
Assistive Arm Exoskeleton
A Major Qualifying Project
Submitted to the Faculty of

Worcester polytechnic Institute
In partial fulfillment of the requirements for the

Degree in Bachelor of Science
in

Electrical and Computer Engineering
And

Robotics Engineering
By

Eric Carkin

Parker Grant

And in

Mechanical Engineering
By

Bryan Therrien

Date: 4/25/19
Project Advisors:

Professor Marko Popovic, Advisor

Professor Stephen Bitar, Co Advisor

Professor Joseph Stabile, Co Advisor

This report represents work of WPI undergraduate students submitted to the faculty as evidence
of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects.

Abstract
The Assistive Arm Exoskeleton aims to assist those in need of support when trying to

perform daily tasks. The need for independence during the act of eating by those afflicted by
Muscular Dystrophy was specifically targeted. In order to accomplish this, a motorized linkage
system capable of supporting a person’s arm proof of concept was developed. In
implementation, the device would be attached to the user’s battery powered wheelchair, and be
available to them whenever needed. The system uses a collection of force sensing devices
(collectively dubbed the “NUB”) in order to detect user intent. With the information gathered by
this sensor interface, the system can position the linkage, and subsequently the user’s arm,
anywhere within the work space, thus enabling the user to have independent control of their arm
once again.

1

Acknowledgements
Without the help of certain individuals, the completion of this project would not have

been possible. First we would like to thank WPI for funding and giving us the opportunity to
complete this project. We would like to thank our primary advisor, Professor Marko Popovic for
his guidance and allowing us use of his lab. We would like to thank the members of Popovic Lab
for providing insight and support on our project. We would like to thank our co-advisors for the
project Professor Stephen Bitar and Professor Joseph Stabile for providing help in their areas of
expertise.

We would first like to thank Steve Forti, for allowing us to use his personal machine shop
on the weekends and allowing us to use any parts we needed. His collection of bearings and
stock metal made machining the parts necessary for the project much easier. We would also like
to thank Kyle Richards for coming with us to the shop to help us use the equipment there. When
we were not using Steve Forti’s shop, we were in Washburn. Ian Anderson and James Loiselle
were very helpful in using the CNC machines available on campus. Finally, special thanks to
Brett Yoder for his consulting on both mechanical and electrical hurdles we faced during this
project, as well as helping to maintain our access to 3d printing technology.

2

Executive Summary
With the aim of aiding those affected by muscular weakness that prevents the

performance of activities of daily life, a support device was developed that would re-enable the
user to move their arm and interact with the world around them. The end result was a 5 degree
of freedom linkage that could be attached to a wheelchair and supports the user at the forearm.
This linkage allows for motion about the X, Y, and Z axes, and allows for motion associated with
the bending of the elbow and rotating of the arm, but not for the rotation of the forearm
independently. The system as a whole is an active one, relying on powered motors and sensor
readings for its control. This enables the user to have assisted control of their arm in all
directions, instead of simply receiving a passive gravity compensation. In order to be usable by
the target audience, the control of the device is performed via a highly sensitive force sensing
device dubbed the “Nub”, due to its likeness to the mouse control nub found on the keyboard of
some laptops. This force sensor was developed specifically to accomodate the needs of the
system.

The mechanism can be broken down into 2 parts, a planar arm and tower. The planar
arm consists of 3 joints and is primarily responsible for all translational movements. The first link
is attached to a platform, which in implementation would then be attached to a wheelchair. This
link is supported by a circular bearing to prevent sag and binding from the large load it needs to
move. The next link is attached via a rotational joint to the first, and ends in a rotational joint that
supports the tower. The first and second both have the ability to rotate 360 degrees, allowing for
smooth and continuous movement by the user. The joint at the base of the tower is primary
responsible for the rotation of the arm, but in some positions bends the elbow in instead. The
tower gives the mechanism the height it needs to be mounted at waist level and still allow for
the needed motion of the arm in the Z direction. Two joints forming a 5 bar are at the top of this
tower, and are responsible for movement in the Z direction along with rotation of the arm/
bending of the elbow in certain conditions.

Electrically the system can be seen as a network of nodes with distributed tasks. Each
node has a different function, from positional control of joints to reading sensor input. All of
these nodes communicated with a master, which is responsible for relaying positional
information to a computer and then broadcasting new set points to different nodes on the
network. All node communications happen via a I2C bus, while computer communications
happen via a Uart channel. All nodes consist of an independent microcontroller. Each node has
one of 3 elements attached to it; an encoder for positional feedback, potentiometer for positional
feedback, or HX711 ADCs for user input recognition. Nodes responsible for position control also
interface with motor drivers to actuate the links they are responsible for. Through the use of
regulators, the entire system can run off of a 12V battery, typical of the type found on powered
wheelchairs.

In order to control the mechanism, each node responsible for the motion of a link runs a
tuned PID loop, that uses the attached sensor element for positional feedback. The setpoints
that these nodes are using to find an error value however are determined by the computer
attached to the master. The entire control structure operates in a loop. The computer will
broadcast a series of set points to the master, which will then pass those setpoints on to the

3

correct node. Each node will adjust its set point, and then respond with the position the link is
currently in. The master then requests data from the user input node, which detects user intent
via the Nub. The master then sends all this data back to the computer. Upon receiving, the
computer performs forward kinematics to determine the position of the mechanism in world
space. It then uses the user input forces to generate a positional vector that determines the new
goal of the linkage end-effector. With this new goal, inverse kinematics are performed to
determine the new set point of each individual joint. The setpoints are sent to the master, and
the process repeats.

Figure 1: Resulting System in Use

4

Abstract 1

Acknowledgements 2

Executive Summary 3

Chapter 1: Background 8
1.1 The Need 8
1.2 The Target Group 8
1.3 State of the Art 8
1.4 The Motion of the Arm 10
1.5 Sensors 11

1.5.1 EMG Sensing 11
1.5.2 Force Sensing 11
1.5.3 Comparing Force Sensing and EMG 12

Chapter 2: Proposed Design 13
2.1 Project Goals 13
2.2 Project Objectives 13
2.3 Project Management and Tasks 14
2.4 Design Decisions 14

2.4.1 Mechanical Design 14
2.4.2 Electrical Architecture 17
2.4.3 Controls Method 19

Chapter 3: Implementation 22
3.1 Mechanical System 22

3.1.1 Stage 1: Unpowered Prototype 22
3.1.2 Stage 2: Working Prototype 23
3.1.3 Stage 3: Final Version 24

3.2 Electrical System 26
3.2.1 User Input Evaluation 26
3.2.2 Sensor Development 28
3.2.3 Initial Design evaluation 29
3.2.4 System Overhaul 30
3.2.5 Power Distribution 31
3.2.6 The Middle Joint 31
3.2.7 PCB Design 32
3.2.8 Troubleshooting 33

3.3 Control System 35
3.3.1 Actuator Control 35

5

3.3.2 Forward Kinematics 35
3.3.3 Inverse Kinematics 36
3.3.4 Interpreting user input 36

Chapter 4: Conclusions and Future Work 38
4.1 End Product 38
4.2 Next Steps 38

4.2.1 Mechanical Changes 38
4.2.2 Electrical Changes 38
4.2.3 Control Changes 39

Appendix 41
Electrical Schematics and PCB Layouts 41
B. Coordinate Frame Reference 47
C. Encoder_Node Code 48
D. Potentiometer_Node Code 50
E. Middle_Joint DAC 52
F. Middle_Joint Node 53
G. Nub Node 54
H. Control Script 56

References 66

6

Table of Figures

Figure 1: Resulting System in Use 4
Figure 2: Anatomical Body Position 10
Figure 3: Linkage Motion Diagram 15
Figure 4: Linkage Torque Estimation 16
Figure 5: Basic Proposed Design 17
Figure 6: Initial System Block Diagram 18
Figure 7: Pololu Motor 19
Figure 8: Labeled Joint Variables used for Kinematics 20
Figure 9: Proof of Concept Model 22
Figure 10: Flex Shaft Couplings 23
Figure 11: Initial Planar Assembly 24
Figure 12: Revised Link 2 24
Figure 13: Final System Implementation 25
Figure 14: Integrated Difference Between Bicep and Tricep Readings During Curls 26
Figure 15: Bicep Reading and Potentiometer Reading During Curls 27
Figure 16: User Input Prototype 28
Figure 17: Final User Input Sensor 36
Figure 18: Fully Assembled Dual Node Board 33
Figure 19: Final Electrical Architecture 34
Figure 20: Interrupt to DAC PCB Layout 41
Figure 21: Node and MSP432 Breakout PCB Layouts 42
Figure 22: Nub PCB Layout 43
Figure 23: Dual Node Schematic 44
Figure 24: Interrupt to DAC Schematic 45
Figure 25: Nub Schematic 46
Figure 26: Reference Coordinate Frame 47

7

Chapter 1: Background

1.1 The Need
As people lose muscle function in their limbs, they begin to lose the ability to perform

everyday tasks and hobbies. What was once an easy task, such as eating or cleaning, becomes
an extreme challenge that often requires help from loved ones or service people. This can be
problematic, relying on others puts their life on hold, while also taking time away from those who
help them. If people were able to be more independent for a longer period of time, they and
those around them could experience a higher quality of life. 13.2 million adults that live
indepently receive an average of 31.4 hours of assistance a week with activities of daily
living(LaPlante, Harrington and Kang, 2002). Furthermore, 21.3% of people interviewed living
under Medicare reported unmet needs for assistance with daily activities (Craig et al., 2015).
With unmet need associated with increased death/ hospitalization rates, giving people the ability
to be independent is essential to increasing the quality of life for society.

1.2 The Target Group
There are numerous groups of people who suffer from debilitation, ranging from the

elderly to neuromuscular afflictions. Three major diseases/ events that can cause loss of
function in the muscles are Muscular Dystrophy, ALS, and strokes. Muscular Dystrophy is a
disease that causes severe muscle weakness and degeneration (MDA, 2018). It affects many
major muscle groups, including those responsible for the control of limbs. Duchenne Muscular
Dystrophy, the most severe form of muscular dystrophy, affects 1/7250 males in the US, and
causes 90% of those afflicted to be wheelchair bound by age 24 (CDC, 2018). After having a
stroke, many people have difficulty controlling their muscles and suffer from partial paralysis
(National Stroke Association, 2015). There are around 800,000 reported cases of stroke victims
in the United States each year (The Internet Stroke Center, n.d.). ALS is a neurological disorder
that affects the nerves involved with muscle control (NINDS. 2018). Nerves are damaged,
causing nervous system signals to incorrectly reach muscles or even not reach them at all. This
can cause muscle twitching and degeneration. Fourteen to fifteen thousand Americans have
this disorder and have difficulty controlling their limbs.

1.3 State of the Art
As of now, there are multiple solutions on the market that attempt to address the issue of

independent living for people with limited muscle strength (Popovic, 2019). Many of these
systems, while effective, stop short of providing an ideal solution and creates issue of their own.

Liftware Level is a product that tackles the issue of trying to eat with limited mobility by
modifying the utensil the patient uses (Verily, n.d.). Their spoons use auto leveling technology so

8

that no matter how the user moves their body, food will stay on the spoon. This solution however
does not address the problem if the user does not have enough strength to actually move their
arm to their mouth.

Neater is a company that focuses on helping the disabled in many different areas of life
(DLF, 2018). They have numerous products designed to help the disabled, especially when it
comes to eating. The Neater Arm Support is a linkage system that compensates for the weight
of the user’s arm. This is a passive system, with no feedback control- it allows what little
strength the user has to be concentrated at moving an object- not their appendages. While
meant for eating, the product claims that it may be able to help facilitated numerous daily
actions other than eating. This system is somewhat awkward- the support structure attaches to
the back of a wheelchair, but its movement increases the space the person takes up. In other
words, the operating space of the wheelchair is increased in order to account for the moving
linkages. Additionally, movement allowed by the system is awkward. Due to their little strength,
the user has minimal control over their movements. Moving something to their mouth for
example is very similar to “throwing” their hand at themselves.

The Neater Eater on the other hand is a spoon system mounted to the users plate (DLF,
n.d.). This system can be configured to work a couple different ways, but achieves the same
function. A spoon/ fork that can obtain food, and then bring it to mouth level. The system can be
controlled by a hand lever system, or by electronic joystick. While using this seems somewhat
more elegant than the Neater Arm Support, it is limited to helping the user eat. Additionally, it
requires special set up- limiting where the system can be used easily.

The iArm by Exact Dynamics is similar to the Neater Eater in that it is a controllable
robotic arm (Exact Dynamics, n.d.). The difference is this arm is mounted to you chair, and is
much more flexible with what it can be used for. While this arm is far more versatile, its
drawback is that you use a joystick to control it. Use of a joystick requires the user to have a free
hand to dedicate to using it and have the ability to manipulate the controls with that hand.

The JAECO WREX arm exoskeleton is a passive linkage system that proved a vertical
force upwards on the forearm (Jaeco Orthopedic, 2018). This force is meant to be similar to the
downward acting force gravity has on the arm, countering it and allowing the user to move more
freely. The system contains 5 degrees of freedom with 3 links rotating about the Z axis and 2
about the Y axis. The system has elastics providing force onto the two links that are rotating
about the Z axis (assuming a standard coordinate system.) The links rotating about the Y axis
do not have any assistive forces acting on them. The drawback of this system is that a balance
needs to be achieved with the force of the elastics. As the arm is raised the force the elastics
provide gets lower. If the initial force provided by the elastics is too high then the resting place
for the user would be above the table which causes discomfort to the user.

The Stable Slide Self-Feeding device is a simple ramp that the user places their forearm
on(Performance Health, 2018). The normal force provided by the ramp acts to reduce the Y
direction force that the arm experiences due to gravity. It also provides a minimum point that the
forearm can be lowered, which reduces the amount the user need to raise their arm to reach
their mouth.

9

1.4 The Motion of the Arm
Standard convention for naming movements of the body requires the body to be in the

anatomical position; standing upright, feet together, arms down and palms forward. From the
position the body is divided into three planes. The transverse plane differentiates the body into
top and bottom sections. The sagittal plane differentiates the body into left and right sections.
The coronal plane separates the body into front and back sections. These terms can be used to
more accurately describe the movements of the arm.

Figure 2: Anatomical Body Position(national Cancer Institute, n.d.)

The upper arm has rotation across all three planes. Movement parallel to the sagittal
plane is called flexion for forward motion and extension for backwards motion.(Jones, 2018a)
Movement parallel to the coronal plane is called abduction for upward motion and adduction for
downward motion. Movement parallel to the Transverse plane is called internal roll when the
elbow rolls away from the body and external roll when the elbow rolls towards the body. and
external rotation describe the movement towards and away from the midline in the plane which
separates the top and bottom sides of the body, sometimes referred to as the transverse plane.
The shoulder can also translate along axes normal to the transverse and sagittal planes.

The forearm has rotation across only 2 planes. Flexion and extension of the forearm
describes motion parallel to the sagittal plane similarly to the upper arm(Jones, 2018b).
Movement parallel to the transverse plane is however described as supination for when the

10

palms are moving towards a forward facing position and pronation when the palms are rotating
to face backwards.(Jones, 2017; Shahid, Goffin & Chaves, 2018)

The motion of the components of the arm described previously can now be used to
describe the movement of the arm during eating. A study analysing typical people eating using a
fork, spoon, and drinking from a glass found the following degrees of motion to be used; 5
degrees to 45 degrees shoulder flexion, 5 degrees to 35 degrees shoulder abduction, 5 degrees
to 25 degrees shoulder internal rotation, 70 degrees to 130 degrees elbow flexion, from 40
degrees forearm pronation to 60 degrees forearm supination, from 10 degrees wrist flexion to
25 degrees wrist extension, and from 20 degrees wrist ulnar deviation to 5 degrees wrist radial
deviation(Safee-Rad, Shwedyk, Quanbury and Cooper, 1990).

1.5 Sensors
It is imperative that the controls of this system are accurate, as it will be operating in

close proximity with people and dealing with tasks that have little room for error. For this reason,
the system will utilize sensor fusion- the use of multiple sensors to obtain usable feedback. Of
these sensors, the intent is at least to use encoders on all motors, as the information provided
by them is extremely versatile and can be used for determining the exact position of the arm in
task space, how fast it is moving, and other factors without needing an immense amount of
interpretation. However, encoders can only provide information about the current state of the
arm, methods are needed to determine where the user wants to go.

