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Abstract

Fractals are mathematically defined objects with self-similar detail
on every level of magnification. In the past, scientists have studied
their mathematical properties by rendering them on computers. Re-
cently, artists have discovered the possibilities of rendering fractals
in beautiful ways in order to create works of art. This project pro-
vides some background on several kinds of fractals, explains how they
are rendered, and shows that fractal art is a newly emerging artistic
paradigm.
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1 Executive Summary

This Interactive Qualifying Project explores the overlap between the sub-
jects of fractals and art. We sought to find out how mathematics could be
involved in the process of creating art and to explore the humanistic side of
fractals. To do this, we explore several different kinds of fractals, explain
their mathematical definition, and show how they could be used to generate
aesthetically beautiful images. Then we explore the sociological side of frac-
tal art, and we analyze the psychology behind the aesthetic beauty found in
several pieces of fractal art.

This report begins with a brief introduction to the topic of fractals and
then addresses the question of whether fractals can be considered a form
of art. At this point, we establish the goal for this project: to prove that
fractal art is a new form of art. Proceeding from this point, we give a general
mathematical background of some of the mathematical details of several
kinds of fractals, including the Mandelbrot and Julia sets, iterated function
systems, and L-Systems. Then we describe the concept of fractal dimension,
and demonstrate how to calculate the dimension of several example fractals.
Using this infromation, we explore how the concept of fractal dimension can
be applied to works of art.

From this point the report delves into more humanistic issues. It is in-
teresting to generate classic fractals such as the Koch curve and Sierpinski
gasket, but how can we use fractals to create truly beautiful art? We show
how fractals can be used to generate music, and we discuss the artistic value
of such music. Next, we explore the relationship between art and society.
Theories of how society is reflected in art are discussed, and we try to answer
the question,“What does fractal art say about our society?” Finally, we ap-
ply existing psychological studies about the perception of art to a few pieces
of work by fractal artists, to show that many of the same qualities found in
traditional art can also be found in fractal art.
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2 Introduction

The field of mathematics has seen many recent discoveries related to frac-
tals. Fractals hold many secrets that mathematicians are only beginning
to unlock. From the intricate and colorful Mandelbrot set to the infinitely
repeating pattern of the Koch curve, fractals hold the interest of many. Re-
cent discoveries have found fractals and similar formations in many areas of
research such as physics and geometry. Other links can be found between
fractals and natural formations such as mountain ranges. Fractals can even
be found in works of art, where a painting has more detail visible when you
examine its edges arbitrarily closely.

This Interactive Qualifying Project (IQP) focuses on the artistic possibil-
ities of fractals. It is the goal of this IQP to explore the applications of the
growing field of fractals to the arts. We will give a general introduction to
fractals, and then show how these ideas relate to various areas of art. In this
way, we intend to demonstrate that, along with having intriguing scientific
ramifications, fractals have a very important humanistic side. This, we feel,
relates science and sociology, which is the purpose of an IQP.

The authors hope to broaden their own knowledge of fractals as well.
This project provides two interesting opportunities: we not only will explore
what mathematically defines a fractal and what mathematical properties
they have, but we will also see how fractal images can be considered works
of art.

Science thrives on the benefits it gives to average people. There would be
no purpose to scientific discovery if it did not bring improvement to the lives
of many people. Medicine is an obvious example: medical discoveries lead
directly to improving the health of patients. Fractals can also provide a ben-
efit in that even purely mathematical fractal images such as the Mandelbrot
and Julia sets are strikingly beautiful.

The authors hope to broaden the impact of their existing scientific knowl-
edge by seeing how it can positively affect peoples’ lives. Instead of studying
only the pure mathematics of fractals, we will forge a link between mathe-
matics and beauty. It is our hope that we can gain some experience with
what beauty itself is. In this way, our future scientific efforts will be im-
proved because we will be more attuned to how our efforts will be viewed
by an average person. And as was outlined above, this is arguably a very
important consideration when exploring science.

One can find many examples of beauty in fractals. It would not be effec-
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tive to try to cover all of the many types of fractals at once, and it is beyond
the scope of an IQP. However, we feel that we can gain some of the insight
described above by focusing on a few links between fractals and art. By
exploring some examples, we hope to show how fractals and art are deeply
related as a whole.

2.1 Fractals

The term “fractal” encompasses a somewhat loosely defined type of mathe-
matical object. Traditionally, fractals are defined as objects exhibiting self-
similarity; that is, objects containing parts that look like the whole when
magnified. Objects like the Koch Curve and Iterated Function Systems,
which will be explored later, are self-similar objects. When using this defi-
nition of “fractal”, it is implied that these objects must have new detail on
every scale of magnification. In fact, fractals are commonly described using
just this last criterion: that they have fine detail of a similar structure at
every scale of magnification. This is the definition used for this IQP, which
allows us to explore such objects as the Mandelbrot and Julia sets, which do
not exhibit true self-similarity.

The fine detail common to fractal images is what helps to make them
beautiful and fascinating to behold. Fractal images tend to be wildly chaotic,
with new and interesting formations that draw the eye. They usually have
vivid color and often exhibit self-similarity, or at least some general form of
self-mimicry, at many levels. The eye is often drawn to explore a tiny detail,
which, on closer inspection, is very similar to the image as a whole. This
plays on the natural human instinct to correlate and explore similar visual
stimuli.

It is more interesting, for artistic purposes, to concentrate on the rep-
resentation of fractals in a computer graphics environment. Fractals them-
selves are infinitely detailed mathematical constructs, so it is not possible for
humans to visually and aesthetically experience a fractal object. It is the
rendering process that brings some sense of order out of chaos: it gives us
a way to visualize a fractal. It is important to understand that the images
produced by processes described in this IQP are not the fractals themselves;
they are just a graphical approximation of the fractal object.

As we will demonstrate, the rendering process plays just as important a
role in creating an aesthetically pleasing image as the fractal formula itself.
To represent a fractal graphically, it is necessary to make many choices,
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such as color, size of image, parameters, rendering effects, and many other
possibilities. Choosing a good rendering method can produce an image of
startling depth and beauty, while choosing a poor rendering method can
create an image that seems like a random collection of differently colored dots.
This project will demonstrate several popular fractal rendering methods and
explore their aesthetic appeal.
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3 Are Fractals Art?

Before we explore different kinds of fractal art, it is important to consider this
question: can fractals, in fact, be considered a form of art? Certainly one can
see, by flipping through the diagrams later in this report, that there are plenty
of examples of intriguing and beautiful fractals. But the question remains,
can we place our work in the same field as da Vinci and Michaelangelo? Can
the process of manipulating mathematical formulas be likened to a process
of artistic creation?

At the outset, some people will argue that the answer is no. They claim
that, because fractals have mathematics as their basis, there is no chance for
a person to introduce meaning and intrigue. Mathematics is, after all, a dry
field of unwavering truths and equations; numbers don’t express emotion.
Others might point out that fractal images exist only as the creation of a
computer. Computers follow specific instructions and cannot think for them-
selves or experience emotion. Or perhaps opponents will point out the fact
that the fractal image was “always there”, just waiting for the mathemati-
cian to stumble across it. Finally, perhaps conceding that there are infinite
possible images to be found in a given fractal, opponents have argued that
the “artist” is merely punching in random numbers to create his images.

The purpose of this project is to show, by example and by discussion, that
fractal imagery is an art form in and of itself. The number of possible images
in each fractal is infinite, and not every one of these is even remotely aesthet-
ically pleasing. But some fractal images are strikingly beautiful. They have
infinite detail that can always yield new shapes at closer inspection. Their
self-similarity tantalizes our natural need to make associations between con-
cepts in our minds. They can be intriguing, and undeniably beautiful. . . but
are they art?

What is art, anyway? Authors have written long philosophical volumes
attempting to tackle that question. Indeed, the question is beyond the scope
of this project. We will have to settle with a working definition, and use this
to give the reader a sense that there is art in fractals.

We know that certain works by the great artists strike us as beautiful. For
some reason, a picture will intrigue or fascinate us. Other works communicate
emotions to us, or try to make a point. Some works, like the drawings of M.
C. Escher, try to catch our interest with a visual riddle. All of these qualities
can also be found in fractal art.

But what about the idea of artistic process? Fractals are static images,
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generated predictably from a specific set of input numbers. How do we get
past the arguments above? To see how, we must examine the procedure
involved in creating fractal images. There is a process of trial and error,
of experimentation, of making small refinements to make a more interesting
picture. The mathematics may stay rigid, but the pictures don’t create
themselves. A fractal image is only a visual realization of the underlying
mathematical process. It is by varying the method of visualization that the
artist can express himself.

Is photography a form of art? After all, one is only reproducing what is
already around us. How can we call photography art, if the photographer is
merely copying what we can already see? But photography is already a well
accepted form of art. The photographs of Ansel Adams are very popular,
and many art institutes have entire departments devoted to photography.
Photography is art, but why?

Pictures don’t take themselves, and they don’t develop themselves. A
photographer chooses what to shoot, what lighting to use, what shutter
speed, what kind of film, where to focus, and so on. Then he chooses how
long to expose the film, what kind of developing techniques to use, how long
to develop the film, how large to make the print, and many other factors,
some of which are unique to each photographer. Here lies the heart of the
matter: photography is a form of art because the photographer uses his own
taste and aesthetic sense in choosing how to make his picture. We may not
be able to define beauty and art, but we can sense it in our creations. We can
learn from experience how each factor affects the end result, and therefore,
we can express ourselves through our art.

Fractal art is very similar. A fractal artist must choose what kind of
fractal to use, where to zoom in, what iteration algorithm to use, what kind
of coloring to use, how large an image to use, how much detail to capture,
and other features. Some fractal artists even take their raw fractal images
and edit them in a graphics editor, which allows for further expression. A
fractal artist is not pressing random buttons and seeing what comes out, he
is experimenting with many kinds of variation, and deciding if he likes the
end result. In this way, fractal art is much like photography, and, indeed,
like any other kind of art.

Another reason why fractals hold artistic appeal is that they are closely
related to the manner in which the world around us works. As we will discuss
later in this paper, fractal geometry can describe many natural formations
much more accurately than traditional geometry, which is based on straight
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lines and geometric shapes. Fractal functions have been crafted to look like
land masses and mountain ranges, and such images have been successfully
used in movies.

Fractal images can strike us on an instinctual level because they resemble
the way things work in the real world. As a child, John remembers watching
with fascination a short segment about fractals in a children’s show. The
imaginary camera kept plumbing the depths of the Mandelbrot set (described
in the next section), demonstrating the concept of self-similarity. What was
once a tiny detail in the entire shape turns out be a copy of the whole shape
in miniature. And the tiny details in that shape, in turn, are copies of the
whole shape again. No matter where the camera explored, more detail could
be found, always with the same recurring themes.

Now imagine looking at a greatly detailed picture of a cloud. Under a
microscope, the picture would demonstrate that, what looked like a small
offshoot of the main cloud is, in fact, reminiscent of a cloud itself. And
a small offshoot of this sub-cloud looks like a cloud too. Now consider a
head of cauliflower. Look at the whole thing, and then break off a piece
of it. Examine this piece, and notice that it remarkably resembles a whole
cauliflower plant. Break off one of these pieces, and it, too, resembles its own
plant. The similarity stops after about three levels, but it is still intriguing.
Fractals exhibit this self-similarity down to infinity, while nature exhibits it
on a limited, but still significant, scale.

Coloring techniques also help add to the beauty of a fractal. High contrast
can highlight certain details of a fractal and can help self-similarity to stand
out. We can mimic the vibrancy of nature in our fractals, and we can use
this as a tool to heighten a fractal’s similarity to a natural form. Smooth
gradients help guide the eye from one part of a fractal to another. Bright,
wildly changing colors catch the eye and encourage exploration.

Fractals provide a new medium for artistic expression. Fractal artists
learn the skills necessary to express themselves through fractals, and, in this
way, they have opened a new field of art. While we, the authors, are not
artists, we hope to demonstrate our own explorations in this growing field
and give the reader an idea of the nature of this new art form.
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4 The Mandelbrot and Julia Sets

4.1 The Mandelbrot Set

The Mandelbrot set, first visualized by Benoit Mandelbrot in 1977, is prob-
ably the most commonly known fractal. Images of it can be found, among
other places, in science exhibits and on children’s shows such as 3-2-1 Con-
tact. The algorithm is simple and yet the visual effect it creates can be
stunning. It exhibits a certain degree of self-likeness, although small differ-
ences can be found, preventing the Mandelbrot set from being completely
self-similar in a strict sense.

4.1.1 Definition

The Mandelbrot set is fairly simple to generate, and is a common choice for
programmers interested in learning about fractals. It involves characterizing
the behavior of the following recurrence relation which operates on complex
numbers zn:

zn+1 = z2
n + c (1)

In this equation, the initial value z0 is a parameter. In order to generate
the classical Mandelbrot set, we choose z0 = 0. Given this beginning value,
and a value for c, one can generate z1. Then, using this value of z1, one
can generate z2, and so on. Each new calculation is called an iteration. The
behavior of zn for increasing values of n is examined. For any given value
of c, as n approaches infinity, zn will either approach infinity, or it will not.
In the latter case, it may exhibit a cycle, or it may vary chaotically. Those
values of c for which zn does not approach infinity are in the Mandelbrot set.

Thus, it should be fairly simple to create a computer image of the Man-
delbrot set. Choose a region of the complex plane, defined by all a + bı for
which −1.5 ≤ a ≤ 1.5 and −1.5 ≤ b ≤ 1.5. Now, for each pixel in the
image, map it to a complex number c in the region, and decide if c is in the
Mandelbrot set by examining the convergence of zn. If it is in the set, mark
the pixel black, and if it is outside the set, mark the pixel white.

But there’s a problem. The convergence or divergence of zn is not obvious.
Fortunately, it can be shown that, as long as |c| < 2, if it is ever true
that |zn| > 2, then subsequent iterations will always tend toward infinity.
Therefore, we can define a critical magnitude, m = 2, and we can stop
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M maximum number of iterations
m critical magnitude
xmin lowest value of real part of c
xmax highest value of real part of c
ymin lowest value of imaginary part of c
ymax highest value of imaginary part of c
w width of image in pixels
h height of image in pixels
z0 initial value of z

Table 1: Parameters to the Mandelbrot set generation algorithm

iterating if zn ever exceeds m. But we still need a way to tell if c is in the
Mandelbrot set, without testing all possible zn. For this, we will define a
threshold called the “maximum number of iterations”, denoted as M . If
|zn| ≤ 2 for all n ≤ M , that is, if zn never exceeds the critical magnitude
before reaching the maximum number of iterations, then the point is assumed
to be in the Mandelbrot set. This gives a fairly good approximation, assuming
a sufficiently high M . In practice, M values of 100-200 yield good results.

4.1.2 Mandelbrot Image Generation Algorithm

Given the above information, it is possible to generate an image of the Man-
delbrot set. We will now present a more rigorous algorithm. Before gener-
ating an image, certain information must be chosen. How many pixels will
be in the image? What region of the complex plane will be graphed? These
necessary parameters are summed up in Table 1. The algorithm is as follows:

1. Calculate ∆x and ∆y. These are the width and height in the complex
plane of each pixel. They are calculated as follows:

∆x =
xmax − xmin

w
∆y =

ymax − ymin
h

Computer pixels are square, so parameters should be chosen such that
∆x = ∆y, or the image will appear distorted.

2. Iterate through all pixel positions in the image as x and y.
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3. For each pixel, calculate c as

c =
(
x ·∆x + xmin

)
+

(
y ·∆y + ymin

)
ı

This is equivalent to dividing up the region of the complex plane into
w columns and h rows, corresponding to the pixels of the image. Each
pixel will be represented by the location of its upper left corner.

4. Decide whether c is in the Mandelbrot set. Calculate zn for successive
values of n using Equation 1, until |zn| exceeds m, or until n exceeds
M . If zn reaches the critical magnitude before n reaches the maximum
number of iterations, then c is not in the Mandelbrot set; otherwise, it
is in the set.

5. Plot the point (x, y) black if c is in the set, or white if c is not in the
set. Exercise care, because most computer graphics implementations
choose to start y at 0 at the top of the screen, and increase y for lower
points on the screen. It may be necessary to plot the point (x, h − y)
instead.

Figure 1: Black and white Mandelbrot set, with M=100

This algorithm can be used to create an image like that in Figure 1.
This gives the basic shape of the set, with its characteristic cardioid main
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body and bulb protuberance on the left. Closer examination reveals that the
border is very complex, and that there are smaller bulbs all along the border
of the cardiod. The self-similarity of the Mandelbrot set will be examined in
closer detail below.

For now, it is enough to notice that the edge between the white and
black regions is very detailed and irregular. This is the heart of what
makes the set a fractal. Upon closer magnification, this detail grows and
grows, with new detail visible at every magnification level down to infin-
ity. Using the algorithm above, smaller details can be examined by adjust-
ing xmin, xmax, ymin, andymax. However, infinite levels of detail cannot
be attained with a computer, because the computer cannot calculate arbi-
trarily many places after the decimal point without implementing arbitrary-
precision arithmetic, as discussed later.

4.1.3 Adding Color

A slight modification to the algorithm will highlight the detail at the edge of
the set, and simultaneously make the image more visually appealing. Points
in the set will still be plotted black, but points outside the set will be plot-
ted in color. The color will be chosen from a color table (also known as a
“palette”) based on the number of iterations it took to reach the critical mag-
nitude (called the “escape time”). In this way, it will be possible to visualize
how quickly zn approaches infinity.

In a computer, the color of a pixel is represented by three values, corre-
sponding to the amount of red, green, and blue light that are mixed together
(recall that the primary colors of light are red, green, and blue). Each color is
assigned an integer between 0 and 255, with higher colors representing more
of that color present. In this system, the triple (0, 0, 0) represents black,
(255, 255, 255) represents white, and (255, 0, 0) represents bright red.

Using this system, and choosing M = 100, we can build a table in which
bright shades of red indicate a quick divergence to infinity, and dark shades of
red indicate slow divergence. As before, black will indicate that the point is
in the set. The table will be 101 items long, so as to provide a color for every
possible escape time. The table will be denoted with triples ti, which indicate
the color to use with escape time i. Therefore, the red table is calculated as

ti = (255− 255

(
i

101

)
, 0, 0)
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This divides the 255 possible values of red into 101 equal parts (because i
can be 0 to 100), and implies that t0 = (255, 0, 0), and t100 = (3, 0, 0), which
is nearly black. To see an example of the Mandelbrot set generated with this
color table, see Figure 2.

