Adaptive Neural Network Usage in Computer Go

Alexi Kessler, Ian Shusdock

Outline

- The Game of Go
- Computer Go Techniques
- Our Project
- Conclusions
- Future Work

What is Go?

- Two-player alternating stone placing game
- 19x19 board
- Group: Connected pieces
- Liberty: Empty adjacent position to group
- Captured: When a group has no liberties
- **Territory**: Empty locations "controlled" by a player
- No stone sacrifice
- Winner determined by territory and stone captures

What Makes Go Interesting?

- Incredibly complex
- ~10⁸¹ atoms in the known universe
- Orders of magnitude harder than chess
- Complexity closely resembles real world
- Can lead to advances in artificial intelligence

	Chess	Go
Possible board states	10 ⁴⁷	10 ¹⁷⁰
Possible legal move sequences	10 ¹²³	10 ³⁶⁰

Why Study Go Al?

- Functionally infinite states and sequences
- Actions have long term influences
- States are not always as they appear
- In short, **very** hard
- Similar to sequential decision based problems

Previous Techniques

Minimax

- Tree of possible move sequences
- Assumes perfect play
- One player maximizes tree
- One player minimizes tree
- Best move chosen for root player
- Requires the entire tree mapped OR
- A heuristic function

Monte Carlo Simulation

- Policy based
- Value estimation
- Simulate games based on policy
- Sensitive to policy choice
- Randomization of policy

Monte Carlo Tree Search

- A combination of game tree search and Monte Carlo simulation
- Limited minimax with heuristic
- Gradually adapt Monte Carlo policy
- Rely on fixed policy for "leaf" nodes
- Works well with Go

Upper Confidence on Trees

- Action selection is treated as separate problem for every node
- Select action *a* that maximizes following equation
 - (estimated value of action *a*) + (modified bias sequence)
- Bias sequence is higher for less explored states/actions
- More likely to choose unexplored nodes
- Handles exploration-exploitation dilemma

Convolutional Neural Networks

- Functions similarly to normal neural network
- Processes overlapping tiles from input
- Great at visual identification

AlphaGo

- Developed by Google
- Two neural networks and MCTS
- Massive computing resources
- Plays moves that humans would not
- Beat best human player, Lee Sedol, in 2016

Last Year's MQP

- 4 approaches to help move selection
 - Introduce a neural network to Pachi
 - Change the neural network used based on tree depth
 - Train a neural network to inform Pachi search
 - Teach a neural network to use Pachi's search
- Using a single neural network gave the best result
- Anomalous results

Overview

- Investigated anomalous data
- Reinterpreted last year's results
- Adaptive neural network weighting
- Compared optimized neural network Pachi to default Pachi

Anomalous Data

Reinterpreted Results

Adaptive Neural Network Weighting

- Determine the optimal weighting
- Go is complex, static weighting won't work
- Based on
 - $\circ \quad \text{Board state} \quad$
 - Game turn
- Trained using Fuego
- Trained two different functions

First Round Performance

Second Round Performance

V2 vs. Default Pachi

V2 vs. Fuego

Depth Based Neural Network

Conclusions

- Adaptive weighting is powerful
- The faster neural network is not very good
- The slower neural network is strong

Future Work

- Use the slower, more accurate neural network
- Train function longer
- Experiment with more parameters
- Revisit the two other approaches from last year

Acknowledgements

- Levente Kocsis, Project Advisor and SZTAKI liaison
- MTA-SZTAKI
- Gabor Sarkozy, MQP Advisor
- Oscar Perez and Joshua Keller, last year's MQP team
- Worcester Polytechnic Institute

Questions?

RINGER

mmmm

n

TREF TREFT

12.1

3633633

Antonio Management

11111111111

enternette freetersternet

The second