1.5.1 EMG Sensing
One method of control would be through the use of EMG. EMG, or electromyography,

are the nervous system signals used to control muscles (Raez, Hussain and Mohd-Yasin, 2006).
These signals are used frequently for the diagnosis of neurological diseases, and dictate the
motion of skeletal muscles. Through appropriate signal manipulation, such as filtering and
Fourier analysis, distinct signals can be detected that indicate different actions for muscle
groups. Through the use of electrodes, the EMG signals of a user could be used to control
prosthetics, or in this case the motion of an arm support.

In Implementation of EMG- and Force-Based Control Interfaces in Active Elbow
Supports for Men With Duchenne Muscular Dystrophy: A Feasibility Study , a single threshold
control scheme was used, where the current measured signal was compared to a steady state
signal collected prior to tests, and then scaled by the average maximum signal. This was done
for both the bicep and tricep, and their difference was used to control an active elbow support.

1.5.2 Force Sensing
The other primary method of control considered is force monitoring. The idea is that the

user can exert miniscule forces on the world around them. If these forces can be detected, they
can be used to determine the direction and orientation the user is trying to move their arm to.
Implementation of EMG- and Force-Based Control Interfaces in Active Elbow Supports for Men

11

With Duchenne Muscular Dystrophy: A Feasibility Study demonstrated that force monitoring is a
viable method of active support control for Muscular Dystrophy patients. However, it is stressed
that the voluntary forces produced by the user must be differentiated from other external forces
for effective control. This can be complicated, but was completed by force estimations for their 1
DOF set up. For force measurement, the study utilized a single DOF force sensor; (LSB200 –
5lb, FUTEK Advanced Sensor Technology Inc., USA., a variant of load cell.

There are a few different technologies used to measure and detect forces (national
Physical Laboratory, 2010). The most popular of these are load cells. Load cells are
configurations of elastic materials and strain gauges. They offer reliable and robust methods of
force detection. These sensors are readily available, and come in numerous designs depending
on how a force is to be measured. When cell experiences a force, it deforms. This deformation
causes strain gauges, typically made of some kind of electrical foil, to stretch or compress.
These compression and strain forces cause a change in the resistance of the foil, which can be
detected and used as a force indicator. These metal foils can be used in a similar way as a
pressure sensor in the form of a small mountable pad.

A typical load cell has a gauge factor around 2, which is an indicator of how sensitive it is
to strain (Al-Mutlaq, n.d.). When a force is applied to a load cell, it can be expected that a result
on the order of millistain can be expected. With these factors, it can be expected that an applied
force will result in a resistance change on the order of milliohms. Due to this small resistance
change, amplification is needed in order to get a reliable voltage output. Differential ADC’s, such
as the HX711 can be used in combination with wheatstone bridge configurations, to achieve this
amplification and reliable signal interpretation. A combination of this ADC and a 5kg load cell
would only cost around 10 dollars.

1.5.3 Comparing Force Sensing and EMG
Both primary control structures of force monitoring or EMG are viable, according to

Implementation of EMG- and Force-Based Control Interfaces in Active Elbow Supports for Men
With Duchenne Muscular Dystrophy: A Feasibility Study . In this study, the use of EMG and force
monitoring methods were investigated to control active elbow supports for men with DMD. The
results were quite positive for both force control and EMG. Even with the fact that DMD
degrades EMG signals considerably over time, it was found that usable signals were still able to
be extracted for control uses. On average, force control methods were faster and more
accurate, but were more tiring than EMG. Additionally, force control requires more estimations to
determine what's a user applied force and what is an external force.

Load cells are far cheaper than EMG sensors. It costs about 10 dollars for a load cell
and an amplifier on Amazon. Basic EMG sensors on the other hand cost around 40 dollars, and
don't include any high level processing or analysis (Adafruit Industries, n.d.). Additionally,
sensors would be needed for each major muscle group- requiring many electrodes to be
attached to the user. In order to implement the load cell approach, a single cell would be needed
for each degree of freedom. Finally, as discussed earlier, EMG sensors require extensive
analysis.

12

Chapter 2: Proposed Design
This section discusses the main goal and objectives of the project. It goes into detail

about the general design for the exoskeleton along with the hardware and software used to
implement it.

2.1 Project Goals
The Purpose of this project is to create a mechanism that assists people with the task of

eating. To accomplish this the system must be able to be attached to the users arm, so that they
feed themselves, instead of the machine feeding them. It must be able to move the users arm
as well as a small payload so that it can carry the food up to the mouth. The sensor system
must be easy and intuitive to use. The target users do not have much arm strength, but have
fine motor control, therefore the sensor system should be able to utilize their motor control
without requiring much force to be applied.

2.2 Project Objectives
● No dangerous elements exposed to user/nearby people
● The system is able to be securely mounted to stationary object (i.e. desk/chair)
● The system is intended for users sitting in an upright position
● System reacts dynamically to user input with a maximum response time of 150ms
● The system will be able to support and lift a weight of 10 lbs (the weight of the average

human arm is 9 lbs(Plagenhoef) plus weight of 16 oz glass of water is 1 lb(perlman))
attached to point of contact with the arm

● The maximum speed of the end effector is at least 0.18 m/s (roughly 4 second from plate
to mouth)

● Jerk limit of the system is 100 m/s 3 (Breteler, Meulenbroek & Gielen, 2002)
● Acceleration limit is 10m/s 2 (Breteler, 2002)
● System can reach three positions/ orientations, named mouth position, plate position,

and home*
○ Plate: Coordinate:[-5”,9”,2”] center, with a 5” radius(X & Y) and 4” height(Z)

cylinder, Rotation:[-10,0,30] degrees
○ Mouth Position: Coordinate:[-5”, -3”, 14”] center, sphere 1.5” radius, Rotation:

[0,20,90] degrees
○ Home Position: Coordinate: [0,0,0], Rotation: [0,0,0]
○ Please see appendix for pictures of position/ how coordinate frame is to be

interpreted.
● Evaluate the viability of EMG and force sensors for user feedback

13

2.3 Project Management and Tasks
To complete this project, the work was divided up into three parts based on the specialty

of the members. The three sections were 3.1 Mechanical System, 3.2 Electrical System, and
3.3 Control System.

The deadlines for the various parts of the project were broad, only consisting of major
goals to be completed at term ends. For the mechanical system the deadlines were completing
the initial design of the system by the end of A term, a physical system by the end of B term,
and a fully functional system by the end of C term, leaving D term for tuning specific issues and
allowing the other two parts of the project to work with a fully functional mechanical system. For
the electrical system the deadlines were structured by subsystems. The sensor input was to be
developed by the end of B term, motor and positional control system was to be developed by
the end of C term, leaving network development/ troubleshooting for D term. The forward and
inverse kinematics were to be worked out by the End of B term, while keeping in mind the
mathematics were subject to change if the mechanical system underwent any substantial edits.
PID tuning would occur as soon as the electronics were ready, and the total control loop needed
to be finished by mid D term.

2.4 Design Decisions

2.4.1 Mechanical Design
For the mechanical system design it was determined that there were two main methods

to consider. The mechanism could be either attached to the user or to a structure near the user.
Each method has its advantages and disadvantages. First, the method of attaching the
mechanism to the user will be discussed.

To obtain required motion for eating a mechanism attached to the user would have to
actuate a system that rigidly connected to both the users forearm, upper arm, and
shoulder/torso. The forearm has to be able to move relative to the upper arm and the upper arm
has to be able to move relative to the torso. For full range of motion the shoulder connection
would need three degrees of freedom, being able to rotate about all three axes. The forearm
connection would need two degrees of freedom, elbow flexion, and forearm pronation. The
mechanism would need to be somewhat lightweight, as the user be supporting the weight of the
mechanism with their body. It would need to be also be thin so that it could be attached along
the arm without interfering with movement of arm against other surfaces such as tables or the
torso.

The primary difficulty observed was the difficulty of imitating the shoulder joint. Requiring
three degrees of freedom around one point while also requiring it to be lightweight and small in
size would be rather difficult to accomplish. Also having the mechanism close to the body
requires small lever arms for the joints to be moved about. Small lever arms require bigger

14

forces making the necessary motors larger. This causes a tradeoff between bulk and weight that
would be hard to overcome for a user friendly mechanism.

The second method would be a linkage that attaches to the arm and is mounted to
another structure, such as a wheelchair or a table. Since this mechanism is not attached to the
user the weight is not nearly as much of a concern, as the structure would be supporting it, not
the user. The size of the mechanism still does matter, it needs to be small enough that it does
not interfere with the table, user, or any other surroundings during use. Another concern with
this type mechanism is that it is less discrete than the user mounted system especially with
increased size.

The actual mechanisms that could be created for this method vary as well. It was
determined there were multiple options to consider. The mechanism was split up into two main
sub mechanisms, one (dubbed the tower) to move the arm in the z direction, as well as rotate
about the y axis. The other sub mechanism is the planar mechanism to move the tower in the
x-y plane and rotate it about the z axis. Two concepts were developed for each of the sub
mechanisms.

The tower is a tall structural component that connects the lower portion of the
mechanism to the linkage on the top. There are two configurations for the linkage as shown in
figure 3. The user’s forearm is attached to the green section and the actuated joints are marked
with a circle. Configuration 1, shown by Figure 3a is a 3 link linkage. Configuration 2, shown by
figure 3b is a 5 bar linkage. The benefit of configuration 2 is that both of the actuated joints are
located on the tower, making it easier to transmit the torque required for motion. Having two
attachment points to the tower also makes the system more rigid. The main benefit of
configuration 1 is that since it has only one link coming from the tower, it is a more discrete
system. Configuration 2 was used for the linkage on the tower.

a b

Figure 3: Linkage Motion Diagram

15

For the planar mechanism, their are also two configurations that were considered. The

first one is similar to configuration 1 of the tower shown in figure 3a. The difference for the
planar mechanism would be that both of the links would have the same length. This would
create a circle in the x-y plane with radius double the length of the links. The mechanism would
be able to move the tower to any position within that circle, and be able to move in any direction.
Configuration 2 is a system similar to a crane at an arcade. The tower would be mounted on a
threaded rod. The threaded rod would be turned, sliding the tower axially along the rod
depending on which way the rod was turned. There would then be two perpendicular threaded
rods on either end of the first one. They would be connected the same way giving the tower
movement in both the x and y plane. Both of these configurations require a separate component
to adress rotation about the z axis. Configuration 1 was the configuration pursued. It was used
because it was a smaller system than configuration 2, allowing it to take up less space and be
mounted closer to the user. It also requires less motors, needing 3 instead of 4. The only
advantage of configuration 2 is that the controls aspect would be simpler.

A model of the mechanism (figure 5) was created in Creo to determine how much torque
would be required for each actuated joint. Figure 4 shows the torque required for a movement of
the five joints. The figure shows three torques near 0 and two significant torques. The two
significant torques are at the joints in the tower. Adding elastic elements to the links could adjust
the torque requirement to around 10 Nm for the tower joints. Based off of these torque
requirements motors can be found, the actual selection will be covered in the next section of the
report.

 Torque (Nm)

Time (s)

Figure 4: Linkage Torque Estimation

To transmit the torque from the motors to the joints, options were explored other than
direct drive for the tower motors. Having the motors lower on the tower or in the base of the
mechanism would create a more discrete system. The torque transmission scheme is based on

16

the use of flexible drive shaft. Flexible drive shaft would allow the motors to be in the base of the
mechanism. For the joints in the planar linkage, direct drive would be acceptable.

Figure 5: Basic Proposed Design

2.4.2 Electrical Architecture
The core piece of the initial electrical system was a real-time operating system on a

MSP432 controlling all major functions. This was used over other microcontrollers due to
familiarity from classes and the availability of the board. This controller would be responsible for
PWM outputs to maintain motor positions, reading of the sensor input, and communicating with
an off board computer to determine new set points for each motor position. The MSP432 would
communicate with a seperate computer via a Uart connection, due to its speed and wide scale
availability.

17

Figure 6: Initial System Block Diagram

Two possible sensory inputs for controller the mechanism were proposed at the

beginning of this project; EMG and force feedback. The first term would be spent evaluating
these two options and then selecting the most viable one. Due to the experimentation needed to
determine the user sensor input method, a solid design for reading this input was not proposed
at the beginning of the project. However, due to the high configurability of the MSP432, the
expectation was that any needed method could be integrated into the existing design. As for
feedback elements, rotary encoders were to be used for all joints due to their ease of use, high
accuracy, and possible factory integration with selected motors. This of course would require the
use of interrupts on the MSP432 to keep track of the position of each motor.

Pololu motors are used for the planar arm joints. These motors both satisfied the torque
requirements of the joints and could be ordered with an integrated encoder. These motors have
a 64 CPR encoder on them. However, when taking into account the gearbox on the output of
the motor, the encoder actually creates a resolution of 6400 counts per revolution. The upper
joints however required a high torque. For this reason, bosch seat motors from Andy Mark were
used. The hall sensor on these motors however would only allow steps of 1 degree, which
seemed too coarse for the desired application. For that reason, CUI Inc rotary encoders were
intended to be used with the seat motors due to their fast shipment time, high resolution, and
serial interface.

18

Figure 7: Pololu Motor

With the end product likely being mounted to a motorized wheelchair, the electrical

system will need to be able to work off of a 12V battery. Due to the high capacity of the type of
battery used in the target user’s typical wheelchair type, power consumption was not considered
a high priority. A 5v regulator would be needed to power the MSP432 launchpad off of this
battery. All motor selections could operate in a 12V range, so the only additionally component
would be motor drivers that operated in the 12V range and could receive a 3.3V PWM signal
from the MSP432. According to their respective datasheets, the pololu motors would not draw
more than 5A during stall, while the seat motors would stay under 12A. A suitable driver was
found on Amazon by the company Drok. These drivers had 2 channels on one board each
capable of handling 6A. The channels could be tied in parallel for the seat motors. While this
does not leave much room for error, larger drivers costed considerably more. That, couple with
the fact that these motors should not reach stall current under normal conditions, it was decided
that this driver would suffice for this project.

2.4.3 Controls Method
As discussed earlier, the initial control design relied on a MSP432 running a real time

operating system. This operating system would need tasks to cover PWM signal and PID loops,
user input reading, joint sensor reading, and communication with the off board computer for new
set points. Of these tasks, the communication task would have the highest priority make sure
full messages are transferred between the two devices. The PWM signal task would then have
the second highest priority task to make sure the PID loops can be accurately tuned, joint
sensor reading would then be third to ensure the joint positions are accurate, and user input

19

would then fall in last. In order to meet the project goals, this RTOS would need to be set up
such that user input is read at least every 150ms. The offboard computer was responsible for
the mathematically intensive tasks to reduce the load on the microcontroller. This primarily
involved the kinematics and the user input processing.

Figure 8: Labeled Joint Variables used for Kinematics

The forward kinematics function is responsible for determining the world space position

that results from a given set of joint angles. The robot has direct control over five joint angles (θ 0
θ 1 θ 2 θ 3 θ 4) as shown in figure 8. This allows the robot to directly manipulate five degrees of
freedom in the worldspace. The controllable axes are x, y, z, θ Y (pitch) and θ Z (yaw), while θ X (roll)

is fixed to 0. The mechanism can be split into to two sections that make the kinematics easier to
understand and calculate. These sections are the 5 bar linkage on the tower assembly, and the
planar base assembly. The 5 bar linkage on the tower is controlled using θ 3 and θ 4 , and is the
part of the mechanism responsible for controlling motion in the z and θ Y . The base plane section
is controlled using θ 0 , θ 1 and θ 2 , and is the part of the mechanism responsible for controlling
motion in the x, y, and θ Z .

Originally, the forward kinematics were implemented using DH parameters and
homogeneous transformation matrices. The kinematics for the planar subsection were trivial to
solve for, but the 5 bar linkage introduced much more complexity to the kinematics calculations
for the other section. This is because the 5 bar linkage is a closed kinematic loop, which means
that angles in this loop are constrained by relations between joint lengths and other angles in

20

this loop. To aid the calculations the model was simplified so it could be represented as a
standard serial manipulator with an open kinematic chain, so that this model could be used to
generate out DH parameters. To accomplish this, the 5 bar was simplified down to a planar
2-link arm with joint angles of θ 3 and θ K . While the robot has the ability to directly control the
value of θ 3 on the robot, it cannot do the same for the joint that corresponds to θ K . θ K is instead
dependant on θ 3 and θ 4 , and used as a symbol to help with calculations.