Figure 2: The Mandelbrot set, generated with a red palette

For a much more colorful image, we generated a table that starts with
red, and cycles through the colors of the rainbow several times. See Table 2
for a list of the color values of each major color of this computer-generated
“rainbow”. For each color, the red, green, and blue values are either 0 or 255.
To create the rainbow effect, first choose an “increment” value, a factor of
256, which is used to decide the amount of light separating two colors in the
table. Start the palette with red, and produce colors that are gradually closer
to yellow, by adding successive multiples of the increment. Then decrement
the red value to produce green, and continue this process for the rest of Table
2.

For the image in figure 3, we chose an increment value of 32. Thus, a
full rainbow is only 48 palette entries. A palette entry is needed for every
possible escape time, so we chose to repeat the rainbow enough times to
create at least M palette entries.
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color red green blue

red 255 0 0
yellow 255 255 0
green 0 255 0
cyan 0 255 255
blue 0 0 255

magenta 255 0 255

Table 2: The colors of a computer-generated rainbow

Figure 3: The Mandelbrot set, generated with a rainbow palette
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4.1.4 Other Rendering Methods

There are many other ways to choose the color of each pixel. Programs like
Fractint (see Appendix B, page 92) have many different formulas to color
points outside of the mandelbrot set. For example, some take into account
the value of c, or the final value of z, orone of many other things, and they
end up with dazzling effects. XaoS will also use a variety of methods to
color the points inside the set, which our algorithm rendered as black. The
possibilities are endless, and many people have found very visually appealing
coloring techniques. Since the Mandelbrot set is at the base of it, the images
will always be varicolored and intricately detailed.

4.2 The Julia Set

The Julia set is generated using Equation 1 just like the Mandelbrot set.
However, the roles of z0 and c are reversed. The variable c becomes a param-
eter to the Julia set, kept the same over all points in the complex region. To
test if a complex number b is in the Julia set, we let z0 = b and iterate, using
the same acceptance criteria as in the Mandelbrot set. All other aspects of
image generation are the same, so it is very simple to convert a Mandelbrot
set generator into a Julia set generator, or to write a program that can do
both. In Appendix A, page 81, you will find a listing of mandelbrot.cpp, a
C++ program that generates images of the Mandelbrot or Julia set, using
the rainbow palette described above.

Black region Connected color ”Fractal dust”

Figure 4: Examples of the three main types of Julia sets

The Julia set and Mandelbrot set have some interesting ties. Julia sets
tend to fall under three categories, shown graphically in figure 4. Depending
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on the value of c, a Julia image has a black central area (meaning a region
with points in the set), or it has one connected area of color, or it is broken
up into infinitely many areas of color. It turns out that the type of Julia set
for a given c value depends on where the value falls in the Mandelbrot set. If
c is in the black body of the Mandelbrot set, the corresponding Julia set will
have a black area. If c is in the colorful boundary of the Mandelbrot set, the
corresponding Julia will be one connected area of color. Finally, as c moves
outside of the colored area, the Julia will break up into “fractal dust”, and
will consist of disconnected parts. In this way, and other more subtle ways,
the Mandelbrot set consists of a “road map” of the Julia sets.

4.3 Self-Similarity of the Mandelbrot and Julia Sets

The Mandelbrot and Julia set rendering program mentioned above is useful
for creating static images of the sets, but it is tedious to use it to zoom in and
examine areas in finer detail. Fortunately, many programs have been written
to serve this purpose, such as Fractint. Using these programs, one can easily
look closer at certain details, and, in the case of Fractint, examine down
to near-infinite precision (although deeply zoomed images can take days to
render).

Look again at the images of the Mandelbrot set above. The shape of the
black area is, in general, a cardioid main body with a bulb on the left. Now
look at the side of the cardioid, and notice that the bulb shape is repeated
much smaller all around the edge of the set. If you zoom in on one of these,
you’ll find that it’s quite a lot like the main bulb. So much so that it, in fact,
has its own protuberances, and they each have their own, all quite similar to
the main shape. But eventually the pattern disintegrates into one or another
of the infinitely varying patterns of the set.

Now examine the whole picture again, and notice the “antenna” off the
left side of the bulb. A small distance out is a black lump. Examination in a
program such as Fractint reveals that this lump bears a striking resemblance
to the entire Mandelbrot set. In fact, there is another lump off of the left
end of its spire, and so on, down to infinite levels.

Many other examples of similar structures at different levels of magnifica-
tion can be found in the Mandelbrot set, and also in the Julia sets. However,
the self-similarity is never quite perfect, it is more of a “self-likeness”. Many
fractals are completely self-similar, like the Sierpinski Gasket (which will be
examined later). But this is not an absolute requirement. The Mandelbrot
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and Julia sets are still fractals, because they exhibit fine detail on every level
of magnification.

4.4 Higher Exponents

Look once more at Equation 1. What happens if we modify the equation
slightly, as follows?

zn+1 = z3
n + c

The basic concept of the sets still applies when the exponent is 3, and
when it is higher. A sample of Mandelbrot and Julia sets at higher exponents
is shown in figure 5. Notice that the Mandelbrot set of degree 3 (M3) is
rotationally symmetric. J2 already was rotationally symmetric, but J3 now
has three degrees of rotational symmetry. The general rule is that Mn has
n − 1 degrees of rotational symmetry, and Jn has n degrees of rotational
symmetry. Mn is also symmetric about the real axis for any n.

Figure 5: These images show successively higher exponents of z in the Man-
delbrot and Julia sets. In the top row are mandelbrot sets, and in the bottom
are the corresponding Julia sets. The exponents range from 2 to 4 from left
to right.
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4.5 Beauty and Art in the Mandelbrot and Julia Sets

Exploring the Mandelbrot and Julia sets can be exciting and enjoyable, es-
pecially with programs such as XaoS. XaoS (likely pronounced “chaos”) is
a real-time fractal movie renderer. This means that you can zoom into an
area of the Mandelbrot or Julia sets and watch, in real time, as part of the
image gets larger, gradually filling in with more and more detail. You can
watch as a miniature mandelbrot set described above comes into view, and
then you can explore a small offshoot of that, and then another offshoot,
and discover that the tiniest detail of the original image is actually a whole
object in and of itself. Then you can zoom all the way back out to the main
view of M2, and you’ll see that your playground from a moment ago is now
all but invisible. For more information about XaoS, see Appendix B, page
93.

The very concept of infinite detail is fascinating to the mind and often
leads to very aesthetically pleasing images. It has analogs to the real world:
the tiniest crack in your floor is possibly the home to thousands of little forms
of life, and perhaps each one of those is the home to a smaller parasitic life
form. Or consider that our planet, when viewed from outside of the galaxy, is
insignificantly small, but if you were to “zoom in” on the earth, you’d discover
that it has an amazing amount of previously unnoticed detail. In this way,
the Mandelbrot set is a “world” of its own, with one important difference:
the images obtained from the Mandelbrot set contain infinite levels of detail.
All of this results from the deceptively simple Equation 1.

Explorers of the Mandelbrot and Julia sets seem to come in one of two
varieties. The first group see the set as a playground for artistic creation.
They use the images they find to express their own creativity and artistic
ability in new ways. These explorers are interested in coloring methods and
artistic manipulation of fractal images. The second group is perhaps more
mathematically based, in that they seek to map the world of Mandelbrot,
and try to explore previously uncharted areas. These explorers are more
interested in the performance of the rendering engine, such as numerical
precision and speed of rendering. The division is very approximate, because
many artists use techniques from both camps to create their images.

Examples of fractal art are becoming increasingly easy to find on the
Internet. Using the popular search engine Google, queries such as “frac-
tal gallery” produces an estimated 96,600 results, although this number is
subject to fluctuation. Allowing for cross linking and mentions, one can

21



still draw the conclusion that there are hundreds, if not thousands of fractal
artists using the Internet as a place to publish their works. Examining just
a small sampling of galleries, one can find amazingly vivid abstract pictures
derived from fractals. Some represent natural objects, such as flowers or
butterflies, while others seem to have been designed merely to enhance their
own chaotic form. And much like classical forms of art, these pictures draw
your attention, make you explore their edges, and often convey emotion or
even analogies to objects in the world.

It is apparent that many people feel that they are using images of the
Mandelbrot and Julia sets, and similar equations, as a playground for their
artistic expression. They feel that finding pretty fractal images requires skill,
not mere luck. It is the contention of many fractal artists that, while there
is a bit of chance involved in finding their images among the sea of possi-
bilities, the image only begins to become artistic expression through careful
manipulation.

It is not uncommon for fractal artists to compare their art form to pho-
tography, and photography has become a well accepted form of art. Photog-
raphy went through its own period of acceptance, in which critics expressed
the opinion that this form of “art” could not be art, as it lacked an element of
creation. The analogy is quite close when you consider that fractal artists are
exploring the infinite world of the Mandelbrot set, and selecting and carefully
developing the parts they feel show beauty.

4.5.1 Finding interesting fractal images

Almost every fractal artist and explorer has a different method for finding
fractal images. It seems that one must get a feel for the patterns behind the
set and for what will result from modifications such as zooming, coloring,
and changing formulas. There is no definite algorithm for finding interesting
Mandelbrot images, such that a computer could be made to produce fractal
art. Because of this, human input is essential and is more than simple random
selection. After exploring the fractal for a while and learning when certain
patterns appear, the artist begins to get a feel for where to look to find
interesting pictures. This is not a mathematically describable phenomenon,
and it seems to be similar in nature to the kind of aesthetic “sense” that
other types of artists develop. By experimenting with the various possible
manipulations available to the artist, he begins to learn how to generate the
kinds of images he likes.
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The most interesting fractal art comes from careful manipulation of the
raw images discovered in the Mandelbrot set. These manipulations include
choice of coloring method, blending together multiple images, stretching,
skewing, rotation, and even modification of the image with standard graphics
editing software. Mandelbrot art is far from a purely mathematical art form;
there are many places where an artist can add his own expression. This is
what separates artistic Mandelbrot creations from mere snapshots of the set.

4.5.2 Deep zooming

Many Mandelbrot set enthusiasts are in awe of the mathematics involved,
where a simple formula leads to a map of an infinitely complex world. These
artists are interested in exploring and classifying the kinds of images they
find, along with what paths are taken to get such images. The self-similarity
of the set is apparent to them, as they continue to find the same classes of
images in different places in the set. This leads them to explore the technique
of deep zooming, in which they attempt to see if some previously undiscovered
image is just waiting to be discovered, if only they zoom in far enough.

Casual experimentation with deep-zooming tends to yield very boring
results. This is because a vast majority of the areas of the Mandelbrot set
turn out to produce similar or identical images no matter how much they
are magnified. To see an example of this, use a program such as Fractint,
and start zooming in on a colorful region until you find a spiraling shape. If
you continue to zoom in on this image, you will find that, while it continues
spiraling forever, there is no “new” image to be found no matter how far you
zoom in.

At this point, it is necessary to revisit the mathematical side of the Man-
delbrot set. Remember that the algorithm described above chooses a sam-
pling of the points in the coordinate system to test for inclusion in the Man-
delbrot set. It is important to realize that the images produced are not, in
fact, perfect representations of the set and that, no matter how many pixels
are used to represent an image, it is always an approximation. The reason
behind this is that computer pixels, by their nature, have a finite width,
whereas points in the coordinate system are infinitesimally small. Zooming
in merely means that you are choosing that your pixels are representative of
smaller and smaller portions of the plane, and so their coordinates will differ
by smaller and smaller quantities. Unfortunately, computer representation of
real numbers is limited in its precision, and so there comes a point at which
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the computer simply can’t accurately represent the difference between the
points corresponding to adjacent pixels on the screen. This is referred to as
“floating point inaccuracy”.

It is possible to get around this, and Fractint, among other programs,
attempts to do so. While standard computer processors can represent real
numbers to about 16 decimal places, Fractint can represent up to 1600 dec-
imal places. It does this by simulating a single very precise computation
through many computations at a level of precision that the computer can
handle. And so this high-precision calculation system comes with a price:
the deeper the zoom, the longer the computation takes. Some images can
take thousands of hours to render completely.

This problem is compounded by the fact that deeper zooms require a
higher maximum iteration value. This is because explorations deep into the
images of the Mandelbrot set are actually deep examinations of the border
between points in the set and out of the set. As you examine more closely,
you bring to the foreground previously unnoticed points that take a longer
time to reach the critical magnitude, m. A common symptom of this is that
the image has large areas of black, often at the center of a spiral. These black
images are actually collections of points that take longer than M iterations
to reach the critical magnitude, and are mistakenly assumed to be in the set.
By raising the maximum iteration count, one will quickly discover that there
was more detail waiting to be uncovered. And of course, a higher maximum
iteration count means that even more calculations will be required to render
each image.

So deep zooming involves even more patience than other kinds of Man-
delbrot exploration. Often the effort is futile as the explorer discovers that
he has fallen into a spiral that will never look different. To avoid this, practi-
tioners of deep zooming share their opinions and insights as to how to avoid
falling into these “self-similarity traps”. One technique involves searching
for the miniature copies of the Mandelbrot set, affectionately referred to as
“minibrots”, that seem to spring up at any level of zooming. Experience
seems to indicate that, by recognizing the indicators of a minibrot and find-
ing it, one can avoid the deluge of boringly self-similar spirals that can be
found all over the Mandelbrot world. The commonly described technique
for finding new and interesting shapes in the set involves zooming in deeper
and deeper while hopping from minibrot to ever smaller minibrot. The more
minibrots you pass, the more likely it is that the structures you find will be
different from what has been seen before.
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4.5.3 Coloring techniques

Many fractal artists agree that colors are very important to the overall appeal
of a fractal image. By choosing what coloring method to use, and which
colors to use, the artists find that they can bring out details that weren’t
visible before. Choosing carefully what colors go next to each other can
cause interesting formations to appear. Choosing carelessly can completely
hide an interesting formation in a pattern that looks something like television
“snow”.

Described above is only one example of how to bring color to a fractal
image. Unfortunately, no matter how the palette is arranged, there is a
fundamental limit to the number of colors used in the image, and that is
the maximum number of iterations. Other coloring methods exist that can
assign different colors to pixels even if they share the same escape time.

Previously, the only information used to make the decision was the escape
time. But one could just as easily color a pixel based on the magnitude of z
at the time it reached the critical magnitude, or the angle z makes with the
x-axis, or other aspects of z such as its real and imaginary parts. XaoS has
many coloring modes available. Some of them involve different functions of
the real and imaginary part of z at the time it escapes, involving division,
addition and cosines. Some modes also involve the magnitude of z, and the
value of c, the point being tested for inclusion in the set. The possibilities
are endless, and they often create pleasing effects.

XaoS, among other programs, also has another interesting coloring mode.
In the algorithm developed above, points in the set are unilaterally black.
However, these points don’t all behave exactly the same. Coloring methods
sometimes explore the kind of cycles that points in the set fall into, or simply
choose colors based on the value of zM , the value reached at the maximum
number of iterations.

Now, we have run up against another limitation of computers. The num-
ber of colors that can be represented by triples of integers less than 256
is 16,777,216, and the smallest possible difference between colors is unde-
tectable by the human eye. Unfortunately, earlier computers could not si-
multaneously represent 16 million colors at once. Original graphics systems
represented just black and white. VGA systems could display at most 16 col-
ors at a time, and later 256. In fact, current versions of Fractint still display
only 256 unique colors at a time. Much like the palette of colors generated
for escape-time coloring as described above, 256-color systems allowed the
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programmer to select 256 red-green-blue triples to use on the screen at any
one time. The reason for this was that each pixel required much less memory
to define, because it only required a number up to 256 as an index to the
palette.

Present technology allows programmers to use all 16 million colors, with
no limit to the number of colors used on the screen at one time. This is
referred to as “true color mode”, because it is possible to represent a photo-
graph on the screen with as many colors as can be detected by the human eye.
However, it should be noted that not all 16 million colors may be used on the
screen at once: at most each pixel will represent a unique color. Most sys-
tems have resolutions of 1024x768, or 1600x1200 pixels, which is still under
2 million pixels.

Most fractal artists agree that true color graphics are necessary to fully
capture the details of a fractal. They allow the use of free-form calculations
to determine he color values of each pixel, such as the coloring modes de-
scribed above for XaoS. True color mode also allows two images to be blended
seamlessly together, as if they were painted on glass and stuck together. True
color mode is necessary for very subtle manipulations to the fractal image
using standard graphics tools.

4.5.4 Layering

Fractint was originally written as a mathematical toy, to aid in the discovery
of new fractals and the exploration of existing fractals. Ultra Fractal is a pro-
gram that was designed with input from artists, with the purpose of artistic
creation rather than mathematical exploration. Ultra Fractal includes many
of the features of Fractint, such as deep zooming and user-defined formulas,
but it also includes special features of interest to artists.

The most interesting feature is the creation of layered images. Before
Ultra Fractal, some artists were beginning to discover that, by layering or
combining two different fractal images together, new kinds of images could be
created. This involved rendering separate images in a program like Fractint,
and combining them in a separate graphics program such as Photoshop. With
Ultra Fractal, these operations are available in the same program, and this
allows the artist much more freedom to do what he wants with the fractal.
Ultra Fractal’s features are describe in more detail in Appendix B, page 95.

Janet Parke is a fractal artist who primarily uses Ultra Fractal to produce
her art. On her web site, she describes her method for creating fractal art.

26



She starts with a palette of shades of grey, so that she can see the objects in
the Mandelbrot set, and not get caught up by the colors. When she finds an
object that she decides she likes, she tries many different coloring methods,
to see which accentuates the image best. She saves many images in this
process, until she decides she has explored enough. Then she uses various
layering techniques to combine these images with other fractal images, which
can bring out details she likes in certain areas of the image. She says that,
at this point, some kind of design or style emerges in her mind, and she
manipulates Ultra Fractal’s layering techniques to express this idea.

