
SOLAR DISINFECTION OF DRINKING WATER 
 

By 
 

Christine Rojko 
 
 

A Thesis 
 

Submitted to the Faculty 
 

of 
 

WORCESTER POLYTECHNIC INSTITUTE 
 

in partial fulfillment of the requirements for the 
 

Degree of Master of Science 
 

in 
 

Environmental Engineering 
 

by 
 
 
 

__________________________________ 
May 2003 

 
 
 
 
 
 
 
 
 

APPROVED: 
 
__________________________________ 
Dr. Jeanine D. Plummer, Major Advisor 
 
__________________________________ 
Dr. Frederick L. Hart, Head of Department 
 



 ii  

ABSTRACT 
 

Over 30% of the population in developing countries is in need of access to safe drinking 

water.  The 875 million cases of diarrhea and 4.6 million deaths that occur each year due 

to a lack of a safe water supply occur primarily in these countries.  It is estimated that 

these countries will need over $150 billion to establish full drinking water supply system 

coverage, a sum that they may not be able to raise within the near future.  Conventional 

methods of drinking water disinfection, such as chemical treatment, heat pasteurization, 

and filtration, require facilities, materials, and fuel that may not be readily available or 

feasible to attain.  An alternative treatment option is to utilize solar energy, which has 

been shown to inactivate pathogens through pasteurization and radiation effects.  

 

This research was conducted to determine the effectiveness of solar disinfection for the 

inactivation of E. coli.  Turbidity, sample volume, exposure time, and bottle size were 

varied.  Experiments were conducted by adding E. coli to water samples (phosphate 

buffered saline with or without added montmorillonite clay or pond water) in clear 

drinking water test bottles.  The bottles were then placed in full, direct sunlight.  Samples 

were taken at predetermined intervals and solar intensity, weather conditions, and water 

temperatures were recorded during each sampling session.  The viable bacterial count 

was enumerated using the pour plate method to determine log inactivation achieved.  

Laboratory experiments were also conducted to determine the effects of heating only on 

the inactivation of E. coli. 
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Sample volumes from 1 to 2 L and turbidity values ranging from <1 ntu to approximately 

100 ntu did not significantly affect inactivation levels when samples were exposed to 

sunlight for at least 4 hours.  In samples with 0 ntu turbidity, a minimum cumulative 

intensity of 20.8 J/cm2 of wavelengths below 400 nm was required for a 7-log 

inactivation of E. coli.  In samples with up to 100 ntu, a maximum fluence of 99.8 J/cm2 

was required.  Temperatures up to 46.0°C did not significantly inactivate E. coli, 

therefore radiation or the synergistic effects of radiation and heating accounted for the 

inactivation in samples exposed to sunlight.  While solar disinfection can effectively 

inactivate E. coli bacteria in water samples, waters with high levels of suspended solids 

and those containing spore-forming pathogens and protozoa should be tested. 
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1 Introduction 

Contaminated drinking water poses a major health threat to human beings worldwide.  

The problem is particularly significant in developing countries and in arid areas where 

water sources are scarce.  In developing countries, surface waters such as rivers, streams 

and lakes are used for multiple activities, including livestock watering, bathing, and 

cooking.  Defecation and urination often occur near water sources as well.  This water, 

which may be contaminated with pathogenic organisms, is also used for drinking water.  

People in developing countries may have no other options for drinking water because 

there is a lack of water distribution infrastructure and lack of funding for developing 

water treatment systems. 

 

Over one billion people each year are exposed to unsafe drinking water due to poor 

source water quality and lack of adequate water treatment.  This results in 900 million 

cases of diarrhea each year (Rijal and Fujioka, 2001).  Five out of every 1000 of those 

exposed to unsafe drinking water will die from diseases carried by the contaminated 

water; another 2.5 will die from dehydration due to diarrhea (Burch and Thomas, 1998).  

Children are particularly affected; the average child in developing countries has more 

than two episodes of diarrhea per year.  Diarrheal illness results in malnutrition, 

weakness, and an increase in susceptibility to diseases, and can be life threatening (Burch 

and Thomas, 1998).  The estimated number children that die each year due to water-

related diseases ranges from 2.5 million to 15 million (Burch and Thomas, 1998; 

Jorgensen et al., 1998).   
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The lack of adequate drinking waters in developing countries is a continually growing 

problem due to population increases and increased demands on source waters.  Therefore, 

water disinfection methods that are easily employed in developing countries are needed.  

Chemical disinfection options such as chlorine and iodine treatment require chemicals 

that must be purchased.  These chemicals can be expensive and also have a limited shelf 

life.  Physical treatment options such as boiling, UV treatment, and filtering require 

materials that may not be easily acquired or purchased.  One alternative drinking water 

treatment method that has been proposed is solar disinfection, a process that is simple and 

easily utilized.  It has been recommended by several researchers for use in countries that 

receive abundant sunshine, specifically those areas between latitudes 35°N and 35°S 

(Acra et al., 1984; IDRC, 1998). 

 

Solar disinfection is a water treatment method where a drinking water sample is exposed 

to solar radiation to inactivate pathogenic organisms.  The method has been shown to 

reduce the incidence of diarrhea in children living in a Massai village in Kenya (Conroy 

et al., 1996).  Previous studies have found that solar disinfection is affected by numerous 

variables.  These variables include the wavelengths of solar radiation, water temperature, 

turbidity, and container selection. 

 

1.1 Research Objectives 

The objective of this research was to test the inactivation of E. coli bacteria by solar 

disinfection.  The variables tested were water matrix, turbidity, bottle size, and exposure 

time.  First, solar disinfection experiments were conducted in which samples were 
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exposed to sunlight and allowed to heat.  The inactivation of E. coli in the samples was 

quantified over time.  Next, the effects of heating only were tested to determine the 

importance of temperature in the solar disinfection process.  These results were compared 

with the results of the solar disinfection experiments.   

 

1.2 Scope of Research 

To study the effects of solar radiation and heating on the inactivation of E. coli, 

experiments were conducted from July through September 2002.  Water samples were 

exposed to sunlight in plastic bottles.  Plastic bottles were used because they are 

common, inexpensive containers that can be found worldwide.  Phosphate buffered saline 

was the primary test solution, although a limited number of experiments were conducted 

using pond water as well.  For each experiment, the test bottles were prepared and spiked 

with E. coli in the laboratory.  The initial temperature and turbidity of each test bottle was 

recorded and samples were taken to enumerate the starting concentration of bacteria.  The 

test bottles were then exposed to sunlight and samples were collected at predetermined 

intervals to determine the E. coli concentration.  During each sampling time, air 

temperature, water temperature, and solar irradiance were measured.  The log inactivation 

of E. coli was calculated over time. 

 

To quantify the inactivation effects of heating only, laboratory experiments were 

conducted.  A solution of phosphate buffered saline was spiked with E. coli and placed in 

a water bath that was heated to mimic the temperature increase observed when samples 
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were exposed to the sun.  The results of the solar radiation and heating experiments were 

then analyzed and compared to the results of the heating only experiments. 

 

1.3 Overview of Report 

The following chapter is the literature review.  The literature review discusses developing 

countries, the drinking water challenges these countries face, various water disinfection 

options, and previous research on solar disinfection.  The methodology chapter describes 

the experimental design, including variables tested, test procedures used, and analytical 

methods employed.  Experiment results are then presented and analyzed.  The last two 

chapters provide conclusions and recommendations. 

 
 



 5  

2 Literature Review 

Chapter 2 discusses the worldwide problem regarding the shortage of sanitary drinking 

water, and the impacts of poor water quality on people in developing countries.  Specific 

water treatment options are presented, including chemical treatment options and physical 

treatment options, followed by research conducted on the process of solar disinfection. 

 

2.1 Developing Countries 

The term “developing country” is broad and far-reaching.  It is a common term, but one 

that is used to describe countries of varying degrees of wealth, infrastructure, education, 

agriculture, industry, and communications.  As stated by Ellis (1991), there are two 

extremes that encompass the definition of a developing country: 

 
"At the one end of the scale, there are those countries with highly developed 
commercial and industrial sectors, well-established secondary and tertiary 
education systems, good communications, and a well-developed ability to 
improvise adequately when apparently essential equipment is not available.  At 
the other extreme, there are countries in which the already minimal economic 
achievement is totally overburdened by natural or political disasters, where 
communications are appalling, technical and tertiary education nearly nonexistent, 
and the agricultural and industrial base so limited that the provision even of the 
simplest techniques of water supply is only achieved through external aid, and the 
operation and maintenance of these is a continuing nightmare." (pg 387) 

 

Of focus in this research are countries with inadequate water treatment, inadequate or 

non-existent distribution systems, and poor source water quality.  Although there is no 

universally accepted standard for defining a developing country, it will be defined here as 

a country in which the ingestion of water-based pathogens is of frequent concern and in 

which a significant portion of the population does not have access to water of acceptable 
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drinking water standards.  The World Health Organization defines acceptable drinking 

water as that in which no E. coli or thermotolerant bacteria are detected in any 100 mL 

sample (WHO, 1997). 

 

2.1.1 Drinking Water Challenges 

In much of the developing world, there are no funds to develop a drinking water system 

infrastructure.  Where treatment systems do exist, there are several issues that often 

preclude adequate water treatment.  These include misemployment, under-employment, 

inoperational equipment, lack of spare parts, unavailability or cost of chemicals, 

inadequately trained staff, and lack of supervision (Ellis, 1991).  It is estimated that $150 

billion is needed for developing countries to address these issues and establish full water 

supply coverage (Wegelin et al., 1994). 

 

Although water disinfection is a crucial step in preventing waterborne diseases, there are 

several aspects of the water collection, treatment, and distribution cycle that affect 

whether drinking water arrives at a home in potable condition.  First, source water should 

be carefully selected and protected to ensure it is free of contaminants.  Water that 

receives runoff from land used for agriculture and livestock farming is likely to have 

pesticides, fecal matter, and other constituents that were applied to the surrounding 

grounds.  Ellis (1991) suggests relocating cattle and other livestock from the vicinity of 

drinking water sources.  In addition, improving the sanitation practices of the local 

population can reduce the potential for water supplies to be polluted.  It is not considered 

uncommon, especially in developing countries, for defecation and urination to occur in 
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rivers, lakes, and other bodies of water that are also used for domestic and recreational 

purposes (Kloos et al., 1997).  These practices continue a cycle of recontamination.  The 

second factor in preventing waterborne disease is adequate and reliable water treatment.  

This can be addressed by properly training water plant operators and by providing 

funding to ensure all necessary chemicals and equipment can be purchased.  Third, 

distribution systems must be built and improved to prevent recontamination of treated 

water.  Other intervention measures, such as increasing public awareness, should also be 

employed  (Burch and Thomas, 1998; Somboonsub, 2001). 

 

2.2 Disinfection Options 

When large community-wide water treatment and distribution systems are not available, 

people may treat water individually or for their families.  There are several water 

disinfection options available for small-scale use.  Water disinfection methods can be 

divided into two categories.  The first category is chemical disinfection.  Chemical 

disinfection includes methods such as chlorination and iodine treatment.  Chlorine is the 

most common method of drinking water treatment due to its effectiveness at inactivating 

several types of pathogens and its low chemical cost. Chlorinated water also retains a 

residual that further protects from recontamination after the water is treated  (Burch and 

Thomas, 1998).  Iodine is a second chemical treatment option and one that is commonly 

used by hikers and backpackers in the U.S. as an effective and transportable method of 

water treatment.  However, iodine is not used to treat large amounts of drinking water 

because, weight for weight, it costs approximately 20 times more than chlorine  (Ellis, 

1991).  Chemical costs may render such options unavailable to low-income families.  
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Other reasons chemical treatment is undesirable include the training needed to calculate 

proper chemical dosages and the unpleasant odor and taste of the drinking water.  An 

additional disadvantage with all chemical treatment methods is that chemicals oxidize 

over time and therefore have limited shelf lives. 

