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Abstract

Precise Tracking of Things (PToT) using RF signals has posed a serious chal-

lenge in an indoor environment. The precision localization information is an

enabler for better coordinated-tasks and is essential for a successful launch of

many emerging applications. PToT relies on two principal components, a novel

navigation (tracking) algorithm, and a hybrid 3D fingerprint database. In this

dissertation, we begin by using the two widely known ranging techniques, Time

Of Arrival (TOA) associated with Ultra-wideband (UWB) and Received Signal

Strength (RSS) with WiFi signals. First, we use the theoretical models derived

from empirical measurement of TOA and RSS to analyze the performance of

hybrid (WiFi & UWB) cooperative localization accuracy in a multi-robot opera-

tion in a typical office environment. To measure the performance of this hybrid

localization, we derive a mathematical formulation for the Cramér-Rao-Lower-

Bound (CRLB). The hybrid method shows more accuracy over WiFi-only ap-

proach. In achieving more precision, we extend our work. Second, we intro-

duce a novel approach, a Kernel Method Particle Filter (KMPF) for tracking and

predicting the position by accessing the information created by hybrid 3D fin-

gerprint database. We derive the mathematical and statistical framework for the

Particle Filter based on the statistical assumptions about the behavior of channel

models. We also describe the formation of one of the necessary PToT component,

a 3D fingerprint database. We compare the performance of the KMPF against the

CRLB using WiFi signal channel models.
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1 Introduction

The indoor mapping is gaining momentum and applications for more precise

indoor localization range from inventory tracking, detecting the location of the

Hazardous material, location based services [1, 2] and first responders rescue

mission and the list is getting longer every day. In robotic applications, for find-

ing the coordinate information [3, 4], vision modality is used. Vision requires

a Line-Of-Sight (LOS) condition. In most indoor environments there are walls,

partitions, and furniture that block the view and create a Non- Line-Of-Sight

(NLOS 1 ) situation. A loss of visual data results in severe degradations in lo-

calization precision. One of the well-known methods for robotics localization is

the optical method [5, 6] in the context of simultaneous localization and map-

ping (SLAM) [7–9]. Additionally, since most of these applications take place

inside buildings where GPS reception is either non-existent or inferior, other

RF methods are used as alternatives. Using the radio propagation signals and

models we can potentially overcome this problem and achieve better localiza-

tion in the absence of visual data. The GPS signals are used for traditional RF

localization however it does not work properly in an indoor environment. As

a result, recently non-GPS localization using other opportunistic signals have

attracted considerable attention [10–12]. Time Of Arrival (TOA) [13–19] of the

UWB signals and Received Signal Strength (RSS) of WiFi signals [20–27] are two

1Ultra Wide Band (UWB) is adversely affected by NLOS. In particular, in between floors
where the blocking is fairly severe, and that is why we stay on one floor for our simulation.
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most popular RF localization techniques used by an indoor geolocation system.

WiFi localization is the most popular technique used in smart devices today

[28–30]. However, this technique has its serious shortcoming due to RF signal

distortion [31,32] resulting from multipath, Non-line of sight and lack of reliable

GPS signal. The TOA-based UWB signals provide for more precise localiza-

tion but the coverage is limited, and the design needs new hardware infrastruc-

ture. The RSS-based WiFi localization can be implemented in software and on

the existing wide spread WiFi infrastructure with a significantly more coverage

than UWB systems. As a result, UWB localization has found its way in wireless

sensor networks [33–36] and the WiFi localization is used for both indoor and

outdoor applications. The results of quantitatively comparative performance

evaluation of UWB and WiFi localization in [37–39] reveals that RSS WiFi lo-

calization provides a statistically smooth but less reliable localization while the

UWB’s localization in most occasions provides more precise localization than

the RSS localization. Some shortcomings in accuracy when using RF localiza-

tion techniques, cooperative localization offers itself as a solution for applica-

tions in wireless sensor networks [20, 33, 37]. For WiFi ranging error we use the

IEEE 802.11 channel model for calculation of the RSS and the CRLB for RSS links

presented in [40–42].

For performance evaluation, we examine the relative performance of various

approaches by calculating the Cramér-Rao-Lower-Bound (CRLB) for localiza-

tion presented in [44–48]. The TOA-based UWB signaling results in more pre-

cise localization than RSS-based WiFi. However, the WiFi infrastructure is more

readily available and widespread over UWB infrastructure making it more com-

mercially viable. WiFi by itself is not conducive for applications demanding
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high precision hence, much less localization error. However, using WiFi in con-

junction with other RF signals and sensor’s data will enable us to overcome this

shortcoming, sub meter accuracy. The performance of our approach is measured

against CRLB. The CRLB results for the Time Of Arrival (TOA) of UWB and the

Received Signal Strength (RSS) of WiFi was investigated and analyzed in [40,49]

respectively. In dynamic tracking applications, adaptive filters are used to im-

prove the localization accuracy by reducing the estimation error hence, RMSE.

Particle filters have shown to be more efficient for online and nonlinear/non-

Gaussian Bayesian tracking [50–53]. Many applications, such as Autonomous

Positioning and Navigation use PF-based algorithms to reduce the inertial nav-

igation system (INS) [54, 55], Real-time Prognosis for the estimation of Li-ion

battery discharge time [56] and Reliable Localization and Tracking of Wireless

Sensor Networks [57–60]. We simulate many different scenarios to analyze the

effect of various parameters on Particle Filter (PF) performance for localization.

The parameters in consideration for better performance, include the number of

fixed anchors, hybrid RF signaling using Ultra Wide Band (UWB) and WiFi, the

merit of moving objects collaboration (Cooperative, COOP) on their location in-

formation and compare it to when in non-collaborating mode (Non-Cooperative,

NCOOP). As for effect on Particle Filter performance, we examined the number

of Particles, the variation of Observation and State variances. In [61], we showed

that Cooperative localization was very efficient in lowering Root Mean Square

Error (RMSE) when using RSS or UWB or a combination of both (Hybrid) sig-

naling. The CRLB was calculated [61] for the Hybrid and Cooperative local-

ization using a combination of WiFi and UWB signaling [62]. The TOA-based
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UWB signaling renders more precise localization than RSS-based WiFi. How-

ever, the WiFi infrastructure [63] is more readily available and more cost effec-

tive than UWB which makes it ubiquitous. We then use the above findings and

show the need for a signature database. There are discussions of the signature

database and the comparison in [64–69]. We introduce a Grid based RF signa-

ture database, a Hybrid 3D database with dense Grid points. The information

stored per grid point includes the fusion of Light Detection and Ranging (LI-

DAR) 3D coordinates, Inertial Measurement Unit (IMU) attributes using Kalman

filtering in conjunction with Bluetooth and WiFi RF signaling. The formation of

this database includes the Probability Mass Function (PMF), to be used for PF

Importance Sampling. We then introduce a novel approach to PF, Kernel Method

Particle Filtering (KMPF). KMPF will enable us to achieve more precise indoor

localization and navigation.

In the world of Internet of Things (IOT), a Precise Tracking of Things (PToT) can

play a significant role in many emerging applications. To pave the way to more

precision, we introduce a High-Resolution Signature Database (HRSD) and a

novel method, KMPF. We assess the merits of our approach in WiFi environment

and compare it to CRLB.

The area of indoor localization is laden with many scholarly publications. In

our survey of existing literature, we came across some interesting efforts as per

citation in the following section 1.1.

1.1 Related Research

Visible Light based localization is an active and engaging area of the research.

