
Adaptive Neural Network 
Usage in Computer Go

Alexi Kessler, Ian Shusdock



Outline

● The Game of Go
● Computer Go Techniques
● Our Project
● Conclusions
● Future Work



What is Go?

● Two-player alternating stone placing game
● 19x19 board
● Group: Connected pieces
● Liberty: Empty adjacent position to group
● Captured: When a group has no liberties
● Territory: Empty locations “controlled” by a 

player
● No stone sacrifice
● Winner determined by territory and stone 

captures



What Makes Go Interesting?

● Incredibly complex
● ~1081 atoms in the known universe
● Orders of magnitude harder than chess
● Complexity closely resembles real world
● Can lead to advances in artificial 

intelligence

Chess Go

Possible 
board 
states

1047 10170

Possible 
legal move 
sequences

10123 10360



Why Study Go AI?

● Functionally infinite states and sequences
● Actions have long term influences
● States are not always as they appear
● In short, very hard
● Similar to sequential decision based problems



Previous Techniques



Minimax

● Tree of possible move sequences
● Assumes perfect play
● One player maximizes tree
● One player minimizes tree
● Best move chosen for root player
● Requires the entire tree mapped 

OR
● A heuristic function



Monte Carlo Simulation

● Policy based
● Value estimation 
● Simulate games based on policy
● Sensitive to policy choice
● Randomization of policy



Monte Carlo Tree Search

● A combination of game tree search and Monte Carlo simulation
● Limited minimax with heuristic
● Gradually adapt Monte Carlo policy
● Rely on fixed policy for “leaf” nodes
● Works well with Go



Upper Confidence on Trees

● Action selection is treated as separate problem for every node
● Select action a that maximizes following equation

○ (estimated value of action a) + (modified bias sequence)

● Bias sequence is higher for less explored states/actions
● More likely to choose unexplored nodes 
● Handles exploration-exploitation dilemma



Convolutional Neural Networks

● Functions similarly to normal neural network
● Processes overlapping tiles from input
● Great at visual identification



AlphaGo

● Developed by Google
● Two neural networks and MCTS
● Massive computing resources
● Plays moves that humans would 

not
● Beat best human player, Lee 

Sedol, in 2016



Last Year’s MQP

● 4 approaches to help move selection
○ Introduce a neural network to Pachi
○ Change the neural network used based on tree depth
○ Train a neural network to inform Pachi search
○ Teach a neural network to use Pachi’s search

● Using a single neural network gave the best result
● Anomalous results



Our Project



Overview

● Investigated anomalous data
● Reinterpreted last year’s results
● Adaptive neural network weighting
● Compared optimized neural network Pachi to default Pachi



Anomalous Data



Reinterpreted Results



Adaptive Neural Network Weighting

● Determine the optimal weighting
● Go is complex, static weighting won’t work
● Based on

○ Board state
○ Game turn

● Trained using Fuego
● Trained two different functions



First Round Performance



Second Round Performance



V2 vs. Default Pachi



V2 vs. Fuego



Depth Based Neural Network



Conclusions

● Adaptive weighting is powerful
● The faster neural network is not very good
● The slower neural network is strong



Future Work

● Use the slower, more accurate neural network
● Train function longer
● Experiment with more parameters
● Revisit the two other approaches from last year



Acknowledgements

● Levente Kocsis, Project Advisor and SZTAKI liaison
● MTA-SZTAKI
● Gabor Sarkozy, MQP Advisor
● Oscar Perez and Joshua Keller, last year’s MQP team
● Worcester Polytechnic Institute



Questions?



Köszönöm!