 

Physical treatment methods such as boiling water and UV treatment may also be used to 

treat drinking water.  Boiling water is a simple process, but requires resources that may 

not be readily available.  This is especially true for areas concerned with the effects of 

desertification and deforestation because boiling one liter of water requires approximately 

one kilogram of wood.  The process is also time consuming and boiling water has been 

found to impart a disagreeable taste  (Acra et al., 1984; Ellis, 1991).  UV radiation is the 

process where water is exposed to a lamp generating light at a wavelength of 

approximately 250 nm.  This wavelength is in the middle of the germicidal band and is 

responsible for damaging the DNA of bacteria and viruses.  However, UV treatment is 

only effective for low turbidity waters and therefore pretreatment such as filtering is 

required for poor water quality sources.  Also, developing and maintaining UV radiation 

treatment requires the initial cost of purchasing equipment, a knowledgeable operator to 

properly use the equipment, and sufficient funds for maintenance.  For areas that are 

unable to financially support such a treatment scheme, UV radiation is not a viable 

treatment option  (Burch and Thomas, 1998). 
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2.3 Solar Disinfection 

A potential alternative to the common disinfection methods mentioned previously is solar 

disinfection.  Solar water disinfection is a process that entails filling a transparent bottle 

with water and placing it in the sun for several hours.  The following sections describe 

the process, its potential for use, and the enhancements that can be employed to increase 

its effectiveness.  Limitations of solar disinfection are also presented. 

 

2.3.1 Solar Radiation as a Disinfection Mechanism 

For over 4000 years, sunlight has been used as an effective disinfectant (Conroy et al., 

1996).  When organisms are exposed to sunlight, photosensitizers absorb photons of light 

in the UV-A and early visible wavelength regions of 320 to 450 nm.  The 

photosensitizers react with oxygen molecules to produce highly reactive oxygen species.  

In turn, these species react with DNA; this leads to strand breakage, which is fatal, and 

base changes, which result in mutagenic effects such as blocks to replication.  For 

bacteria, the process is reversible as the bacteria may again become viable if conditions 

allow cells to be repaired  (Kehoe et al., 2001; McGuigan et al., 1999).  Viruses are 

unable to repair DNA damage and are therefore sensitive to optical inactivation  

(McGuigan et al., 2001). 

 



 10  

2.3.2 Solar Disinfection Process Variables 

Previous studies have found that solar disinfection is affected by numerous variables.  

These variables include solar radiation wavelengths, water temperature, turbidity, and 

container selection.  Several process enhancements have also been studied. 

 

2.3.2.1 Solar Radiation Wavelengths 
 
Studies have shown that visible violet and blue light have little disinfection capability.  

However, the other components of sunlight, UV-A, UV-B, and UV-C radiation, are able 

to inactivate organisms.  UV-C radiation, at approximately 260 nm, has the greatest 

potency because it corresponds to maximum absorption by DNA.  Municipal treatment 

plants use UV-C (at 254 nm) to disinfect drinking waters and secondary wastewater 

effluents because of its germicidal ability to initiate changes in nucleic acids and other 

structures such as enzymes and immunogenic antigens.  However, near ultraviolet 

(UV-A) light has been found to be the most significant component of sunlight that is 

responsible for the inactivation of microorganisms, with an increase in effectiveness due 

to the synergistic effects of UV-A and violet light.  This is because the UV-C component 

of solar radiation does not reach the earth  (Wegelin et al., 1994). 

 

Acra et al. (1984) compared the germicidal effects of different wavelengths of light by 

measuring the average number of coliforms inactivated upon exposure to the varying 

wavelengths.  They found that the most significant decrease in viable bacterial organisms 

occurred when they were exposed to wavelengths between 260 to 350 nm (compared to 

inactivation at wavelengths between 550 to 850 nm).  Because wavelengths below 290 
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nm do not reach the earth, Acra et al. (1984) concluded that the most bactericidal 

wavelengths were between 315 to 400 nm, which corresponds to the wavelengths of the 

near-ultraviolet region that are not visible to the eye.  The findings of Acra et al. (1984) 

are further supported by the research of others.  Davies and Evison (1991) attributed half 

of the toxic effects of sunlight to wavelengths lower than 370 nm.  Wegelin et al. (1994) 

concurred, stating that wavelengths between 300 and 370 nm have significant effects on 

inactivating bacteria and viruses. 

 
Natural sunlight has been shown to have germicidal properties.  Wegelin et al. (1994) 

found that a fluence of natural light of approximately 2000 kJ/m2 or 555 Wh/m2 resulted 

in a 3-log inactivation of E. coli.  This is equivalent to 5 hours of midday summer sun as 

measured at Duebendorf, Switzerland.  Viruses required higher fluences than bacteria for 

the same inactivation level: F2 coliphage, rotavirus and encephalomyocarditis virus 

required 9,000, 6,800, 34,300 kJ/m2 for 3-log inactivation.  Davies and Evison (1991) 

also found solar disinfection to be effective, with 1 log inactivation of E. coli in 10 hours 

of exposure to sunlight, and 4 log inactivation of Salmonella typhimurium in 4 hours of 

exposure. 

 

2.3.2.2 Heating 
 
Temperatures at or above boiling can be used to effectively pasteurize water.  Liquids 

may also be pasteurized using lower than boiling temperatures, provided the liquids are 

kept at such temperatures for an extended period of time.  For example, enteric viruses in 

water can be pasteurized in approximately 1 hour at 62°C or in 1 day at 50°C (Burch and 

Thomas, 1998).  It is known that 10 minutes at 56°C will inactivate Giardia lamblia, G. 



 12  

muris and Entamoeba histolytica.  If a temperature of 50°C is attainable, amoebic cysts 

are inactivated (Acra et al., 1984).  Ciochetti and Metcalf (1984) state that milk 

pasteurization occurs at 62.8°C for 30 minutes or at 71.7°C for 15 seconds, and Burch 

and Thomas (1998) state that the typical pasteurization of any liquid is at 75°C for 10 

minutes. 

 

Pasteurization may not be ideal for some drinking water treatment situations.  Effective 

treatment by heating requires knowledge of the water quality in order to determine the 

temperature the water must reach and the duration of heating that is needed.  In addition, 

disinfection by heating may be impractical for wide scale use because pasteurization is a 

labor-intensive process and requires a significant amount of fuel  (Burch and Thomas, 

1998).  However, heating may be accomplished by using sunlight, thus alleviating the 

problem of needing wood or other fuels for boiling. 

 

In 1984, Ciochetti and Metcalf published the results from a study to determine the 

effectiveness of using a solar box cooker to pasteurize river water that had an initial E. 

coli count of 33 to 350 cfu per 100 mL.  They were able to attain temperatures of 65°C in 

two 3.7 L jugs between mid March to mid September in California, with no coliforms 

detected at 60°C and 65°C.  In heating tests, Ciochetti and Metcalf (1984) detected 

coliforms at 59°C, but none at 61°C or 63°C.  Although the samples had reached 

pasteurization temperatures at the end of the solar pasteurization and heating tests, it is 

likely the samples were not held at a pasteurization temperature for the recommended 
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period of time.  Therefore, it is possible that temperatures lower than 63°C have 

disinfection capabilities as well. 

 

Conroy et al. (1996) exposed water samples to full sunlight in Kenya and confirmed that 

sunlight has a bactericidal effect on turbid water, with reductions in the initial bacterial 

count of over 103 cfu per mL.  The disinfection was attributed to pasteurization effects, 

rather than ultraviolet light.  This was confirmed with laboratory experiments by Joyce et 

al. (1996), who heated contaminated water samples to a maximum of 55°C in 7 hours and 

observed a 5-log inactivation of E. coli. 

 

Jorgensen et al. (1998) tested a flow-through copper-piped system that used solar 

radiation to pasteurize naturally contaminated water from the Mlalakuva River near Dar 

es Salaam, Tanzania.  They found that while fecal indicator bacteria were inactivated in 

water that was heated to 62°C or above, other organisms such as spore-forming bacteria 

were never completely inactivated, even when water temperatures of 75°C were attained.  

They found that temperatures of 65°C or above inactivated coliform bacteria and 

thermotolerant coliform bacteria, which were present in the naturally contaminated river 

water.  Such temperatures also inactivated Salmonella typhimurium, Streptococcus 

faecalis and Escherichia coli that were cultured and added to the raw river water. 

 

Rijal and Fujioka (2001) observed the effectiveness of heating using a modified Family 

Sol*Saver System (FSP).  The FSP is a high-density, black polyethylene double-walled 

collector that was designed for liquid pasteurization.  However, by exchanging the 
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original non-UV-transmittable plastic cover for a UV-transmittable cover, Rijal and 

Fujioka were able to determine the effectiveness of pasteurization versus pasteurization 

and solar radiation on numerous organisms, including fecal coliforms, E. coli, 

enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing 

bacteria and FRNA virus.  Tests were carried out using a low turbidity (<2 ntu) water 

from the Manoa stream in Hawaii, diluted sewage (2.5 ntu), or seeded tap water.  On the 

experiment conducted on a sunny day, the pasteurization only sample was able to achieve 

a temperature of 65°C with a corresponding inactivation of more than 3-log of E. coli in 3 

hours.  The solar radiation and pasteurization sample heated to 56°C, with the same log 

inactivation in 2 hours.  Therefore, solar radiation and heating acted synergistically to 

inactivate the bacteria. 

 

Pasteurization is an effective treatment option for liquids.  However, a false sense of 

security may mislead one to under treat the drinking water.  As detailed above, certain 

organisms cannot survive temperatures of 55°C while others are still viable at 75°C.  

Without knowing the exact composition of organisms in the water, the user may not 

adequately treat the drinking water before use.  There is also a high capital cost 

associated with purchasing pasteurization equipment if the process is used for a 

community.  However, pasteurization of liquids is independent of turbidity and pH.  This, 

coupled with the fact that solar energy is free and solar disinfection is a simple process to 

employ, warrants further study for use by individuals or small families in developing 

countries. 
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2.3.2.3 Impurities 
 
Turbidity is a significant factor in the disinfection process.  The effectiveness of solar 

disinfection has been tested on samples with turbidities ranging from less than 10 ntu to 

approximately 300 ntu.  Researchers have found that higher turbidity samples exposed to 

sunlight attained consistently higher water temperatures, which was attributed to 

absorption of radiation by the particulate matter  (Kehoe et al., 2001; McGuigan et al., 

1999).  More turbid samples, at 300 ntu, also had less inactivation of E. coli compared to 

samples with little or no turbidity. This may be in part due to shielding of organisms by 

particles  (Kehoe et al., 2001; McGuigan et al., 1999; Sommer et al., 1997).  Joyce et al. 

(1996) reported that less than 1% of the total incident UV light is able to penetrate 

beyond a water depth of 2 cm from the surface in samples with turbidities greater than 

200 ntu.  Therefore, it may be necessary to filter turbid waters before sun exposure. 

 

Impurities in a water sample that cause it to be colored also have an effect on the 

disinfection potential for a given drinking water sample.  In highly colored samples, 

sunlight may not have a lethal effect because the colored water may absorb wavelengths 

in a certain range.  In these cases, it is recommended that the water sample be treated to 

reduce coloration before sun exposure  (Acra et al., 1984). 

 

2.3.2.4 Container Selection 
 
Container shape and color may have significant impacts on the effectiveness of solar 

disinfection.  The bottle shape may interfere with the sun’s disinfection capabilities: as 

the sun moves across the sky, the intensity will change and may be reduced depending on 
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the bottle shape.  Acra et al. (1984) therefore recommend using round, conical bottles as 

opposed to square or irregularly shaped containers.  However, the major limiting factor is 

the availability of the bottles themselves, with variables such as plastic thickness and 

light transmittance characteristics being difficult to assess in the field. 

 

Acra et al. (1984) also noted that colorless containers allow the most transmittance of 

ultra-violet wavelengths and are therefore the optimal choice for use in solar disinfection.  

Blue and violet tinted containers also transmit radiation, yet other colors, such as orange, 

yellow, red and green, will absorb wavelengths with the most lethal bactericidal effects 

and therefore must be avoided  (IDRC, 1998).  With regard to pasteurization, a water 

sample exposed to sunlight increases in temperature due to the red and infrared 

components of sunlight.  Blue containers would therefore absorb these components and 

minimize any temperature increases  (Acra et al., 1984).  Therefore, to maximize the 

effects of both solar radiation and heating, colorless containers are recommended. 

