box Final Design 1 Version 4 Polytec Scanning Vibrometer scan slow motion video screen shot of 

bottom passive radiator at 85 Hz 
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4.5 Moving Coil Transducer Flexible Housing Incorporation 

Since it was decided that 2 moving coil transducers designed by a separate sub-team would be the 

speakers in the overall frame that are able to rotate mechanically in order to assist with steering sound, a 

flexible housing design was needed. A housing was first designed to incorporate a Daffodil transducer 

and later a moving coil transducer to be used in the final wall-mounted home speaker system. 

4.5.1 Moving Coil Flexible Housing Design 1  

Before 3d printing the flexible housing for the moving coil transducer, it was decided to first 

design a similar flexible housing for the Daffodil transducer. This would allow more time for the Moving 

Coil team to further develop their transducer and our team to assess if there are any design changes that 

need to be made. When designing this prototype the main difference from the housing designed for the 

moving coil was the thickness, since the Daffodil transducer was thicker than the Moving Coil transducer. 

The approximate thickness of this design is 21.59 mm and its approximate diameter is 141.34 mm. For 

this design the flexible TangoBlackPlus sections were 1.75 mm thick to be able to assist the support rod 

with supporting the weight of the Daffodil while still being able to be flexible enough to be turned with a 

motor system. Figure 68 shows the CAD model of this design and Figure 69 shows its labeled cross 

section. Table 11 lists this design’s specifications. Figure 70 shows the assembly of this design. 
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Figure 68: Moving Coil Flexible Housing Design 1 CAD model 

 

Figure 69: Moving Coil Flexible Housing Design 1 cross section 
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Table 11: Moving Coil Flexible Housing Design 1 Specifications 

Moving Coil Flexible Housing Design 1 

Overall Thickness 21.59 mm (0.85 inches) 

Overall Diameter 141.34 mm 

Intended Transducer Daffodil 

Flexible material thickness 1.75 mm 

3d Printed Yes 

Additional Features ● Snap-fit lock 
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Figure 70: Moving Coil Flexible Housing Design 3D printed prototype assembly 
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4.5.2 Moving Coil Flexible Housing Design 2 

Moving Coil Flexible Housing Design 2 Version 1 

Design 2 Version 1 of the flexible housing design had several changes. This design was to house 

the moving coil transducer. As a result it was thinner than the previous design. Figure 71 shows this 

design and Figure 72 shows its cross section. Table 12 lists this designs specifications. 

 

 

Figure 71: Moving Coil Flexible Housing Design 2 Version 1 CAD model 



80 
 

 

Figure 72: Moving Coil Flexible Housing Design 2 Version 1 cross section 

Table 12: Moving Coil Flexible Housing Design 2 Version 1 Specifications 

Moving Coil Flexible Housing Design 2 Version 1 

Overall Thickness 19mm (0.748 inches) 

Overall Diameter 141.34mm 

Intended Transducer Moving Coil 

Flexible material thickness 1.25mm 

3d Printed No 

Additional Features ● Snap-fit Lock 

● “Zig-Zag” flexible support 

● Added holes for wires 

 

Moving Coil Flexible Housing Design 2 Version 2 

This version was the final version used in the overall wall-mounted home speaker system and had 

several design changes from the previous version. First the bottom half of the assembly was removed and 

Moving Coil 

Transducer 
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a support was added to the top half. This allowed for less parts that needed to be printed. Additionally, a 

hollow rod was added to the prototype so that the motor could fit into it and rotate the moving coil 

transducer. Figure 73 and Figure 74 show the CAD models of this design. 

 

 

Figure 73: Moving Coil Flexible Housing Design 2 Version 2 CAD model 
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Figure 74: Moving Coil Flexible Housing Design 2 Version 2 CAD model with moving coil transducer 

 

Table 13: Moving Coil Flexible Housing Design 2 Version 2 Specifications 

Moving Coil Flexible Housing Design 2 Version 2 

Overall Thickness 32.7mm (1.287 inches) 

Overall Diameter 138.95mm 

Intended Transducer Moving Coil 

Flexible material thickness 1.26mm 

3d Printed Yes 

Additional Features ● Removed Bottom Assembly 

● Added transducer support 

● Added support for the rod 
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Once the flexible housing was 3d printed and the moving coil transducers were fabricated, the 

housings, motors, and transducers, were assembled. Figure 75 shows the assembled flexible housing and 

motor and Figure 76 shows the assembled flexible housing with the motor and moving coil transducer. 