For inverse kinematics, the first attempt used a jacobian matrix. The Jacobian matrix
describes the relationship between instantaneous changes in the joint-space and world space
variables. The inverse of the jacobian matrix is actually what is needed to determine the inverse
kinematics for the robot. On this robot, there are 5 controllable variables in both the joint-space
and world space, so the jacobian matrix for the robot was square.

The jacobian matrix is a tool that can estimate the change in world space variables for a
given change in joint space variables. Similarly, the Inverse jacobian can be used to determine
the change in joint space variables for a change in world space variables. The jacobian matrix is
different for different poses of the robot, and so the current joint angles of the robot must be
known in order to calculate it. This is not a problem for this implementation since there is always
positional data available for all of the joints. The Jacobian is also a local approximation, so it
gives efficient and accurate results for small movements, but gets progressively less accurate
for larger movements. To correct for this when trying to do large motions, the inverse jacobian
can be used repeatedly until the results converge towards the correct answer. To make this
repeated process converge, the resulting joint angles from the previous attempt are used as the
“initial position” to calculate the new inverse jacobian, and the inverse kinematics are done once
again. The joint angles that result from this can then be put through the forward kinematics
function and compared to the target world space values. If these two values differ too greatly,
the process can be repeated as many times as is necessary to get a solution that is close
enough.

The nub sensor provides 5 force values that are used to determine user intent and move
the robot accordingly. These force values require some processing in order to be used intuitively
for user input. There are 2 pairs of parallel load cells and one single load cell. Each parallel load
cell pair is capable of reading a force and a torque. Summing the values of each load cell in a
pair will give the force along an axis, and the difference will yield the torque along another axis.
This calculated force is along an axis parallel to the axes in which the load cells in the pair
measure their forces. The torque vector calculated from a load cell pair is along the axis
perpendicular to the plane formed by the individual load cell force axes. The load cell that is not
part of a pair directly measures the force along a third axis. Using this technique the X, Y, and Z
components of the force the user applies can be found, as well as the pitch and yaw
components of the torques they apply.

These vectors can be combined into single force and torque vectors. The assumption is
made that these vectors indicate the direction the user would like to move. These vectors are
relative to the reference frame of the nub, so if the sensor is mounted on the end effector of the
robot, the robot’s forward kinematics are needed to transform the force and torque vectors into
the global reference frame. Once the the user’s desired direction of travel in the global reference
frame is known, the robot can be controlled to to move accordingly.

21

Chapter 3: Implementation

3.1 Mechanical System
Creation of the mechanical system is split into three stages; unpowered prototype,

working prototype, and the final version. The first stage, creating the unpowered prototype,
would be a proof of concept that the mechanism will be able to achieve all the positions
necessary, as well as getting a feel for the specific issues that need to be addressed when
creating the first working model. The second stage was creating a working prototype that could
actuate all the required joints. The final stage is the final working model. 3D printing and
threaded rods were utilized to make the stages. From that mechanism, it can be determined
which components need to be manufactured by other means, primarily machining.

3.1.1 Stage 1: Unpowered Prototype
The completed stage 1 mechanism is shown below in figure 9. The model is relatively

easy to make, using only threaded rod, 3D printed material, and bolts. There were no difficulties
in creating this mechanism other than learning the tolerances required for 3D printed interfacing.
With this prototype built, the motions were tested, showing that the mechanism would be able to
achieve the full range of motion required. From this stage the mechanism can be updated and
converted to the stage 2 mechanism.

Figure 9: Proof of Concept Model

22

3.1.2 Stage 2: Working Prototype
The first task for creating the working prototype was to develop adapters so that the

flexible drive shaft could connect to the motor and also to the joint. The three parts that were
printed for this application are shown in figure 10. The parts (from left to right) are the pin, the
connecter, and the shaft. The end of the flex drive shaft is put into the pin and clamped in using
screws. The pin is connected to the links that are to be actuated. The connecter clamps the two
drive shafts together. With the two flex shafts connected to each other, the tubing wont spin and
therefore requires no other attachment to the tower other than directly to the pin. The shaft part
is simply an adapter so that the motor can interface with the other end of the flex shaft. The
power test for the flex drive shaft failed. The shaft internals broke before any of the plastic 3D
printed components.

Figure 10: Flex Shaft Couplings

Three methods to fix the flex drive shaft failure were discussed by the team. For the flex

shaft to work, the torque being transmitted needs to be reduced. This can be accomplished by
gearing down the torque before it is sent through the flex shaft and then gearing it up again on
the tower. This method seemed to counteract the benefits of using the flex shaft in the first
place. It would require bulking up the system and putting a lot of parts at the top of the tower,
two things that the flex shaft intended to not do. The next option is to develop a system with
wires or belt and mount the motors near the bottom of the tower. The final option would be to
simply direct drive the motors at the top of the tower. The links at the top of the tower ended up
being directly driven to reduce complexity and get back on schedule. The reason a system was
not developed with wire or belt is because there were no readily implementable alternatives that
were less bulky than direct driving the motors, and having the motors at the bottom of the tower
would take away from the area that could be used to attach electronics.

The direct drive was easy to set up. When actuating the linkage was tested, the plastic
deformed in the pin. Because of this the pin was machined out of aluminum. After machining the
pin out of the stronger material, the test was successful. The motors were able to actuate the
links and support the weight of an arm. After some testing the plastic in the link itself began to
deform.The link was machined out of metal for stage 3.

Next the planar linkage is developed. The first iteration is shown in figure 11. The joint
that connects the tower to the planar linkage has a donut shape. The reason for this shape is
because the use of gears would have introduced other issues and there is no room to attach the
motor on the bottom of the link. The motor connects to a cube with a matching interface to the D
shaped shaft. The cube has a slot interface on the link. This method of attaching the shaft to the

23

motor is the same for all three attachments on the planar sub mechanism. The reason for this
attachment is it allows the cube to be replaced if it deforms at all. The cube is much smaller and
faster part to reproduce than any other part on the mechanism. The other two joints are fairly
simple. The motor is attached to a cover for the link and the shaft goes through the cover onto
the link that the cover is being rotated relative to.

Figure 11: Initial Planar Assembly

The planar linkage was completed and actuated. The links rotate easily before the tower

was attached. Once the tower mechanism was placed on the end of the planar linkage the
linkage stopped working. The weight of the tower caused too much friction on the joints, the only
joint that was still able to turn was the one directly under the tower.

It was next realized that the mechanism needed a slip ring located directly under the
tower joint. The wires for the second motor would rotate around the tower during operation and
get tangled. This was not a solution that could be fixed without a slip ring or using wireless
communication. A slip ring was purchased and link 2 was modified to accommodate the new
component. The cube method of attaching the motor to the link was no longer an option with the
slip ring, as the part needed to pass through the center of the ring and didn't have enough space
for the cube. The interface with the shaft had to be placed directly into the part. This is a
concern because if the interface deforms the entire link would have to be reprinted, and this is
the largest print on the assembly. Figure 12 shows the new link 2 that accommodates the slip
ring. With this change, stage 2 is complete and stage 3 can be started.

Figure 12: Revised Link 2

3.1.3 Stage 3: Final Version
With the working plastic prototype it was determined which parts needed to be converted

to metal. It was decided that all of the planar sub mechanism was to be machined, as well as

24

the two links in the tower linkage that the motors actuate. The two links from the tower linkage
were reproduced with metal bars with no changes to the design. The design of the planar
linkage changed slightly. With the metal parts, ball bearings were included at each of the joints
to reduce friction that was slowing down the plastic version. A lazy-susan ball bearing was also
added at the end of link 1. This lazy-susan removes all deflection from that link. The motor
attachment points were converted from the cube interface to set screw locking. Using set
screws instead makes it easier to take apart and eliminates the possibility of deformation
breaking the interface. The final version of the mechanism is shown in figure 13.

Figure 13: Final System Implementation

25

3.2 Electrical System

3.2.1 User Input Evaluation
The first step in the development of the electrical system was the evaluation of

the EMG and force control approaches. The research started with EMG, and two emg
sensors were found from Myoware that could be used to read signals from the surface
of the skin. In order to use this sensor input, it needed to be confirmed that they could
be used to create accurate position control. To evaluate this, one sensor was placed on
a test user’s bicep, while the other was placed on the tricep. The user then curled their
arm as if they were using a dumbell. The sensor output was recorded and then
integrated over time. The best results can be seen below.

Figure 14: Integrated Difference Between Bicep and Tricep Readings During Curls

26

Figure 15: Bicep Reading (red) and Potentiometer Reading (Blue) During Curls

The most difficult aspect of EMG is the actual placement of the sensors. Special

sticky pads are attached to the users skin on the muscle that is to be monitored.
Placement is absolutely imperative to get correct or else the signal would be completely
unusable. Out of 20 attempts, only 5 produced usable results, likely due to poor
placement. Furthermore, these pads were uncomfortable to wear for an extended
period of time, and actually could cause the skin to bruise if left on for too long. For
these reasons alone it was decided that EMG was not usable. The use of the sensor
was simply too cumbersome and difficult to set up. Even with that, the sensor was
extremely prone to noise and drift. One test revealed that touching a cell phone caused
measurements to spike, and all attempts showed drift that occurs very rapidly.

Next, the use of force feedback for user input was to be evaluated. The easiest
known way to measure forces was through the use of a load cell. Familiarity of using
HX711 ADC amplifies with load cells from previous classes pushed the guided the
purchase of a load cell and amplifier to see how sensitive they were. It was found that
the cells would detect forces perpendicular to the cell in one plane. Pushing down on a
cell would create a positive reading, while pulling up would create a negative one. There
was very little hysteresis in the sensor, if any, and plenty of software libraries existed to
use as reference to interface with the HX711. With a 10kg cell, it was found that a
change in sensor readings could be caused with the mass of a penny. From this

27

evaluation, it was apparent that load cells were a suitable option, and moved to
implement a user input system with them.

3.2.2 Sensor Development
In order to control the 5 dof linkage, forces in the X, Y, and Z directions needed to be

monitored, along with moments about the Z and Y axes. The problem then presents itself: how
to distinguish a force from a moment. The best apparent approach was to used coupled load
cells about the Z and Y axis. By placing each cell on opposite sides of the force application, The
two cells can be compared. If they both have opposite magnitudes, then a force is being
applied. If the moments are the same then a moment is being applied.

Two moments and 3 forces would therefore require a total of 5 load cells and HX711
amplifiers. Initially, a tall tower was designed the hold the cells and demonstrate how the
mechanism would work (figure 16). This frame was 3d printed and a n arduino was used to
measure force readings from the load cells. With very little effort, the system was able to
measure how the user was interacting with the frame, whether it was a force or moment.

Figure 16: User Input Prototype

After confirming that this method of detecting user intent was feasible, the next step was

designing a more compact structure for the sensor, along with developing a library for
interfacing the MSP432 with the HX711s. The HX711s work similar to a shift register. Data from
a read is clocked out with 24 pulses. An additional 1 to 3 pulses will then set the gain for the
next read. For the largest possible gain, a total of 25 pulses are used when getting data from the
HX711. Pulses are applied to the SCK input of the HX711, followed by a read on the DT pin.

28

These reads are then shifted and added, creating a 24 bit value representing the reading of the
HX711. To read the load cells on the MSP432, 10 pins were configured for IO, 5 for DT and 5 for
SCK. A read function sequentially pulsed the SCK pins and read the SCK pins. Each read was
considered a binary bit, shifted to its correct weight, and added together. The function then
returned 5 values representing the read of each cell. Further functions were added to the library
to maintain a rolling average of readings for each cell to eliminate noise, along with an initial
offset read to zero the load cells.

The sensor array was compacted down into a gauntlet, which was a suitable size and
form for being mounted to the linkage. The gauntlet design was 3d printed, assembled, and
tested with the newly developed library for the MSP432. This new system was then dubbed the
“Nub”, due to its likeness in operation to the small nub found in the center of some laptop
keyboards that a user can move the mouse with. This new device measured forces and
moments as expected, however the plastic body of the gauntlet introduced a large amount of
hysteresis. This is partly because PLA does not share the same modulus of elasticity as the
aluminum load cell, as well as the fact that the screws would sometimes catch on the plastic
pieces, causing the gauntlet itself to apply forces the cells once the user has stopped doing so.
This hysteresis needs to be accounted for when reading the Nub, however it is manageable and
valid readings are still able to be taken from it.

Figure 17: Final User Input Sensor

3.2.3 Initial Design evaluation
With the user input settled, it was time to develop electrical system dedicated to

maintaining PWM/ motor control. The first motors purchased were the bosch seat motors, as
they were needed to test top link actuation. For that reasons, the CUI encoders were also
ordered. The MSP432 was configured to have 5 pwm outputs. A simple proportional controller
was then written to control the two seat motors. The trouble began when trying to interface with
the CUI Inc encoders, which had their own serial communication protocol.

29

These encoders used a RS485 communication structure, which uses a baud rate of
2Mbps. Using the Uart libraries for the MSP432, serial communications with a putty terminal at
rates up to 115200 baud were able to be consistently achieved. At 2Mbps however,
communications were quickly dropped or corrupted. Due to deadlines and increasing suspicion
that the MSP432 could not reach such a high rate without some serious reconfiguration, the
decision was made to change sensing methods. The top links have a rotation of less than 270
degrees, which meant that a potentiometer could easily be mounted to the top joints to track
position. This also meant that the top links would not need to be homed on startup, and would
decrease cpu load by preventing the need for more encoder interrupts. Two spare 5K ohm
potentiometers were mounted to the links, and 2 ADC channels were configured to read the
potentiometers on the MSP432.

From here, the development of the electronics was re-focused to achieve milestones
that would help with the testing of the mechanical system. An easier way to apply torques to the
upper links was wanted for stress testing. For this reason, the development of Uart
communications was started so that the PWM signals could be varied more easily during
testing. With TI provided Uart examples, it didn't take long to communicate with the MSP432
through a putty terminal. However, once the Uart channel was continuously used via a python
script, it was noticed that after a few seconds communications would drop. After isolating pieces
of the MSP432 code, it was found that the addition of the PWM drivers caused the
communication problem. It was theorized that the hardware interrupts generated by the clocks
for the PWM driver were occuring during Uart transfers, causing communications to become out
of sync. With Uart and PWM both being an integral part of the design, redesigning the electrical
architecture of the system was necessary.

3.2.4 System Overhaul
With the large number of tasks that needed to occur in the system, along with the need

for fast response times, it was decided that the new system revision would need to allow for the
ability to perform multiple tasks simultaneously. In order to achieve this, the electrical system
was expanded into a network of nodes. A single node would take care of PID loop and PWM
generation, along with positional feedback sensor reading. Each joint requiring a node would
require at minimal 5 nodes and one master to be present on the network. With such a large
number of peripherals, an I2C communication protocol was used to communicate between
nodes, reducing the number of physical connections needed across the linkage as well as quick
and easy data transfers.

A possible issue with this system approach is an increase in cost. Each node would
require its own microcontroller, along with any other supplemental electronics to allow it to
interact with the different sensors, motors, and communication channels. However, due to the
light load required of each node small, low cost controllers could be used, such as an Arduino
Nano. A nano is a small board that can be purchased for only 3 dollars online from certain
vendors. Additionally, Arduino comes with a well documented library and example rich
environment that will allow for fast paced development. This was key due to the unexpected
setback of needing a complete overhaul of the electrical system. Since the MSP432 was readily

30

available, it was decided that it would be used as the communications master. Its responsibility
would be to read the Nub, communicate with the pc via Uart, and send set points to the different
nodes on the network via I2C.

Two separate types of nodes developed from this change, the difference being in the
sensor used for feedback. One type of node used an adc to read the position of potentiometers,
while the other used two interrupts to keep track of encoder positions. Other than this difference,
the nodes are identical. Both consist of an Arduino Nano, interface with a Drok motor controller,
and communicate via I2C to a master. Code was quickly developed for these nodes, and
positional control of motors was demonstrated to work as expected.