This is another place where artistic talent and expression are exercised
by fractal artists. Much like the techniques used in finding a fractal image,
the artist uses the tools available to her, such as composites, gradients, and
transparency, to coerce the fractal image into her idea of beauty. These tools
are like the brush and canvas of a painter. The artist learns to use her tools,
and learns the effects that they produce. Eventually, she learns to express
herself artistically, no matter what the medium is.
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Figure 6: Barnsley’s famous fern fractal

5 Iterated Function Systems

Iterated function systems (IFS’s) are used to generate fractal images from
a very small input data set. Figure 6 shows an image that bears a strik-
ing resemblance to the fern asplenium resiliens, also known as the black
spleenwort. This image was created by Michael Barnsley, and is completely
described by a set of only 28 numbers. Iterated function systems use a very
small data set to produce highly detailed images that are very provocative
to their audiences. In order to understand what these numbers are, and how
they’re used, some mathematical background is needed.

5.1 Affine Transformations

Iterated function systems are based on affine transformations. An affine
transformation in R2 is just a class of mapping from one image to another.
Given an image, an affine transformation may rotate, scale, mirror, skew,
and translate an image relative to the origin. Linear algebra tells us that any
such transformation on points (x, y) in R2 can be represented like this:

w

([
x
y

])
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
The matrix A =

[
a b
c d

]
will apply rotation, scaling, mirroring, and skew-

ing, and the additional
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f

]
vector will translate the result.
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5.2 Contraction Mappings

A contraction mapping is a special kind of affine transformation. As the
name suggests, for an affine transformation to be a contraction mapping, it
is necessary for it to make the image “smaller”. To state this more math-
ematically, it must be true that the distance between any two points after
transformation must be less than or equal to their distance before transfor-
mation.

5.3 Example: Sierpinski Gasket

An iterated function system is just a set of contraction mappings. Each
of these mappings requires 6 numbers to quantify exactly, using the above
definition. One additional number must be attached to each mapping, but
we will explain this number later. The fern example mentioned above uses
just 4 contraction mappings to fully describe the fractal.

How are the contraction mappings used? We will demonstrate using a
simple example with three contraction mappings:

1. Scale the entire image to half size

w1
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2. Scale the entire image to half size, and translate 0.5 units along the

y-axis
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3. Scale the entire image to half size, and translate 0.5 units along the

y-axis and 0.5 units along the x-axis
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]
For this example, the process starts with the image shown in the upper

left of Figure 7. Next, apply each contraction mapping wi to the image, and
remember the result. Finally, combine these three results into one new image
(upper right). Now, using this resulting image, repeat the process. Each
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Figure 7: Steps along the way to creating the famous Sierpinski gasket, also
known as the Sierpinski triangle. Upper left is the starting image, upper
right shows the first iteration, lower left shows 2 iterations, and lower right
shows as many iterations as can be printed.

repetition is called an iteration, and the first few iterations are shown in the
lower left. If this process is repeated indefinitely, the image will eventually
look like the Sierpinski gasket, shown in the lower right. The resulting image
is known as the attractor of the IFS.

The original image is eventually scaled down so far that its features are
no longer distinguishable. For this reason, one can start with any original
image, and the process will always result in the same Sierpinski triangle
[Barnsley 1988]! The essence of the final image is completely described by
the three contraction mappings, and is not affected by the starting image.
The necessity that affine transformations must be contraction mappings is
now obvious: otherwise, the image would expand without limit.
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5.4 The Non-Deterministic Rendering Algorithm

The process described above is very time-consuming. Computers can help,
but there are still many calculations that must be done, and the process is
still slow. Fortunately, there is a simpler method which is less CPU-intensive
and results in the same image, called the random iteration algorithm. This
is where the extra number for each contraction mapping comes in. A prob-
ability, pi, is associated with each contraction mapping i, such that the sum
of the probabilities of all mappings is 1. Barnsley suggests that the probabil-
ity pi of the affine transformation defined by matrix Ai should be calculated
using this formula:

pi ≈
|detAi|

N∑
i=1

|detAi|

where N is the number of mappings.
To carry out the random iteration algorithm, first select a starting point.

Now, randomly select one of the contraction mappings, weighted by the prob-
ability. Apply this contraction mapping to the point, and plot the result.
Using the resulting point, select a new mapping randomly, and repeat the
process. If this process is repeated indefinitely, the resulting image will be
exactly the same as above [Barnsley 1988].

In practice, the process is repeated for a set number of iterations. The
more iterations, the more accurately the resulting image will represent the
attractor of the IFS. With the careful selection of probability values, a clear
approximation of the image can be rendered with fewer iterations. Since
this randomized algorithm is much faster and easier to program than the
deterministic method shown above, most fractal representation programs use
it to render IFS’s.

5.5 Fractint

Fractint is a very useful program for rendering many types of fractals. Among
its many specialties, it can render images from a user-specified or built-in IFS.
One such built-in IFS is the Barnsley Fern, depicted in Figure 1.

Fractint takes as input a file with the extension “.IFS”. This file can
contain one or more IFS, specified as follows:
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ifs name {
a1 b1 c1 d1 e1 f1 p1

a2 b2 c2 d2 e2 f2 p2

. . .
an bn cn dn en fn pn

}

Using Fractint, one can generate an amazing array of figures, suggestive
of dragons (Figure 8), trees (Figure 9), and even fanciful symbolic struc-
tures (Figure 10). The recursive structures that result can mimic nature’s
self-similarity, as shown by the fern and tree examples, among many more.
Also, abstract but captivating structures can be generated. Many beautiful
examples of IFS’s are included with Fractint. For more information about
Fractint, see Appendix B, page 92.

Figure 8: A Fractint built-in IFS that looks like a dragon.
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Figure 9: An IFS reminiscent of a tree, created by the authors using FDE-
SIGN and Fractint

5.6 FDESIGN

It is not very easy to design an IFS by hand. Each contraction mapping
vaguely specifies that a copy of the “whole image” is to be rotated like so
and placed like so, but all of the contraction mappings pull and tug at each
other. If a small change is made to just one number of the fern fractal, the
stem may become detached, or the branches will no longer attach to the main
stem. As such, the process of designing or modifying an IFS is largely trial
and error, with the latter occurring frequently.

Enter FDESIGN. FDESIGN was written in 1990 for computers with Intel
8087 math coprocessors by Doug Nelson. It is amazing that this 12 year old
program will still run, and it is very interesting that it is still the most useful
program of its kind that the authors could find. Given today’s processor
speeds, FDESIGN can render an IFS very quickly.

FDESIGN allows the user to visually indicate contraction mappings, and
watch the IFS render as the mappings are added and modified. Mappings
are represented by the action they take on a triangle. First, the user draws
a starting triangle, used as a base for all transformations. Then, one draws
what happens to this triangle after it undergoes the desired contraction map-
ping. By observing the starting and ending positions of the three vertices of
the triangles, FDESIGN can uniquely determine the parameters for the con-
traction mapping. This is done by solving a system of equations (Barnsley
pp 53).
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Figure 10: Another IFS created with FDESIGN. The lower image is a zoom-
in of the outlined part of the upper image. In the fractal structure approx-
imated by this image, the name “JOHN” repeats down to infinity. John
created this image after seeing a similar image designed by the authors of
Fractint.
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John used FDESIGN to create the “JOHN” fractal in Figure 10. Once
he created the contraction mappings, he directed FDESIGN to export the
IFS into a format recognized by Fractint and rendered the image shown.
By loading the IFS code provided into FDESIGN, the reader can see the
triangles that were used to construct the system. There are 13 different
contraction mappings in this IFS. One can see them visually in Figure 10,
each in a different color. In essence, John used the triangles to specify that
the entire image was to appear in each of 13 places so that they spelled out
his name.

Though FDESIGN is a powerful tool, it is not trivial to design a mean-
ingful IFS. One must be aware of the meaning of the triangles, and what
it means to combine all of the contraction mappings at once. Fortunately,
FDESIGN comes with numerous examples, and the interface allows the user
to experiment with modifications to the examples. For more information
about FDESIGN, see Appendix B, page 95

Iterated Function Systems can create stunning visual effects, as seen
above. Because of their recursive nature, they can be made to mimic fig-
ures found in nature. They can be used to provoke interesting emotions
in people, because they explore our fascination with the concept of infin-
ity. For example, the “JOHN” fractal is extremely interesting because the
name seems to be made of itself, with an infinite number of levels that we
can never quite understand. This is why Iterated Function Systems evoke
emotion, because they intrigue our senses and make us ponder the infinite.
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6 L-Systems

From the structure of mountain ranges to the self-similarity of trees and ferns,
we see fractal features throughout nature. The purely mathematical study of
fractals tends to focus on the attractors of iterative processes, rather than the
intermediate steps in the production of the fractal. As natural systems cannot
have infinite self-similarity, it is important, when using iterative processes to
model natural systems, to pay as much attention to the intermediate results
of the process as to the final product. L-Systems are an attempt to model
the development of natural systems.

6.1 Origin

In 1968, biologist Aristid Lindenmayer invented a formalization of the de-
scription of plant growth that lends itself easily to computer implementation.
Today, these formal descriptions are known as parallel rewriting systems, or
L-Systems. Lindenmayer noticed that simple life forms, such as some kinds
of algae, had very predictable and easy to model reproductive patterns. For
example, consider a fictitious plant that grows in long filaments the thickness
of a single cell, like some forms of algae. There are two kinds of cells in this
imaginary species of algae, type A, and type B. When type A divides, it
produces a cell of type A on the left, and type B on the right. Type B splits
into a cell of type B on the left, and type A on the right. This is typical of
the reproductive patterns of this kind of algae.

We can represent a single filament as a string of letters A and B. To model
one step of cell division, simply replace all occurrences of A with AB, and all
occurrences of B with BA. See Table 3 for an example of the growth pattern
of this algae.

AB
Step 1 ABBA
Step 2 ABBABAAB
Step 3 ABBABAABBAABABBA
Step 4 ABBABAABBAABABBABAABABBAABBABAAB

Table 3: The first 5 divisions in the growth of the AB algae.
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6.2 Lexical Substitution

L-Systems are very close to context-free grammars, a fundamental concept
in the field of computer science. The definition of an L-System consists of
three major parts: a set of symbols, an axiom, and a set of substitution
rules. The set of symbols is the “language” of the L-System; it is the set
of characters that make up the string. In the example above, the set of
symbols was A, B. To model more complex growth systems, more symbols
are used. The axiom is simply the string used to begin the process, and is
also referred to as the initial state. In the above example, we used “AB”. The
substitution rules, also referred to as production rules, are the meat of the
L-System. A substitution rule specifies that every occurrence of some symbol
should be replaced with a new string. During each step of processing, every
substitution rule is applied in order to produce the next string. This is the
AB algae example modeled as an L-System:

L-System name AB Algae
Symbols A, B
Axiom AB
Substitution rules A → AB

B → BA

6.3 Graphical Interpretation

L-Systems, by their definition, grow their strings exponentially. The results
of the growth process quickly become too big for a human to handle, much
less make any useful observations. The strength of the L-System concept is
that the grown string can be processed and represented graphically, often
with fascinating results. The standard method of visualizing L-Systems is to
create special symbols, and give them a graphical interpretation. The growth
process is iterated several times, the resulting string is interpreted as a series
of graphical commands, and the graphical figure is rendered on a computer.
The computer maintains a current position and direction, and it responds to
drawing commands such as the following:
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F Move forward some predefined length, while drawing a line.
G Move forward some predefined length, without drawing a line.
+ Turn counterclockwise some predefined angle δ.
− Turn clockwise some predefined angle δ.

Repeated substitutions using the production rules can create a string that
is extremely large. It is impossible to tell before rendering how much space
the string will require on screen[Peitgen, et al 1992]. Therefore, programs
used to render L-Systems must render the entire object in memory, and then
discover what scaling factor is required so that the entire object may be
viewed on the screen.

With the simple yet powerful definition we have so far, we can render
many classical fractals such as the Koch Curve. The definition of the Koch
Curve is simple. Start with a line segment of length n, and divide it into
three equal parts of length n

3
. Remove the center segment, and replace it

with two segments of length n
3
, joined to the two existing segments. The

process is repeated on every segment in the figure, ad infinitum. Figure 11
shows an example of the rendering of the Koch Curve L-System. How can
we model this fractal as an L-System?

L-System name Koch Curve
Axiom F
Substitution rules F → F+F–F+F
δ 60 degrees

Figure 11: Images produced from the first four steps of the Koch Curve
L-System
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6.3.1 Branching

The graphical symbols defined so far allow one to create complex and inter-
esting figures, but these figures will always be traced by one line or path,
whether or not the line is actually drawn on the screen. To extend the ca-
pabilities of L-Systems and to allow the rendering of more complex plant
growth, more powerful graphical symbols are needed. Most plants of interest
don’t grow in a straight line; they branch. To render a branching structure,
L-Systems provide a method to save and restore the current position and
direction. To render a branching point in a plant, first render the stem, then
save the position and direction, render the left branch, restore the position,
and finally render the right branch. To allow for this, two new symbols are
needed:

[ Push the current location and position
onto a stack.

] Pop the top location and direction off of
the stack, and use them for further drawing
operations.

Because the branches of a structure might, themselves, branch again, it is
necessary to be able to store many locations at once. Locations are stacked
onto one another in memory. When the pop command is reached, the most
recently pushed location is restored as the current location. An example of
a branching L system is the simple weed shown in Figure 12.

This L-System has a few notable features. First of all, the symbol B is
used, although it has no graphical definition. When an L-System rendering
program finds a symbol that has no graphical meaning, it will simply ignore
it and continue rendering. This allows for more flexibility in designing the L-
System. In this plant, B represents the full plant. An intuitive interpretation
of this L-System is that the entire plant is reproduced in three branches off
of the main trunk. The infinitely recursive nature of this simple definition is
the result of replacing B with a string that also contains B. Also note the first
production rule: F → FF. This means that, during every stage of growth,
the pre-existing portions of the plant double in length. This has the effect of
making the structure smaller further away from the trunk, much like a real
plant. Figure 12 shows the results of the first several steps of rendering.
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L-System name Weed
Axiom B
Substitution rules B → F[+B]F[-B]+B

F → FF
δ 20 degrees

Figure 12: Weed L-System

6.4 Fractint

Fractint has a powerful mode for rendering L-Systems. The syntax of an
L-System is much like the syntax used for defining an IFS. For example, this
is the Koch Curve definition for Fractint:

KochCurve { ; This is the name of the L-System

Angle 8 ; Set the angle to 45 degrees (360/8)

Axiom F ; Initial state

F=F+F--F+F ; production rule for F

}

Fractint also defines some more powerful drawing commands:
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| Turn 180 degrees, or the largest possible turn less than
180 degrees, depending on δ

Cnn Set the color value to nn
>nn Increment the color by nn
<nn Decrement the color by nn
! Switch the meanings of + and -
@nnn Multiply line segment size by nnn
[, ] Also stores color, line segment size, and ! status

Fractint comes with many predefined L-Systems. To render a custom
L-System, use the above definition syntax, and write the L-System to a file
with extension “.L”. Direct Fractint to load this file instead of its default,
and select the L-System by name from the menu.

The authors set out to create an L-System reminiscent of a snowflake. If
the Koch Curve is rendered, using “F+F+F” (an equilateral triangle) as the
axiom, it looks remarkably like a snowflake. The authors tried to capture
this feeling, but using a different style of L-System. The results are shown
in Figures 13, 14, and 15.
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SnowFlake1 {

Angle 12

; 30 degrees

Axiom [F]++[F]++[F]++[F]++[F]++[F]

; six 60 degree radial lines

F=[--F++FFFF++F--]++F--FFFF--F++

; replace f with a long pointed bar

}

Figure 13: Snowflake L-System 1
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SnowFlake2 {

Angle 12

; 30 degrees

Axiom [F]++[F]++[F]++[F]++[F]++[F]

; six 60 degree radial lines

F=[+F-F-F+]-F+F+F-

; replace F with a trapezoid

}

Figure 14: Snowflake L-System 2
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SnowFlake3 {

Angle 12

; 30 degrees

Axiom [F]++[F]++[F]++[F]++[F]++[F]

; six 60 degree radial lines

F=[+FF-F-FF+]-FF+F+FF-

; this trapezoid has longer legs

}

Figure 15: Snowflake L-System 3
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7 Fractal Dimension

Many people are familiar with the term dimension when it is applied to clas-
sical geometric objects such as the line, plane, or cube. It is well known that
a line is one dimensional, a plane is two dimensional, and a cube has three
dimensions. When we consider the dimension of objects from nature such as
trees, clouds, and mountains, we usually say that they are three-dimensional.
They are, in fact, real objects that reside in our three-dimensional world.
However, when we apply the techniques of fractal geometry to these objects,
we get dimension values that are fractions. The fractal dimension of the
branching structure of a tree is not three but some number between two
and three. This fractional dimension value can sometimes be more useful
in describing the structure of an object than our conventional concept of
dimension.

We now present one of the many definitions for the notion of dimension
that is useful for characterizing the forms of natural objects as well as purely
mathematical ones. It will be shown that this definition of dimension pro-
vides a convenient method of measuring fractal forms and produces the same
dimension values that we would expect to see for classical geometric shapes.

7.1 The Hausdorff Dimension

We choose the Hausdorff dimension, DH , for our measure of fractal objects.
The Hausdorff dimension of a set embedded in a Euclidean space is defined
as

DH = lim
ε→0

ln M(ε)

ln(1
ε
)

(2)

where M(ε) is the number of hypercubes (a hypercube is a generalization
which includes line segments, squares, cubes, etc.) with sides of length ε
that are needed to cover the set in the space.

We will attempt to clarify this using the simple example of a line segment.
Consider a line segment of unit length which is the set of points on the interval
[0, 1] in R′, and measures of length ε = 1

2n where n = 1, 2, .... The number of
measures, M(ε) needed to cover the unit interval is 2n. Substituting these
values into our definition we arrive at

DH = lim
ε→0

ln 2n

ln 2n
. (3)
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This gives us our expected value for the dimension of a line segment, 1.
We can also show that the Hausdorff dimension of a square is 2 as we

would expect. Consider the unit square [0, 1]× [0, 1] in the plane, and mea-
suring squares with sides of length ε = 1

2n . To cover the unit square, we need
M(ε) = 22n measuring squares.