Light operates at higher frequency range than Radio signals hence, higher band-
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width. Visible Light Communication (VLC) with high bandwidth can lend it-

self to more precise localization. Some different research activities are ranging

from system implementation, use of Wearables, use of Smartphones (and Sen-

sors), Spinning light and Fingerprinting maps. In this section, we address some

citation based on the categories as mentioned above. Implementation; Imple-

menting a light-weight visible light positioning with intended polarization to

avoid flickering [71]. Implementing Epsilon, a visible light based localization

system that exploits Light Emitting Diode (LED) lamps and has no dependency

on network access [72]. Performing Pharos, a visible light based localization us-

ing LED lights to accurately estimate the distance between a receiver and LED

bulbs [73]. Wearables; To track changing light condition as a source for user

displacement, the wearable solar cells are used hence, user tracking [74]. Smart-

phones; Using an unmodified smartphone and slightly modified LED lighting to

higher positioning accuracy [75]. There is quite few localization research around

Light emitters and sensors to achieve one-centimeter precision [76]. A system

that leverages a previously under-utilised source of information luminaries in

indoor spaces, for localization. It does not require modification to existing light

infrastructure or end user devices [77]. Spinning; Using rotating source of light

(SpinLight) so the receiver can identify the spatial beam hence more accuracy

than pure stationary light [78]. Fingerprinting; Using light illumination value

under static lighting condition to create fingerprint [79]. SurrondSense using

sound, light, color, RF to map out fingerprint based on logical location as op-

posed to the usual physical coordinate [80]. Using solid-state luminaries to send

data through rolling shutter cameras on mobile devices as a landmark for local-

ization [81].

VLC research is fascinating but lacks the wide spread infrastructure deployment like
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WiFi, and it depends heavily on Line of Sight so it can not address situations where

there is no line of sight or the intended support, illumination source.

1.2 Motivation

Shortly after joining Center for Wireless Information Network Studies (CWINS)

group, I was motivated by the work of former CWINS Ph.D. student, Dr. Nayef

Alsindi and published my first paper [70]. The paper was a follow-up work to

Dr. Alsindi’s paper [44] where the use of WiFi Received Signal Strength (RSS)-

signaling was a new addition to the existing UWB Time of arrival (TOA)-based

work. The paper was a great warm-up to my next years of research at CWINS.

Research idea span from, analysis of multi-sensor localization, Hybrid of RSS

and UWB, choice of algorithm for localization and methods to improve the pre-

cision with the help of signature indoor mapping.

We began with the detailed analysis in understanding the issues, limitations and

the feasibility of using the current wireless infrastructure as a conduit for an in-

door localization. The efforts evolved around surveying the current literature

in the field and analyzing different approaches and their effect on localization.

We assessed the merits of our development versus the calculation of Cramér-

Rao-Lower-Bound (CRLB). The methods included multi-sensor network; Wifi

Received Signal Strength(RSS)-, Ultra Wide Band(UWB) Time of arrival (TOA)-

based RF signaling and, Hybrid of WiFi plus UWB. We further investigated

Kalman and Particle filters for our study, and due to nature of the nonlinear and

non-gaussian behavior of our sensors, we opted for Particle Filter and expanded

our effort to two step solutions for more precise localization. The steps involved
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in creating2 a 3D, High-Resolution Database(HRSD) and Kernel Method Parti-

cle Filtering (KMPF). Our research analysis and simulations were all conducted in the

Matlab environment.

1.3 Contributions

In this section, we summarize the result of our efforts and highlight two main

contributions. We started with exploring the use of WiFi RSS theoretical model

along with UWB TOA empirical model, added multi-sensor to operate in coop-

erative mode. Later one due to nature of our sensor model, we opted for Particle

Filter for estimation and tracking. We compared the results versus the calculated

CRLB. All these efforts culminated in two main contributions:

1. The performance analysis of hybrid (WiFi & UWB) cooperative indoor

localization for a multi-robot operation in an office environment and the

derivation of mathematical formulation of CRLB to compare against.

This work resulted in two conference papers [61,70] and, a book chapter [82]. The

details of this contribution are covered in chapters 3 and 4.

2. Introducing a novel approach, a Kernel Method Particle Filter (KMPF)

and a Hybrid 3D Database to achieve high precision localization in an

indoor environment and the mathematical and statistical derivation of

Particle Filter based on statistical assumptions on the behavior of channel

models.

This work resulted in an article in the IEEE Sensor Journal [83], a Conference

paper [84] and a book chapter [82]. The details of this contribution are available

in chapter 5 and 6.

2in collaboration of Startup company, Reckon Point, San Antonio, in Texas 78249.
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1.4 Outline

The rest of the dissertation is organized as follows: In chapter 2, We describe

some of the approaches for modeling and analyzing the performance of various

sensors for localization. In chapter 3, We analyze the merits of RF cooperative

localization using TOA- based UWB and RSS-based WiFi. In chapter 4, We ex-

amine the performance bounds on hybrid (WiFi/UWB) cooperative localization

in robotic applications. In chapter 5, We propose a novel Hybrid WiFi-UWB

cooperative localization using Particle Filter (PF). In chapter 6, We discuss our

solution for overcoming the WiFi‘s submeter error (accuracy) by introducing a

novel Kernel Method Particle Filter (KMPF) and describe the formation of an

accompanying Hybrid 3D Database for more precise localization. In chapter 7,

We summarize our result and discuss future venues for reseach area. Appendix

A, a brief CRLB formulation is outlined. Appendix B, the detailed derivation of

Bayesian Recursion for Particle Filter.



9

2 Fundamentals of RF Localization

In this chapter, we describe some of the approaches for modeling and analyzing

the performance of various sensors for localization1. In particular, we discuss

the performance bounds on the ranging technique used for localization. Figure

2.1 illustrates the functional block diagram of a wireless Geolocation system,

depicting the functionality for positioning.

FIGURE 2.1: Functional block diagram of a wireless geolocation system.
Whereby,
LIDAR Light Detection And Ranging, providing 3D coordinates
IMU Inertial Measurement Unit, measuring dynamic orientation

via its sensors
CRLB Cramér-Rao-Lower-Bound, a measure of lower bound on

the variance of an estimator

The main elements of the system are comprised of; location-sensing devices that

provide metrics related to the relative position of a mobile station on a known
1For more detailed discussions of the topics are covered in [82]
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landmark called reference point (RP), positioning algorithm that processes met-

rics reported by location sensing elements to estimate the coordinates of mov-

ing object (MO) and, a display system that illustrates the location of the MO

on a map. The metrics may indicate the approximated received signal strength

(RSS) or its received RF signal time of arrival (TOA). The positioning algorithm

processes the received metrics to determine the coordinates of the MO. To com-

pensate for less reliable measurements, the complexity of the algorithm increases. The

display system shows the estimated location coordinates to a map of an area.

This display system could be a service or an application residing on a server or

a mobile device, or a universally accessible service on the web such as Google

Maps. With the ever increasing the need fo accessibility of the information, there

grows the complexity of the display system. In navigation applications, when

we have some information regarding the movement of the MO, we combine

the RF position estimates with the information on the pattern of movements to

refine the location estimates.

There are two basic approaches that have been used to design an RF localization

system. The first approach is to develop a signaling system and a network in-

frastructure of location sensors focused primarily for Geolocation applications.

The second approach is to use an existing wireless network infrastructure to lo-

cate a MO. The advantage of the first approach is that the physical specification,

and consequently the quality of the location sensing results, is under the control

of the system designer. The MO can be equipped with a very small wearable

tag or a sticker and the density of sensors in the infrastructure can be adjusted

to meet the required accuracy of localization. The advantage of the second ap-

proach is that it avoids expensive and time-consuming deployment of a special

infrastructure.
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These systems, however, need to use more intelligent algorithms to compensate

for the lack of granularity of the measured metrics. As we transform a localiza-

tion application from one environment to another, the behavior of the metrics

changes and we need to study RF propagation in the area to understand this be-

havior. As a result, RF propagation analysis remains essential for comparative

performance evaluation of different approaches to localization.

In principle, the behavior of the RSS and TOA are adequate for understanding

of RF based technologies. Both these approaches try to estimate the distance be-

tween a mobile device whose location is unknown and a set of reference points

(RPs) whose locations are known. The behavior of the RSS for communication

and localization is the same and therefore models developed for the RSS are also

useful for performance analysis of RSS-based localization. While in TOA-based

localization we are interested in the power and arrival time of the first path and

other multipath components arriving in its vicinity.

2.1 Modeling of the Behavior of RF Sensors

As the number of applications for RF location sensing increases, and in response

to that some of different technologies for localization are developed, we need a

framework for comparative performance evaluation of these technologies. Most

performance evaluation techniques require statistical models for the behavior of

the sensors that describes the deviation of the measured metrics from the ex-

pected value, while operating under ideal conditions. These models help us in

relating the performance of the system to the density and deployment strategy

of the sensors. The behaviors of different sensors using TOA, RSS, or location
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signature of the delay-power profile are quite different; hence, we need to de-

velop appropriate models under different metrics.