3.2.5 Power Distribution
With a more complex network, more thought needed to be given to how power would be

delivered to the different pieces of the project. The motor drivers took 12V to run the motors, so
each driver would get a direct line to the battery. Along with powering the motor the drivers also
had a regulated 5V output. These outputs could be used to power the nodes that already had to
interface with each driver to control the motors. The HX711 drivers that read the load cells in the
Nub needed 5v to operate. These drivers draw a little less than 1.5mA, so the MSP432
launchpad regulated 5v output could power them. The MSP432 itself would be powered via the
USB cable used to communicate to it via Uart.

3.2.6 The Middle Joint
At this point, motors were being integrated into the mechanical system. This integration

brought to the team’s attention that the middle joint in the planar arm was completely isolated.
There was no way to run wiring as both sides of the joint had the ability to rotate 360 degrees. In
order to get wiring to this joint, a 6 channel slip ring was purchased. Of course, a problem with
slip rings is that they produce a lot of electrical noise. For this reason, it was decided that it
would be better to pass sensor and motor wiring through the slip ring rather than I2C
communication lines.

This did not solve all of the issues however. The joint used an encoder to keep track of
position, which required encoder pulses to be passed across the slip ring. Attempting to do this
without any kind of filtering proved disastrous; the read position of the encoder would increase
ticks by the thousands as the mechanism moved. A debouncing circuit consisting of a schmitt
trigger and other filtering elements was constructed and attached to the output of the slip ring.
This helped, but proved to be not enough. With a rapidly approaching deadline, the decision
was made to go analog. By using an analog signal, permanent loss of position could not
happen. A missed read in one instance would be available in the next, unlike a pulse which is
gone forever once missed. Additionally, capacitive filters could be added to an analog signal to
further assist in noise reduction.

The plan was to use an arduino on one side of the encoder to keep track of encoder
pulses. This nano would produce a position, and then encode it into two analog channels via 2
dacs. This analog signals would be passed over the slip ring, read by the I2C network
connected node via 2 adcs, and then bit shifted back together to be used for positional control.

31

For the initial attempt an R2R ladder network of resistors was constructed to be used as a dac,
and 2 small low pass filters were placed on the analog lines after the slip ring. The noise proved
to be too strong, as the position would fluctuate by about 10 degrees.

The original design had 2 analog lines which could be classified as a MSB and LSB line.
Extremely small amounts of noise on the MSB line could cause huge changes in the final
position, as the noise was essentially amplified by a 6 bit left shift. However, if the MSB bits
were distributed in the higher ranges of both lines, then the noise would not affect the final result
as strongly. So before interfacing with the DACs, the nano would split the MSB and LSB line
values into two parts each. The MSB values and LSB values were then paired, keeping the
most significant bits out of reach from noise. This turned out to be highly effective, and the new
accuracy of this joint was about half of a degree. A later revision had the 2R ladder converted to
2 10 bit I2C DACs to better reduce noise and to clean up the system as a whole.

3.2.7 PCB Design
All development for the electronics had been done first on breadboards and then

perfboard. While fine for initial development, these implementations do not do well on moving
systems. Vibrations from the links moving, whether during operation or relocation of the system
as a whole, would cause wiring to become loose and faulty. For this reason, all circuits on the
device were assembled onto PCB boards so that they would remain intact, organized, and less
susceptible to noise. The first PCB design was for the nodes. Both types of nodes were very
similar, so the PCB was designed such that it could be configured for either type. Additionally, it
was seen that some nodes would be physically very close together, so it was decided to have 1
PCB hold two nodes. With two nodes on one PCB, a plug in was created such that the motor
drivers would plug directly into the board, eliminating wiring and centralizing the node’s
peripherals. Screw terminals were used to attach external devices to the board, and female
headers for the controllers were used for quick and easy troubleshooting. Additionally, the Drok
motor drivers came with the added feature of an enable pin. When grounded, this pin
disconnects power from the motors. Terminals were added to this enable pin so they could be
used as a safety device later.

The next PCB designed for the system was a MSP432 breakout board. The MSP432 to
connect 10 IO pins to the Nub, as well as have enough I2C attach points to control all the
nodes. The PCB design was attached to the Node PCB such that they could be ordered as one
unit. Holes were designed between the boards so that they could be snapped apart. For
schematics and board layouts, please see appendix a.

32

Figure 18: Fully Assembled Dual Node Board

3.2.8 Troubleshooting
Once fully assembled and testing began using kinematics to control the mechanism, it

was noticed that the middle link seemed to jerk around when passing over 0 degrees (for
example, going to 355 to 15 degrees). After examination of the DAC circuit, noise levels, and
arduino code, it was decided that the reference voltage levels for the adc and dac must be
different. A quick voltmeter test on Vref of the Arduino ADC and on Vcc of the DAC confirmed
this suspicion. The next question was why this was the case. Further research revealed that the
function of Vin on the Nano had been misinterpreted. It was thought that this was an
unregulated voltage input for the microcontroller, and therefore a regulated 5v signal needed to
be passed to it. In reality, Vin is a regulated input, and requires a minimum of 9v. With the Drok
motor driver providing only 5v to Vin on the Nano, it was no wonder why the reference voltage
was incorrect. The trace connecting 5v to Vin on the PCB was cut, and a wire was placed to
jump 12v to vin. After this change the middle joint began behaving correctly. Each of the other
nodes were carefully checked to see if this low voltage was having an adverse effect on them.
Luckily, no other issues were detected related to the low voltage.

Once the system was deemed operable, testing of user input began. While the Nub was
able to be used to move the linkage, there was what felt like a 2 second delay between an
action and reaction. This was far too high to be considered even remotely acceptable. By
placing print statements within the python script and MSP432 controller, it was found that a
majority of the delay was coming from reading the Nub. In order for a read to be complete, each
cell was read multiple times, averaged together, and then returned. On top of that the HX711
require a delay proportional to the rate at which the devices are read before the next read can
be started. In order to speed this process up, the Nub was moved onto its own node, such that
reads can happen concurrently with other processes. This, along with refinement of the python

33

script, dropped the delay to half a second. This change resulted in the final architecture shown
below.

Figure 19: Final Electrical Architecture

Better user input exposed just how jerky the system really was. When user input was

delayed, it was hard to see just how the linkage reacted to forces. With a quicker response time
it became very clear that the linkage made extremely jerky movements. Mechanical causes
were ruled out, as the links could be turned smoothly when not powered on. A closer look at the
code on the motor control nodes revealed that 2 significant digits were being dropped when
measurements were converted to degrees. Additionally, the communication protocol did not
allocate enough space to send a larger message in one transfer. During this time another
phenomena had been occuring where the MSP432 would seem to stop responding. This would
prevent new setpoints being sent to the nodes and make the system freeze in place. On
average, the system would remain live for 1 to 2 minutes before freezing. Examination of the
MSP432 in debug mode showed that the execution would block when a node failed to respond
on the I2C network. It was suspected that interrupts caused by encoder interrupts or the millis
timer on the nodes would cause I2C to miss data. Solving this issue would require a lot of
testing and research, as it was not known how the Arduino Wire I2C library functioned, and if it
used interrupts of its own.

With one week left before the project deadline, it was decided that only one issue could
realistically be addressed. With jerk being an actual project goal, this issue absolutely needed to
be addressed, and a large overhaul sensor related code, I2C parameters and Uart protocol was
started. With an increase of movement resolution, the mechanism moved much smoother and
felt far more controllable.

On the day of the project presentation, a metal shard fell onto the MSP432, shorting it
out and permanently damaging it. By the end of the day, the conversion the MSP432 code over

34

to a spare Arduino Mega had been completed. Since doing this, the I2C crashes have stopped.
Likely, this is because the Arduino Wire I2C library is non-blocking, and corrupted messages are
ignored. This allows the system to recover from a bad or missed transaction.

3.3 Control System

3.3.1 Actuator Control
Control is manifested over the joint angles of the robot using motors to actuate the joints.

These motors have either encoders or potentiometers on them to provide positional feedback.
This positional feedback allows the actual physical joint angles of the robot to be known at any
point in time. Each joint can be commanded to an absolute setpoint and is positionally controlled
using a PID loop. This PID loops function is to reduce the error between a positional setpoint
and the current measured position of the joint to 0. To accomplish this it varies the strength and
direction of the PWM signal that is sent to the motor. The PWM signal determines how hard a
motor will try to drive a joint to move in a given direction.

The PID controller is highly dependant on its tuning to satisfactorily achieve its desired
results. The proportional, integral, and derivative terms need to have their gain coefficients
calibrated on a joint by joint basis. These also need to be calibrated based on changes to the
mechanics, such as adding weight or changing link lengths. The P-term for each link was
adjusted to the point where each motor would fight to hold its position when an external force
was applied, and it would move close to the position it was commanded to move to. The I-term
then takes care of correcting any steady state error caused by friction or gravity. The D-Term is
used to prevent any overshoot and dampen any oscillations. In practice, the robot ended up
needing very little damping from the d term since the mechanics of the system naturally damped
the motion quite a bit.

3.3.2 Forward Kinematics
The forward kinematics was completed using DH parameters and transformation

matrices as intended, but then opted to move away from this solution and find a geometric
solution for several reasons. The trigonometric expression that θ K stands in for tended to make
the final transformation matrices very messy. The primary reason for the change is that cleaner,
simpler formulas were wanted for when it came time to calculate the inverse kinematics. Finding
the geometric solution started with the 5 bar section of the mechanism. The expression for θ K is
found once again by splitting the 5 bar into triangular sections and using several trig laws.
Using θ 3 and θ K (which is in terms of θ 3 and θ 4), the pitch and the Z position can be calculated.
These two angles are also used to calculate the horizontal position component of the whole
tower assembly, which is used to give the projection of the tower assembly onto the x-y plane.
The two base links and the tower projection can then be treated as a 3 link planar arm, allowing
the x, y, and yaw to be calculated using θ 0 , θ 1 and θ 2 , and the projection of the tower onto the
X-Y plane.

35

3.3.3 Inverse Kinematics
For inverse kinematics, an inverted jacobian matrix was created. Several issues came

up with its implementation. Mostly, there were problems with computational efficiency which
primarily came from calculation of the jacobian matrix. One immediate issue with this method
was the existence of singularities in the robot’s workspace. These singularities are specific
points where the jacobian matrix becomes singular, and therefore noninvertible. To work around
this,these points would need to be identified, and then hardcoded in solutions for them would
need to be added. Something similar for the areas surrounding singularities would also need to
be implemented, since the jacobian becomes far less accurate and more distorted when
approaching a singularity. Additionally, with the kinematic structure of the robot the calculation of
the jacobian itself was actually rather expensive. This is mostly due to the complexity the 5 bar
linkage adds. Changes in θ 3 or θ 4 can technically affect x, y, z, and pitch movement depending
on the position of the robot, so calculating the jacobian matrix can require evaluating partial
derivatives of up to 8 complicated trigonometric functions that describe these relations every
time the jacobian is generated. Lastly the practice of iteratively repeating the inverse kinematics
until the answer is found can be extremely inefficient, since it requires both the full forward
kinematic calculations and inverse jacobian calculations to be completed multiple times.

Because of these issues, the controls were once again moved to a geometric solution. In
the end this came with the additional benefits of making the mathematical implementation more
easily readable and allowing some geometric tricks to be used to simplify the calculations. Like
the forward kinematics, the inverse kinematics were divided into a vertical section and a ground
plane section. For the 5 bar linkage, θ 3 and θ 4 can be found using the Z and pitch of the end
effector. With the 5 bar linkage, there can technically be multiple inverse kinematic solutions for
certain positions, so constraints were added to the problem that allow for only one solution.
These constraints try to provide solutions that all exist on the same side of any grashof
conditions, which helps prevent the linkage from moving through potentially damaging positions.
Once the values for θ 3 and θ 4 are known, they can be used to calculate the projection of the
tower assembly onto the X-Y plane. The X, Y, and yaw can then be used to determine the
values of θ 0 , θ 1 and θ 2 . The lower planar assembly is then evaluated like a typical 3 link planar
arm, where the the base links are the first two links and the tower projection is the third link. The
two base links are the same length, so this allows isosceles triangle geometry to be used as a
shortcut to reduce computational load. The 3 link planar arm will give 2 solutions (“elbow left” or
“elbow right”) for most positions in the workspace. To determine which of these solutions would
be optimal, the inverse kinematics can take in the current joint angles of the robot and
determine which solution requires less movement to achieve. To determine the closet solution,
the absolute values of the differences between the current and proposed values for θ 0 , θ 1 and θ 2
are summed, then the solution which has the smaller total distance to move is selected.

3.3.4 Interpreting user input
The user’s intent needed to be inferred from the force data gathered by the nub, then

acted upon by the robot. There were many control schemes which could have been used to

36

accomplish this, but a very straightforward and simple approach was opted for. The
implementation is essentially a proportional positional controller. When the user applies a force,
they are indicating that they want the robot to be in a position that differs from the current
position, so the applied force can be interpreted as a metric of positional error for proportional
feedback control. In this control scheme, the robot generates positional setpoints in the
worldspace based on the current position of the robot summed with an additional displacement.
This displacement is in the same direction as the force applied and has a proportional
magnitude as well. In a control loop that runs at a consistent rate, a constant force will result in a
constant “velocity” of the end effector, since it will take a consistent sized step each cycle. The
actual velocity is technically not constant, because it is only sent positional setpoints, but with a
high enough resolution it was found to be hardly noticeable.

37

Chapter 4: Conclusions and Future Work

4.1 End Product
The result of this work was a 5 degree of freedom actuated linkage that could be moved

through the application of force to a detached gauntlet. This linkage is capable of supporting 5
lbs at its end effector, and is capable of being accurate in its movements toa half of a degree.
While functional, interpretation of the sensing device is still somewhat problematic, and does not
allow for very precise movements. Response time of the system is an estimated 750ms, and
can be fully powered by a 12v battery. Currently, the system is mounted to a small wooden table
for stability and has exposed electronics.

4.2 Next Steps

4.2.1 Mechanical Changes
The Mechanical system works close to how it was intended. There are 2 main issues

that can be addressed to improve the system. The first issue is between the first and second
link in the planar mechanism. The attachment point between the two is a shaft with a set screw.
This leaves some deflection on the shaft and flex on the overall system. This can be fixed by
using a larger shaft on the joint. The larger shaft will limit the deflection of the shaft allowing the
links to be fastened closer together.

The second issue is the joint below the tower. The use of threaded rod on the tower
causes the tower to be able to flex about the z axis. The design of the joint forcing the use of
threaded rods. If the joint used a gear system, the motor would not have to be centered on the
joint, and the joint could have a much sturdier structure supporting the tower. This would reduce
the flexing about the z axis of the tower.

A general improvement could also be the elimination of set screws in the design.
Currently, most mechanical backlash in the system is caused by these screws loosening up.
Creating a more secure connection would go far in increasing the stability of the system.

4.2.2 Electrical Changes
While reliable, the electronics on this system can certainly be improved. The biggest

hindrance the current architecture has is the restriction of speed. Faster microcontrollers could
be used on the nodes for more accurate PID tuning and better response times. Reading the
Nub is a very time intensive procedure that could benefit from a rework. While adding another
controller seems like overkill, perhaps a faster or lower bit ADC in combination with a more
efficient reading process would be more efficient.

Another change related to the Nub is its hysteresis problem. Currently, the body of the
Nub is made out of 3d printed PLA plastic, while the load cells are made out of aluminum. The

38

differences in modulus of elasticity can cause erroneous measurments, and the plastic can
deform in ways that change what forces the load cells experience under no load. Specifically,
the plastic will shift and catch on the screws affixing it to the load cells, causing plastic
deformation on the body, applying forces to the load cells.

The current solution to achieving accurate readings of the middle joint is cumbersome at
best. A better debouncing technique can replace the current solution to achieve more accuracy
and les noise. Furthermore, the PCBs for all the nodes can be revised such that all nanos
receive 12v at vin instead of the sub-optimal 5v input.