 

Figure 75: Final 3D printed Moving Coil Flexible Housing with motor attached 

 

 

 

Figure 76: Final 3D printed Moving Coil Flexible Housing with motor attached and with moving coil transducer 

4.6 Overall Low Profile Home Speaker System Design 

Our team was tasked with starting the overall speaker system frame design to incorporate all of 

the sub-teams’ work into one speaker system. The following sections show the initial designs for the 
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frame. The rest of the frame designing and fabricating process was then transferred to the resonant exciter 

sub-team. 

4.6.1 Speaker System Design 1 

Speaker System Design 1 Version 1 

Speaker System Design 1 Version 1 (SSD1:V1), was the first attempted design to incorporate 

multiple speaker boxes. This prototype was designed to fit tightly against a wall, with a thickness of 23 

mm. Six separate speaker boxes incorporating the moving magnet group’s transducer would provide the 

lower bass frequencies, while six individual “tweeters” would provide high frequencies. These tweeters 

would also be from the moving magnet group, however these transducer would not be mounted in a 

speaker box. The wall mount would be lifted off the wall slightly, and therefore small slits would be cut 

into the sides of the box, to allow sound to escape the back. Cut into the back side of this wall mount were 

areas for individual batteries to power each speaker. The tweeters would be placed with three on the left 

side of the mount, and three on the right side of the mount. The three speakers on either side of the mount 

would all be connected to a rack and pinion system, allowing the tweeters to rotate from side to side. The 

rack and pinion would be driven by a small step motor, which would be controlled by a remote. Spaces 

were provided in the back for the later incorporation of sound steering by means of an infrared sensor. 

Figure 77 and Figure 78 show CAD models of this design. 
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Figure 77: Speaker System Design 1 Version 1 CAD mode front 

Six Moving Coil Transducers 

Six Moving Double Passive radiator bass boxes with Moving Magnet transducers 
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Figure 78: Speaker System Design 1 Version 1 CAD model back 

Speaker System Design 1 Version 2 

Speaker System Design 1 Version 2 (SSD1:V2), is very similar to SSD1:V1. In this prototype, 

the moving magnet transducers, mounted in our speaker box design, will produce the mid to low range 

frequencies, roughly 70HZ to 150HZ. In this prototype only four moving magnet transducers will be 

used, compared to the six previously used. Planar coil transducers will be used again for mid to high 

range frequencies, keeping six transducers along the bottom. The two main differences between Version 1 

and Version 2, will be the addition of the resonant exciter’s work, as well as the method for sound 

steering. In Figure 79 the large rectangular hole will be used to mount the resonant exciter’s work. This 

addition will cover the low range frequencies, from 30Hz to 70Hz. The second biggest change in Version 

1 to Version 2, is the method of moving the “tweeters”. In previous designs, a rack and pinion system had 

been used to rotate the tweeters. In Version 2 a step motor will again be utilized, however, it will be 

driving a pulley system. This pulley system will be responsible for rotating the six tweeters. Two possible 

configurations allow for different possibilities of rotation. If two separate pulleys are used, then the 

tweeters can be turned in a set of three, allowing some to turn left, while others turn right. Lastly these 
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tweeters will be encased in a flexible membrane, allowing for rotation, but not allowing for sound 

produced from the rear to phase out sound produced in the front. This effect will increase the sound 

quality delivered by the tweeters. The overall thickness of this frame design is 21 mm but may need to be 

adjusted to incorporate the motors that will be rotating the tweeters. Figure 79 shows this frame design 

and Figure 80 shows its cross section. 