2.1.1 Behavior of RSS Sensors

Models to characterize the extensive multipath in indoor and urban areas repre-

sent the overall channel impulse response for a given location of the transmitter

and receiver by:

h(θ, τ, t, d) =
L∑
i=1

βdi (t) · expjφ
d
i (t) · δ2[t− τ di , θ − θi(t)]

δ2[t− τ di , θ − θi(t)] = δ(t− τ di ) · δ(θ − θi(t))

(2.1)

where β, φ, θ, and τ represent the amplitude, phase, angle and delay of arrival of

each one of the L paths traveling between the transmitter and the receiver and d

is the distance between them. δ2[·] represents two dimentional Dirac delta func-

tion. The received signal strength based RF sensors process the received signal

to determine the average RSS and use it to estimate, d̂, the distance between the

moving object and the location sensor. The average RSS, Pd, in dB at distance d

is given by:

Pd = 10 log[RSSd] = 10 log

[
L∑
i=1

|βdi (t)|2
]

(2.2)

where βi is the amplitude of the arriving paths defined in Eq. (2.1) and, the

bar over, |βdi (t)|2 denotes the time average of |βdi (t)|2. The measurement of the

average RSS is independent of the bandwidth of the measurement device and

therefore, the measured distance using RSS is independent of the bandwidth. In
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the case of wideband measurements, the effects of multipath fading is averaged

over the spectrum of the signal and this average is computed by measuring the

strength of each arriving path and using it in Eq. (2.2). For narrowband systems,

where we have only one arriving pulse with fluctuating amplitude according to

the multipath fading characteristics, we need to average the signal over a longer

period of time to make sure that the multipath fading is averaged out.

To calculate the distance between the transmitter and the receiver, we use the

measured average RSS and a distance-power relationship to determine the dis-

tance between the target object and the location sensor. If we define the distance

measurement error as the difference between the measured and actual value

of distance, εd = d̂ − d, this error in RSS systems is also independent of the

bandwidth of the system. The measurement of the RSS is relatively simple and

accurate, but the relation between the measured RSS and the distance is com-

plex and diversified. Therefore, the accuracy of RSS-based techniques depends on the

accuracy of the model used for the estimation of the distance using the RSS. A num-

ber of statistical models for relating RSS to the distance between the transmitter

and the receiver in indoor areas, developed for wireless communication appli-

cations, are presented in [85, 86], Chapter 2. In [85], Chapter 2, it was shown

that the Raytracing algorithms provide a much more reliable estimation of the

received power by using the layout of the building. Therefore, it can be used to

improve the performance of sensors using RSS. Raytracing algorithms are how-

ever computationally intensive and an alternative approach, much less compu-

tation, is geometrical statistical models. The advantage of geometrical statistical

modeling and its ability to model site specificity while eliminating the complex-

ity of ray tracing computations is described in [87]. One of the pioneering appli-

cations of raytracing for indoor positioning and intruder detection is reported
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in [88].

2.1.2 Behavior of TOA Sensors

In TOA systems, the measurement of the TOA requires more complex receivers

and the accuracy of the measurements depends on the bandwidth of the sys-

tem and multipath conditions. A TOA sensor estimates the distance between

the transmitter and receiver from the relation d̂w = c τ̂1,w where c is the speed of

light and, given in Eq. (2.1), τ̂1,w is the estimate of the TOA of the direct straight-

line path between the transmitter and the receiver. The estimate of the TOA

is obtained by detecting the first peak of the received signal and this value is

a function of the signal bandwidth and the environment multipath conditions.

For example, in the case of a free-space channel that can be used for GPS appli-

cations when the receiver is in an open area, the multipath effects are negligible.

We can thus measure the distances from the satellites that are tens of thousands

of kilometers away to an accuracy that is within a value smaller than a few me-

ters using a signal with a bandwidth of one MHz. However, in multipath rich

environments, such as indoor areas, attaining similar accuracies even by using

the TOA with RPs around the building and UWB devices with several GHz of

bandwidth faces serious challenges.

Figure 2.2 [89] illustrates the effects of multipath on the estimation of the TOA.

The multipath components in the channel model described by Eq. (2.1) are rep-

resented by impulses. The lower parts of Figure 2.2 show these impulses ob-

tained by raytracing in a typical indoor area. In a practical implementation of

a localization system, we have a finite bandwidth and each impulse is replaced

by a waveform. To measure the TOA, we detect the timing of the peak of the
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FIGURE 2.2: Effects of multipath when the Bandwidth(BW) is 200MHz.
(a) Multipath components close to the arrival of the direct path
(b) Undetectable Direct Path (UDP) hence, higher error

first arriving path and use it as the TOA of the direct path between the trans-

mitter and the receiver. In line-of-sight conditions, the first path in the profile

is the strongest path and also the representative of the direct path between the

transmitter and the receiver and the timing of the peak of this path is measured

to determine the TOA. As shown in Figure 2.2(a) in multipath conditions, the

peak of this pulse will shift from its expected value because of the effects of

other multipath components that are close to the first path. The shift in the peak

causes an error in estimating the TOA and consequently the estimated distance

between the transmitter and the receiver. This error is a function of the width of

the pulse and consequently the bandwidth (BW) of the system that is inversely

proportional to the width of the pulse.

In obstructed line-of-sight conditions, sometimes the direct path is blocked by

objects (e.g., metallic doors) and if the strength of this path falls below the detec-

tion threshold of the receiver, as shown in Figure 2.2(b) we have an undetected

direct path (UDP) condition that causes a large error in the measurement of the

TOA. In principle this error will occur no matter how large the bandwidth of
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the system is. To understand the behavior of the TOA systems in multipath rich

areas we need to model the relation between the TOA estimation error and the

multipath conditions in an environment. Since this relationship is very complex,

in a manner similar to other statistical models for RF propagation, we need to

resort to statistical and empirical modeling. We proceed with the description of

one of these models relating the distance measurement error to the bandwidth

and the distance described in [90].

We define the distance measurement error for a system with a bandwidth of w

as:

εd,w = d̂w − d (2.3)

where d is the actual distance between the RP and the mobile device and d̂w is

the estimate of the distance obtained from measurement of the timing of the first

peak of the received channel profile for a given bandwidth. In [89] the distance

measurement error is divided into two components, one caused by multipath

arrivals close to the first detected peak, εm,w, and the other, the UDP error, εU,w.

The UDP error is added to multipath error when an object significantly blocks

the direct path. ξ(d), is a binary random variable, denoting the probability of

occurrence of a UDP condition as a function of distance d which determines the

presence of UDP error hence, is added to multipath error:

εd,w = εm,w + ξ(d) · εU,w = γw · log(1 + d) + ξ(d) · εU,w (2.4)

The multipath error has two components, a log(1 + d) scaling factor that adjusts

the amount of error with distance using a logarithmic scale starting with a mini-

mum of zero and logarithmic growth after that, and a Gaussian random variable
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γw with the mean and variance of mw and σ2
w with the probability density func-

tion:

fγw =
1

σw
√

2
exp−(x−mw)2

2σ2
w

(2.5)

The statistics of this random variable adjusts the error to the bandwidth of the

system. This approach isolates the effects of distance and bandwidth on the

distance measurement error. The UDP error is multiplied by a binary random

variable that reflects the probability of occurrence of a UDP condition as a func-

tion of distance d and another Gaussian random variable εU,w with the mean and

variance of mU,w and σ2
U,w and a probability density function:

fεUwa
=

1

σU,w
√

2
exp−(x−mU,w)2

2σ2
U,w

(2.6)

As the distance increases, the probability of occurrence of the UDP condition

increases. The variance of the error decreases with the increase in bandwidth of

the system.