A large change that can be made is the integration of a better safety system. All nodes
have the ability to disable motor power, an input simply needs to be wired to the enable
terminal. Additionally, the nano is wired via the PCB directly to the motor enable. This provides
two different routes when trying to integrate a safety mechanism. A particularly interesting
implementation would be to use current sensing on the motors to determine if they are applying
an excess force to the environment. If so, that motor can be disabled to prevent damage.

The top links of the linkage can have improved accuracy with a better resolution adc.
Right now, only a 10 bit read is used on the potentiometers, which diminishes the possible
accuracy of those links.

4.2.3 Control Changes
There are also several alternatives to the proportional positional control that was used

when it comes to handling the higher level user input interpretation. These each have their own
strengths and weaknesses which merit further investigation. One such method of control is a
PID position/velocity control hybrid, that commands nodes to reach both desired velocities and
positions. Using some sort of weighted combination of the signals resulting from the positional
and velocity feedback loops could result in more fine control over the motion of the mechanism.
Another potential alternative is direct force amplification with active gravity compensation. This
would essentially be a direct mapping between force applied by the user and the force the
mechanism applies. For instance, if the user applied a 0.1lb force in a direction, then they could
experience a 1lb force in that direction applied by the mechanism. In order for this to be
implemented an efficient jacobian to relate end effector forces and joint torques would be
needed. Lastly, the positional awareness of the robot could be used to help make inferences
about what the user is trying to accomplish. If points of interest like the mouth and plate hove
known coordinates in the global reference frame, then the robot can assume the user wants to
move to either of these points and help guide their hand. This could be achieved by splitting the
workspace up into a coordinate system, and having guiding force/velocity vectors
corresponding to each region on the grid system. The absolute best solution is likely a hybrid
solution that draws from some of these control schemes.

The communications and the kinematics are currently two of the largest contributors to
round trip response time. One cheap way to quickly improve response time is to increase the
baud rate of both the UART and the I 2 C connections. This will automatically enable faster data
transfer if the hardware supports it. Increasing these speeds can lead to an increased chance
for corruption, so the actual amount these baud rates can be increased will need to be tested.

39

Another possible change is converting the format of the positional messages passed over
UART. Currently, each joint angle is sent over the serial port as an ascii representation. This is
incredibly useful for debugging and manually controlling the robot via serial terminal, but it is far
less efficient than sending raw integer numbers. Each joint value requires six bytes to be
transmitted using the ascii format, whereas they would only need bytes per value an unsigned
integer format. This would also mean the comms controller would not need to spend time
parsing and converting between ascii and integer formats. The kinematics code, like the
communications code, has already gone through a decent amount of optimizations, but could
still benefit from further refinement. A way to further optimize the code on the offboard computer
is parallelization of processing tasks. Currently the code executes in a serialized manner, but
this could be changed so that kinematics and communication can run simultaneously using
multithreading. Splitting the kinematics portion itself into smaller parts that can run in parallel
would also lead to an increase in speed.

40

Appendix

A. Electrical Schematics and PCB Layouts

Figure 20: Interrupt to DAC PCB Layout

41

Figure 21: Node and MSP432 Breakout PCB Layouts

42

Figure 22: Nub PCB Layout

43

Figure 23: Dual Node Schematic

44

Figure 24: Interrupt to DAC Schematic

45

Figure 25: Nub Schematic

46

B. Coordinate Frame Reference

Figure 26: Reference Coordinate Frame

47

C. Encoder_Node Code
#include <Wire.h>
//#define SLAVE_ADDRESS 0x21 //TopTower
//#define SLAVE_ADDRESS 0x22 //Bo�omTower
#define SLAVE_ADDRESS 0x23 //base motor furthest
//#define SLAVE_ADDRESS 0x24 //base motor elbow
//#define SLAVE_ADDRESS 0x25 //base motor sta�onary

#define RECIEVED_SIZE 4
#define SENT_SIZE 20
#define PWM_PIN 5
#define DIR_PIN 6
#define POT_PIN A1
#define ENC_PIN 3
#define ENC2_PIN 2
#define ENC_TICKS 6400
byte recievedSetPoint[RECIEVED_SIZE];
byte sentPosi�on[SENT_SIZE];
vola�le long setPoint = 0;
vola�le long currPosi�on = 0;
int error = 0;
vola�le bool enc1 = true;
vola�le bool enc2 = true;
vola�le bool lastEnc = true;
vola�le bool encDir = true;
vola�le long �cks = 0;
float p = 0;
float i = 0;
float d = 0;
unsigned long prev_�me = 0;
unsigned long curr_�me = 0;
float curr_error = 0.0;
float prev_error = 0.0;
float integral_error = 0.0;
float deriv_error = 0.0;
unsigned long dt = 1;

void fixTicks(){
 �cks = (�cks+ENC_TICKS*2)%ENC_TICKS;
}

void encISR(){
 enc1 = digitalRead(ENC_PIN);
 enc2 = digitalRead(ENC2_PIN);
 if(!enc1 != !enc2) {
 �cks++;
 }
 else{
 �cks--;
 }
 fixTicks();
}

void encISR2(){
 enc1 = digitalRead(ENC_PIN);
 enc2 = digitalRead(ENC2_PIN);
 if(!enc1 != !enc2) {
 �cks--;
 }
 else{
 �cks++;
 }
 fixTicks();
}

void setup() {
 pinMode(ENC_PIN, INPUT);
 pinMode(ENC2_PIN, INPUT);

 enc1 = digitalRead(ENC_PIN);
 enc2 = digitalRead(ENC2_PIN);

 a�achInterrupt(digitalPinToInterrupt(ENC2_PIN), encISR2, CHANGE);

48

 a�achInterrupt(digitalPinToInterrupt(ENC_PIN), encISR, CHANGE);

 Wire.begin(SLAVE_ADDRESS);
 Wire.onRequest(requestEvent);
 Wire.onReceive(receiveEvent);
 pinMode(PWM_PIN, OUTPUT);
 pinMode(DIR_PIN, OUTPUT);

 // bo�om sta�onary
 if(SLAVE_ADDRESS == 0x25){
 p = 0.4;
 i = 0.003;
 d = 0.001;
 }

 //bo�om tower
 if(SLAVE_ADDRESS == 0x23){
 p = 0.251;
 i = 0.00084;
 d = 0.0010;
 }
 setPoint = 0;
}

int asdf = 0;
long duty;
void loop() {

 currPosi�on = �cks;

 error = (setPoint - currPosi�on);

 if (error>(ENC_TICKS/2)){
 error = error-ENC_TICKS;
 }
 else if (error<-(ENC_TICKS/2)){
 error = error+ENC_TICKS;
 }
 else{
 error = error;
 }

 curr_error = error;
 dt = (2) + 1;
 integral_error += (dt)*curr_error; //need to prevent overflow
 if(integral_error > 10000){
 integral_error = 10000;
 }

 if(integral_error < -10000){
 integral_error = -10000;
 }

 deriv_error = (curr_error - prev_error)/(dt);
 int duty = (p*curr_error + i*integral_error + d*deriv_error);
 prev_�me = curr_�me;

 if(duty < 0){
 duty = duty*-1;
 digitalWrite(DIR_PIN, HIGH);
 }
 else{
 digitalWrite(DIR_PIN, LOW);
 duty = duty;
 }

 if(duty > 130){
 duty = 130;
 }
 analogWrite(PWM_PIN, duty);
}

void requestEvent(){
 get_byte_posi�on();
 Wire.write(sentPosi�on, SENT_SIZE);
}

49

void receiveEvent(int bytesReceived){
 for(int i = 0; i < bytesReceived; i++)
 {
 if(i < RECIEVED_SIZE)
 {
 recievedSetPoint[i] = Wire.read();
 }
 else
 {
 Wire.read();
 }
 }
 setPoint = (((recievedSetPoint[1])<<8) + recievedSetPoint[0])&0xFFFF;
 setPoint = ENC_TICKS*((float)setPoint/36000);
 bool state = digitalRead(13);
 digitalWrite(13, !state);
}

void get_byte_posi�on(){
 sentPosi�on[0] = (((int)((float)currPosi�on *36000/ENC_TICKS))& 255);
 sentPosi�on[1] = (((int)((float)currPosi�on *36000/ENC_TICKS))& (255<<8))>>8;
}

D. Potentiometer_Node Code
#include <Wire.h>
#define SLAVE_ADDRESS 0x21 //TopTower
//#define SLAVE_ADDRESS 0x22 //Bo�omTower
//#define SLAVE_ADDRESS 0x23
//#define SLAVE_ADDRESS 0x24
//#define SLAVE_ADDRESS 0x25
#define RECIEVED_SIZE 4
#define SENT_SIZE 20
//#define SENT_SIZE 4
#define PWM_PIN 5
#define DIR_PIN 6
#define POT_PIN A1
#define ENC_PIN 8
byte recievedSetPoint[RECIEVED_SIZE];
byte sentPosi�on[SENT_SIZE];
vola�le float setPoint = 0;
float currPosi�on = 0;
// posi�on control var
float p = 0;
float i = 0;
float d = 0;
int Lower_Bound = 0;
int Upper_Bound = 0;
unsigned long prev_�me = 0;
unsigned long curr_�me = 0;
float curr_error = 0.0;
float prev_error = 0.0;
float integral_error = 0.0;
float deriv_error = 0.0;
unsigned long dt = 1;

void setup() {
 Wire.begin(SLAVE_ADDRESS);
 Wire.onRequest(requestEvent);
 Wire.onReceive(receiveEvent);
 pinMode(PWM_PIN, OUTPUT);
 pinMode(DIR_PIN, OUTPUT);
 currPosi�on = (map(analogRead(POT_PIN), 0, 1023, 0,807))/3;
 setPoint = currPosi�on;
 //top_tower
 if (SLAVE_ADDRESS == 0x21){
 p = 7;
 i = 0.003;
 d = 0.01;
 Lower_Bound = 115;
 Upper_Bound = 170;
 }
//bo�om tower
 else if (SLAVE_ADDRESS == 0x22){
 p = 3;
 i = 0.004;

50

 d = 0;
 Lower_Bound = 35;
 Upper_Bound = 105;
 }
}

void loop() {
 currPosi�on = (map(analogRead(POT_PIN), 0, 1023, 0,807))/3;
 curr_error = setPoint - currPosi�on;
 dt = (2) + 1;
 integral_error += (dt)*curr_error; //need to prevent overflow
 if(integral_error > 10000){
 integral_error = 10000;
 }

 if(integral_error < -10000){
 integral_error = -10000;
 }
 deriv_error = (curr_error - prev_error)/(dt);
int duty = (p*curr_error + i*integral_error + d*deriv_error);
 prev_�me = curr_�me;
 if(duty < 0){
 duty = duty*-1;
 digitalWrite(DIR_PIN, HIGH);
 }
 else{
 digitalWrite(DIR_PIN, LOW);
 duty = duty + 10;
 }
 if(duty > 90){
 duty = 90;
 }
 analogWrite(PWM_PIN, duty);
}

void requestEvent(){
 get_byte_posi�on();
 Wire.write(sentPosi�on, SENT_SIZE);
}

void receiveEvent(int bytesReceived){
 for(int i = 0; i < bytesReceived; i++)
 {
 if(i < RECIEVED_SIZE)
 {
 recievedSetPoint[i] = Wire.read();
 }
 else
 {
 Wire.read();
 }
 }
 setPoint = (((recievedSetPoint[1])<<8) + recievedSetPoint[0])/100;
 if (setPoint > 360){
 setPoint = (map(analogRead(POT_PIN), 0, 1023, 0,807))/3;
 }
 if(setPoint < Lower_Bound){
 setPoint = Lower_Bound;
 }
 if(setPoint > Upper_Bound){
 setPoint = Upper_Bound;
 }
 bool state = digitalRead(13);
 digitalWrite(13, !state);
}

void get_byte_posi�on(){
 sentPosi�on[0] = (((int)(currPosi�on*100)) & 255);
 sentPosi�on[1] = (((int)(currPosi�on*100)) & (255<<8))>>8;
}

51

E. Middle_Joint DAC

#include <Wire.h>
#define ENC_PIN 3
#define ENC2_PIN 2
#define ENC_TICKS 6400
#define MASTER_ADDRESS 0x30 //nano addr
#define LSB_DAC_ADDR 0x0A //LSB addr
#define MSB_DAC_ADDR 0x4D //MSB addr
vola�le bool lastEnc = true;
vola�le bool encDir = true;
vola�le long �cks = 0;
vola�le bool enc1 = true;
vola�le bool enc2 = true;

void encISR(){
 enc1 = digitalRead(ENC_PIN);
 enc2 = digitalRead(ENC2_PIN);
 if(!enc1 != !enc2) {
 �cks++;
 }
 else{
 �cks--;
 }
 fixTicks();
}

void encISR2(){
 enc1 = digitalRead(ENC_PIN);
 enc2 = digitalRead(ENC2_PIN);
 if(!enc1 != !enc2) {
 �cks--;
 }
 else{
 �cks++;
 }
 fixTicks();
}
void fixTicks(){
 noInterrupts();
 �cks = (�cks+ENC_TICKS*2)%ENC_TICKS;
 interrupts();
}
void writeDAC() {
 Serial.println(�cks);
 int LSB_Val = (�cks & (0xF)) + ((�cks & 0x380)>>3);
 LSB_Val = LSB_Val << 3;
 int MSB_Val = (((�cks & 0x70)>>4) + ((�cks & 0x1C00)>>7))<<4;
 //data frame is 16 bits, 0000[data][data][00]
 byte MSB_Frame[2];
 MSB_Frame[0] = (MSB_Val & 0x3C0)>>6;
 MSB_Frame[1] = (MSB_Val & 0x3F)<<2;

 byte LSB_Frame[2];
 LSB_Frame[0] = (LSB_Val & 0x3C0)>>6;
 LSB_Frame[1] = (LSB_Val & 0x3F)<<2;
 Wire.beginTransmission(MSB_DAC_ADDR);
 Wire.write(MSB_Frame[0]);
 Wire.write(MSB_Frame[1]);
 Wire.endTransmission();
 Wire.beginTransmission(LSB_DAC_ADDR);
 Wire.write(LSB_Frame[0]);
 Wire.write(LSB_Frame[1]);
 Wire.endTransmission();
}
void setup() {
 pinMode(ENC_PIN, INPUT);
 pinMode(ENC2_PIN, INPUT);
 Wire.begin(MASTER_ADDRESS);
 enc1 = digitalRead(ENC_PIN);
 enc2 = digitalRead(ENC2_PIN);
 a�achInterrupt(digitalPinToInterrupt(ENC2_PIN), encISR2, CHANGE);
 a�achInterrupt(digitalPinToInterrupt(ENC_PIN), encISR, CHANGE);