 

Container size may also be an important parameter in the solar disinfection process.  Acra 

et al. (1984) specify that container size is a variable that affects solar disinfection.  

However, their studies do not specifically test the effect of volume size on solar 

disinfection.  Kehoe et al. (2001) found no significant difference in the population 

dynamics of 0.5 and 1.5 L samples.  In contrast, Reed et al. (2000) compared the time 

needed to achieve a 99.9% reduction in the initial fecal coliform counts of 22 L and 25 L 

samples and found that exposure times of 150 minutes and 290 minutes were required, 

respectively.  A more extensive study on volume variations may be useful. 
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2.3.2.5 Enhancements 
 
A number of process enhancements have been studied in order to increase the 

effectiveness of solar disinfection.  Such efforts have included periodic agitation, using 

foil to increase reflectivity, and painting half the bottle black to increase achievable 

temperatures. 

 

In a field experiment, Kehoe et al. (2001) used sterilized reagent grade water samples that 

they had spiked with E. coli and exposed to the sun.  Some samples were agitated for 1 

minute every 15 minutes.  They found no significant difference in E. coli inactivation 

rates of the agitated versus non-agitated samples that were exposed to sunlight if the 

dissolved oxygen (DO) levels did not change significantly.  Changes in DO levels did not 

occur when there were only slight increases in water temperature, such as from 32.5°C to 

39°C.  However, Kehoe et al. (2001) discovered that in samples exposed to both thermal 

and optical effects, increasing levels of DO did correspond to an increase in inactivation 

rates.  In conclusion, Kehoe et al. (2001) recommended against agitating samples to 

prevent decreases in inactivation rates when significant temperature differences occur.  

Reed et al. (2000) also found that water samples with greater oxygenation had increased 

inactivation rates.  Complete inactivation of fecal coliforms was achieved in 3 hours in an 

oxygenated sample, compared to the less than 1-log inactivation after 4 hours for a 

deoxygenated sample. 

 

During laboratory thermal-only simulations, where sample temperature was raised from 

20°C to 50°C, agitation significantly lowered the DO levels of samples.  There was no 
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significant correlation found between the inactivation of E. coli in agitated versus non-

agitated samples however, which implies that DO levels are not a significant factor when 

samples are sufficiently heated  (Kehoe et al., 2001). 

 

Using sterilized reagent grade water samples spiked with E. coli, Kehoe et al. (2001) 

found that foil-backed samples averaged almost 1°C higher than non-foil-backed samples 

when exposed to sunlight for 3.5 hours.  Over 6-log inactivation was reached in less than 

1 hour of exposure time when aluminum foil was placed partway around sample bottles, 

versus more than 3 hours needed for 6-log inactivation of non-foil-backed samples. 

 

2.3.3 Field Applications 

Conroy et al. (1996, 1999, 2001) established the potential for field use of solar 

disinfection by demonstrating that this process reduced the risk of diarrhea in children.  

The studies were conducted in the Kajiado province of Kenya using Maasai children 

between 5 and 16 years of age.  In 1996, the first test group consisted of 108 children that 

drank solar treated water.  These children were given two 1.5 L plastic bottles to be filled 

with drinking water and put on the roof of their huts from dawn until midday.  The water 

could then be used for drinking.  The control group consisted of 98 children that were 

given the same directions, but rather than putting the bottles on the roof, they kept the 

bottles indoors.  The results of this study showed that the children in the first group 

averaged 4.1 diarrheal episodes over a twelve-week period, versus an average of 4.5 

episodes in the control group  (Conroy et al., 1996).  In 1999, the test group was 

expanded to children less than six years of age.  The children drinking treated water had a 
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two-week period diarrhea prevalence of 48.8%, versus 58.1% in the control children  

(Conroy et al., 1999).  Five years later, the researchers learned of a cholera outbreak in 

the test villages.  They returned and found that the test families had continued to treat 

their drinking water with solar disinfection.  However, while there was no statistical 

difference in the risk of contracting cholera between families using solar disinfection and 

those that did not, the continued use of the process by the villagers was promising as 

shown by the earlier successes in reducing diarrheal incidences. 

 

2.3.4 Limitations to Solar Disinfection 

There are several limitations to using solar disinfection to treat drinking water.  The 

process of solar disinfection is best suited for regions having approximately 300 sunny 

days with clear skies each year, with areas between latitudes 35°N and 35°S having the 

optimum exposure of sunlight (Acra et al., 1984; IDRC, 1998).  However, any amount of 

cloud coverage reduces the intensity of sunlight that reaches the earth, thereby decreasing 

its germicidal effects.  Despite this restriction, Acra et al. (1984) state that a longer 

exposure time more than compensates for the reduction in solar intensity. 

 

Another difficulty presented with solar disinfection is that the materials needed for the 

process may not be readily available.  Clear, cylindrical bottles are most effective at 

allowing solar radiation to reach the water, yet these may be difficult to obtain for large-

scale use by remote communities, where plastic containers are not sold.  In addition, 

enhancements used by various researchers, such as foil (Kehoe et al., 2001), may be 

difficult to purchase.  Devices such as solar panels, copper piping, and thermostat valves 
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were required to construct the solar panel described by Jorgensen et al. (1998) to 

pasteurize drinking water.  Because these materials are not readily available in many less-

developed areas, and knowledge of constructing a solar water heater is not widespread, 

this method of heating water for large-scale use is impractical in developing countries.  

However, small-scale individual use of plastic bottles is a treatment method that can be 

implemented with minimal resources and little training. 

 

2.4 Conclusion 

Solar disinfection is a process that is simple and effective.  It could prove valuable for use 

in developing countries and in areas that need a small-scale drinking water treatment 

method.  Studies have shown that it is effective in reducing diarrheal illness in children 

when implemented in field trials.  However, the process does have limitations and several 

variables influence the effectiveness of the process such as solar intensity, temperature, 

turbidity, container shape, and sample volume.  Therefore, this study was aimed at 

establishing relationships between these variables and the effectiveness of solar 

disinfection. 
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3 Methodology 

Previous studies have found decreases in effectiveness of solar disinfection with 

increases in turbidity and sample volume and an increase in effectiveness with increased 

fluences and higher water temperatures.  The experiments conducted for this thesis 

examined these variables and their impact on the inactivation of E. coli by solar radiation 

and heating.  By using the same testing, sampling, and enumeration methods for each 

experiment, the results can be directly compared.  This chapter details the experimental 

design, including the variables examined and the methods employed during the 

experiments. 

 

3.1 Experimental Design 

The objective of this research was to first test the effects of water temperature and solar 

radiation on artificially contaminated water samples.  The first phase of experiments 

consisted of placing artificially contaminated sample solutions in direct sunlight and 

enumerating viable bacterial counts over time to quantify disinfection by solar radiation 

and heating.  In the second phase, inactivation was quantified in samples that were heated 

in a water bath.  These results were then compared to the solar inactivation results to 

determine the role of heating in solar disinfection. 

 

3.1.1 Organism 

The test organism chosen was the bacteria Escherichia coli.  E. coli is currently the most 

specific indicator for fecal contamination of a water source; its presence in high numbers 

also allows for more likely determination of water contamination than if they were only 
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found in small numbers in water samples  (Toranzos and McFeters, 1997).  E. coli is 

more resistant to disinfection than other enteric bacteria and organisms such as P. 

aerugenosa, S. flexneri, S. typhi, and S. enteritidis and may also be used to determine the 

likely response of other pathogenic organisms to a given disinfection mechanism (Acra et 

al., 1984).  The World Health Organization has set the worldwide guideline for safe 

drinking water as no detectable E. coli or thermotolerant bacteria in any 100 mL sample  

(WHO, 1997). 

 

3.1.2 Variables 

Experiments were conducted to determine the effects of several variables on the solar 

disinfection process.  The results of these experiments were then compared to the results 

obtained during the heating only experiments.  Table 3-1 lists the variables tested for both 

phases of experiments. 

Table 3-1: Experimental testing scheme. 

Disinfection Scheme Variable Variable Range 
Sample solution Phosphate buffered saline 

or  pond water 
Turbidity 0 ntu – 200 ntu 
Sample volume 825 mL – 1.9 L 

Solar radiation and 
heating 

Exposure time 0 – 8 hours 
Sample solution Phosphate buffered saline 
Sample volume 825 mL 

Heating only 

Exposure time 0 – 5 hours 
 

3.1.2.1 Sample Solution 
 
The primary sample solution for solar radiation and heating and heating-only experiments 

was phosphate buffered saline (PBS).  This solution was used as a liquid medium with no 
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organic demand and no unknown constituents.  Pond water was also used as a test 

solution in solar radiation and heating experiments as a comparison between using natural 

water versus an artificial sample solution.  The natural water was collected from 

Salisbury Pond in Worcester, MA the day before the experiment and autoclaved before 

use in order to kill any indigenous organisms that were present in the sample.  The pond 

water characteristics are shown in Table 3-2.  In addition to a pond water test sample, a 

second sample was prepared with 50% pond water and 50% PBS.  This diluted sample 

had an intermediate turbidity value that was compared to the pond water sample and the 

PBS-only sample. 

 

Table 3-2: Salisbury Pond water characteristics. 

Pond Water Parameter Value 
Total organic carbon 7.90 mg/L 
Dissolved organic carbon 7.04 mg/L 
pH 7.72 
Turbidity before settling 18.7 ntu 
Turbidity after 30 minutes of settling 9.68 ntu 

 

3.1.2.2 Sample Volume 
 
Sample volume was varied using plastic bottles with the labels removed.  Depending on 

the size needed, 1.0 L Aquafina water bottles, 1.5 L Glaceau water bottles, and 2.0 L 

Price Chopper soda bottles were used.  The sample volumes ranged from 825 mL to 1.9 L 

in order to leave space at the top of each bottle.  This was necessary to prevent spilling 

any sample solution while passing the bottlenecks through a flame to prevent 

contamination both before and after removing samples.  The test containers were chosen 

due to the worldwide availability of plastic soda bottles in varying sizes.  The abundance 

of plastic bottles increases the likelihood of employing the solar disinfection process.  
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Because the bottles were likely to be made of varying thicknesses, readings were taken to 

determine if there was any variation in the intensity of light that passed through the 

plastic to the water samples.  The readings are presented in the results chapter. 

 

3.1.2.3 Turbidity 
 

Turbidity was tested in two different testing schemes.  In the first, the turbidity source 

was montmorillonite clay, which was added in measured quantities to PBS to achieve 

desired turbidity levels.  In the second scheme, natural turbidity in pond water was tested.  

The organic matter found in the natural water may also have affected experiment results. 

 

Turbidities of approximately 0, 20, 100, and 200 ntu were tested using montmorillonite 

clay.  The Swiss Federal Institute for Environmental Science and Technology (EAWAG, 

2003) recommends using solar disinfection to treat water with turbidities no higher than 

30 ntu.  To bracket this value, a sample with no turbidity added was tested along with 

samples that were turbid due to a significant addition of turbidity.  Montmorillionite clay 

was added to the sample solutions to achieve these pre-determined turbidity values.  It 

was noted that the clay tended to settle, thereby reducing the turbidity of the sample 

solution over time, until the sample was inverted and mixed before each sampling 

session.  In order to test the effect of suspended solids and natural turbidity, pond water 

was also tested.  Details of the pond water are presented in Section 3.1.2.1. 

 



 25  

3.1.2.4 Exposure Time 

The total exposure time of experiments varied from 4 to 8 hours.  Sunlight is strongest 

from 10 am to 2 pm so initial experiments were conducted to encompass this time bracket 

by up to 1.5 hours before and up to 3 hours after (from 8:30 am to 4:30 pm).  Results of 

these experiments showed that significant inactivation of E. coli occurred within a few 

hours of exposure, making the 8-hour exposure time unnecessary.  Taking this into 

account, subsequent experiment exposure times were shortened. 

 

3.1.2.5 Temperature 

For heating-only experiments, samples were prepared using PBS with no added turbidity.  

