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Abstract 

A novel process for single-pot conversion of biomass to biofuels was developed 

called the molten salt catalytic pyrolysis (MSCP) method. The proposed single-pot 

MSCP process proved to be an inherently more efficient and cost-effective 

methodology for converting lignocellulosic biomass. In this study, several parameters 

that affect yield of bio-oil were investigated including carrier gas flow rate; pyrolysis 

temperature; feed particle size; varying types of molten salt and catalysts. Use of 

molten salt as the reaction medium offered higher liquid yield and experiments 

containing ZnCl2 showed higher yield than other chloride salts. The highest yield of 

bio-oil was up to 66% obtained in a ZnCl2-KCl-LiCl ternary molten salt system 

compared with 32.2% at the same condition without molten salts. In addition, the 

effect of molten salt on the composition of bio-oil was also studied. It was observed 

that molten salt narrowed the product distribution of bio-oil with furfural and acetic 

acid as the only two main components in the liquid with the exception of water. 

Finally, a thermogravimetric kinetic study on the pyrolysis of biomass in MSCP was 

conducted. 
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Chapter 1. Introduction 

1.1 Introduction 

Human beings began burning fossil fuels extensively at a rough time scale in the 

mid-to-late 1800s when the First Industrial Revolution broke out. More and more 

fossil fuels, especially coal and crude oil were exploited from that moment on. The 

acceleration of consumption of coal, crude oil and natural gas occurred since 1985 

due to the growing demand for huge quantity and high quality industrial products as a 

result of developing economics. Currently, approximately one-third of the Earth’s 

technically and economically recoverable stocks of fossil fuels have been exploited. 

Based on prediction of resource experts shown in Figure 1, the world is approaching 

peak consumption for coal and oil in view of the condition that though plenty of coal 

exists, much of it now looks too costly to recover. 

 

Figure 1: Fossil fuels: global production, 1800–2200. 

(http://www.rmi.org/RFGraph-Fossil_fuels_global_production) 

 

Due to the overuse of fossil fuel, pollution resulting from fuel combustion and 

green house effect has led to some serious effects on people’s health and environment. 

The emissions of greenhouse gases such as CO2, and pollutants such as N2O and SO2 

have changed the climate step by step and caused severe natural disasters. So the 

corresponding environmental issues have gained great attention. One approach to 

address these concerns is to improve the current techniques for fossil fuel utilizations, 

http://www.rmi.org/RFGraph-Fossil_fuels_global_production
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such as using novel catalysts to decrease toxic substances in exhaust emissions. The 

second approach is to explore new green technologies, such as hydro-power, wind, 

solar, geothermal and biomass, to gain energy, other than just improve existing 

techniques and equipments. Figure 2 produced by U.S. Energy Information 

Administration (EIA) indicates that the energy consumption pattern of the United 

States has altered significantly over the last fifty years and grown in diversity after 

1970s, as new energy sources have been developed and as uses of energy has changed. 

However, the three major fossil fuels—petroleum, natural gas, and coal, which make 

up nearly 90% of total usage, still dominate the U.S. fuel consumption. Nonetheless, 

the increasing rate of other renewable resources is promising in the new century, 

especially biomass energy. The 21
st
 Century promises a significant shift to alternate 

industrial feedstock and green processes to produce power and chemicals
 [1]

. 

 

Figure 2: History of energy sources consumption in United States.    

(http://www.eia.gov/todayinenergy/detail.cfm?id=11951&src=Total-b1) 

 

Among many alternatives sources that have the potentials to replace the role of 

fossil fuels, biomass energy could be one of the most promising ways to realize this 

goal. Firstly, biomass contributes less or no net CO2 than conventional fossil fuel in 

the atmosphere, since use of biomass releases the same amount of CO2 as it absorbed 

in its growth, and the cycle time is much shorter than for fossil fuels 
[2]

. Secondly, 

biomass is clean for its negligible content of nitrogen, sulphur and ash, which 

produces significantly less emission of nitric oxide, SO2 and soot. In this way, 

http://dict.youdao.com/w/toxic/
http://dict.youdao.com/w/substance/
http://www.eia.gov/todayinenergy/detail.cfm?id=11951&src=Total-b1
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biomass-based fuels and products could mitigate the global warming as well as air 

pollution to some extent. Thirdly, biomass is the only resouce that has the ability to 

provide three main sources of renewable energy: liquid, gaseous and solid fuels. It can 

not only power turbine to generate electricity by burning, but also offers a source o for 

a variety of industrial raw materials or commercial products directly 
[3]

. Finally, the 

liquid product called ‘bio-oil’ or ‘bio-crude’ could be refined or upgraded in existing 

petroleum refineries to produce transportation fuels and other chemicals by 

undergoing conventional reactions such as steam reforming, hydrocracking, 

hydrotreating, isomerization and catalytic cracking 
[4,5]

. 

The process of biomass conversion has been investigated quite intensively in recent 

decades. Compared with gaseous and bio-solid products, research on bio-oil received 

the most attention. However, the complexity of biomass feedstock and conversion 

chemistry involving hundreds of reactions during the process, instability and complex 

composition of bio-oil, unknown reaction mechanisms, and lack of well-established 

industrial production techniques, provides a huge challenge to the advancement of this 

technology. Nonetheless, because of decreasing stocks of fossil fuels and the growing 

environmental problems, it is quite evident that the development of a method which 

could eliminate or reduce the adverse factors mentioned above is of great interest. 

Consequently, there is currently a great deal of research on the development of a high 

efficiency, selective, cost-effective, and environment-friendly production of bio-oil as 

well as its upgrading chemicals such as transportation fuel. 

 

1.2 Problem Identification and Research Objective  

Thermo-chemical decomposition of biomass has attracted great interests as it can 

convert raw feedstocks directly into bio-liquid 
[6]

. Both lab-scale research and 

industrial applications have been investigated for several decades. However, current 

production processes of bio-liquid are deficient in three ways: (1) poor efficiency in 

biomass heat treatment; (2) presence of hundreds of compounds in bio-oil; (3) unclear 

biomass conversion reaction kinetics and mechanism. So research on how to improve 

bio-liquid production is still ongoing intensively and so far no effective method has 
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been proposed to overcome the drawbacks mentioned above.         

Recently, molten salt catalytic pyrolysis (MSCP) process was proposed by 

researchers at the Department of Chemical Engineering, Worcester Polytechnic 

Institute (WPI). The former proposed single-pot reactor with MSCP process had 

proved to be an inherently more efficient and cost-effective methodology for 

converting cellulosic biomass feedstock 
[7-9]

. However, the effect of molten salts on 

more general patterns of biomass- lignocellulosic biomass hasn’t been investigated 

yet. Moreover, pyrolysis reaction kinetics and mechanism in molten salt bath haven’t 

been illustrated systematically.   

The aim of this project is to provide a novel and systematic process for single-pot 

conversion of biomass (sawdust, newspaper and recycled print paper) to liquid fuels 

and chemicals derived from and improving previous work. Due to the difference in 

composition between laboratory cellulose studied previously and more complicated 

natural lignocellulosic biomass, the reaction conditions for best yield of liquid and the 

product distributions and properties were investigated. Also, the relationship between 

composition of bio-oils and corresponding reaction condition was established. 

Furthermore, thermogravimetric decomposition of biomass with molten salt was 

investigated for the first time. Pyrolysis kinetics models and potential mechanisms 

could be achieved with the analytical experiments. This project is more promising 

because, unlike pure cellulose, lignocellolose is the cheapest and most abundant 

source of biomass, which can be gathered directly from farmland or forest. If 

lignocellolose could be used as feed to produce biofuel in an economical way, it will 

definitely have a great impact on the energy domain. 

 

1.3 Dissertation Overview 

This dissertation is organized into 5 chapters. Chapter 1 gives a general background 

on current energy sources utilization and accompanying energy crisis, as well as 

environmental issues. Also, the motivation of this project is briefly presented at the 

end of this Chapter. Comprehensive and state-of-the-art literature review is presented 

in Chapter 2. Chapter 3 deals with the experimental procedures utilized. Chapter 4 is 
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dedicated to a discussion of the experimental results in detail, which contains three 

parts: optimizing bio-oil yields, compositions of bio-oil analysis, and pyrolysis 

kinetics models and decomposition mechanisms. General conclusions and directions 

for future work are presented in Chapter 5. 
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Chapter 2. Literature Review 

This review starts with a systematic description on biomass chemistry including 

composition of biomass and characteristics of each component, followed by general 

information about current development of bio-products technology, which is mainly 

focused on bio-oil and bio-char. Next, a comprehensive introduction to some common 

processes that produce fuel from biomass is presented. Further, the state-of-the-art fast 

pyrolysis technology is described thoroughly, coupled with catalysis, molten salts 

media, process enhancement, etc. Finally, several potential mechanisms and pyrolysis 

reaction kinetics models of thermo-decomposition of particular biomass proposed by 

researchers are described in detail. 

 

2.1 Biomass Chemistry  

Biomass is defined as the biological material of recent living origin 
[10]

. Plant-based 

biomass, are those which are derived from plant matter, containing a few basic 

monomer units such as, celluloses, hemicelluloses, extractives (starches, terpenes), 

lignins, uronic acid, proteins, as well as ash. Typically, there are several classes of 

plants: lignocellulosic plants, starch-based plants, triglyceride-producing plants and 

rubber-producing plants 
[11]

. In this project, only lignocellulosic plants biomass is 

under investigation for its wide-distribution in the U.S. (also due to its lower cost than 

starch or sucrose based materials) and its intensive-use in research. 

 

2.1.1 Composition of Biomass 

Lignocellulose is the most abundant plant material that makes up the cell walls of 

woody plants such as grasses, trees and some crops. Most Lignocellulosic biomass 

contains three major components: cellulose, hemicellulose and lignin 
[12]

. The relative 

content of each part is: cellulose (35-50%), hemicellulose (20-40%) and lignin 

(5-30%), together with infinitesimal amounts of minerals
 [13]

. 

Cellulose, as shown in Figure 3, is a biological linear polymer with β-1, 4 linkages 

of ᴅ-glucopyranose monomers 
[14]

. Due to the existence of hydroxyl groups and 

bonded hydrogen atoms, the cellulose chains can form intra- and inter-hydrogen 
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bonds to form a crystalline configuration 
[15]

. In this configuration, both top and 

bottom layers are completely hydrophobic, while the sides of chains are essentially 

hydrophilic with formation of hydrogen bonds, as aliphatic hydrogen atoms are all 

located in axial positions, whereas polar hydroxyl are assigned in horizontal positions 

[11]
. Groups of chains twist and twine together in narrow space to form ribbon-like 

microfiber, which is the element to build up more complicated fibers. Cellulose fibers, 

the main component in the cell wall, give wood ‘strength’ and minimize flexibility 
[16]

.  

Reactions that involve cellulose fibers are mostly allowed to take place on the surface 

of bio-polymer. Moreover, the intramolecular and intermolecular hydrogen bond 

network in the bio-polymer makes its dissolution process more difficult. Cellulose is 

insoluble in water, but is capable of depolymerization with acid or base hydrolysis, to 

form cellotetrose (glucose tetramer), cellotriose (glucose trimer) and cellobiose 

(glucose dimer). When undergoing a complete acid hydrolysis process, cellulose has a 

tendency to be broken down into glucose 
[17]

. As for the polymerization, the degree of 

polymer depends on the types of plants, usually about 500-15000 
[18]

.   

 

Figure 3: Chemical structure of cellulose 
[14]

. 

 

Hemicellulose is the second major ingredient in wood, which comprises six main 

basic unit components: glucose, galactose, manose, xylose, arabinose and glucuronic 

acid, as shown in Figure 4 
[14]

. In contrast to cellulose, which is in good order of 

assembly of single glucose, hemicellulose is a polysaccharide complex, consisting 

five carbon sugars (xylose and arabinose), six carbon sugars (glucose, galactose and 

manose) and carbonyl acid (glucuroic acid). Besides, it is claimed that not only 
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glucose, but also the other four unit sugars which their alcoholic group could be 

substituted with acid 
[11]

. The major hemicellulose sugar in softwood is mannose, 

while xylose is the most common hemicellulose sugar in hardwood 
[19]

. The molecular 

weight of hemicelluloses is much lower than that of cellulose, since the repeating unit 

number of hemicellulose is only around 150. For the macro-structure, hemicellulose 

exhibits amorphous structure owing to the branched side chain and the difference of 

monomers 
[14]

.  

 

Figure 4: Main components of hemicelluloses 
[14]

. 

 

 

Figure 5: Part of lignin structure. 

(http://en.wikipedia.org/wiki/Lignin#/media/File:LigninStructure.png) 



 17 

The third common constituent, lignin, has the most amorphous cross-linked 

configuration without specific structure. As shown in Figure 5, lignin is a highly 

branched, water-insoluble and polyphenolic substance that comprised of an irregular 

array of diversely connected ‘hydroxy-’ and ‘methoxy-’ substituted phenylpropane 

units 
[20]

. The three general phenylpropane units are ᴘ-coumaryl, coniferyl and sinapyl 

[21]
. Lignin is always associated with cellulose and hemicellulose, to provide firm 

shield against destruction of lignocellulosic fibers. Lignin presents structure 

reinforcement and offers shields to protect cell walls from biological and physical 

attack, thus lignin is treated as the hardest obstacle for biomass deconstruction process 

[22]
. Also, different types of plants give varied structures of lignin, and different 

extraction methods to separate lignin from lignocelluloses result from the diverse 

patterns of lignin 
[11, 14]

.   

The composition and property of biofuel extracted from lignocelluloses don’t only 

rely on the content of each component in raw feedstock, but also depend on the 

interaction of each component. It is the one reason of why biomass conversion is so 

complicated and this part will be illustrated in detail later 

 

2.1.2 Characteristics of Biomass  

Figure 6 shows how the three main components (cellulose, hemicelluloses and 

lignin) structured in wood fiber. Cellulose fibers act as the basic skeleton of cell walls. 

Hemicellulose is attached to the surface of cellulose non-covalently, regarded as an 

amorphous matrix material that is holding the cellulose fibers in positions. 

Hemicellulose also plays a role in connecting cellulose and lignin, as the hydrophobic 

groups in hemicellulose, for example, acetyl and methyl groups enhance the affinity 

of combinations
 [23]

. More in-depth discussion about functionality of cellulose, 

hemicelluloses and lignin in cell walls and their biological behavior are out of scope 

of this work.  

In order to derive biofuel from lignocellulosic biomass, the first step is to destruct 

solid biofibers before those decomposition reactions can occur. However, plants 

themselves have strategies to protect them from being digested. So it is necessary to 
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have a good knowledge in the characterization of lignocellulosic plant cell wall. 

Himmel et al. 
[24]

 and Chundawat et al. 
[25-27]

 have published some excellent papers in 

recent years to characterize the macro- and micro- structure of lignocellulosic plant 

cell wall by many characterization methods, such as, scanning electron microscopy 

(SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), 

immune-electron microscopy (IEM), nuclear magnetic resonance (NMR), nitrogen 

physisorption analysis, etc. The rigid plant cell must be broken down, especially for 

downstream process which involving fermentation reactions. Considering the 

recalcitrance of lignocellulosic fibers, pretreatment is always required to deal with 

raw feedstock and this part will be further elucidated later on.  

 

Figure 6: Internal structure of wood fiber. 

(https://www.bnl.gov/newsroom/news.php?a=1928) 

 

2.2 Bio-products  

The development of human civilization cannot be separated from “fire”. In ancient 

times, people already knew how to make uses of energy from biomass. In the very 

beginning, humans learnt to burn wood by chance to get warm, cook food, etc. Coal, 

petroleum and natural gas, which are all considered to be derived from decomposed 

biomass over millions of years, were exploited by humans as recently as only two 

centuries ago. However, these types of fuels are nonrenewable and they will all be 

used up someday in the future. Consequently, a potential method proposed in mid-20
th

 

century was to use raw biomass directly. Biomass after thermal-decomposition 
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process can be converted into three types of energy resources- biochar, bio-oil and 

bio-gas, which has similar role as coal, petroleum and natural gas, respectively. Below, 

a detailed review of current utilization of biochar, bio-oil and bio-gas is given.  

 

2.2.1 Biochar  

Biochar is the solid carbonaceous product of thermal degradation of waste organic 

feedstock by controlled pyrolysis (carbonization) process 
[28]

. Biochar mainly 

comprises of three major components, i.e., stable carbon, labile carbon and ash. The 

most dominant feature of biochar is the larger proportion of the aromatic carbon it 

contains. The carbon patterns and structures contribute to the stability of biochar
 [29]

. 

Biochar chemical stability is governed by the fraction of labile carbon, which could be 

leached readily and utilized by microorganisms as an energy source. The ash in 

biochar is comprised of some essential inorganic elements and its presence also plays 

an important role in biochar stability. Depending on different types of biochar, the 

surface properties and sorption capacities vary greatly. Table 1 shows the physical and 

chemical properties of different biochars 
[30]

. 

Table 13. Physical and chemical properties of selected feedstcoks 
[30]

. 

 

 

In consideration of different feedstock and production conditions, biochar has a 

variety of applications in soil amendment 
[30]

, wastewater treatment 
[31]

, gas 
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purification
 [32]

 and catalysis 
[33]

. Ashwoth et al. 
[34]

 studied the physical and chemical 

characteristics of biochar produced by pyrolysis of switchgrass both in a batch reactor 

and continuous auger reactor. The water-holding capacity of biochar mixed with soil 

and nutrients profile of biochar were also evaluated. They concluded that additions of 

chars in soil could increase gravity-drained water content. Thermal decomposition 

processed affected biochar nutrients profile in different ways: NO3
-
 concentrations 

were almost independent of pyrolysis temperature; Higher pH values could be gained 

at higher temperatures and longer residence times. Biochar derived from papermill 

showed high surface area and calcium mineral agglomeration when mixing with soil 

[35]
. Biochar used as an adsorbent in organic and inorganic contaminants removal was 

reviewed in water treatment domain 
[36]

. Removal capacities of organic groups (dye, 

phenols, benzene and selected pesticides) and inorganic groups (metal ion and some 

anions) in water with different types of biochars were determined. 

Besides these studies, some other characteristics of biochar have also been explored. 

Meiluweit et al. 
[37]

 conducted an in-depth research on a molecular- level assessment 

of biochar properties by analytical methods such as Brunauer- Emmett- Teller (BET), 

X-ray diffraction (XRD), synchrotron-based near-edge X-ray absorption fine structure 

(NEXAFS) and Fourier transform infrared (FT-IR). They indicated that four distinct 

categories of biochar could be obtained at an elevated pyrolysis temperature from 

100 °C to 700 °C. More recently, Lehmann et al. started to investigate combustion 

and flammability properties of biochar
 [38]

, as well as ecotoxicological characterization 

of biochars 
[39]

.         

Given that biochar can present different properties depending on production 

process, experimental research on how biochar is produced and how different kinds of 

biomass from is crucial. Morphological characteristics of biochar derived from 

pyrolysis of hemicelluloses were determined at 400 °C, 550 °C and 900 °C. As 

temperature increased, more pores structures formed in biochar and less irregular 

agglomeration presented
 [40]

. In Demirbas’s work 
[41]

, influence of pyrolysis 

temperature and feed particle size on biochar yield with three different feedstocks 

were discussed. Results showed that biochar yields increased with a decrease in 
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temperature and an increase in particle size. High lignin content in feedstock led to a 

higher biochar yield and high ash content in feedstock made biochar more reactive. 

Liu et al. 
[42]

 investigated pyrolysis kinetics regarding biochar production. 16 

mechanisms were tested to fit the experimental data, in which reaction order and 

nucleation mechanisms correlated data well. Experiments about properties of biochar 

were also carried out in ZnCl2-KCl molten salt system
 [43]

. Existence of molten salts 

and increasing temperature in molten salts bath could both result in an increase of 

biochar yields. 

 

2.2.2 Biofuel 

2.2.2.1 Biofuel Economics 

In 2013, the United States energy consumption was 97.53 quadrillion Btu, of which 

84% of the total energy was domestic production. Natural gas took the first place for 

the largest domestically produced energy resource for the past three years, and 

together with other types of fossil fuels, made up more than 75% of total energy 

production. At the same time, renewable energy only accounted for less than 10% 

with biomass energy far less 
[44]

. 

The U.S. Department of Agriculture and Oak Ridge National Laboratory predicted 

that approximatly 1.3×10
9
 metric tons of dry biomass from agricultural and forest 

resources could be produced every year in the U.S. 
[25]

. Based on Klass’s estimation, 

this amount of biomass provides energy equivalent of 3.8×10
9
 barrels of oil/year. If 

assuming all the biomass belongs to lignocellulosic biomass, thus 1 barrel of oil 

derived from biomass has 5.904 GJ 
[46]

. Clearly, 21.3 quadrillion Btu could be 

produced by biomass resource, which is nearly 25% of the U.S. total energy 

consumption in 2013. Current estimated cost of lignocellulosic biomass ranges from 

$5 to $15 for 1 barrel of oil, while the recent price of West Texas Intermediate (WTI) 

crude oil is around $100/bbl on average
 [47]

. 

 

2.2.2.2 Biofuel Classification 

As the consequence of biofuel evolution, at least four generations of biofuels have 

http://www.iciba.com/classification
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been emerged so far. These four different types of biofuels are classified by their 

feedstocks, production methods, etc. 

The production of first-generation biofuels mainly comes from food crops such as 

oil seeds, cereals and some high-sugar-content crops 
[48]

. The three main categories of 

first generation biofuels used commercially are biodiesel (bio-esters), ethanol and 

biogas, and the production of these three kinds of chemicals is considered a 

well-understood industrial technology 
[49]

. Though first-generation biofuel plays a role 

in minimizing fossil fuel burning and CO2 emissions, some disadvantages are: (1) 

Food versus fuel competition- the potential stress that first-generation biofuel puts on 

soil, water and nutrients used for food 
[50]

; (2) Relatively high process operation cost 

in need of government subsidies to maintain its production in order to compete with 

fossil fuels. (3) Changing the assessment of net greenhouse gas reductions if land-use 

alters 
[51]

.  

In view of these drawbacks, the second-generation biofuel has evoloved. 

Second-generation biofuels are mainly produced from lignocellulosic biomass, 

involving bagasse, rice straw, grass, forest residues, etc., which are abundant and 

cheap resources. Many of the disadvantages of first-generation biofuels can thus be 

overcome by the second-generation biofuels, since there are less economic and 

environmental implications. However, industrial large-scale production of 

second-generation biofuels is still under development and appropriate technology 

needs to be developed 
[50]

. 

In order to further decrease the demand for farmland needed to cultivate feedstocks 

for the first and second generation biofuels, nature algae based third generation 

biofuel has been proposed
 [52]

. Algae can be produced using natural recourses as 

nutrients and propagated extensively in most aqueous environment. Compared with 

former two kinds of biofuels, algae stands out for its high-efficiency photosynthesis, 

which can fix the CO2 into sugars in presence of photon energy and further convert to 

lipids via microalgae cells. Algae could contain up to 70% of lipid on a dry weight 

basis. Another advantage of algae is its high reproduction rate 
[53]

. Maity et al. 

recently published a good review of current utilization of algae in third generation 
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biofuels 
[54]

. Similar to third generation biofuels, the fourth generation biofuels 

introduces genetic modification and metabolic engineering in algae production 
[55]

. Its 

purpose is to improve the lipids contents in algae and make the whole biofuel 

production process more cost-effective.  

The production processes for these four generations biofuels are different from each 

other. In the first generation, biodiesel production involves steps including sugar 

extraction, transesterification and two step distillations, while bioethanol production 

contains liquefaction, saccharification, fermentation and distillation. In the second 

generation, two common methods exist: the first separates different components in 

lignocelluloses and then using fermentation process to produce ethanol or butanol; the 

second method uses thermal treatment directly to produce biofuel. The third and 

fourth generation biofuel production processes are divided into three types: direct oil 

extraction, biochemical process, and thermochemical process. As for the economical 

concerns, the first and second generation biofuels price is equal to or lower than 

gasoline, while biofuel price from third and fourth generation can be as much as three 

to ten times higher than gasoline, based on different production processes. Moreover, 

only first generation biofuels have been commercialized at industrial level, while the 

other three are still at research level 
[52]

.             

 

2.2.2.3 Biofuel Chemistry  

As biofuel can be produced via many different processes and feedstocks, the 

compositions and properties of biofuel vary tremendously. Here, only second 

generation biofuels are reviewed. Second generation biofuel is usually a dark brown 

liquid with a distinctive odor. More than 400 different organic compounds are present 

in biofuels and the concentrations can vary by several magnitudes 
[56]

. Normally 

biofuels contain acids (formic acid, acetic acid and propanoic acid), esters (methyl 

formate and butyrolactone), alcohols (methanol, ethanol and ethylene glycol), ketones, 

aldehydes (formaldehyde and acetaldehyde), furans (furfural and HMF), phenols, 

sugars (anhydroglucose, cellobiose, fructose and glucose), guaiacols, and 

miscellaneous oxygenates. All chemicals involved in biofuels are formed through a 
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huge numbers of reactions such as, hydrolysis, isomerization, dehydrogenation, 

dehydration, aromatization, coking, etc 
[11]

. The composition of biofuel depends on 

many factors, such as feedstocks, reaction temperature and time, pretreatment method, 

storage time, etc
 [57]

. As a result of the complexity of components, high oxygen 

content, and instability of biofuel, the direct utilization of raw bio-oils is impractical. 

Thus, biofuel upgrading process is necessary, but the discussion of the upgrading 

technology is beyond the scope of this work.    

 

2.2.2.4 Biofuel Production  

At present, though a number of technical barriers impede the development of 

second generation biofuel, utilization of lignocelluloisc biomass- the most abundant 

natural source in the world, is now attracting more and more attention and research. 

Our society has made use of lignocelluloisc biomass for a long time, to generate heat 

and even electricity. However, the production of biofuel from lignocelluloisc biomass 

seems to have a great potential. Figure 7 introduces an overall roadmap of biomass 

conversion processes 
[49]

.       

 
Figure 7: Overview of biomass conversion processes 

[49]
. 

 

Conventional physical conversion requires high energy input and makes the biofuel 

production less cost-effective. Also, taking into account limited mechanical extraction 
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ability and phase equilibrium in distillation process, bio-oil yield derived from 

physical conversion is not as high as other methods. When utilizing pure chemical 

conversion, the operation and environment problems are always the issues. So the 

most attractive production of biofuels from lignocelluloisc biomass can be achieved 

by two preferable routes: biochemical and thermo-chemical conversion. Biochemcial 

conversion, namely biomass feedstocks are converted to biofuels by the effect of 

micro-organisms added into the reaction system. The common step is undergoing 

chemical hydrolysis first, followed by biological treatment or the two steps are carried 

out simultaneously. However, research on high-efficiency and low-cost 

micro-organisms is the bottleneck of this method. In this case, the fourth route seems 

to be the most promising. Thermo-chemical conversion is a process that involves 

thermo-decomposition and chemical reformation of raw materials, to produce a 

wide-range products distribution 
[58]

. The thermo-chemical method can convert all the 

organic contents of lignocelluloisc biomass and directly produce bio-oil compared 

with biochemcial conversion. Since combustion is just to burn the biomass to generate 

heat and get black carbon as the final products, only three other processes 

(liquefaction, gasification and pyrolysis) involved in thermo-chemical method will be 

discussed in the following, and full description of other processes can be obtained in 

some good publications 
[1, 59-62]

. 

Liquefaction of biomass usually takes place at high pressure (50-200 atm) and 

relatively moderate temperature (250-450 °C), to produce water insoluble oils with 

solvents, reducing gases (CO or H2) and catalysts present as media 
[63]

. Alkalis, 

glycerin, propanol, butanol and water are the common solvents and have been 

investigated
 [64]

. A liquefaction process was developed and tested by Shell. However, 

the biggest disadvantage of this process is the high viscosity of the biocrude 
[65]

. In 

contrast, gasification of biomass is conducted at very high temperatures, which can be 

as high as 1300 °C where no catalyst is present. Reaction temperature is expected to 

decrease to 900 °C with advanced catalysts 
[66]

. The main steps involved are the 

biomass reacting with air, oxygen or steam to produce a gaseous mixture of CO, CO2, 

H2 and CH4. Meanwhile, water gas shift (WGS) and methanation reactions occur 
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during gasification 
[63]

. The gaseous product can be utilized in Fischer-Tropsch (F-T) 

or methanol synthesis followed by other downstream reactions to produce liquid fuels 

[67]
. Bio-oil produced by pyrolysis is the most promising method among the three 

ways mentioned above. Pyrolysis of biomass is thermo-degradation of biomass 

material at elevated temperatures, typically  ranging from 300 to 900 °C in the 

absence of oxygen, which produces char (solid), bio-oil (liquid) and non-condensable 

vapor (gas) 
[64]

. Compared with conventional pyrolysis, which occurs at a slow 

heating rate (0.1-1 °C /s) and long residence time (45-550 s), the state-of-the-art fast 

pyrolysis process occurs at a rapid heating rate (10-200 °C /s) and short residence 

time (0.5-10 s) with relatively fine biomass particles (<1 mm) typically 
[68]

. More 

detailed information about pyrolysis is provided later on. 