 

Figure 79: Speaker System Design 1 Version 2 CAD model 

Six Moving Coil Transducers 

Two Double Passive radiator bass boxes with Moving Magnet transducers 
Space for Resonant Panel 
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Figure 80: Speaker System Design 1 Version 2 cross section 

4.6.2 Speaker System Design 2 

At this point the responsibility of manufacturing the overall frame was transferred to the resonant 

exciter team as they had more available resources and time to continue to build the frame. The final 

speaker system design was similar to our speaker system design 1 version 2 except that it had 6 moving 

magnet speaker, 8 moving coil speaker, and the bass panel with 3 additional moving magnet transducers. 

The bass panel was to produce frequencies between 40 and 80 Hz, the 6 moving magnet transducers that 

are part of the double passive radiator bass boxes were to produce frequencies between 80 and 200 Hz, 

and the 8 moving coil transducers were to produce frequencies above 200 Hz. Additionally, 6 of the 

moving coil transducers were to have the ability to steer without moving by using sensors and the 

remaining 2 moving coil transducers were to assist with the sound steering by having the ability to rotate 

mechanically also using the sensors. The five sensors were incorporated at the top center of the final 

speaker system prototype. Figure 81 and Figure 82 show the front and back of the final fabricated low 

profile home speaker system (before electrical wiring). 
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Figure 81: Low Profile Home Speaker System Final Prototype (front) 
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Figure 82: Low Profile Home Speaker System Final Prototype (back) 
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Chapter 5: Recommendations 

In future projects we recommend improving the force-balanced, raised, sealed double passive 

radiator design that incorporates the moving magnet transducer. This could include experimenting with 

different materials for both the flexible and rigid components which could help to reduce damping effects 

and other undesired effects. 

In addition, we recommend that students completing a speaker project use Simscape as their 

software program to project resonant frequency responses. We suggest reading material about Simscape, 

completing tutorials, and setting up a means of communication with an employee of MathWorks who can 

aid in completing the models. As stated in the results section, the final model’s linear analysis did not 

fully match with the outcome from the Polytec Scanning Vibrometer testing. Although the model was 

believed to be built correctly, more work must be done to get an accurate linear analysis result. 

During assembly of the prototype the team recommends to be careful not to break the prototype, 

ensure that the wires have clearance to come out of the box, and to ensure that the box is air-tight. Our 

team used silicone to allow the boxes to be air-tight but there may be a better alternative. It was also 

important to allow enough clearance between the bottom of the transducer and the bottom wall of the box. 

Another recommendation is to test the Instron for accuracy before using it. Our team found that 

the calculated weight displayed by the Instron was off by a factor or 1.39. This lead to the team having to 

adjust the data gathered by the Instron by the scale factor described in Appendix C. 

When using the Polytec Scanning Vibrometer the team recommends ensuring that the box being 

tested is securely clamped and fixed, that the Scanning Vibrometer setting are correct, that the box is 

being scanned at the desired location and frequency range, and that the box is air-tight. 

Finally, the team recommends reading/researching all five reports by the five sub-teams and the 

report by the 2016/2017 Major Qualifying Project: The Synthesis and Design of a Small Speaker System. 

By referencing these reports along with additional research, future projects will be able to more quickly 

enter the design phase with a higher chance for success. 
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Chapter 6: Conclusions  

Initially, the team had limited knowledge about acoustics and the fabrication process of speaker. 

After researching and writing reports from August 2017 to October 2017, the team was able to gain a 

significant amount of knowledge relating to speakers and how their boxes/enclosures can impact their 

sound output. 

The team then used that knowledge to design, simulate, analyze, 3D print, test, and improve the 

speaker boxes. This process was repeated several times for a variety of transducers. Throughout the 

design process the team was able to learn how to use ANSYS, an Instron Microtester, a Polytec Scanning 

Vibrometer, PSpice, and Simscape. All of these tools helped with speeding up the design process and 

improving the quality of the designs. Toward the end of March 2018, the team had developed a final 

design to incorporate the moving magnet transducer designed by one of the other sub-teams. There were 6 

of these boxes 3D printed for the low profile home speaker system. There were 2 mechanically rotating 

housings 3D printed to incorporate two moving coil transducers. Once the other teams had their final 

prototypes, all of the speakers and hardware were arranged in a low profile frame. Then the electrical 

team, with help from other members, wired, soldered, and incorporated the sound steering and sound 

filters for the final speaker system.  