52

 Serial.begin(9600);
}
void loop() {
 writeDAC();
}

F. Middle_Joint Node
#include <Wire.h>
//#define SLAVE_ADDRESS 0x21 //TopTower
//#define SLAVE_ADDRESS 0x22 //Bo�omTower
//#define SLAVE_ADDRESS 0x23 //base motor furthest
#define SLAVE_ADDRESS 0x24 //base motor elbow
//#define SLAVE_ADDRESS 0x25 //base motor sta�onary
#define RECIEVED_SIZE 4
#define SENT_SIZE 20
#define PWM_PIN 5
#define DIR_PIN 6
#define ENC_TICKS 6400
#define DAC_LSB_PIN A1
#define DAC_MSB_PIN A2
// planar elbow
float p = 0.2;
float i = 0.00015;
float d = 0.001;
int Lower_Bound = 35;
int Upper_Bound = 105;
long prev_�me = 0;
long curr_�me = 0;
int curr_error = 0.0;
int prev_error = 0.0;
float integral_error = 0.0;
float deriv_error = 0.0;
long dt = 1;
byte recievedSetPoint[RECIEVED_SIZE];
byte sentPosi�on[SENT_SIZE];
vola�le long setPoint = 0;
vola�le long currPosi�on = 0;
vola�le bool enc1 = true;
vola�le bool enc2 = true;
vola�le bool lastEnc = true;
vola�le bool encDir = true;
vola�le long �cks = 0;

void readDAC(){
 long x1x1 = analogRead(DAC_LSB_PIN);
 long x1 = (x1x1 & 0x3F0);
 long x2x2 = analogRead(DAC_MSB_PIN)+2;
 long x2 = (x2x2 & (0x3F0));
 long Low_MSB = (x1 & 0x380) >> 7;
 long Low_LSB = (x1 & 0x78) >> 3;
 long High_MSB = (x2 & 0x380) >> 4;
 long High_LSB = (x2 & 0x70);
 long MSB = Low_MSB + High_MSB;
 long LSB = Low_LSB + High_LSB;
 �cks = LSB + (MSB << 7);
}

void setup() {
 Wire.begin(SLAVE_ADDRESS);
 Wire.onRequest(requestEvent);
 Wire.onReceive(receiveEvent);
 pinMode(PWM_PIN, OUTPUT);
 pinMode(DIR_PIN, OUTPUT);
 pinMode(DAC_LSB_PIN, INPUT);
 pinMode(DAC_MSB_PIN, INPUT);
 setPoint = 0;
}
int reportedPos = 0;
int asdf = 0;
long duty;

void loop() {

53

 readDAC();
 currPosi�on = �cks;
 int error = (setPoint - currPosi�on);
 if (error>ENC_TICKS/2){
 error = error-ENC_TICKS;
 }
 else if (error<-ENC_TICKS/2){
 error = error+ENC_TICKS;
 }
 else{
 error = error;
 }
 curr_error = error;
 dt = (2) + 1;
 integral_error += (dt)*curr_error; //need to prevent overflow
 if(integral_error > 100000){
 integral_error = 100000;
 }
 if(integral_error < -100000){
 integral_error = -100000;
 }
 deriv_error = (curr_error - prev_error)/(dt);
 int duty = (p*curr_error + i*integral_error - d*deriv_error);
 prev_�me = curr_�me;
 if(duty < 0){
 duty = duty*-1;
 digitalWrite(DIR_PIN, HIGH);
 }
 else{
 digitalWrite(DIR_PIN, LOW);
 duty = duty;
 }
 if(duty > 180){
 duty = 180;
 }
 analogWrite(PWM_PIN, duty);
}

void requestEvent(){
 get_byte_posi�on();
 Wire.write(sentPosi�on, SENT_SIZE);
}

void receiveEvent(int bytesReceived){
 for(int i = 0; i < bytesReceived; i++)
 {
 if(i < RECIEVED_SIZE)
 {
 recievedSetPoint[i] = Wire.read();
 }
 else
 {
 Wire.read();
 }
 }
 setPoint = ((recievedSetPoint[1]<<8) + recievedSetPoint[0])&0xFFFF;
 setPoint = ENC_TICKS*((float)setPoint/36000);
 bool state = digitalRead(13); // um ok
 digitalWrite(13, !state);
}

void get_byte_posi�on(){
 sentPosi�on[0] = (((int)((float)currPosi�on *36000/ENC_TICKS))& 255);
 sentPosi�on[1] = (((int)((float)currPosi�on *36000/ENC_TICKS))& (255<<8))>>8; // lol clever
}

G. Nub Node
#include "HX711.h"
#include <Wire.h>
#define SLAVE_ADDRESS 0x50 //NUB
#define RECIEVED_SIZE 4
#define SENT_SIZE 20

54

// HX711 circuit wiring
const int z2_S = 2;
const int z2_D = 3;
const int y2_S = 4;
const int y2_D = 5;
const int x_S = 6;
const int x_D = 7;
const int z1_S = 8;
const int z1_D = 9;
const int y1_S = 10;
const int y1_D = 11;
const int avg_buffer_size = 5;
int buffer_index = 0;
long avg_buffer[5][avg_buffer_size];
long y1 = 0;
long y2 = 0;
long z1 = 0;
long z2 = 0;
long x = 0;
long y2_final = 0;
long y1_final = 0;
long z2_final = 0;
long z1_final = 0;
long x_final = 0;
byte sentReadings[20];
HX711 z1_cell;
HX711 z2_cell;
HX711 y1_cell;
HX711 y2_cell;
HX711 x_cell;

void setup() {
 Wire.begin(SLAVE_ADDRESS);
 Wire.onRequest(requestEvent);
 // Wire.onReceive(receiveEvent);
 z2_cell.begin(z2_D, z2_S);
 z1_cell.begin(z1_D, z1_S);
 y2_cell.begin(y2_D, y2_S);
 y1_cell.begin(y1_D, y1_S);
 x_cell.begin(x_D, x_S);
 Serial.begin(9600);

}

void loop() {
 if (y2_cell.is_ready()) {
 y2 = y2_cell.read();
 }
 if (y1_cell.is_ready()) {
 y1 = y1_cell.read();
 }
 if (z2_cell.is_ready()) {
 z2 = z2_cell.read();
 }
 if (z1_cell.is_ready()) {
 z1 = z1_cell.read();
 }
 if (x_cell.is_ready()) {
 x = x_cell.read();
 }
 buffer_index++;
 buffer_index = buffer_index%avg_buffer_size;
 avg_buffer[0][buffer_index] = y2;
 avg_buffer[1][buffer_index] = z2;
 avg_buffer[2][buffer_index] = x;
 avg_buffer[3][buffer_index] = y1;
 avg_buffer[4][buffer_index] = z1;
 y2 = 0;
 y1 = 0;
 x = 0;
 z1 = 0;
 z2 = 0;

for(int i = 0; i<avg_buffer_size; i++){
 y2 += avg_buffer[0][i];
 z2 += avg_buffer[1][i];
 x += avg_buffer[2][i];
 y1 += avg_buffer[3][i];

55

 z1 += avg_buffer[4][i];
}

y2_final = y2/5;
y1_final = -(y1/5);
z2_final = z2/5;
z1_final = z1/5;
x_final = x/5;
delay(100);
}

void requestEvent(){
 get_readings();
 Serial.print(sentReadings[0]);
 Serial.print(sentReadings[1]);
 Serial.print(sentReadings[2]);
 Serial.println(sentReadings[3]);
 Wire.write(sentReadings, SENT_SIZE);
 bool state = digitalRead(13);
 digitalWrite(13, !state);
}

void get_readings(){
 sentReadings[3] = (char)(y2_final & 0xFF);
 sentReadings[2] = (char)((y2_final & (0xFF00))>>8);
 sentReadings[1] = (char)((y2_final & (0xFF0000))>>16);
 sentReadings[0] = (char)((y2_final & (0XFF000000))>>24);
 sentReadings[7] = (char)(z2_final & (255));
 sentReadings[6] = (char)((z2_final & (0xFF00))>>8);
 sentReadings[5] = (char)((z2_final & (0xFF0000))>>16);
 sentReadings[4] = (char)((z2_final & (0xFF000000))>>24);
 sentReadings[11] = (char)(x_final & (255));
 sentReadings[10] = (char)((x_final & (0xFF00))>>8);
 sentReadings[9] = (char)((x_final & (0xFF0000))>>16);
 sentReadings[8] = (char)((x_final & (0xFF000000))>>24);
 sentReadings[15] = (char)(y1_final & (255));
 sentReadings[14] = (char)((y1_final & (0xFF00))>>8);
 sentReadings[13] = (char)((y1_final & (0xFF0000))>>16);
 sentReadings[12] = (char)((y1_final & (0xFF000000))>>24);
 sentReadings[19] = (char)((z1_final & (255)));
 sentReadings[18] = (char)((z1_final & (0xFF00))>>8);
 sentReadings[17] = (char)((z1_final & (0xFF0000))>>16);
 sentReadings[16] = (char)((z1_final & (0xFF000000))>>24);
}

H. Control Script
import math
from serial.tools.list_ports import comports
import serial
import �me
import math
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

class Comms:

 def __init__(self):
 self.serialPort = serial.Serial()
 self.availableDevices = []
 self.availableDeviceDescrip�ons = []
 self.availablePorts = []
 for i in comports():
 self.availablePorts.append(i)
 self.availableDevices.append(i.device)
 self.availableDeviceDescrip�ons.append(i.descrip�on)
 # [self.serialPort.setPort(i.device) for i in self.availablePorts if i.descrip�on == "1234567876543234567"]
 # [self.serialPort.setPort(i.device) for i in self.availablePorts if i.device == "COM12" or i.device == "COM14"]
 for i in self.availablePorts:
 if i.device == "COM12" or i.device == "COM13" or i.device == "COM14" or i.device == "COM16":
 # self.serialPort.setPort(i.device)
 print(i)

56

 self.serialPort = serial.Serial(i.device)
 self.serialPort.baudrate = 115200
 # self.robot = Robot

 def registerRobot(self, robot):
 print("regstart")
 self.robot = robot
 self.robot.comms = self
 # self.serialPort.open()
 # self.serialPort.write(b'123')
 �me.sleep(1)
 self.serialPort.flushInput()
 �me.sleep(1)

 print("regend")

 def parseLine(self):
 if self.serialPort.is_open:

 self.serialPort.�meout = None
 # self.serialPort.write("000-000+000+000+000".encode("ASCII", "ignore"))

 v1 = str(abs(int(self.robot.jointTargets[0]*100))).zfill(5)
 v2 = str(abs(int(self.robot.jointTargets[1]*100))).zfill(5)
 v3 = str(abs(int(self.robot.jointTargets[2]*100))).zfill(5)
 v4 = str(abs(int(self.robot.jointTargets[3]*100))).zfill(5)
 v5 = str(abs(int(self.robot.jointTargets[4]*100))).zfill(5)

 if int(v2)>17000:
 v2 = "17000"
 print("v2 capped at 170")

 if int(v2)<11500:
 v2 = "11500"
 print("v2 capped at 115")

 if int(v1)<3500:
 v1 = "03500"
 print("v2 capped at 035")
 if int(v1)>10500:
 v1 = "10500"
 print("v2 capped at 105")
 outline = (" " + v1 + " " + v2 + " " + v3 + " " + v4 + " " + v5).encode("ASCII", "ignore")
 self.serialPort.write(outline)
 print(outline)

 # message = self.serialPort.read(5*6+20)
 message = self.serialPort.read(50)
 print(message)

 # print(str(outline)+" "+str(message))
 joints = [0]*5
 for i in range(5):
 joints[i] = int(message[i*6:i*6+6].decode("ASCII"))

 # nub = [0]*5
 # for i in range(5):
 # nub[i] = (message[i*4-19]<<16) + (message[i*4-18]<<8) + message[i*4-17]
 # if message[i * 4 - 20]==0 :
 # nub[i] = nub[i]
 # else:
 # nub[i] = -nub[i]

 # nub = [0]*5
 # for i in range(5):
 # nub[i] = message[(i*4-20):(i*4-16)]
 #
 # nub = [int.from_bytes(b, byteorder='big', signed=True) for b in nub]

 nub = [0]*5
 nub[0] = message[30:34]
 nub[1] = message[34:38]
 nub[2] = message[38:42]
 nub[3] = message[42:46]

57

 nub[4] = message[46:50]
 # print(nub[4])
 nub = [int.from_bytes(b, byteorder='big', signed=True) for b in nub]

 # print(joints)
 # print(nub)

 self.robot.joints = joints
 self.robot.nub = nub

 def printPortDebug(self):
 self.serialPort = serial.Serial()
 self.availablePorts = comports()

 for i in self.availablePorts:
 print("~~~~~~~~~~~~~~~~~~~~~~~~~")
 print("Prod: "+str(i.product))
 print("Dev: "+str(i.device))
 print("Desc: "+str(i.descrip�on))
 print("Name: "+str(i.name))
 print("Loca�on: "+str(i.loca�on))
 print("Int: "+str(i.interface))
 print("Man: "+str(i.manufacturer))
 print("Prod: "+str(i.product))
 # self.availablePortNames = [i.name for i in self.availablePorts]
 # self.availablePortLoca�ons = [i.loca�on for i in self.availablePorts]
 # self.availablePortDescs = [i.descrip�on for i in self.availablePorts]
 # self.availablePortDevs = [i.device for i in self.availablePorts]
 # self.availablePortProds = [i.product for i in self.availablePorts]

class Robot:
 # ####################################
 # ### OG
 # ####################################
 # __TL = 13.
 # __BL = 14.
 # __GL = 2.5
 # __FL = 2.
 # __LL = 4.
 # __T = 21.
 # __HH = 1.
 # __HL = 2.
 # __L0 = 4.
 # __L1 = 4.

 ####################################
 ### 3-30-2019
 ####################################
 # __HL = 0.2 #?
 # __HH = 1. #?

 __TL = 11.25
 __BL = 12.375
 __GL = 2.48
 __FL = 2.5
 __LL = 3.375
 __T = 22. #?
 __HH = 0.0 #?
 __HL = 0.0 #?
 __L0 = 4. #?
 __L1 = 4. #?

 def __init__(self):
 self.nub = [0]*5
 self.joints = [50, 150, 000, 000, 000]
 self.jointTargets = [50, 150, 000, 000, 000]
 self.lastTarget = self.joints.copy()

 self.comms = Comms()
 self.comms.registerRobot(self)
 self.calVals = self.nub.copy()
 self.calibrate()
 # self.calibrateR()

 self.lastgood = self.jointTargets.copy()
 �me.sleep(1)
 self.calibrate()

58

 # self.calibrateR()
 self.ts = �me.�me()

 self.free1 = 0
 self.free2 = 0
 self.free3 = 0

 def fwdKin(self, TH0, TH1, TH2, TH3, TH4):
 # func�on[X, Y, Z, THX, THY, THZ] = Forwardplswork(TH0, TH1, TH2, TH3, TH4, self.HH, self.HL)
 #
 # self.TL = 13;
 # self.BL = 14;
 # self.GL = 2;
 # self.FL = 2;
 # self.LL = 4;
 # self.t = 21;
 #
 # PPY = -GL - self.LL * math.cos(TH4);
 # PPX = self.LL * math.sin(TH4);
 #
 # PQY = self.TL * math.sin(TH3);
 # PQX = self.TL * math.cos(TH3);

 PPY = -self.__GL - self.__LL * math.cos(TH4)
 PPX = self.__LL * math.sin(TH4)

 PQY = self.__TL * math.sin(TH3)
 PQX = self.__TL * math.cos(TH3)

 #
 # P = sqrt(PPY ** 2 + PPX ** 2);
 # Q = sqrt((PPY - PQY) ** 2 + (PPX - PQX) ** 2);
 #
 # ALPHA = acos((Q ** 2 + self.TL ** 2 - P ** 2) / (2 * Q * self.TL));
 # BETA = acos((Q ** 2 + self.FL ** 2 - self.BL ** 2) / (2 * Q * self.FL));
 #
 # THK = ALPHA + BETA - pi / 2;
 #

 P = math.sqrt(PPY ** 2 + PPX ** 2)
 Q = math.sqrt((PPY - PQY) ** 2 + (PPX - PQX) ** 2)

 ALPHA = math.acos((Q ** 2 + self.__TL ** 2 - P ** 2) / (2 * Q * self.__TL))
 BETA = math.acos((Q ** 2 + self.__FL ** 2 - self.__BL ** 2) / (2 * Q * self.__FL))

 THK = ALPHA + BETA - math.pi / 2

 # ###
 # % -THY = TH3 + THK
 # % Z = self.t + 12 * math.sin(TH3) - self.HH * math.cos(TH3 + THK) + self.HL * math.sin(TH3 + THK)
 # ###

 Z = self.__T + self.__TL * math.sin(TH3) - self.__HH * math.cos(TH3 + THK) + self.__HL * math.sin(TH3 + THK)
 THY = -(TH3 + THK)

 dt = self.__TL * math.cos(TH3) + self.__HH * math.sin(-THY) + self.__HL * math.cos(-THY)

 THZ = TH0 + TH1 + TH2

 X = self.__L0 * math.cos(TH0) + self.__L1 * math.cos(TH0 + TH1) + dt * math.cos(THZ)
 Y = self.__L0 * math.sin(TH0) + self.__L1 * math.sin(TH0 + TH1) + dt * math.sin(THZ)

 THX = 0

 return X, Y, Z, THX, THY, THZ

 def invKin(self,X, Y, Z, THX, THY, THZ):

 TH3 = math.asin((self.__T - Z - self.__HH * math.cos(-THY) + self.__HL * math.sin(-THY)) / (-self.__TL))
 THK = - THY - TH3
 dt = self.__TL * math.cos(TH3) + self.__HH * math.sin(-THY) + self.__HL * math.cos(-THY)
 P2X = X - dt * math.cos(THZ)
 P2Y = Y - dt * math.sin(THZ)
 THR = math.atan2(P2Y, P2X)
 R = math.sqrt(P2X ** 2 + P2Y ** 2)