 

2.2.3 Bio-gas 

Bio-gas is the non-condensable gaseous product in biomass conversion process. 

The components of bio-gas are highly dependent on the production method adopted in 

conversion process. In biochemical process, the bio-gas mainly comprises of CH4 

(50-75%) and CO2 (25-50%), as microorganisms are used to conduct anaerobic 

digestion in the biomass conversion process 
[69]

. In thermo-chemical process, the main 

components of bio-gas are H2, CH4, CO, and CO2 together with a small quantity of 

C2H4 and C2H6 
[70]

. Cheng et al.
 [71]

 investigated bio-gas produced by pyrolysis of 

ramie residue. They concluded that when increasing reaction temperature from 657 °C 

to 928 °C, the yields of H2 and CO went up first and then dropped down after passing 

through a maximum. In contrast, the yield of CH4 decreased monotonously and the 

yield of CO2 increased monotonously as the temperature rose. Wijayantia et al. 
[72]

 

studied on in-situ gas products of woody biomass pyrolysis. They found that as the 

reaction proceeded, the highest generated gas product flow rate occurred at round 80 

min when reaction temperature was at 600 °C and 800 °C. Whereas, the highest flow 

rate at 400 °C occurred at 60 min. Another conclusion they obtained was that within 

the 50 min reaction time, the only gas product was CO2. CH4 and CO began to emerge 

after 70 min and then H2 come out after 90 min.  
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In view of the presence of CO2 in the bio-gas, directl use of bio-gas is challenging. 

One possible method is to decrease CO2 content by adding CO2 absorbent like CaO in 

reaction system 
[73]

. Another promising mrthod is to improve H2 content by a series of 

reforming reactions 
[74]

. Figure 8 shows the potential ways for bio-gas utilization in 

industry 
[75]

.        

 

Figure 8: Bio-gas conversion processes 
[75]

. 

 

2.3 Pretreatment Methods  

The objective of pretreatment of lignocellulosic biomass is to enhance the 

performance of biomass hydrolysis for conversion to fuels. Specifically, pretreatment 

aims to remove hemicelluloses and lignin portions in lignocelluloses, break down 

crystalline structure of cellulose, and increase accessibility to biomass. Besides, some 

basic requirements should be met, such as, avoiding the degradation or loss of 

carbohydrate and avoiding the formation of some substances that may 

cause inhibitions of subsequent processes 
[76]

. Pretreatment process plays an important 

role in achieving high biofuel yield, but is not limited to biochemical conversion 

methods. There are several pretreatment methods that have been proposed so far: 

physical (milling, grinding, microwave, and extrusion), chemical (acid, alkali, 

oxidizing agents, and organic solvents), physicochemical (steam explosion, ammonia 

fiber explosion, CO2 explosion, and wet oxidation), biological, electrical, and their 

combination 
[77]

.  
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Table 14. Comparisons of common used pretreatment methods in lignocellulose biomass 

[76]
. 

 

 

Several typical methods are briefly described below, and more detained information 

could be found in Mood’s review paper for lignocellulosic biomass pretreatment 
[78]

. 

Table 2 summarizes advantages and disadvantages of common pretreatment methods 

[76]
. For acid pretreatment, concentrated H2SO4 and HCl are the most commonly 

employed agents. They aid hemicelluloses to be hydrolyzed to monosaccharides, thus 

improving accessibility to cellulose. Using high concentration acid is relatively 

economic since the process can be performed at lower temperature, while low 

concentration is attractive in industrial as this process generates less inhibitor 
[79]

. The 

highest sugar yield of 83% was obtained by 1% (w/w) H2SO4 pretreatment at 

160-180 °C for 1-5 min 
[80]

. For alkaline method, lime and NaOH are commonly used. 

They can effectively remove lignin, acetyl groups and different uronic acid 

substitution which could inhibit sequence enzymatic saccharification 
[81]

. Lime 

pretreatment achieved a polysaccharide conversion approaching 100% for corn stover 

[82]
.        
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Besides chemical pretreatment, explosion method is also a competitive 

pretreatment technique, which biomass is treated with a high pressure fluid for several 

seconds to a few minutes, and then the pressure is suddenly released to atmospheric 

pressure, as a result of which the degradation of biomass occurs 
[83]

. The fluid could 

be water steam and liquid ammonia, which the latter one is more effective. Ammonia 

fiber xxplosion (AFEX) pretreatment can significantly enhance the fermentation rate 

of various herbaceous crops and grass with low lignin content (less than 20%) 
[84]

. 

Chundawat et al. 
[85]

 used molecular dynamics simulations to test the effects of 

ammonia on changing the structure of cellulose fibrils. It proved that ammonia 

transformed cellulose crystalline allomorph by altering hydrogen bond network within 

cellulose fibrils. This rearrangement of hydrogen bond network increased the number 

of solvent-exposed glucan chain by 50%. Besides ammonia, supercritical water 
[86]

 

and supercritical CO2 
[87]

 were also tested as potential fluids, as they have unique 

advantages of biomass pretreatment.     

 

2.4 Pyrolysis of Biomass  

2.4.1 General Information 

Two publications in two consecutive years by Bridgewater, et al. 
[88, 89]

 reviewed 

the principles and practice of biomass fast pyrolysis technology until 2000. In the first 

paper, factors such as, feed drying, particle size, pretreatment method, reactor 

configuration, heating system, residence time, char separation and bio-oil collection 

system, which needed to be considered when designing a fast pyrolysis process were 

reviewed. The maximum liquid yield can be realized with high heating rate, 

temperature around 500 °C, and short vapor residence time to minimize secondary 

reactions. Liquids for use as fuels can be produced with longer vapour residence times 

(up to 6 s) and over a wider temperature range although yields might be affected in 

two ways: secondary volatiles decomposition and repolymerization. In their second 

paper, the development of pyrolysis processes built at industrial scale in western 

counties was reviewed. The main difference between processes was the type of 

reactor utilized. Ablative and fluid bed reactors were used the most, especially fluid 
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bed reactors. Mohan, et al. 
[14]

 gave a comprehensive review og pyrolysis of woody 

materials; nearly 100 types of biomass were tested. The yield and property of bio-oil 

was largely dependent on the composition and structure of biomass, heating rate, 

residence time, etc. Recently, Isahak, et al. 
[90]

 reviewed current bio-oil production 

processes by using pyrolysis method. Both slow pyrolysis and fast pyrolysis 

(bubbling fluidized bed, circulating fluidized bed, rotating cone pyrolyzer, vacuum 

pyrolysis and auger reactor) were investigated. In general, fast pyrolysis can produce 

bio-oil yield at around 40-70% for different kinds of biomass, while slow pyrolysis 

process produces only at 20-30% at moderate temperature.          

Even though the feedstocks and reactor maybe fixed, varying operating parameters 

also exert a great effect on the yield of bio-oil 
[91]

. Temperature is the most important 

factor; intermediate temperatures (450-550 °C) usually maximize the bio-oil yields. 

Lower or higher temperatures lead to the formation of char or gases. In terms of 

components of biomass, cellulose and hemicellulose tend to produce liquid products, 

while lignin is the major source contributing to char formation. Mineral matter 

content of biomass affect the bio-oil yield negatively. High heating rate and small 

particle size are preferable for high bio-oil yield. A rapid quenching of pyrolysis 

vapors coupled with short residence time produces maximum liquid yield. Also heat 

and mass transfer should be considered in order to obtain highest yield of bio-oil. 

Most papers published up to now mainly focus on yield rather than compositions of 

bio-oil. However, the composition is also important as to bio-oil utilization.      

Zhang et al. 
[92]

 made a comparison between biomass pyrolysis oil and heavy fuel oil 

in both physical and chemical properties. In their research, two biggest differences 

between pyrolysis oil and heavy fuel oil were the moisture content and the oxygen 

content. Pyrolysis oils have 150-300 times moisture and 35-40 times oxygen higher 

than that in heavy oil. More recently, Bridgwater 
[93]

 provided an updated review of 

fast pyrolysis of biomass and product upgrading. The potential of bio-oil is 

increasingly being recognized, with much more effort into improving bio-oil 

properties and biofuel production. However, much of the research is still at a 

fundamental scale even to the use of model compounds to represent whole bio-oil. 
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Catalytic pyrolysis is now of interest and requires intensive laboratory work to prove 

feasibility and viability. 

 

2.4.2 Current Research on General Pyrolysis 

With the increasing interest on pyrolysis biomass conversion, more and more 

research has been carried out to explore basic knowledge of pyrolysis of biomass. 

Thus, Luo et al. 
[94]

 built a fluidized bed reactor with continuous feeding rate at 3 kg/h, 

operated at atmospheric pressure, and reaction temperature at 500 °C. Pterocarpus 

indicus, Cunninghamia lanceolata, Fraxinus mandshurica and rice straw were tested in 

the experiment. P. indicus gave the best results (bio-oil yield of 55.7%) when yield, 

heating value and water content were used as the evaluation criteria. Bio-oil from P. 

indicus was mainly comprised of levoglucosan, furfural and phenol. Zheng 
[95]

 

investigated rice husk fast pyrolysis performance at temperatures between 420 °C and 

540 °C in an enhanced fluidized bed reactor system. Results showed an optimal 

bio-oil yield of 56% at 465 °C with 25.2% water content, with main components 

being formic acid, toluene, β-Hydroxybutyric acid and 4H-Pyran-4-one, 2, 

6-dimethyl-. Chen, et al. 
[96]

 researched pyrolysis of sucrose biomass in a tubular 

reactor with a slow heating rate (10 °C/min) over a temperature range from room 

temperature to 1200 °C. However, liquid formation could be ignored with more than 

90% yield of gases when temperature was higher than 300 °C, while the highest 

bio-oil yield was about 7% at 200 °C. Low heating rate was the main reason that 

resulted in low liquid yield. They also investigated the performance of introduction of 

CaO into the reaction system. Results indicated that CaO could enhance conversion of 

sucrose to gases products and capture CO2 produced. Kim et al. 
[97]

 studied prolysis of 

alga Saccharina japonica between 200 °C and 380 °C at a 10-20 °C/min heating rate 

in a tubular reactor heated in salt bath. Results showed that highest yield of bio-oil 

was 28.78 % at 380 °C with dianhydromannitol and1-2(-Furanyl)-ethanone as the 

main components. Patwardhan et al. 
[98, 99]

 investigated primary and secondary bio-oil 

product distribution of fast pyrolysis of glucose-based carbohydrates with 

micro-pyrolyzer in which the heating rate could be greater than 2000 °C/s. The 



 32 

residence time was only 15-20 ms in micro-pyrolyzer to inhibit secondary products. 

In contrast, a fluidized bed reactor with a residence time of 1-2 s was used to make a 

comparison and explore secondary products. It suggested that levoglucosan and low 

molecular weight compounds, such as formic acid, furfural, and HMF, are formed 

through competitive paths in primary products. However, oligomerization of 

leglucosan and decomposition of primary products (mainly furfural and HMF) were 

the major reactions to produce secondary products. Li et al. 
[100]

 studied pyrolysis 

products from cellulose and levoglucosan. The product distribution was in great 

similarity, thus indicating the precursor conversion and formation mechanisms. 

Compared with extensive investigations on pyrolysis of lignocellulosic biomass and 

pure cellulose, pyrolysis chemistry of other two components (hemicellulose and lignin) 

has received less attention. Choi et al. 
[101]

 investigated kraft lignin pyrolysis in 

Tl-mini fast pyrolyzer system. The bio-oil yield was 29.95% at 450 °C and 38.09% at 

500 °C. The main products were acetic acid (2.70 wt. % dry basis), anhydro-sugars 

(1.70 wt. % dry basis), lignin derived phenols (0.92 wt. % dry basis), and guaiacols 

(25.64 wt. % dry basis). Wu et al. 
[40]

 studied on pyrolysis of corn stalk hemicelluolse 

in a tubular reactor. Large bio-oil yields occurred below 500 °C and the highest yield 

approaching 50% was at 450 °C. The main liquid products were ketones (60.47 area 

percent), furans (19.02 area percent), acids (18.28 area percent), and alcohols (2.25 

area percent). Four main individual chemicals were 1-hydroxy-2-propanone, acetic 

acid, furfural, and 1-hydroxy-2-butanone in sequence. 

The effectiveness of heat transfer in pyrolysis process is a crucial factor. Poor heat 

transfer usually leads to a low yield of bio-oil. Therefore, improving thermal 

management is necessary especially in industrial scale production of bio-oil. 

Microwave-Assisted Pyrolysis (MAP) is a treatment process applied to 

thermal-decomposition of biomass. MAP is preferable for large-sized biomass 

particles due to the nature of fast and volumetric heating by microwave energy 
[102]

. 

Moreover, microwave energy is easy to control and scale up. Some researchers have 

explored the temperature profile inside the feedstocks particles and its effect on 

pyrolysis process and final products 
[103, 104]

.   
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2.4.3 Pyrolysis with Additives   

Natural biomass contains mineral matters which play important roles in pyrolysis 

chemistry. Different types of biomass contain different amounts of mineral matters. 

The main elements in minerals are Si, Ca, K, Na and Mg, together with slight 

amounts of S, P, Fe, Mn and Al. These elements are present as oxides, silicates, 

carbonates, sulfates, chlorides and phosphates 
[105]

. Generally the inorganic salts 

contained in biomass inherently suppress the formation of char and favor 

char-forming reactions 
[106]

. Raveendran et al. 
[105]

 investigated elements compositions 

of selected types of natural biomass and influence of minerals on the performance of 

biomass pyrolysis. They tested 13 kinds of biomass and demineralized biomass gave 

higher liquid yields than untreated, except coir pith, groundnut shell, and rice husk, 

which might be attributed to their high lignin, potassium, and zinc contents. Deashing 

process also increased biomass initial decomposition temperature and degree of 

pyrolysis. Salt (ZnCl2 or KCl) impregnation of coir pith, groundnut shell, and rice 

husk increased bio-oil yields, which proved Zn and K catalytic role in bio-oil 

formation reactions. In thermal analysis, they observed ZnCl2 impregnation of 

biomass increased the initial decomposition temperature while KCl reduced it. 

Shimada 
[107]

 studied the effects of NaCl, KCl, MgCl2 and CaCl2 on cellulose 

pyrolysis. They found both MgCl2 and CaCl2 can dramatically reduce pyrolysis 

temperature, and all kinds of salts changed the formation of low molecular weight 

products strongly. The effect of varying amounts of NaCl, KCl, MgCl2 and CaCl2 on 8 

selected substances (furfural, HMF, formic acid, acetic acid, methanol, hydroxyl 

acetone glycol aldehyde, and levoglucosan) was tested. Their findings were 

reexamined in Patwardhan’s work 
[108]

. Nik-Azar et al. 
[109]

 investigated mineral 

effects on pyrolysis of beech wood. According to their study, acid washing wood 

samples reduced yields of char and gases; exchanging cations onto wood samples 

reduced yield of liquid. They also concluded that potassium and sodium cations 

offered stronger catalytic cracking reactions.   

Recently, application of ZnCl2 has drawn great interests in biomass pyrolysis 
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process, as ZnCl2 performs effective catalysis in bio-oil production process. Lu et al. 

[110]
 studied the production of furfural from fast pyrolysis of biomass impregnated 

with ZnCl2. It proved that increasing contents of ZnCl2 (from 5% to 40 wt %) can 

improve the formation of furfural and reduced levoglucosan contents. Lu 
[111]

 found 

that ZnCl2 proved to have two catalytic ways, one is for the formation of liquid at low 

temperature and the other is for formation of char at high temperature. Also, the 

by-product, activated carbon, derived from pyrolysis process was evaluated. 

Amarasekara et al. 
[112]

 studied effects of ZnCl2 on thermal degradation of cellulose at 

200 °C. The highest yields of furfural and HMF were 8% and 9%, respectively, based 

on glucose unit of cellulose at ZnCl2 concentration of 0.5 mol/ mol of glucose unit of 

cellulose. Yang et al. 
[113]

 conducted research on conversion of cellulose in zinc 

chloride solution under microwave irradiation. The microwave process not only 

significantly reduced the reaction time but also increased the yield of certain species. 

 

2.4.4 Catalytic Pyrolysis 

The usage of catalyst in biomass pyrolysis could decrease reaction temperature, 

increase reaction rate and conversion, as well as product selectivity. Alonso et al. 
[114] 

reviewed catalytic conversion of biomass in aqueous solution isolated after 

pretreatment and hydrolysis process. Hydrolysis- based compounds can be processed 

to certain products selectively. In their review, emphasis was placed mainly on 

selective transformations of platform chemical such as, furfural and HMF. Generally 

there are two ways to use catalysts in thermal treatment of biomass: one is catalytic 

upgrading bio-oil obtained from pyrolysis; the other is to catalyze pyrolysis reactions 

directly. The latter method is preferable as it can ameliorate costly condensation and 

reevaporation procedures in bio-oil upgrading process 
[115]

. The current status of 

catalytic pyrolysis of biomass was reviewed by Hu and coworkers 
[116]

. Nano-NiO and 

ZnCl2 could effectively decrease cellulose pyrolysis temperature; K2CO3 could lower 

M. Sinensis and A. Donax pyrolysis temperature. NaY and HY could increase bio-oil 

yield from pyrolysis of several kinds of bamboo. Aluminium titanate, titanium silicate, 

aluminium oxide colombe and phosphoric acid could govern the formation of 
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anhydro-sugars. Zinc chloride and sulfated metal oxides could maximize yields of 

furan derivatives. NaOH, Na2CO3, Na2SiO3, and NaCl could favour acetol formation. 

Transition metals are supposed to catalyze phenols formation and zeolites catalyze 

aromatics formation.     

However, research on catalytic pyrolysis is still limited, and the catalytic 

mechanisms are still unclear at present. Extensive researches on catalytic pyrolysis are 

of importance and development of new catalysts is of great significance. 

Thangalazhy-Gopakumar et al. 
[117]

 studied zeolite catalytic pyrolysis of pine wood 

with two different carrier gases: helium and hydrogen. Their results indicated that a 

high reduction in the yield of higher molecular weight oxygenated compounds in 

bio-oil occurred for non-catalytic pyrolysis in the presence of reducing hydrogen gas 

in contrast to inert helium gas. In their non-catalytic pyrolysis experiment, 15 

compounds were quantified in bio-oil and the yields of these compounds under 

hydrogen environment were less than one thirds of those under helium. They also 

found that when zeolite catalyst was used, the yields of bio-oil increased in both cases 

and the ratio of biomass to catalyst affected the yield greatly in mixing bed method. 

Daniele Fabbri, et al 
[118]

 investigated effects of zeolites and nanopowder metal oxides 

on the formation of several anhydro-sugars from pyrolysis of cellulose, where the 

heating rate could be as high as 20 °C/ms and the reaction lasted for only 60 s. Zeolite 

had the ability to change the anhydro-sugars product distribution and decreased the 

total yields of anhydro-sugars. The performance of nanopowder metal oxides 

depended on their nature: silicon oxide depressed total yields of anhydro-sugars while 

titanium oxides increased all yields especially in LGO and LAC. Their observations 

were confirmed by Torri et al. 
[119]

’s research on pyrolysis of cellulose with MCM-41 

as the catalyst. M. Zabeti, et al 
[120]

 used amorphous silica alumina (ASA) containing 

alkali metal or alkali earth metal as the catalyst to study on pine wood pyrolysis 

reactions. ASA had the effect of reducing the oxygen content in the bio-oil, improving 

bio-oil energy density, and altering the bio-oil and bio-gas product distribution. Ca, Cs, 

K, and Na were capable of decreasing oxygen content by 80% when associated with 

ASA. Wan et al. 
[121]

 studied microwave-assisted pyrolysis of corn stover and aspen 
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wood in present of metal oxides, salts, and acids including K2CrO7, Al2O3, KAc, 

H3BO3, Na2HPO4, MgCl2, AlCl3, CoCl2, and ZnCl2. K2CrO7, Al2O3, KAc, H3BO3, 

Na2HPO4, and MgCl2 were tested and proved to increase yields of bio-oil. These 

catalysts might act as microwave absorbents to speed up heating or directly catalyze 

pyrolytic vapors. Furthermore, all chloride salts promoted furfural production and 

ZnCl2 and MgCl2 also suppressed the production of other components in bio-oil.  

More recently, conversion of carbohydrates to HMF and furfural via Lewis and/or 

Brønsted acid catalysts in aqueous solutions have drawn much attention. The 

introduction of Lewis and/or Brønsted acid not only improves formation of HMF and 

furfural, but also gives an insight of biomass degradation mechanism. Yang et al. 
[122]

 

used DFT theory to study the mechanism of Brønsted acid in conversion of glucose 

and fructose in water. Generally there are several elementary steps involved in 

Brønsted acid-catalyzed conversion: protonation, deprotonation, isomerization, 

dehydration, hydration, and intramolecular hydrogen transfer. Yang found that 

fructose dehydration by Brønsted acid was preferable by protonation of the O2H 

group at the anomeric carbon atom, which further initiated formation of HMF. The 

followed rehydration reaction to levulinic acid was difficult, as it competed with 

formation reaction of humins. However, Brønsted acid-catalyzed mechanism of 

glucose conversion was quite different, and formation of HMF and levulinic acid (LA) 

was not preferable. Román-Leshkov and Davis 
[123]

 investigated functionality of 

Lewis acid in conversion of carbohydrates in aqueous media. They analyzed effects of 

Lewis acid on glucose isomerization, synthesis of lactate- derivatives from 

carbohydrates, and dehydration of C-6 and C-5 sugars. They found higher yields of 

fructose could be obtained from isomerization of glucose in presence of Lewis acid. 

Shi et al. 
[124]

 conducted research on conversion of cellulose to HMF in hot 

compressed water with salts (NaHSO4, KHSO4, NaH2SO4, and KH2PO4). It was 

concluded that higher relative humidity was preferred for HMF formation and the 

highest yield of HMF was 30.4 mol% with NaH2PO4 as the catalysts. Considering the 

resistance of high crystalline structure of cellulose, the research on biomass 

conversion to HMF and furfural are often limited to glucose 
[125]

. Eranda Nikolla, et al 
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[126]
 reported that combination of Sn-Beta catalyst with acid catalyst in a biphasic 

reactor to produce HMF was an effective way to convert glucose, cellobiose, and 

starch. The highest selectivity of HMF was 79% for glucose using biphasic water/ 

tetrahydrofuran reactor with NaCl and HCl. They highlighted the performance of 

Sn-Beta catalyst in achieving the conversion of glucose to fructose. Furthermore, they 

found the yield of HMF decreased with time, which might have resulted from 

degradation and resinification of HMF over time at high temperature (> 160 °C). 

Pagán-Torres et al. 
[127]

 conducted similar research giving the highest HMF yield of 

68% using biphasic water/ 2-sec-butylphenol reactor with AlCl3 and HCl. Yang et al. 

[128]
 studied one phase reaction system with mixed Lewis and Brønsted acid. In 

absence of HMF extraction process done by organic phase, the final major product 

was LA rather than HMF. The CrCl3-H3PO4 system offered best performance of 

decomposition of glucose to LA. Besides liquid homogeneous catalysts, solid 

heterogeneous catalysts were also investigated. In Mazzotta et al. 
[129]

’s work, 

nanoparticulates of porous sulfonated carbonaceous TiO2 material that involve Lewis 

and Brønsted acid sites were proposed. This new kind of solid catalyst was effective 

in producing HMF and furfural from mono-and disaccharides, as well as xylose. 

Another notable feature of this catalyst was that it could be easily separated from the 

final products and be recycled to further uses, although the yields of HMF were 

usually lower than in liquid catalysts. The conversion of sugars to intermediate 

platforms is still facing challenges: lack of understanding of reactions in 

solvent-solute-catalyst system; poor performance on cellulose and lignocellulose; 

environmental issues and costs of organic solvent and homogeneous catalysts; 

separation considerations, etc 
[130]

. Thus, further scientific and technological 

developments are still required.     

 

2.4.5 Ionic Liquids (ILs) Pyrolysis 

ILs are, by definition, organic salts that are in a liquid state at or below 100 °C. 

Unlike inorganic salts which melt at higher temperatures, organic salts consist of 

larger and asymmetric organic cations with a delocalized positive charge, which offer 
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liquids exclusively composed of ions at relatively low temperatures. Recent studies 

have shown an increasing interest in the design of new ILs which have specific 

properties for varied applications including organic synthesis, electrochemistry, 

catalysis, separations and biomass treatment 
[131]

. Some selected cations and anions 

used in modern ILs are shown in Figure 9 and Figure 10. 

 

Figure 9: Common cations used in ILs 
[132]

. 

 

The applications of ILs to biomass conversion are mainly divided into two types: 

biomass pretreatment and biomass pyrolysis. For the first application, ILs are 

considered to be able to destroy the hydrogen bond network existing between 

different polysaccharide chains and make the lignocellulosic biomass more 

susceptible to hydrolysis
 [133]

. The use of acid-catalysts and metal-catalysts in 

combination with ILs in cellulosic biomass hydrolysis were recently reviewed by 

Tadesse and Luque 
[131]

, illustrating that catalyzed hydrolysis of cellulosic biomass in 

ILs proved to present higher yields of HMF or total reducing sugars under mild 

conditions. Another good review written by Brandt and coworkers 
[95]

 discussed the 

solubilities of cellulose, lignin and lignocellulose in certain ILs and further 

demonstrated biomass dissolution associated with depolymerization in ILs. More 

recently, Wen and coworkers 
[134]

 investigated the degradation chemistry of lignin in 

ILs and their findings give an insight on effects of ILs on biomass pretreatment. 
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Figure 10: Common anions used in ILs 
[132]

. 

 

The second application is biomass pyrolysis in the presence of ILs. ILs can be used 

as reaction media during the pyrolysis process. Compared to conventional pyrolysis, 

ILs pyrolysis can be carried out under milder conditions and overcome the biomass 

dissolution problem encountered in hydrolysis. Sheldrake and Schleck 
[135]

 first 

studied on controlled pyrolysis of cellulose to anhydrosugars in dicationic IL. They 

used molten diacationic imidazolium chloride and bromide salts as media to produce 

levoglucosenone by pyrolysis around 180 °C. Their highest yield was 5% compared 

with 3% by conventional pyrolysis above 300 °C. Du and coworkers
 [136]

 investigated 

on fast pyrolysis of biomass with ILs and microwave irradiation. The bio-oil yield 

reached 38% for rice straw and 34% for sawdust with 1-butyl-3-methylimidazolium 

tetrafluoroborate as IL for heating 20 mins at 640 W. The main components were 

acetic acid and furfural for both rice straw and sawdust. Due to the limited ILs 

pyrolysis data currently available, more research is required to determine the 

advantages of this process. Nevertheless, ILs pyrolysis shows a potential way in 

realizing thermochemical conversion of biomass at moderate temperatures. 
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However, applications of ILs are only promising if its advantages outweigh 

drawbacks. Crucial challenges still put a barrier for this technology. The major factor 

is the high cost of ILs. Currently used ILs are about 5-20 times more expensive than 

conventional solvents and it could cost more when applied at industrial scale 
[130]

. 

Designing new kinds of ILs is a potential way to deal with the problem. Other factors 

such as recycling procedure and toxicity of ILs should also be further evaluated 
[137]

. 

 

2.4.6 Molten Salt Pyrolysis 

Inorganic molten salts pyrolysis technology has a lot of advantages: a) Molten salts 

serving as solvent can dissolve biomass material which facilitates decomposition 

reactions; b) selected eutectic combinations of salts can be melt at mild temperatures 

(150-450 °C ) to provide a good medium for pyrolysis reactions; c) molten salts have 

large heat capacity and thermal conductivity which favors effective heat transfer; d) 

good thermal and chemical stability, as well as low vapor pressure make molten salts 

media stable during pytolysis; e) some molten salts also have catalytic properties that 

can enhance the yields of certain productions; f) products yields and distributions can 

be adjusted be varying compositions and amount of molten salts 
[138]

; and finally g) 

catalysts can be dispersed in molten salts. 

However, research on the development of molten salts pyrolysis has been rather 

slow and there have been only a handful of publications about molten salts pyrolysis. 

Japanese researchers 
[139] 

firstly investigated the performance of pyrolysis of lignins 

(kraft and solvolysis) in ZnCl2-KCl molten salts with molar ratios of 3/7 and 7/6 at 

temperatures from 500-800 °C. The zinc halide could improve selectivity to produce 

single-ring aromatic compounds; the addition of KCl could act as a viscosity reducer, 

and could decrease the melting point of the salts. At a molar ratio of 3/7, phenol was 

the main liquid product for kraft and m-cresol was the main product for solvolysis.  