Figure 16: A unit square covered by 16 squares with sides of length 1/4

This leaves us with

DH = lim
ε→0

ln 22n

ln 2n
. (4)

Since as ε → 0 n →∞, we can rewrite the equation as follows

DH = lim
n→∞

ln 22n

ln 2n
= 2 . (5)

Taking this limit,

DH =
2n ln 2

n ln 2
= 2 (6)

Which leaves us with a dimension of 2 for our unit square.
Figure 16 shows a unit square covered by M = 16 squares with sides of

length ε = 1/4. For this example we can observe that n = 2. Substituting
into Equation 2 easily yields DH = 2.

This method can be used to compute the dimensions of objects with
more degrees of freedom such as cubes and hypercubes. But so far we have
only shown that the Hausdorff dimension gives us the values that we would
expect to see for familiar geometric objects. We will now show that the fractal
dimension can be useful in characterizing some less common mathematical
objects.
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7.1.1 The Koch Curve

The Koch Curve was introduced as part of the discussion of L-Systems in
Section 6.3 on page 37. It is an example of a fractal structure that is strictly
self-similar. It is composed of an infinite number of copies of itself. Figure 17
shows the Koch curve. In order to construct it we begin with a line segment.
This segment is then divided into three pieces of equal length. The middle
piece is replaced with the top two legs of an equilateral triangle and the base
of this triangle is removed. The result is a curve consisting of 4 line segments
each 1

3
the length of the original line. This procedure is repeatedly applied

to the remaining line segments. The limiting object is a self-similar structure
called the Koch curve.

Figure 17: The Koch Curve

To compute the dimension of the Koch curve we use an approach similar
to that used with the line segment. Assume that the original construction
step is a line segment of unit length. After n steps the number of segments is
M(ε) = 4n each with length ε = 1

3n . Substituting into Equation 2 we obtain
a value for the fractal dimension of the Koch curve to be

DH =
ln 4

ln 3
≈ 1.26 (7)

7.2 Box Dimension

A convenient way of estimating the fractal dimension of nearly any arbitrary
structure is the box-counting method. In fact, not only can this method be
used to estimate the dimension of classical geometric shapes and all of the
fractals discussed so far, but it can be used to find dimension values for all
kinds of data sets, not just mathematically defined objects. It is possible to
compute the fractal dimension of a mountain or tree given a digital image
of the object. For structures in the plane, the method of computing the
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box-counting dimension is to cover the object with a grid of square cells with
sides of length r. Next, count the number of squares N(r) that contain at
least part of the structure. Repeat this for varying lengths r. We can then
plot on double logarithmic axes the number N cells versus the box-size r.
Using common regression techniques, we can fit a straight line to our data
points, which corresponds to the relation,

N(r) ∝ r−DB (8)

where DB is the box-counting dimension. This assumes that as the box-size
r varies, the number of cells N needed to cover the image varies proportional
to r−DB . Since we are plotting this relationship on a log/log plot, DB is
simply the negative value of the slope of our plot line.

The data points used to generate the following plots were generated by
a box-counting program written for this project. The program divides the
image into a number of squares of a certain size and then counts the number
of squares that contain part of the image (a black pixel). This process is
repeated for varying square sizes. Next, the log of each count value and
square size is output in a text format that is readable by Microsoft Excel.
At this point Excel is used to plot the log/log graph, and linear regression is
used to fit a line to the data points. The negative slope of this line is taken as
the box counting dimension DB. The program runs on Microsoft Windows
systems and accepts 512 X 512 pixel, monochromatic images in the Device
Independent Bitmap (DIB) format. It could, however be easily modified to
accept images of various dimensions. For more information please refer to
the source code located in Section A.2 on page 84.

7.2.1 Example: The Sierpinski Gasket

Figure 18 contains an image of the Sierpinski Gasket which was discussed in
Section 5.3 on page 29. The fractal dimension of the gasket can be computed
analytically. It consists of three pieces, each identical to the whole, except
scaled down by a factor of 1/2. This means that M(ε) = 3 and ε = 1/2.
By substituting into Equation 2 we can see that the Hausdorff dimension for
this object is DH = ln 3

ln 2
≈ 1.58. Table 4 shows the data produced by running

our box-counting program on the image, and figure 19 shows a plot of these
data points. As you can see, this technique estimates the dimension as 1.67.
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Figure 18: The Sierpinski Gasket

Figure 19: Plot of box-counting measurements for the Sierpinski Gasket.
This graph shows the box size r as a function of the number of boxes n
needed to cover the image. The slope is shown as -1.6715
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log(r) log(n)
0 4.59405
0.30103 4.081311
0.60206 3.596487
0.90309 3.118926
1.20412 2.631444
1.50515 2.149219
1.80618 1.643453
2.10721 1.113943
2.40824 0.60206
2.70927 0

Table 4: This table contains the data points generated using our box-counting
program on the Sierpinski Gasket.

7.2.2 Example: The Koch Curve

Figure 20 shows the log/log plot of box-counting data for the Koch Curve.
The same program used for the Sierpinski Gasket was used to analyze this
image. The slope of the curve is -1.2806. This gives us a box-counting
dimension which is very close to the fractal dimension determined analytically
earlier.

DH =
ln 4

ln 3
≈ 1.26 (9)

For many self-similar structures, such as natural objects and fractal art,
it may not be possible to analytically determine dimension. However the
box dimension can be used as an appropriate estimator for the Hausdorff
dimension. This gives us the ability to apply fractal analysis techniques to a
wide range of natural phenomena.
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Figure 20: Plot of box counting measurements for the Koch Curve. The
box-counting dimension is DB = 1.2806
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8 Jackson Pollock’s Fractal Paintings

Jackson Pollock began his work on drip paintings in 1942. Today he is
considered by many to be the most famous of abstract artists. He created
many of his works by dripping paint onto large canvases. His technique
is recognized by many as an important advancement in the development
of modern art; however, the artistic value of the resulting works is a topic
for debate. To the casual observer it may appear that Pollock was simply
applying paint in random dribbles,but researchers have recently examined
his paintings and discovered the fractal property of self-similarity rather than
unorganized, random patterns. One researcher in particular, Richard Taylor,
has spent a lot of time exploring the fractal nature of Pollock’s work. Taylor
is a professor of physics at the University of Oregon. He also has a master’s
degree in art theory from the University of New South Wales with a focus on
Jackson Pollock’s work. Two main observations come out of Taylor’s work:
Pollock’s patterns are fractal in a way that reflects nature, and the fractal
dimensions of Pollock’s paintings increased during his career.

Both images used in this section are from Professor Taylor’s web page.
1 In an effort to quantify the fractal nature of Pollock’s drip paintings,
Taylor and his team used the box-counting method to determine the fractal
dimensions of the works. This is the same box-counting method described in
Section 7.2 on page 47. They began by overlaying a computer-generated grid
on top of the painting and counting the number of squares that contain part
of the painted image. This process is repeated with various grid sizes. Next
a plot of the number of squares versus the grid size on a log/log axis provides
a graphical representation of the fractal dimension. Taylor discovered that,
for much of Pollock’s work, this graph contained two distinct linear regions.
This equates to two separate values for the fractal dimension, dependent on
the resolution of the computer generated grid. For square size, r, in the range
1mm < r < 5cm, one value was found, and for 5cm < r < 2.5m another was
discovered. Figure 22 shows a box-counting plot of one of Pollock’s works.
The two different slopes of the line indicate that there are two different fractal
dimensions in the piece; one at a large scale and another at a small scale.

The fractal dimension computed for the smaller grid size range is at-
tributed to the dripping process itself. Factors such as paint viscosity, paint
absorption into the canvas, etc., are attributed to this chaotic behavior. The

1http://materialscience.uoregon.edu/taylor/art/fractal taylor.html
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Figure 21: Autumn Rhythm. An example of Pollock’s work. The right side
shows the whole work while the left side shows just the black anchor layer.

Figure 22: Box-counting analysis of Pollock’s work showing the presence of
two different fractal dimensions in one painting.
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fractal dimension of the larger square size range is thought to be a direct
product of the painter’s motion. In other words, even though Pollock did
not have any technical knowledge of chaos theory or fractals (these fields
of study did not even exist when he was painting), it was still his intent to
create fractal patterns. This is supported by Pollock saying that his concerns
were with “the rhythms of nature”. In Taylor’s words, “He described Nature
directly. Rather than mimicking Nature, he adopted its language - fractals -
to build his own patterns.”[Taylor 1999]

When Pollock began making drip paintings in 1943 they consisted of a
single layer of paint occupying only about 20% of the canvas area. His later
paintings, in contrast, contained multiple layers of paint trajectories that
covered over 90% of the canvas. The fractal dimension also increased as he
continued his work, starting at values close to 1 and getting as high as 1.72
in 1952. This change in fractal dimension is a reflection of a dramatic change
in visual character. Taylor believes that since the fractal dimension increases
distinctly with time, fractal analysis could provide a quantitative way to date
Pollock’s paintings, and to detect forgeries.

It seems that fractal analysis techniques can be valuable tools for the
objective and quantitative characterization of abstract visual art. It is inter-
esting to compare the fractal properties of popular art work with the same
properties measured from natural objects. Is there a component shared be-
tween the artwork of Jackson Pollock and a beautiful mountain range? Fur-
ther study using fractal techniques could help to quantify beauty.
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9 Fractal Music

How are fractals related to music? Can a relation be found at all? Many
people who are interested in science are also interested in music due to its
mathematical properties. Quite a few people have wondered if they can apply
their knowledge of music to the growing field of fractals.

Before we explore this topic, it is important to address exactly what
“music” is. Many people have preconceived notions of what music should be.
They think of Mozart and Beethoven, with complex interweaving melodies
and harmonies. Unfortunately, it has not yet been discovered how to write a
program that performs some magic with numbers and fractals, and produces
a fully scored piece for a symphony. When exploring how to make music out
of fractals, it is important to relax your view of what “music” is.

Since fractals have a strong basis in chaos, fractal music will often sound
chaotic and lacking in rhythm, harmony, or discernable melody. This will
often clash with a person’s preconceived notion of what “music” is, and so
when they hear fractal-generated music, they will think, “This isn’t music.”
However, new-age composers are attempting to open up the field of atonal,
arrhythmic compositions, and it is in this category that fractal music fits
best.

Fractal music has some properties in common with the aleatoric compo-
sitions of John Cage. Cage, who is most famous for his piece entitled 4’33
(4 minutes and 33 seconds of silence, in 3 movements), tried to open our
ears to alternative forms of music. His compositions were usually formed by
utilizing chance events, such as flipping a coin, or by giving vague direction
to performers and suggesting they “do what they feel like”. Cage claimed to
be trying to open our ears to other forms of music that are all around us,
such as the nervous coughing during a performance of 4’33. Fractal music is
a similar attempt to open our ears to a new form of music, and in this case,
that music is derived from mathematical manipulations of fractal systems.
However, human involvement is still necessary to guide fractal music into a
work of art.

The simplest form of fractal music is demonstrated at the Fractal Music
Lab web site [Strohbeen 2000]. The music generation programs found on this
site make use of the MIDI protocol, a well established method of designing
computer generated music. MIDI music is defined by a collection of numbers,
each describing a different component of the music. For example, you can
specify the pitch, duration, volume, musical instrument, and many other
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musical parameters, each with just a number. This is a completely natural
playground for fractal-generated music. One can simply map numbers found
in a fractal to the different MIDI numerical components, and see what kind
of music comes out.

One method of mapping fractals to MIDI musical data is through the
use of an iterated chaos function, a concept at the heart of fractals. First,
a function and a starting value are chosen. The function is applied to the
starting value, and a new value is produced. This new value is mapped
to some component of the MIDI data, such as pitch. Then the function is
applied to the new value, and another value results. This is repeated until
the programmer decides the composition is finished. At each step, the result
of the function is used to specify a MIDI parameter, and also to generate a
new value.

Another method to generate MIDI data from fractals involves manipula-
tions of the graphical rendering of a fractal. For example, there are programs
written that will generate music out of the Mandelbrot set chosen by the user.
These programs rely on how computers represent images internally. Recall
that computers represent each pixel’s color as three numbers indicating how
much red, green, and blue light is mixed together. A program will choose a
set of points (usually by picking points on a line or on a user-defined path),
and use the color values as MIDI parameters.

Other types of programs exist, and there are probably many other fractal
music techniques just waiting to be discovered. The concept is simple: just
define an algorithm to take numbers generated from a fractal and map them
to the parameters of a MIDI music composition.

Those readers that program would be interested to know that the stan-
dard pseudo-random number generator software included with almost every
computer is a form of iterated chaos function, which is a type of fractal.
The random seed that is specified at the start of the program is simply the
starting value used in the iteration. So, generating fractal music can be as
simple as directing a computer to play “random” notes using MIDI.

9.1 Example 1: Random note generator

In Appendix B on page 85, you can find a listing for the program Fractal-
NoteGenerator. This is actually a pair of classes written in Java

TM
, Frac-

talNoteGenerator and RandomFunction. Those readers with programming
experience in Java

TM
or other object oriented languages may be interested in
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reading the code.
FractalNoteGenerator is a simple program that illustrates the most basic

form of fractal-to-MIDI mapping. The FractalNoteGenerator component im-
plements the details necessary to construct and play notes every half second,
for 20 seconds. The notes it chooses to play are dictated by the numbers pro-
duced by an instance of class RandomFunction. This object uses the built-in
chaos function mentioned above, found in Java

TM
’s Random class, which is

an implementation of a pseudo-random number generator. FractalNoteGen-
erator is designed so that any kind of chaos function can be used, but in this
example, the pseudo-random number generator works quite well.

Instructions for running the program are included in the appendix. The
results of execution are a chaotic selection of notes that don’t sound much
like music, but perhaps a composer might hear a sequence of notes that he
likes.

9.2 Example 2: Random multiple note generator

In Appendix B on page 86, you can find a listing for the program Fractal-
MultipleNoteGenerator. This builds on the FractalNoteGenerator, playing
multiple notes at a time. Instructions for running the program are included
in the appendix.

This program attempts to make fractal-generated “chords” by playing
up to three notes at a time. The resulting “music” is dissonant, and very
difficult to listen to. Whereas a composer might be able to pick out a melody
he likes in the previous program, this example is too hopeless to work with
and illustrates some of the difficulties in writing fractal music programs.

9.3 Example 3: Random chord generator

In Appendix B on page 88, you can find a listing for the program Fractal-
ChordGenerator. This program extends the idea of the FractalMultipleNote-
Generator, but it follows basic chord construction rules so that the notes it
plays together aren’t dissonant. However, it still makes no attempt to place
chords together in such a way that a coherent melody is formed, or so that
well-known taboos of music theory aren’t broken.

The music that comes out of this third example is a little less painful
to listen to than the FractalMultipleNoteGenerator’s music. While it is still
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seemingly random in nature, it sounds a little more full than the Fractal-
NoteGenerator’s music. More sophisticated techniques could be used, such
as amplifying the soprano line. This would mimic traditional classical music,
in which the melody is found in the highest pitched voice. Effort might also
be made to try to organize chords in a slightly more coherent manner in line
with traditional chord progressions.

9.4 Adding human talent

Usually, the first two examples above generate music that sounds very chaotic
and unorganized. It can be interesting on its own, when you consider that
you’re “hearing” a fractal almost directly, but, as the second example shows,
raw fractal notes don’t exactly produce pretty music. Instead, some artists
use the sounds generated by techniques such as those above as a starting
point in their compositions. Usually, one of the most difficult parts about
writing music is coming up with an idea for a major theme. Given a theme, a
practiced composer can fill out many voices with harmonies and variations on
the theme. Using common chord progression practices, the harmonization
tends to fall into place after the initial creative inspiration of the melody.
The composer knows all of the rules of thumb of harmony and voice leading
that make a piece of music sound like a coherent unit, as opposed to random
“chords” like in the second example. This is why the harmonies in the third
example sound a little more like real music instead of randomly generated
notes played together.

Using fractal music techniques such as those described above can help a
music writer get over “composer’s block,” giving him samples of music to
work with. Fractal music may offer him full-fledged themes, or it may give
him a base to start on. However, due to its chaotic nature, fractal music
tends not to have harmonies and rhythms that appeal to our subconsciously
conditioned sense of music. In musical composition, only certain notes sound
good together (“harmonious”), while others will clash against each other
(“dissonant”). Furthermore, certain sets of notes (“chords”) may work well
together, but they won’t sound right when played soon after other chords.
This is why it is not generally feasible to use fractals to generate fully scored
music akin to Beethoven, because there is a very careful distinction between
what sounds good and what doesn’t.

A fractal music composer, however, can help guide the raw chaos of
fractal-generated MIDI data into a musical composition that makes sense
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to our ears. A painter does more than choose his paints carefully and then
splatter them at random on the canvas; even Jackson Pollock had a care-
ful method. A fractal music composer uses the themes he hears in fractals
and builds them up into full-fledged compositions with harmonies that make
sense. The resulting music is chaotic and at the same time more structured
than the music generated by a program, and is much more interesting to
listen to by people whose sense of “music” has been influenced by years of
human-created compositions.
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10 Art as a Reflection of Society

Art is a reflection of society in many ways, and as society grows more com-
plex, so does our art. Fractal art, due to its complexity, is an example of
this. We can easily see many examples throughout history of how art is a
reflection of society. Cave drawings found throughout the world tell the story
of hunters killing game. Images found in archeological digs in Egypt contain
scenes from the religious mythologies of the region as well as historical infor-
mation. Religious art of the Middle Ages depicts the beliefs of Christians of
the time.

The connection between art and society in these examples is obvious. Art
serves as a way to express religious beliefs or preserve history, so of course
it is a direct reflection of society. It has, however, been proposed that some
of the more general features of art, such as style, may also tell us something
about the society from which it comes.

One example of art reflecting society in a more general way is the rela-
tionship of the song styles of the Mbuti Pygmies and Bushman and their
cultures. The musical culture of the pygmies revolves around group singing.
Their culture contains virtually no solo song except for lullabies. The vocal
lead of their songs switches between members with differing musical talents
yet all receive equal vocal support from the group. The pygmies use a yodel-
ing tone in much of their music. This is known to be physically one of the
most relaxed vocalizations and is thought to symbolize openness in commu-
nication.

This vocal style seems to be matched by the style of the Pygmy culture
which is characterized by cooperation. The Pygmy men hunt in groups while
the women gather in groups. Food is divided among the people to ensure
that everyone gets enough to eat. Law enforcement does not exist among
their people. Even the most severe crimes such as murder and theft do not
have specific penalties.