The five sub-teams then presented their results and the low profile home speaker system to 

Worcester Polytechnic Institute facility, colleagues, and alumni at WPI’s annual project presentation day. 

The Speaker System is shown in Figure 83. Following this presentation, all sub-teams then presented their 

results and speaker system to Bose Corporation. Our sub-team’s final presentation is shown in Appendix 

K and our final poster is shown in Appendix L. 
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Figure 83: Final Low Profile Home Speaker System Prototype 

6.1 Limitations of the Project 

There were many limitations encountered during the teams’ project. One of the issues realized 

early on in the project was communication. The teams found that it was nearly impossible to find a time 

where all 17 members could meet. As a result, weekly, hour long meetings were created at times where 

the most people could attend. Each team had to have at least one member present to give updates about 

their team’s progress. These meetings also served to make decisions about future plans, goals, and 

recommendations. 

Other limitations relating to our specific sub-team include material selection, software/hardware 

expertise, and time management. While the team was very familiar with SolidWorks other software 

programs including ANSYS, PSpice, and Simscape had to be learned. ANSYS was learned by taking 
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classes that provided experience with the program, by watching online videos relating to structural 

aspects, and by referring to colleagues. PSpice, while used for initial designs, was found to offer limited 

capabilities for what the team needed it for. As a result, the software was shifted from PSpice to 

Simscape. Simscape offered greater capabilities and was found to be widely used by Bose Corporation 

and other companies. Simscape was learned by watching online videos, referring to our project advisor, 

and by contacting MathWorks through several phone calls/video chats for assistance. While the team was 

able to get working model, many improvements could be made and more knowledge can be gained. 

3D printing, while a great method for prototyping and redesigning, did also have limitations. The 

Objet 260 Connex owned and operated by the ARC of Worcester Polytechnic Institute was chosen as the 

3D printer to use because it could print both flexible and rigid materials simultaneously. However, the 

material selection was limited. For example, the flexible material used was not the ideal material to use 

because after being deformed it took a longer time to return to its original shape. This may have affected 

our results and could have been improved if using a different material. Also, since the 3D printer was 

operated in WPI’s Rapid Prototyping Laboratory, time to print had to be allowed as a result of many 

projects submitting printing requests.  

Finally, time management was also a limitation. Since the final transducers intended to be 

incorporated into our speaker box was not finalized until March of 2018, our team had to design the boxes 

with the Daffodil transducer. While this was able to give us insight into what had to be incorporated into 

our final design, our team was given limited time to design and test the final version of our speaker box 

for the moving coil transducer. Time management also limited the finalization of the overall low profile 

home speaker system. Since all final speaker prototypes and frame were not finished until early April 

2018, this left the electrical team with limited time to incorporate their sound steering and sound filtering 

systems. However, with the help from all 17 team members, a final working prototype of the low profile 

home speaker system was successfully fabricated. The system, while functioning, does also offer potential 

for many improvements from future projects. 
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Appendices 

 

Appendix A: Procedure for printing the combo rubber-surround/abs-

cone in WPI’s Rapid Prototyping Lab 

1. First ensure that there is overlap with you surround and cone/wall as shown in the circled areas. 

In the cross section image below. We used a 0.5mm overlap. This ensures that the parts will be 

printed attached to each other. Here the flexible material is shown in white and the rigid material 

is shown in gray. 

 

 
 

2. Save the assembly as an STL file.  

a. Also, while saving the STL file be sure to click options and check save all components of 

an assembly in a single file as shown below. 
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3. Navigate to the sharepoint site: https://sharepoint.wpi.edu/academics/ME-PROTO/default.aspx 

a. Read the WPI Rapid Prototyping Guidelines - 2016-08-18 before proceeding 

(especially the Objet 260 Connex section). This PDF can be found on this site under the 

“STL instructions” link in the top right corner. 

b. Click on “Objet 260 Connex Request” (circled below). 