An experiment was conducted to determine whether artificially contaminated samples 

would be inactivated by raising the temperature of the sample from a room temperature 

of 22.0°C to a maximum of 46.0°C.  A temperature of 46.0°C was used because in the 

solar radiation and heating experiments, this was the maximum temperature achieved in 

any sample.  The heating-only test was conducted in triplicate.  The results of these 

experiments showed that there was less than 0.5 log inactivation of E. coli when the 

temperature of the test sample was raised to 46.0°C.  Further studies, where turbidity and 

sample volume would have been varied, were therefore deemed unnecessary, as heating 

alone did not show significant disinfection. 
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3.1.3 Test Procedures: Solar Radiation and Heating Experiments 

Each experiment encompassed several steps.  Before each experiment, E. coli was grown 

and harvested, test solutions were prepared and autoclaved, and test bottles were 

sterilized.  On the day of each experiment, the test solution was transferred to the test 

bottles, E. coli was spiked into the test water, and the bottles were exposed to full 

sunlight.  Samples were taken at predetermined intervals and diluted before plating to 

enumerate viable colony-forming bacteria cells. 

 

First, E. coli was grown in tryptic soy broth overnight.  The morning of each experiment, 

the solution was centrifuged and the broth decanted.  The pellet was resuspended in 0.01 

M (1 X) phosphate buffered saline that resulted in an approximate concentration of          

4 x 109 cfu/mL.  See Section 3.2.1.2 for a more detailed description of the E. coli stock 

solution preparation. 

 

The primary test solution for all experiments was phosphate buffered saline.  This 

solution provided a liquid medium with no unknown constituents that would affect the E. 

coli bacterial population.  In order to compare the results of the experiments with PBS, 

pond water was also tested.  This water had a yellowish color, natural turbidity, and other 

organic matter. 

 

All test solutions were pre-measured.  For samples in which turbidity was to be 

measured, an additional 25 mL of test solution was prepared, to be removed at the 

beginning of the experiment.  Once the sample volume was measured, montmorillonite 
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clay was added to selected samples to achieve desired turbidity levels.  The solutions 

were then autoclaved in glass media bottles and stored in the refrigerator until the 

evening before the experiment.  At this time, the test solutions were transferred to a 22°C 

incubator in order to allow sufficient time to reach room temperature. 

 

Approximately 1.5 hours before the start of the experiment, the test solutions were 

transferred from the glass media bottles to the sterile plastic test bottles.  Three types of 

bottles were prepared: test bottles, a control bottle, and a PBS only bottle.  Test bottles 

were prepared with PBS or a solution of pond water, depending on the objective of the 

experiment.  A control bottle was prepared with PBS to verify that the bacterial 

population remained constant over the duration of an experiment.  A PBS only bottle was 

prepared, with no added E. coli, in order to verify the sterility of the plastic test bottles 

and to verify that sterile sampling conditions on the rooftop were maintained.  Specific 

details on the preparation of the bottles are in the following sections. 

 

3.1.3.1 Control Bottle Preparation 

A control bottle was prepared for each experiment.  The control bottle was the same as 

the test bottles; it contained a pre-measured and autoclaved test solution (PBS) with E. 

coli.  However, no turbidity was added.  The purpose of the control was to ensure that the 

bacterial population remained constant over the course of each experiment, with no 

influences from external factors.  The bottle was therefore covered with aluminum foil 

and placed in a 22°C incubator.  Samples were removed every hour for the duration of 

each experiment. 
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3.1.3.2 PBS Only Bottle Preparation 

For each experiment, a PBS-only bottle was also tested (no turbidity and no E. coli were 

added).  1 mL of the solution from this bottle was plated in duplicate for each sampling 

session.  The purpose of the PBS-only bottle was two fold.  First, because samples were 

collected from this bottle in the same manner as samples were collected from the test 

bottles, any breach of aseptic conditions when sampling and any cross-contamination 

from bottle to bottle would be enumerated when plating the sample.  Second, plating 

samples from a PBS-only bottle would verify that the interiors of the plastic test bottles 

were sterile. 

 

3.1.3.3 E. coli Addition 
 
For the test and control bottles, a calculated quantity of the E. coli stock culture was 

transferred to the test solutions to yield a starting concentration of 106 or 107 cfu/mL.  

The quantity of stock culture to be added was calculated by multiplying the desired 

concentration of bacteria in the test solution by the volume of the test solution.  This was 

then divided by the approximate concentration of cells in the stock E. coli solution.  An 

example calculation is presented below for an 800 mL test solution: 

 

mL 2
mL

cfu10*4

mL 800*mL
cfu10

9

7

=  

 

For each experiment, several test bottles were prepared with varying turbidities.  The first 

bottle contained PBS with no turbidity added.  The other test bottles contained either PBS 
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or pond water.  For bottles containing PBS, an appropriate quantity of montmorillonite 

clay was added to achieve the desired turbidity.  For test bottles containing pond water 

(or diluted pond water), no turbidity was added. 

 

3.1.3.4 Pre-disinfection Procedure 

After adding the test solution and E. coli to the test bottles, approximately 1.5 mL was 

removed from each bottle (test, control and PBS only bottles) to begin a dilution series 

for plating.  This was completed in order to enumerate the starting E. coli concentration, 

before disinfection.  Next, 25 mL was removed from each test bottle in order to measure 

turbidity.  The control bottle was then wrapped in aluminum foil and placed on its side in 

a 22.0°C incubator.  The test bottles were carried to the roof of Boynton Apartments, 

located on Boynton Street near WPI’s Environmental Engineering Laboratory, where 

they were placed on their sides on a white towel.  The sun intensity, weather conditions, 

and air temperature were recorded at the start of the experiment. 

 

3.1.3.5 Sampling Procedures 

To quantify the inactivation of bacteria in the test bottles, samples were taken at 15 

minute, 30 minute, or 1 hour intervals.  During each sampling session, the time, sun 

intensity, weather conditions, water temperatures, air temperature, and sample volumes 

collected were recorded.  The sun intensity was recorded first while the detector was 

horizontal and then while the detector was held above the head and pointed directly at the 

sun to avoid scattered light interference.  If cloud coverage was over an estimated 50%, 
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sun intensity readings during full sun exposure and during cloud cover were averaged.  

Because the test bottles are cylindrical, and therefore the test water is exposed to direct 

sunlight, the direct sun intensity readings are presented in Chapter 4.  Intensity readings 

are tabulated in Appendix A. 

 

During each sampling session, a small aliquot of 2 to 5 mL was removed from each bottle 

and brought to the laboratory.  A dilution series was carried out and at least three 

appropriate dilutions were plated in order to determine the concentration of bacteria 

remaining in the test and control bottles, and to calculate the log inactivation of the 

bacteria in the test and control bottles.  For the PBS only bottle, duplicate undiluted 

samples were plated. 

 

3.1.4 Test Procedures: Heating Only Experiments 

During the second phase of the experimental process, the effects of heating only on the 

inactivation of E. coli were tested.  As shown in Chapter 4, the highest temperature 

achieved during the solar radiation and heating experiments was 46°C.  Laboratory 

experiments were therefore conducted to evaluate the inactivation of E. coli by heating a 

test solution of PBS with E. coli to 46°C.  No turbidity was added to this sample because 

the sun experiments showed the quickest inactivation occurred in samples with no 

turbidity added.  Therefore, if notable inactivation did occur in this heated sample, further 

experiments would be conducted by varying turbidities and sample volumes. 
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A stock E. coli solution was cultured and prepared in the same manner as for solar 

radiation and heating experiments (see Section 3.1.3).  PBS was prepared and autoclaved 

in glass media bottles with no addition of turbidity.  A control bottle, a test bottle, and a 

bottle for reading temperature only were prepared by adding a calculated quantity of E. 

coli to the control bottle and the test bottle solutions.  The temperature only bottle was 

included to prevent contaminating the test bottle solution when taking temperature 

readings.  Approximately 3 mL was removed from each the control bottle and the test 

bottle in order to begin a dilution series for plating.  All three bottles were then covered 

with aluminum foil.  The control bottle was placed in a 22°C incubator and the test bottle 

and temperature only bottle were placed in a water bath. 

 

The temperature of the water bath was raised from 22.0°C in increments of 3-7°C 

approximately every half hour in order to achieve a maximum temperature of 46°C in the 

test solution.  The increase from 22°C to 46°C was spread out over a three- to four-hour 

period to mimic the temperature rise in the average experiment conducted in the sun. 

 

Every 10 minutes, the temperature only bottle was gently inverted to mix the solution and 

a temperature reading was taken.  If the sample was not 3°C or more higher than when 

the previous sample was taken, the test bottle was returned to the water bath.  If the 

sample was 3°C or more higher than the last time a sample was taken, the test bottle was 

removed from the water bath, gently inverted several times, and a 3 mL sample was 

taken.  A 3 mL sample was also then removed from the control bottle.  Dilution series 

were carried out and the samples were plated to determine the E. coli concentration. 
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3.2 Analytical Methods 

All processes were carried out using aseptic technique, including the use of 50% ethanol 

to sterilize workspaces and hands.  All glassware, test solutions, and medias were 

sterilized by autoclaving at 121°C for an amount of time recommended by the autoclave 

manufacturer (Sterilmatic Sterilizer, Market Forge Industries Inc., Everett, MA), 

according to the volumes being autoclaved.  Pre-sterilized pipette tips and petri dishes 

were used. 

 

3.2.1 Escherichia coli Culture 

E. coli was purchased in dehydrated form and rehydrated in the laboratory.  A stock 

culture was prepared and used to artificially contaminate the test solutions for each 

experiment.  The following sections detail the methods used in these processes. 

 

3.2.1.1 Frozen E. coli Culture 

E. coli #11775 was purchased from the American Type Culture Collection and received 

dehydrated.  To rehydrate the culture, one test tube of 5-6 mL of tryptic soy broth (TSB) 

was prepared and autoclaved.  Working in a sterile fume hood, the crimp was popped off 

the dehydrated culture vial and the stopper was removed from the vial using flamed 

tweezers.  1 mL of the autoclaved TSB was pipetted into the vial to rehydrate the pellet.  

The solution was then poured from the vial into the test tube, which was then incubated 

for 48 hours at 35°C.  10 mL of autoclaved 40% (by volume) glycerol was prepared.  
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After the 48 hour incubation period, the E. coli solution was removed from the incubator 

and 0.5 mL of the solution was pipetted into each of 10 sterile microcentrifuge tubes. 

0.5 mL of the glycerol solution was then added to each microcentrifuge tube.  The 

microcentrifuge tubes were then placed in a –70°C freezer. 

 

3.2.1.2 Liquid Stock Culture 

For each experiment, two 125 mL shaker flasks each with 50 mL of tryptic soy broth 

(TSB) were autoclaved and then brought to 35°C in an incubator.  Sixteen to eighteen 

hours before the start of an experiment, the E. coli frozen stock culture (see Section 

3.2.1.1) was removed from a -70°C freezer and brought to a laminar flow hood.  The 125 

mL shaker flasks containing 50 mL of TSB were inoculated each with one loopful of the 

frozen stock culture.  The frozen stock culture was returned to the -70°C freezer and the 

shaker flasks were placed on a platform shaker table set at 100 rpm in a 35°C incubator.  

The flasks were left for 16 to 18 hours. 

 

Approximately 1 hour prior to the beginning of each experiment, the centrifuge 

(Marathon 21000R, Fisher Scientific, Pittsburgh, PA) was cooled to 4°C.  The E. coli 

shaker flasks (incubated for 16-18 hours) were removed from the 35°C incubator.  The 

contents of one shaker flask were split into two Oakridge centrifuge tubes (Oakridge 50 

mL centrifuge tubes 3119-0050 PPCO, Nalge Company, Rochester, NY) and centrifuged 

at 3650 revolutions per minute (rpm) for 20 minutes at 4°C.  This formed a tight pellet in 

each tube.  The broth of one centrifuge tube was poured off and the pellet was 
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resuspended in 25 mL of 0.01 M PBS.  This liquid stock culture, or stock culture, 

contained an approximate concentration of 4x109 cells/mL. 