At molar ratio of 7/6, p-cresol was the main liquid product for kraft in most cases and 

m-cresol was the main product for solvolysis. Solvolysis gave higher liquid yields 

than kraft and this gap was narrowed when more zinc chloride was added. The 

maximum yield of cresols attained from solvolysis lignins was 4.6 wt % with a 
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mixture of ZnCl2 –KCl (molar ratio was 7:6) at 600 °C. In order to further improve 

the liquid yield, the same research group 
[140]

 later conducted research by adding 

tetralin vapor as a hydrogen donor. They found all the liquid products yields were 

increased by using tetralin vapor, especially the yields of cresols and total phenolic 

compounds were enhanced by 38 and 78%, respectively. In their third paper 
[141]

 the 

effects of three levels of salt-to-lignin ratio (SR), 1, 2, and 3 on liquid yields and 

product distribution were investigated. Both the yields of liquids and gases were 

dependent strongly on the amount of salts added. The highest yields of liquids and 

gases were both at SR of 3.Various kinds of components in liquid phase were tested at 

different SRs and reaction time. For example, the yield of phenol increased with SR; 

the yields of cresols increased slightly with SR.   

A decade later, a Chinese research group 
[142]

 studied on the effects of the 

composition of molten salt, biomass materials and pyrolysis temperature on the 

performance of biomass pyrolysis. They pointed out that the highest liquid yield was 

35% in pure ZnCl2, in which the water content of the liquid was 46% at 450 °C. 

Experiments with 53.8% ZnCl2- KCl molten salt produced lowest liquid yield of 

11.60% with water content of 50%. Experiments with 49.2% ZnCl2-39.8% KCl-CuCl 

gave 12.0% liquid yield, however the water content was only 21%.  Nitrate molten 

salts in contrast gave 0% liquid yield. The liquid yield from cellulose was higher than 

that from rice straw in absence of molten salts and water content in cellulose derived 

bio-oil was lower than that of from rice straw. The components of bio-oil were 

extremely complex, while furan derivatives captured the major share. To expand 

knowledge of pyrolysis process with molten salts, the same research group 
[143]

 

investigated pyrolysis of six kinds of biomass in five kinds of molten salts at 

temperature of 400-600 °C. No significant improvement was founded. In their third 

paper 
[144]

, they studied effect of FeCl2 added into ZnCl2-KCl (7:6) molten salts on 

bio-oil yield produced by pyrolysis of rice straw. When adding 5 wt% of FeCl2 into 

the system, the bio-oil yield was increased to 15% compared with 10% without FeCl2 

at 500 °C. More recently, Ji et al. 
[145]

 reported a continuous production process of 

bio-oil from pyrolysis of sawdust in NaOH molten salts. Yield of char was increasing 
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with an increase of feeding rate, while yield of bio-oil increased first then decreased 

as feeding rate increased. The optimal yield of bio-oil was at feeding rate of 1.36 

g/min. With a carrier gas flow rate from 50 to 200 L/h, the yield of bio-oil went down 

as gas flow rate went up. This might be due to the fact that higher gas flow rates led to 

shorter residence time of vapors in the condenser, thus vapors could not be condensed 

fully. Fir sawdust, brich sawdust, and their mixture were tested as the feedstocks. 

Results showed that the combinations gave the highest liquid yield at the same 

conditions. They also found that addition of ZnCl2 into the system restrained the 

formation of bio-oil and char.           

Jiang et al. 
[146]

 focused on hydrogen production from pyrolysis of biomass in 

molten alkali. Six kinds of biomass were tested at temperatures from 350-550 °C. The 

biomass type had little influence on H2 content percentage in pyrolysis gas, however, 

the total H2 yield was significantly dependent on biomass type. Redwood sawdust 

gave the highest H2 yield of 65.39 g/Kg biomass at 450 °C. Both H2 content 

percentage in pyrolysis gas and he total H2 yield were independent of carrier gas flow 

rate, while H2 yield favored at high temperature. They also found addition of 5% 

NiCl2 increased H2 yield from 46.33 g/Kg to 67.34 g/Kg. Nygård et al. 
[147]

 gave an 

important insight in a study on pyrolysis of wood particles with constant length of 30 

mm and varying diameter of 1-8 mm in a FLiNaK melt. FLiNaK molten salt 

enhanced heat transfer significantly and improved the performance of pyrolysis 

especially for wood particles with diameter below 4 mm. For particles with diameter 

larger than 4 mm, the performance of heat transfer was mainly limited by the inner 

parts of wood particles. The presence of FLiNaK could provide a very high heat 

transfer value of around 218 °C/s for beech wood. In short, the research on molten 

salts pyrolysis of biomass is still in its early stage, and needs extensive fundamental 

and careful investigations.  

 

2.5 Biomass Conversion Kinetics and Mechanisms    

Primary investigations on mechanism of biomass decomposition date back to the 

late 1970s. Both experiment-based and computer simulation-based methods have been 
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used to explore the mechanism. However, unlike other industrial chemical production 

processes, in which the mechanisms are relatively well-understood, mechanism of 

pyrolysis of biomass is still unclear for several reasons: (1) substantial functionality of 

biomass starting materials, intermediates and final products 
[148]

; (2) short lifetime 

(less than 0.1 s) of condensed-phase intermediates 
[149]

; (3) relatively slow heat 

transfer for biomass, leading to making isothermal pyrolysis challenging; (4) 

multi-parameters dependency of product distribution.  

 

Figure 11: BN (left) and BSS (right) schemes for cellulose pyrolysis 
[152]

. 

 

Thermogravimetric analysis (TGA) is a widely used method to investigate the 

thermal decomposition of polymers and obtain thermogravimetric data for 

determination of kinetics parameters and models. Thus, Flynn et al. 
[150]

 have given a 

comprehensive and insightful review of theoretical equations on thermal 

decomposition of polymers based on reaction order, activation energy, heating rate, 

and temperature dependence. Several kinetics models for cellulose were reviewed and 

compared in a comprehensive review published in 1995 
[151]

. Figure 11 lists some 

representative schemes based on the development of kinetics of biomass (pure 

cellulose only) pyrolysis, in the absence of any secondary, heterogeneous (vapor-sold) 

or homogenous (vapor phase) reactions. The first widely-accepted model was 

proposed by Broido and Nelson 
[152]

 in 1975. They developed a first order 

two-competitive-pathway mechanism in accord with their previous experiment results. 

In 1979, Bradbury et al. 
[153]

 proposed a scheme in which cellulose first decomposes 

to anhydro fragment, which is called ‘active cellulose’, then degrades into char, 

condensable volatiles and non-condensable gases. However, due to the large amount 
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of cellulose they used in the experiments (100 mg for Broido’s and 250 mg for 

Bradbury’s), char formation from vapor-solid interactions should occur, confirmed by 

abnormally high content of char. Mok and Antal 
[154]

 correlated gas flow rate and 

pressure with char formation and calorimetry of the process, indicating that high gas 

flow rate and low system pressure results in endothermic process with less char 

formation, while low gas flow rate and high pressure leads to exothermic process with 

high char formation. As shown in Figure 12, Banyasz et al. 
[155]

 proposed a gas 

evolution based mechanism of cellulose pyrolysis (whatman 41) from 400-800 °C, 

which well-matched their mathematical model. Antal et al. 
[156]

 investigated pyrolysis 

kinetics of various pure cellulose samples. The pyrolytic weight loss of all the 

samples was well represented by a high activation energy (228 KJ/mole), first order 

rate law over a wide range of heating rates, which indicated that a global first order 

law could well represent thermal behavior of biomass decomposition.   

 

 

Figure 12: Gas evolution based mechanism of cellulose pyrolysis 
[155]

. 

 

However, when considering mineral matter and existence of hemicelluose and 

lignin in lignocellulosic biomass, the single, first order model fails to represent the 

global behavior of biomass decomposition. For this case, Órfão et al. 
[157]

 proposed a 

three independent reactions model, which incorporated the effect of hemicelluose and 

lignin pyrolysis. The pyrolysis of three selected lignocellulosic biomass (pine, 

eucalyptus woods, and pine bark) was modeled with better approximation by the 
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proposed model than the first order model. The first reaction involved primary 

pyrolysis of cellulose; the second reaction represented primary pyrolysis of 

hemicellulose; and the third reaction contained pyrolysis of remaining amounts of 

non-primary components and lignin. Manyà et al. 
[158]

 proposed a reformulated 

three-parallel-reactions model to simulate pyrolysis behavior. The main improvement 

was using a third-order reaction rate law to describe lignin pyrolysis. They also 

pointed that the three-parallel model could only be valid at low heating rate, for 

example, 5K/min. Because high heating rate would bring sever impact of heat transfer 

limitations on kinetic studies of endothermic reactions. Müller-Hagedorn et al. 
[159]

 

reported a new method for the individual evaluation of kinetic parameters for the 

three main components of wood. It was found that coniferous lignin was more 

thermally stable than deciduous lignin. The different behaviors of thermal 

decomposition of wood species resulted from differences in lignin and hemicellulose 

portions in woody biomass. Hu et al. 
[160]

 compared three-pseudocomponent models 

to first-order model in modeling pyrolysis of six Chinese biomass feeds. Activation 

energies of three-pseudocomponent models with n
th

 (n>1) order were bigger than 

first-order model, and gave the best simulation results. Nevertheless, reaction order of 

one was preferable, as it had already been shown to be accurate enough and it is more 

convenient in chemical kinetic analysis. Sonobe et al. 
[161]

 used the distributed 

activation energy model to predict activation energy of pyrolysis reaction of biomass. 

The advantage of the distributed activation energy model was that no assumption and 

mathematical fitting was required. The calculated activation energy for rice straw, rice 

husk, corncob, and cellulose were 170, 174, 183, and 185 kJ/mol, respectively. 

Damartzis et al. 
[162]

 investigated pyrolysis kinetics of Cynara cardunculus with the 

independent parallel model, KAS, and OFW model. Slopiecka et al. 
[163]

 investigated 

pyrolysis kinetics of poplar wood with Kissinger, KAS, and FWO model, which the 

three models gaving similar activation energy values. Gao et al. 
[164]

 investigated 

effect of salts on pyrolysis kinetics of rice straw. It was found that alkaline CO3
2-

 

lowered the primary decomposition temperature and produced less solid residue than 

Cl
-
 and SO4

2-
 with the same cation. Potassium salts had better ability to fix carbon 
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than that of sodium salts. Ioannidou et al. 
[165]

 used a predictive model to simulate 

pyrolysis or gasification of biomass in order to obtain yields of char and gas, as well 

as heating values of char and gas. The deviations ranged from 0 to 28% for pyrolysis 

process with agreement, however, this model failed to simulate gasification process 

with greater than 100% deviations.  

Since biomass is comprised of three distinct components, it makes investigation of 

biomass decomposition mechanism quite challenging. Thus, research on cellulose, 

hemicellulose and lignin independently is a reasonable manner to get an in-depth 

knowledge of biomass decomposition mechanism. Yang et al. 
[166]

 investigated the 

pyrolysis characteristics of the three main components (cellulose, hemicelluloses, and 

lignin) of biomass by using a thermogravimetric analyzer with differential scanning 

calorimetry (DSC) detector. The main weight loss of hemicellulose occurred at 

220–315°C with a fair mass loss rate and that of cellulose occurred at 315–400 °C 

with a strong mass loss rate, while lignin started to decompose over a wide 

temperature range from 160 to 900 °C with the lowest mass loss rate. Also, lignin 

gave the highest content of residue left after thermal analysis and cellulose gave the 

lowest value. DSC curves showed that cellulose reaction is endothermic before 

400 °C and exothermic after 400 °C, while lignin and hemicellulose exhibited 

complex results. From gas analysis, hemicellulose had higher CO2 and CO yield, 

while lignin showed higher H2 and CH4 yield. CO2 generation was mainly caused by 

primary pyrolysis, while CO and CH4 were the major gas products derived from 

secondary pyrolysis. In another paper of Yang et al. 
[167]

, they concluded that the 

overall biomass pyrolysis can be divided into 4 sequential ranges: <220 °C, moisture 

evolution; 220-315 °C, predominantly hemicellulose decomposition; 315-400 °C, 

cellulose decomposition; >400 °C, lignin decomposition. Two sets of predictive 

equations were set up to relate the amounts of the three main components and the 

weight loss in specified temperature ranges. Hosoya et al. 
[168]

 investigated the 

cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at 800 °C. 

The former type was not significant, but lignin inhibited the thermal polymerization 

of levoglucosan formed form cellulose and enhanced the production of low molecular 
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weight products as well as less formation of char. On the other hand, cellulose 

decreased the secondary char formation from lignin and improved the formation of 

some lignin-derived products including guaiacol, 4-methyl-guaiacol and 

4-vinyl-guaiacol. 

Besides pyrolysis kinetics, pyrolysis mechanism is another important area of 

inquiry, which deals with pathways of how reactants convert to intermediates, and 

then to final products via various reactions. Most research regarding thermal 

degradation of biomass has been focused on reactions conducted in aqueous solution. 

Thus, Shi et al. 
[124]

 proposed putative mechanism for the proton-catalyzed 

isomerization of glucose to fructose. Yang et al. 
[128]

 proposed a mechanism of glucose 

isomerization to fructose in CrCl3-H3PO4 catalysis system (Figure 13). Caratzoulas et 

al. 
[169]

 gave a detailed description on the fructose dehydration mechanism. 

Amarasekara et al. 
[112]

 provided a potential mechanism on ZnCl2 mediated 

degradation of cellulose to glucose (Figure 14).    

 

 

Figure 13 CrCl3 aided catalytic conversion of glucose to fructose 
[128]

. 



 48 

 

Figure 14: ZnCl2 aided catalytic conversion of cellulose to glucose 
[112]

. 

 

 

Figure 15: Reaction pathways of α-cyclodextrin (cellulose) pyrolysis 
[170]

. 

 

Dauenhauer et al. 
[170]

 first revealed the pathways of condensed-phase pyrolysis 

chemistry via first-principles simulation method (Figure 15). For this purpose, they 
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identified α-cyclodextrin as an appropriate surrogate of cellulose to be investigated 

under pyrolysis condition. Several chemicals present in cellulose pyrolysis bio-oil can 

be formed directly without any small molecular intermediates such as glucose and 

levoglucosan. They showed that how furan rings, glycolaldehyde, 2, 

5-dihydroxy-3-pentenal, 2, 3-hydroxy-4-pentenal, 4-hyroxy-2-butenal, formaldehyde, 

CO2 and CO could be produced at molecular level. Additionally, both furan rings and 

glycolaldehyde formation are initiated by homolytic cleavage of glycosidic bonds, 

which mechanism is quite different from that in the aqueous phase. Similarly, Shen et 

al. 
[171]

 proposed possible routes for the formation of major products derived from 

pyrolysis conversion of cellulose (Figure 16 and 17). 

 

Figure 16: Pathways for direct conversion of cellulose unit to chemicals 
[171]

. 

 

  In contrast to cellulose, the other two components- hemicellulose and lignin 

involve much more sophisticated decomposition mechanisms due to their complex 

structures. Zhang et al. 
[172]

 proposed several potential opportunities to develop 

commercially feasible routes to extract and covert biomass lignin and hemicelluloses 
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for high-value applications along with biofuel production from cellulose. Since 

thermal depolymerization of lignin will inevitably produce complex mixture of 

chemicals due to a series of complicated and random reaction sequences, 

delignification before lignocellulosic biomass pyrolsis is very promising. Six main 

reactions involving lignin and peroxyacids interactions have been well demonstrated 

in pulp bleaching process, and the reaction mechanism could be a useful reference for 

lignin pyrolysis 
[173]

. As for hemicellulose, a pre-extraction of hemicellulose from 

woody biomass is promising.  

 
Figure 17: Pathways for direct conversion of LG to chemicals 

[171]
. 

 

In summary, unlike cellulose conversions in aqueous solution which undergo 

reactions such as cellulose to glucose, isomerization of glucose to fructose and then 

decomposition of fructose to small molecules, pyrolysis of cellulose may directly 

convert cellulose unit to small molecules, such as HMF-5, furfural, and acetic acid. 

Currently, no mechanism of pyrolysis of lignocellulosic biomass has been proposed. 

  



 51 

Chapter 3. Methodology 

This chapter provides an overview of the experimental methodology. The specific 

goals of the experiment, materials used, molten salt selection, experimental setup and 

procedures, data acquisition, GC/MS and TGA experiment, and safety procedures are 

presented below.  

3.1 Objectives 

For experimental studies, the broad goals were to: 

(1) Determine the optimal carrier gas flow rate for bio-oil production from real 

biomass, not surrogate molecules. 

(2) Determine the best pyrolysis temperature for bio-oil production. 

(3) Determine the optimal particle size of biomass for the pyrolysis process. 

(4) Determine the best molten salts combination in order to obtain the highest yield of 

bio-oil. Salts under consideration are listed below: 

Zinc chloride (ZnCl2); Potassium chloride (KCl); Lithium chloride (LiCl); 

Sodium chloride (NaCl); Cuprous chloride (CuCl); Stannous chloride (SnCl2); 

Magnesium chloride (MgCl); Aluminium chloride (AlCl3) 

(5) Determine the effects of various catalysts on yields of bio-oil. Catalysts under 

consideration are listed below: 

  Phosphomolybdic acid; ZSM-5; Ni(OH)2;  

(6) Determine the composition of bio-oil for various temperatures, molten salts, and 

catalysts  

(7) Determine the yields and compositions of bio-oil produced from newspaper and 

recycled print paper. 

(8) Kinetics study on thermal decomposition of biomass with molten salts and 

catalysts. 

 

3.2 Materials 

Three kinds of biomass were used in this project. They are: pinewood sawdust 

(Figure 18), newspaper (Figure 19), and recycled print paper (Figure 19). Pinewood 

sawdust was purchased from American Wood Fibers; newspaper feed use was the 

http://www.iciba.com/cuprous_chloride
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WPI student newspaper, The Towers; recycled print paper was purchased from W.B. 

Mason. Raw sawdust was ground in electric mixer and sieved by different meshes. 

Both newspaper and print paper were manually cut by scissors into very tiny pieces 

with average surface area of 0.04 cm
2
/ piece. No further drying pretreatment was 

applied to these biomasses. 

 

Figure 18: Raw sawdust (left) and sawdust powder (<116 µm). 

 

 

Figure 19: Newspaper sample (left) and print paper sample (right). 

 

Chemicals used include: CuCl (ACS, purity> 96.8%, Fisher Scientific); AlCl3 

(anhydrous, GR, purity> 98.0%, EMD); NaCl (food grade salt, MORTON SALT, INC); 

ZSM-5 (GR, ACROS); MgCl2 (anhydrous, purity> 96.8%, EMD); LiCl (GR, purity> 

99%, EMD); KCl (GR, purity> 99%, EMD); ZnCl2 (ACS, EMD); Ni(OH)2 
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(SIGMA-ALDRICH); SnCl2 (purity> 98%, SIGMA-ALDRICH); phosphomolybdic 

acid (ACS, MP Biomedicals) 

Table 15. Chloride salts used in pytolysis of biomass. 

Molten Salts Molar Ratio Melting Point (°C)  

ZnCl2-KCl-LiCl 40:20:40 
a
 240 

b
 

AlCl3-KCl 67:33 128 
c
  

AlCl3-NaCl 55:45 133 
d
 

CuCl-KCl 65:35 150 
c
 

ZnCl2-KCl-NaCl 52.9:33.7:13.4 204 
e
 

ZnCl2-KCl-NaCl 60:20:20 203 
c
 

KCl-LiCl-NaCl 36:55:9 346 
c
 

KCl-LiCl-NaCl 24:43:33 357 
c
 

KCl-MgCl2-NaCl 28.75:43.75:27.5 383 
d
 

ZnCl2 - 283 
c
 

ZnCl2-KCl 70:30 262 
c
 

ZnCl2-NaCl 70:30 255 
d
 

ZnCl2- SnCl2 70:30 /  

a. These mole percentages are based on the molecular weight of the metal cation. 

b. Measured by Drew Martino, a PhD candidate at WPI. 

c. Data retrieved from https://books.google.com.ezproxy.wpi.edu/books?isbn=0323144837. 

d. Data retrieved from http://factsage.com/ 

e. Data retrieved from http://proceedings.asmedigitalcollection.asme.org.ezproxy.wpi.edu/proceeding. 

.aspx?articleid=1920627. 

 

3.3 Molten Salt Selection 

As chlorides molten salts gave the highest yield of bio-oil according to the previous 

studies conducted by MQP groups at WPI 
[7-9]

, in this project, only chlorides molten 

salts were used. The selection criterion of molten salts was based on their melting 

point, pyrolysis performance, and cost. Low melting point, high performance in 

bio-oil production and lower costs are preferable. Single chloride salts usually have 

very high melting points, such as potassium chloride melts at 770 °C, sodium chloride 

https://books.google.com.ezproxy.wpi.edu/books?isbn=0323144837
http://factsage.com/
http://proceedings.asmedigitalcollection.asme.org.ezproxy.wpi.edu/proceeding
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at 801 °C, and lithium chloride at 605 °C 
[8]

. Compared with single salt, the melting 

point of mixed salts is usually much lower, especially at some compositions 

corresponding to eutectic points. Through the use of a phase diagram such as, Figure 

20, it is possible to find a suitable composition of a eutectic that will melt at a given 

temperature. Table 3 listed types of molten salts used in this project.  

 

Figure 20: Ternary eutectic phase diagram 
[174]

. 

 

All kinds of salts listed in Table 3 were tested in the pyrolysis reaction system. It 

was found that salt groups containing AlCl3 and MgCl2 were not suitable for pyrolysis 

in the proposed experimental setup. When AlCl3 was used as molten salt component, 

the outlet of reactor released white smog over 100 °C; carrier gas flow rate kept 

unstable irrationally; white powders were collected in the condensation flasks; strong 

smell of acid gas would be detected. This is due to the decomposition of AlCl3 during 

the pyrolysis. Molten salts with MgCl2 produced char/salt-contained bio-oil which 

resulted in yield of bio-oil higher than 100%.     

For thermogravimetric analysis of sawdust MSCP, four groups of molten salts were 
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selected initially: CuCl-KCl, ZnCl2-KCl-LiCl, ZnCl2-KCl-NaCl, and KCl-LiCl-NaCl. 

Since the crucible used in TGA instrument is made of alumina, it was felt that some of 

these molten salts may react with alumina at high temperature, thus causing damage 

to the TGA instrument. So testing the reactivity of the four kinds of molten salts with 

alumina was first necessary. The results showed that CuCl-KCl molten salt did in fact 

corrode alumina tube in the test. As a result, CuCl-KCl was not used in 

thermogravimetric investigation of sawdust molten salt pyrolysis.  

 

Figure 21: Pyrolysis process flow chart. 

1-Helium gas tank; 2-Pressure control valve; 3-Gas flow meter; 4-Tubular reactor; 5-Furnace; 

6-Thermocouple; 7-Bio-oil collection flasks; 8- Ice bath. 

 

3.4 Experimental Setup and Procedures 

In order to understand and improve the application of MSCP process with real 

natural biomass, many factors which affect the performance of MSCP process were 

tested, including carrier gas flow rate, pyrolysis temperature, types of biomass, reactor 

configuration, varying combinations and compositions of molten salts, reaction time, 

mass radio of biomass-to-molten salts and the performance of different catalysts. 

Although heating rate is a vital factor that affects the pyrolysis process, the influence 

of heating rate was not studies in this work, as it could not be precisely controlled in 

the current setup. The average heating rate used in experiment was 95 ± 15 °C/min. 

As shown in Figure 21, a self-designed pyrolysis setup mainly consisted of a 

tubular reactor, an electric furnace, a condenser, a thermocouple, a gas flow meter, as 
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well as pressure indicator and control valve. The stainless steel tubular reactor (Figure 

22) of 9/10 inch in inner diameter, 16.5 inches in length was set horizontally in 

consideration of the dimension of the furnace (TF55035A-1, Thermo Scientific). Glass 

wool was used to block the space between furnace and reactor at each end. Liquid 

yields tended to decrease sharply when the reactor was placed vertically, as heat loss 

occurred at the bottom. Three bio-oil collection flasks connected in series ensured that 

all volatile substances could be condensed at experiment conditions. An Ice bath was 

used for condensation. Two temperature indicators were used in experiment: the first 

one provided inner temperature of pyrolysis temperature via a thermocouple 

(JQIN-116U-18, OMEGA Engineering) which was inserted into the mixture of 

reactants; the second one displayed the temperature of outer wall of the reactor. 

Temperature in reactor was always 50 °C higher than that of exterior. Helium gas was 

chosen as the carrier gas for its inert characteristics. 

 

Figure 22: Reactor tube. 

 

The experiments consisted of a series of crucial steps as highlighted below. For 

each run, 5.0 g sawdust powder in a certain diameter range was placed into a mortar 

and pestle followed by addition of desired salts in sequence. The weight of sawdust 

and salts were massed on a scale (XL-5K, Denver Instrument) before mixing. The 

mixture was then ground thoroughly to guarantee a homogenous state. The mixing 

time should be appropriate for this: too short time would cause uneven composition; 

too long time would lead to absorption of water in the air by zinc chloride. Next, the 

whole mixture was transferred into the reactor. After putting the reactor back into the 

furnace, the helium gas tank was turned on and the whole reaction system was fully 

http://www.omega.com/pptst/JQIN.html?bt=cart
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saturated in helium to ensure an inert atmosphere. Before heating up to the pyrolysis 

temperature, the furnace was first set to 130 °C for 30 mins, in order to dry off water 

existing within the biomass and salts. Once the preheating was completed, the reactor 

was heated to the desired temperature at a desired rate. Once the final temperature 

was reached, the reaction was then allowed to proceed for about one hour. The 

volatiles were purged out by helium, whose flow rate could be controlled by gas flow 

meter. Then the carrier gas together with volatiles entered into condensation system 

cooled by ice bath, where volatiles condensed in three consecutive flasks. Once the 

reaction ended, the condensed oil was collected into a vial, weighted and kept in 

refrigerator. The reactor was also weighted after being cooled to room temperature in 

order to determine the mass of char. All the experiments were conducted at 

atmospheric pressure. Since huge amount of experiments were conducted in this work, 

not all runs were duplicated. Only parts of the experiments were repeated three times 

or more, and the data variability thus calculated is within 10%. 

 

3.5 Data Acquisition 

For each set of experiment, two different kinds of yields were calculated and 

recorded, i.e., total percent bio-oil yield and total char yield. In order to calculate 

liquid yield, the three flasks used were weighted before and after each run. Therefore, 

the liquid yield was equal to the difference between the masses of the three flasks 

divided by the mass of sawdust used (Eq. 1).  

                                           

                       
                                                                    

Similarly, the char yield (Eq. 2) was determined by the difference between the mass 

of original feed and mass of violates (both condensable and non-condensable). The 

mass of violates was calculated by the difference between mass of reactor plus load 

before and after. Load here contains both salts and feedstocks.   

    
                                                                 

                       
        

=                                                                                                                         

Finally, the non-condensable gas yield was obtained by simple subtraction (Eq. 3). 

http://www.iciba.com/subtraction
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3.6 GC-MS Analysis Methods 

The liquid product contained organic oil and water. A Gas Chromatograph- Mass 

Spectrometer (GC-MS) was used to determine the individual chemical substances in 

the bio-oil obtained from pyrolysis of biomass. Agilent 7890 GC was used along with 

Agilent HP-5MS 30 m × 0.25 mm × 0.25 µm column and Agilent 5183-4637 (870 µL) 

split inlet liner. Other parts used were Agilent 5975C VL MSD with Triple Axis 

Detector and Inert EI source, as well as Agilent G453A auto-sampler tower with 

Agilent G4514A 150 sample tray. 

Each liquid sample was firstly transferred to Thompson 35540 filter vials in order 

to be filtered of any solid carbon residue present in the sample. Then prepared 

samples were placed into the sample tray and the operation parameters for the auto 

analysis process were set. The split ratio was set to 100:1; helium carrier gas flow rate 

was 54 mL/ min. The temperature programming for GC was set as follows: the 

column oven first rose to 50 °C and kept for 10 mins. Then the temperature was 

increased to 180 °C at a heating rate of 5 °C/ min. Once up to 180 °C, the temperature 

went up to a final temperature of 300 °C at a heating rate of 15 °C/ min. After passing 

through GC, each separate substance entered the MS, where each substance was 

fragmented into various ions of different mass-to-charge ratios. Then each ion was 

recorded in a plot of mass spectra. Finally, the original chemical could be identified 

by comparing the mass spectra with standard mass spectra in MS database. The 

operation parameters for MS were set as follows: the MS source was kept at 230 °C 

and the MS quad held at 150 °C; the scan mode for the MS was m/z 5-500. The total 

run time for one sample was about 45 mins.        

The chemicals in bio-oil could hence be identified by MS and quantified by GC. 

However, the percentage report of GC only gave the percent area of each substance in 

bio-oil. Percent mass could be more accurate the percent area. In order to obtain 

percent mass of each substance, calibration was prepared. In this study, only three 

main components in bio-oil were calibrated, they were water, furfural, and acetic acid, 
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as these were the main products in many experiments.   