 

https://sharepoint.wpi.edu/academics/ME-PROTO/default.aspx
https://sharepoint.wpi.edu/academics/ME-PROTO/default.aspx
https://sharepoint.wpi.edu/academics/ME-PROTO/default.aspx
https://sharepoint.wpi.edu/academics/ME-PROTO/default.aspx
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c.  Click “Add new item” and a form will appear as shown below. Fill out the fields with the 

red asterisks. Note: put [objet] in front of your order title; specify “multiple” for material 

requirements and in the description specify the CAD part names that you want to be 

flexible made of TengoBlackPlus and the part names you want to be rigid made of 

VeroClear or VeroWhite; Specify the overall assembly maximum dimensions in the x,y, 

and z directions. Be sure to attach the STL file to the form by clicking the attach file 

button circled below. 

d. Click Save at the bottom of the form (it is cut off from the image here). 

Your order is now submitted and you will get notified if there are any problems and when 

it is finished. 
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Appendix B: Procedure for ANSYS simulation of an X weight 

transducer on a speaker box/passive radiator 

 

1. Open ANSYS Workbench from the start menu 

2. Click on Static Structural in the toolbox 
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3. Double click engineering data 

4. Click “Engineering data sources” (top left) 

5. Double click “General materials” 

6. Click the plus next to polyethylene 
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7. Click engineering data again 

8. Click on polyethylene 

9. And change the name to TengoBlackPlus or desired material 

10. Repeat for VeroClear or desired material 

11. Fill out the young’s modulus & Poisson’s ratio for each material 

12. Ensure sure correct units 
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13. Import SolidWorks model/assemble by right clicking geometry, import geometry, and browse 

13.   Use US customary In for units 

14. Double click model and ASSIGN MATERIALS TO EACH PART by clicking geometry and   

each part 

15. Update mesh 

     a.     Select: Quality>mesh metric>skewness 

     b.     If there are a lot of elements above the 0.5 mark, set the size to approx. 0.075 in. to try    

 to optimize mesh size. (mesh>sizing>element size) 

16. Update mesh again 

17. Check skew stat. (Should mostly be under 0.5) 

18. Click static structural 

a. Supports>fixed supports 

b. Select fixed areas 

c. Click apply 

19. Click static structural 

a. loads>force 

b. Select loaded areas 

c. Click apply 

d. Select direction and magnitude 

19.1 Click static structural 

 a. Click support displacement 

b.        Enter 0 in the x and z component 

c.        Select face 

20. Click Solve 

21. Click solution 
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23. Click deformation>total 

24. Click solve again 

25. Click deformation 

Note this is a magnified scale. To see true scale click dropdown arrow 

Appendix C: Calibration of the Instron Microtester 

Since our Instron data was not agreeing with our Polytec data, we performed a calibration of the 

Instron Microtester using quarters. First 1 quarter was weighed on the Instron. Then additional quarters 

were added and their weights were recorded. This data was plotted against the quarters’ actual weights 

and resulted in a scale factor of 1.39. 

 

 
 

Appendix D: Polytec Vibrometer Scans of Daffodil Box Design 1 

version 1 
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Appendix E: Polytec Vibrometer Scans of Daffodil Box Design 1 

version 2 
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Appendix F: Polytec Vibrometer Scans of Daffodil Design 2 Version 2 
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Appendix G: Polytec Vibrometer Scans of Daffodil Box Design 2 

Version 3 
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Appendix H: Polytec Vibrometer Scans of Moving Magnet Box Design 

1 Version 4 (Final Design) 

Since there were 6 of these prototypes printed there are 6 subsections in this appendix (one for 

each print). This was done to ensure that all of the prints operated identically. 
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Print 1: Moving Magnet Box Design 1 Version 4 
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Print 2: Moving Magnet Box Design 1 Version 4 
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Print 3: Moving Magnet Box Design 1 Version 4 
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Print 4: Moving Magnet Box Design 1 Version 4 

 



126 
 

Print 5: Moving Magnet Box Design 1 Version 4 
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Print 6: Moving Magnet Box Design 1 Version 4 
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Appendix I: How to Use Simscape to Model a Speaker System 

In order to use Simscape to model the speaker system, the first step involved learning how to 

model a simple model. On MathWork’s website, a tutorial page titled “Creating and Simulating a Simple 

Model” gave detailed instructions on how to model a system comprised of a mass, a spring and a damper, 

which can be found on this website: https://www.mathworks.com/help/physmod/simscape/ug/creating-

and-simulating-a-simple-model.html. Follow these instructions to build a simple model and learn how to 

simulate the model and obtain position and velocity data.  