 

3.2.2 E. coli Enumeration 

The concentration of viable E. coli bacteria was enumerated by plating samples from 

each test bottle.  The samples were collected and a dilution series was performed; the 

dilutions needed for plating were estimated based on expected inactivation, with a target 

of 30-300 colony forming units (cfu) per plate.  Expected levels of inactivation were 

dependent upon the observed weather conditions, the air temperature, and the water 

temperatures of the test bottles. 

 

3.2.2.1 Dilution Series 

For each sample, a minimum of 3 dilutions was plated with 3 replicates of each dilution.  

First, a dilution series was completed in order to dilute the sample to achieve a target 

count of 30-300 cfu per plate.  The dilution series was carried out by diluting 1 mL of the 

sample into a test tube containing 9 mL of 0.01 M (1X) PBS.  This resulted in a 10-1 

sample.  Next, 1 mL of the 10-1 sample was diluted into another test tube containing 9 mL 

of 0.01M PBS, which resulted in a 10-2 sample.  This was continued to reach the 

necessary dilutions. 
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3.2.2.2 Pour Plate Method 

The concentration of viable E. coli was enumerated using the pour plate method 

according to Method 9215B of Standard Methods (APHA et al., 1998).  In this method, 

pre-sterilized 100 mm plates (in which 100 µL to 10 mL can be plated) were used.  The 

sample was pipetted into the center of the petri dish and 10 to 12 mL of tryptic soy agar 

was pipetted directly on top of the sample to ensure the sample was distributed evenly 

throughout the agar.  The dish was mixed using a figure-eight motion, then allowed to 

solidify for 5 to 8 minutes.  In addition, for each sample that was plated, one negative 

control (1 mL of PBS) was plated.  The dishes were then capped, inverted, and incubated 

at 35 to 37°C for 24 hours.  The colonies were then counted with the naked eye. 

 

3.2.3 Media 

The following sections detail the methods for preparing the tryptic soy broth used in the 

growth of E. coli bacteria, the tryptic soy agar used to enumerate the E. coli, and the 

phosphate buffered saline used as the test solution and for the dilution series. 

 

3.2.3.1 Tryptic Soy Broth 

Trypic soy broth (TSB) was prepared as the growth medium for the E. coli culture.  The 

dehydrated media was purchased from DIFCO (DF0370-17-3, Becton, Dickinson and 

Company, Sparks, MD) and prepared according to the manufacturer’s specifications. 

50 g of media was placed in a beaker with 1 L of E-pure water.  The broth was heated to 

dissolve the dehydrated media.  For growing E. coli, 50 mL of this broth was then 
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measured into 125 mL shaker flasks, capped, and autoclaved at 121°C for 15 minutes.  

After cooling, the flasks were refrigerated for no longer than 3 weeks at 4°C. 

 

3.2.3.2 Tryptic Soy Agar 

Tryptic soy agar (TSA) was prepared for use in the pour plate method by adding 15 g/L 

of dehydrated agar (BactoTM Agar 214010, Dickinson and Company, Sparks, MD) to 

tryptic soy broth as prepared in Section 3.2.3.1, before autoclaving.  The agar was heated 

and stirred until slightly boiling, when it was removed from the heat and poured into 

glass media bottles.  The agar was autoclaved at 121°C for 30 minutes then brought to 

47°C in a water bath before use in the pour plate method for enumerating bacteria.  

Unused agar was stored in a 4°C refrigerator for no longer than 3 months.  After 

refrigeration, autoclaved agar was re-autoclaved for 15 minutes to liquefy before use. 

 

3.2.3.3 Phosphate Buffered Saline 

Phosphate buffered saline was used as the primary test solution.  A 0.1 M (10 X) PBS 

solution was made by adding 80 g NaCl, 2.0 g KH2PO4, 2.0 g KCl, and 11.56 g Na2HPO4 

to a 1 L volumetric flask, which was then filled with E-pure water.  A pH of 

approximately 7.2 to 7.4 was verified with an Orion model 420A pH meter (Orion 

Research Inc., Beverly, MA).  This solution was stored for no longer than 4 weeks.  The 

0.1 M (10 X) solution was diluted 10-fold to create a 0.01 M (1 X) solution, which is the 

concentration used for experimental purposes.  The 0.01 M (1 X) solution was measured 

and autoclaved in media bottles according to the pre-determined quantity to be used for 



 37  

each experiment, and stored in the refrigerator for no longer than 4 weeks.  The evening 

before each experiment, the appropriate quantities of autoclaved solution were placed in a 

22.0°C incubator to allow the solution to reach room temperature. 

 

3.2.4 Turbidity 

Turbidity was added to specific test solutions in order to test the effects of higher 

turbidity levels on the inactivation of E. coli by solar disinfection.  Calculated quantities 

of montmorillonite clay (#28 153-0, Aldrich Chemical Company, Inc., Milwaukee, WI), 

based on a calibration curve, were added to achieve pre-determined turbidity levels.  The 

turbidity calibration curve is shown in Appendix B. 

 

Turbidity was measured with a 2100N Turbidimeter (Hach Company, Loveland, CO) 

according to Method 2130B of Standard Methods (APHA et al., 1998).  The samples 

were placed in glass turbidity vials and capped.  The exterior of the vials was cleaned 

with E-pure water and wiped with Kimwipes to remove particles and fingerprints.  

Turbidity readings were monitored for approximately 30-60 seconds, at which time an 

average reading was recorded. 

 

3.2.5 Total and Dissolved Organic Carbon 

A Total Organic Carbon Analyzer (Shimadzu TOC-5000, Shimadzu Corp., Kyoto, Japan) 

was used to test the pond water’s non-purgeable organic carbon (NPOC) content.  The  
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following sections describe the preparation of glassware and standards, the collection and 

preparation of the samples, and the operation of the analyzer. 

 

3.2.5.1 Glassware Preparation 

All glassware used for standard preparation was washed with soap and water and 

thoroughly rinsed.  The glassware was then soaked in a 20% sulfuric acid bath overnight 

before rinsing with Epure water 3 times.  The volumetric pipettes, volumetric flasks, and 

beakers were dried at 50°C and the autosampler vials were air-dried.  This process 

ensured that the glassware was organic-free before use. 

 

3.2.5.2 Preparation of Standards for Calibration Curve 

To make a calibration curve, a stock primary standard, intermediate standard, and four 

working standards were prepared.  To make the stock primary standard, 0.75 g of 

potassium hydrogen phthalate (KHP) was dried in an oven at 110°C for 30 minutes, then 

cooled in a desiccator for approximately 30 minutes.  0.5314 g was then measured using 

an analytical balance.  This was added to a 250 mL volumetric flask, which was then 

filled to mark with Epure.  This resulted in a stock primary 1000 mg/L KHP standard, 

where 1 mL is equal to 1 mg total organic carbon.  The standard was stored in a brown 

glass bottle in the refrigerator for no more than 3 weeks. 

 

The intermediate standard was prepared on the day of TOC/DOC analysis.  10 mL of the 

stock primary standard was pipetted into a 100 mL volumetric flask, which was then 
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filled to mark with Epure.  This resulted in an intermediate stock solution of 100 mg/L 

TOC.  The solution was stored in the refrigerator for no more than 2 days. 

 

The working standards were prepared to bracket the expected sample concentrations (up 

to 10 mg/L).  Four 100 mL volumetric flasks were half filled with Epure.  100 µL of 6 N 

HCl was added for NPOC analysis.  The first flask had no intermediate standard added, 

while the second, third, and fourth flasks had 2, 5, and 10 mL of intermediate standard 

added, respectively.  The flasks were then filled to mark with Epure.  This resulted in 

working standards with concentrations of 0 mg/L, 2 mg/L, 5 mg/L, and 10 mg/L, 

respectively. 

 

3.2.5.3 Collection and Preparation of Samples 

The TOC samples were collected and preserved with 100 µL of 6 N HCl per 100 mL of 

sample.  A pH of less than 2 was verified after acid addition.  The samples were stored in 

the refrigerator at 4°C until analysis.  The dissolved organic carbon samples were 

collected and filtered through a Whatman GF/C glass fiber filter with a 1.2 µm retention 

(Whatman International Ltd., Mardstone, England)  that was prewashed with 30 mL of 

Epure water.  The samples were preserved with HCl and stored at 4°C, as was done for 

the TOC samples. 
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3.2.5.4 Operation of the Shimadzu Analyzer 

To measure the total organic carbon and dissolved organic carbon of the pond water, the 

TOC analyzer was warmed up for 1 hour before use.  The autosampler tray was placed in 

the autosampler and once the machine was ready, as indicated by an “Initial Start” screen, 

gas flow was established from the cylinder to the analyzer.  A regulator pressure of 70-85 

psi was confirmed.  The following variables were verified and adjusted as necessary: gas 

cylinder pressure above 500 psi, rinse water bottle full, carrier gas pressure gage at 4-5 

kgf/cm2, carrier gas flowmeter at 150 mL/min, IC reaction vessel bubbling, humidifier 

water level adequate, and dehumidifier drain container full.  The furnace was then turned 

on.  The standards and samples that had been prepared beforehand (see Sections 3.2.5.2 

and 3.2.5.3) were loaded into the autosampler tray.  The sample measurement conditions 

(sample group number, type of analysis, and vial numbers) were entered.  For both 

standards and samples, the average concentration of 3 injections was used, with a 

maximum of 5 injections per sample.  The allowable standard deviation between 

repetitive measures was set to 200 with a coefficient of variation of 2.0%.  A sparge time 

of 3 minutes was set for NPOC analysis.  The ASI conditions were set so that the 

autosampler rinsed the needles and flow lines to prevent cross-contamination between 

samples. 

 

3.2.6 Solar Radiation 

The solar irradiance was measured during each sampling session using an IL1400 

Radiometer (International Light, Inc., Newburyport, MA).  Measurements of solar 

wavelengths below 315 nm were measured with a SEL240 (#5849) detector with a 
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SPS300 (#24253) filter.  A WBS320 (#24581) filter attached to a SEL005 (#782) detector 

was used to measure the intensity of solar wavelengths below 400 nm.  Readings were 

taken with the solar detectors lying flat near the test bottles and also with the detectors 

held overhead, pointed directly at the sun.  The direct solar intensity readings are 

presented in the results because they most accurately represent the intensity of sunlight 

affecting the test bottles.  Although the test bottles were laid flat on the rooftop, they were 

made entirely of clear plastic and would therefore be affected by direct sunlight. 

 

3.2.7 Bottle Sterilization 

The plastic test bottles and caps were sterilized the evening before each experiment.  

First, the surfaces were sprayed with 50% ethanol.  Next, the interiors of the bottles were 

washed three times, each with approximately 20 mL of 70% ethanol.  The interiors were 

then rinsed three times with approximately 50 mL of autoclaved Epure water.  Last, a 

mercury pen lamp (Pen-Ray 90-0004-01, UVP Inc., Upland, CA) was placed inside each 

bottle to expose the interior of the bottle to light at a bactericidal wavelength of 254 nm 

for 20 minutes.  The caps were placed approximately six inches under a germicidal UV 

lamp (UVP Multiple-Ray 8 Watt Laboratory Lamp) with a shortwave germicidal UV-C 

bulb (Sankyo Denki Ultraviolet Germicidal Lamp, Sankyo Denki Co., Japan) for 20 

minutes.  After sterilization, the bottles were capped and left in the laminar flow hood 

until use the next morning. 
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4 Results 

The impact of several variables on the inactivation of E. coli by solar radiation and 

heating were tested.  Table 4-1 summarizes the experiments that were conducted.  Total 

disinfection time was varied from four to eight hours.  Turbidity values ranging from no 

turbidity to approximately 200 ntu were tested.  The effects of sample volume were also 

tested using 825 mL, 1.3 L, and 1.9 L sample volumes in 1 L, 1.5 L, and 2.0 L sample 

bottles, respectively.  When using montmorillonite clay as an artificial turbidity source, 

the clay particles settled between sampling sessions.  A natural water source with 

suspended solids was therefore used to test water with natural turbidity and organic 

matter.  The number of experiments conducted to test each variable was dependent upon 

weather conditions.  The results of these experiments are presented in the following 

sections.  Tabulated results are presented in Appendix A (solar intensity readings) and 

Appendix C (enumeration data). 