While the Pygmies live in the jungle, another society, the Bushman live
in the desert. The two groups are separated by 3,000 miles yet surprising
similarities have been found between their cultures. Despite environmental,
racial, and linguistic differences, both the social structure and song struc-
ture of these two groups are quite similar. This is a fact that supports the
hypothesis that society affects the style of its art.

In an article entitled Art Styles as Cultural Cognitive Maps, J. L. Fischer
theorizes about the relationship of art style to social conditions. Fischer ar-
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gues that the form the arts take in a specific culture are partially determined
by social fantasy. The artist’s fantasies about social situations are expressed
in the form of the art he produces. In these cases the introduction of personal
fantasy into an artist’s work is usually not a conscious decision and is not
reflected in the subject of the art but rather in the style of the art. As an
artist’s individual relationship with society is reflected in the style of his art,
entire schools of artistic style can be seen to correlate to the cultures from
which they come.

Fischer compares egalitarian societies, where people are thought of as
being equal and the individual is valued, to hierarchical societies, where social
order and rule structures are important. He provides a list of four hypotheses
relating artistic style to these two contrasting forms of society and provides
data to support these theories. He also believes that complexity of design
can be associated with societies that are hierarchical. The past two hundred
years have been a time of extreme technological growth. The ability of people
to make products, and communicate has increased greatly. Our increased
efficiency however has led to increased complexity in our lives. Perhaps this
rise in social complexity is reflected in our art. Could this be responsible for
the recent embrace of complex fractal patterns in art?

10.1 Art as a Reflection of the Mind

Many psychologists believe that art is a reflection of the inner make-up of
the artist. It reflects the desires, fantasies and wishes of the artist, and is an
expression of the unconscious mind. Analysis of this expression can lead to
a deeper understanding of the individual.

The famous psychotherapist, Carl G. Jung, was one of the primary re-
searchers in the field of psychoanalysis. It was his belief that works of art
which were created as part of psychotherapy could be used as a tool in the
diagnosis and treatment of various forms of psychosis.

The principal method of using artistic expression in the treatment of
mental illness is the technique of active imagination. Figures 23 through
26 show paintings by one of Jung’s patients over the course of her ten-year
treatment. The paintings represent her progress, showing the growing unity
of conscious and unconscious mind. The idea behind active imagination is
that the subject allows himself to enter an altered state of consciousness. In
this state the ego (reasoning, choice-making part of the mind) becomes more
receptive to unconscious thoughts. This altered mental state is similar to
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Figure 23: The first painting in a series discussed by Jung, by a woman
referred to as Miss X

light hypnosis or meditation. It is important to note, however, that it is not
the same as guided imagery where the practitioner is lead by external stimuli
or a particular pre-chosen image on which to focus. In active imagination it
is important that the patient experiences only inner images and that external
images do not become the focus of introspection.

Once in this state the practitioner simply allows the images and thoughts
to come out. Irrational thoughts may occur and perception of time and
space may change. This is because the ego is allowing the unconscious mind
to have more control. The main role of the ego is as a recorder, noting the
images that occur. The next phase is for the patient to represent concretely
the thoughts he experienced. This can be accomplished through painting,
sculpting, writing or any one of a number of media.

To complete the process, the ego observes the result, reacts, and draws
conclusions. These conclusions can then be taken advantage of in life, leading
to self-improvement.

10.2 Motivation for Art

Throughout history, art has been created for a number of reasons. Two
of the most ancient of these motivations appear to be record-keeping and
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Figure 24: Picture 2 from Miss X

Figure 25: Picture 15 from Miss X
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Figure 26: Final image presented by Jung from Miss X (picture 24)

worship. Almost every ancient culture has art that is believed to be religious
in nature. The ancient Romans and Greeks made statues and built large
temples to honor their gods. The Egyptians built pyramids for their kings
who were believed to be gods. From Christianity to tribal religions of Native
Americans, art was created for the purpose of worship. Artists have also
created art for entertainment and pure aesthetic value. Today, pop music
and television provide many of us with the well deserved distraction that we
crave after a hard day at the office. Other art and music is created simply for
its own sake. Sometimes a painting is just a painting and can be appreciated
as such.

Yet another motivation for art is the realization of social goals. Patriotic
songs are crafted to give us a sense of unity with our neighbors and to cause
us to put faith in our government. Artistic propaganda was used during the
cold war to convince people of the evils of communism. Jonathan Swift wrote
to criticize society. In Gulliver’s Travels he pokes fun at politicians and the
upper class of the day. Upton Sinclair used art as a means of changing soci-
ety. His book, “The Jungle” showcases the working conditions in a Chicago
meat processing plant around 1900. His book caused many people to stop
consuming meat, and led to the eventual improvement of working conditions.
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11 Making Art More Accessible

As we have shown so far, fractal algorithms are fairly easy to understand with
a college level background in mathematics. Because they are so interesting
to explore and manipulate, fractals are a favorite area of exploration for
programmers. So naturally, there are many programs available, for free and
for a price, that will help a user explore the world of fractals. These programs
are easy to understand even without a background in mathematics, and they
continue to attract the interest of many users. These programs, coupled
with the Internet, have fueled the formation of online communities of fractal
creators who call themselves artists. Fractal artists display and even sell their
works on their web sites, and link their pages together to form communities
of fractal artists.

With the abundance of web pages written by fractal artists and enthu-
siasts come many tips, tricks and tutorials for creating fractal art. A few
examples of these can be found in Section E on page 100. The beginning
fractal enthusiast will find an abundance of advice on how to get started and
how to find good-looking fractals, although the advice is, of course, biased
toward the view of the authors.

The abundance of fractal programs, along with the Internet as a showcase
and learning tool, have attracted many people to try their hands at this new
form of art. They feel that it’s a lot easier to create art using fractals than
with more traditional methods such as paint or pencil. This is especially true
for people who feel they have no skill for drawing.

11.1 The Art Question

It’s the very fact that fractal “art” is more accessible that brings up the
question addressed earlier, of whether fractal art can, indeed, be considered
a true form of art. After all, if this art can be created by experimentation
with random parameters plugged into a certain fractal formula, is it art?
If a computer program happens to choose parameters for a formula that
result in a beautiful image, is the program an artist? And if, as suggested
above, it’s very easy to get started as a fractal artist, with easily available
fractal programs and tutorials, can the resulting images really be considered
masterpieces of fine art?

Charles Vassallo attempts to address some of these questions in his re-
marks about fractals and art [Vassallo 1999]. Vassallo is physicist by trade,
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though he has been experimenting with Markus-Lyupanov fractals since the
early 1990s. His fractal images are vivid, swirling objects with a decided
three-dimensional quality. Along with showcasing his art, his web site holds
his writings on questions related to the subject of fractals and art.

He advocates that pictures of the Mandelbrot set are of dubious artistic
value, because they are discovered rather than developed through conscious
manipulation. He calls the Mandelbrot set a “virtual amusement park”,
in which the explorer searches around to find new and exciting images. It
seems that he is more interested in fractal art forms that require conscious
development, such as his Markus-Lyupanov fractals. He makes the point
that, when the explorer begins to craft his own formulas and deliberately
form his images, then he is becoming more like an artist.

Janet Parke also has some opinions related to the questions above. Parke
is the winner of the Fractal Art contest hosted by Fractalus.com, and was
also the winner of an Award of Excellence in Toray’s Digital Creation Awards
contest. Her art is primarily created through exploration of the Mandelbrot
set, with careful use of the extensive features of Ultra Fractal. She creates
intriguing works of art using the layering, fading, and coloring capabilities of
Ultra Fractal.

In her essay, “Fractal Art – A Deliberate Approach”, Janet explores ques-
tions about the validity of using technology to create art. She stresses that
art is the creation of beautiful products through intentional, conscious work.
This purposeful creation is not present when an amateur enters random pa-
rameters into a fractal program. She then outlines her unique method for
creating her fractal art, which involves the careful manipulation and blending
of as many as 12 different layers to create her fractal art.

So, while fractal art may attract many amateurs because they find it easy
to get started, this does not mean that just any person can create fractal art.
This is obvious when one looks among some of the galleries posted by fractal
artists on the Internet. Quite a few galleries are wholly uninspiring, with
images that show different levels of artistic skill and expression [Parke 2000].
But among some artists, such as Vassallo and Parke, one can see a distinct
style and similarity to all of their pieces, which seems to suggest that they
are true artists.
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11.2 A New Artistic Paradigm

This seems to suggest that fractal artists share qualities with artists of more
traditional media. Not everyone has the skill to be a fractal artist, even
though fractals may provide an easier medium for artistic expression than
a canvas. By the same token, some artists may find that fractals provide
an ideal stage for their talents. In the same way, photography opened the
door to an entirely new kind of art. Like photography, fractals provide a new
entry point into the world of art that requires different skills than traditional
artistic media. It provides a different road that artists can follow to reach
the same destination: the creation of beautiful works of art.

Janet Parke shed some light on this subject in an interview she gave after
winning the Toray Award of Excellence for her work. She said that, before
she began to explore the world of fractals, she didn’t consider herself an
artist at all. She didn’t have the dexterity to create more physical forms of
art through painting or drawing, although she was exploring her aesthetic
ability by choreographing ballet. When describing her style of art, she said,
“In essence, the formulas become the artist’s paint and brush, and, like the
way a photographer needs a camera to capture his scene, the fractal artist
needs a computer to perform the millions of calculations required to render
the image.”

Fractals, like photography, painting, and drawing, are just another tool
that can be used to create art. In the hands of an artist, fractals can be
used to create beautiful artistic pictures. They provide a new avenue into
the world of art, making it accessible to artists who might otherwise never
discover their artistic ability.
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12 Psychology of Fractal Art

What is it about fractals that intrigues us? Why are they aesthetically
pleasing, and what can that say about our sense of aesthetics? At this point,
it will be helpful to call in the opinions of an expert on the subject, Sir Ernst
Gombrich. In his book, The Sense of Order, Gombrich explores what makes
us perceive beauty in patterned art, and what kind of psychological effects
patterns can evoke. His writing makes no specific mention of fractals, but it
is interesting to extend his ideas into the field of fractal art.

Gombrich makes an important point, that we cannot easily choose certain
features of a figure as the reason behind its beauty. The perception of beauty
is largely dependent on who is viewing it, and in what context – beauty is in
the eye of the beholder. We can, however, make some general observations
about what kinds of things people find beautiful and explore the psychological
reasons and ramifications.

One aesthetic quality that Gombrich describes is the concept of restless-
ness and repose. A completely chaotic picture will tend to draw the eye in
all directions at once, and leave the observer confused and uncertain. On the
other hand, a completely uniform and ordered design will leave the observer
bored. Humans appreciate order, and seek it in the environment around
them. Our attention is naturally drawn to places where a pattern is broken.
Fractals run dangerously close to being too chaotic to handle, but this danger
is averted by self-similarity and patterns. In this way, our eye is drawn to
the repeating patterns to explore what makes each repetition different, such
as rotation and scaling.

Next, Gombrich describes the sense of symmetry. People tend to no-
tice and explore symmetry, and art is often designed to take advantage of
this. Small departure from symmetry is unnoticed, but large departures are
distracting. Fractal images occasionally exhibit symmetry, and it is often
beneficial to the appeal of the resulting image. However, since fractals have
mathematics at their foundations, they run dangerously close to becoming
boring through perfect symmetry. Fractal artists must be careful not to bore
their audience with too much self-similarity and redundancy.

The metaphorical concept of movement in an image is another important
psychological factor that Gombrich discusses. Often, artists attempt to draw
our attention and interest by designing figures that imply movement, such as
pinwheels and spirals. Fractals often contain spirals and whirls that naturally
draw the eye along their path to the center. This is enhanced because the
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spirals are often made up of self-similar copies of the main image, so the eye
is first drawn by the similarity, then by the movement. Spirals are often seen
in the Mandelbrot and Julia sets, such as the center image of Figure 4 on
page 18.

Another interesting aesthetic quality often found in fractal art is the feel-
ing of depth. By overlapping figures using positioning and shading tech-
niques, the artist can strongly imply that one part of an image is behind
another, invoking a three dimensional feel. Examples of this can be found
in the images of Charles Vassallo, one of which is shown in Figure 27. His
images contain strongly three dimensional objects that overlap and intersect
each other, giving an overpowering feeling of depth.

Figure 27: One of Charles Vassallo’s images of Markus-Lyapunov fractals.

A very important factor contributing to aesthetic appeal is the use of
color. Gombrich argues that, without color, the effects of an image are
severely limited. Color is a key part of the fractal rendering process, manip-
ulated carefully by every fractal artist. Artists must ensure that the use of
color is not chaotic and confusing as in some of our pictures of the Mandelbrot
and Julia sets with a rainbow palette. Color can be carefully manipulated
to provide depth and meaning to a piece. It is also a very important fac-
tor in separating ground from figure. Fractal artists manipulate their color
palettes to emphasize the parts of the image they find most interesting, while
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muting the rest, so that the important object stands out. Without this, the
viewer would have little to focus on, and the image would seem chaotic and
meaningless.

This leads to the final important aesthetic tool used by fractal artists:
object recognition. Gombrich explains that humans naturally try to find
objects they relate to and understand, and this is evident in the process of
many fractal artists. They often describe the process of searching through
the Mandelbrot set, identifying recognizable constructs such as seahorses and
spirals. Fractal artists often try to find recognizable features and modify their
rendering method to make an object more familiar. They will occasionally
go so far as to give suggestive names to their works, such as Janet Parke’s
“Iron Gate”. It seems as if fractal enthusiasts find some pleasure in finding
a recognizable object in the purely mathematical world of fractals.

Fractal artists are careful to consider these aesthetic properties when they
create their art. These are the kinds of qualities that separate the work of
a true artist from an amateur fractal hunter. Often, an amateur’s work will
have very few of the above qualities and may even accidentally break some of
the “rules” and create something that is actively displeasing or disconcerting.
A fractal artist is careful to consider the effects of his work on its audience.

12.1 Vassallo’s art

Looking back at Figure 27, what can we say about its artistic characteris-
tics? Charles Vassallo’s work has been featured in an exhibition in Lannion,
France, and has been submitted to several art competitions. His images
seem to depart from the purely mathematical and encompass more of what
we might call traditional art. What might Gombrich have to say about this
example image?

This image presents a smooth, unbroken object that instantly stands out
to the viewer. The eye is drawn across its convoluted contours and to the
intersection points, because this is where the continuity of the object is bro-
ken. Our eyes are naturally drawn to examine discontinuity, so we will tend
to take the long, smooth areas of the object for granted, and examine the
intersections and overlaps more closely. In this way, Vassallo carefully ma-
nipulates our discontinuity sense to draw us to explore the three-dimensional
qualities of the object. There is just enough continuity to keep the image
from feeling restless, and there is a balancing discontinuity to keep our eyes
moving.
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The mathematical idea of symmetry does not apply to this figure. Nev-
ertheless, we can still apply some of the opinions of Gombrich to this image.
He suggests that symmetry can have both positive and negative sides. While
Vassallo’s image does not exhibit symmetry, it also does not disrupt our sense
of symmetry. For example, a picture of a roughly symmetric object might
distract our attention if it exhibits key asymmetry that is bothersome to our
sense of order. Vassallo’s object is abstract enough that the mind doesn’t
even try to find symmetry.

When speaking of movement in a piece of decorative art, Gombrich used
the examples of waves, pinwheels, and spirals as objects which imply move-
ment to us. In the background of this example image, we see a wavy purple
surface reminiscent of the ocean, giving a strong suggestion of a viscous wavy
liquid. The foreground object also gives an impression of twisting and con-
torting on itself, because of its convoluted structure and strong shading. It
is likely that the artist was well aware of the sense of movement that he was
creating, and that he intended to hold the viewer’s fascination for as long as
possible.

This image, among all of Vassallo’s available works, was selected based on
its extraordinary sense of depth. The artist has carefully shaded the central
object to give the impression of a light source, with shadows at overlapping
points to suggest that the it folds behind itself. The object itself is abstract,
but its depiction of depth and solidity is so concrete that the viewer can
easily imagine himself holding it. Our visual system would easily notice if,
for example, the light spots could not have resulted from a single light source,
and this would likely have given us a feeling of unease or confusion. The artist
clearly had to carefully develop the depth of the image, so that the light areas
and shadows do not conflict with eachother.

To achieve the effects of movement and depth, Vassallo has made careful
use of color. First, he has separated figure from ground by choosing two
distinct colors, purple and yellow. The viewer’s eyes are instantly drawn
to the central yellow object, which is accentuated by the visual cue of the
shadow cast on the purple background. Further careful color use creates the
sense of depth and solidity in the object. It is no mistake that only two
major colors are used in the image. Any more might cause the image to lose
its continuity, making it feel more restless.

Finally, how does object recognition apply? It is easy to see that Vassallo
is trying to imply some kind of solid object with his image. But this object is
completely fictitious, and might possibly play games with space, like the work
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of M. C. Escher. In a way, it is somewhat distracting that the image depicts
an object that the viewer cannot identify. However, the image does not seem
to claim that it depicts reality at all; rather, it tries to suggest some kind
of mathematical fantasy-world. So, the fact that the viewer cannot identify
with the object is not in any way distracting. It keeps the viewer interested,
but not disturbed.

Vassallo’s work seems to share many qualities with established works of
art. In analyzing the qualities of this image, it is clear that the artist was
very much aware of how his image would affect its audience. He carefully
expressed an idea through his work, and it tends to create emotions of intrigue
and fascination. It is the authors’ opinion that this image is indeed a work
of art.

12.2 The John IFS

Recall the fractal created by one of the authors shown in Figure 10 on page
34. This was created primarily to explore the mechanics of Iterated Function
Systems and as a whimsical toy picture. A major focus of this project is to
try to decide whether fractal images can be considered works of art. We’ve
shown by example and argument that the answer is not a definite “no”, but
perhaps an analysis of the John fractal can show that not all fractals are
works of art.

The John fractal is a purely mathematically defined object, completely
described by 91 numbers. It is no surprise that it exhibits a sense of repose so
strong as to be boring. People have plenty of experience reading words, even
sideways and mirror-imaged. After the initial reading of the image, there is
almost nothing left for the eye to explore; the image just sits there. There
are no breaks in the pattern to draw our interest, because of its nature as an
IFS.