2.1.3 Models of TOA based on empirical result

As evident in previous section, the closed form solution is a formidable task. At

CWINS For UWB signals we use empirical ranging error for TOA-based channel

model reported in [44, 91].
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The ranging techniques are susceptible to noise variation of the channel models

hence, the Distance Measurement Error (DME), εij is defined as:

εij = d̂ij − dij (2.7)

where d̂ij is the estimate of the distance between pairs. εij will vary between the

pairs according to selected link error discussed The variance, σ2
εUWB

of Distance

Measurement Error in (2.7) with tabulated range in Table 2.1 2.

TABLE 2.1: TOA-Based Empirical data

Power σ2
εUWB

(dBm)
RSS(dij) > -80 (0.13)2

-100 < RSS(dij) ≤ -80 (0.3)2

RSS(dij) ≤ -100 (1.4)2

There is more general discussion of Distance Measurement Error in [91].

2.2 Performance Bounds using CRLB

In the design of an RF localization system, we need to compare the performance

of different alternatives for localization. In the same way that we were using

the Shannon-Hartleys bound to compare modulation schemes for achieving a

maximum data rate given a signal-to-noise ratio, in localization, it is common to

use the Cramer-Rao Lower Bound (CRLB) on the variance, which is a measure

of the spread of the error associated with a location estimate, for comparing the

precision of location estimations by alternative approaches for localization. The

2The thresholds and variances defined in table 2.1 are based on Empirical data [44]
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smaller the variance, the smaller is the chance that the error in location estimate

is large. In the same way that different information transmission applications

have different error rate requirements, different localization applications have

different precision requirements. For a conceptual system design, a positioning

engineer may compare the CRLB for different metrics used for localization to

select the appropriate technology or decide on the density for installation of the

infrastructure to meet certain precision.

2.2.1 Performance Bounds for Ranging

To explain the application of the CRLB for localization, we start with a simple

example, shown in Figure 2.3. Let‘s assume we have a parameter that we want

to measure, for example, the distance between a mobile device and a reference

point. Let us suppose that we measure that parameter as O, from a metric such

as the TOA of the received signal. The measured observation is not the same

as the parameter and if we measure the metric multiple times, each time we

may observe a different value. If the probability distribution function of the

observation, given the actual value of the measurement, is given by f(O/α),

the smallest variance of the estimate of the parameter can be determined by

the CRLB. This is given by what is called the inverse of the Fisher information

matrix [92]:

FIGURE 2.3: Basics of the estimation process and the CRLB for a single
parameter.
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F = E

[
∂ ln f(O/α)

∂α

]2
= −E

[
∂2 ln f(O/α)

∂α2

]
(2.8)

In other words, the CRLB is given by:

CRLB = V ar[α̂(O)− α] ≥ F−1 (2.9)

2.2.1.1 RSS-Based Localization

In an RSS based localization system, we use the measured (observed) received

power to determine the distance between a mobile device and a reference point.

In [85], it was shown that RSS approximately drops linearly with the logarithm

of the distance.

Lp = L0 + 10 · α · log(d) (2.10)

This presents the total path-loss 3 as the path-loss in the first meter, L0 plus the

loss relative to the given distance, d and it is a function of the distance power

gradient α. In terms of received power, the observed power at the receiver is:

O Pr = P0 − 10 · α · log d+ χ (2.11)

where χ is the shadow-fading random component that is modeled as a Gaussian

distributed random variable with standard deviation of σ.

Since we want to use this observation to estimate the distance d, the probability

distribution function of the observation is:
3There is more detailed disccussion in [93]
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f(O/d) =
1√
2πσ

exp−(O− P (d))2

2σ2
=

1√
2πσ

exp−(Pr − P0 − 10 log d)2

2σ2
(2.12)

Then,

F = −E
[
∂2 ln f(O/d)

∂d2

]
= E

[
∂ ln f(O/d)

∂d

]2
=

(10)2α2

(ln 10)2σ2d2
(2.13)

and the CRLB wil be:

CRLB = F−1 =
(ln 10)2

100
· σ

2

α2
· d2 (2.14)

Since the CRLB is the variance of the estimate the standard deviation of error is

the square root of this value.

σp ≥
ln 10

10
· σ
α
· d (2.15)

That means the spread of the error around its mean value is on the order of the

distance.

2.2.1.2 TOA-Based Localization

The TOA based systems measure the distance based on an estimate of signal

propagation delay. The system is designed so that the received signal waveform

in free space has a sharp peak and the variations of the TOA of the peak is

measured to determine the distance between a transmitter and a receiver. For a
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TOA-based localization system operating in free space, if the transmitted pulse

is s(t) the observed signal at the receiver is given by:

O(t) = s(t− τ) + η(t) (2.16)

where τ is the time of flight of the signal between the transmitter and the receiver

and η(t) is the additive white Gaussian noise component, with a spectral height

of N0/2 observed at the receiver. To form the probability density function of

the observation given the value of the parameter τ we should note that we are

observing the entire pulse in a Gaussian noise with variance of σ2, as if we were

observing K points on the signal when K grows to infinity. In other words, the

probability density function of the observation would be:

f(O/τ) =
1

(
√

2π)K
exp

{
− 1

2σ2

K∑
k=1

[OK − SK(τ)]2

}
limK→∞

∝

exp{ 1

N0

∫
T0

[O(t)− s(t− τ)]2∂t}

(2.17)

The Fisher matrix is now calculated from the second derivative of natural log of

this function:

ln[f(O/τ)] =
1

N0

∫
T0

[O(t)− s(t− τ ]2∂t =

1

N0

∫
T0

[O2(t)− 2O(t) · s(t− τ ] + s2(t− τ)]∂t

(2.18)

Since

∂2

∂τ 2

∫
T0

E[O2(t)]∂t =
∂2

∂τ 2

∫
T0

E[s2(t− τ)]∂t = 0 (2.19)
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the Fisher matrix for the TOA estimation is given by:

Fτ = E

[
∂2

∂τ 2
{ln[f(O/τ)]}

]
=

2

N0

∫
T0

∂2

∂τ 2
E[O(t) · s(t− τ)]∂t =

2

N0

∫
T0

∂2

∂τ 2
s2(t− τ)∂t =

− 1

πN0

∫ +∞

−∞
w2|S(w)|2∂w

(2.20)

Therefore the CRLB representing the variance of the estimate is given by:

CRLB = F−1 =
πN0∫ +∞

−∞ w2|S(w)|2∂w
(2.21)

Since the energy per symbol is defined as:

Es =

∫ +∞

−∞
S2(t)∂t =

1

2π

∫ +∞

−∞
|S(w)|2∂w (2.22)

and the signal to noise ratio as:

ρ2 =
2Es
N0

(2.23)

If we define the normalized bandwidth of the pulse as:

β2 =

∫ +∞
−∞ w2|S(w)|2∂w∫ +∞
−∞ |S(w)|2∂w

(2.24)

The CRLB will for TOA-based ranging will be:



Chapter 2. Fundamentals of RF Localization 24

CRLB =
1

ρ2 · β2
(2.25)

Which is a function of the inverse of the signal-to-noise ratio and the normalized

bandwidth of the transmitted waveform used for TOA measurements.

2.2.2 Performance Bounds for Hybrid Localization

Performance of sensors depend on the environment and certain sensors fit bet-

ter to specific conditions. For example, TOA-based localization suites better to

the line-of-sight (LOS) condition and in certain obstructed LOS condition have

very poor performance. However, RSS-based localization, provide a more uni-

form performance. Hybrid localization is used to integrate the results of dif-

ferent sensors to improve the localization accuracy in changing environments.

Calculation of CRLB for hybrid localization will change and has many different

possibilities. In this section we provide an example calculation of CRLB for a

hybrid RSS and TOA based localization for a moving object with mixed LOS

and NLOS environmental experiences. This way we demonstrate how hybrid

localization improves the performance in an example scenario of operation.