 

Table 4-1: Experimental variables. 

Disinfection 
Scheme 

Date Sample 
Solution 

Turbidity (ntu) Bottle 
Volume 

6 August 2002 0.15 1 L 
12 August 2002 0.18, 20.8, 107, 

219 
1 L 

14 August 2002 0.95, 17.2, 112 1 L 
27 August 2002 1.13, 18.5, 112 1 L 
5 September 2002 1.05, 17.4, 121 1 L 
10 September 2002 

PBS 

Not recorded - No 
turbidity added 

1 L, 1.5 L, 
2 L 

Solar 
radiation 
and heating 

25 September 2002 PBS & 
Pond 

0.81, 4.51, 9.68 1 L 

18 December 2002 
8 January 2003 

Heating 

29 January 2003 

PBS 
 

Not recorded - No 
turbidity added 

1 L 
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4.1 Transmittance of Sunlight Through Bottles 

The transmittance of sunlight though the plastic bottles was tested.  Three different bottle 

sizes were used.  Measurements were taken using the detector that measures solar 

radiation wavelengths below 400 nm.  First, solar intensity readings were taken while the 

detector was laid flat.  Readings were then taken while the detector was held overhead 

and aimed directly at the sun.  Next, readings were taken with the detector placed inside 

each bottle when the bottle was laid flat.  The bottle and detector were then held overhead 

to obtain a direct solar intensity reading.  Last, the detector was removed from the bottle 

and another set of horizontal and direct solar intensity readings were taken to ensure sun 

conditions had not significantly changed during the bottle readings.  Table 4-2 

summarizes the results from this test.  As seen by the readings, the plastic of each bottle 

interfered with the passage of solar light.  The plastic reduced the intensity of sunlight on 

average by 0.9 J/cm2 (27%) when measured horizontally, and 1.3 J/cm2 (31%) when 

measured directly.  Because transmittance readings were similar for the different bottles, 

it is likely that plastic thickness and composition was not a significant factor in the 

experiments.  With the exception of the experiment on 10 September 2002, the 1 L 

Aquafina bottles were used in all experiments. 

 

4.2 Exposure Time 

A preliminary experiment was conducted to determine an exposure time needed for the 

solar radiation and heating experiments.  The experiment was conducted on 6 August 

2002 over eight hours, from 0830 to1640 hours.  A control bottle and a test bottle were 
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Table 4-2: Sunlight intensity passing through plastic sample bottles. 

Placement of 
Detector 

Aquafina 
1 L 

(J/cm2) 

Glaceau 
1.5 L 

(J/cm2) 

Price Chopper 
2.0 L 

(J/cm2) 
H – Sun 3.43 3.43 3.44 
D – Sun 4.25 4.25 4.18 
H – Inside bottle 2.50 2.57 2.40 
D – Inside bottle 2.86 2.91 2.94 
H – Sun 3.45 3.44 3.41 
D – Sun 4.25 4.21 4.26 

  H = Detector/bottle placed horizontally. 
  D = Detector/ bottle aimed directly at sun. 

 

prepared and spiked with E. coli to attain a starting concentration of 106 cfu/mL.  The 

control bottle was kept in the dark at room temperature throughout the duration of the 

experiment to verify that the E. coli did not multiply or die.  The test bottle was placed on 

the rooftop.  Sampling was conducted and water temperature, air temperature, and solar 

radiation readings were taken at least every hour for the duration of the experiment. 

 

The inactivation results in the test and control bottles are shown in Figure 4-1.  The 

control bottle had a consistent E. coli count throughout the duration of the experiment.  

However, the plates from the test bottle showed abnormal growths approximately two 

hours into the experiment.  There were approximately 1 to 9 unidentifiable growths on 

plates with 0 to up to 111 E. coli cfu.  The abnormal growths were irregular and rhizoid 

in shape, had lobate edges, and a convex, smooth, dull surface.  These growths were not 

noticed on plates prior to the two-hour mark.  It is unknown if the abnormal growths were 

present in the test bottle before the experiment began or if the sample became 

contaminated during the experiment. 
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Figure 4-1: Log inactivation of E. coli on 6 August 2002 over an eight-hour exposure 
time. 

 

Based on counts of colonies with characteristics of E. coli, there was a 1-log inactivation 

of E. coli bacteria after 1 hour of exposure.  All plates after the two-hour mark did not 

have any growths that were positively identified as E. coli growths.  Taking this into 

account, approximately 5 to 6 log inactivation of E. coli was achieved after 2 hours of 

exposure time.  The maximum temperature achieved in the test sample was 33°C, which 

was reached within 5 hours of exposure time.  Based on the results of this experiment, the 

duration of most experiments was reduced to approximately 4 hours, from 0900 to 1300 

hours.  For this experiment, the bottles had been sterilized by setting the bottles under the 

germicidal UV lamp for 15 minutes, then the interiors were rinsed 3 times with 70% 

ethanol and 3 times with autoclaved Epure water.  Due to the presence of the abnormal 
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growths, the bottle sterilization process was then altered to the procedure specified in 

Section 3.2.7.  The unidentified growths were not significant in subsequent experiments. 

 

4.3 Turbidity Variations 

Solar disinfection tests were conducted to compare its effectiveness on low turbidity 

samples versus high turbidity samples.  Figure 4-2 shows the log inactivation of E. coli 

for a no turbidity sample and 20.8 ntu, 107 ntu, and 219 ntu samples over an eight-hour 

exposure time on 12 August 2002. 
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Figure 4-2: Log inactivation of E. coli on 12 August 2002 for varying turbidity 
samples versus time. 
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In general, it took longer for the higher turbidity samples to achieve the same log 

inactivation as the lower turbidity samples.  After 2 hours of exposure time, the 219 ntu 

sample had a 3.5-log inactivation of E. coli while the 20.8 ntu sample had almost 6-log 

inactivation.  However, all samples had achieved complete inactivation (no detectable 

counts) of E. coli within a 4-hour time span.  Therefore, it appears that turbidity is not a 

significant variable when values range from approximately 0 to 200 ntu, given that the 

samples are exposed to sunlight for at least 4 hours.  If drinking water samples are left in 

full sunlight from sunrise to midday, this treatment time requirement will be met. 

 

As shown in Table 4-3, the maximum temperature achieved in the sample with no added 

turbidity was 45°C; the sample had been exposed to the sun for 7 hours at this time.  Both 

the 107 ntu sample and the 219 ntu sample reached 46°C in 7 hours.  The 20.8 ntu sample 

reached a maximum temperature of 45°C in 6 hours.  The rises in water temperatures 

correlate to rises in air temperature, although the air temperature began to decrease after 6 

hours of exposure time and the water temperatures still increased slightly.  This may 

possibly be attributed to a release of heat by the turbidity particles.  However, the 

differences in temperature between the different samples was 1°C or less and therefore 

was not considered significant. 

 

The 20.8 ntu sample had a 5.7-log inactivation of E. coli after 2 hours of exposure time, 

when the water temperature had reached 37.0°C.  The 107 ntu sample achieved the same 

inactivation after 3 hours of exposure (reaching 41.5°C).  Complete inactivation in the 

219 ntu sample was achieved after 4 hours of exposure when the sample achieved a 
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Table 4-3: Temperature (°C) achieved in test samples on 12 August 2002. 

Sample Temperature (°C) 
Elapsed Time 

(hours) 0.179 ntu 20.8 ntu 107 ntu 219 ntu 

Air 
Temperature

(°C) 
0 23.5 23.5 23.5 23.5 NR 
1 NR 31.5 31.5 32.0 27.5 
2 36.0 37.0 38.0 38.0 33.0 
3 NR 410 41.5 41.5 35.5 
4 NR 44.0 44.5 44.5 36.5 
5 44.0 44.5 45.0 45.5 38.0 
6 NR 45.0 45.5 45.5 39.0 
7 45.0 45.0 46.0 46.0 36.5 
8 43.5 43.5 43.0 43.0 35.5 

 
 NR = Not Recorded. 
 

 

temperature of 44.5°C.  Due to the difference between temperatures of the samples when 

they reached complete inactivation of E. coli, it is likely that temperature was not a 

significant factor in disinfecting the samples.  This conclusion is further supported by the 

heating-only experiments described in Section 4.7, in which less than 0.5-log inactivation 

was reached with temperatures up to 46.0°C. 

 

The experiment described above shows that the 107 ntu sample and the 219 ntu sample 

both required more time to achieve complete inactivation than the 20.8 ntu sample.  This 

conclusion was used to design the remaining experiments.  All experiments following the 

12 August 2002 experiment were conducted on samples with a maximum turbidity level 

of approximately 100 ntu.  After the preliminary experiments testing turbidity differences 

(0-200 ntu) on 12 August 2002, three additional experiments were conducted on three 

separate days to further examine the effect of turbidity as well as to examine the effect of 
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varying sunlight conditions.  The sample turbidities were approximately 0 ntu, 20 ntu, 

and 100 ntu and the experiments were conducted on 14 August, 27 August, and 5 

September 2002.  Figure 4-3 presents the results of one of these experiments (conducted 

on 14 August 2002), showing the impact of turbidity on E. coli inactivation over a 4-hour 

sunlight exposure time.  After 1 hour of exposure to sunlight, there was a 4.6-log, 2.2-log, 

and a 1.1-log inactivation of E. coli in the 0.95, 17.2, and 112 ntu turbidity samples, 

respectively.  Three hours was needed to achieve 7-log inactivation in the higher turbidity 

samples, compared to only 1 hour in the no turbidity sample.  Similar results were found 

during the other two experiments conducted on 27 August and 5 September 2002 (data 

shown in Appendix C). 
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Figure 4-3: Log inactivation of E. coli on 14 August 2002 for varying turbidity 
samples versus time. 
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4.4 Solar Radiation Variations 

The three experiments described in Section 4.3 were conducted on three separate days, 

which varied in sun and cloud conditions.  Therefore, the data from the experiments was 

used to evaluate the impact of solar intensity on inactivation.  The inactivation results in 

the samples with approximately 20 ntu turbidity are presented in Figure 4-4.  For these 

experiments, sample conditions were kept as consistent as possible, with the only 

differences being in weather: sunlight intensities, air temperatures, and water 

temperatures.  The cumulative intensity of wavelengths below 400 nm needed to achieve 

complete inactivation (no detectable counts) varied for the three days.  The intensities 

were 58.4 J/cm2 (14 August),  70.3 J/cm2 (27 August), and 99.8 J/cm2 (5 September). 
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Figure 4-4: Comparison of similar turbidity samples tested on three different days. 
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The notable differences in the three days lay in the fact that there was lower cumulative 

sunlight intensity on 14 August.  However, temperatures were highest on this day, and 

the air temperature reached 37.5°C.  Figure 4-5 shows the water temperatures recorded 

throughout the course of each experiment.  The water temperatures were the highest on 

14 August, with a maximum of 46.0°C.  A maximum air temperature of 31.0°C and water 

temperature of 38.0°C were reached on 27 August 2002.  On 5 September 2002, the air 

temperature maximum was 25.0°C with a high water temperature of 32.0°C. 

  

20

25

30

35

40

45

50

0 1 2 3 4
Elapsed Time (hours)

W
at

er
 T

em
pe

ra
tu

re
 (C

) 

17.2 ntu; 14 August 2002
18.5 ntu; 27 August 2002
17.4 ntu; 5 September 2002

 

Figure 4-5: Temperature variances for similar turbidity samples on three 
experiment days. 
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In analyzing the results of the three experiments described above (see data in  

Appendix A), it was found that the minimum fluence of wavelengths below 400 nm 

required for approximately 7-log inactivation of E. coli in a sample with no added 

turbidity was 20.8, 70.3, and 70.5 J/cm2 (on 14 August, 27 August, and 5 September 

2002, respectively).  Samples with approximately 20 ntu on these same days required a 

fluence of 58.4, 70.3, and 99.8 J/ cm2 for 7-log inactivation; 100 ntu samples also had 7-

log inactivation after fluences of 58.4, 97.2, and 99.8 J/ cm2.  The wide ranges of the 

minimum solar radiation doses required to disinfect the samples may be explained by the 

weather that characterized each day.  On 14 August 2002, the sky was cloudless although 

very hazy.  This day had the lowest recorded solar intensities, and the smallest fluences 

required for complete inactivation of E. coli in each bottle.  Higher water temperatures 

and higher air temperatures were achieved on this day due to consistently sunny 

conditions during the experiment.  In contrast, there was up to 40% cloud coverage on 27 

August and approximately 60% cloud coverage on 5 September 2002.  Average intensity 

readings (average of full sunshine and cloud cover) were calculated for these two days; 

however, actual intensities reaching the bottles could have varied throughout the day due 

to variations in cloud coverage. 