The image exhibits a form of symmetry in its self-similarity. Every oc-
currence of the name John is made up of smaller versions of the whole image.
This is intriguing when the initial concept of infinity sets in, but the feeling
of fascination doesn’t last for very long. Quickly, the mind becomes bored,
because the self-similarity is too extreme. Gombrich points out that symme-
try should be tempered with a certain amount of deviation to avoid boredom.
For a second time, we have found a reason why the John fractal is likely to
bore its audience.

The fractal also fails completely in the area of movement and action.
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The fractal is completely devoid of any kind of movement. There are no
suggestive shapes, not even a spiral down to infinity that is often a product
of the definition of an IFS. This is missing in part because only three levels
of self-similarity are distinguishable at the level of detail rendered.

Depth is yet another area in which the John fractal is lacking. Especially
with its haphazard coloring and white background, there is nothing to sug-
gest that the fractal is in any way three dimensional, such as overlapping,
shadowing, or intersection.

The coloring in this fractal is also a product of its minimalistic mathemat-
ical definition. The color of each pixel is chosen by the affine transformation
used during each iteration. It is no surprise that this creates a color palette
that adds nothing to a feeling of movement and depth in the image. Color
is used solely to separate figure from ground, and no care is taken to avoid
the appearance of randomly chosen colors.

About the only thing the John fractal has on its side is object recognition.
The name “John” is instantly readable, and the concept of infinity is fairly
clear after a few seconds of consideration. The author was careful to position
each word so that it is easy to read, avoiding upside down and mirrored
text when possible. The letter “O” was carefully crafted to be symmetric.
These choices were made because inconsistencies in the direction of the text
in earlier versions tended to draw attention to certain areas, distracting the
viewer.

It is fairly clear that the John fractal is not a work of art. It can best
be considered a mathematical joke, worth a few seconds of interest. Unlike
the previous example, it does not draw any emotion, and it almost actively
bores its audience. There is nothing to keep the viewer interested in the
image beyond the first glance.

12.3 Janet Parke’s “Then I Saw a New Heaven”

For several years, Fractalus.com hosted a fractal art contest. The 1999 con-
test drew entries from over 130 fractal artists and selected winners in 13
different categories, such as Emotion, Best Color, Organic, and Mechanical,
among others. Janet Parke won several awards for two of her three submis-
sions. We will examine her entry, “Then I Saw a New Heaven”, shown in
Figure 28, the first place winner of the Quote Interpretation section of the
contest. The image is an interpretation of Revelation 21:1,4 from the Bible:
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Then I saw a new heaven and a new earth; for the first heaven
and the first earth had passed away... and death shall be no more,
neither shall there be mourning nor crying nor pain any more, for
the former things have passed away.

Figure 28: Janet Parke’s “Then I Saw a New Heaven”

Her image depicts heaven as a cloudy white fractal figure in the center,
surrounded by serenely colored skies. This is framed by a silvery substance
reminiscent of mercury, which appears to be opening up to expose Heaven.
Another interpretation might be made, but the title and Bible passage tend
to guide the mind into perceiving the image in a specific way.

The colors and textures clearly create an image that is not as boringly
static as the John fractal. There is a degree of restlessness, created by the
rippling structure of the metallic liquid. However, this is not so powerful as
to distract the eye from the image of Heaven. Instead, it gives the feeling
that the liquid is flowing away to expose Heaven in the center.

Symmetry does not apply to the outer frame, but it can be found in
the white clouds in Heaven. The clouds spiral into the center of the image,
providing self-similarity. It appears that the similarity is mathematically
perfect, and that this is a fractal object processed and colored to look like
clouds. Though the similarity has no breaks, it does not fall into the trap

74



of being boring, because it does not try to be the main focus of attention in
the image.

The image, with its suggestive title, invites a feeling of movement. It
seems to imply that the viewer is swimming through some kind of obstruction.
With the context provided by the title and Bible passage, the suggestion
is that viewer is moving forward toward Heaven, leaving behind the oily
substance of death, mourning, and pain. This is accentuated by the carefully
manipulated structure of the foreground matter, which is made to look like
a liquid that is sliding away from the center of the image.

The layering of the picture also gives a sense of depth. It is clear that
the dark, negative foreground liquid is close to the viewer and that Heaven
is further away but close enough to reach for. The artist made careful use
of transparency so that Heaven is viewable between all of the gaps in the
metallic liquid, making it seem as if the darkness is obscuring Heaven.

Color is used in this image primarily to express emotion. The negative
emotions of death and pain are depicted as a filthy oily substance obscuring
the view. Heaven, on the other hand, is represented using soft, tranquil
colors, giving a sense of peace and happiness. Color is also used to define
objects that the viewer can recognize, such as the fractal structure in the
center of heaven that is colored to look like a cloud.

It is clear that Janet Parke kept in mind how her audience would react
to her image. While the “JOHN” image is merely a fractal rendering, “Then
I Saw A New Heaven” is a carefully created work of art, with fractals as the
paintbrush, and layering techniques as the canvas.

12.4 Dots

In an attempt to create some original art work, Steve Conte developed the
image “Dots”, shown in Figure 29, using Ultra Fractal. The authors have
little experience creating art, and do not consider themselves artists. Never-
theless, “Dots” is somewhat interesting to look at. In order to fairly assess
the artistic merit of this image, it will now be analyzed by John Waymouth.
He has been given no knowledge of what process was used to create the
fractal so that his opinions are not swayed in any way.

At first glimpse, this image seems as if it suffers a similar problem as the
John fractal: its sense of order and repose is dangerously close to boring.
However, one’s eye is soon drawn to the dot field in the lower right, and the
eye starts to try to make some order out of the pattern. Phantom arcs seem
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Figure 29: “Dots”, by Steve Conte

to connect the dots in rivalling orientations, and the eye is also drawn to
explore the clusters of dots. But after this initial surprise, the image settles
down again, and patterns tend not to have much more interesting information
to divulge.

Though it may not be obvious at first glance, this image has reflective
symmetry along an axis approximately 20◦ counterclockwise from vertical,
which is more noticeable if the viewer tilts his head to match it. Any benefit
that might be gained from symmetry is lost because it is not readily apparent,
due to its non-standard orientation. On the other hand, this symmetry is
mathematically precise, and Gombrich warns against this kind of symmetry
because it is boring. Perhaps the mind unconsciously notices the symmetry,
and this contributes to the overall emotional feeling created by the image,
but I did not consciously notice it until I specifically looked for it. It seems
likely that this symmetry is an accident of the rendering technique used, and
not a decision of the artist.

This image has a definite sense of depth, created by the use of dots of
varying size. As the viewer’s eyes follow the movement of the nearest set of
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dots, he might feel the need to move into the picture and follow the path.
The nearest dots obscure the view, and appear hazy and indistinct, as if the
eye is unable to focus on an object so close.

The coloring seems to be as accidental as the symmetry. Red is used for
the repeated visual element of the dots, and a rather plain blue is used for
the background. In the works above by Parke and Vassallo, the background
always had some interesting detail, such as gradients or waves. In “Dots”, the
background is monochrome, and this lack of detail seems to paradoxically at-
tract attention. When the eye moves to examine the sea of blue more closely,
it is not rewarded with any new detail, and this detracts from the emotional
experience and leaves a feeling of shallowness. Perhaps black or white would
have been better choices, because they are colors more traditionally used as
plain, undecorated backgrounds.

“Dots” has no appeal for the object recognition sense that is part of the
human visual system. The only structural object in the image is the dot,
repeated hundreds of times at varying distances. Its uniformly hazy, circular
appearance has no detail to interest the eye, and seems to exist only to
define some three-dimensional starfield. There are no objects to engage our
interest, except those created by the juxtaposition of groups of dots. The
only interesting patterns are in the arcs described above, and the five central
cables that extend off to the horizon. Since the termination of these objects
is obscured by one of the dots, the eye is not rewarded by its natural tendency
to follow the “dotted lines” to their conclusion.

Steve Conte’s “Dots” and the John fractal seem to be lacking some un-
derlying quality that is present in the previous examples by Vassallo and
Parke. In both of these images, there is visual information that keeps the
viewer interested beyond the first cursory inspection. It is possible to catch
attention with simple fractal patterns, but it seems to take a true artist to
hold our interest and make us want to explore an image more fully. It is
clear that fractal artists must carefully consider how their work will be per-
ceived. They must make careful use of the psychological impact of patterns,
symmetry, movement, depth, color, and object recognition to stimulate the
interest of their audience.

This is why “Dots” and the John fractal are not nearly as artistically
interesting as the works by Parke and Vassallo. Since we are not talented
and experienced artists, we did not know how to design our images to ben-
efit from the psychological impact that various visual elements have on the
audience. When examined as works of art, our fractal images appear just as
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amateur as any of our artistic undertakings in other media, because we are
not accomplished artists.
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13 Conclusions

The WPI Projects and Registrar’s Office states that the objective of the IQP
is to enable WPI graduates to understand how their careers will affect the
larger society of which they are a part. It should challenge students to iden-
tify, investigate, and report on a topic examining how science or technology
interacts with societal structures and values.

This project explored the interaction between the mathematics of fractals
and the institution of art. Advances in computing technology have led to the
rapid growth of fractals as a research topic, and to the inclusion of fractal
images and methods in art. We investigated how fractals are changing art
and how fractal art reflects society today. Studying these relationships has
made us more aware of the possible implications of future technological de-
velopments to the society in which we live. This will make us more aware of
the societal implications of the work we do throughout our careers.

In working on this project, we came to an important conclusion: it takes
an artist to create fractal art. Although computers are very good at per-
forming the iterative mathematical calculations required to generate a fractal
image, they do not have a sense for what makes an image a true piece of art.
Images generated solely by a computer, although interesting, can seldom be
considered art. These images can, however, provide a good starting point
for the artist. Just as a camera is an invaluable tool for the photographer,
the computer is an invaluable tool for the fractal artist. In addition to being
tools in the development of art, computers and fractals allow more people
to participate in the creation of art. Many people who do not have the dex-
terity of hand required for painting or sketching find that they can express
themselves artistically through the creation of fractal art using computers.
In this way scientific and technological advancement has opened the door for
many people to participate in a rewarding social institution. We feel that
fractals have introduced a new paradigm to the world of art.

Our impression of this project has been positive. Through our research
we have learned a lot about the mathematical basis for fractals and the
many different ways of using fractals to generate art. Additionally, we have
observed the way in which a new scientific discovery can affect unexpected
areas of society. By studying how mathematical advancements in fractals
have affected the world of art, we were made more aware of how technology
and science can affect our world. As we go into the work force we will bring
this awareness with us, hopefully allowing us to do work that is not only
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scientifically sound, but also beneficial to the society in which we live.
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A Source Code Listings

This appendix contains several programs written by the authors to demon-
strate various algorithms related to this report. In order to fit the source
code in the space available, it must be rendered in a small font. On some
computers, this font can appear as grey lines. If this is the case, please zoom
in until text appears.

A.1 Mandelbrot and Julia Set Generator

In section 4.2 on page 18, we described our Mandelbrot and Julia set render-
ing program. Below is a listing of the source code for this program.

/∗
∗ mandelbrot.cpp
∗
∗ Written by John Waymouth as part of the Fractals and Art IQP by John
∗ Waymouth and Steve Conte.
∗
∗ Fractals and Art: The Mandelbrot Set
∗
∗ This C++ program is a simple utility to generate images of the mandelbrot and
∗ julia sets in PNG format. The GD library, version 2, is required . An
∗ example of how to compile with GCC in a UNIX environment:
∗
∗ g++ −o mandelbrot mandelbrot.cpp −lgd
∗
∗ Usage information can be found by running the program with no arguments.
∗
∗ This program is designed for a UNIX environment, but will probably work in
∗ any environment that has the GD library, such as CYGWIN for windows
∗ (untested).
∗/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gd.h>

/∗ Declare a structure to hold a complex number ∗/
typedef struct {

double real;
double imag;

} complex;

/∗ Prototypes for functions to do various complex number operations ∗/
complex mulComplex(complex a, complex b);
complex addComplex(complex a, complex b);
double magSquared(complex a);
complex mulComplex(complex a, double b);

int main(int argc, char ∗∗argv) {
if (argc < 13) {

printf (”Usage: %s <maxIterations> <criticalMagnitude> <xmin> <xmax> \n”
” <ymin> <ymax> <width> <height> <exponent> <type> <param.real> \n”
” <param.imag>\n\n”,argv[0]);

printf (”<type>: specify \”mandelbrot\” or \”julia\”\n”
”<param.real>, <param.imag>: for mandelbrot, this is the starting z value. For \n”
” julia , this is the value of c\n\n”);

printf (”The image is output in PNG format on standard output. The column number is \n”
”printed on standard error after each column is calculated . Examples:\n\n”
”mandelbrot 100 10 −2 1.0 −1.5 1.5 500 500 2 mandelbrot 0 0 > mandelbrot.png\n”
”mandelbrot 100 10 −1.5 1.5 −1.5 1.5 500 500 2 julia 0.375 0.375 > julia .png\n\n”
);

return −1;
}
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/∗ Initialize variables based on input ∗/

int maxIterations=atoi(argv[1]);
int criticalMagnitude=atoi(argv[2]);
double xmin=strtod(argv[3],NULL);
double xmax=strtod(argv[4],NULL);
double ymin=strtod(argv[5],NULL);
double ymax=strtod(argv[6],NULL);
int width=atoi(argv[7]);
int height=atoi(argv[8]);
int exponent=atoi(argv[9]);

/∗ Decide if this is a mandelbrot or julia set based on the type argument ∗/
bool mandelbrot=false;
if (strncasecmp(argv[10],”mandelbrot”,strlen(argv[10])) == 0) {

mandelbrot=true;
} else if (strncasecmp(argv[10],”julia”, strlen (argv[10])) == 0) {

mandelbrot=false;
} else {

printf (”<type>: must specify mandelbrot or julia\n”);
return −1;

}

complex param={strtod(argv[11],NULL),strtod(argv[12],NULL)};

/∗ working data ∗/
complex newz, c;
complex z={0.0,0.0};
int x, y, e;
double xch=(xmax−xmin)/width; /∗ xch is the width of each pixel ∗/
double ych=(ymax−ymin)/height; /∗ ych is the height of each pixel ∗/
/∗ If xch and ych are not equal, the image will be distorted . Therefore, the
∗ following equation should hold:
∗ xmax − xmin ymax − ymin
∗ −−−−−−−−−−−−− = −−−−−−−−−−−−−
∗ width height
∗/

int criticalMagSquared=criticalMagnitude∗criticalMagnitude;

/∗ A note about pixel positions : In complex numbers, a greater imaginary part
∗ means a higher point on the graph of the complex plane. However, in
∗ graphics programming, the highest position is 0, and higher y values mean
∗ lower points on the screen . Therefore, when plotting in the loop below,
∗ the points must be graphed using (x, height − y).
∗/

gdImagePtr im=gdImageCreate(width,height);

/∗ Generate an interesting palette .
∗
∗ The following procedure generates a rainbow palette. If a pixel reaches
∗ the critical magnitude in n iterations , then its color is chosen by using
∗ the palette entry stored in colors [n].
∗
∗ For a detailed description of the algorithm used to generate these colors ,
∗ please refer to the section entitled ”Rainbow color palette”.
∗/

int inc=32;
int colors [maxIterations + 256∗6/inc];
int background=gdImageColorAllocate(im,0,0,0);
int i=0;

/∗ Start at red ∗/
int green=0;
int red=255;
int blue=0;

while(i+1 < maxIterations) {
/∗ transition through orange to yellow ∗/
for (; green <= 255;green += inc)

colors [ i++]=gdImageColorAllocate(im,red,green,blue);
green=255; /∗ would be 256 otherwise, too high ∗/
/∗ (255, 255, 0) ∗/

/∗ transition to green ∗/
for (; red >= 0;red −= inc)

colors [ i++]=gdImageColorAllocate(im,red,green,blue);
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red=0; /∗ would be −1 otherwise ∗/
/∗ (0, 255, 0)

/∗ transition through turquoise to cyan ∗/
for (; blue <= 255;blue += inc)

colors [ i++]=gdImageColorAllocate(im,red,green,blue);
blue=255;
/∗ (0, 255, 255) ∗/

/∗ transition to blue ∗/
for (; green >= 0;green −= inc)

colors [ i++]=gdImageColorAllocate(im,red,green,blue);
green=0;
/∗ (0, 0, 255) ∗/

/∗ transition through violet to magenta ∗/
for (; red <= 255;red += inc)

colors [ i++]=gdImageColorAllocate(im,red,green,blue);
red=255;
/∗ (255, 0, 255) ∗/

/∗ transition back to red again ∗/
for (; blue >= 0;blue −= inc)

colors [ i++]=gdImageColorAllocate(im,red,green,blue);
blue=0;
/∗ (255, 0, 0) ∗/

/∗ we’ve come full circle , repeat again if necessary ∗/
}

for (x=0;x<width;x++) {
for (y=0;y<height;y++) {

/∗ choose values for z and c depending on the type of fractal ∗/
if (mandelbrot) {

c=(complex){x∗xch+xmin,y∗ych+ymin}; /∗ c = pixel position ∗/
z=param; /∗ initial z is a parameter ∗/

} else {
c=param; /∗ c is a parameter ∗/
z=(complex){x∗xch+xmin,y∗ych+ymin}; /∗ z = pixel position ∗/

}

for ( i=0;i<maxIterations;i++) {
newz=z;

/∗ z new = zˆexponent + c ∗/
for (e=1;e<exponent;e++)

newz=mulComplex(newz,z);
newz=addComplex(newz,c);

/∗ prepare z for the next iteration ∗/
z=newz;

if (magSquared(z) > criticalMagSquared) {
gdImageSetPixel(im,x,height−y,colors[i]);
break;

}
}

/∗ If the inner loop hasn’t broken before reaching the maximum number of
∗ iterations , then the point is in the set , so mark it black
∗/

if ( i == maxIterations)
gdImageSetPixel(im,x,height−y,background);

}
fprintf (stderr ,”col %d\n”,x);

}

/∗ print the image to standard output ∗/
gdImagePng(im,stdout);

return 0;
}

/∗ Multiply two complex numbers.
∗/

complex mulComplex(complex a, complex b) {
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complex ret;
ret . real=a.real∗b.real − a.imag∗b.imag;
ret .imag=a.imag∗b.real + a.real∗b.imag;
return ret;

}

/∗ Add two complex numbers ∗/
complex addComplex(complex a, complex b) {

complex ret;
ret . real=a.real+b.real;
ret .imag=a.imag+b.imag;
return ret;

}

/∗ Compute the square of the magnitude of a complex number. This avoids the
∗ necessity of using the sqrt function , for increased efficiency . Recall that:
∗
∗ magnitude(a) = sqrt(a.real∗a.real + a.imag∗a.imag);
∗/

double magSquared(complex a) {
return a.real∗a.real + a.imag∗a.imag;

}

A.2 Box-Counting Dimension Calculator

Section 7.2 on page 47 described an algorithm for calculating the fractal
dimension of an image file. Below is the source code for our box counting
fractal dimension calculator.
// boxcount.cpp
// Author: Steve Conte
// A windows console application to generate the box−counting dimension of a
// monochromatic bitmap
//
// Note: This program was thrown together and is not horribly user friendly
// Currently assumes the image is a black and white, 512x512 pixel, device
// independent bitmap (.bmp)
// Black pixels are counted as part of the image, white are not.