In addition to finding block components in the Foundation Library Browser as the instructions 

present, within the model window, a user can type in the component they wish to include into the model 

and click on the component name. For the speaker system, a “Chirp Signal” was utilized instead of the 

“Signal Builder” Once you run the model and are able to see that the position and velocity data is 

functional, right click the line that connects the “Signal Builder” block with the “Simulink-PS Converter.” 

Locate “Linear Analysis Points” on the dropdown menu and click “Input Perturbation.” Next, right click 

the line that connects the “PS-Simulink Converter” to the “Position” scope block. Locate “Linear 

Analysis Points” on the dropdown menu and click “Output Measurement.” These two linear analysis 

points enable the user to perform a linear analysis with specified inputs and outputs. In order to perform a 

linear analysis, which will be needed once the final model is created, click on Analysis on the Menu Bar 

at the top of the screen. From the dropdown menu, locate “Control Design,” click on “Linear Analysis” 

and then click on “Bode.” Click on “Bode Plot 1” and “Plot Preferences” in order to change the axis titles, 

the type of units the data presents and the limits on each axis. The Bode graph will be used in later models 

to display the peak frequency responses.  

Creating a double mass-spring-damper model was the next step performed in order to represent 

the transducer and the front passive radiator. In order to create this system, simply delete the line 

connecting the Mechanical Translational Reference to the Spring and Damper connection. Next, copy the 

Mass, Spring, and Damper blocks and paste them into the model window or locate each block item in the 

Foundation Library. Adjust the parameter values by double clicking the block you wish to alter. Connect 

https://www.mathworks.com/help/physmod/simscape/ug/creating-and-simulating-a-simple-model.html
https://www.mathworks.com/help/physmod/simscape/ug/creating-and-simulating-a-simple-model.html
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the new mass to the Spring and Damper block from the single mass-spring-damper system, as presented 

below. Connect the new Spring and Damper blocks the same way in which the single mass-spring-damper 

system was modeled, then reconnect the Mechanical Translational Reference and Solver Configuration to 

the new Spring and Damper blocks. Re-run the model to ensure functionality.  

 

 In order to model the speaker system, pneumatic components also need to be included to 

represent the air within the speaker box. From the Foundation Library within the Simscape tab of the 

Simulink Library, expand the Gas tab. Click on Elements and drag in a Translational Mechanical 

Converter block. Next, drag in a Gas Properties block which can be found in the Utilities tab. In addition 

to gas components, a thermal component is needed as well. Drag in a Perfect Insulator block which can be 

found under the Thermal Elements tab within the Thermal tab in the Foundation Library.  

 The speaker and both the rear and front passive radiators require their own Translational 

Mechanical Converter block, a ground reference point, a Perfect Insulator and a Mass, Spring, and 

Damper block. Using the double mass-spring-damper model created above, connect the Translational 

Mechanical Converter to the first mass, parallel to the Spring and Damper blocks. Attach the Perfect 

Insulator block to the “H” port, the ground block to the “C” port and the Gas Properties block to the “A” 
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port. Repeat this step for the second mass as well, using a second Translational Mechanical Converter, 

Perfect Insulator and ground block. Attach the “A” port to the same line that connects the first “A” port to 

the Gas Properties block. The image below displays how to properly connect each of the above mentioned 

components. The Translational Mechanical Converter is placed parallel to the spring and damper since 

the mass acts on all three components within the speaker system. The Translational Mechanical Converter 

acts as an air spring and is reacted on by the mass and also acts back on the mass. The Gas Properties 

block acts as a volume chamber that is representative of the volume of the speaker box.  