 

3.7  TGA Experiment  

TGA experiments were conducted by using the Netzsch 209 F1 Libra with Al2O3 

85 µL crucible. Before each run, the crucible must be burned out for several seconds 

until it glowed. This step was necessary to ensure that no organic chemicals residue 

remained in crucible. After the crucible cooled down, the crucible was weighed and 

recorded. Then the sample was loaded into the crucible and weighed again. Next the 

experiment was commenced. The temperature program for this experiment was to 

start temperature at 30.0 °C and end temperature at 700 °C with a heating rate of 10 

K/min. Finally, data was analyzed by software Proteus Analysis.      

 

3.8 Safety Procedures 

As high temperature operation environment, high pressure gases, some delicate 

instruments and many corrosive chemicals were involved in this project, extreme 

caution should be exercised during the whole experimental process. Inattentive 

operation could lead to great danger to both people and instrument. So laboratory 

safety training was of crucial importance before conducting research in the lab.    

When dealing with high temperature procedures, heat resistant gloves must be worn 

and hawkbill might be used in some cases. Another notice was to keep hot substance 

away from people, flammable and heat-sensitive matters. With respect to chemicals, 

lots of attention should be given: stored various chemicals properly in case of light, 

temperature, humidity, etc.; wear latex gloves and lab clothing all the time when 

exposed to dangerous chemicals; chemical wastes should be handled properly.  

All experiment operations should be abided by the regulations. In pyrolysis 

experiment, every tiny error might contribute to wrong results; In TGA experiment, 

special attention should be given to the procedures. Wrong steps could cause severe 

damage to the instruments.        

  

http://dict.youdao.com/w/abide/
http://dict.youdao.com/w/by/
http://dict.youdao.com/w/the/
http://dict.youdao.com/w/regulations/
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Chapter 4. Results and Discussion 

In this chapter, the results are mainly divided into four parts: yield of bio-oils, 

composition/selectivity of bio-oils, kinetics studies on thermal degradation of biomass 

and preliminary study on pyrolysis of newspaper and print paper. The feedstocks used 

in the first three parts were limited to sawdust only. In the first part, the sequence of 

results is organized by first illustrating the effects of gas flow rate, temperature and 

particle size. Then the effects of varied combinations of different chloride molten-salts 

and varied compositions of certain molten-salt eutectic are demonstrated. Finally, the 

influence of catalysts is investigated. 

 

Figure 23: Bio-oil yield at various carrier gas flow rates. 

(Condition:  Feed: 5 g sawdust; Molten salt: ZnCl2 (40% mol), KCl (20% mol), LiCl (20% mol); Temperature: 

350 ºC; Mass ratio of feed to molten salt: 1:10; Particle size: 106-212 µm) 

 

4.1 Optimizing Bio-oil Yield 

4.1.1 Carrier Gas Flow Rate 

Few publications discuss the effect of gas flow rate on the yield of bio-oil. N2, H2, 

helium and even steam could be utilized as the carrier gas. In this work, helium gas 

was selected for its inert properties. The carrier gas has three main functions in 

pyrolysis process: first, take the volatiles formed away from the reactor; second, 
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exclude oxygen to provide an inert environment for the pyrolysis; third, the gas could 

bubble in the reaction mixture to make heat and mass transfer more efficient.  

 

Figure 24: Temperature effect on yield of products without molten salts. 

(Condition:  Feed: 5 g sawdust; Flow rate: 165 CC/ min; Particle size: 106-212 µm.) 

 

Figure 23 shows the yield of bio-oil at different carrier gas flow ratse. Changing 

gas flow rate directly affects the volatiles residence time in the reactor. The higher 

flow rate simply residence times for the primary products in the reactor, so that the 

higher bio-oil yield might be expected, as the second cracking reaction and 

repolymerization would be inhibited. However, as shown in Figure 23, there existed 

an optimal value rather than a monotonic increase. Two possible reasons might 

explain this phenomenon at high flow rate: one is the flow rate was too high for a 

reasonable residence time for the decomposition reactions; the other is due to the 

limited condensation efficiency, bio-oils might not be condensed totally at higher flow 

rates. Experimental results showed that at the highest flow rate under investigation 

(190 CC/min), all the three flasks collected oils which means some volatiles might be 

blown away. Thus, the second reason above appears likely. So the flow rate of 165 

0 

10 

20 

30 

40 

50 

60 

70 

80 

250 300 350 400 450 500 

Y
ie

ld
 (

%
) 

Temperature (ºC) 

Bio-oil 

Char 

Gas 



 62 

CC/min was chosen as the best for this system and was hence set as a fixed flow rate 

for subsequent experiments. 

 

4.1.2 Pyrolysis Temperature 

Figure 24 shows that temperature had a great impact on the products yields in 

absence of molten salts. The yield of char was reduced sharply from 76 to 32% as the 

temperature was increased from 300 to 450 °C. This indicated that char formation was 

favored at lower temperatures. The gas content increased from 11.1 to 28.4 % with 

this increase in temperature. Similarly, the yield of bio-oil also increased from 12.9 to 

39.6 % in the same temperature range. Clearly, the increase rated of bio-oil yield with 

temperature was faster than that of gas, which indicated that the loss mass of char 

mainly contributed to the formation of bio-oil compared with gas, as the temperature 

rose. 

Typically, a maximum liquid yield could exist with monotonic increasing of gas 

yield and monotonic decreasing yield of char, since higher temperature improved 

volatiles’ decomposition to gas. However, the maximum liquid yield didn’t appear in 

this experiment for the reason that the maximum liquid yield from biomass usually 

occurs over 500 °C which was beyond the range of temperatures investigated in this 

work. An assumption might be made that if temperature was elevated to above 500 °C, 

an optimal value might appear. Although the highest yield was obtained at 450 °C, the 

main temperatures under investigation in this work were 350 °C and 400 °C, as a goal 

of the MSCP is to reduce the operating temperature of pyrolysis process. 

 

4.1.3 Particle Size  

Another important factor in determination of bio-oil yield is the particle size of 

biomass material and discussion about this is rarely presented in previous literatures. 

Four groups of sawdust with different particle size range were tested. The mass of 

sawdust in each run was 5 g and the reaction was conducted at carrier gas flow rate of 

165 CC/min and at a temperature of 350 °C. Table 4 shows the effect of particle size 

of biomass on bio-oil yield without molten salts. Theoretically, the finer the particle 
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size that biomass has, the higher the bio-oil yield should be. Since sawdust itself is not 

a good thermal conductivity material, fine particle size biomass has the ability of 

transferring heat to its inner core faster than the bigger particle size biomass, which 

favors the formation of bio-oil. Moreover, smaller particles show better mass transfer 

characteristics than bigger particle size biomass, which means the products produced 

could leave the particle faster. However, results of this study showed that particle size 

between 106-212 µm gave slightly higher yield than the finest particle size, lower 

than 106µm in the experiment. Of course it may be that a plateau is reached at 

106-212 µm particle size, and smaller particle size does not increase the bio-oil yield.  

Table 16. Effect of particle size on yield of bio-oil without molten salt. 

Particle size (µm) Yield (%) 

<106 18.6 

106-212 19.1 

300-450 14 

600-850 13.8 

   

In order to get more information about the effect of particle size in the presence of 

molten salts, two types of molten salts were added into the reaction system. Figure 25 

shows the improvement of addition of molten salts on the bio-oil yield. Compared 

with Table 2, 32.6% yield was obtained with CuCl-KCl molten salts for the particle 

size between 106-212 µm, while only 19.1% was attained without molten salts at the 

same temperature. This improvement was even more significant for the particle size 

lower than 106µm, i.e., 41% with molten salts and 18.6% without salts. In the 

persence of CuCl-KCl molten salts, biomass of particle size between 106-212 µm 

exhibited lower yield of bio-oil than that of particle size < 106 µm. This finding not 

only proved that fine particle should produce high yield of bio-oil, but also illustrated 

that the advantage of molten salts. Thus, biomass particles would be evenly 

distributed within a molten salt solvent which could suppress the possible 

agglomeration of fine particles in the absence of molten salts. The ternary molten salts, 
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ZnCl2-KCL-LiCl also had the same function and gave higher yield below 450 °C. 

 

Figure 25: Effect of particle size on the liquid yield based on different salts combinations. 

(Condition:  Feed: 5 g sawdust; Flow rate: 165 CC/min; Mass ratio of feed to molten salt: 1:10; Diamond: CuCl 

(65% mol), KCl (35% mol), particle size: <106 µm; Square: CuCl (65% mol), KCl (35% mol), particle size: 

106-212 µm; Triangle: ZnCl2 (40% mol), KCl (20% mol), LiCl (20% mol), particle size: <106 µm. Circle: ZnCl2 

(40% mol), KCl (20% mol), LiCl (20% mol), particle size: 106-212 µm.) Mole percentages in ZnCl2- KCl- LiCl 

were based on the molecular weight of the metal cation. 

 

In Figure 25, it’s shown that biomass of smaller particle size gave higher bio-oil 

yield no matter what type of molten salt was used and what temperature it is. 

ZnCl2-KCl-LiCl molten salts performed better than CuCl-KCl molten salts when 

temperature was at 300 °C, 350 °C and 400 °C, while at 450 °C, the situation was 

reversed. At 300 °C, the difference between the highest and lowest yield was 19%, 

while at 450 °C this difference changed to 10.6%, which indicates that different types 

of molten salts play a more important role at lower temperatures than that at higher 

temperatures. Besides, the difference of bio-oil yields from different particle size in 

CuCl-KCl molten salts was larger than that in ZnCl2-KCl-LiCl molten salts. 

 

4.1.4 Varying Composition of ZnCl2-KCL-LiCl Molten Salt 
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The molten salt group of ZnCl2-KCl-LiCl had been proved to be effective in 

pyrolysis of cellulose in previous MQP study 
[8]

. In this project, a systematic study on 

the effect of varying compositions of this type of molten salt on bio-oil yield from 

sawdust was carried out. The results of the effect of varying compositions of 

ZnCl2-KCl-LiCl on bio-oil yield are presented in Table 5. For each run, 5 g sawdust 

with particle size of 106-212 µm was used. The reaction was carried out at 400 ºC 

with carrier gas flow rate of 165 CC/min. The molar ratio used in Table 5 was in the 

format of ZnCl2: KCl: LiCl and based on the molecular weight of the metal cation. 

The mass ratio of feed to molten salts was set to 1: 10. 

Table 17. Effect of composition of molten salt on bio-oil yield. 

Molar ratio 

 ZnCl2:KCl:LiCl 

Liquid 

yield (%) 

Molar ratio 

ZnCl2:KCl:LiCl  

Liquid 

yield (%) 

Molar ratio 

ZnCl2:KCl:LiCl  

Liquid 

yield (%) 

4:2:1 54.9 4:0.2:4 20.7 3:2:4 53.4 

4:2:2 57.5 4:0.5:4 56.1 5:2:4 66.5 

4:2:3 56.6 4:1:4 51.5 6:2:4 58.2 

4:2:4 51.5 4:3:4 50.1 7:2:4 58.3 

 

In this section, the different compositions were selected arbitrarily, as no phase 

diagram for ZnCl2-KCl-LiCl was available. The only data could be found out was the 

minimum melting point at a specific combination of each salt component, a tiny 

change in composition might alter the melting point greatly, which could result in 

solid phase in the reactor. This could explain why there was an extremely low yield of 

20.7 %, when the molar ratio was 4:0.2:4 in Table 5. In contrast, the highest yield was 

66.5% with the group of ZnCl2 (5)-KCl (2)-LiCl (4). As shown in column 1 in Table 5, 

if the molar ratio of ZnCl2 to KCl was kept unchanged, the yield of bio-oil had an 

optimal value with an increase of LiCl content. The same trends occurred if the molar 

ratio of ZnCl2 to LiCl or KCL to LiCl remained unchanged, with a gradual increase in 

KCl or ZnCl2, respectively. Furthermore, the highest three yields obtained with molar 

ratio of 5:2:4 (yield of 66.5%), 7:2:4 (yield of 58.3%), and 6:2:4 (yield of 58.3%) 
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indicated that relative high concentration of ZnCl2 (a Lewis acid) could improved the 

yield of bio-oil. Undoubtedly, changes of composition lead to variation of salts 

properties such as melting point and thermal conductivity, along with Lewis acidity. 

The contributions of these changes on yield are still unclear.    

 

4.1.5 Dosage of Catalyst 

In this work, whether the amount of a catalyst could affect the yield of bio-oil 

during pyrolysis of sawdust was investigated and the results were presented in Figure 

26. The three different dosages of catalyst gave the same yield of bio-oil when 

phosphomolybdic acid was used as the catalyst. The result showed that the yield of 

bio-oil was independent of the mass of the catalyst used in this case.  

 

Figure 26: Effect of mass of catalyst on bio-oil yield. 

(Condition:  Feed: 5 g sawdust; Molten salt: CuCl (65% mol), KCl (35%); Flow rate: 165 CC/min; Temperature: 

350 ºC; Mass ratio of feed to molten salt: 1:10; Particle size: 106-212 µm.) 

 

4.1.6 Effect of Catalyst on Yield in different Molten Salts System 

 Figure 27 gives a good demonstration of the enhancement of bio-oil yield with 

addition of molten salts and catalysts at four selected temperature. The results show 

that molten salts could improve the bio-oil yield significantly no matter whether a 
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catalyst is added or not. The group of ZnCl2-KCl-LiCl together with 

phosphomolybdic acid provided the highest yield at all temperature range. Especially 

at 300 °C, the yield was increased by a factor of 4 over the case of pyrolysis without 

molten salt. It could hence be concluded that molten salts not only act as effective 

solvents, but also provide catalysis function in the pyrolysis of biomass as ZnCl2 is a 

Lewis acid. Brønsted acid such as phosphomolybdic acid can also catalyze pyrolysis 

of biomass. Thus, the introduction of phosphomolybdic acid to the molten salts 

reaction system further improved the liquid yield (Figure 27).  

 

Figure 27: Yield dependency on temperature with varied salts combination and catalyst. 

(Condition: Feed: 5 g sawdust; Flow rate: 165 CC/min; Mass ratio of feed to molten salt: 1:10; Particle size: 

106-212 µm. Diamond: no molten salt; Square: CuCl (65% mol), KCl (35%mol); Triangle: CuCl (65% mol), KCl 

(35%) + 2 g phosphomolybdic acid; Crossing: ZnCl2 (40% mol), KCl (20% mol), LiCl (20% mol), molar ratio 

based on the molecular weight of the metal cation; Asterisk: ZnCl2 (40% mol), KCl (20% mol), LiCl (20% mol) + 

1 g g phosphomolybdic acid, molar ratio based on the molecular weight of the metal cation; Circle: ZnCl2 (52.9% 

mol), KCl (33.7% mol), NaCl (13.4% mol).) 

 

Generally, the performance of ZnCl2-KCl-LiCl was better than CuCl-KCl, with the 

exception for temperature at 450 °C. The result confirmed that CuCl-KCl favored 
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high temperatures. Another ternary molten salt ZnCl2-KCl-NaCl was tested in which 

LiCl was substituted by NaCl, a cheaper kind of salt.  The overall performance of 

ZnCl2-KCL-NaCl fell in between ZnCl2-KCl-LiCl and CuCl-KCl, and its behavior 

was close to ZnCl2-KCl-LiCl. The irregular point at 350 °C for ZnCl2-KCl-NaCl 

might be due to the experimental error. Still when temperature was at 450 °C, the 

differences among all groups of molten salts became smaller. This observation was 

quite similar to the results derived from Figure 25. Nonetheless, the highest yield at 

450 °C with ZnCl2-KCl-LiCl molten salt plus phosphomolybdic acid was 63.7% 

which was much higher than 39.6% without molten salt at 450 °C.  

Table 18. Effect of combination of different molten salts (yield 1) and addition of catalyst 

(yield 2) on bio-oil yield. 

Molten salt Yield 1 Yield 2 

Cu-K 36.80% 48% 

Zn-K-Li 51.50% 60.40% 

Zn-Na-K 47.80% 51.60% 

Zn-Na-K
1
 46.70% 54.60% 

K-Li-Na 36.20% 43.00% 

K-Li-Na
1
 39.50% 46.00% 

(Condition:  Feed: 5 g sawdust; Flow rate: 165 CC/min; Mass ratio of feed to molten salt: 1:10; Particle size: 

106-212 µm; Temperature: 400 ºC. Cu-K: CuCl (65% mol), KCl (35% mol); 2 g phosphomolybdic acid was used 

as catalyst; Zn-K-Li: ZnCl2 (40% mol), KCl (20% mol), LiCl (20% mol), molar ratio based on the molecular 

weight of the metal cation; 1 g phosphomolybdic acid; Zn-Na-K: ZnCl2 (52.9% mol), NaCl (13.4% mol), KCl 

(33.7% mol); 1 g phosphomolybdic acid; Zn-Na-K1: ZnCl2 (60% mol), NaCl (20% mol), KCl (20% mol); 1 g 

phosphomolybdic acid; K-Li-Na: KCl (36% mol), LiCl (55% mol), NaCl (9% mol); 1 g phosphomolybdic acid; 

K-Li-Na1: KCl (24% mol), LiCl (43% mol), NaCl (33% mol); 1 g phosphomolybdic acid.) 

 

ZnCl2, KCl, LiCl and NaCl are the most used molten salt components, and selected 

ternary combination from the four components was investigated for pyrolysis process. 

As seen in Table 6, yield 1 represented bio-oil yields obtained without catalyst, while 

yield 2 represented bio-oil yields obtained with phosphomolybdic acid catalyst. In 

most cases shown in Table 6, ternary molten salt provided higher bio-oil yield than 

binary molten salt. The groups containing ZnCl2 gave higher yield than those without 



 69 

ZnCl2. In ZnCl2 containing salts, the one with LiCl showed higher yield than the ones 

with Na. In ZnCl2-NaCl-KCl ternary system, two different compositions groups didn’t 

show much difference in yields. However, in KCl-LiCl-NaCl ternary system, 

increasing NaCl content tended to give higher yield. When catalyst was introduced 

into molten salts system, the yield for each group increased. In ZnCl2-NaCl-KCl 

groups, the one with higher ZnCl2 content gave higher yield than the one with lower 

ZnCl2 content. 

There was an interesting observation that when phosphomolybdic acid was added 

into reation system, the yields increased were always kept at around 10% in absolute 

value no matter what the reaction system is.  

Table 19. Effects on different kinds of catalyst on bio-oil yield in a  

KCl-LiCl-NaCl molten salt. 

Catalyst No. Yield (%) 

None 39.5 

1 46 

2 48.3 

3 48 

4 37.4 

5 42.1 

6 47.8 

7 43.5 

 

4.1.7 Effect of Different Catalysts 

The final aspect studied in this work about bio-oil yield was to investigate the effect 

of different types of catalyst on the yield of bio-oil, and the results were shown in 

Table 7. For each run, 5 g sawdust with particle size of 106-212 µm was used. The 

reaction was carried out at 400 ºC with carrier gas flow rate of 165 CC/min. The 

molten salts used was KCl (24% mol): LiCl (43% mol): NaCl (33% mol), i.e., without 

ZnCl2. The mass ratio of feed to molten salts was set to 1: 10. Catalyst 1 was 1 g of 

phosphomolybdic acid; catalyst 2 was 1g ZnCl2; catalyst 3 was 0.5 g 
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phosphomolybdic acid + 0.5 g ZnCl2; catalyst 4 was 1 g SnCl2; catalyst 5 was 0.5 g 

phosphomolybdic acid + 0.5 g SnCl2; catalyst 6 was 1 g Ni(OH)2; catalyst 7 was 1 g 

ZSM-5. 

Thus, Brønsted acid catalyst (phosphomolybdic acid), Lewis acid catalyst (ZnCl2, 

SnCl2, and ZSM-5), and base catalyst (Ni(OH)2) were tested. Almost all types of 

catalysts had a positive effect on improving liquid yield except for SnCl2. Catalyst 2, 

3, and 6 gave higher liquid yield than others, indicating that ZnCl2 and Ni(OH)2 were 

preferable in pyrolysis of sawdust. For catalyst 1,2, and 3, it could be concluded that 

ZnCl2 played more important role in catalytic pyrolysis of sawdust than 

phosphomolybdic acid. For catalyst 3 and 4, both acted as Lewis acid catalysts, 

however, the performances were quite different. ZnCl2 was better than SnCl2 in the 

pyrolysis process, even below the performance without catalyst. The probable 

explanation could be that the SnCl2 was kept in pieces rather than powders stored in 

the bottle. These pieces configurations made SnCl2 very difficult to be ground into 

tiny particles.      

Apparently, ZnCl2 and Ni(OH)2 catalyzed bio-oil formation reaction performed the 

best, however, water content was not excluded from bio-oil. Considering ZnCl2 would 

produce more water, so the best catalyst for the highest yield of organic bio-oil needs 

to be determined by considering the compositions of the samples. 

 

4.1.8 Other Miscellaneous Factors 

Reaction time- The reaction time for all the samples was set 2 hours. Major 

volatiles come out in the first 30 mins, and remaining oil could be condensed within 

the subsequent 75 mins. No oil comes out after that for at least 15 mins, so that the 

total reaction time was set 2 hours. 

Mass ratio of sawdust to molten salts- The mass ratio of sawdust to molten salts 

was set as 1 to 10 in all the experiment. This value was determined by pervious work 

done by WPI research group 
[7-9]

. The ideal condition was that biomass would be fully 

immersed into the molten salt medium with the least amount of molten salt and a 

relatively high bio-oil yield.  
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Mass of sawdust- Due to the limitation of the reactor size and the mass ratio 

mentioned above, both 4g and 6 g of biomass were also tested with mass ratio of 

sawdust to molten salts set as 1: 10. Neither one provided a higher yield than that 

when 5 g was used under the same condition. When 4 g was used, the residence time 

of volatiles was too long, when secondary cracking reactions happen. When 6 g was 

used, the mixture of biomass and salts filled nearly all the space in the reactor, so that 

volatiles had difficulty coming out from reactor, which suppressed the formation of 

bio-oil.     

Reactor orientation- The furnace used in this project could only heat the reactor in 

horizontal orientation effectively. When turned the reactor and furnace vertically, the 

bottom part could not be heated efficiently which could leave unreacted residue in the 

reactor. 

Table 20. Selected samples for GC-MS composition analysis. 

No. Temperature/ °C Molten salt Molar ratio of salt Yield/ % 

1 350 - - 18.4 

2 400 - - 31.7 

3 450 - - 41.1 

4 400 Cu,K 65:35 37.2 

5 400 Zn,Na 70:30 53.3 

6 400 Zn,k 70:30 52.2 

7 400 Zn,Na,K 52.9:13.4:33.7 49.0 

8 400 K,Li,Na 24:43:33 38.7 

9 400 Zn,K,Li 4:2:4 51.5 

10 400 Zn,K,Li 5:2:4 66.5 

11 400 Zn,K,Li 6:2:4 58.2 

12 400 Zn,K,Li 4:0.5:4 56.1 

13 400 Zn,K,Li 4:2:1 54.9 

 

4.2 Compositions of Bio-oils 
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The second major part of this project is to have a basic understanding of the effect 

of molten salts on the bio-oil composition both qualitatively and quantitatively 

(Appendix A). Figure 28 shows some bio-oil samples obtained from pyrolysis of 

sawdust. Gas chromatography–mass spectrometry (GC-MS) is an ideal analytical 

method to determine the composition of the samples that were produced. 

Identification of products distribution was characterized by retention time in GC 

graph, as well as mass fragmentation patterns in comparison with those of in database 

library. Product percentages were determined directly by percent area of each 

component peak in GC graph, where area percentage was generated by computer 

software controlling the GC-MS.   

 

Figure 28: Bio-oil samples obtained from pyrolysis of sawdust. 

 

Due to the large amount of samples obtained from the pyrolysis experiments, not 

all samples were analyzed by GC-MS. A certain group of samples was selected to 

illustrate the influence of molten salts on the composition of bio-oil. All the conditions 

of selected samples were listed and labeled in Table 8. All samples listed were 

obtained under the condition of carrier gas flow rate of 165 CC/min, mass ratio of 

feed to molten salt of 1:10 and particle size within 106- 212 µm. 

In view of the results listed in Table 9, from No. 1 to No. 3, it was evident that as 

the pyrolysis temperature increased, the water content of the sample decreased 

significantly from 28.63% to 14.28%. Acetic acid, furfural and 

(2-propanone,1-hydroxy-) were the main products in runs without molten salts. The 

product distribution of No. 2 was closer to those of in No. 1, while No. 3 was quite 
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distrinct from No. 1 and gave a wider distribution. In this case, high temperature 

group tended to produce less water and a broader distribution of products. Compared 

with No. 2, the product distribution of No.9 narrowed down to only three species. 

Both water content and furfural increased when ternary molten salts were introduced 

at the same temperature.   

Table 21. GC/MS results (area %) with (No.9) and without (No.1-3) molten salts 

 

Table 22. GC/MS results (area %) for different kinds of molten salts. 

Content No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 

Water 34.94 53.58 46.46 43.60  25.53 49.89 

Acetic acid 23.12 26.33 29.77 27.49 26.38 25.86 

Furfural 19.37 13.71 16.57 23.61 16.31 21.62 

Formic acid 7.82 3.10  1.45 1.01 1.46 - 

 

Table 10 demonstrates the effect of varying combinations of molten salt on the 

product distribution of the bio-oil. First, No. 8 had the least amount of water- almost 

the same level as it was without molten salt (No. 1 – No. 3), which was caused by the 

 Content No. 1 No. 2 No. 3 No. 9 

Water 28.63 24.51 14.28 49.89 

Acetic acid 25.06 25.81 19.82 25.86 

Furfural 11.63 14.11 6.90  21.62 

2-propanone,1-hydroxy- 11.20  11.50  10.36 - 

Acetic acid, methyl ester 2.98 2.73 1.96 - 

Propanic acid 2.02 2.28 1.15 - 

1-hydroxy-2-butanone 0.97 1.81 1.87 - 

2-cyclopenten-1-one,2-hydroxy- - 1.46 2.6 - 

Phenol,2-methoxy-4-methyl 2.50  1.23 3.66 - 

Ethanone,1-(2-furanyl)- 1.47  1.18 2.34 - 

Undefined organic products 10.88 9.78  66.68 - 

http://www.iciba.com/distrinct
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absence of zinc chloride. It could be concluded that zinc chloride had the tendency to 

produce more water. No .4 had relative high water content than No. 8 mainly because 

the effect of cuprous chloride. Second, no matter what kind of salts mixture was used, 

the amount of acetic acid kept as a constant especially in the groups from No.5 to No. 

9. Third, in terms of furfural, No. 4, 7, and 9 provided high furfural content. It 

indicates that ternary molten salts system containing zinc and potassium chloride 

favored high furfural content. Forth, binary molten salts system tended to render high 

formic acid content, especially for cuprous and potassium chloride. Fifth, water, acetic 

acid and furfural were the main products in groups from No. 5 to No. 9, however, No. 

4 had a wider product distribution which also included (acetaldehyde, chloro-), 

dichloroacetaldehyde, 2(5H)- furanone and 2-furancarboxaldehyde 5-methyl. 

Table 23. GC/MS results (area %) for effect of ratio of ZnCl2-KCl-LiCl 

on bio-oil composition. 

Content No. 9 No. 10 No. 11 No. 12 No. 13 

Water 49.89 52.48 54.57 59.63 44.40  

Acetic acid 25.86 26.62 26.46 32.63 30.70  

Furfural 21.62 17.41 15.08 3.46 17.90  

 

Table 11 indicates the effect of different molar ratio in zinc, potassium and lithium 

chloride system on the product distribution. As shown in Table 11, acetic acid and 

furfural were the only main products in exception of water in all cases. From No. 9 to 

No. 11, it could be concluded that as the zinc chloride portion increased monotonously, 

water content increased while furfural deceased with acetic acid remaining unchanged. 

Comparing No. 9 with No. 12, it was evident that the amount of water and acetic acid 

improved sharply while furfural dropped tremendously. The molten salt combination 

of No. 12 was mostly a zinc-lithium binary system which gave quite different result. 

Compared No. 9 with No. 13, the amount of water and furfural dropped while acetic 

acid increased. This was due to relatively high zinc chloride and less lithium chloride 

in No. 13. 

Since bio-oil produced based on zinc, potassium and lithium chloride molten salts 

http://www.iciba.com/cuprous_chloride
http://www.iciba.com/cuprous_chloride
http://www.iciba.com/monotonously
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only contained water, acetic acid, and furfural as the main products; these components 

were calibrated and presented in mass percentages when ternary molten salts group of 

zinc, potassium and lithium chloride was used in the following. The calibration curves 

for water, acetic acid, and furfural are shown in Appendix B.  

Table 12. GC/MS results (wt %) for effect of ratio of ZnCl2-KCl-LiCl 

on bio-oil composition. 