#include ”stdafx.h”
#include ”windows.h”
#include <math.h>

int CountBoxes(HDC theDC, int r, int height, int width);
bool CheckBox(HDC theDC, int x start, int y start, int r);

#define HEIGHT 512
#define WIDTH 512
#define R MAX 512

int main(int argc, char∗ argv[])
{

if (argc <2)
argv[1] = ”c:\\stevetest .bmp”;

int i , j ;
int r = 1;

HBITMAP mybitmaph;
HDC myDC;
HDC DontUse;
int blackpixelcount = 0;
char buff[100];

DontUse = CreateDC(”Display”, NULL, NULL, NULL);
myDC = CreateCompatibleDC(DontUse);
// Make sure the image is Blank white
BitBlt(myDC, 0, 0, WIDTH, HEIGHT, NULL, 0, 0, WHITENESS);
mybitmaph = (struct HBITMAP ∗)LoadImage(0, argv[1], IMAGE BITMAP,

0,0, LR LOADFROMFILE);
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SelectObject(myDC, mybitmaph);

printf (”Box−counting for image: %s\nAssuming Image size: %d X %d\n”,
argv [1], HEIGHT, WIDTH);

printf (”Format: r (box size ), N (number of boxes containing image), ”
”log(r ), log(n)\n”);

for(r=1; r<R MAX+1; r = r∗2){
blackpixelcount = CountBoxes(myDC, r, WIDTH, HEIGHT);

printf (”%d,%d,%f,%f\n”,r, blackpixelcount, log10(r), log10(blackpixelcount));
}

return 0;
}

int CountBoxes(HDC theDC, int r, int height, int width)
{

int boxcount = 0;
int i , j ;

for(i=0; i<width; i=i+r){
for(j=0; j<height; j=j+r){

if (CheckBox(theDC, i, j, r))
boxcount++;

}
}
return boxcount;

}

bool CheckBox(HDC theDC, int x start, int y start, int r)
{

bool contains = false;
int i , j ;

for(i=x start; i<x start+r; i++){
for(j=y start; j<y start+r; j++){

if (GetPixel(theDC, i, j) == 0x000000)
contains = true;

}
}

return contains;
}

A.3 Fractal Music Generator

Sections 9.1 through 9.3 starting on page 56 described three example algo-
rithms for generating fractal music. The listings below are a set of Java

TM
files

that implement these three examples. To run the examples, load fractalmu-
sic.html in a web browser with Java

TM
Applet support enabled.

/∗∗
∗ FractalNoteGenerator.java
∗
∗ Written by John Waymouth as part of the Fractals and Art IQP by John
∗ Waymouth and Steve Conte.
∗
∗ Fractals and Art: Music and Fractals
∗
∗ This java class is an example of a program that generates MIDI notes using a
∗ chaos function . Chaos functions are implemented through the IteratedFunction
∗ interface , so that they can be interchanged.
∗
∗/

import java.util.∗;
import javax.sound.midi.∗;

public class FractalNoteGenerator {
private int minNote;
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private int spread;
private long duration;
private IteratedFunction func;

/∗∗
∗ @param minNote the lowest MIDI note value to generate
∗ @param maxNote the highest MIDI note value to generate
∗ @param duration the duration of each note, in milliseconds
∗ @param func the source of fractal data
∗/

public FractalNoteGenerator(int minNote, int maxNote, long duration,
IteratedFunction func) {

this.minNote=minNote;
this.spread=maxNote−minNote;
this.duration=duration;
this.func=func;

}

public static void main(String[] args) {
IteratedFunction func=new RandomFunction(System.currentTimeMillis());
FractalNoteGenerator fng=new FractalNoteGenerator(48,72,500,func);

fng.generate(20000);
System.exit(0);

}

/∗∗
∗ Generate notes using the fractal number source in func. Notes are played
∗ using the computer’s speakers and MIDI system.
∗
∗ @param length how long to play notes for, in milliseconds
∗/

public void generate(long length) {
try {

long endTime=System.currentTimeMillis() + length;
long startTime=System.currentTimeMillis();
Synthesizer synth=MidiSystem.getSynthesizer();
synth.open();
Receiver synthReceiver=synth.getReceiver();

ShortMessage cmd=new ShortMessage();
while(System.currentTimeMillis() < endTime) {

/∗ use the chaos function to generate the next note value , which is
∗ a number between minNote and minNote+spread ∗/

int noteValue=func.nextValue()%(spread+1) + minNote;

/∗ turn this note on ∗/
cmd.setMessage(cmd.NOTE ON,noteValue,64);
synthReceiver.send(cmd,−1);

/∗ wait to send the note off ∗/
Thread.sleep(Math.min(endTime−System.currentTimeMillis(),duration));

/∗ turn the note off ∗/
cmd.setMessage(cmd.NOTE OFF,noteValue,64);
synthReceiver.send(cmd,−1);

}

synth.close ();
} catch (Exception e) {

e.printStackTrace();
}

}
}

/∗∗
∗ FractalMultipleNoteGenerator.java
∗
∗ Written by John Waymouth as part of the Fractals and Art IQP by John
∗ Waymouth and Steve Conte.
∗
∗ Fractals and Art: Music and Fractals
∗
∗ This class is like the FractalNoteGenerator except that it plays 3 notes
∗ at once, generating a ”chord”. This demonstrates that fractals tend not to
∗ be good for generating nice−sounding harmonies.
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∗
∗/

import java.util.∗;
import javax.sound.midi.∗;

public class FractalMultipleNoteGenerator {
private int minNote;
private int spread;
private long duration;
private IteratedFunction func;

/∗∗
∗ @param minNote the lowest MIDI note value to generate
∗ @param maxNote the highest MIDI note value to generate
∗ @param duration the duration of each note, in milliseconds
∗ @param func the source of fractal data
∗/

public FractalMultipleNoteGenerator(int minNote, int maxNote, long duration,
IteratedFunction func) {

this.minNote=minNote;
this.spread=maxNote−minNote;
this.duration=duration;
this.func=func;

}

public static void main(String[] args) {
IteratedFunction func=new RandomFunction(System.currentTimeMillis());
/∗ generate all notes in the octave starting at middle C ∗/
FractalMultipleNoteGenerator fmng=

new FractalMultipleNoteGenerator(60,72,500,func);

fmng.generate(20000);
System.exit(0);

}

/∗∗
∗ Generate notes using the fractal number source in func. Notes are played
∗ using the computer’s speakers and MIDI system.
∗
∗ @param length how long to play notes for, in milliseconds
∗/

public void generate(long length) {
try {

long endTime=System.currentTimeMillis() + length;
long startTime=System.currentTimeMillis();
Synthesizer synth=MidiSystem.getSynthesizer();
synth.open();
Receiver synthReceiver=synth.getReceiver();

ShortMessage cmd=new ShortMessage();
int noteValues[]=new int[3];

while(System.currentTimeMillis() < endTime) {
/∗ use the chaos function to generate the next note values,
∗ which are numbers between minNote and minNote+spread ∗/

for (int i=0;i<3;i++)
noteValues[i]=func.nextValue()%(spread+1) + minNote;

/∗ turn all notes on ∗/
for (int i=0;i<3;i++) {

cmd.setMessage(cmd.NOTE ON,noteValues[i],64);
synthReceiver.send(cmd,−1);

}

/∗ wait to send the note off ∗/
Thread.sleep(Math.min(endTime−System.currentTimeMillis(),duration));

/∗ turn the note off ∗/
for (int i=0;i<3;i++) {

cmd.setMessage(cmd.NOTE OFF,noteValues[i],64);
synthReceiver.send(cmd,−1);

}
}

synth.close ();
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} catch (Exception e) {
System.out.println(”Exception!”);
e.printStackTrace();
System.exit(−1);

}
}

}

/∗∗
∗ FractalNoteGenerator.java
∗
∗ Written by John Waymouth as part of the Fractals and Art IQP by John
∗ Waymouth and Steve Conte.
∗
∗ Fractals and Art: Music and Fractals
∗
∗
∗ This class is like the FractalMultipleNoteGenerator, except that it generates
∗ 4−voice chords that are all in the key of C Major. This means that the chords
∗ will not sound as dissonant, and that the brain may try to follow individual
∗ voices .
∗
∗/

import java.util.∗;
import javax.sound.midi.∗;

public class FractalChordGenerator {
private int key;
private long duration;
private IteratedFunction func;

/∗∗
∗ @param key the first note in the desired key
∗ @param duration the duration of each note, in milliseconds
∗ @param func the source of fractal data
∗/

public FractalChordGenerator(int key, long duration,
IteratedFunction func) {

this.key=key;
this.duration=duration;
this.func=func;

}

public static void main(String[] args) {
IteratedFunction func=new RandomFunction(System.currentTimeMillis());
FractalChordGenerator fng=new FractalChordGenerator(48,500,func);

fng.generate(20000);
System.exit(0);

}

/∗∗
∗ Generate notes using the fractal number source in func. Notes are played
∗ using the computer’s speakers and MIDI system.
∗
∗ @param length how long to play notes for, in milliseconds
∗/

public void generate(long length) {
/∗ Create lists of chords. Each chord is specified by listing the offset
∗ above the bass note, in half−steps. These chords are chosen from
∗ various possible positionings of the four voices . Note that the last
∗ minor chord is in first inversion for added fun. ∗/

int majorChords[][]=new int[][]{{0,16,19,24},{0,7,16,19},{0,12,19,28}};
int minorChords[][]=new int [][]{{0,15,19,24},{0,7,19,24},{0,12,19,27},{0,4,12,21}};

/∗ This array tells whether a chord starting at this step should be
∗ major or minor (true means major) ∗/

boolean major[]=new boolean[]{true,false,false,true,true,false,false,true};

/∗ This array gives the offsets in half−steps of each note of a major
∗ scale ∗/

int steps[]=new int []{0,2,4,5,7,9,11,12};

try {

long endTime=System.currentTimeMillis() + length;

88



long startTime=System.currentTimeMillis();
Synthesizer synth=MidiSystem.getSynthesizer();
synth.open();
Receiver synthReceiver=synth.getReceiver();

ShortMessage cmd=new ShortMessage();
while(System.currentTimeMillis() < endTime) {

/∗ use the chaos function to generate the bass note, by choosing
∗ a step of the scale , finding its half−step offset from steps [],
∗ and using that to calculate the MIDI note value ∗/

int step=func.nextValue()%8;
int bassNote=key + steps[step];
int [] chord;

/∗ choose the chord. Make the decision by using more data from
∗ the chaos function ∗/
if (major[step])

chord=majorChords[func.nextValue() % majorChords.length];
else

chord=minorChords[func.nextValue() % minorChords.length];

/∗ turn on all notes of the chord ∗/
for (int i=0;i<chord.length;i++) {

cmd.setMessage(cmd.NOTE ON,bassNote+chord[i],64);
synthReceiver.send(cmd,−1);

}

/∗ wait to send the note off ∗/
Thread.sleep(Math.min(endTime−System.currentTimeMillis(),duration));

/∗ turn off all notes of the chord ∗/
for (int i=0;i<chord.length;i++) {

cmd.setMessage(cmd.NOTE OFF,bassNote+chord[i],64);
synthReceiver.send(cmd,−1);

}
}

synth.close ();
} catch (Exception e) {

e.printStackTrace();
}

}
}

/∗∗
∗ IteratedFunction.java
∗
∗ Written by John Waymouth as part of the Fractals and Art IQP by John
∗ Waymouth and Steve Conte.
∗
∗ Fractals and Art: Music and Fractals
∗
∗ This interface is for objects that provide numbers through some kind of
∗ chaos function . The nextValue() method mimics the behavior of f(x):
∗
∗ x new=f(x old)
∗
∗ The implementing object rememebers x old. The initial x value should be
∗ passed in through the constructor or by other means.
∗/

public interface IteratedFunction {
/∗ Return the next number from the chaos function. Return value should be
∗ an integer between 0 and 255
∗/

public int nextValue();
}

/∗∗
∗ FractalNoteGenerator.java
∗
∗ Written by John Waymouth as part of the Fractals and Art IQP by John
∗ Waymouth and Steve Conte.
∗
∗ Fractals and Art: Music and Fractals
∗
∗ This iterated function class provides fractal data from the java’s
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∗ pseudorandom number generator Random, which is a type of chaos function.
∗
∗/

import java.util.Random;

public class RandomFunction implements IteratedFunction {
private Random random;

public RandomFunction (long startingX) {
random=new Random(startingX);

}

public int nextValue() {
return random.nextInt(256);

}
}

/∗
∗ FractalMusicApplet.java
∗
∗ Written by John Waymouth as part of the Fractals and Art IQP by John
∗ Waymouth and Steve Conte.
∗
∗ Fractals and Art: Music and Fractals
∗
∗ This class is a simple interface to the three fractal music examples, which
∗ may be run as an applet from a web browser. This code just implements a
∗ minimal interface , and is not pertinent to the study of fractals and music,
∗ so readers may skip this file .
∗
∗/

import javax.swing.∗;
import java.awt.∗;
import java.awt.event.∗;

public class FractalMusicApplet extends JApplet implements ActionListener {
private JTextField durationBtn;
private JButton noteGeneratorBtn,multiNoteGeneratorBtn,chordGeneratorBtn;
private IteratedFunction func=new RandomFunction(System.currentTimeMillis());
private FractalChordGenerator fcg=new FractalChordGenerator(48,500,func);
private FractalNoteGenerator fng=new FractalNoteGenerator(48,72,500,func);
private FractalMultipleNoteGenerator fmng=

new FractalMultipleNoteGenerator(60,72,500,func);

public void init() {
Container contentPane=getContentPane();
contentPane.setLayout(new FlowLayout());

JLabel durationLabel=new JLabel(”Enter duration in seconds:”);
durationBtn=new JTextField(”20”,10);
contentPane.add(durationLabel);
contentPane.add(durationBtn);

noteGeneratorBtn=new JButton(”FractalNoteGenerator”);
noteGeneratorBtn.addActionListener(this);
contentPane.add(noteGeneratorBtn);

multiNoteGeneratorBtn=new JButton(”FractalMultipleNoteGenerator”);
multiNoteGeneratorBtn.addActionListener(this);
contentPane.add(multiNoteGeneratorBtn);

chordGeneratorBtn=new JButton(”FractalChordGenerator”);
chordGeneratorBtn.addActionListener(this);
contentPane.add(chordGeneratorBtn);

}

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals(”FractalNoteGenerator”)) {

enableButtons(false);
fng.generate(Integer .parseInt(durationBtn.getText())∗1000);
enableButtons(true);

} else if (e.getActionCommand().equals(”FractalMultipleNoteGenerator”)) {
enableButtons(false);
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fmng.generate(Integer.parseInt(durationBtn.getText())∗1000);
enableButtons(true);

} else if (e.getActionCommand().equals(”FractalChordGenerator”)) {
enableButtons(false);
fcg .generate(Integer .parseInt(durationBtn.getText())∗1000);
enableButtons(true);

}
}

public void enableButtons(boolean enable) {
noteGeneratorBtn.setEnabled(enable);
multiNoteGeneratorBtn.setEnabled(enable);
chordGeneratorBtn.setEnabled(enable);

}
}

<html>
<body>
<h1>Fractal Music Applet</h1>
This is an interface to three examples of fractal ”music”. By clicking
any of the three buttons in the applet below, you will start the
generation of notes chosen by a chaos function. In essence , you are
listening to a fractal .
<br><br>
<i>notes and chords should be played at even time intervals.
However, occasionally they may sound slightly off , due to a

bug in Java’s MIDI software.</i><br><br>
<applet code=”FractalMusicApplet.class” width=300 height=200></applet>
<br><br>
To download the code: <a href=”fractalmusic.tar.gz”>Unix
.tar .gz</a>&nbsp;&nbsp;&nbsp;<a href=”fractalmusic.tar.gz”>.ZIP
format</a>
</body>
</html>
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B Programs Used

B.1 Fractint

Authors Bert Tyler, Tim Wegner, Jonathan Osuch, Wes Loewer,
George Martin, Robin Bussell, and various other con-
tributors

Where to find http://spanky.triumf.ca/www/fractint/fractint.html
Platforms Written for DOS. Ported to Windows NT, Macintosh,

Linux, BeOS.
Distribution Free to download; source code available

Fractint is an ongoing project that was started in 1988, as an effort to
make a Mandelbrot set rendering program that was faster than any program
in existence. The way they did this was to use integer calculations to em-
ulate floating point mathematics, hence the “int” in Fractint. This made
the program much faster than others that used floating point operations, be-
cause integer operations are much easier to calculate. Also, this meant that
Fractint could be used on computers without floating point coprocessors.
Technology has progressed a lot since then, and floating point calculations
can now be computed fairly quickly. But because Fractint had this edge over
other programs in the late 1980’s, the program has stayed under continuous
development and use and has grown to be a program full of useful features.

Fractint is distributed as a DOS program, although we were able to run
it in Microsoft Windows XP Home Edition without any trouble. The Unix
port didn’t work so well for us. The DOS version supports a great variety
of video modes and also has support for standard mice. The interface isn’t
very impressive, but it’s clean and simple, and it gets the job done.