59

 GAMMA = math.acos((self.__L0 ** 2 + R ** 2 - self.__L1 ** 2) / (2 * self.__L0 * R))
 # % RIGHT
 TH0 = THR - GAMMA
 TH1 = 2 * GAMMA
 # % % LEFT
 # % TH0 = THR + GAMMA;
 # % TH1 = -2 * GAMMA;
 TH2 = THZ - TH0 - TH1
 PKX = self.__TL * math.cos(TH3) + self.__FL * math.sin(TH3 + THK)
 PKY = self.__TL * math.sin(TH3) - self.__FL * math.cos(TH3 + THK)

 F = math.sqrt(PKX ** 2 + (PKY) ** 2)
 K = math.sqrt(PKX ** 2 + (PKY + self.__GL) ** 2)

 ALPHA = math.acos((self.__GL ** 2 + K ** 2 - F ** 2) / (self.__GL * 2 * K))
 BETA = math.acos((K ** 2 + self.__LL ** 2 - self.__BL ** 2) / (K * self.__LL * 2))
 TH4 = math.pi - ALPHA - BETA

 return TH0, TH1, TH2, TH3, TH4

 def testKin(self):
 TH0, TH1, TH2, TH3, TH4 = 0, math.pi/2, 0, 30*math.pi/180, 40*math.pi/180
 X, Y, Z, THX, THY, THZ = self.fwdKin(TH0, TH1, TH2, TH3, TH4)
 TH02, TH12, TH22, TH32, TH42 = self.invKin(X, Y, Z, THX, THY, THZ)
 X2, Y2, Z2, THX2, THY2, THZ2 = self.fwdKin(TH02, TH12, TH22, TH32, TH42)

 print(TH0, TH1, TH2, TH3, TH4)
 print(TH02, TH12, TH22, TH32, TH42)

 print(X, Y, Z, THX, THY, THZ)
 print(X2, Y2, Z2, THX2, THY2, THZ2)

 # self.drawf(TH0, TH1, TH2, TH3, TH4)

 def fwdKinPTS(self, TH0, TH1, TH2, TH3, TH4):
 PPY = -self.__GL - self.__LL * math.cos(TH4)
 PPX = self.__LL * math.sin(TH4)
 PQY = self.__TL * math.sin(TH3)
 PQX = self.__TL * math.cos(TH3)

 P = math.sqrt(PPY ** 2 + PPX ** 2)
 Q = math.sqrt((PPY - PQY) ** 2 + (PPX - PQX) ** 2)

 ALPHA = math.acos((Q ** 2 + self.__TL ** 2 - P ** 2) / (2 * Q * self.__TL))
 BETA = math.acos((Q ** 2 + self.__FL ** 2 - self.__BL ** 2) / (2 * Q * self.__FL))

 THK = ALPHA + BETA - math.pi / 2

 XPTS = []
 XPTS.append(0)
 XPTS.append(XPTS[0] + self.__L0 * math.cos(TH0))
 XPTS.append(XPTS[1] + self.__L1 * math.cos(TH0 + TH1))
 XPTS.append(XPTS[2] + 0)
 XPTS.append(XPTS[3] + self.__TL * math.cos(TH0 + TH1 + TH2) * math.cos(TH3))
 XPTS.append(XPTS[4] + self.__HH * math.cos(TH0 + TH1 + TH2) * math.sin(TH3 + THK))
 XPTS.append(XPTS[5] + self.__HL * math.cos(TH0 + TH1 + TH2) * math.cos(TH3 + THK))

 YPTS = []
 YPTS.append(0)
 YPTS.append(YPTS[0] + self.__L0 * math.sin(TH0))
 YPTS.append(YPTS[1] + self.__L1 * math.sin(TH0 + TH1))
 YPTS.append(YPTS[2] + 0)
 YPTS.append(YPTS[3] + self.__TL * math.sin(TH0 + TH1 + TH2) * math.cos(TH3))
 YPTS.append(YPTS[4] + self.__HH * math.sin(TH0 + TH1 + TH2) * math.sin(TH3 + THK))
 YPTS.append(YPTS[5] + self.__HL * math.sin(TH0 + TH1 + TH2) * math.cos(TH3 + THK))

 ZPTS = []
 ZPTS.append(0)
 ZPTS.append(ZPTS[0] + 0)
 ZPTS.append(ZPTS[1] + 0)
 ZPTS.append(ZPTS[2] + self.__T)
 ZPTS.append(ZPTS[3] + self.__TL * math.sin(TH3))
 ZPTS.append(ZPTS[4] - self.__HH * math.cos(TH3 + THK))
 ZPTS.append(ZPTS[5] + self.__HL * math.sin(TH3 + THK))
 return [XPTS, YPTS, ZPTS]

 def drawf(self, TH0, TH1, TH2, TH3, TH4):
 self.fig = plt.figure()

60

 self.ax = self.fig.add_subplot(111, projec�on='3d',)

 [xs, ys, zs] = self.fwdKinPTS(TH0, TH1, TH2, TH3, TH4)
 self.ax.axis('equal')

 self.ax.plot(xs, ys, zs)
 # print((xs, ys, zs))
 self.fig.show()

 def calibrate(self):

 print("\n\n\n~~~")
 print("nub: " + str(self.nub) + " Joints deg: " + str(self.joints) + " Joints targ: " + str(
 self.jointTargets))
 print("~~~")
 �me.sleep(1)
 self.comms.parseLine()
 cal1 = self.nub.copy()
 �me.sleep(1)
 print("\n\n\n~~~")
 print("nub: " + str(self.nub) + " Joints deg: " + str(self.joints)+ " Joints targ: " + str(self.jointTargets))
 print("~~~")

 self.comms.parseLine()
 cal2 = self.nub.copy()
 �me.sleep(1)
 print("\n\n\n~~~")
 print("nub: " + str(self.nub) + " Joints deg: " + str(self.joints) + " Joints targ: " + str(
 self.jointTargets))
 print("~~~")
 �me.sleep(1)
 self.comms.parseLine()
 cal3 = self.nub.copy()

 print("\n\n\n~~~")
 print("nub: " + str(self.nub) + " Joints deg: " + str(self.joints) + " Joints targ: " + str(
 self.jointTargets))
 print("~~~")
 �me.sleep(1)
 self.comms.parseLine()
 cal4 = self.nub.copy()

 print("\n\n\n~~~")
 print("nub: " + str(self.nub) + " Joints deg: " + str(self.joints) + " Joints targ: " + str(
 self.jointTargets))
 print("~~~")
 �me.sleep(1)
 self.comms.parseLine()
 cal5 = self.nub.copy()

 print("\n\n\n~~~")
 print("nub: " + str(self.nub) + " Joints deg: " + str(self.joints) + " Joints targ: " + str(
 self.jointTargets))
 print("~~~")
 �me.sleep(1)
 self.calVals = [(cal1[0] + cal2[0] + cal3[0] + cal4[0] + cal5[0]) / 5,
 (cal1[1] + cal2[1] + cal3[1] + cal4[1] + cal5[1]) / 5,
 (cal1[2] + cal2[2] + cal3[2] + cal4[2] + cal5[2]) / 5,
 (cal1[3] + cal2[3] + cal3[3] + cal4[3] + cal5[3]) / 5,
 (cal1[4] + cal2[4] + cal3[4] + cal4[4] + cal5[4]) / 5]

 def demoZ(self):
 self.comms.parseLine()
 # print(self.joints)
 print(self.nub)
 calz1 = self.nub[1]-self.calVals[1]
 calz2 = self.nub[4]-self.calVals[4]
 torque = calz1-calz2
 force = calz1+calz2

 gainF = .0001
 gainT = .00001

61

 dZ = gainF*force
 dP = gainT*torque

 # self.world = self.fwdKin(self.joints[2],self.joints[3],self.joints[4],self.joints[1],self.joints[0])
 # self.worldTarg = self.world.copy()
 # self.jointTargets = self.invKin(self.worldTarg)

 self.jointTargets[1] = int(self.joints[1] -dP)
 self.jointTargets[0] = int(self.joints[0] -dZ)

 # POSITIVE DOWN
 # NUB ARRAY 2ND AND 5TH VALUES

 �me.sleep(.1)

 def inv_kin_closest(self,X, Y, Z, THX, THY, THZ, XTH0, XTH1, XTH2, XTH3, XTH4):

 TH3 = math.asin((self.__T - Z - self.__HH * math.cos(-THY) + self.__HL * math.sin(-THY)) / (-self.__TL))
 THK = - THY - TH3
 dt = self.__TL * math.cos(TH3) + self.__HH * math.sin(-THY) + self.__HL * math.cos(-THY)
 P2X = X - dt * math.cos(THZ)
 P2Y = Y - dt * math.sin(THZ)
 THR = math.atan2(P2Y, P2X)
 R = math.sqrt(P2X ** 2 + P2Y ** 2)
 GAMMA = math.acos((self.__L0 ** 2 + R ** 2 - self.__L1 ** 2) / (2 * self.__L0 * R))

 # RIGHT
 TH0R = THR - GAMMA
 TH1R = 2 * GAMMA

 # LEFT
 TH0L = THR + GAMMA
 TH1L = -2 * GAMMA

 TH2R = THZ - TH0R - TH1R
 TH2L = THZ - TH0L - TH1L

 le�Error = (TH0L - XTH0) ** 2 + (TH1L - XTH1) ** 2 + (TH2L - XTH2) ** 2
 rightError = (TH0R - XTH0) ** 2 + (TH1R - XTH1) ** 2 + (TH2R - XTH2) ** 2

 if rightError > le�Error:
 TH0 = TH0L
 TH1 = TH1L
 TH2 = TH2L
 else:
 TH0 = TH0R
 TH1 = TH1R
 TH2 = TH2R

 PKX = self.__TL * math.cos(TH3) + self.__FL * math.sin(TH3 + THK)
 PKY = self.__TL * math.sin(TH3) - self.__FL * math.cos(TH3 + THK)

 F = math.sqrt(PKX ** 2 + (PKY) ** 2)
 K = math.sqrt(PKX ** 2 + (PKY + self.__GL) ** 2)

 ALPHA = math.acos((self.__GL ** 2 + K ** 2 - F ** 2) / (self.__GL * 2 * K))
 BETA = math.acos((K ** 2 + self.__LL ** 2 - self.__BL ** 2) / (K * self.__LL * 2))
 TH4 = math.pi - ALPHA - BETA

 return TH0, TH1, TH2, TH3, TH4

 def fwd_planar_par�al_kin(self, TH0, TH1):
 P2X = self.__L0 * math.cos(TH0) + self.__L1 * math.cos(TH0 + TH1)
 P2Y = self.__L0 * math.sin(TH0) + self.__L1 * math.sin(TH0 + TH1)

 return P2X, P2Y

 def inv_planar_par�al_kin_closest(self,P2X, P2Y, XTH0, XTH1):

 THR = math.atan2(P2Y, P2X)
 R = math.sqrt((P2X ** 2) + (P2Y ** 2))
 GAMMA = math.acos((self.__L0 ** 2 + R ** 2 - self.__L1 ** 2) / (2 * self.__L0 * R))

 # RIGHT
 TH0R = THR - GAMMA

62

 TH1R = 2 * GAMMA

 # LEFT
 TH0L = THR + GAMMA
 TH1L = -2 * GAMMA

 # le�Error = ((TH0L - XTH0 + (2*math.pi)) % (2*math.pi)) ** 2 + ((TH1L - XTH1 + (2*math.pi)) % (2*math.pi)) ** 2
 # rightError = ((TH0R - XTH0 + (2*math.pi)) % (2*math.pi)) ** 2 + ((TH1R - XTH1 + (2*math.pi)) % (2*math.pi)) ** 2

 # le�Error = abs((TH0L - XTH0 + (2*math.pi)) % (2*math.pi)) + abs((TH1L - XTH1 + (2*math.pi)) % (2*math.pi))
 # rightError = abs((TH0R - XTH0 + (2*math.pi)) % (2*math.pi)) + abs((TH1R - XTH1 + (2*math.pi)) % (2*math.pi))
 le�Error = abs((TH0L - XTH0 + (2*math.pi)) % (2*math.pi))
 if le�Error>math.pi:
 le�Error = math.pi*2 - le�Error
 rightError = abs((TH0R - XTH0 + (2*math.pi)) % (2*math.pi))
 if rightError>math.pi:
 rightError = math.pi*2 - rightError

 # print("TH0L, TH0R, XTH0: " +str([TH0L, TH0R, XTH0])+" TH1L, TH1R, XTH1: "+str([TH1L, TH1R, XTH1])+" P2X, P2Y: "+str([P2X, P2Y]))

 # if rightError > le�Error:
 if True:
 # print("arm le�! LE: " +str(le�Error)+" RE: "+str(rightError))
 TH0 = TH0L
 TH1 = TH1L
 # TH2 = TH2L
 else:
 # print("arm right! LE: " +str(le�Error)+" RE: "+str(rightError))
 TH0 = TH0R
 TH1 = TH1R
 # TH2 = TH2R

 valid = R < (self.__L0+self.__L1-0.1)

 return (TH0 + (2*math.pi))%(2*math.pi), (TH1 + (2*math.pi))%(2*math.pi), valid

 def lastgood327(self):
 # print("Returning to last good posi�on")
 #
 # self.jointTargets = self.
 home = [85, 150, 0, 0, 0]
 print("moving a bit towards home")
 # self.jointTargets = self.lastgood
 calibrated = [(9*a_i+ b_i)/10 for a_i, b_i in zip(self.lastgood,home)]
 # MAKE THIS CLOSED ROTATION AVERAGE
 # THIS WILL BREAK THINGS AT SEAMS OF PLANAR MOTION IN ITS CURRENT STATE
 self.jointTargets = calibrated.copy()

 def rota�onalAverage(self,a,b,weight_a=1,weight_b=1):
 diff = ((a - b + 180 + 360 + 360) % 360) - 180
 angle = (360 + 360 + b + (diff * weight_a / (weight_a + weight_b))) % 360
 return angle

 def lastgoodPLANAR(self):
 # print("Returning to last good posi�on")
 #
 # self.jointTargets = self.
 home = [85, 150, 180, 180, 180]
 print("moving a bit towards home")
 # self.jointTargets = self.lastgood
 calibrated = [self.rota�onalAverage(a_i,b_i,9,1) for a_i, b_i in zip(self.lastgood,home)]
 self.jointTargets = calibrated.copy()

 def simplifiedNubControlDemo(self):
 # �me.sleep(.2)
 # �me.sleep(1)
 # �me.sleep(.1)

 # 0-------------------------0
 # |
 # |
 # |
 # | The Robot links are expected to start
 # | in this orienta�on for the demo
 # |
 # |
 # |
 # |

63

 # |
 # 0

 self.comms.parseLine()

 calNub = [a_i - b_i for a_i, b_i in zip(self.nub,self.calVals)]
 # calNub = [a_i - b_i for a_i, b_i in zip(self.nub,[0]*len(self.nub))]

 """nub = [y1, z1, x, y2, z2]"""
 forces = [calNub[2],
 calNub[0] + calNub[3],
 calNub[1] + calNub[4],
 0,
 calNub[1] - calNub[4],
 calNub[0] - calNub[3]]
 # [X, Y, Z, THX, THY, THZ]
 # forces = [0 if abs(force) < 20 else force for force in forces[0:3]] +[0 if abs(torque) < 10000 else torque for torque in forces[3:6]]

 # gains = [0, 0.0000025, 0, 0, 0, 0]
 # gains = [0, 0.000005, 0, 0, 0, 0]
 # gains = [0, 0, 0, 0, 0, 0]
 # gains = [0.000005, 0, 0, 0, 0, 0]

 # gains = [0.000005, 0.000005, 0, 0, 0, 0]
 # gains = [0.00000, 0.00000, 0, 0, 0, 0.000005]
 # gains = [0.000005, 0.000005, 0, 0, 0, 0.000005]