Content No.9 No.10 No.11 No.12 No.13 

Water 90.30  91.26  91.91  92.99  88.43  

Acetic acid 6.27  6.19  5.99  6.88  8.44  

Furfural 3.43  2.55  2.11  0.12  3.12  

 

Table 12 shows the composition of bio-oil (wt %) derived from pyrolysis of 

sawdust in ZnCl2-KCl-LiCl molten salt. In all samples, water content was about 90 

wt%, which means the summation of mass parentages of acetic acid and furfural stays 

at around 10%. No. 13 gave the highest yield of acetic acid in weight, while No. 12 

provided the highest yield of acetic acid in area percent. So it is concluded that area 

percent- based composition might lead to errors in getting real composition of bio-oil 

samples. As seen in Table 12, No.13 offered the highest yield of organics compared 

with other samples, while No. 9 gave the highest yield of furfural.           

In summary, the composition of bio-oil derived from pyrolysis of sawdust can be 

very complicated which could contain hundreds of substances. Moreover, as the 

pyrolysis temperature increasing, the composition of bio-oil became more 

complicated. Introduction of molten salt to the pyrolysis system can narrow down the 

product distribution significantly. Among the salts under investigation, CuCl-KCl 

gave a relative high yield of formic acid than other salts. Ternary molten salts can 

narrow the bio-oil components to 3 or 4 substances, especially when ZnCl2-KCl-LiCl 

was used, the only main organic products were acetic acid and furfural. Furthermore, 

changes of composition of certain molten salt, such as ZnCl2-KCl-LiCl can slightly 

alter the composition of bio-oil.          
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4.3 Kinetics Studies on Biomass Pyrolysis   

4.3.1 Thermogravimetric analysis 

The thermal degradation of sawdust without molten salts was first investigated, as 

shown in Figure 29. Sample 1 was sawdust with particle size of below 106 µm and 

the sample was dried in oven at 150 °C for 24 hrs; sample 2 represented sawdust with 

particle size of 106-212 µm and the sample was dried in oven at 150 °C for 24 hrs; 

sample 3 was sawdust with particle size of 106-212 µm and no drying treatment 

applied. Approximate 2.5 mg sawdust was used in each sample. 

 

Figure 29: TG curves of sawdust without molten salts. 

 

The three weight loss curves (TG) shown in Figure 29 had similar trends in the 

whole temperature range: water evaporation at 100 to 150 °C; main pyrolysis process 

at 160 to 500 °C; pyrolysis of residue from 500 °C. The major pyrolysis process 

began with decomposition of hemicelluloses in sawdust at around 160 °C followed by 

primary decomposition of lignin. This observation was similar to the results from 

other research 
[166]

.The significant mass loss occurred between 260 and 400 °C was 
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attributed to the pyrolysis of cellulose. When pyrolysis temperature was higher than 

500 °C, slightly decreasing curves were observed due to the pyrolysis of remaining 

lignin portion, when changes of mass could be very small. As shown in Figure 29, 

compared with sample 2, the main decomposition reaction occurred at lower 

temperature for sample 1. This was because the smaller particle size of sample 1, with 

more effective mass and heat transfer, thus lead to more efficient decomposition 

reaction. Furthermore, the final residues increased with an increase of particle size, 

which indicating that larger particles could reduce the degree of pyrolysis and produce 

more chars. The main difference between sample 2 and 3 was the curves in water 

evaporation temperature zone. Sample 3 showed a relative strong decrease in this 

zone as this sample didn’t undergo a pre-drying process.      

Table 13. Characteristics of sample 3 to sample 7. 

Sample 

No. 

Mass of sawdust 

(mg) 

Typle of molten 

salt 

Molar ratio of 

molten salt (%) 

Mass of molten 

salt (mg) 

     Sample 3 2.5 - - - 

Sample 4 3.7 ZnCl2-KCl-LiCl 40-20-40
 a
 23.8 

Sample 5 2.5 ZnCl2-NaCl-KCl 52.9-13.4-33.7 11.6 

Sample 6 2.5 KCl-LiCl-NaCl 36-55-9 20.6 

Sample 7 0 ZnCl2-KCl-LiCl 40-20-40 
a
 25.5 

a. Molar ratio based on the molecular weight of the metal cation. 

 

Then second set of experiments was focused on the effects of molten salts on TGA 

results. Three types of molten salts with sawdust were under investigation. The 

description of each sample is listed in Table 13. Sample 3 was the same as the one 

used in Figure 29. The sawdust used in samples from 4 to 6 all have particle size of 

106-212 µm and no drying treatment was applied to sawdust. All molten salts were 

prepared as follows: first, weighed each salt component individually after calculating 

the mass of salt in the mixed salts by molar ratio; second, added each weighted salt to 

a crucible and mixed them thoroughly to perform a homogenous mixed salts sample, 
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then put the sample into oven and hold at a temperature at least 50 °C higher than the 

melting point of this mixed salts for 24 hrs; at last, took the salts out after cooling 

down to room temperature then sealed the sample for future use. For the TGA 

experiment, sawdust was first added into the crucible followed by addition of molten 

salt. No pre-mix procedure applied to sawdust and molten. Sample 7 was only the 

molten salt without sawdust, aced as a control group. Figure 30 shows the difference 

of TG curves of sawdust with and without ZnCl2-KCl-LiCl molten salts. The presence 

of molten salt shifts the main decomposition reaction of sawdust to lower temperature 

region (at around 220 °C), while the main decomposition temperature of sawdust 

without molten salts was at 280 °C. Sample 4 was continuous decreasing, whereas 

sample 3 showed a sharp decrease from 150 to 450 °C.    

 

Figure 30: TG curves of sawdust with and without molten salts. 

 

Figure 31 shows TG curves of sawdust with different molten salts. The main 

decomposition temperature of sample 4 was the lowest (at around 220 °C) compared 

to other samples. In contrast, sample 5 and 6 presented almost the same main 

decomposition temperature at 280 °C. It could be concluded that ZnCl2-KCl-LiCl 

molten salt had a positive effect on decreasing the temperature of initial 
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decomposition reaction of sawdust. The second major mass loss of sample 4 and 5 

after 550 °C was mainly attributed to the decomposition of ZnCl2. This was proven by 

the experiment of decomposition of sample 7, which has no biomass. Furthermore, 

sample 6 didn’t show the same trend after 550 °C, in which the molten salt used was 

without ZnCl2. In terms of samples with molten salt, the TG curves showed huge 

distinctions in the temperature range from 150 to 400 °C. The reason why 

ZnCl2-KCl-LiCl behaved differently is still unclear. 

 

Figure 31: TG curves of sawdust with different molten salts. 

       

The quantitative effects of molten salts on decomposition of sawdust in TGA could 

not be obtained directly by the TG curves. Rigorous assumptions and data analysis 

should be made. First, temperatures from 150 to 500 °C was selected as the 

temperature region that decomposition reaction of sawdust occurred completely; 

second, no decomposition reaction of molten salts occurred at this region. All data 

regarding TGA could be found in Appendix C. The calculating procedures were 

presented below: 
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(1) Sample 3 

The conversions were 92.79% and 14.78 % at 150 °C and 500 °C, respectively. So the 

overall conversion of sawdust was 78.01% (92.79%- 14.78 %=78.01%).  

(2) Sample 4 

The total mass of sawdust and molten salts was 27.5 mg (see Table 1). The 

conversions were 96.61% and 85.47 % at 150 °C and 500 °C, respectively. So the 

overall conversion was 11.14% (96.61%- 85.47 %=11.14%). The mass loss of 

sawdust was 3.06 mg (11.14% × 27.5 mg = 3.06 mg). So the overall conversion of 

sawdust was 82.80% (3.06 mg/ 3.7 mg × 100%=82.80%). 

So the conversion of sawdust in ZnCl2-KCl-LiCl was somewhat higher than the one 

without salts.  

 

Figure 32: TG curves of sawdust with molten salt and catalysts. 

 

To investigate the influence of catalysts on pyrolysis of sawdust, ZSM-5 and 

Ni(OH)2 were used as catalysts in TGA. In Figure 32, sample 4 was the same one in 

Figure 31; sample 8 contained 2.1 mg sawdust, 2.6 mg ZSM-5, and 22.0 mg 
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ZnCl2-KCl-LiCl molten salt; sample 9 contained 4.3 mg sawdust,11.3 mg Ni(OH)2 , 

and 34.8 mg ZnCl2-KCl-LiCl molten salt. As shown in Figure 32, sample 4 and 8 had 

same initial decomposition temperature, while Ni(OH)2 had a remarkable shift to the 

high temperature region. 

 

4.3.2 Kinetic analysis 

Kinetic study on pyrolysis of biomass is mainly to obtain the kinetic parameters of 

the pyrolysis process such as reaction order, pre-exponential factor, and activation 

energy. Several models have been proposed to fit the TGA data; in this project, only 

Coats- Redfern model 
[162]

 (see Eq. 4) was used in determining the activation energy 

of pyrolysis of sawdust and the reaction order was assumed to be 1 in all cases.  
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where C is conversion with respect to initial mass; T is reaction temperature; A is 

pre-exponential factor; E is activation energy; β is heating rate;   

Eq. 4 is derived from isothermal rate of conversion model (see Eq. 5) 
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where F(C) is the integrated function of conversion (F(C)= ln(1-C), when the reation 

order is fixed to 1); x=(-E/RT);  

The slope of curve    
        

  
  versus 1/T produces activation energy. The 

intercept     
  

β 
   

   

 
   gives the value of the pre-exponential factor. Calculated 

activation energy values of selected samples were listed in Table 13. The data used to 

calculate activation energy for each sample were confined to a temperature range, in 

which main decomposition of sawdust occurred. In other words, these data were 

collected around the most dominant peak in Differential Thermogravimetry (DTG) 

curve.  

  As shown in Table 14, samples (1, 2, and 3) without molten salt provided higher 

activation energy, from 46.7 to 56.5 KJ/mol. Compared with sample 1, sample 2 

offered high activation energy, indicating a smaller energy barrier for smaller particle 
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sample. Pre-drying treatment to the sample increased activation energy, as sample 3 

showed lower activation energy than sample 2. Introduction of molten salts could 

lower the activation energy no matter what types of molten salts used. The degree of 

improvement could be ranked in sequence: ZnCl2-KCl-LiCl > ZnCl2-NaCl-KCl> 

KCl-LiCl-NaCl. Continuous addition of catalyst could further decrease the activation 

energy (sample 8 and 9) and the activation energy required for sample 8 was only 13% 

of that required for sample 2.    

Table 14. The activation energy of pyrolysis of sawdust in selected samples 

Sample No. E (KJ/mol) Temperature (K) r 

sample 1 48.0  488-674 0.980  

sample 2  56.5 492-672 0.988 

sample 3  46.7 504-672 0.972 

sample 4 10.1 434-564 0.952 

sample 5  31.4 523-653 0.982 

sample 6  36.2 504-655 0.974 

sample 8  7.5 434-532 0.958 

sample 9  9.7 488-628 0.918 

r: fitting degree. 

 

However, the calculations in this part are quite rough approximations. Several 

factors could affect the performance of decomposition of sawdust in TGA, such as, he 

mass of each component in sample, the sequence of sample preparation, etc. More 

experiments need to be conducted to obtain a solid knowledge regarding TGA with 

molten salts. Also, Coats- Redfern model used was not very suitable to pytolyis of 

sawdust, more accurate model should be adopted, for example, independent parallel 

model.  

 

4.4 Trials for Newspaper and Recycled Print Paper 

4.4.1 Experiment on Newspaper  
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Preliminary experiment on newspaper was carried out in a smaller reactor, which 

was a 3/4 inch stainless steel tube with 14 inches in length. 2 g newspaper was used in 

each trial. ZnCl2 (40% mol) - KCl (20% mol) – LiCl (20% mol) was selected as 

molten salt. In all runs, the carrier gas flow rate was fixed to 100 CC/min and 

pyrolysis temperature was set to 350 °C. The first operation parameter investigated 

was mass ratio of feed to molten salt: when the mass ratio was set 1:5, the bio-oil 

sample was black in color and high-viscosity, which could not be analyzed GC/MS; 

mass ratio of 1:10 gave a satisfactory results with bio-oil yield of 30 %; further 

increased mass ratio led to lower yield, because of the limited space in the small 

reactor. Moreover, when switching the reactor orientation vertically, the liquid yield 

could increase to 34% in contrast to the reactor in horizontal orientation in the same 

condition. When adding catalyst into the vertical system, introduction of 1g ZSM-5 

gave a liquid yield of 32%, while 1 g Ni(OH)2 improved the liquid yield to 38%.  

Table 15. Composition of bio-oil derived from newspaper. 

Content  Area percentage (%)  

Water  21.436 

Formic acid 4.090  

Acetic acid 21.003 

2-Propanone, 1-hydroxy- 11.753 

Propanoic acid 2.758 

1-Hydroxy, 2-butanone  1.832 

Furfural  10.112 

2-Propanone, 1-(acetyloxy)- 1.730  

2(5H)-Furanone 2.030  

2-Cyclopenten-1-one,2-hydroxy- 1.458 

2-Furancarboxaldehyde, 5-methyl- 2.391 

2-Cyclopenten-1-one,2-hydroxy-3-methyl- 2.596 

Phenol,2-methoxy- 4.263 

Phenol,2-methoxy-4-methyl 3.355 
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In order to get more product in quantity, a bigger reactor was then used (the same 

one for sawdust experiment). 5 g newspaper was used in this beginning and all other 

conditions were kept the same as small reactor experiment. In this case, the reactor set 

vertically only produced a liquid yield of 16%, while reactor set in horizontal 

orientation provided 32% liquid yield. This finding confirmed that this reactor was 

not suitable to be set vertically in this project. Then the optimal mass of newspaper 

was investigated: 4g newspaper used gave a liquid yield of 25% and 6 g newspaper 

used only provided 10% liquid yield.    

To explore the composition of bio-oil from newspaper, 5 g newspaper was used in 

the bigger reactor without molten salts and the pyrolysis temperature was set to 

400 °C. Table 15 lists the main products in bio-oil derived from newspaper. It had a 

similar product distribution as sawdust. Primary small reactor tests showed that 

introduction of molten salts could narrow down the product distribution, and enhance 

particular products formation like furfural.  

Table 24. Composition of bio-oil derived from print paper. 

Content  Area percentage (%)  

Water  21.625 

Formic acid 1.922  

Acetic acid 9.180  

2-Propanone, 1-hydroxy- 11.242 

Propanoic acid 3.974 

1-Hydroxy, 2-butanone  2.640  

Furfural  12.312 

2-Propanone, 1-(acetyloxy)- 1.547  

2(5H)-Furanone 2.013  

2-Cyclopenten-1-one,2-hydroxy- 2.095 

2-Furancarboxaldehyde, 5-methyl- 4.415 

2-Cyclopenten-1-one,2-hydroxy-3-methyl- 2.545 

1,4:3,6-Dianhydro-α-d-glucopyranose 1.621 
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4.4.2 Experiments on Recycled Print Paper 

Similar experiments were conducted on print paper. Molten salts could increase the 

liquid yield from 25% to 35% at pyrolysis temperature of 400 °C. KCl (24% mol)- 

LiCl (43% mol)- NaCl (33% mol) was selected as the molten salts. 

To explore the composition of bio-oil from print paper, 5 g paper was used in the 

big reactor without molten salts and the pyrolysis temperature was set to 400 °C. 

Table 16 listed the main products in bio-oil derived from print paper. It had a similar 

product distribution as sawdust and newspaper. Compared with newspaper, print 

paper produced two times higher concentration of formic acid and acetic acid. 

Newspaper oil had a relative high concentration of phenols, while print paper oil had 

a relative high concentration of anhydrosugars. Figure 33 shows the bio-oils obtained 

from pyrolysis of newspaper and print paper. 

 

Figure 33: Bio-oil samples derived from pyrolysis of newspaper (left) and print paper (right) 

without molten salt. 
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Chapter 5. Conclusions and Future Work 

5.1 Conclusions 

The single-pot, molten-salt catalytic pyrolysis (MSCP) process described in this 

report is much more promising, as it produces relatively high bio-oil yield in an 

easily-built and moderate conditions system (atmospheric pressure and 400 °C). 

Through analysis of all the experimental results above, several conclusions could be 

made. First, pyrolysis temperature is a curial factor in determining the yield of bio-oil. 

When in the absence of molten salt, bio-oil yield could be up to 39.6% at 450 °C, 

while only 12.9% was obtained at 300 °C. Second, an optimal carrier gas flow rate 

existed, i.e., 165 CC/min in this work. Third, it can be concluded that sawdust with 

particle size in 106-212 µm could achieve higher bio-oil yield. The introduction of 

molten salts could improve the liquid yield significantly. The highest liquid yield was 

66.5% in presence with ZnCl2-KCl-LiCl molten salt, compared with 33.2% at the 

same conditions without molten salts. Different combinations of molten salts and use 

of catalyst had certain differences in the quality and quantity of the bio-oil produced. 

Ternary salts had a better performance than binary salts, usually around 10% higher 

yield. The usage of catalyst could improve the yield by 10~40% depending upon the 

molten salts pyrolysis system.  

The composition of bio-oil derived from pyrolysis of sawdust was studied. 

Introduction of molten salt to the pyrolysis system can narrow down the product 

distribution significantly. When ZnCl2-KCl-LiCl was used, the only main organic 

products were acetic acid and furfural. The highest yield of acetic acid and furfural in 

bio-oil sample was 8.44 wt % and 3.43 wt %, respectively. 

The kinetics study of pyrolysis of sawdust with molten salt was also investigated by 

using TGA. TGA results showed that ZnCl2-KCl-LiCl molten salt had a positive 

effect on decreasing the temperature of initial decomposition reaction of sawdust, 

while ZnCl2-NaCl-KCl and KCl-LiCl-NaCl presented similar trends as the one 

without molten salt. Moreover, the activation energy of pyrolysis of sawdust was 

calculated based on Coats- Redfern model. The activation energy was 10.1 KJ/mol for 

pyrolysis of sawdust in ZnCl2-KCl-LiCl, while it was 46.7 KJ/mol for sawdust 
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without molten salt. 

Finally, preliminary trials on pyrolysis of newspaper and print paper were carried 

out. The liquid yield for both cases was around 32% in ZnCl2-KCl-LiCl molten salt at 

350 °C and 35 % without molten salt at 400 °C. In terms of composition of bio-oil, 

newspaper and print paper had a similar product distribution as sawdust, whereas, print 

paper oil had a relative high concentration of anhydrosugars.  

 

5.2 Recommendations for Future Work  

First, in this work, one major factor that can affect bio-oil yield was untested, i.e., 

heating rate. High heating rate could provide high liquid yields. A method to realize 

this goal is to use a fluidized bath reactor which can enhance the heating rate 

tremendously. Another method is to use a heater that can offer different level of 

heating rate. 

Second, the gas products were not captured and analyzed. Knowing gas 

composition would be beneficial to have a better understanding of the mechanism of 

pyrolysis of biomass. Also, the pyrolysis-derived gas contains fuel gas such as, H2, 

CO, and CH4, which could be utilized in downstream process. Similarly, the char 

product could be analyzed in the future, as the solid char could be utilized in many 

ways.   

Third, a more effective way to analyze composition of bio-oil should be adopted in 

future work. Organic substances can be analyzed by dissolving bio-oil sample in 

methanol or acetone and water content can be analyzed by Karl Fischer titration. 

Fourth, a more accurate value of activation energy of pyrolysis of sawdust could be 

calculated by three-independent reaction model or iso-conversion model. Also, the 

in-depth molten salts-aid pyrolysis mechanism should be developed.  

Finally, a systematic investigation on pyrolysis of newspapers and/or paper should 

be conducted in the future.  
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Appendix A 

 

Table 17. Area percentage report for sample 1. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.264   176  190  203 BV   4294918 222520301 100.00%  27.178% 

  2   1.369   203  207  213 VV   1060110  20657424   9.28%   2.523% 

  3   1.457   213  221  224 VV 2  977908  23181493  10.42%   2.831% 

  4   1.493   224  227  235 VV    396601   9646217   4.33%   1.178% 

  5   1.606   235  245  247 VV 2 1073133  25757767  11.58%   3.146% 

  

  6   1.783   247  273  287 VV   2607214 195038294  87.65%  23.822% 

  7   2.028   297  313  328 VV   3586670  87351581  39.26%  10.669% 

  8   2.189   328  339  341 VV 2  146703   3889080   1.75%   0.475% 

  9   2.298   341  356  383 VB 3  310721  16166786   7.27%   1.975% 

 10   3.116   465  488  493 BV 2  328727  12462612   5.60%   1.522% 

  

 11   3.155   493  495  510 VB    162728   3161499   1.42%   0.386% 

 12   3.492   543  549  560 VV    135110   3979503   1.79%   0.486% 

 13   4.501   692  712  746 BB   2584361  90299450  40.58%  11.029% 

 14   5.235   801  830  839 BV    184701   6549902   2.94%   0.800% 

 15   5.749   892  913  938 BB 2  166101   9177406   4.12%   1.121% 

  

 16   7.786  1232 1241 1263 VV    282791  11446722   5.14%   1.398% 

 17   8.359  1314 1334 1358 BB 3  153725   7883678   3.54%   0.963% 

 18  10.992  1747 1758 1791 BB    289433  14204710   6.38%   1.735% 

 19  14.633  2330 2345 2355 BV    150739   4732077   2.13%   0.578% 

 20  17.450  2789 2799 2811 BV    628089  18310491   8.23%   2.236% 

  

 21  17.578  2811 2820 2839 VB    268720   9324800   4.19%   1.139% 

 22  21.298  3392 3420 3441 BB 2  692939  19653640   8.83%   2.400% 

 23  24.037  3847 3862 3875 BB    130753   3347033   1.50%   0.409% 

  

  

                        Sum of corrected areas:   818742466 
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Figure 34: GC-MS graph for sample 1. 
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Table 18. Area percentage report for sample 2. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.265   175  190  203 BV   4319852 219388628  94.95%  23.909% 

  2   1.370   203  207  213 VV   1707209  32196101  13.93%   3.509% 

  3   1.437   213  218  225 VV 2 1971327  36814998  15.93%   4.012% 

  4   1.593   235  243  247 VV 2 1058990  26199262  11.34%   2.855% 

  5   1.802   247  276  287 VV   2996361 231044881 100.00%  25.179% 

  

  6   2.031   298  313  332 VV   4108185 102988788  44.58%  11.224% 

  7   2.190   332  339  344 VV    245576   6218769   2.69%   0.678% 

  8   2.344   344  364  381 VV 3  309343  20413151   8.84%   2.225% 

  9   3.119   465  489  513 BV 3  420042  16095841   6.97%   1.754% 

 10   3.360   513  528  537 PB     98792   1792459   0.78%   0.195% 

  

 11   4.526   685  716  752 BB   3305691 127462019  55.17%  13.891% 

 12   5.756   889  914  943 BB    178505   8671269   3.75%   0.945% 

 13   7.586  1196 1209 1224 BV    116502   5376051   2.33%   0.586% 

 14   7.788  1234 1242 1268 VV    260340  10674456   4.62%   1.163% 

 15   8.401  1315 1340 1368 BB 3  223256  13398649   5.80%   1.460% 

  

 16  11.007  1750 1761 1796 BV    563093  27387652  11.85%   2.985% 

 17  14.646  2331 2347 2357 BV 2  146740   4676948   2.02%   0.510% 

 18  17.457  2789 2801 2813 BV    555159  15491286   6.70%   1.688% 

 19  21.303  3402 3421 3447 BB    400305  11307093   4.89%   1.232% 

  

  

                        Sum of corrected areas:   917598299 
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Figure 35: GC-MS graph for sample 2. 
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Table 19. Area percentage report for sample 3. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.262   177  189  203 BV   4350301 193180470  71.91%  12.870% 

  2   1.368   203  206  213 VV   1788076  37119486  13.82%   2.473% 

  3   1.436   213  217  224 VV 2 1078503  26527285   9.87%   1.767% 

  4   1.491   224  226  235 VV    391101  10071825   3.75%   0.671% 

  5   1.592   235  243  247 VV   2068746  41590079  15.48%   2.771% 

  

  6   1.815   247  279  286 VV   3245334 268657378 100.00%  17.898% 

  7   1.886   286  290  296 VV    250091   5413080   2.01%   0.361% 

  8   2.024   296  312  326 VV   4998958 140752063  52.39%   9.377% 

  9   2.188   332  339  344 VV    280218   6856716   2.55%   0.457% 

 10   2.291   344  355  360 VV 3  431399  16031908   5.97%   1.068% 

  

 11   2.375   360  369  389 VB 6  402771  18274208   6.80%   1.217% 

 12   3.107   465  487  490 BV    931644  25146029   9.36%   1.675% 

 13   3.142   490  492  512 VV    639376  12090695   4.50%   0.806% 

 14   3.337   519  524  537 PV    450742   9480117   3.53%   0.632% 

 15   3.486   537  548  562 VV 3  186607   6224159   2.32%   0.415% 

  

 16   4.495   677  711  734 BV 2 2141282  90662577  33.75%   6.040% 

 17   5.247   816  832  837 VV 3  452217  17885685   6.66%   1.192% 

 18   5.288   837  839  862 VB    290435   7729909   2.88%   0.515% 

 19   5.748   875  913  941 BV    469418  21653426   8.06%   1.443% 

 20   5.960   941  947  965 PB    110629   3883984   1.45%   0.259% 

  

 21   7.282  1141 1160 1187 BB 5  138769   6797045   2.53%   0.453% 

 22   7.579  1196 1208 1217 BV 2  107286   5201849   1.94%   0.347% 

 23   7.685  1217 1225 1232 VV 3  188496   8127424   3.03%   0.541% 

 24   7.859  1232 1253 1267 VV    499978  31588518  11.76%   2.104% 

 25   8.481  1312 1353 1378 BV    389853  35316863  13.15%   2.353% 

  

 26  10.999  1735 1759 1793 BV 4  413573  23337296   8.69%   1.555% 

 27  11.271  1793 1803 1826 PV 2  170249   7783906   2.90%   0.519% 

 28  11.494  1826 1839 1862 PB 2  142077   6388034   2.38%   0.426% 

 29  12.026  1892 1925 1952 BB 5  160529  11701347   4.36%   0.780% 

 30  14.761  2321 2366 2390 BB 2  531407  38900586  14.48%   2.592% 

  

 31  15.412  2464 2471 2483 BV    105548   3199308   1.19%   0.213% 

 32  17.005  2662 2728 2743 BV 7  240066  32486693  12.09%   2.164% 

 33  17.469  2787 2803 2816 VV   1230929  39767805  14.80%   2.649% 

 34  17.736  2816 2846 2878 VV    788560  55590550  20.69%   3.704% 
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 35  18.428  2945 2957 2986 BV 2  200460  10203436   3.80%   0.680% 

  

 36  18.711  2986 3003 3022 VB    167627   5935798   2.21%   0.395% 

 37  21.056  3371 3381 3404 PV 6  118071   5103799   1.90%   0.340% 

 38  21.313  3404 3422 3452 PB 2 1495926  49728203  18.51%   3.313% 

 39  21.679  3452 3481 3499 BV    725644  30467230  11.34%   2.030% 

 40  21.869  3499 3512 3539 VB    355447  15787226   5.88%   1.052% 

  

 41  22.392  3581 3596 3611 BV 3  113469   4447450   1.66%   0.296% 

 42  22.580  3611 3627 3654 VV    219940  10155183   3.78%   0.677% 

 43  24.040  3846 3862 3870 PV    526957  13280080   4.94%   0.885% 

 44  24.443  3915 3927 3952 BV    197860   7242927   2.70%   0.483% 

 45  26.305  4203 4227 4238 VV    156074   4604497   1.71%   0.307% 

  

 46  27.413  4388 4406 4423 PV    211508   6155179   2.29%   0.410% 

 47  28.755  4593 4622 4656 BV 3  282168  10342107   3.85%   0.689% 

 48  29.690  4749 4773 4785 BV    244531   6183335   2.30%   0.412% 

 49  30.202  4785 4856 4888 VV 7  147638  28453496  10.59%   1.896% 

 50  30.819  4915 4955 4971 BB    474737  11178230   4.16%   0.745% 

  

 51  31.050  4974 4992 5017 BB 2  149265   7914040   2.95%   0.527% 

 52  33.560  5378 5397 5433 BB    201592   8416820   3.13%   0.561% 

  

  

                        Sum of corrected areas:  1501017337 
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Figure 36: GC-MS graph for sample 3. 
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Table 20. Area percentage report for sample 4. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.243   176  186  187 BV 2 4202577  62101104  36.08%   8.024% 

  2   1.262   187  189  195 VV 2 4271001 121744391  70.74%  15.731% 

  3   1.308   195  197  203 VV   4289411  72306983  42.01%   9.343% 

  4   1.367   203  206  210 VV 2 1163971  20000192  11.62%   2.584% 

  5   1.439   210  218  230 VV 2 1835131  58180175  33.80%   7.518% 

  