 

4.5 Volume Variations 

An experiment was conducted on 10 September 2002 to determine the relationship 

between sample volume and log inactivation.  An 825 mL sample in a 1.0 L bottle, a 

1.3 L sample in a 1.5 L bottle, and a 1.9 L sample in a 2.0 L bottle were tested.  The 

sample bottles were not completely filled with solution because, in order to ensure the 
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test solutions did not become contaminated, the bottle openings needed to be flamed both 

before and after removing samples.  Had the bottles been completely filled, the test 

solution would have spilled out while attempting to flame the openings.  Previous 

researchers have also recommended filling the bottles only ¾ full to increase the 

dissolved oxygen in the water to be treated by shaking (EAWAG, 2003).  Although the 

impact of dissolved oxygen on the solar disinfection process was not evaluated, the air 

space in the bottle allowed for oxygen equilibrium with the sample solution. 

 

It was hypothesized that the larger volume samples would take longer for inactivation 

than the smaller sample volumes due to the larger bottle diameters and potential 

absorbance of solar radiation by the uppermost portion of water.  The results are shown in 

Figure 4-6.  All samples had similar log inactivation rates of E. coli after three hours of 

exposure time.  However, there were differences in inactivation rates with shorter 

exposure times.  For example, at 1 hour, the 1.5-L bottle had 3.3-log inactivation, 

compared to 1.3- and 2.0-log inactivation in the 1.0-L and 2.0-L bottles, respectively.  

The 1.5-L bottle sample had the quickest inactivation, with 7-log inactivation in 2 hours 

of exposure time compared to the 3 hours of exposure time required in the 1.0 and 2.0-L 

samples.  However, only diluted samples of the 1.5 L sample bottle were plated after the 

2-hour exposure time.  Any bacteria that were still viable may therefore have been diluted 

beyond detection.  Inactivation rate differences between the three sample bottles may also 

be explained by the differences in plastic thickness.  A bottle made with thinner plastic 

might compensate for a larger sample volume by allowing a greater percentage of 

wavelengths to penetrate.  However, as discussed in Section 4.1, it is not likely that the 
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plastic thickness had a significant impact on the disinfection process.  It is more likely 

that the water depths were similar enough that the passage of sunlight through the 

samples was similar for all three bottles, given long enough exposure time. 
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Figure 4-6: Log inactivation using 1.0-, 1.5-, and 2.0-L bottles. 
 

4.6 Natural Water 

An experiment was conducted on 25 September 2002 to compare the results of using PBS 

as a test solution to that of using pond water.  Measurements and visual observations 

were made first in order to characterize the pond water.  The pond water’s non-purgeable 

organic carbon content was tested.  Total organic carbon and dissolved organic carbon, 

important components of the carbon cycle, were measured as indicators of water quality.  
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Their values are influenced by vegetation and climate, among other factors, and have 

significant influences on biogeochemical processes, nutrient transportation, and chemical 

reactions.  The pond water had an average dissolved organic carbon concentration of 7.04 

mg/L and a total organic carbon concentration of 7.90 mg/L.  The range of TOC values 

typically found in surface waters is 1 – 20 mg C/L  (AWWA, 1999).  The use of pond 

water in this experiment was also chosen because of the natural turbidity found in such 

samples.  In using a natural water source, the test focus was to determine whether 

suspended turbidity particles interfered with the solar disinfection process. 

 

This experiment relates the results from previous experiments, in which PBS was the test 

solution, to the expected results when using natural water.  The experiment was 

conducted using 1 L sample bottles.  The first sample solution was PBS; the second 

sample was 50% PBS and 50% pond water; and the third sample was pond water only.  

The temperature of the pond water only sample was slightly, though consistently, higher 

than both the PBS solution and the combined sample solution (see Appendix D for 

tabulated results).  From 0 to 42.5 J/cm2, all samples achieved increasing inactivation, yet 

there was up to 1.92-log difference between the samples at 26 J/cm2.  However, what is 

significant is that all three samples had similar results for the log inactivation of E. coli 

given exposure greater than 42.5 J/cm2.  As seen in Figure 4-7, all three samples achieved 

approximately 7-log inactivation of E. coli after exposure to a cumulative intensity of 

62.2 J/cm2 of wavelengths below 400 nm. 
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Figure 4-7: Log inactivation of samples versus cumulative sunlight intensity. 

 

Initial turbidity readings were taken before the start of the experiment.  The PBS only 

sample had a turbidity of less than 1 ntu; the combined sample had a turbidity of 8.42 ntu; 

and the pond water sample had a turbidity of 18.7 ntu.  After 30 minutes of letting the 

samples stand, the turbidities of the combined sample and the pond water sample were 

read again.  Each sample had an approximately 50% drop in turbidity due to a settling of 

particles: the combined sample was at 4.51 ntu and the pond water sample was at 9.68 

ntu.  The fact that the turbidity readings were less than 10 ntu, and therefore turbidity was 

not a significant factor in the results (EAWAG, 2003), is most likely the reason the 

inactivation results were similar for all three samples. 
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4.7 Heating Only Experiments 

Three replicate experiments were conducted to determine the effects of heating on the 

inactivation of E. coli.  A control bottle was prepared with PBS and spiked with E. coli.  

The bottle was kept in the dark at room temperature throughout the duration of each 

experiment.  A test bottle was prepared using PBS spiked with E. coli.  Light interference 

could possibly affect the inactivation of the bacteria and was therefore eliminated by 

wrapping the test bottle in aluminum foil.  The temperature of the test bottle was 

controlled using a water bath. 

 

Figure 4-8 displays the results of these experiments.  There was less than 0.5 log 

inactivation or growth of E. coli in each experiment for any given temperature.  

Therefore, heating the samples to 46°C in the absence of sunlight did not reduce E. coli 

concentrations.  Inactivation of E. coli when samples were exposed to the effects of solar 

radiation and heating can therefore be attributed to the bactericidal effects of solar 

radiation or the synergistic effects of irradiation and heating. 

 

4.8 Conclusion 

In general, sample volume was found to be an insignificant factor in sample bottles up to 

2 L when samples were exposed to 3 hours of sunlight.  Sample water with turbidity 

values from <1 ntu to slightly more than 200 ntu have similar log inactivation with 4 

hours of exposure time.  The following chapter provides a more specific discussion of the 

results obtained during these experiments. 
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Figure 4-8: Results of heating-only experiments on E. coli inactivation. 

(Open symbols show log-inactivation versus time; closed symbols display increases in 
temperature over time.  Experiment was conducted in triplicate.) 
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5 Conclusions 

This thesis research was conducted to study the effects of numerous variables on the 

disinfection properties of solar radiation and heating.  The variables tested were turbidity, 

sample volume, and exposure time.  The samples were exposed to sunlight during sunny 

or partly sunny days during the summer and early fall.  Experiments were also conducted 

in the laboratory to quantify the effect of only heating a sample.  In analyzing the results 

from these experiments, the following conclusions were drawn: 

 

1. Exposure to wavelengths below 400 nm at a minimum intensity of 20.8 J/cm2 resulted 

in a 7-log inactivation of E. coli bacteria in a sample with no turbidity on 14 August 

2002.  This was possible with an exposure time of approximately 2 hours.  However, 

it is recommended that samples be exposed to direct sunlight for at least 4 hours 

because of all the experiments conducted on samples with no turbidity, there were no 

detectable counts after 4 hours of exposure time. 

 

2. The E. coli bacteria were completely inactivated in samples ranging from 0 ntu to 219 

ntu with 4 hours of sunlight exposure time.  If drinking water samples with turbidity 

values below 219 ntu are exposed to sunlight during the course of an entire day, there 

is no significant difference in bacterial inactivation levels due to interference of 

turbidity particles. 

 

3. Samples in 1.0 L, 1.5 L, and 2.0 L bottles experienced similar E. coli disinfection 

rates with exposure times of 3 hours.  Water volumes from 1 to 2 L can therefore be 
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treated in approximately the same amount of time, given that plastic thickness does 

not interfere with the passage of solar radiation to the water sample.   

 

4. The results from an experiment comparing the use of PBS, 50% PBS and 50% pond 

water, and pond water as test solutions showed that all sample solutions experienced 

similar inactivation rates.  All three sample solutions had approximately 7-log 

inactivation of E. coli in 4 hours of exposure time.  Therefore, source water with 

properties similar to the pond water used in this research can be disinfected with solar 

disinfection. 

 

5. A fluence of wavelengths below 400 nm must be at least 20.8 J/cm2 for a 7-log 

inactivation of E. coli in samples with approximately 0 ntu.  Samples with up to 100 

ntu require a fluence of 58.4 to 99.8 J/cm2 for the same inactivation.  A cumulative 

intensity of 99.8 J/cm2 is therefore sufficient for a 7-log E. coli inactivation in 

samples ranging from no turbidity up to 100 ntu.  The intensity of sunlight must be 

evaluated on an individual site-specific basis to ensure that the necessary treatment 

dose is met. 

 

6. Temperatures up to 46°C have no significant effect on the disinfection of E. coli 

bacteria.  The inactivation properties of solar disinfection are therefore due to its solar 

radiation component, or the synergistic effects of sunlight and heat. 
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6 Recommendations 

Due to limited resources and time, the following section details recommendations for 

future research. 

 

1. A pond water sample with natural turbidity was tested, yet the turbidity level was less 

than 10 ntu.  Because the turbidity settled, it is recommended that water samples with 

higher levels of suspended particles be tested.  The interference of the particles can 

therefore be studied more extensively. 

 

2. E. coli is a common test organism and inactivation results correlate to the effects of 

solar disinfection on other organisms such as pathogenic bacteria.  However, it is 

recommended that solar disinfection tests be conducted on organisms other than 

bacteria.  For example, studies are lacking on the effects of solar disinfection on 

spore-forming organisms and protozoa. 