In our previous work [84], we used Hybrid of WiFi and Ultra Wide Band RF sig-

nals for localization. Our simulation environment included eight WiFi-enabled

fixed Anchors and three Moving Objects. The moving objects were simulated

in two different scenarios, WiFi or UWB enabled RF signaling. In addition to

Hybrid RF signaling, we also took advantage of cooperative information whereby,

moving objects share their location information. In our review of the results, we

use the 50th percentile and assess the performance accordingly. Also, in each of

the figures to be discussed, there is a mix of cooperative and non-cooperative
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both for Particle Filter and CRLB. The cooperative and non-cooperative graphs

for CRLB are represented by solid lines, Blue and Red respectively. In general,

one can observe an improving trend stemming from both Hybrid and cooperative

mode. The resuts in Figures 2.4(a) 4, 2.4(b) 5 are analyzed as follow:

(a) (b)

WiFi only (WiFifixed anchors, WiFimoving objects) Hybrid (WiFifixed anchors, UWBmoving objects)

FIGURE 2.4: Particle filter error versus CRLB when operating in cooper-
ative and non-cooperative mode in two different RF signaling scenarios,

WiFi only and Hybrid signaling.

Figure 2.4(a), where fixed anchors and moving objects are both WiFi-enabled

(WiFifixed anchors,WiF imoving objects), resulting in high root-mean-square error. The

Particle Filter closely tracks the CRLB both in cooperative and non-cooperative

mode. It is off by 0.5 meter both in cooperative and non-cooperative mode with

respect to the CRLB.

Figure 2.4(b), Hybrid mode, where fixed anchors remain as WiFi-enabled and

the moving objects are UWB-enabled (WiFifixed anchors, UWBmoving objects). In here,

we have high WiFi root-mean-square error aided by low UWB root-mean-square

error of moving objectives hence, improving the overall root-mean-square error.

4Duplicate of figure 5.5 for ease of referencing.
5Duplicate of figure 5.6 for ease of referencing.
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In non-cooperative mode, there are not much differences relative to non-Hybrid

mode as in Figure 2.4(a). The Particle Filter performs better by 0.5 meter in co-

operative and is off by 0.7 meter in non-cooperative mode relative to the CRLB.

An improved root-mean-square error is achieved both by the aide of UWB RF signals in

Hybrid mode and sharing location information (Cooperative) mode.

2.3 Wireless Positioning Algorithms

In the last section, we analyzed localization approaches and bounds on their

precision when we use the RSS, TOA, or DOA [94] as a metric to determine the

distance between a landmark and a mobile terminal. To find the position of

a mobile terminal, as shown in Figure 2.1, we need a positioning algorithm to

combine the metrics read from different reference points (landmarks) to locate

the mobile terminal. Algorithms with well-defined properties are available for

satellite based GPS systems. There are least-squares algorithms and maximum-

likelihood algorithms; there are algorithms based on a single snapshot of the

measurements, and those using measurement and movement history. There are

various kinds of sequential filters, which adaptively estimate some unknown

parameters of the noise processes [95–97].

GPS, in particular, has focused a great deal of attention on positioning algo-

rithms based on TOA with considerable success. GPS can provide positioning

accuracy ranging from tens of meters to centimeters in close to real time depend-

ing upon the user’s resources [95, 98]. In essence, these techniques are readily

applicable to indoor location sensing systems. However, indoor location sens-

ing involves quasi-stationary applications and a number of unreliable reference
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points for which existing GPS algorithms, designed for mobile systems with a

few reliable reference points, does not provide the best solution. The unreliabil-

ity of localization in indoor and urban areas is caused due to the fact that more

precise TOA and DOA techniques, as we explained in section 2.1, become un-

reliable in multipath environments. As a result, today, RSS based localization

that has less accuracy but performs more consistently in multipath conditions is

the most popular approach used in popular commercial applications such as lo-

calization in smart devices [99–101]. The RSS-based localization techniques use

the existing WLAN infrastructure in buildings for localization in commercial ap-

plications. In public safety and military first responder applications, however,

hybrid localization techniques using variety of RF and mechanical location sen-

sors have been under investigation for the past decade or more [102]. As we

discussed previously, TOA and RSS metrics are the most popular in wireless

positioning systems for urban and indoor areas. TOA metrics provide a more

accurate measure of distance but may need additional infrastructure. The RSS

is an easier metric to measure and integrates well with the existing communica-

tions infrastructure, but it is less reliable (widely varying) and often needs more

complex algorithms and additional calibration procedures. Some of the sim-

pler algorithm approaches was first implemented using the Nearest Neighbor

for localization in indoor areas [103]. Moving forward, Our discussion of the

algorithms will emphasize on TOA-, RSS- based and a hybrid of both.

Beside TOA and RSS, there is a Direction of Arrival (DOA) models in [104–106]

that uses TOA. However, further research is needed to examine the accuracy of

these models in the event of obstructed path and multipath while measuring

TOA.
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3 Cooperative Localization

In this chapter, we analyze the merits of RF cooperative localization using TOA-

based UWB and RSS-based WiFi technologies for cooperative robotic applica-

tions in our modeling and simulation environment. In our simulation environ-

ment we take advantage of empirical results obtained from third floor of AKL

for portion of our modeling (TOA) to be described in Section 3.1. We define a

movement scenario for multi-robot operation based on the layout of the third

floor of AKL in Fig. 3.1, with respect to four static reference points. With the

use of our mix-mode (empirical and theoretical) modeling we derive Cramér-

Rao-Lower-Bound (CRLB) for calculation of the localization error for individual

robot and when they operate in a cooperative manner both for UWB and WiFi

systems. We assume the robots to be equipped with UWB or WiFi in our simu-

lation environment.

Localization error consists of ranging error and positioning error. For UWB sys-

tems we use empirical ranging error models for TOA-based systems reported

in [44, 91]. For WiFi ranging error we use the IEEE 802.11 channel model for

calculation of the RSS and the CRLB for RSS links presented in [40]. For perfor-

mance evaluation, we examine the relative performance of the two approaches

by applying the CRLB for cooperative localization presented in [44, 45].

Section 3.1 describes our models for ranging error in each link. Section 3.2

presents the CRLB for localization used in this chapter. Section 3.3 describes
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the multi-robot operation scenario. In Section 3.4 we provide the comparative

performance evaluation results and in Section 3.5 we conclude this chapter.

FIGURE 3.1: Tracks for movement of robots: Four reference points
(RP1, RP2, RP3, RP4) and three robots (R1, R2, R3). Each move about
its respective (dotted rectangles) with 0.4 meter separation among
them. The three arrows point in the direction of each robot’s move-

ment.

3.1 Models for Link Errors for TOA and RSS

In this section we describe the two TOA- and RSS-based models that provide us

with variance of the link’s ranging error as a function of distance between two

RF radiating sources.
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Remark 1. A source is defined as a reference point (UWB or WiFi) or a robot

(equipped with UWB or WiFi). In our simulation, we use four static refer-

ence points to localize the robots. We further simulate the result of cooperation

among robots by calculating the distance between the robots to achieve more

accuracy in localization.

The variance of TOA- or RSS-based model is used to calculate Cramér-Rao-Lower-

Bound (CRLB) for our localization performance bound in Section 3.2.

For calculation of variance of the ranging error for RSS-based WiFi localization

we use the result of derivation of CRLB for the ranging error in RSS systems

from [40]:

σ2
R = var(d̂) ≥

(
ln 10

10

)2

· η
2

α2
· d2 . (3.1)

Where d is the distance between two sources, η2 is the variance of the log-normal

N (0, η2) shadow fading of the environment, and α is the so-called distance-

power gradient of the environment. Using IEEE 802.11 path-loss model [85] for

our simulations, η = 8 and α takes on a value of 2 for LOS situations and 3.5 for

NLOS conditions. The distance d between two sources Si(xi, yi) and Sj(xj, yj)

is:

d =
√

(xj − xi)2 + (yj − yi)2 . (3.2)

For TOA based systems in the absence of multi-path the CRLB is given by [49]:

σ2
D ≥

1

8π2
· 1

SNR
· 1

T ·W
· 1

f 2
0

· 1

1 + W 2

12f20

. (3.3)

Where T is the observation time, SNR is the Signal-To-Noise-Ratio, f0 is the cen-

ter frequency of operation and W is the bandwidth of the system. This bound

is valid for GPS applications in the open areas and provides very small errors
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regardless of the distance. However, in multi-Path rich indoor environments,

where direct paths between the sources are blocked, this bound is loose and re-

searchers resort to empirical modeling of the ranging error [85]. Hence, we also

resort to empirical models presented in [44,91]. In our simulations we have used

the specific model for ranging error in UWB systems presented in [44]. In this

empirical model the ranging error is assumed to be a Gaussian random variable

whose mean and variance are functions of two power thresholds:

σ2
T =


N (µ1, σ

2
1) RSS(d) > Th1

N (µ2, σ
2
2) Th2 < RSS(d) ≤ Th1

N (µ3, σ
2
3) RSS(d) ≤ Th2

. (3.4)

Where RSS(d) is the received power at a robot in a distance d from a reference

point, Th1,2 are the power thresholds, and µi and σ2
i are mean and variance of

the ranging error which are also a function of existence of the direct paths. The

thresholds used in the model are Th1 = -80dBm and Th2 = -100dBm and the

corresponding σ2
i are:

σ2
i =


(0.13)2 RSS(d) > −80

(0.3)2 −100 < RSS(d) ≤ −80

(1.4)2 RSS(d) ≤ −100

. (3.5)

The mean and variance for calculation of the error for different channel condi-

tions are given in [44]. The model used for calculation of the RSS is given by:

RSS(d) = RSS(1)− 10 · α · log d− χ (3.6)
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in which RSS(1) is the received signal strength at 1 meter distance from a refer-

ence point, d is a distance, and χ is the lognormal shadow fading.

In our simulation [44], RSS(1) = -42 (dBm) and (χ, α) take on the set values of

(χ = 6.8dB, α = 2.0) when in Line-Of-Sight (LOS) and (χ = 8.5dB, α = 5.6)

when in Non-Line-Of-Site (NLOS).

3.2 CRLB for Cooperative Localization

In this section we do not discuss higher level protocols or implementation issues.

We merely derive the performance bound based on Cramér-Rao-Lower-Bound

(CRLB). The CRLB provides a lower bound on the variance achievable by any

unbiased location estimator. The bound is useful as a guideline: knowing the

best an estimator (TOA- or RSS-based) can possibly do that can help us judge

our approach in this section.

The derived values for distance d and variance (σ2
R or σ2

T ) in Section 3.1 are used

in this section to calculate CRLB that allow us to assess the performance of our

estimate. We describe our derivation for CRLB from papers [44, 45].

Remark 1. For further simplification we assume the LOS and NLOS variances

can coexist as part of the same diagonal matrix Λλ:
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Λλ =


λ1 . . . 0

... . . . ...

0 . . . λM

 . (3.7)

WhereM refers to number of “reference points” (UWB or WiFi), for minimum of

3 where in our case we use 4 reference points. The element λ1:M is the inverse of

σ2
R or σ2

T for the corresponding d1:M for every robot location. The corresponding

distance d from Eq. 3.2 is used to assemble our geometry vector with respect to

our reference points:

∆vec =

∆x1 . . . ∆xM

∆y1 . . . ∆yM

 . (3.8)

Where ∆x and ∆y are partial derivatives of calculated distance, d with reference

to x and y coordinates respectively:

∆x =
(xi − xj)

dij
∆y =

(yi − yj)
dij

. (3.9)

The Fisher Information Matrix, FIM is calculated as:

FIM = ∆vec · Λλ ·∆T
vec . (3.10)

Remark 1. FIM matrix is always full rank and its inverse always exists in the

cases we investigated.

The Cramér-Rao-Lower-Bound(CRLB) for each individual link dij is derived by

the inverse of FIM matrix:
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CRLB =

[
∆vec · Λλ ·∆T

vec

]−1
. (3.11)

Finally, evaluating the Root-Mean-Square-Error, RMSE for each individual link,

dij :

RMSE1 =

√
trace

([
∆vec · Λλ ·∆T

vec

]−1)
. (3.12)

In Section 3.3, we analyze the CRLB results for our simulation scenario.

3.3 Performance Evaluation Scenario

For our performance evaluation, we define a scenario in the third floor of the

AKL in Worcester Polytechnic Institute, shown in Fig. 3.2. In this scenario we

assume the three robots are moving in the connected corridors in the central

part of the third floor. This route is shown by solid blue line in the center of

the building layout. Fig. 3.1 shows a closeup route for the robots, location of

the reference points and the track for each robot. There are four reference points

(RP1, RP2, RP3, RP4) and three robots (R1, R2, R3). The dotted lines in Fig. 3.1

shows the route taken by individual robot that are 0.4 meters apart to avoid col-

lision. The arrows in Fig. 3.1 show the direction and the starting point of each

robot’s movement. The first two robots move clockwise and the third, counter-

clockwise. We assume all robots start at the same time and move at the same

speed. The reference points are located in the center of each side of the Route 2.6

1“trace” stands for the trace of matrix.
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meters away from the central track of the robot number one (R1). In our perfor-

mance evaluation scenarios we assume the reference points to be either an UWB

transmitter or a WiFi access point.

For each sample of time we use the location of each robot to determine its dis-

tance from other reference points and robots when in cooperating mode. The

distances are used in the equations provided in Section 3.1 to determine the

variance of the localization error, σ2
R or σ2

T , associated with UWB or WiFi links,

respectfully. The variances of ranging errors obtained for appropriate links are

then used for calculation of the CRLB for positioning, described in Section 3.2.

FIGURE 3.2: ATWATER KENT LABS 3rd Floor, Worcester Poly-
technic Institute the corridor chosen for the movement of robots is
identified by dark solid blue rectangle. More details are shown in

Fig. 3.1.
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3.4 Results and Discussion

In this section we discuss the results of our simulation runs presented in fig-

ures 3.3, 3.4, 3.5 and 3.6. We compare the performance of cooperative and non-

cooperative operations for UWB and WiFi localization. Fig. 3.3 shows the per-

formance of cooperative versus non-cooperative operation in sixty four equally

distanced locations across the route when sources are using UWB signals. The

lower curve shows the RMSE for variance of positioning error of all robots when

they cooperate for localization. The three top plots show the RMSE of localiza-

tion for each individual robot when they obtain their location from reference

points only (no cooperation). As expected, in the vicinity of reference points

we notice better performance, the few undershoots as shown in Fig. 3.3. On

average, cooperation among the robots show improvement in the RMSE of lo-

calization by a factor of 5. Fig. 3.4 shows the cumulative distribution function of

the RMSE across the route. As shown on the left of Fig. 3.4, the RMSE is nicely

confined in a narrow range ' 0.03 whereas in the individual cases we notice

RMSE as high as 0.16.

In Fig. 3.5, shows the performance of cooperative versus non-cooperative oper-

ation in sixty four equally distanced locations across the route when sources are

using WiFi signals. The lower curve shows the RMSE for variance of position-

ing error of all robots when they cooperate for localization. The three top plots

show the RMSE of localization for each individual robot when they obtain their

location from reference points in lieu of cooperation. On average cooperation

among the robots show improvement in the RMSE of localization by a factor of

15. Fig. 3.6 shows the cumulative distribution function of the RMSE across the

route. As shown in Fig. 3.6, the RMSE for cooperative localization is confined
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FIGURE 3.3: UWB : RMSE versus robot displacement

in a narrow range of approximately ' 0.5 whereas in the individual cases, we

notice an error as high as 8.5.

The factors of improvement are significantly higher in WiFi, 15 times on average

as compared with UWB, 5 times. The range of error in WiFi localization, shown

in Fig. 3.5, is between 6.5 to 8.5 while in UWB, as shown in Fig. 3.3, this range is

restricted between 0.125 to 0.16. Fig. 3.7, shows the overall performance of UWB

and WiFi in cooperative and non-Cooperative for our scenario side-by-side.