  6   1.536   230  234  238 VV    727630  13878654   8.06%   1.793% 

  7   1.752   238  268  272 VV   2301889 172107163 100.00%  22.239% 

  8   1.800   272  276  298 VV    514027  22915356  13.31%   2.961% 

  9   2.009   298  310  311 VV    396783   9100534   5.29%   1.176% 

 10   2.031   311  313  320 VV    502848   6750570   3.92%   0.872% 

  

 11   2.242   327  347  359 VV 3  170065  10200643   5.93%   1.318% 

 12   2.395   359  372  393 VB 4  175538   8541950   4.96%   1.104% 

 13   4.520   684  715  745 BB   3751199 142278065  82.67%  18.385% 

 14   6.281   991  999 1029 VB    146574   6936723   4.03%   0.896% 

 15   7.779  1231 1240 1268 VB    237891  10716489   6.23%   1.385% 

  

 16  10.984  1744 1757 1791 BB    564517  26520592  15.41%   3.427% 

 17  14.617  2329 2343 2355 BV    131384   4366085   2.54%   0.564% 

 18  17.443  2789 2798 2813 BV    188761   5252900   3.05%   0.679% 

  

  

                        Sum of corrected areas:   773898569 
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Figure 37: GC-MS graph for sample 4. 
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                 Table 21. Area percentage report for sample 5. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.259   177  189  195 BV   4048986 170564080 100.00%  37.546% 

  2   1.311   195  197  203 VV 2 4097340  71567883  41.96%  15.754% 

  3   1.366   203  206  213 VV    905933  14939974   8.76%   3.289% 

  4   1.462   213  222  234 VV 2  579546  14311691   8.39%   3.150% 

  5   1.734   234  266  298 VV   1831684 120521983  70.66%  26.530% 

  

  6   4.480   700  708  742 BB   2158488  62379401  36.57%  13.731% 

  

  

                        Sum of corrected areas:   454285011 
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Figure 38: GC-MS graph for sample 5. 
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                  Table 22. Area percentage report for sample 6. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.261   181  189  195 VV 2 3994101 165247107 100.00%  30.745% 

  2   1.311   195  197  203 VV   4245645  77267610  46.76%  14.376% 

  3   1.365   203  206  212 VV   1655675  24472457  14.81%   4.553% 

  4   1.433   212  217  219 VV    468010   7299353   4.42%   1.358% 

  5   1.455   219  221  234 VV    547048  10353588   6.27%   1.926% 

  

  6   1.753   234  268  298 VB   2268696 161207447  97.56%  29.994% 

  7   2.226   322  345  358 BV    147013   5219193   3.16%   0.971% 

  8   4.491   697  710  747 BB   2831283  86407790  52.29%  16.077% 

  

  

                        Sum of corrected areas:   537474544 
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Figure 39: GC-MS graph for sample 6. 
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                    Table 23. Area percentage report for sample 7. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.262   181  189  203 VV 2 3989051 230901482 100.00%  43.208% 

  2   1.365   203  206  213 VV   1366127  19325783   8.37%   3.616% 

  3   1.432   213  217  219 VV    482610   6212080   2.69%   1.162% 

  4   1.462   219  222  231 VV    331913   5316599   2.30%   0.995% 

  5   1.746   231  267  287 VV   2101876 145630248  63.07%  27.251% 

  

  6   2.221   322  344  358 BV 4  132676   4629001   2.00%   0.866% 

  7   4.506   697  712  744 BB   3519715 122382839  53.00%  22.901% 

  

  

                        Sum of corrected areas:   534398032 
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Figure 40: GC-MS graph for sample 7. 
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Table 24. Area percentage report for sample 8. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.262   181  189  203 VV 2 4032190 212234778  96.76%  24.980% 

  2   1.366   203  206  211 VV   1335187  22043882  10.05%   2.595% 

  3   1.433   211  217  219 VV   1147252  19094645   8.71%   2.247% 

  4   1.451   219  220  230 VV    946726  14487439   6.60%   1.705% 

  5   1.536   230  233  236 VV    291830   4662444   2.13%   0.549% 

  

  6   1.588   236  242  243 VV   1073743  16392394   7.47%   1.929% 

  7   1.783   243  273  286 VV 2 2767699 219349526 100.00%  25.818% 

  8   2.018   297  311  319 PV   3072071  64872108  29.57%   7.635% 

  9   2.087   319  322  331 VV    155508   2372746   1.08%   0.279% 

 10   2.181   331  338  342 PV    193061   3066019   1.40%   0.361% 

  

 11   2.315   342  359  366 VV 2  205487   9472477   4.32%   1.115% 

 12   3.110   468  487  513 BB 2  217832   8661321   3.95%   1.019% 

 13   4.510   692  713  752 BB   3551141 136339296  62.16%  16.047% 

 14   7.260  1150 1157 1183 BB 2  120276   5008485   2.28%   0.590% 

 15   7.544  1193 1202 1219 BV    220031   9833830   4.48%   1.157% 

  

 16   7.752  1229 1236 1267 VB    208312   8701619   3.97%   1.024% 

 17   8.327  1311 1329 1352 BB 2  110503   5483146   2.50%   0.645% 

 18  10.976  1742 1756 1793 BV    717872  37064848  16.90%   4.363% 

 19  14.624  2330 2344 2353 BV    178053   5966291   2.72%   0.702% 

 20  17.272  2763 2771 2786 VV    123910   3670305   1.67%   0.432% 

  

 21  17.439  2786 2798 2818 PV   1070130  30806910  14.04%   3.626% 

 22  21.282  3405 3417 3438 BV    382895  10028613   4.57%   1.180% 

  

  

                        Sum of corrected areas:   849613123 
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Figure 41: GC-MS graph for sample 8. 

  

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

T im e-->

A bundance

T IC : G 17.D \data.m s
 1.262

 1.366
 1.433
 1.451

 1.536

 1.588

 1.783

 2.018

 2.087 2.181 2.315 3.110

 4.510

 7.260
 7.544 7.752
 8.327

10.976

14.62417.272

17.439

21.282



 114 

Table 25. Area percentage report for sample 9. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.258   176  189  203 BV 2 3697560 218482073 100.00%  48.928% 

  2   1.362   203  206  212 VV    933716  14015174   6.41%   3.139% 

  3   1.459   218  221  230 VV    252514   4575372   2.09%   1.025% 

  4   1.729   230  265  294 VB   1868184 115861910  53.03%  25.947% 

  5   4.484   697  709  742 BB   2979022  93604826  42.84%  20.962% 

  

  

  

                        Sum of corrected areas:   446539354 
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Figure 42: GC-MS graph for sample 9. 
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Table 26. Area percentage report for sample 10. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.260   173  189  203 BV   3682999 216455927 100.00%  51.423% 

  2   1.362   203  205  212 VV   1166289  16693155   7.71%   3.966% 

  3   1.460   218  221  231 VV    257535   4605665   2.13%   1.094% 

  4   1.729   231  265  293 VB   1807693 112017121  51.75%  26.612% 

  5   4.473   696  707  741 BB   2526975  71162808  32.88%  16.906% 

  

  

  

                        Sum of corrected areas:   420934676 
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Figure 43: GC-MS graph for sample 10. 
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Table 27. Area percentage report for sample 11. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.259   181  189  195 PV 2 3815360 165650859 100.00%  37.616% 

  2   1.309   195  197  203 VV   3907686  68886799  41.59%  15.643% 

  3   1.362   203  205  213 VV   1315429  19218860  11.60%   4.364% 

  4   1.430   213  216  233 VB 2  251667   5505562   3.32%   1.250% 

  5   1.729   233  265  296 BB   1941691 112716928  68.04%  25.596% 

  

  6   2.206   323  342  356 BB 2  109892   3697967   2.23%   0.840% 

  7   4.471   697  707  743 BB   2272902  64694373  39.05%  14.691% 

  

  

                        Sum of corrected areas:   440371349 
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Figure 44: GC-MS graph for sample 11. 
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Table 28. Area percentage report for sample 12. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.259   181  189  203 PV 3 3727504 222619778 100.00%  58.931% 

  2   1.362   203  205  213 VV   1062924  15315057   6.88%   4.054% 

  3   1.460   218  221  230 VB    230450   3461800   1.56%   0.916% 

  4   1.735   232  266  296 BB   1901424 118639573  53.29%  31.406% 

  5   2.220   321  344  358 BB 3  138789   4610347   2.07%   1.220% 

  

  6   4.460   700  705  732 BB    468328  13114817   5.89%   3.472% 

  

  

                        Sum of corrected areas:   377761371 
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Figure 45: GC-MS graph for sample 12. 
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Table 29. Area percentage report for sample 13. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.259   181  189  203 PV 2 3880004 227281057 100.00%  42.715% 

  2   1.363   203  206  213 VV   1033812  15996497   7.04%   3.006% 

  3   1.432   213  217  219 VV    317318   4802858   2.11%   0.903% 

  4   1.461   219  221  231 VV    367604   6492370   2.86%   1.220% 

  5   1.753   231  269  298 VV   2199860 159517569  70.19%  29.980% 

  

  6   2.025   298  312  326 VV    141652   3637292   1.60%   0.684% 

  7   2.236   326  346  356 VV 3  158287   6550134   2.88%   1.231% 

  8   4.486   693  709  745 BB   2896540  91928090  40.45%  17.277% 

  9  12.464  1985 1996 2017 BB 2  107287   4351429   1.91%   0.818% 

 10  17.427  2787 2796 2814 BB    313492   8827505   3.88%   1.659% 

  

 11  21.281  3408 3417 3430 BB    114222   2702049   1.19%   0.508% 

  

  

                        Sum of corrected areas:   532086851 
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Figure 46: GC-MS graph for sample 13. 

 

 

 

  

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

500000

1000000

1500000

2000000

2500000

3000000

3500000

T im e-->

A bundance

T IC : G 18.D \data.m s
 1.259

 1.363

 1.432 1.461

 1.753

 2.025 2.236

 4.486

12.464
17.427

21.281



 124 

Table 30. Area percentage report for newspaper. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.261   176  189  203 BV   4224075 206062308 100.00%  19.727% 

  2   1.366   203  206  210 VV   1099826  19129250   9.28%   1.831% 

  3   1.444   210  219  224 VV 2 1326759  39309076  19.08%   3.763% 

  4   1.490   224  226  234 VV    342706   8935199   4.34%   0.855% 

  5   1.596   234  243  247 VV 2 1400216  31788917  15.43%   3.043% 

  

  6   1.791   247  275  286 VV   2832945 201849959  97.96%  19.324% 

  7   1.884   286  290  295 VV 2  165812   3528942   1.71%   0.338% 

  8   2.022   295  312  326 VV   4044208 112874687  54.78%  10.806% 

  9   2.186   326  338  343 VV    187261   5730954   2.78%   0.549% 

 10   2.297   343  356  360 VV 3  418658  16335368   7.93%   1.564% 

  

 11   2.331   360  362  379 VB 4  349352  10078771   4.89%   0.965% 

 12   3.107   466  487  490 BV    567689  17527800   8.51%   1.678% 

 13   3.143   490  493  512 VV    465033  10687931   5.19%   1.023% 

 14   3.340   512  524  534 VV    274363   6188003   3.00%   0.592% 

 15   3.482   534  547  559 VV 3  302026  12391749   6.01%   1.186% 

  

 16   4.495   692  711  742 BV   2307134  97202493  47.17%   9.306% 

 17   5.233   817  830  835 BV 2  123524   4565174   2.22%   0.437% 

 18   5.287   835  838  862 VB    132547   4288334   2.08%   0.411% 

 19   5.739   875  911  939 BV 2  282674  16829185   8.17%   1.611% 

 20   5.945   939  945  964 PB    105046   3503436   1.70%   0.335% 

  

 21   7.269  1142 1158 1186 BV 2  158800   7061217   3.43%   0.676% 

 22   7.561  1186 1205 1216 PV    156211   7424259   3.60%   0.711% 

 23   7.678  1216 1224 1232 VV 2  180433   8544476   4.15%   0.818% 

 24   7.819  1232 1247 1264 VV    391734  19521411   9.47%   1.869% 

 25   8.388  1311 1338 1366 BB 2  217158  14320436   6.95%   1.371% 

  

 26  10.984  1737 1757 1792 BB 4  420561  23630427  11.47%   2.262% 

 27  12.016  1891 1923 1948 BB 4  122711   8775397   4.26%   0.840% 

 28  14.710  2332 2358 2378 BV    443168  24953792  12.11%   2.389% 

 29  17.458  2785 2801 2813 PV   1324909  40915030  19.86%   3.917% 

 30  18.643  2982 2992 3007 BB    104667   2920477   1.42%   0.280% 

  

 31  21.302  3394 3421 3442 PB   1118605  32253533  15.65%   3.088% 

 32  21.629  3447 3473 3492 BV    153205   5980533   2.90%   0.573% 

 33  21.792  3492 3500 3512 VV    140168   4039274   1.96%   0.387% 

 34  24.032  3846 3861 3877 BB    301065   8210420   3.98%   0.786% 
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 35  29.673  4754 4770 4796 BB 2  105004   3979383   1.93%   0.381% 

  

 36  30.799  4940 4952 4966 BV    132118   3210921   1.56%   0.307% 

  

  

                        Sum of corrected areas:  1044548522 
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Figure 47: GC-MS graph for newspaper. 
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Table 31. Area percentage report for paper. 

peak  R.T. first  max last  PK   peak      corr.   corr.    % of 

   #   min   scan scan scan  TY  height     area    % max.   total 

 ---  ----- ----- ---- ---- ---  -------   -------  ------  ------- 

  1   1.262   177  189  203 BV 2 3957736 204449038 100.00%  21.616% 

  2   1.367   203  206  214 VV   1087685  19944558   9.76%   2.109% 

  3   1.451   214  220  231 VV 3  770517  18234804   8.92%   1.928% 

  4   1.598   231  244  247 VV 2 1410051  30977742  15.15%   3.275% 

  5   1.734   247  266  286 VV   1517845  87341609  42.72%   9.235% 

  

  6   2.025   296  312  326 VV   3848138 106118985  51.90%  11.220% 

  7   2.186   326  338  344 VV    239742   7614311   3.72%   0.805% 

  8   2.302   344  357  364 VV 3  423655  22094693  10.81%   2.336% 

  9   2.390   364  371  393 VB 3  419286  15430510   7.55%   1.631% 

 10   3.111   466  488  492 BV    490924  15242051   7.46%   1.612% 

  

 11   3.149   492  494  497 VV     94551   1045560   0.51%   0.111% 

 12   3.347   519  526  534 BV    197776   4249333   2.08%   0.449% 

 13   3.485   534  548  564 VV 4  259853  13449179   6.58%   1.422% 

 14   3.960   619  625  644 VB    115875   3618722   1.77%   0.383% 

 15   4.513   674  714  742 BB   2925580 116314382  56.89%  12.298% 

  

 16   5.237   816  830  836 BV 3  201829   8842721   4.33%   0.935% 

 17   5.292   836  839  860 VB    136281   4208589   2.06%   0.445% 

 18   5.664   892  899  902 VV 2  231504   5304902   2.59%   0.561% 

 19   5.741   902  912  939 VV    268741  14584636   7.13%   1.542% 

 20   5.944   939  944  963 PV    142692   4453646   2.18%   0.471% 

  

 21   7.269  1146 1158 1184 BV 2  183474   7889745   3.86%   0.834% 

 22   7.559  1184 1205 1218 PV 2  236835  10761219   5.26%   1.138% 

 23   7.676  1218 1224 1232 VV 3  112725   4632867   2.27%   0.490% 

 24   7.813  1232 1246 1265 VV    380172  18846511   9.22%   1.993% 

 25   8.412  1306 1342 1374 BB 4  262050  19707155   9.64%   2.084% 

  

 26  11.006  1739 1761 1792 BV    778170  42310693  20.69%   4.474% 

 27  11.254  1792 1801 1825 VV    236113  10604425   5.19%   1.121% 

 28  11.476  1825 1836 1865 PB    178775   8252286   4.04%   0.873% 

 29  12.018  1891 1924 1945 BB 4  156043   9094451   4.45%   0.962% 

 30  14.710  2333 2358 2377 BV 3  430519  24038535  11.76%   2.542% 

  

 31  15.135  2406 2426 2444 BV 3  129105   4514491   2.21%   0.477% 

 32  15.430  2463 2474 2505 BB 4  121514   7733883   3.78%   0.818% 

 33  16.894  2666 2710 2719 BV 4  125601  13354034   6.53%   1.412% 

 34  17.618  2814 2827 2837 PV    315530  11821073   5.78%   1.250% 
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 35  18.391  2940 2951 2980 VB 3  170606   7866440   3.85%   0.832% 

  

 36  18.683  2983 2998 3015 BB    152056   4711406   2.30%   0.498% 

 37  19.049  3050 3057 3075 BV    109786   3891883   1.90%   0.411% 

 38  21.012  3358 3374 3394 BV 3  235027   7800430   3.82%   0.825% 

 39  21.641  3468 3475 3492 PV    176997   5755170   2.81%   0.608% 

 40  21.813  3492 3503 3513 VV    423831  12923269   6.32%   1.366% 

  

 41  22.521  3602 3617 3648 BB 2  176750   5776205   2.83%   0.611% 

  

  

                        Sum of corrected areas:   945806140 
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Figure 48: GC-MS graph for paper. 
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Appendix B 

 

Figure 49: Calibration curve of water in acetic acid. 

 

 

Figure 50: Calibration curve of acetic acid in methanol. 
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Figure 51: Calibration curve of furfural in methanol. 
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Appendix C 

Table 32. TGA data for sample 1 to sample 3. 

Sample 1 Sample 2 Sample 3 

Temperature 

(°C) 

Residue 

percentage (%) 

Temperature 

(°C) 

Residue 

percentage (%) 

Temperature 

(°C) 

Residue 

percentage (%) 

34.995 99.94568 27.937 99.97948 30.823 99.97288 

34.882 99.87839 28.966 99.90117 31.561 99.87318 

34.777 99.82259 31.224 99.81183 32.901 99.75298 

34.675 99.76238 34.306 99.7157 34.88 99.59951 

34.581 99.69766 37.802 99.63079 37.474 99.42378 

34.486 99.64545 41.275 99.46686 40.439 99.21868 

35.599 99.56429 44.447 99.2802 43.5 98.99405 

39.209 99.48791 47.229 99.09267 46.446 98.72982 

44.364 99.38029 49.668 98.89593 49.184 98.43386 

49.748 99.30515 51.888 98.71068 51.71 98.11111 

54.425 99.14807 54.023 98.51728 54.068 97.76027 

58.027 98.98207 56.176 98.34115 56.341 97.40647 

60.65 98.83346 58.404 98.16282 58.597 97.05182 

62.623 98.6882 60.735 98.01665 60.888 96.69239 

64.307 98.54615 63.143 97.86729 63.228 96.34963 

66.003 98.43236 65.602 97.73085 65.626 96.01867 

67.887 98.29923 68.076 97.60748 68.058 95.69197 

70.037 98.17866 70.539 97.51532 70.504 95.38339 

72.411 98.07247 72.981 97.42588 72.947 95.09972 

74.941 97.97089 75.391 97.32821 75.375 94.8378 

77.52 97.86423 77.786 97.25399 77.788 94.59443 

80.087 97.77529 80.172 97.19157 80.189 94.38499 

82.606 97.6744 82.561 97.14794 82.588 94.19142 

85.059 97.59047 84.949 97.09877 84.979 94.02808 

87.455 97.51026 87.337 97.05879 87.37 93.87899 

89.824 97.43238 89.736 97.02506 89.764 93.74709 

92.183 97.35918 92.141 97.00008 92.161 93.63465 

94.545 97.28768 94.552 96.97366 94.56 93.5592 

96.931 97.22327 96.956 96.95094 96.969 93.48609 

99.322 97.1592 99.365 96.93638 99.37 93.41209 

101.729 97.09617 101.771 96.9209 101.777 93.34234 

104.138 97.0308 104.174 96.9034 104.17 93.29093 

106.55 96.96628 106.574 96.89321 106.566 93.23984 

108.958 96.90699 108.973 96.87854 108.964 93.19816 

111.358 96.85024 111.371 96.87445 111.358 93.161 

113.758 96.78996 113.77 96.86949 113.762 93.12518 

116.156 96.74698 116.165 96.86826 116.154 93.09413 

118.557 96.69799 118.56 96.86736 118.557 93.06182 
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120.95 

123.347 

96.64979 

96.60606 

120.96 

123.361 

96.85999 

96.85491 

120.956 

123.356 

93.03009 

92.99853 

125.745 96.56078 125.763 96.8536 125.768 92.97367 

128.14799 96.50956 128.16901 96.85092 128.16901 92.96007 

130.55 96.46121 130.57001 96.85233 130.567 92.9361 

132.952 96.42959 132.97301 96.85545 132.961 92.915 

135.354 96.39441 135.37601 96.86789 135.353 92.89676 

137.759 96.35753 137.77299 96.86673 137.754 92.87451 

140.162 96.32086 140.174 96.86925 140.161 92.85785 

142.565 96.28247 142.57401 96.87362 142.567 92.84024 

144.966 96.25087 144.97701 96.87832 144.974 92.82408 

147.366 96.21722 147.383 96.88485 147.377 92.80825 

149.767 96.18585 149.78799 96.89347 149.783 92.79241 

152.17101 96.15694 152.188 96.90061 152.181 92.77815 

154.571 96.13025 154.58701 96.91299 154.57899 92.76256 

156.972 96.112 156.985 96.92046 156.978 92.75369 

159.373 96.08145 159.383 96.92094 159.377 92.73827 

161.772 96.05926 161.782 96.93194 161.77901 92.72834 

164.16901 96.03938 164.17999 96.94127 164.17599 92.71438 

166.569 96.01532 166.58099 96.95407 166.577 92.70046 

168.972 95.98711 168.98199 96.9669 168.979 92.68793 

171.371 95.96101 171.38699 96.97283 171.37801 92.67542 

173.77299 95.93705 173.785 96.97731 173.784 92.66421 

176.17101 95.91516 176.19099 96.98319 176.179 92.65171 

178.573 95.89732 178.58501 96.98406 178.57899 92.63782 

180.97501 95.87313 180.98599 96.99514 180.979 92.6265 

183.37801 95.85105 183.38499 97.00608 183.382 92.61248 

185.77299 95.82462 185.78799 97.01864 185.785 92.59708 

188.17799 95.79374 188.19 97.02936 188.186 92.57634 

190.57899 95.76709 190.593 97.03479 190.58501 92.55686 

192.978 95.73173 192.992 97.03328 192.985 92.54113 

195.37601 95.70665 195.394 97.02965 195.38499 92.52527 

197.77699 95.67297 197.791 97.02422 197.789 92.50002 

200.17999 95.63688 200.192 97.02024 200.19099 92.48121 

202.586 95.60906 202.593 97.01966 202.59 92.45709 

204.983 95.57086 204.98599 97.007 204.99001 92.43034 

207.386 95.52435 207.39101 96.99429 207.38901 92.40486 

209.78101 95.47994 209.789 96.98336 209.787 92.37289 

212.18201 95.44379 212.192 96.95869 212.19 92.34082 

214.58299 95.40356 214.59399 96.94089 214.58701 92.30493 

216.98 95.34254 216.994 96.91104 216.98801 92.2676 

219.381 95.28561 219.39301 96.88638 219.39 92.22642 

221.782 95.21829 221.795 96.84275 221.78999 92.17605 
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224.17599 

226.57401 

228.976 

95.15943 

95.09006 

95.01027 

224.19299 

226.595 

228.993 

96.80778 

96.7659 

96.71718 

224.19099 

226.588 

228.98599 

92.13095 

92.08057 

92.01178 

231.37801 94.91598 231.395 96.65288 231.384 91.94169 

233.78 94.82375 233.79401 96.57833 233.78101 91.86107 

236.179 94.70655 236.194 96.48819 236.17999 91.77388 

238.57899 94.58937 238.591 96.39814 238.57899 91.6525 

240.97701 94.43471 240.991 96.29082 240.98 91.55744 

243.377 94.26546 243.386 96.13182 243.38 91.43212 

245.78 94.08789 245.789 96.0107 245.78 91.28709 

248.17799 93.90412 248.188 95.86033 248.17999 91.14076 

250.577 93.71202 250.592 95.68238 250.578 90.97863 

252.976 93.47825 252.992 95.49928 252.979 90.80995 

255.379 93.23618 255.392 95.28859 255.38 90.60969 

257.77802 92.98164 257.79099 95.06586 257.784 90.40155 

260.17599 92.69584 260.19199 94.81039 260.18201 90.16843 

262.577 92.40381 262.591 94.54112 262.582 89.92479 

264.97601 92.06807 264.98801 94.24774 264.98099 89.65221 

267.37299 91.72192 267.39099 93.92506 267.379 89.35201 

269.77499 91.35286 269.78699 93.58344 269.78 89.04261 

272.17599 90.94425 272.18799 93.22286 272.17599 88.69374 

274.57599 90.50649 274.58701 92.81402 274.577 88.31068 

276.97601 90.03751 276.98499 92.37934 276.97601 87.9079 

279.37201 89.54353 279.38 91.91018 279.375 87.46434 

281.77301 89.01832 281.77899 91.42725 281.77301 86.98789 

284.17099 88.44731 284.18301 90.88055 284.17099 86.48514 

286.57101 87.85339 286.57999 90.32352 286.57101 85.93373 

288.97198 87.21993 288.97601 89.71823 288.974 85.34285 

291.371 86.53023 291.38101 89.06642 291.37701 84.71252 

293.76501 85.80721 293.77802 88.38013 293.77399 84.04535 

296.16501 85.0363 296.17499 87.6542 296.16699 83.3203 

298.564 84.23625 298.57599 86.86969 298.564 82.565 

300.96301 83.38622 300.97198 86.05413 300.95901 81.57813 

303.36301 82.47156 303.371 85.17993 303.358 80.75177 

305.76001 81.51727 305.772 84.25052 305.75601 79.88063 

308.15799 80.51917 308.173 83.2814 308.15399 78.77525 

310.55399 79.46684 310.56799 82.26398 310.55499 77.81722 

312.95001 78.36449 312.96799 81.07239 312.95099 76.63416 

315.34299 77.21419 315.36801 79.97042 315.35001 75.49713 

317.74301 75.98677 317.772 78.60636 317.75101 74.28377 

320.14801 74.73854 320.16699 77.4526 320.14899 73.00722 

322.547 73.32981 322.56601 76.05747 322.54599 71.70566 

324.94699 72.00026 324.97101 74.72268 324.94601 70.35674 
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327.35199 

329.759 

70.62491 

69.03073 

327.36499 

329.76401 

73.42749 

71.92198 

327.34601 

329.74301 

68.94333 

67.49569 

332.15799 

334.55801 

67.64698 

66.00488 

332.16199 

334.56 

70.46475 

68.99026 

332.14301 

334.547 

66.01123 

64.47282 

336.952 64.57528 336.95999 67.43821 336.94199 62.91596 

339.34698 62.95613 339.358 65.85511 339.341 61.31177 

341.745 61.14742 341.763 64.2324 341.74301 59.63391 

344.13699 59.47412 344.15799 62.54931 344.142 57.9284 

346.534 57.75503 346.55099 60.82658 346.53799 56.16239 

348.93201 55.95472 348.94501 59.04875 348.93799 54.34248 

351.33099 54.10026 351.35101 57.15375 351.336 52.42649 

353.729 52.20632 353.75 55.21905 353.728 50.44475 

356.129 50.20403 356.15201 53.18099 356.12701 48.37621 

358.526 48.13928 358.55099 51.0274 358.53 46.17482 

360.92801 45.99339 360.95099 48.79628 360.92899 43.90897 

363.32501 43.76623 363.35699 46.4894 363.327 41.54974 

365.72699 41.52046 365.755 44.06356 365.73099 39.07346 

368.12601 39.24138 368.16199 41.64987 368.13101 36.57484 

370.53101 36.9291 370.56299 39.24136 370.53201 34.0723 

372.93301 34.6814 372.95999 36.8467 372.94101 31.58172 

375.33701 32.56925 375.36099 34.5608 375.35001 29.21748 

377.74301 30.62388 377.767 32.48704 377.758 27.03091 

380.15399 29.02647 380.172 30.66849 380.16501 25.08254 

382.55499 27.62495 382.58099 29.13973 382.578 23.45927 

384.961 26.54029 384.98599 28.14373 384.987 22.15443 

387.36301 25.63894 387.38501 27.22021 387.383 21.27858 

389.75201 25.02725 389.77899 26.55024 389.78 20.55939 

392.147 24.59702 392.17099 26.09413 392.17401 20.02975 

394.54001 24.31063 394.55399 25.78121 394.55801 19.64487 

396.92899 24.08889 396.95001 25.53917 396.944 19.37064 

399.31799 23.91527 399.33899 25.36274 399.33301 19.1452 

401.71399 23.77305 401.73401 25.21395 401.72699 18.95142 

404.10901 23.61834 404.129 25.05835 404.12201 18.77739 

406.51099 23.44292 406.52499 24.92519 406.51801 18.60606 

408.909 23.32374 408.922 24.78689 408.914 18.44129 

411.30301 23.18581 411.32101 24.64351 411.31299 18.27529 

413.703 23.03968 413.72 24.51048 413.70901 18.11585 

416.104 22.88946 416.12 24.38096 416.11301 17.9631 

418.504 22.76009 418.521 24.25668 418.508 17.80635 

420.89999 22.64322 420.91501 24.1375 420.90799 17.64708 

423.29999 22.48062 423.311 24.02365 423.311 17.50359 

425.69699 22.36392 425.70901 23.87533 425.70499 17.34956 

428.09698 22.23478 428.11301 23.76164 428.10101 17.20881 
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430.491 22.10982 430.509 23.63059 430.5 17.06019 