 # gains = [0.000005, 0.0000025, 0, 0, 0, 0.000005]
 # gains = [0, 0.0000025, 0, 0, 0, 0.0000025]

 # gains = [0.00000, 0.00000, 0.0000025, 0, 0.0000007, 0.00000]
 # gains = [0.000005, 0.0000025, 0, 0, 0, 0.000005]
 # gains = [0.000005, 0.0000025, 0, 0, 0, 0.000005]
 # gains = [0.000005, 0.0000025, 0, 0, 0, 0.000005]

 # gains = [0.000005, 0.0000025, 0.0000025, 0, 0.0000007, 0.000005]
 #
 # gains = [0.000004, 0.0000025, 0.0000035, 0, 0.0000007, 0.00001]
 # gains = [0.000004, 0.0000025, 0.00000, 0, 0.000000, 0.0000]
 # gains = [0.00000035, 0.00000025, 0.000004, 0, 0.0000003, 0.000005]
 # gains = [0.0000035, 0.0000025, 0.000004, 0, 0.000007, 0.000005] # last good
 # gains = [0.0000035, 0.0000025, 0.00000, 0, 0.0000, 0.000005]
 # gains = [0.0000035, 0.0000025, 0.00000, 0, 0.0000, 0.000000]
 # gains = [0.00000, 0.00000, 0.000025, 0, -0.000037, 0.000000]

 # gains = [0.00000, 0.0000025, 0.00000, 0, 0.0000, 0.000000]
 # ##
 # gains = [-0.0000008, -0.000001, 0.000008, 0, -0.0000005, 0.000005]
 # gains = [0.00000035, 0.00000025, 0.00000, 0, 0.0000, 0.0000005]
 # FULL BEST WORKING #######################################
 # gains = [-0.0000008, -0.000001, 0.000008, 0, -0.0000005, 0.000005]
 # gains = [-0.0000008, -0.000001, 0.000008, 0, -0.0000005, 0.000005]
 # gains = [-0.0000008, -0.000001, 0.000008, 0, -0.0000005, 0.000005]
 # gains = [-0.0000008, -0.000001, 0.000008, 0, -0.0000005, 0.000005]

 # gains = [-0.000002, -0.000001, 0.000008, 0, -0.000000, 0.00000]
 gains = [-0.0000025, -0.000001, 0.00000, 0, -0.000000, 0.00000]
 # gains = [-0.00000, -0.00000, 0.00000, 0, -0.000000, 0.00000]
 gains = [-0.000002, -0.000001, 0.000008, 0, -0.0000005, 0.000005]

 # gains = [-0.000000, -0.00000, 0.00000, 0, -0.00000, 0.0000085]

 deltas = [a_i * b_i for a_i, b_i in zip(gains,forces)]

 # deltas = [(1.5 * abs(delta) / delta) if abs(delta) > 1.5 else delta for delta in deltas]
 # deltas = [(.15 * abs(delta) / delta) if abs(delta) > .15 else delta for delta in deltas]
 # deltas = [(.05 * abs(delta) / delta) if abs(delta) > .05 else delta for delta in deltas]
 # deltas = [(.1 * abs(delta) / delta) if abs(delta) > .1 else delta for delta in deltas]
 deltas = [(.2 * abs(delta) / delta) if abs(delta) > .2 else delta for delta in deltas[0:3]] +[(4 * abs(delta) / delta) if abs(delta) > 4 else delta for delta in deltas[3:6]]

 # deltas = [.005,0,0,0,0,0]

64

 try:

 # GROOM JOINTS

 # groomedJoints = self.joints.copy()
 groomedJoints = self.lastTarget.copy()
 jointOffsets = [85, 150, 0, -90, 0]

 groomedJoints[0] = (groomedJoints[0] - 85)
 groomedJoints[1] = (groomedJoints[1] - 150)
 groomedJoints[2] = groomedJoints[2]
 groomedJoints[3] = -((groomedJoints[3]+90)%360)
 # groomedJoints[4] = 0
 groomedJoints[4] = groomedJoints[4]

 groomedJoints = [deg * math.pi / 180 for deg in groomedJoints]
 TH0 = groomedJoints[2]
 TH1 = groomedJoints[3]
 try:
 P2X, P2Y = self.fwd_planar_par�al_kin(groomedJoints[2],groomedJoints[3])
 P2X = P2X + deltas[0]
 P2Y = P2Y + deltas[1]
 TH0, TH1, valid = self.inv_planar_par�al_kin_closest(P2X,P2Y,groomedJoints[2],groomedJoints[3])
 except Excep�on as e:
 print(e)
 valid = False
 print("planar kin dead")
 # print("TH2, deltas[5],TH2 + deltas[5]: "+str([TH2, deltas[5],TH2 + deltas[5]]))

 TH3 = groomedJoints[1]
 TH4 = groomedJoints[0]
 try:
 xxx, yyy, zzz, txxx, tyyy, tzzz = self.fwdKin(1.1*math.pi,1.1*math.pi,1.1*math.pi, groomedJoints[1], groomedJoints[0])
 # print("hi2.1")
 zzz = zzz-deltas[2]
 tyyy = tyyy+deltas[4]
 not_used, not_used, not_used, TH3, TH4 = self.invKin(xxx, yyy, zzz, txxx, tyyy, tzzz)
 # not_used, not_used, not_used, TH3, TH4 = self.invKin(xxx, yyy, 21, txxx, tyyy, tzzz)

 # print("hi2.3")

 except Excep�on as e:
 print(e)
 print("zeds ded")
 except:
 print("zeds ded")

 # jointTargs = [0, 0, TH0, TH1, 0]
 jointTargs = [TH4, TH3, TH0, TH1, 0]
 jointTargs = [xyxyxy * 180 / math.pi for xyxyxy in jointTargs]

 self.free1 = (self.free1 + deltas[5] + 360)

 jointTargs[0] = jointTargs[0]+85
 jointTargs[1] = jointTargs[1]+150
 jointTargs[2] = jointTargs[2]
 jointTargs[3] = (((-jointTargs[3])-90)+720)%360
 # jointTargs[4] = 0
 # jointTargs[4] = ((jointTargs[2] - jointTargs[3]) + 720) % 360
 jointTargs[4] = ((jointTargs[2] - jointTargs[3]) + self.free1 + 720) % 360
 # jointTargs[4] = TH2

 if jointTargs[0] < 35: jointTargs[0] = 35
 if jointTargs[0] > 105: jointTargs[0] = 105
 if jointTargs[1] < 115: jointTargs[1] = 115
 if jointTargs[1] > 170: jointTargs[1] = 170

 # print("a�empted move: " + str([P2X,P2Y]) + " rela: " + str(rela) +" abs: " + str(abso))

 if valid:
 self.jointTargets = jointTargs.copy()

65

 else:
 print("invalid posi�on a�empted")
 self.jointTargets[4] = jointTargs[4]
 # print("hi4")
 fs = ["%08.0f"%f for f in forces]
 # print("forces: " + str(fs).strip("'") + " joints: " + str(self.joints) + " targs: " + str(jointTargs) + " ds: " + str(deltas))
 # print("forces: " + str(fs).strip("'") + " nub: " + str([f'{n:15}' for n in calNub]) + " joints: " + str(self.joints) + " targs: " + str(
 # jointTargs) + " �mestamp: " + str(�me.�me()-self.ts) + " ds: " + str(deltas))

 # print("Y: "+fs[2])
 # print("nub: "+str(["%08.0f"%f for f in calNub]))

 # print("nub: " + str([f'{n:15}' for n in calNub]))
 self.lastTarget = self.jointTargets.copy()

 except Excep�on as e:
 print("Kin Broken")
 print(e)
 print("joints: " + str(self.joints) + " targs: " + str(self.jointTargets))

 # self.lastgoodPLANAR()

if __name__ == '__main__':
 r = Robot()
 r.jointTargets = [85, 150, 00, 0, 0]
 last_�me = �me.clock()
 try:
 while True:
 r.simplifiedNubControlDemo()
 print("Exec �me: "+str(�me.clock()-last_�me)+"s")
 �me.sleep(.1)
 last_�me = �me.clock()
 # except KeyboardInterrupt as e:
 finally:
 r.comms.serialPort.close()
 print("Session Closed")

References

66

Adafruit Industries. (n.d.). MyoWare Muscle Sensor. Retrieved October 16, 2018, from

https://www.adafruit.com/product/2699?gclid=Cj0KCQjwgOzdBRDlARIsAJ6_HNl2u339

xpMPLqyryKRe34e9JnNOB7hbUT3IT7HBSHq9uhf66ILqKNkaAuwvEALw_wcB

Advancer Technologies. (n.d.). 3-Lead Muscle / Electromyography Sensor for

Microcontroller Applications. Retrieved October 5, 2018, from

https://cdn-shop.adafruit.com/product-files/2699/AT-04-001.pdf

Advancer Technologies. (n.d.). MyoWare Muscle Sensor. Retrieved October 15, 2018, from

http://www.advancertechnologies.com/p/myoware.html

Al-Mutlaq, S. (n.d.). Getting Started With Load Cells. Retrieved October 6, 2018, from

https://learn.sparkfun.com/tutorials/getting-started-with-load-cells

Breteler, M., Meulenbroek, R., & Gielen, S. (2002). An Evaluation of the Minimum-Jerk and

Minimum Torque-Change Principles at the Path, Trajectory, and Movement-Cost Levels.

Retrieved October 1, 2018, from

http://www.socsci.ru.nl/meulenbroek/Publications/Breteler Meulenbroek Gielen 2002.pdf

Centers for Disease Control and Prevention. (2018, April 10). Muscular Dystrophy. Retrieved

September 28, 2018, from https://www.cdc.gov/ncbddd/musculardystrophy/data.html

Delbiaggio, N. (2017). A comparison of facial recognition’s algorithms. (Unpublished master's

thesis). Haaga-Helia. Retrieved October 1, 2018, from

67

https://www.theseus.fi/bitstream/handle/10024/132808/Delbiaggio_Nicolas.pdf?sequence

=1

Delsys. (2018). Bagnoli Desktop EMG Systems. Retrieved October 8, 2018, from

https://www.delsys.com/products/desktop-emg/bagnoli-desktop/

DLF. (n.d.). Neater Eater Robotic V6 - Living made easy. Retrieved October 18, 2018, from

https://www.livingmadeeasy.org.uk/eating and

drinking/electrically-operated-eating-systems-p/neater-eater-robotic-v6-0119673-1523-inf

ormation.htm

DLF. (2018). Neater Arm Support - Living made easy. Retrieved October 18, 2018, from

https://www.livingmadeeasy.org.uk/eating and

drinking/manually-operated-eating-systems-p/neater-arm-support-0037091-1522-informati

on.htm

Exact Dynamics. (n.d.). IArm. Retrieved September 25, 2018, from

http://www.exactdynamics.nl/site/?page=iarm

He, S., Craig, B. A., Xu, H., Covinsky, K. E., Stallard, E., Thomas, J., . . . Sands, L. P. (2015,

September). Unmet Need for ADL Assistance Is Associated With Mortality Among Older

Adults With Mild Disability. Retrieved October 18, 2018, from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841172/

68

HTC Sensor. (n.d.). TAL220 Parallel Beam Load Cell. Retrieved October 11, 2018, from

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/TAL220M4M5Update.pdf

Jaeco Orthopedic. (2018). WREX: Wilmington Robotic EXoskeleton Arm. Retrieved October

5, 2018, from

http://jaecoorthopedic.com/products/products/WREX:-Wilmington-Robotic-EXoskeleton-

Arm.html

Jones, O. (2017, December 27). The Radioulnar Joints. Retrieved October 1, 2018, from

https://teachmeanatomy.info/upper-limb/joints/radioulnar-joints/

Jones, O. (2018a, July 16). The Shoulder Joint. Retrieved October 1, 2018, from

https://teachmeanatomy.info/upper-limb/joints/shoulder/

Jones, O. (2018b, August 12). The Elbow Joint. Retrieved October 1, 2018, from

http://teachmeanatomy.info/upper-limb/joints/elbow-joint/

Kazemi, V., & Sullivan, J. (2014). One millisecond face alignment with an ensemble of

regression trees. 2014 IEEE Conference on Computer Vision and Pattern Recognition .

doi:10.1109/cvpr.2014.241

LaPlante, M. P., Harrington, C., & Kang, T. (2002, April). Estimating Paid and Unpaid Hours

of Personal Assistance Services in Activities of Daily Living Provided to Adults Living at

Home. Retrieved October 18, 2018, from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1430364/

69

Lobo-Prat, J., Kooren, P. N., Janssen, M. M., Keemink, A. Q., Veltink, P. H., Stienen, A. H.,

& Koopman, B. F. (2016, November). Implementation of EMG- and Force-Based Control

Interfaces in Active Elbow Supports for Men With Duchenne Muscular Dystrophy: A

Feasibility Study. Retrieved from

https://ieeexplore-ieee-org.ezproxy.wpi.edu/stamp/stamp.jsp?tp=&arnumber=7410057&ta

g=1

Muscular Dystrophy Association. (2018, June 22). Duchenne Muscular Dystrophy (DMD).

Retrieved September 28, 2018, from

https://www.mda.org/disease/duchenne-muscular-dystrophy

National Cancer Institute. (n.d.). Anatomical Terminology. Retrieved September 17, 2018,

from https://training.seer.cancer.gov/anatomy/body/terminology.html

National Institute of Neurological Disorders and Stroke, & National Institutes of Health.

(2018, August 9). Amyotrophic Lateral Sclerosis (ALS) Fact Sheet. Retrieved September

28, 2018, from

https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotroph

ic-Lateral-Sclerosis-ALS-Fact-Sheet

National Physical Laboratory. (2010, March 25). How many different types of force

transducer are there? (FAQ - Force) : FAQs : Reference. Retrieved October 11, 2018, from

http://www.npl.co.uk/reference/faqs/how-many-different-types-of-force-transducer-are-the

re-(faq-force)

70

National Stroke Association. (2015, July 08). Post-Stroke Conditions. Retrieved September

28, 2018, from

http://www.stroke.org/we-can-help/survivors/stroke-recovery/post-stroke-conditions/physi

cal

Noraxon. (2017). Surface EMG. Retrieved October 12, 2018, from

https://www.noraxon.com/our-products/emg/

OYMotion Inc. (n.d.). Gesture Armband gForce 100 Manual V1.1. Retrieved October 12,

2018, from https://oymotion.github.io/assets/downloads/gForce100_manual_v1.1-eng.pdf

Perlman, H., & USGS. (n.d.). Water Density. Retrieved October 17, 2018, from

 https://water.usgs.gov/edu/density.html

Performance Health. (2018). Stable Slide Self-Feeding Support. Retrieved September 20,

2018, from https://www.performancehealth.com/stable-slide-fee ding-support

Plagenhoef, S., Evans, F.G. and Abdelnour, T. (1983) Anatomical data for analyzing

human motion. Research Quarterly for Exercise and Sport 54, 169-178. Retrieved

October 17, 2018, from https://exrx.net/Kinesiology/Segments

Popovic, Marko B. "Feeding Systems, Assistive Robotic Arms, Robotic Nurses, Robotic

Massage." Biomechatronics (2019): 419.

71

Raez, M., Hussain, M., & Mohd-Yasin, F. (2006). Techniques of EMG signal analysis:

Detection, processing, classification and applications. Retrieved October 16, 2018, from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1455479/#B8

Reaz, M. B., Hussain, M. S., & Mohd-Yasin, F. (2006, March 23). Techniques of EMG signal

analysis: Detection, processing, classification and applications. Retrieved October 14,

2018, from

https://biologicalproceduresonline.biomedcentral.com/track/pdf/10.1251/bpo115

Safaee-Rad, R., Shwedyk, E., Quanbury, A. O., & Cooper, J. E. (1990, June). Normal

functional range of motion of upper limb joints during performance of three feeding

activities. Retrieved September 28, 2018, from

https://www.ncbi.nlm.nih.gov/pubmed/2350221

Shahid, S., Goffin, J., & Chaves, C. (2018). Pronation and Supination. Retrieved October 1,

2018, from https://www.kenhub.com/en/library/anatomy/pronation-and-supination

The Internet Stroke Center. (n.d.). The Internet Stroke Center. Retrieved September 21, 2018,

from http://www.strokecenter.org/patients/about-stroke/stroke-statistics/

Verily. (n.d.). Liftware Level™. Retrieved October 1, 2018, from

https://www.liftware.com/level/p

72