As shown in far left, UWB with cooperation is the best performer with the rate

of error of 0.03 meters and on the far right, WiFi without cooperation is the worst

performer with the rate of error of 6.5 to 8.5 meters.
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FIGURE 3.4: UWB : Probability versus RMSE

3.5 Summary

With recent proliferation of wireless devices in robotic applications, support for

localization services using radio signals has attracted tremendous attention in

research community. In this chapter we simulated our models and analyzed the

quantitative performance of two widely used localization techniques based on

TOA and RSS using UWB and WiFi transmission medium, respectively. Our re-

sults of modeling and simulation for our scenario at the third floor of the AKL

showed that UWB-based localization provides error in the range of 0.125 to 0.16

meters for non-cooperative and 0.025 to 0.029 meters for cooperative localiza-

tion. The WiFi localization range for non-cooperative localization was 6.5 to 8.5

meters and for cooperative 0.47 and 0.64 meters. These quantitative results pro-

vides an insight to the common believe that UWB is more accurate than WiFi
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FIGURE 3.5: WIFI : RMSE versus robot displacement

both in cooperative and non-Cooperative mode. In both cases of UWB and WiFi

gained significant improvement by cooperative localization using robots. How-

ever, WiFi localization benefits much higher rate of improvement through coop-

eration (15 times) as compared with UWB localization (5 times).
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FIGURE 3.6: WIFI : Probability versus RMSE

FIGURE 3.7: Comparing UWB versus WIFI : Probability versus RMSE
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4 Hybrid (RSS & TOA) Localization

Due to the complex nature of radio propagation, employing a single method is

not always adequate and hence it needs to be accompanied by supplementary

methods to achieve the precise localization goal. Combination of various meth-

ods by exploiting their individual advantages such as the robustness of WiFi un-

der harsh environments and accuracy of UWB under LOS conditions provides

us with better overall localization results in GPS denied environments. Hence

hybrid methods prove much better in terms of yield and accuracy and is thus

important for localization in cooperative robotic applications. In chapter 3, we

showed that cooperative UWB is superior to cooperative WiFi methods. How-

ever, in most practical situations there is no UWB infrastructure in buildings.

In this chapter, we examine the performance bounds on hybrid (WiFi/UWB)

cooperative localization in robotic applications. In hybrid localization we refer

to a technique where by ranging between fixed anchors and mobile robots use

hybrid ranging techniques. Ranging between fixed anchors and mobile robots

is achieved through WiFi RSS-based techniques, while robot-robot is achieved

through UWB TOA-based techniques. This approach is interesting from a prac-

tical point of view where deployed robots in an indoor environment can quickly

and effectively take advantage of the available WiFi infrastructure to achieve co-

operatively a global location information. This approach to our understanding

is unique and proves a novel contribution to cooperative localization in indoor
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robotic applications. In order to validate the effectiveness of our a approach we

analyze the results of extensive simulation in a typical indoor office environ-

ment.

In our simulation environment we take advantage of empirical results obtained

from third floor of AKL for portion of our modeling (TOA) to be described in

Section II. We define a movement scenario for multi-robot operation based on

the layout of the third floor of AKL (Fig. 4.1) with respect to four and eight static

reference points as well as two and three robots at play. With the use of our em-

pirical and theoretical modeling we derive Cramér-Rao-Lower-Bound (CRLB) for

calculation of the localization error for non-cooperative (individual) and cooper-

ative scenarios for UWB-Only, WiFi-Only and hybrid WiFi-UWB systems where

reference points are WiFi and robots are equipped with UWB. Localization er-

ror consists of ranging error and positioning error. For UWB signals we use

empirical ranging error for TOA-based channel model reported in [44, 91]. For

WiFi ranging error we use the IEEE 802.11 channel model for calculation of the

RSS and the CRLB for RSS links presented in [40]. For performance evaluation,

we examine the relative performance of various approaches by determining the

CRLB for localization presented in [44, 45].

The rest of this chapter is organized as follows: In section II, we define the an-

alytical formulation for performance analysis. Section III describes the multi-

robot operation scenario. Section IV we provide the comparative performance

evaluation results. Section V we conclude this chapter.
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4.1 Analytical formulation for performance analysis

In this section we will derive the CRLB for hybrid system localization based on

empirical ranging error models for TOA and RSS. We will first formulate our

problem and derive the general CRLB and then give the ranging error models

we used for calculating the CRLB.

4.1.1 CRLB for hybrid system localization

When there areN robots cooperatively working together andM reference points

available, the reference points (such as WiFi access points) act as anchors and

the robots act as blind nodes. The wireless networks between the blind nodes

allow them to transfer ranging information between them. In a typical robotic

application,N >> M . In a 2-dimensional plane, the coordinates of all the nodes

(including robots and anchors) are given by:

θ = [x, y]T , (4.1)

where x = [x1, ..., xN ]T and y = [y1, ..., yN ]T are the x− and y− coordinates of the

N robots. Similarly, the coordinates of the M anchor nodes are given by:

ϕ = [xN+1, ...xN+M , yN+1, ..., yN+M ]T , (4.2)

For node pairs, i and j, which are within communication range, a range mea-

surement dij can be obtained using one of the ranging techniques, UWB TOA

ranging between robots and WiFi RSS ranging between anchors and robots. For

instance, in TOA ranging the range estimate between the ith and jth node is
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given by

d̂ij = τ̂ij × v, (4.3)

where d̂ij is the estimated distance between the nodes, τij is the TOA measure-

ment and v is the speed of signal propagation. Regardless of the ranging tech-

niques, the distance estimate will be corrupted by noise

d̂ij = dij + εij, (4.4)

where dij =
√

(xi − xj)2 + (yi − yj)2 is the actual distance between the pair of

nodes and εij is a random variable representing the statistics of the ranging error

which is specific to the ranging techniques and will be discussed in more detail

in the following section. Note that the statistics between different node pairs

need not be the same. For example, the UWB based TOA ranging links between

robots generally provides smaller ranging error compared to the WiFi based RSS

ranging links between anchors and robots in LOS scenario.

For a given robot operating configuration, ranging technique, and coverage

characteristics, the robots can collaborate in a cooperative fashion to reach a final

estimate given by

θ̂ = [x1, ...xN , y1, ...yN ]T , (4.5)

For known anchor locations ϕ = [xN+1, ...xN+M , yN+1, ..., yN+M ]T , we wish to

estimate the unknown locations of robots, θ = [x1, ...xN , y1, ..., yN ]T . The CRLB

provides a lower bound on the error covariance matrix for an unbiased estimate

of θ [92]. For a given estimate of the sensor locations θ̂ and Gaussian range

measurement X , the Fisher Information Matrix (FIM) can be represented by [92]

J(θ) = E[5θlnfX(x; θ)][5θlnfX(x; θ)]T (4.6)
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where fX(x; θ) is the joint Gaussian PDF given by

fX(x; θ) =
1

(2π)K |
∑
| 12
exp

{
−1

2
[x− µ(θ)]T

∑−1
[x− µ(θ)]

}
(4.7)

where µ(θ) is the vector of the actual distances between the nodes corresponding

to available K measurements. FIM for the specific PDF in equation (4.7) can be

written as

J(θ) = [G(θ)]T
∑−1

[G(θ)] (4.8)

where

G(θ)T =

 cosφ1 cosφ2 ... cosφk

sinφ1 sinφ1 ... sinφk

 (4.9)

∑
= diag(λ1 λ2 ... λk) (4.10)

φi representing the angle between the nodes from ith measurement. And λi is

the variance of range estimate from the ith measurement. The CRLB is then

given by:

CRLB = [J(θ)]−1 (4.11)

4.1.2 Models for link errors using TOA and RSS

To calculate the CRLB, we need the variance of distance measurement error(DME)

for all the links among the robots and the reference points. The link between two

robots use UWB TOA ranging and the link between each robot and a reference

point uses WiFi RSS ranging.

In our simulation, we use four or eight anchor reference points to localize the
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robots. We further simulate the results of cooperation among robots by calculat-

ing the distance between the robots to achieve more precision in our localization.