432.884 21.99326 432.90201 23.51344 432.89999 16.91421 

435.28699 21.84145 435.298 23.40845 435.30801 16.77366 

437.689 

440.086 

21.73756 

21.62115 

437.69699 

440.09601 

23.26555 

23.16408 

437.70001 

440.08801 

16.63551 

16.50147 

442.48401 21.51323 442.49399 23.06267 442.48499 16.38203 

444.89301 21.39918 444.89001 22.96651 444.88599 16.24945 

447.28201 21.29529 447.29001 22.86347 447.28299 16.1234 

449.66901 21.1938 449.69101 22.76572 449.681 16.00931 

452.08301 21.09897 452.08899 22.67653 452.08401 15.89659 

454.508 20.99963 454.48401 22.59087 454.48199 15.79306 

456.871 20.92895 456.883 22.50877 456.88501 15.68302 

459.25299 20.84664 459.27701 22.43353 459.28 15.58351 

461.65701 20.76229 461.677 22.36018 461.677 15.49722 

464.05801 20.68613 464.07501 22.29029 464.07199 15.39125 

466.45499 20.60587 466.47601 22.2239 466.47198 15.31559 

468.858 20.53822 468.87299 22.16444 468.86899 15.23867 

471.27899 20.47522 471.271 22.11715 471.271 15.16178 

473.68399 20.41572 473.668 22.06642 473.66501 15.0862 

476.05301 20.35002 476.06201 22.02777 476.065 15.01733 

478.44901 20.2912 478.46301 21.98072 478.46899 14.94717 

480.849 20.24476 480.85999 21.94568 480.867 14.89805 

483.25 20.18588 483.26599 21.90741 483.26099 14.83582 

485.64899 20.14995 485.664 21.8707 485.65799 14.77498 

488.04199 20.10571 488.05499 21.83921 488.05701 14.72341 

490.44101 20.06795 490.45001 21.80278 490.453 14.65872 

492.841 20.03225 492.85501 21.78026 492.85101 14.61381 

495.24301 19.99041 495.25299 21.75069 495.25 14.5729 

497.64099 19.94445 497.642 21.72634 497.64899 14.52547 

500.035 19.90891 500.035 21.7074 500.047 14.47809 

502.431 19.88188 502.42899 21.68155 502.453 14.4347 

504.82901 19.84656 504.82901 21.66437 504.83801 14.4004 

507.22601 19.81332 507.23401 21.64214 507.229 14.36235 

509.62701 19.7844 509.63501 21.62333 509.63101 14.32433 

512.02502 19.7471 512.03497 21.6063 512.03003 14.28505 

514.44202 19.72275 514.44098 21.5825 514.42999 14.25237 

516.85999 19.6919 516.86102 21.57091 516.84198 14.21718 

519.27802 19.65494 519.24799 21.55369 519.23401 14.18963 

521.67499 19.62813 521.63202 21.5385 521.62097 14.15832 

524.17603 19.60344 524.06702 21.52249 524.01599 14.12186 

526.79602 19.58499 526.65997 21.51805 526.414 14.08935 

529.18903 19.56433 529.16699 21.50766 528.81097 14.06213 

531.45697 19.54072 531.51501 21.49997 531.20697 14.03756 
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533.78699 

536.12 

19.51875 

19.49218 

533.85498 

536.20001 

21.49174 

21.4836 

533.60797 

536.00598 

14.01047 

13.98993 

538.453 19.47828 538.53998 21.48241 538.40601 13.96552 

540.82703 19.46707 540.90601 21.47294 540.80701 13.94509 

543.21503 

545.61401 

19.45357 

19.43398 

543.27802 

545.64899 

21.46687 

21.46076 

543.20398 

545.60602 

13.91807 

13.89383 

548.01099 19.41429 548.03101 21.45661 548.00702 13.8709 

550.40601 19.40087 550.42603 21.46119 550.40503 13.84925 

552.784 19.38322 552.836 21.4538 552.81097 13.83184 

555.18103 19.3722 555.24298 21.45148 555.53101 13.81114 

557.56799 19.35265 557.64099 21.44915 558.33398 13.78659 

559.97699 19.34201 560.04999 21.45054 560.54999 13.76632 

562.39502 19.33334 562.46198 21.45713 562.71802 13.74308 

564.81201 19.32048 564.85498 21.46688 565.06299 13.72372 

567.23798 19.30158 567.24701 21.47006 567.37 13.70719 

569.65198 19.2971 569.64203 21.47155 569.68597 13.69902 

572.05103 19.28839 572.03601 21.46442 572.06299 13.67415 

574.44397 19.27362 574.43701 21.46786 574.448 13.65433 

576.854 19.26545 576.84399 21.47818 576.82703 13.63841 

579.271 19.25311 579.22998 21.47972 579.211 13.6318 

581.66901 19.25091 581.63501 21.48518 581.59698 13.61478 

584.06201 19.24268 584.03998 21.49049 584.07501 13.60254 

586.474 19.24107 586.47198 21.498 586.47302 13.59019 

588.88501 19.24558 588.90198 21.50515 588.80499 13.5716 

591.27301 19.24575 591.28601 21.51378 591.24799 13.55676 

593.66302 19.23996 593.69501 21.5161 593.62201 13.54729 

596.06702 19.23234 596.086 21.52324 595.974 13.5356 

598.47198 19.23301 598.474 21.52896 598.383 13.52717 

600.85901 19.22723 600.875 21.53996 600.82202 13.52001 

603.245 19.23629 603.27802 21.55797 603.25403 13.51006 

605.64502 19.24147 605.703 21.56753 605.67499 13.49748 

608.03302 19.23811 608.09003 21.57315 608.07599 13.49405 

610.422 19.24123 610.45801 21.58417 610.46503 13.48407 

612.82098 19.24452 612.85699 21.59561 612.87299 13.47706 

615.22803 19.2563 615.237 21.61365 615.276 13.46724 

617.638 19.26593 617.62903 21.63204 617.65601 13.46132 

620.03302 19.28178 620.04901 21.64382 620.05298 13.45436 

622.42999 19.29366 622.46997 21.65545 622.45502 13.45275 

624.82599 19.29302 624.862 21.68399 624.91901 13.45162 

627.21802 19.30708 627.18903 21.70675 627.32001 13.44428 

629.62299 19.3297 629.20801 21.73678 629.69598 13.44264 

632.01202 19.34163 631.37 21.75205 632.12701 13.4388 

634.396 19.35589 633.66998 21.76965 634.508 13.43167 
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636.82098 

639.23102 

19.37905 

19.38917 

636.15698 

638.716 

21.80237 

21.83105 

636.94 

639.33801 

13.43466 

13.42766 

641.61902 19.41187 641.271 21.84896 641.66199 13.42967 

644.04401 19.4352 643.78699 21.87849 644.07898 13.42898 

646.44098 19.45365 646.19702 21.9019 646.52698 13.43441 

648.82397 

651.22498 

19.47243 

19.49765 

648.59998 

651.04797 

21.92448 

21.94925 

648.83801 

651.21002 

13.43483 

13.43396 

653.59802 19.52253 653.479 21.98223 653.64301 13.44625 

655.995 19.54385 655.89502 22.0118 656.01898 13.45262 

658.40997 19.57571 658.32098 22.04157 658.42102 13.46232 

660.82202 19.60522 660.77301 22.06831 660.84698 13.46532 

663.21802 19.62856 663.24701 22.10532 663.25 13.48136 

665.646 19.66069 665.84601 22.13916 665.67798 13.49108 

668.03601 19.69208 668.29602 22.15818 668.07898 13.50053 

670.40802 19.7362 670.30902 22.19971 670.54401 13.51606 

672.81403 19.76424 672.711 22.24238 672.711 13.52733 

675.22198 19.79001 675.13599 22.28426 674.00098 13.54774 

677.63 19.82412 677.48901 22.3224 676.30298 13.57045 

680.02197 19.8685 679.922 22.35473 679.01599 13.58915 

682.41699 19.90469 682.45398 22.40166 681.75598 13.60955 

684.797 19.94288 684.97601 22.38924 684.72198 13.62744 

687.19897 19.98154 687.39301 22.40976 686.64398 13.6483 

689.61902 20.01808 689.67603 22.49038 689.08197 13.66105 

691.98798 20.06233 692.08301 22.56799 691.66699 13.68622 

694.37701 20.10721 694.547 22.61721 694.08197 13.71017 

696.79199 20.14403 696.58801 22.65533 696.60199 13.72885 

699.19299 20.18246 698.85498 22.70723 699.04498 13.74767 

701.59601 20.22535 701.31 22.75755 701.43799 13.77196 

703.98297 20.25756 703.73297 22.80862 703.91998 13.79582 

706.38202 20.30256 706.16498 22.85634 706.47198 13.82248 

708.79199 20.34147 708.59698 22.8955 708.92902 13.84798 

711.19897 20.38448 711.03699 22.93642 711.32397 13.87232 

713.625 20.4401 713.46301 22.98757 713.84802 13.89917 

715.98297 20.48027 715.89398 23.04058 716.06598 13.92625 

718.34998 20.51911 718.32001 23.09181 718.03302 13.95651 

720.77502 20.56263 720.73102 23.13948 720.474 13.98582 

723.15997 20.60747 723.13098 23.18719 722.92902 14.01842 

725.53998 20.65673 725.54199 23.23507 725.32202 14.043 

727.95398 20.70647 727.94501 23.29148 727.927 14.07593 

730.354 20.75173 730.349 23.34451 730.40802 14.10023 

732.79602 20.80384 732.74402 23.39233 732.78101 14.13507 

735.19 20.84898 735.138 23.4385 735.216 14.1628 

737.63501 20.89309 737.53198 23.48645 737.61401 14.18997 
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740.05103 

742.474 

20.94247 

20.98423 

739.935 

742.33899 

23.5345 

23.58775 

739.95599 

742.35797 

14.22621 

14.25912 

744.84802 21.03135 744.73901 23.64106 744.71698 14.28892 

746.67499 21.07452 747.14099 23.69607 747.18103 14.32116 

  
749.539 23.74427 

  

      
 

                     Table 33. TGA data for sample 4 to sample 6. 

Sample 4 Sample 5 Sample 6 

Temperature   

(°C) 

Residue 

percentage (%) 

Temperature      

(°C) 

Residue 

percentage (%) 

Temperature     

(°C) 

Residue 

percentage (%) 

26.207 99.99895 26.157 99.99722 27.169 99.99746 

28.707 100.00306 27.341 99.98359 29.569 99.99509 

31.207 100.00188 30.18 99.97348 31.969 99.99953 

33.707 99.99647 33.929 99.95224 34.369 99.98747 

36.207 99.99246 37.943 99.93355 36.769 99.98528 

38.707 99.98502 41.688 99.90231 39.169 99.98433 

41.207 99.97282 44.894 99.8249 41.569 99.97904 

43.707 99.95184 47.567 99.75513 43.969 99.9742 

46.207 99.92783 49.834 99.65901 46.369 99.96172 

48.707 99.89625 51.888 99.55045 48.769 99.94328 

51.207 99.85861 53.903 99.42124 51.169 99.91933 

53.707 99.819 55.994 99.28029 53.569 99.8879 

56.207 99.78387 58.222 99.12368 55.969 99.85428 

58.707 99.74712 60.59 98.94979 58.369 99.82504 

61.207 99.71017 63.049 98.77673 60.769 99.76901 

63.707 99.67767 65.556 98.60057 63.169 99.71906 

66.207 99.64229 68.101 98.40197 65.569 99.65853 

68.707 99.60599 70.608 98.23582 67.969 99.58518 

71.207 99.56548 73.06 98.07627 70.369 99.49958 

73.707 99.51902 75.484 97.94385 72.769 99.399 

76.207 99.47436 77.9 97.84591 75.169 99.28219 

78.707 99.42207 80.285 97.77403 77.569 99.15621 

81.207 99.37709 82.648 97.73443 79.969 99.01851 

83.707 99.32344 85.002 97.70255 82.369 98.87983 

86.207 99.27387 87.359 97.67881 84.769 98.76621 

88.707 99.22194 89.729 97.66125 87.169 98.69751 

91.207 99.16763 92.119 97.63088 89.569 98.65514 

93.707 99.10992 94.52 97.61338 91.969 98.63134 

96.207 99.04849 96.929 97.59602 94.369 98.61383 

98.707 98.98474 99.344 97.58366 96.769 98.60267 

101.207 98.91462 101.758 97.57444 99.169 98.59652 
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103.707 98.84025 104.162 97.56518 101.569 98.58977 

106.207 

108.707 

98.76286 

98.67603 

106.563 

108.962 

97.55184 

97.54156 

103.969 

106.369 

98.58599 

98.58161 

111.207 98.58328 111.365 97.53559 108.769 98.58117 

113.707 98.48735 113.759 97.5307 111.169 98.57915 

116.207 98.38603 116.159 97.52167 113.569 98.58126 

118.707 98.279 118.558 97.5163 115.969 98.58067 

121.207 98.15995 120.961 97.51122 118.369 98.58004 

123.707 98.03988 123.36 97.50201 120.769 98.58126 

126.207 97.91482 125.763 97.50148 123.169 98.58043 

128.707 97.78273 128.164 97.49834 125.569 98.58231 

131.207 97.64942 130.562 97.49603 127.969 98.58207 

133.707 97.5096 132.959 97.49245 130.369 98.58368 

136.207 97.37265 135.36099 97.49034 132.769 98.58574 

138.707 97.23026 137.763 97.48836 135.169 98.59014 

141.207 97.09006 140.16701 97.4894 137.569 98.58857 

143.707 96.94845 142.573 97.48697 139.969 98.58994 

146.207 96.81134 144.976 97.48537 142.369 98.59109 

148.707 96.68086 147.379 97.48453 144.769 98.59269 

151.207 96.55159 149.78 97.48314 147.169 98.59393 

153.707 96.43061 152.181 97.48037 149.569 98.59434 

156.207 96.31706 154.57899 97.47414 151.969 98.59697 

158.707 96.20828 156.978 97.47215 154.369 98.5971 

161.207 96.10744 159.382 97.46677 156.769 98.5998 

163.707 96.01258 161.774 97.46704 159.169 98.60085 

166.207 95.92598 164.17101 97.46021 161.569 98.60137 

168.707 95.84401 166.56799 97.4556 163.969 98.60197 

171.207 95.77033 168.967 97.44743 166.369 98.6113 

173.707 95.69692 171.366 97.44064 168.769 98.6024 

176.207 95.6284 173.769 97.43529 171.169 98.60391 

178.707 95.5649 176.16499 97.42715 173.569 98.60804 

181.207 95.50516 178.56799 97.4161 175.969 98.60908 

183.707 95.44231 180.964 97.40864 178.369 98.60839 

186.207 95.38196 183.373 97.39813 180.769 98.6103 

188.707 95.3195 185.795 97.39122 183.169 98.61091 

191.207 95.25035 188.207 97.3872 185.569 98.61025 

193.707 95.17426 190.60699 97.38245 187.969 98.60901 

196.207 95.08441 192.995 97.37971 190.369 98.60864 

198.707 94.99323 195.38 97.37472 192.769 98.60959 

201.207 94.91831 197.758 97.37035 195.169 98.60789 

203.707 94.85574 200.13499 97.36446 197.569 98.60686 

206.207 94.78475 202.51199 97.35994 199.969 98.60538 

208.707 94.71506 204.911 97.36374 202.369 98.60437 
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211.207 94.63415 207.38499 97.35255 204.769 98.603 

213.707 

216.207 

94.53789 209.85201 97.35176 207.169 98.59942 

94.43134 212.261 97.34473 209.569 98.59908 

218.707 94.30081 214.64101 97.34038 211.969 98.59167 

221.207 94.13634 217.013 97.33519 214.369 98.5902 

223.707 93.85943 219.38901 97.32783 216.769 98.58752 

226.207 93.55416 221.77299 97.32614 219.169 98.58181 

228.707 93.15572 224.172 97.32305 221.569 98.57531 

231.207 92.73884 226.571 97.31079 223.969 98.56936 

233.707 92.384 228.968 97.2964 226.369 98.56118 

236.207 92.11937 231.367 97.28557 228.769 98.55227 

238.707 91.89984 233.77 97.27758 231.169 98.54051 

241.207 91.72747 236.177 97.26888 233.569 98.52607 

243.707 91.56212 238.576 97.25028 235.969 98.50997 

246.207 91.40544 240.979 97.22671 238.369 98.49819 

248.707 91.24178 243.37399 97.20173 240.769 98.4786 

251.207 91.10139 245.772 97.18383 243.169 98.45985 

253.707 90.97029 248.17 97.16097 245.569 98.43853 

256.207 90.85125 250.567 97.13884 247.969 98.4142 

258.707 90.7371 252.968 97.10111 250.369 98.38735 

261.207 90.62831 255.366 97.06479 252.769 98.35052 

263.707 90.51779 257.76401 97.03558 255.169 98.32329 

266.207 90.41149 260.14801 96.99859 257.569 98.28705 

268.707 90.31201 262.47699 96.95807 259.969 98.24587 

271.207 90.21644 264.82901 96.8933 262.369 98.2038 

273.707 90.10988 267.314 96.85978 264.769 98.16127 

276.207 90.00498 269.83301 96.79027 267.169 98.11186 

278.707 89.90896 272.29199 96.74206 269.569 98.05937 

281.207 89.81267 274.69101 96.64841 271.969 97.9962 

283.707 89.7249 277.05499 96.56676 274.369 97.93239 

286.207 89.62746 279.41 96.49005 276.769 97.86578 

288.707 89.53912 281.77701 96.40342 279.169 97.79214 

291.207 89.44943 284.15701 96.30121 281.569 97.71664 

293.707 89.36517 286.547 96.19547 283.969 97.62945 

296.207 89.27879 288.94601 96.08903 286.369 97.53137 

298.707 89.19658 291.345 95.96133 288.769 97.43667 

301.207 89.12004 293.75201 95.84287 291.169 97.33087 

303.707 89.04203 296.155 95.70739 293.569 97.22174 

306.207 88.96758 298.556 95.56978 295.969 97.10163 

308.707 88.90068 300.95401 95.38466 298.369 96.97616 

311.207 88.83331 303.35501 95.20946 300.769 96.83371 

313.707 88.76268 305.755 95.0158 303.169 96.67774 

316.207 88.70349 308.147 94.80651 305.569 96.51775 
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318.707 88.64388 310.54999 94.58375 307.969 96.35154 

321.207 

323.707 

88.58928 

88.5353 

312.95499 

315.34799 

94.35601 

94.10979 

310.369 

312.769 

96.1622 

95.96308 

326.207 88.48624 317.74701 93.83735 315.169 95.75232 

328.707 88.44866 320.14301 93.57197 317.569 95.49571 

331.207 88.40898 322.54501 93.29029 319.969 95.27886 

333.707 88.35587 324.94299 93.01072 322.369 95.00849 

336.207 88.31887 327.349 92.7255 324.769 94.77209 

338.707 88.28314 329.745 92.4303 327.169 94.50251 

341.207 88.24169 332.146 92.13159 329.569 94.22699 

343.707 88.20777 334.54199 91.83001 331.969 93.91756 

346.207 88.17538 336.94 91.5242 334.369 93.63974 

348.707 88.13718 339.34399 91.20848 336.769 93.36447 

351.207 88.09878 341.741 90.88281 339.169 93.07573 

353.707 88.06602 344.13501 90.53161 341.569 92.73855 

356.207 88.0326 346.53201 90.17831 343.969 92.42559 

358.707 87.99574 348.93301 89.80515 346.369 92.08661 

361.207 87.96119 351.32999 89.41356 348.769 91.70961 

363.707 87.92686 353.728 89.00994 351.169 91.32486 

366.207 87.894 356.13 88.60492 353.569 90.91595 

368.707 87.8562 358.52899 88.21905 355.969 90.50899 

371.207 87.82118 360.93399 87.76158 358.369 90.10057 

373.707 87.78581 363.336 87.47719 360.769 89.72212 

376.207 87.75055 365.741 87.16302 363.169 89.36956 

378.707 87.71241 368.14301 86.8907 365.569 89.01793 

381.207 87.68264 370.54501 86.7021 367.969 88.71513 

383.707 87.64059 372.935 86.50499 370.369 88.40496 

386.207 87.60214 375.33499 86.37392 372.769 88.17074 

388.707 87.56479 377.73401 86.26553 375.169 87.96376 

391.207 87.52962 380.12201 86.17136 377.569 87.79521 

393.707 87.48882 382.51599 86.10134 379.969 87.66839 

396.207 87.45067 384.91599 86.04839 382.369 87.5801 

398.707 87.4141 387.311 86.00965 384.769 87.5132 

401.207 87.37369 389.70499 85.97732 387.169 87.46525 

403.707 87.33486 392.09799 85.90674 389.569 87.42195 

406.207 87.29766 394.49301 85.86882 391.969 87.39027 

408.707 87.25228 396.896 85.8416 394.369 87.35441 

411.207 87.21584 399.293 85.80945 396.769 87.3145 

413.707 87.17467 401.689 85.77378 399.169 87.28914 

416.207 87.13512 404.09 85.74454 401.569 87.27038 

418.707 87.09811 406.48901 85.71174 403.969 87.22503 

421.207 87.0564 408.88199 85.68464 406.369 87.20135 

423.707 87.02043 411.27399 85.63556 408.769 87.16763 
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426.207 86.97748 413.673 85.62411 411.169 87.13978 

428.707 

431.207 

86.94281 

86.90058 

416.069 

418.465 

85.59847 

85.54732 

413.569 

415.969 

87.11381 

87.09533 

433.707 86.86582 420.867 85.53171 418.369 87.04794 

436.207 86.83382 423.26401 85.49974 420.769 87.03369 

438.707 86.79465 425.66199 85.48131 423.169 87.00364 

441.207 86.75474 428.069 85.46714 425.569 86.97289 

443.707 86.70489 430.45901 85.4196 427.969 86.95303 

446.207 86.66711 432.85699 85.40762 430.369 86.93643 

448.707 86.62427 435.25699 85.37506 432.769 86.897 

451.207 86.5802 437.651 85.34037 435.169 86.87694 

453.707 86.54007 440.048 85.30573 437.569 86.85375 

456.207 86.4969 442.44601 85.28033 439.969 86.81646 

458.707 86.44905 444.84799 85.26348 442.369 86.80312 

461.207 86.40345 447.24799 85.25795 444.769 86.78727 

463.707 86.35853 449.64001 85.20496 447.169 86.75371 

466.207 86.30947 452.04001 85.18744 449.569 86.73937 

468.707 86.26048 454.44699 85.20117 451.969 86.71853 

471.207 86.22 456.827 85.11839 454.369 86.69293 

473.707 86.15605 459.23401 85.10812 456.769 86.6784 

476.207 86.10659 461.633 85.06158 459.169 86.65993 

478.707 86.03987 464.03 85.04346 461.569 86.62849 

481.207 85.99008 466.431 85.02255 463.969 86.61386 

483.707 85.92692 468.82401 84.9853 466.369 86.59899 

486.207 85.86281 471.229 84.95951 468.769 86.57975 

488.707 85.7976 473.62701 84.92444 471.169 86.57051 

491.207 85.72805 476.02301 84.90358 473.569 86.55082 

493.707 85.65753 478.42099 84.87501 475.969 86.52503 

496.207 85.58593 480.82199 84.85635 478.369 86.51368 

498.707 85.51419 483.22101 84.83203 480.769 86.50363 

501.207 85.42455 485.617 84.8042 483.169 86.48485 

503.707 85.3429 488.017 84.78418 485.569 86.47087 

506.207 85.25549 490.41299 84.74718 487.969 86.45433 

508.707 85.16182 492.81 84.7173 490.369 86.43981 

511.207 85.06692 495.20901 84.69313 492.769 86.42854 

513.707 84.97339 497.61099 84.68106 495.169 86.41493 

516.207 84.8634 500.01001 84.64981 497.569 86.40311 

518.707 84.75416 502.40701 84.6314 499.969 86.38834 

521.207 84.6419 504.80499 84.608 502.369 86.37535 

523.707 84.51865 507.20099 84.58251 504.769 86.36398 

526.207 84.39289 509.60101 84.55422 507.169 86.35059 

528.707 84.26384 511.99399 84.51952 509.569 86.33735 

531.207 84.13148 514.39398 84.48773 511.969 86.32105 
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533.707 83.98923 516.83099 84.46683 514.369 86.31178 

536.207 

538.707 

83.83939 

83.68651 

519.28101 

521.64301 

84.45138 

84.42285 

516.769 

519.169 

86.29501 

86.28345 

541.207 83.52397 524.01202 84.39468 521.569 86.2668 

543.707 83.35516 526.40399 84.36868 523.969 86.25812 

546.207 83.18486 528.78699 84.31425 526.369 86.24498 

548.707 83.00043 531.17999 84.29608 528.769 86.23732 

551.207 82.80855 533.57599 84.26939 531.169 86.22052 

553.707 82.61084 535.97198 84.23777 533.569 86.21343 

556.207 82.40155 538.36298 84.20684 535.969 86.188 

558.707 82.1868 540.763 84.16461 538.369 86.17649 

561.207 81.96245 543.14502 84.1082 540.769 86.16157 

563.707 81.71218 545.54797 84.07317 543.169 86.14877 

566.207 81.47135 547.94598 84.03312 545.569 86.13599 

568.707 81.18787 550.34198 83.9768 547.969 86.12459 

571.207 80.93802 552.74597 83.95174 550.369 86.11057 

573.707 80.66246 555.13898 83.86071 552.769 86.10066 

576.207 80.35952 557.55603 83.80595 555.169 86.07328 

578.707 80.07579 559.92499 83.72613 557.569 86.06243 

581.207 79.75351 562.31097 83.64374 559.969 86.05622 

583.707 79.44144 564.72601 83.55007 562.369 86.04616 

586.207 79.12742 567.12097 83.45695 564.769 86.04097 

588.707 78.78365 569.513 83.34693 567.169 86.01066 

591.207 78.44438 571.95001 83.23865 569.569 86.00178 

593.707 78.07945 574.33502 83.11063 571.969 85.99099 

596.207 77.71279 576.71399 82.9964 574.369 85.97491 

598.707 77.32081 579.10999 82.86595 576.769 85.96352 

601.207 76.92599 581.51099 82.7355 579.169 85.94924 

603.707 76.52652 583.90698 82.60148 581.569 85.93422 

606.207 76.10178 586.32098 82.46834 583.969 85.92479 

608.707 75.67925 588.724 82.33505 586.369 85.90077 

611.207 75.25353 591.13202 82.17922 588.769 85.88851 

613.707 74.79262 593.60303 82.03144 591.169 85.87778 

616.207 74.34859 595.99298 81.86683 593.569 85.86266 

618.707 73.87639 598.383 81.738 595.969 85.845 

621.207 73.40392 600.771 81.55451 598.369 85.83377 

623.707 72.91163 603.16602 81.386 600.769 85.82396 

626.207 72.42159 605.55902 81.22032 603.169 85.79672 

628.707 71.91235 607.95099 81.06958 605.569 85.78514 

631.207 71.40498 610.35101 80.88203 607.969 85.77063 

633.707 70.88411 612.74701 80.7235 610.369 85.75745 

636.207 70.361 615.12799 80.52598 612.769 85.74253 

638.707 69.82882 617.53802 80.34925 615.169 85.72371 
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641.207 69.28608 619.97998 80.15543 617.569 85.71107 

643.707 

646.207 

68.75422 

68.18881 

622.29901 

624.72498 

79.97518 

79.80038 

619.969 

622.369 

85.69744 

85.68303 

648.707 67.65447 627.14899 79.60799 624.769 85.66604 

651.207 67.08936 629.46698 79.40607 627.169 85.65019 

653.707 66.52454 631.90399 79.22546 629.569 85.63521 

656.207 65.97985 634.29303 78.98545 631.969 85.62114 

658.707 65.43301 636.67297 78.80094 634.369 85.61414 

661.207 64.87007 639.05499 78.58454 636.769 85.59039 

663.707 64.30106 641.45001 78.39234 639.169 85.57831 

666.207 63.75399 643.849 78.15477 641.569 85.56608 

668.707 63.20632 646.26501 77.95911 643.969 85.55506 

671.207 62.65219 648.66901 77.72293 646.369 85.52796 

673.707 62.11163 651.05603 77.49884 648.769 85.51976 

676.207 61.5717 653.46997 77.28484 651.169 85.5077 

678.707 61.036 655.86298 77.05365 653.569 85.48553 

681.207 60.51605 658.26001 76.82327 655.969 85.46528 

683.707 60.00347 660.65698 76.59077 658.369 85.45013 

686.207 59.5062 663.03497 76.35037 660.769 85.43428 

688.707 58.9846 665.47302 76.13308 663.169 85.42475 

691.207 58.48024 667.883 75.86442 665.569 85.40039 

693.707 58.00656 670.28699 75.61498 667.969 85.38571 

696.207 57.50677 672.69501 75.36984 670.369 85.36896 

698.707 57.02858 675.10602 75.12685 672.769 85.35183 

701.207 56.55312 677.52002 74.86901 675.169 85.32933 

703.707 56.09324 681.12903 74.64147 677.569 85.30038 

706.207 55.63924 682.505 74.35883 679.969 85.26915 

708.707 55.18632 685.21698 74.11339 682.369 85.25261 

711.207 54.76376 687.34003 73.86115 684.769 85.24694 

713.707 54.31565 689.54602 73.62764 687.169 85.20258 

716.207 53.88046 691.995 73.29648 689.569 85.19757 

718.707 53.46174 694.27802 73.08495 691.969 85.18179 

721.207 53.20737 696.70801 72.79854 694.369 85.14788 

723.707 52.6782 699.104 72.50158 696.769 85.12535 

726.207 52.30061 701.45398 72.25857 699.169 85.1007 

728.707 51.90676 703.87 71.98466 701.569 85.06517 

731.207 51.48513 706.25897 71.6495 703.969 85.03707 

733.707 51.12804 708.66602 71.42447 706.369 85.0104 

736.207 50.73046 711.07001 71.16175 708.769 84.98348 

738.707 50.37339 713.44 70.86986 711.169 84.94166 

741.207 50.01958 715.85101 70.56763 713.569 84.90975 

743.707 49.65908 718.29303 70.27177 715.969 84.86789 

746.207 49.30704 720.664 70.02021 718.369 84.85208 
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748.707 48.96032 723.03101 69.7285 720.769 84.80252 

  

725.479 

727.86401 

69.44626 

69.15017 

723.169 

725.569 

84.76676 

84.73074 

  
730.26202 68.86635 727.969 84.70282 

  
732.68201 68.57052 730.369 84.65834 

  
735.10199 68.27468 732.769 84.61021 

  
737.49298 67.98298 735.169 84.56702 

  
739.86499 67.68275 737.569 84.52458 

  
742.26703 67.387 739.969 84.47796 

  
744.65198 67.08471 742.369 84.42266 

  
747.03101 66.78887 744.769 84.37437 

    
747.169 84.33945 

 

                    Table 34. TGA data for sample 7 to sample 9. 