 

3. The plates from the test bottles had abnormal growths during the initial testing 

phases.  The organisms did not have the characteristic appearance of E. coli and were 

not positively identified.  It is likely that the organisms had adhered to the interior of 

the test bottles and were not inactivated during the alcohol washing and UV 

treatments.  Studies should be conducted to determine whether ingestion of these 

organisms is harmful and whether inadequate disinfection of the bottles before use 

could possibly be a downfall of the procedure. 
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4. The bottles used for the experiments were bought in a local grocery store in the 

United States.  While most plastic bottles are made from similar materials, certain 

areas in other parts of the world may only supply plastic bottles that are colored or 

that are differently shaped.  Before implementing this procedure for use, an 

evaluation must be made regarding the size and characteristics of bottles that can be 

found in the local area.  Tests should then be conducted to determine whether these 

bottles are suitable for use in solar disinfection.  This will also allow the researchers 

to test whether the local water is adequately treated with the process. 
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Appendix A 

 
 

Tabulated direct solar intensity readings (mW/cm2) for solar radiation and heating 
experiments.  Cumulative intensity readings were calculated by multiplying average 

direct solar intensity readings by time (seconds) to get J/cm2. 
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Date 
 
 

Time 
 
 

Intensity Readings of 
Solar Wavelengths 

Below 315 nm 
(mW/cm^2)  

Cumulative 
Intensity of Solar 

Wavelengths 
Below 315 nm 

(J/cm^2) 

Intensity Readings 
of Solar 

Wavelengths 
Below 400 nm 

(mW/cm^2) 

Cumulative 
Intensity of Solar 

Wavelengths Below 
400 nm (J/cm^2) 

830 0.037 0.000 1.917 0.000 
925 0.077 0.325 2.63 12.959 
1033 0.128 0.989 3.7 33.468 
1130 0.172 1.862 4.39 57.010 
1230 0.17 2.888 4.56 83.860 
1330 0.129 3.785 4.56 111.220 
1430 0.138 4.586 4.26 137.680 
1530 0.123 5.369 3.77 161.770 

6-Aug-02 

1630 0.072 5.954 2.4 180.280 
840 0.048 0.000 2.044 0.000 
940 0.092 0.420 3.09 15.402 
1040 0.129 1.083 3.7 35.772 
1140 0.139 1.887 3.84 58.392 
1240 0.15 2.754 3.57 80.622 
1345 0.131 3.639 3.75 103.680 
1440 0.12 4.355 3.54 124.457 
1540 0.086 4.973 2.87 143.687 

12-Aug-02 

1640 0.046 5.369 1.93 158.087 
906 0.064 0.000 2.32 0.000 
920 0.07 0.056 2.53 2.037 
940 0.078 0.145 2.57 5.097 
1000 0.09 0.447 3.01 15.141 
1030 0.104 0.622 3.34 20.856 
1100 0.119 1.090 3.6 35.430 
1200 0.147 1.888 4.07 58.440 

14-Aug-02 

1300 0.146 2.767 4.02 82.710 
900 0.068 0.000 2.72 0.000 
920 0.078 0.088 2.90 3.372 
940 0.100 0.194 3.50 7.212 
1000 0.118 0.587 3.80 20.352 
1030 0.134 0.814 3.93 27.309 
1100 0.150 1.410 4.20 44.382 
1200 0.161 2.343 4.43 70.272 

27-Aug-02 

1300 0.169 3.333 4.56 97.242 
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900 0.067 0.000 2.84 0.000 
920 0.085 0.091 3.26 3.660 
940 0.097 0.200 3.57 7.758 
1000 0.111 0.575 3.86 21.132 
1030 0.068 0.736 3.43 27.693 
1100 0.160 1.215 4.14 43.590 
1200 0.175 2.220 4.84 70.530 

5-Sep-02 

1300 0.182 3.291 4.91 99.780 
900 0.060 0.000 2.47 0.000 
1000 0.094 0.462 3.14 16.830 
1100 0.139 1.161 3.89 37.920 
1200 0.153 2.037 4.27 62.400 
1300 0.145 2.931 4.02 87.270 
1400 0.139 3.783 4.04 111.450 

10-Sep-02 

1500 0.103 4.509 3.43 133.860 
900 0.042 0.000 1.57 0.000 
930 0.055 0.087 1.94 3.164 
1000 0.064 0.337 1.97 11.375 
1030 0.081 0.468 2.53 15.424 
1100 0.086 0.818 2.55 26.092 
1200 0.104 1.388 2.93 42.532 

25-Sep-02 

1300 0.132 2.096 3.64 62.242 
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Appendix B 

 
 

Turbidity calibration curve using PBS and montmorillonite clay. 
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Turbidity Calibration Curve

y = 1728.7x
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Montmorillonite 
clay 

(g/100 mL) 

Clay Required 
for 800 mL 

Sample 
(g/800 mL) 

Turbidity 
(ntu) 

0.0254 0.2032 37.3 
0.0046 0.0368 5.9 
0.0013 0.0104 2.1 
0.0026 0.0208 4.2 
0.0107 0.0856 15.4 
0.0022 0.0176 2.8 
0.0137 0.1096 19.5 
0.0038 0.0304 4.5 
0.0270 0.2160 36.7 
0.0135 0.1080 20.8 
0.0182 0.1456 24.8 
0.0280 0.2240 36.6 
0.0287 0.2296 38.6 
0.0147 0.1176 21.9 
0.0112 0.0896 16.0 
0.0123 0.0984 17.9 
0.0487 0.3896 79.1 
0.0700 0.5600 123.0 
0.0737 0.5896 127.0 
0.0988 0.7904 169.0 
0.0595 0.4760 100.0 
0.0538 0.4304 83.5 
0.0628 0.5024 110.0 
0.0436 0.3488 75.2 
0.1008 0.8064 198.0 
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Appendix C 

 
 

Results for all experiments. 
Bolded numbers are inserted detection limits where no detectable counts had been found.  

All counts are in cfu/mL. 
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Time 
Elapsed 
Hours 

A-E. coli 
Count 

A-Log 
N/No 

B-E. coli 
Count 

B-Log 
N/No 

C-E. coli 
Count 

C-Log 
N/No 

D-E. coli 
Count 

D-Log 
N/No 

E-E. coli 
Count 

E-Log 
N/No 

6 August 2002 
  Control  0 ntu        

830 0 556667 0.00 910000 0       
925 0.95 615000 0.04 57500 -1       
1033 2.03 515000 -0.03 4 -5       
1130 3 620000 0.05 3 -6       
1230 4 620000 0.05 4 -5       
1330 5 485000 -0.06 4 -5       
1430 6 550000 -0.01 4 -5       
1530 7 515000 -0.03 3 -6       
1630 8 485000 -0.06 7 -5       
12 August 2002 

  Control  0 ntu  20.8 ntu  107 ntu  219 ntu  
840 0 433333 0.00 540000 0.00 625000 0.00 690000 0.00 525000 0.00 
940 1 475000 0.04 123 -3.64 1463 -2.63 54667 -1.10 54000 -0.99 
1040 2 1366667 0.50 1 -5.73 1 -5.80 10 -4.84 105 -3.70 
1140 3 660000 0.18 1 -5.73 1 -5.80 1 -5.84 14 -4.57 
1240 4 745000 0.24 1 -5.73 1 -5.80 1 -5.84 1 -5.72 
1345 5 313333 -0.14 1 -5.73 1 -5.80 1 -5.84 1 -5.72 
1440 6 590000 0.13 1 -5.73 1 -5.80 1 -5.84 1 -5.72 
1540 7 565000 0.12 1 -5.73 1 -5.80 1 -5.84 1 -5.72 
1640 8 570000 0.12 1 -5.73 1 -5.80 1 -5.84 1 -5.72 
14 August 2002 

  Control  0.95 ntu  17.2 ntu  112 ntu    
0906 0 10050000 0.00 13666667 0.0 8000000 0.0 11333333 0.0   
0920 0.14 omitted omitted 8500000 -0.2 11500000 0.2 9833333 -0.1   
0940 0.34 omitted omitted 1183333 -1.1 3933333 -0.3 8800000 -0.1   
1000 0.94 22500000 0.35 330 -4.6 49667 -2.2 923333 -1.1   
1030 1.24 omitted omitted 1 -7.1 610 -4.1 27967 -2.6   
1100 1.94 omitted -0.32 1 -7.1 2 -6.7 79 -5.2   
1200 2.94 4800000 -0.24 1 -7.1 1 -6.9 1 -7.1   
1300 3.94 5800000 0.00 1 -7.1 1 -6.9 1 -7.1   
27 August 2002 

  Control  1.13 ntu  18.5 ntu  112 ntu    
0900 0 9966667 0.00 6566667 0.0 9500000 0.0 8800000 0.0   
0920 0.2 omitted omitted 8866667 0.1 10466667 0.0 7100000 -0.1   
0940 0.4 omitted omitted 7133333 0.0 2370000 -0.6 5100000 -0.2   
1000 1 5733333 -0.24 28067 -2.4 165333 -1.8 1983333 -0.6   
1030 1.3 omitted omitted 493 -4.1 640 -4.2 75667 -2.1   
1100 2 8300000 -0.08 16 -5.6 57 -5.2 1480 -3.8   
1200 3 2700000 -0.57 1 -6.8 1 -7.0 45 -5.3   
1300 4 8700000 -0.06 1 -6.8 1 -7.0 2 -6.7   
5 September 2002 

  Control  1.05 ntu  17.4 ntu  121 ntu    
0900 0 12900000 0.0 17766667 0.0 10366667 0.0 12066667 0.0   
0920 0.2 omitted omitted 9666667 -0.3 11666667 0.1 9033333 -0.1   
0940 0.4 omitted omitted omitted omitted 7466667 -0.1 6600000 -0.3   
1000 1 13600000 0.0 363333 -1.7 2116667 -0.7 9833333 -0.1   
1030 1.3 omitted omitted 18800 -3.0 19767 -2.7 1273333 -1.0   
1100 2 15200000 0.1 85 -5.3 787 -4.1 omitted -2.8   
1200 3 7700000 -0.2 3 -6.8 7 -6.2 303 -4.6   
1300 4 11833333 0.0 1 -7.2 1 -7.0 5 -6.4   
10 September 2002 

  Control  1.0 L  1.5 L  2.0 L    
0900 0 9133333 0.0 11733333 0.0 11666667 0.0 9200000 0.0   
1000 1 12833333 0.1 540000 -1.3 6067 -3.3 84667 -2.0   
1100 2 4700000 -0.3 21 -5.8 1 -7.1 33 -5.4   
1200 3 11366667 0.1 2 -6.8 1 -7.1 1 -7.0   
1300 4 13500000 0.2 1 -7.1 1 -7.1 1 -7.0   
1400 5 8666667 0.0 1 -7.1 1 -7.1 1 -7.0   
1500 6 11533333 0.1 1 -7.1 1 -7.1 1 -7.0   
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25 September 2002 

  Control  PBS  PBS & 
Pond 

 Pond    

0900 0 11066667 0.0 11666667 0.00 11800000 0.00 7466667 0.00   
930 0.5 omitted omitted 4366667 -0.43 6000000 -0.29 2300000 -0.51   
1000 1 6766667 -0.2 7333333 -0.20 12266667 0.02 3176667 -0.37   
1030 1.5 omitted omitted 436667 -1.43 1546667 -0.88 180333 -1.62   
1100 2 7333333 -0.2 490 -4.38 40667 -2.46 15067 -2.70   
1200 3 8766667 -0.1 4 -6.43 15 -5.89 2 -6.51   
1300 4 8300000 -0.1 1 -7.07 1 -7.25 1 -6.87   
18 December 2002 

 Temperature Control  Test 
Bottle 

       

0:00 24 9300000 0.0 8566667 0.0       
0:40 25 4900000 -0.3 8300000 0.0       
1:00 27 7466667 -0.1 8933333 0.0       
1:19 30.5 9233333 0.0 6633333 -0.1       
1:48 33 9666667 0.0 12666667 0.2       
2:24 35.5 11366667 0.1 9833333 0.1       
3:07 37 15833333 0.2 18500000 0.3       
4:31 40 13966667 0.2 10600000 0.1       
5:00 46 17933333 0.3 7933333 0.0       
8 January 2003 

 Temperature Control  Test 
Bottle 

       

0:00 19.5 7333333 0.0 8466667 0.0       
0:28 24 9900000 0.1 9433333 0.0       
0:58 28 7466667 0.0 1900000 -0.6       
1:20 30 6433333 -0.1 11500000 0.1       
2:02 34 13433333 0.3 16700000 0.3       
2:25 39 13600000 0.3 9966667 0.1       
3:01 43 11500000 0.2 12333333 0.2       
3:29 46 9900000 0.1 8466667 0.0       
29 January 2003 

 
Temperature Control  Test 

Bottle  
      

0:00 22 11266667 0.0 11066667 0.0       
37:40 26 10100000 0.0 12900000 0.1       
1:04 28 32000000 0.5 15833333 0.2       
1:25 30 11433333 0.0 16133333 0.2       
2:06 33 10866667 0.0 10800000 0.0       
2:34 36 8866667 -0.1 12200000 0.0       
3:09 41 10733333 0.0 10300000 0.0       
3:37 46 9700000 -0.1 11400000 0.0       
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Appendix D 

 
 

Temperature readings during natural water experiment 
(pond water, 50% pond water and 50% PBS, and PBS samples). 
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PBS only PBS & Pond Pond only Time 
(hours) 

Air Temperature 
(C) Water Temperature (C) 

0900 16.5 22.0 22.0 22.0 
0930 18.0 21.5 22.0 22.0 
1000 18.0 21.5 22.0 22.5 
1030 20.0 22.0 23.0 23.5 
1100 20.5 23.0 24.5 25.0 
1200 23.0 25.0 26.0 27.0 
1300 26.0 29.0 29.5 30.0 

 
 
 