Included in the standard distribution is support for over 100 types of
fractals, including Mandelbrot and Julia sets, Iterated Function Systems,
L-Systems, and many others. Also included is a user-defined formula inter-
pretation module, which allows users to craft their own iteration formulas.
For example, one could take the Mandelbrot formula, zn+1 = z2

n + c, and ex-
periment with minor modifications, such as zn+1 = z2

n + zn + c. Many other
variations are possible, such as referring to zn−2 and earlier values, adding
more parameters, using functions such as sine and cosine, etc. Fractint in-
cludes hundreds of premade user defined formulas that run in this module.
This means that, as distributed, Fractint comes with built-in support for over
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283 different fractals. By searching on the Fractint web site or elsewhere on
the Internet, one can find thousands of additional Fractint formulas.

One of Fractint’s best features is its implementation of arbitrary-precision
floating point numbers. Computer floating point operations are inherently
inexact, because it is not possible to store an infinitely repeating decimal
number in a computer. This means that most fractal rendering programs
cannot zoom in on a fractal indefinitely, because eventually, the computer’s
inaccuracies are so great that it is impossible to calculate the difference be-
tween adjacent pixels with enough precision. Where a modern computer can
calculate floating point numbers to 15 decimal digits of precision, Fractint’s
software emulates a computer that can calculate up to 1600 digits after the
decimal point. This allows exploration to lower depths in the fractal, as out-
lined in section 4.5.2 on page 23. This doesn’t come without a price, though.
Calculations at very deep levels can take days, weeks, or even months to
calculate, even on modern computers.

Among its other features Fractint supports minimal palette editing and
loading, though it supports a maximum of 256 colors. Fractint can also save
a screen image to disk, including with it the parameters necessary to resume
computation. This means that the user can save a screen picture to disk and
load it at a later time, picking up right where he left off. This is extremely
valuable, because it is highly improbable that anyone can find the same place
in a fractal twice without knowing the parameters.

Fractint was used extensively in this project to render Mandelbrot sets,
Julia sets, IFS’s, and L-Systems. Fractint allows the user to enter the pa-
rameters of a fractal image (such as fractal type, zoom level, position, and
parameters to the calculation) in a file and load these files for rendering. The
reader can find parameter files for many of the figures in this report on the
accompanying CD-ROM.

B.2 XaoS

Authors Jan Hubicka, Thomas Marsh, other contributors
Where to find http://www.ucw.cz/∼hubicka/XaoS/
Platforms Written for Linux/X-Windows, ported to Windows,

DOS, OS/2, BeOS, Amiga, Macintosh
Distribution released under the GPL (source code freely available)

XaoS is another program that renders Mandelbrot and Julia sets, and a
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few other kinds of fractals. Its authors don’t offer a suggestion of how to
pronounce “XaoS”, so we suggest calling it “Chaos”. The interesting part is
that XaoS is designed with the main goal of efficiently rendering animations
of fractals. This means that you click on an area of a fractal, and watch, in
real time, as that area is enlarged. You can direct the animation as XaoS
zooms in, creating your own fractal “movie”. XaoS also supports recording
transcripts of your exploration, and adding textual notes, pauses, and other
effects, to create a fractal presentation that can be shared with friends and
colleagues. XaoS comes with several movies that act as a tutorial for all
of its features and modes of operation, along with a few that just show off
some incredibly beautiful animations. XaoS can also be used as a screen
saver by putting it in autopilot mode. In this mode, it uses some heuristics
to choose “interesting” parts of a fractal to explore, and zooms in and out
automatically.

XaoS is a great program to use to introduce someone to the world of
fractals. It is awe-inspiring to watch as an area that was only a tiny speck a
moment ago comes into full view, and then races away as even lower depths
are brought to the foreground. It is fascinating to the uninitiated to watch
as a miniature copy of the Mandelbrot set comes into full view, and then a
smaller one, and on even deeper. Then, with a click of a button, you can
zoom out entirely to the original picture, and come to grips with the fact
that you were exploring the tiniest detail of a detail. XaoS is optimized to
use a highly efficient rendering algorithm, so there is no waiting to zoom in
as with other programs such as Fractint, which makes it a lot more visually
rewarding to explore a fractal.

XaoS has support for true-color video modes, which means that it can
display millions of colors at a time. It has quite a few coloring modes for
points inside and outside of the set, which allows for some vivid and incredibly
beautiful fractal images. XaoS even has a mode for rendering in ASCII art,
which means that the screen is drawn in letters, numbers, and punctuation!
Unfortunately, the detail is not very easy to pick out, and this mode doesn’t
seem to have much use other than entertainment. In the same vein, XaoS
can generate its fractals as random-dot stereograms, which are also known
as “Magic Eye Pictures”.

XaoS is an extremely fun program to use, and is a great exploration tool
for readers just starting to explore the world of fractals.
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B.3 FDESIGN

Author Doug Nelson
Where to find http://spanky.triumf.ca/pub/fractals/programs/

ibmpc/fdesi313.zip
Platforms DOS
Distribution Free to download; source code available

FDESIGN is a program written in 1990 that deals specifically with the
design of iterated function systems (see Section 5 on page 28). It was written
for DOS, but it runs in Microsoft Windows XP Home Edition without a
problem. Though this program is over 12 years old, it does its job admirably,
and it is still an extremely useful tool.

FDESIGN allows the user to graphically edit each of the transformations
in an IFS individually, and see the results of each modification rendered in
real time. This means that, instead of calculating numbers and loading them
for rendering in Fractint (by way of a .IFS file), the user can see the results
of his modifications and modify his fractal accordingly.

The design of an IFS in FDESIGN is fairly easy, and the documentation
provides a fairly good explanation. The user first draws a base triangle, which
is used as a reference point for defining the transformations in the IFS. For
each transformation the user draws another triangle, which represents what
happens to the base triangle after the transformation is applied. After three
transformations are defined, the program begins to render a preview of the
fractal. The user can then move the vertices of the triangles, add new ones,
or delete existing ones. When finished, the user is presented with a full screen
rendering of the IFS, along with options to save a screen image, save the file
in FDESIGN’s internal .TRN file format, or save a Fractint .IFS parameter
file. This file can be used to view the fractal in Fractint. All iterated function
systems shown in the earlier Section 5 have corresponding .IFS and .TRN
files on the accompanying CD-ROM.

B.4 Ultra Fractal

Author Frederik Slijkerman
Where to find http://www.ultrafractal.com/
Platforms Microsoft Windows
Distribution Shareware, $49 to register
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Ultra Fractal is a fractal rendering tool designed for the purpose of artistic
creation. It includes many features of Fractint such as built-in formulas
and user-defined formulas. It is compatible with user-defined formulas for
Fractint, and it supports arbitrary-precision floating point calculations for
deep zooming. Formulas may also be written in Ultra Fractal’s own formula
language, and these formulas are compiled for speed. Thousands of formulas
are available on the Ultra Fractal web site, submitted by users of the program.

Ultra Fractal’s features are mostly geared toward artists. True color ren-
dering is supported, along with many rendering effects. Users can manually
modify the colors used, also referred to as the “gradient”. The gradient is
a method of color-choosing that allows the user to specify, in general, which
colors are used, but also allows for the smooth use of the millions of colors
that true color rendering allows.

One of the most powerful features that Ultra Fractal supports is the
creation of composite images based on layers. The artist can choose several
different fractal images, and stack them on top of each other, deciding how to
combine the layers together into a final piece of art. This is similar to printing
each image on a sheet of transparency film, and stacking them together to
create the final picture. However, Ultra Fractal can combine the layers in
many different ways, which has allowed artists to create some incredibly
beautiful works of fractal art. Some of these are showcased on Ultra Fractal’s
web site, but many more can be found through internet searching. Ultra
Fractal is widely recognized as one of the best tools for the creation of fractal
art, and its users seem to consider it well worth the price.
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C Fractal Poster

On a wall in the main stairwell of the WPI mathematics bulding hung a poster
depicting, in vivid color, an image of a spiral from a fractal. Along the left
side and top was the title, “The Mathematics Art Bridge”. This image is
brightly colored, but it was created some time ago, and its effectiveness is
somewhat diminished by the low printing quality. The image was 22 inches
wide by 28 inches tall, at a resolution of approximately 20 pixels per inch –
large enough that individual squares were easily visible.

As part of this IQP, we set out to replace the poster with an updated
version using modern printing technology. We selected a portion of the Julia
set (described in section 4.2 on page 18) that resembled the original image,
focusing on one of the main spirals of the Julia set with c = 0.375 + 0.375ı.
We rendered the image using mandelbrot.cpp described in appendix A.1, with
the following command line:

mandelbrot 500 2 -0.16677 0.433232 0.205014 0.805014

10000 10000 2 julia 0.375 0.375

We used the rainbow palette, but rotated it slightly to accentuate the
center of the image. This produced a 10000x10000 pixel PNG file in approx-
imately 15 minutes on one of WPI’s servers. We then opened the image in
Paint Shop Pro 7, and cropped the image to the dimensions available in the
poster. We reduced the image to 9000x6600 pixels, so that it would be a bit
larger than 22x28 inches when printed at 300 dots per inch. Next, we added
the fading effects and the title text. Paint Shop Pro is unable to lighten a
specific area of an image that uses only 256 colors, so we had to increase the
image to true color. This means that every pixel is defined by 3 values rang-
ing from 0 to 256. This means that every pixel requires one byte of storage,
so the entire image filled approximately 170 megabytes of memory during
editing. We had the poster printed by the Academic Technology Center on
glossy white paper, and it now hangs in a frame on the wall in Stratton Hall.
Figure 30 contains a low detail version of the image.
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Figure 30: A low detail version of the poster we created for the WPI Math-
ematics Department
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D Supplementary CD

Included with this report is a supplementary compact disc. The disk contains
data referred to in this report as well as all of the files used to generate this
document. All computers and almost all new audio CD players will be able
to access the audio tracks on this disk, but older audio CD players may not
be able to. The following materials are included on the CD-ROM:

• This document in PDF format (report.pdf )

• Source code for the Mandelbrot/Julia set rendering program, box-
counting program, and fractal music generators

• Computer sound files of fractal music examples in WAV format

• CD audio tracks of the fractal music examples that can be played us-
ing an audio CD player. Track one is inaccessible in an audio CD
player because it contains computer files. Tracks two through four
are one-minute samples generated by FractalNoteGenerator, Fractal-
MultipleNoteGenerator, and FractalChordGenerator respectively (see
section 9.1 on page 56).

• All files used to generate the report document including:

– LATEX files for all sections

– Computer image files for all figures

– Instructions for building the report using LATEX

• Parameter files used to generate figures

• Full-size image of the poster
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E References and Further Reading

E.1 Are Fractals Art?

• “Does Fractal Art Exist?” http://perso.wanadoo.fr/charles.vassallo/en/
art/intro3.html Vassallo, Charles. 5/99

• “The Fractal Art Manifesto” http://www.fractalus.com/info/manifesto.htm
Kerry Mitchell. 1999

• “Fractal Art – A Deliberate Approach” http://www.parkenet.org/jp/writing
/ylem.html Janet Parke.

E.2 The Mandelbrot and Julia Sets

• “Guide to the Mandelbrot Set” http://www.globalserve.net/∼derbyshire/
manguide.html

• “Fractal Geometry of the Mandelbrot Set” http://math.bu.edu/DYSYS/
FRACGEOM/ Prof. Robert L. Devaney 2001

• “Fractint: The Mandelbrot Set” http://spanky.triumf.ca/www/fractint/
mandelbrot type.html Noel Griffin

• “Chaos and Fractals” Peitgen, Heinz-Otto. Jürgens, Hartmut. Saupe, Di-
etmar. Springer-Verlag, New York 1992. pp769-896

• “Fractals: An Animated Discussion” Peitgen, H-O. Jürgens, H, Zahlten, C.

• “Fractals and Chaos” Crilly, A.J, Ernshaw, R.A, Jones, H. Springer-Verlag,
New York 1990.

• “Google Search: fractal gallery” http://www.google.com/search?q=fractal+
gallery Google 2003

E.3 Iterated Function Systems

• “Fractals Everywhere” Barnsley, Michael. Academic Press, Boston, MA.
1988.

• “Affine Transformation” http://mathworld.wolfram.com/AffineTransforma-
tion.html Eric W. Weisstein, Wolfram Research 1999
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• “Fractint: Iterated Function Systems” http://spanky.triumf.ca/www/fract
int/ifs type.html Noel Griffin

• “FDESIGN Source Code and DOS Executable” http://spanky.triumf.ca/
pub/fractals/programs/ibmpc/fdesi313.zip Doug Nelson, 1990

• “Chaos and Fractals” Peitgen, Heinz-Otto. Jurgens, Hartmut. Saupe, Diet-
mar. Springer-Verlag New York, Inc. 1992.

E.4 L-Systems

• “Chaos and Fractals” Peitgen, Heinz-Otto. Jurgens, Hartmut. Saupe, Diet-
mar. Springer-Verlag New York, Inc. 1992.

• “Fractint: L-Systems” http://spanky.triumf.ca/www/fractint/lsystem type
.html Noel Griffin

• “Fractint L-Systems Tutorial” http://spanky.triumf.ca/www/fractint/lsys/
tutor.html William McWorter 1997

E.5 Fractal Dimension

• http://plus.maths.org/issue9/turner2/index.html

• http://math.bu.edu/DYSYS/chaos-game/node6.html

• http://www.weiheustephan.de/ane/dimensions/dimensions.html

• http://www.fch.vutbr.cz/lectures/imagesci/download/nummetfradim.pdf

• “Chaos and Fractals” Peitgen, Heinz-Otto. Jurgens, Hartmut. Saupe, Diet-
mar. Springer-Verlag New York, Inc. 1992. pp769-896

E.6 Jackson Pollock’s Fractal Paintings

• Taylor, Richard R., Order in Pollock’s Chaos in Scientific American, Dec
2002, Vol. 287 Issue6, p116, 6p, 1c, 4bw

• Taylor, Richard R., Splashdown in New Scientist, July 25, 1998

• Taylor, Micolich, Jonas, Fractal analysis of Pollock’s drip paintings in Na-
ture, June 3, 1999, 399, 422(1999)

• http://materialscience.uoregon.edu/taylor/art/fractal taylor.html

101

http://spanky.triumf.ca/www/fractint/ifs_type.html
http://spanky.triumf.ca/www/fractint/ifs_type.html
http://spanky.triumf.ca/pub/fractals/programs/ibmpc/fdesi313.zip
http://spanky.triumf.ca/pub/fractals/programs/ibmpc/fdesi313.zip
http://spanky.triumf.ca/www/fractint/lsystem_type.html
http://spanky.triumf.ca/www/fractint/lsystem_type.html
http://spanky.triumf.ca/www/fractint/lsys/tutor.html
http://spanky.triumf.ca/www/fractint/lsys/tutor.html
http://plus.maths.org/issue9/turner2/index.html
http://math.bu.edu/DYSYS/chaos-game/node6.html
http://www.weiheustephan.de/ane/dimensions/dimensions.html
http://www.fch.vutbr.cz/lectures/imagesci/download/nummetfradim.pdf
http://materialscience.uoregon.edu/taylor/art/fractal_taylor.html


• http://plus.maths.org/issue6/turner2/index.html

• http://plus.maths.org/issue9/news/pollock

• http://www.discover.com/nov 01/featpollock.html

• http://perso.wanadoo.fr/charles.vassallo/en/art/intro.html

• http://math.bu.edu/DYSYS/chaos-game/node6.html

• http://www.weiheustephan.de/ane/dimensions/dimensions.html

• http://www.fch.vutbr.cz/lectures/imagesci/download/nummetfradim.pdf

E.7 Fractal Music

• “Fractal Music Lab” http://www.fractalmusiclab.com David Strohbeen 2000

• “Mandelbrot Music” http://www.fin.ne.jp/∼yokubota/mandele.shtml Yo
Kubota

• “Mandelbrot Music Program” http://www.fractovia.org/fractal generators/
screenshots/mmusic.html Fractovia.org 2002

• “Fractal Music Gallery” http://thinks.com/sounds/fractal.htm Thinks.com
Ltd. 2003

• “MIDI Manufacturers Association” http://www.midi.org/ 2003 Midi Man-
ufacturers Association Inc.

E.8 Art and Society

• Lomax, Song Structure and Social Structure

• Fischer, Art Styles as Cultural Cognitive Maps

• Albrecht, Barnett, Griff, The Sociology of Art and Literature - A Reader,
Praeger Publishers, New York, 1970.

• Stein, M. (Editor), Jungian Analysis 2nd Edition, Open Court Publishing,
Chicago, 1995

• Vygotsky, The Psychology of Art, Cambridge, Mass., M.I.T. Press [1971]

• Arnheim, R., New essays on the psychology of art, Berkeley: University of
California Press, c1986.
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• Brand-Clausen, Beyond reason: art and psychosis: works from the Prinzhorn
Collection., London: Hayward Gallery ; Berkeley: University of California
Press, c1996.

• Jung, The Archetypes and the Collective Unconscious, 1969, Bollingen Foun-
dation, Princeton, NJ.

E.9 Making Art More Accessible

• “The Beauty of Fractals” Peitgen, Heinz-Otto, Springer-Verlag Publishing,
New York, 1986

• “FrActivity” http://www.parkenet.org/jp/fractvty.htm Janet Parke 2002

• “Fractal Art – A Deliberate Approach” http://www.parkenet.org/jp/writing
/ylem.html Janet Parke.

• “Fractalus” http://www.fractalus.com Damien Jones 2000

• “Janet Parke Interview” http://www.toray.co.jp/e/square/mag/interview
/dca/interview1.html Toray Industries, Inc 2003

• “Toray Art Gallery: DCA 2002” http://www.toray.co.jp/artspace/e/dca
02/index.html Toray Industries, Inc 2002

• “Fractal Layering for Novices” http://www.fractovia.org/tutorials/layers01.
shtml Fractovia.org 2003

• “Fractal Tutorials” http://fractalarts.com/ASF/tutorials.html Doug Har-
rington 2003

• “My Fractal Art Gallery” http://www.members.tripod.com/∼Navaneetha
Krishnan/fract/myfract.htm Navaneetha Krishnan

E.10 Fractal Art Psychology

• “The Sense of Order” E. H. Gombrich, Cornell University Press, Ithaca,
New York, 1979

• “Art and Fractals” http://perso.wanadoo.fr/charles.vassallo/welcome.html
Charles Vassallo 2002
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