Sample 7 Sample 8 Sample 9 

Temperature   

(°C) 

Residue 

percentage (%) 

Temperature    

(°C) 

Residue 

percentage (%) 

Temperature      

(°C) 

Residue 

percentage (%) 

26.54 99.996 26.272 99.99843 27.252 99.99868 

29.04 100.00074 28.772 100.00722 29.752 100.0027 

31.54 99.99718 31.272 100.0118 32.252 100.0028 

34.04 99.99309 33.772 100.00432 34.752 100.0048 

36.54 99.99163 36.272 100.00238 37.252 100.00471 

39.04 99.98624 38.772 99.99967 39.752 100.00224 

41.54 99.97315 41.272 99.99037 42.252 99.9965 

44.04 99.94494 43.772 99.97301 44.752 99.98515 

46.54 99.9181 46.272 99.95446 47.252 99.97018 

49.04 99.88144 48.772 99.93818 49.752 99.9543 

51.54 99.84248 51.272 99.90633 52.252 99.93555 

54.04 99.79287 53.772 99.87725 54.752 99.91349 

56.54 99.75247 56.272 99.83866 57.252 99.89305 

59.04 99.69669 58.772 99.78563 59.752 99.86881 

61.54 99.64206 61.272 99.72749 62.252 99.84288 

64.04 99.57626 63.772 99.66818 64.752 99.81252 

66.54 99.51065 66.272 99.59806 67.252 99.78032 

69.04 99.43602 68.772 99.53817 69.752 99.74641 

71.54 99.36426 71.272 99.47534 72.252 99.71197 

74.04 99.28876 73.772 99.41227 74.752 99.67622 

76.54 99.2135 76.272 99.34987 77.252 99.64047 

79.04 99.13909 78.772 99.28686 79.752 99.60292 

81.54 99.0524 81.272 99.22785 82.252 99.56568 

84.04 98.96914 83.772 99.1705 84.752 99.5271 

86.54 98.90175 86.272 99.11061 87.252 99.48942 
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89.04 98.84209 88.772 99.05355 89.752 99.45027 

91.54 

94.04 

98.78729 

98.72241 

91.272 

93.772 

98.99435 

98.93649 

92.252 

94.752 

99.40705 

99.36175 

96.54 98.65718 96.272 98.86963 97.252 99.31513 

99.04 98.58856 98.772 98.79809 99.752 99.26541 

101.54 98.51996 101.272 98.72466 102.252 99.21297 

104.04 98.4499 103.772 98.64455 104.752 99.16012 

106.54 98.38764 106.272 98.55819 107.252 99.10211 

109.04 98.29862 108.772 98.46831 109.752 99.04357 

111.54 98.21725 111.272 98.37434 112.252 98.98116 

114.04 98.12417 113.772 98.2749 114.752 98.91715 

116.54 98.03675 116.272 98.16726 117.252 98.85038 

119.04 97.9402 118.772 98.05634 119.752 98.78082 

121.54 97.8416 121.272 97.93893 122.252 98.70618 

124.04 97.7376 123.772 97.81886 124.752 98.62863 

126.54 97.62581 126.272 97.69328 127.252 98.54772 

129.04 97.51409 128.772 97.56318 129.752 98.46138 

131.54 97.39007 131.272 97.43182 132.252 98.37232 

134.04 97.28067 133.772 97.29984 134.752 98.28017 

136.54 97.17016 136.272 97.16456 137.252 98.18335 

139.04 97.05788 138.772 97.02822 139.752 98.08392 

141.54 96.94811 141.272 96.89534 142.252 97.98272 

144.04 96.85213 143.772 96.75837 144.752 97.87679 

146.54 96.73758 146.272 96.62675 147.252 97.76897 

149.04 96.64336 148.772 96.50005 149.752 97.65835 

151.54 96.55687 151.272 96.38215 152.252 97.54518 

154.04 96.47536 153.772 96.2556 154.752 97.4336 

156.54 96.39785 156.272 96.14478 157.252 97.31717 

159.04 96.33325 158.772 96.04293 159.752 97.20404 

161.54 96.27389 161.272 95.95089 162.252 97.09042 

164.04 96.22221 163.772 95.868 164.752 96.97685 

166.54 96.17197 166.272 95.79237 167.252 96.86285 

169.04 96.12559 168.772 95.71967 169.752 96.75532 

171.54 96.07561 171.272 95.65777 172.252 96.64593 

174.04 96.01962 173.772 95.59348 174.752 96.54189 

176.54 95.95582 176.272 95.53236 177.252 96.44183 

179.04 95.88095 178.772 95.4691 179.752 96.34558 

181.54 95.80073 181.272 95.39637 182.252 96.25421 

184.04 95.73933 183.772 95.32738 184.752 96.16686 

186.54 95.68575 186.272 95.24943 187.252 96.08118 

189.04 95.63746 188.772 95.16568 189.752 96.00018 

191.54 95.5943 191.272 95.08071 192.252 95.92401 

194.04 95.5466 193.772 94.98677 194.752 95.84937 
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196.54 95.50231 196.272 94.89635 197.252 95.7767 

199.04 

201.54 

95.46034 

95.41229 

198.772 

201.272 

94.81006 

94.72714 

199.752 

202.252 

95.70534 

95.63652 

204.04 95.36806 203.772 94.65438 204.752 95.57472 

206.54 95.3182 206.272 94.58315 207.252 95.52349 

209.04 95.28281 208.772 94.49825 209.752 95.47666 

211.54 95.24559 211.272 94.41417 212.252 95.43412 

214.04 95.21337 213.772 94.30921 214.752 95.38979 

216.54 95.18314 216.272 94.19924 217.252 95.34038 

219.04 95.15243 218.772 94.07827 219.752 95.2818 

221.54 95.13038 221.272 93.93543 222.252 95.2136 

224.04 95.10442 223.772 93.75496 224.752 95.12884 

226.54 95.07917 226.272 93.5339 227.252 95.01917 

229.04 95.05605 228.772 93.30073 229.752 94.87094 

231.54 95.03477 231.272 93.07346 232.252 94.73927 

234.04 95.01391 233.772 92.85653 234.752 94.61367 

236.54 94.99158 236.272 92.66437 237.252 94.50124 

239.04 94.9739 238.772 92.49582 239.752 94.38863 

241.54 94.95107 241.272 92.35457 242.252 94.27011 

244.04 94.9326 243.772 92.23207 244.752 94.16327 

246.54 94.91488 246.272 92.12372 247.252 94.06129 

249.04 94.8972 248.772 92.03077 249.752 93.96555 

251.54 94.87858 251.272 91.9373 252.252 93.88133 

254.04 94.86096 253.772 91.84564 254.752 93.8 

256.54 94.84252 256.272 91.76926 257.252 93.7204 

259.04 94.82574 258.772 91.69473 259.752 93.64625 

261.54 94.81352 261.272 91.62616 262.252 93.57686 

264.04 94.80018 263.772 91.56243 264.752 93.51223 

266.54 94.78288 266.272 91.49289 267.252 93.44946 

269.04 94.77148 268.772 91.43129 269.752 93.384 

271.54 94.75577 271.272 91.37498 272.252 93.32023 

274.04 94.74475 273.772 91.31869 274.752 93.25614 

276.54 94.73385 276.272 91.26541 277.252 93.19128 

279.04 94.72211 278.772 91.20848 279.752 93.12509 

281.54 94.71152 281.272 91.15805 282.252 93.05819 

284.04 94.70412 283.772 91.11516 284.752 92.98564 

286.54 94.69394 286.272 91.05722 287.252 92.91098 

289.04 94.6833 288.772 91.01273 289.752 92.83135 

291.54 94.67511 291.272 90.96909 292.252 92.74433 

294.04 94.66808 293.772 90.93087 294.752 92.6569 

296.54 94.66068 296.272 90.88912 297.252 92.55596 

299.04 94.6549 298.772 90.83986 299.752 92.44709 

301.54 94.64713 301.272 90.80722 302.252 92.33291 
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304.04 94.63929 303.772 90.77479 304.752 92.17797 

306.54 

309.04 

94.62945 

94.62169 

306.272 

308.772 

90.73471 

90.70265 

307.252 

309.752 

92.01275 

91.82378 

311.54 94.61305 311.272 90.67446 312.252 91.59559 

314.04 94.60694 313.772 90.6429 314.752 91.3292 

316.54 94.59893 316.272 90.62082 317.252 91.02267 

319.04 94.59541 318.772 90.58362 319.752 90.68558 

321.54 94.58812 321.272 90.56214 322.252 90.32478 

324.04 94.58055 323.772 90.54113 324.752 89.96437 

326.54 94.57034 326.272 90.5156 327.252 89.62066 

329.04 94.56271 328.772 90.48321 329.752 89.29939 

331.54 94.55328 331.272 90.46807 332.252 88.99744 

334.04 94.54696 333.772 90.44803 334.752 88.71767 

336.54 94.53783 336.272 90.42782 337.252 88.4519 

339.04 94.53226 338.772 90.40277 339.752 88.2 

341.54 94.52483 341.272 90.38692 342.252 87.96144 

344.04 94.5187 343.772 90.36648 344.752 87.73399 

346.54 94.51037 346.272 90.34168 347.252 87.52406 

349.04 94.50279 348.772 90.32506 349.752 87.33895 

351.54 94.49658 351.272 90.30664 352.252 87.20404 

354.04 94.48952 353.772 90.28789 354.752 87.084 

356.54 94.48208 356.272 90.26584 357.252 86.99133 

359.04 94.47296 358.772 90.24803 359.752 86.91106 

361.54 94.46739 361.272 90.22924 362.252 86.83769 

364.04 94.45911 363.772 90.20781 364.752 86.76945 

366.54 94.44954 366.272 90.19344 367.252 86.7046 

369.04 94.44111 368.772 90.16424 369.752 86.64587 

371.54 94.43265 371.272 90.14013 372.252 86.58519 

374.04 94.42336 373.772 90.11551 374.752 86.52793 

376.54 94.41645 376.272 90.09534 377.252 86.47312 

379.04 94.408 378.772 90.07784 379.752 86.41834 

381.54 94.39702 381.272 90.04977 382.252 86.36506 

384.04 94.38704 383.772 90.03055 384.752 86.3125 

386.54 94.37764 386.272 90.01314 387.252 86.26041 

389.04 94.36829 388.772 89.9819 389.752 86.21007 

391.54 94.35869 391.272 89.95692 392.252 86.16014 

394.04 94.3476 393.772 89.93501 394.752 86.11064 

396.54 94.33649 396.272 89.91851 397.252 86.06479 

399.04 94.32745 398.772 89.88412 399.752 86.01755 

401.54 94.31602 401.272 89.86043 402.252 85.9717 

404.04 94.3046 403.772 89.83346 404.752 85.92634 

406.54 94.28947 406.272 89.81073 407.252 85.88126 

409.04 94.27851 408.772 89.78082 409.752 85.83812 
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411.54 94.26695 411.272 89.7592 412.252 85.79604 

414.04 

416.54 

94.25468 

94.23688 

413.772 

416.272 

89.73654 

89.70443 

414.752 

417.252 

85.75165 

85.71024 

419.04 94.22507 418.772 89.67836 419.752 85.66764 

421.54 94.21367 421.272 89.66459 422.252 85.6257 

424.04 94.1942 423.772 89.62689 424.752 85.58417 

426.54 94.17886 426.272 89.59445 427.252 85.54232 

429.04 94.16426 428.772 89.57529 429.752 85.50059 

431.54 94.14636 431.272 89.55251 432.252 85.45813 

434.04 94.12858 433.772 89.52005 434.752 85.41557 

436.54 94.10917 436.272 89.49629 437.252 85.3717 

439.04 94.0944 438.772 89.46582 439.752 85.32934 

441.54 94.07076 441.272 89.43111 442.252 85.28453 

444.04 94.0512 443.772 89.41037 444.752 85.24084 

446.54 94.02904 446.272 89.3783 447.252 85.19592 

449.04 94.0031 448.772 89.34531 449.752 85.14937 

451.54 93.97268 451.272 89.32216 452.252 85.10498 

454.04 93.94488 453.772 89.27883 454.752 85.05696 

456.54 93.91786 456.272 89.24487 457.252 85.00965 

459.04 93.88752 458.772 89.21961 459.752 84.96281 

461.54 93.85751 461.272 89.176 462.252 84.91293 

464.04 93.81568 463.772 89.1402 464.752 84.86061 

466.54 93.78405 466.272 89.10367 467.252 84.8103 

469.04 93.74442 468.772 89.06252 469.752 84.75564 

471.54 93.70137 471.272 89.02374 472.252 84.70386 

474.04 93.65671 473.772 88.98067 474.752 84.64953 

476.54 93.60572 476.272 88.9349 477.252 84.59296 

479.04 93.55982 478.772 88.90234 479.752 84.53501 

481.54 93.50916 481.272 88.84306 482.252 84.47557 

484.04 93.44907 483.772 88.79289 484.752 84.4146 

486.54 93.38261 486.272 88.74136 487.252 84.35117 

489.04 93.31535 488.772 88.68666 489.752 84.28537 

491.54 93.24583 491.272 88.62609 492.252 84.21842 

494.04 93.16678 493.772 88.56853 494.752 84.14921 

496.54 93.08427 496.272 88.50387 497.252 84.07716 

499.04 92.99126 498.772 88.43718 499.752 84.00252 

501.54 92.88588 501.272 88.37053 502.252 83.92501 

504.04 92.77087 503.772 88.29493 504.752 83.84314 

506.54 92.63831 506.272 88.22002 507.252 83.75842 

509.04 92.4955 508.772 88.1368 509.752 83.67115 

511.54 92.34312 511.272 88.05155 512.252 83.57997 

514.04 92.17707 513.772 87.96589 514.752 83.48644 

516.54 91.96704 516.272 87.87243 517.252 83.37976 
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519.04 91.7433 518.772 87.7614 519.752 83.27413 

521.54 

524.04 

91.50395 

91.1815 

521.272 

523.772 

87.66239 

87.55245 

522.252 

524.752 

83.1632 

83.04666 

526.54 90.913 526.272 87.43689 527.252 82.91149 

529.04 90.59563 528.772 87.31687 529.752 82.78264 

531.54 90.28366 531.272 87.18519 532.252 82.65097 

534.04 89.89292 533.772 87.05854 534.752 82.51543 

536.54 89.51814 536.272 86.92201 537.252 82.36163 

539.04 89.12086 538.772 86.77362 539.752 82.18877 

541.54 88.69918 541.272 86.62413 542.252 82.0332 

544.04 88.25756 543.772 86.45929 544.752 81.85226 

546.54 87.78908 546.272 86.30339 547.252 81.67199 

549.04 87.29462 548.772 86.13279 549.752 81.48187 

551.54 86.78483 551.272 85.95818 552.252 81.28939 

554.04 86.23529 553.772 85.76831 554.752 81.07935 

556.54 85.66408 556.272 85.57413 557.252 80.85983 

559.04 85.07362 558.772 85.37604 559.752 80.63512 

561.54 84.44787 561.272 85.17868 562.252 80.39887 

564.04 83.80272 563.772 84.9429 564.752 80.14946 

566.54 83.14073 566.272 84.7018 567.252 79.89695 

569.04 82.43227 568.772 84.46069 569.752 79.6331 

571.54 81.71341 571.272 84.20273 572.252 79.36611 

574.04 80.96973 573.772 83.97071 574.752 79.09299 

576.54 80.19259 576.272 83.72447 577.252 78.80409 

579.04 79.40015 578.772 83.47499 579.752 78.50443 

581.54 78.57018 581.272 83.17878 582.252 78.20672 

584.04 77.71826 583.772 82.87682 584.752 77.899 

586.54 76.85714 586.272 82.58588 587.252 77.58924 

589.04 75.96668 588.772 82.31732 589.752 77.27569 

591.54 75.06687 591.272 81.98637 592.252 76.9486 

594.04 74.15432 593.772 81.67287 594.752 76.62324 

596.54 73.2118 596.272 81.34419 597.252 76.28971 

599.04 72.29767 598.772 81.0121 599.752 75.95821 

601.54 71.38911 601.272 80.68475 602.252 75.61259 

604.04 70.50783 603.772 80.33302 604.752 75.26685 

606.54 69.63769 606.272 79.98383 607.252 74.91549 

609.04 68.82023 608.772 79.62408 609.752 74.5604 

611.54 68.04012 611.272 79.24845 612.252 74.20149 

614.04 67.32594 613.772 78.87971 614.752 73.83904 

616.54 66.66484 616.272 78.50092 617.252 73.4691 

619.04 66.06138 618.772 78.11443 619.752 73.09409 

621.54 65.51792 621.272 77.70977 622.252 72.7146 

624.04 65.01368 623.772 77.32502 624.752 72.32177 



 152 

(Continued) 
     

626.54 64.53328 626.272 76.91798 627.252 71.93728 

629.04 

631.54 

64.08618 

63.66139 

628.772 

631.272 

76.5086 

76.10021 

629.752 

632.252 

71.54097 

71.14269 

634.04 63.24061 633.772 75.66084 634.752 70.73482 

636.54 62.86984 636.272 75.25567 637.252 70.32839 

639.04 62.49458 638.772 74.81668 639.752 69.91009 

641.54 62.11016 641.272 74.37953 642.252 69.4896 

644.04 61.76733 643.772 73.94366 644.752 69.07236 

646.54 61.42391 646.272 73.50535 647.252 68.65167 

649.04 61.10967 648.772 73.05442 649.752 68.23142 

651.54 60.77255 651.272 72.61061 652.252 67.80744 

654.04 60.48866 653.772 72.1611 654.752 67.37795 

656.54 60.18658 656.272 71.7155 657.252 66.95186 

659.04 59.87979 658.772 71.26283 659.752 66.53219 

661.54 59.57198 661.272 70.80552 662.252 66.10316 

664.04 59.2924 663.772 70.35794 664.752 65.68612 

666.54 58.99038 666.272 69.89156 667.252 65.2689 

669.04 58.71947 668.772 69.44382 669.752 64.85315 

671.54 58.46354 671.272 68.97553 672.252 64.44557 

674.04 58.16372 673.772 68.51818 674.752 64.03439 

676.54 57.89018 676.272 68.05487 677.252 63.63151 

679.04 57.63147 678.772 67.60089 679.752 63.23559 

681.54 57.37093 681.272 67.15526 682.252 62.83521 

684.04 57.11362 683.772 66.68034 684.752 62.44451 

686.54 56.81111 686.272 66.22548 687.252 62.05521 

689.04 56.55805 688.772 65.77047 689.752 61.66477 

691.54 56.30797 691.272 65.30587 692.252 61.28818 

694.04 56.04712 693.772 64.86195 694.752 60.91303 

696.54 55.79032 696.272 64.4044 697.252 60.53833 

699.04 55.53366 698.772 63.9562 699.752 60.16698 

701.54 55.28517 701.272 63.49737 702.252 59.79921 

704.04 55.02907 703.772 63.05728 704.752 59.43737 

706.54 54.77964 706.272 62.61283 707.252 59.07925 

709.04 54.53287 708.772 62.17681 709.752 58.73097 

711.54 54.22969 711.272 61.73416 712.252 58.38122 

714.04 54.03788 713.772 61.29948 714.752 58.03638 

716.54 53.75079 716.272 60.87576 717.252 57.69781 

719.04 53.55885 718.772 60.4569 719.752 57.3555 

721.54 53.2801 721.272 60.03839 722.252 57.02324 

724.04 53.08098 723.772 59.61464 724.752 56.69341 

726.54 52.82065 726.272 59.21 727.252 56.36543 

729.04 52.60378 728.772 58.81836 729.752 56.04782 

731.54 52.35516 731.272 58.39667 732.252 55.72781 
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734.04 52.11504 733.772 58.01355 734.752 55.41077 

736.54 

739.04 

51.87991 

51.63421 

736.272 

738.772 

57.6234 

57.22406 

737.252 

739.752 

55.0988 

54.78689 

741.54 51.40062 741.272 56.84203 742.252 54.48143 

744.04 51.15434 743.772 56.46885 744.752 54.17809 

746.54 50.89131 746.272 56.08442 747.252 53.87479 

749.04 50.66834 748.772 55.71902 
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Appendix D 

Table 35. Pyrolysis of sawdust raw data.  

# 
flow rate 

(CC/min) 

particle size 

(µm) 
molten salt molar ratio of salt 

temperture 

(ºC) 
catalyst/mass (g) 

bio-oil 

yield 

(%) 

1 120 106-212 Zn-K-Li 40-20-40 350 - 32.4 

2 135 106-212 Zn-K-Li 40-20-40 350 - 36.8 

3 146 106-212 Zn-K-Li 40-20-40 350 - 40.0 

4 165 106-212 Zn-K-Li 40-20-40 350 - 40.8 

5 190 106-212 Zn-K-Li 40-20-40 350 - 18.0 

6 165 106-212 - - 300 - 12.9 

7 165 106-212 - - 350 - 19.1 

8 165 106-212 - - 400 - 33.2 

9 165 106-212 - - 450 - 39.6 

10 165 <106 - - 350 - 18.6 

11 165 300-450 - - 350 - 14.0 

12 165 680-850 - - 350 - 13.8 

13 165 <106 Zn-K-Li 40-20-40 
a
 300 - 41.2 

14 165 <106 Zn-K-Li 40-20-40 
a
 350 - 49.1 

15 165 <106 Zn-K-Li 40-20-40 
a
 400 - 52.5 

16 165 <106 Zn-K-Li 40-20-40 
a
 450 - 57.7 

17 165 106-212 Zn-K-Li 40-20-40 
a
 300 - 37.4 

18 165 106-212 Zn-K-Li 40-20-40 
a
 350 - 46.9 

19 165 106-212 Zn-K-Li 40-20-40 
a
 400 - 51.5 

20 165 106-212 Zn-K-Li 40-20-40 
a
 450 - 54.9 

21 165 <106 Cu-K 65-35 300 - 25.4 

22 165 <106 Cu-K 65-35 350 - 41.0 

23 165 <106 Cu-K 65-35 400 - 48.0 

24 165 <106 Cu-K 65-35 450 - 62.8 

25 165 106-212 Cu-K 65-35 300 - 22.2 

26 165 106-212 Cu-K 65-35 350 - 32.6 

27 165 106-212 Cu-K 65-35 400 - 36.8 

28 165 106-212 Cu-K 65-35 450 - 52.2 

29 165 106-212 Zn-K-Li 40-20-10 
a
 400 - 54.9 

30 165 106-212 Zn-K-Li 40-20-20 
a
 400 - 57.5 

31 165 106-212 Zn-K-Li 40-20-30 
a
 400 - 56.6 

32 165 106-212 Zn-K-Li 40-2-40 
a
 400 - 20.7 

33 165 106-212 Zn-K-Li 40-5-40 
a
 400 - 56.1 

34 165 106-212 Zn-K-Li 40-10-40 
a
 400 - 51.5 

35 165 106-212 Zn-K-Li 40-30-40 
a
 400 - 50.1 

36 165 106-212 Zn-K-Li 30-20-40 
a
 400 - 53.4 

37 165 106-212 Zn-K-Li 50-20-40 
a
 400 - 66.5 
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38 165 106-212 Zn-K-Li 60-20-40 
a
 400 - 58.2 

39 165 106-212 Zn-K-Li 70-20-40 
a
 400 - 58.3 

40 165 106-212 Cu-K 65-35 350 PA 
b
/0.5 41.0 

41 165 106-212 Cu-K 65-35 350 PA/1 41.0 

42 165 106-212 Cu-K 65-35 350 PA/2 41.0 

43 165 106-212 Cu-K 65-35 300 PA/2 34.2 

44 165 106-212 Cu-K 65-35 350 PA/2 41.0 

45 165 106-212 Cu-K 65-35 400 PA/2 48.0 

46 165 106-212 Cu-K 65-35 450 PA/2 58.6 

47 165 106-212 Zn-K-Li 40-20-40 
a
 300 PA/1 50.6 

48 165 106-212 Zn-K-Li 40-20-40 
a
 350 PA/1 55.7 

49 165 106-212 Zn-K-Li 40-20-40 
a
 400 PA/1 60.4 

50 165 106-212 Zn-K-Li 40-20-40 
a
 450 PA/1 63.7 

51 165 106-212 Zn-Na-K 52.9-13.4-33.7 300 - 36.9 

52 165 106-212 Zn-Na-K 52.9-13.4-33.7 350 - 33.8 

53 165 106-212 Zn-Na-K 52.9-13.4-33.7 400 - 47.8 

54 165 106-212 Zn-Na-K 52.9-13.4-33.7 450 - 51.7 

55 165 106-212 Zn-Na-K 52.9-13.4-33.7 400 PA/1 51.6 

56 165 106-212 Zn-Na-K 60-20-20 400 - 46.7 

57 165 106-212 Zn-Na-K 60-20-20 400 PA/1 54.6 

58 165 106-212 K-Li-Na 36-55-9 400 - 36.2 

59 165 106-212 K-Li-Na 36-55-9 400 PA/1 43.0 

60 165 106-212 K-Li-Na 24-43-33 400 - 39.5 

61 165 106-212 K-Li-Na 24-43-33 400 PA/1 46.0 

62 165 106-212 K-Li-Na 24-43-33 400 ZnCl2/1 48.3 

63 165 106-212 K-Li-Na 24-43-33 400 PA/0.5+ZnCl2/0.5 48.0 

64 165 106-212 K-Li-Na 24-43-33 400 ZnCl2/0.5+SnCl2/0.5 37.4 

65 165 106-212 K-Li-Na 24-43-33 400 PA/0.5+SnCl2/0.5 42.1 

66 165 106-212 K-Li-Na 24-43-33 400 Ni(OH)2/1 47.8 

67 165 106-212 K-Li-Na 24-43-33 400 ZSM-5/1 43.5 

5 g sawdust was used and the mass ratio of feed to salt was set to 1: 10 in all the experiments listed in Table 35.  

a. Molar ratio is based on the molecular weight of the metal cation. 

b. PA is the abbreviation of phosphomolybdic acid. 

 