 

 Once the double mass-spring system representative of the speaker and front passive radiator are 

built, the rear passive radiator can be incorporated into the Simscape model. The picture below displays 

how the rear passive radiator component can be added into the model in the image above. Similar to the 

front passive radiator and the speaker, the rear passive radiator has a Translational Mechanical Converter 

that connects to the Gas Properties block, a ground reference, and a Perfect Insulator block. However, 

since the rear passive radiator acts as a single mass-spring-damper system, the mass, spring and damper 

are only connected to the Translational Mechanical Converter instead of being connected to the front 

passive radiator’s mass-spring-damper connection. An Ideal Translational Motion Sensor was connected 
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to the rear passive radiator’s mass, as well as a velocity and position scope graphs. Similarly to how the 

linear analysis was performed during the formation of the simple model, add the “Input Perturbation” 

onto the line connecting the Chirp Signal and the ‘Simulink-PS Converter” and the “Output 

Measurement” between the “PS-Simulink Converter” and the Position1 block.  

  
 Once the entire model is created, the values can be entered into each component by double 

clicking on the block you wish to edit. For each spring block, the value entered is representative of the 

inverse of the compliance, since compliance is calculated as m/N and the spring on Simscape uses units of 

N/m. For the damper, the inverse of the mechanical losses can be used, since the mechanical losses uses 

units of s/kg and Simscape uses units of N/(m/s). The mass of the speaker is representative of the moving 

mass of the transducer. The mass of the front passive radiator reflects the mass of the surround as well as 

the mass of the transducer. The rear passive radiator’s mass is reflective of the mass of the racetrack. Each 

Translational Mechanical Converter’s interface cross-sectional area is reflective of the effective areas, 

which is discussed in previous sections. For our model, the cross-sectional area at port A was set as 0.01 

m^2 and the dead volume was set to 0.00001 m^3. These two values helped in not interfering with the 
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analysis, as they had previously when larger values were entered into them. The Gas Properties had the 

same cross-sectional area at port A entered and the volume of the speaker box can be entered into the 

chamber volume. The Chirp Signal can also be edited to set limits on the frequency inputted into the 

system. The final Simscape model can be seen below. The orientation of blocks does not affect the 

simulation outcome of the system, which is why the model displayed in the Results section looks different 

than this model. If any issues or questions arise during Simscape creation and analysis, MathWorks is a 

helpful resource to find answers. Between a combination of online resources and setting up video calls 

with a MathWorks employee, many obstacles were able to be overcome and our team was able to make 

improvements on the Simscape model.  
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Appendix J: Presentation on How to Use PSpice: Electro-Mechano-

Acoustic Modeling 
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Appendix K: Final Presentation to Bose Corporation 
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Appendix L: Final Poster for Project Presentation Day at Worcester 

Polytechnic Institute 
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Appendix M: PSpice Installation Tutorial 

1. Go to http://www.orcad.com/buy/try-orcad-for-free 

2. Scroll down and fill out your Download Lite Request (as shown below)  

3. Select the second option in the drop down menu for the Software Requested (as shown 

below) 

 

4. Click submit 

5. Now you should have received an email with the download link. Click it and download it. 

6. Open the zipped folder and double click on the setup application (as shown below)  

7. Install the software by clicking Yes and then Next 

8. Select “I accept the terms of the license agreement” then click Next and browse to select 

the folder for installation 

http://www.orcad.com/buy/try-orcad-for-free
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9. Your Installation should start now and it will take about 5-10 minutes, then you should 

see the window below  

10. Click finish and now you should have it all setup 

11. To open PSpice, search for Capture CIS Lite and click it 

12. To start a new project, select File  New  Project. Fill out the project Name box, 

make sure that Analog or Mixed A/D button is selected then click OK 

13. In the next page, make sure to select “Create a blank project” (as shown below) then click 

OK  

14. Now you should see a blank schematic entry screen as shown below 

15. Check out this tutorial for an introduction to PSpice schematics and simulation: 

https://engineering.purdue.edu/~ee255/lecturesupp_files/PSpice-Tutorial.pdf 

https://engineering.purdue.edu/~ee255/lecturesupp_files/PSpice-Tutorial.pdf
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