For calculation of variance of ranging error of RSS-based WiFi localization, we

followed the CRLB derivation in [40, 107]. The time averaged power loss is for-

mulated as:

Lp = 10α · logd+ χ (4.12)

where

d =
√

(xi − xj)2 + (yi − yj)2 (4.13)

is the distance between two sources Si and Sj and “noise” χ is independent

Gaussian variables N(0, σχ). Hence the p.d.f of Lp conditioned on d is

fd(Lp) ∝ exp(− 1

2σ2
χ

(Lp− 10 · α · logd)2) (4.14)

Therefore, the CRLB is given by:

J−1p = (G(θ)T ·
∑−1

·G(θ))−1 (4.15)

where Jp is the Fisher matrix and

G(θ)T =
10α

ln10
·

 cosφ

sinφ

 · d−1 (4.16)

∑
= σχ

2 (4.17)
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where φ is the angle between the two sources and account for the effect of geo-

metric relation on ranging accuracy. Substitute equations (4.16), (4.17) into equa-

tion (4.15), we get the variance of ranging error:

trace(J−1p ) = var(d̂) ≥ (
ln10

10
)2 ·

σ2
χ

α2
· d2 (4.18)

For RSS based WiFi links, we used the IEEE 802.11 path loss model [85] and the

parameters are listed in table 4.1

TABLE 4.1: Parameters used in WiFi Simulation

α σχ
(dB)

LOS 2.0 8.0
NLOS 3.5 8.0

For TOA based systems, the link error model without considering multipath

combination and NLOS influence was given by [49]:

σ2
D ≥

1

8π2

1

SNR

1

T ·W
1

f 2
0

1

1 + W 2

12f20

(4.19)

where T is the observation time, SNR is the signal to noise ratio, f0is the cen-

ter frequency of operation and W is the normalized bandwidth of the system.

This model is too optimal for indoor environment because of the rich multipath

components and frequent occurrence of NLOS scenario. Therefore, we resort to

empirical models presented in [108] which were developed for indoor geoloca-

tion applications and more close to reality.

In our simulation, we have used a specific model for ranging error in UWB sys-

tems similar in [108]. In this empirical model, the ranging error εis assumed to

be a Gaussian random variable whose mean and variance are correlated with
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the total received signal strength:

fε(ε) =
1

2πσ2
ε

exp[−(ε− µε)2

2σ2
ε

] (4.20)

where

(µε, σ
2
ε ) =


(µ1, σ

2
1) RSS(d) ≤ Th1

(µ2, σ
2
2) Th1 < RSS(d) ≤ Th2

(µ3, σ
2
3) Th2 < RSS(d)

(4.21)

where RSS(d) is the received signal strength of a robot at a distance d from

a reference point.Th1,2 are the power thresholds, µi and σ2
i are the mean and

variance of ranging error with and without the availability of direct path. The

values used in the model are Th1 = −100dBm and Th2 = −80dBm and the

corresponding σ2
ε based on table 4.2 1 :

TABLE 4.2: TOA-Based Empirical data

Power σ2
εUWB

(dBm)
RSS(dij) > -80 (0.13)2

-100 < RSS(dij) ≤ -80 (0.3)2

RSS(dij) ≤ -100 (1.4)2

The mean and variance for calculation of the error for different channel condi-

tions are given in [108]. The model we used for calculation of the RSS of UWB

link is given by:

RSS(d) = RSS(L0)− 10α · logd+ χ (4.22)

where RSS(L0) is the received signal strength at a reference distance (1m here).

d is the distance, α is the path loss gradient and χ is the lognormal shadow

1 Table 2.1 is duplicated here for the ease of referencing.
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fading with zero mean and variance σ2
χ. The values of α, σχ are listed in table 4.3

TABLE 4.3: Parameters used for UWB Simulation

RSS(L0) α σχ
(dBm) (dB)

LOS -42 2.0 6.8
NLOS -42 5.6 8.5

4.2 Performance Evaluation Scenario

For our performance evaluation, we define a scenario in the third floor of the

AKL in Worcester Polytechnic Institute. In this scenario we assume the three

robots are moving in the connected corridors in the central part of the third

floor. This route is shown by solid blue line in the center of the building layout.

Fig. 4.1 shows a close-up route for the robots, location of the reference points and

the track for each robot. There are four or eight reference points configurations,

(RP1, RP2, RP3, RP4), (RP1L, RP1, RP1R, RP2, RP3R, RP3, RP3L, RP4) and there

are three robots (R1, R2, R3). The dotted lines in Fig. 4.1 shows the route taken

by individual robot that are 0.4 meters apart to avoid collision. The arrows in

Fig. 4.1 show the direction and the starting point of each robot’s movement. The

first two robots move clockwise and the third, counterclockwise. We assume

all robots start at the same time and move at the same speed. The reference

points are located in the center of each side of the Route 2.6 meters away from

the central track of the robot number one (R1). In our performance evaluation

scenarios we assume the reference points to be either an UWB transmitter or a

WiFi access point.
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For each sample of time we use the location of each robot to determine its dis-

tance from other reference points and, robots when in cooperating mode. The

distances are used in the equations provided in Section II to determine the vari-

ance of the localization error, σ2
R or σ2

T , associated with UWB or WiFi links, re-

spectively. In hybrid WiFi-UWB mode the links between cooperative robots are

assumed UWB and the anchors to robots as WiFi links.

FIGURE 4.1: Tracks for movement of robots: eight reference points
(RP1L, RP1, RP1R, RP2, RP3R, RP3, RP3L, RP4) and three robots
(R1, R2, R3). Each move about its respective (dotted rectangles) with
0.4 meter separation among them. The three arrows point in the

direction of each robot’s movement.

4.3 Results and Discussion

In this section we discuss the results of our simulations for WiFi-Only in (Figs.

4.2 & 4.3), UWB-Only in (Figs.4.4 & 4.5), Hybrid WiFi-UWB in (Figs. 4.6 & 4.7)
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and finally overall performance for all in (Figs. 4.8 & 4.9).

In all our simulation runs, we have used thirty two equally distanced locations

across the route for all robots. For all scenarios, there are two anchor configura-

tions, four or eight and for each one both two and three robots are used.

In general, one can observe a trend of improvement stemming from more an-

chors as well as more robots the degree of which depends on the RF signaling

and methodology for example, hybrid of WiFi and UWB renders the best results.

In the following paragraphs the various methods are discussed.

In our review of the results we use the 50th percentile and assess the perfor-

mance accordingly.

WiFi-Only (Figs. 4.2&4.3): In this scenario, robots and anchors are assumed to

be WiFi-equipped. By doubling the number of anchors there is 1.5 meter im-

provement in errors across all three curves. While using 3 robots versus 2 robots

in cooperative mode we only get 0.5 meter improvement in errors. Overall by

using 3 cooperative robots plus doubling the number of anchors versus 3 non-

cooperative robots in 4 anchor configuration, we get 3.75 meters improvement

that is 42 percent improvement in error.

UWB-Only (Figs. 4.4&4.5): In this scenario, robots and anchors are assumed

to be UWB-equipped. In here, we start off with very low error in comparison

to WiFi-Only scenario and doubling the anchors has resulted in narrowing the

gap between non-coop, coop and 2 versus 3 robots scenario. We observe that

by doubling the number of anchors and cooperative robots we can achieve 0.9

meters improvement, that is 75 percent improvement.
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FIGURE 4.2: RMSE(m) for 2 and 3 Robots using 4 Anchors configura-
tion and WiFi mode.

Hybrid, WiFi-UWB (Figs. 4.6&4.7): In this scenario, robots are assumed to be

equipped with UWB in cooperative mode and anchors WiFi-equipped. By dou-

bling the number of anchors we get 2.75, 1 and 0.25 meters improvement in 3

robots non-coop (WiFi), 2 robots coop (hybrid) and 3 robots coop (hybrid) re-

spectively. While using 3 robots versus 2 robots in cooperative mode there is 1.5

to 2 meter improvement. Overall by using 3 cooperative robots (hybrid) plus

doubling the number of anchors versus 3 non-cooperative robots (WiFi) in 4

anchor configuration, we get 5 meters improvement that is 63 percent improve-

ment in error.

Comparison of results (Figs. 4.8&4.9): Here we compare the hybrid 3 coopera-

tive robot vs WiFi-Only 3 cooperative, WiFi-Only 2 cooperative and WiFi-Only

3 non-cooperative robots. Hybrid with 3 cooperative robots gives us the best



Chapter 4. Hybrid (RSS & TOA) Localization 53

FIGURE 4.3: RMSE(m) for 2 and 3 Robots using 8 Anchors configura-
tion and WiFi mode.

results followed by WiFi-Only 3 and 2 cooperative robots. WiFi-Only 3 non-

cooperative robot case is the worst performer in our comparison.

Section 4.4 gives the detailed tabulated results.

4.4 Summary

In this chapter, we simulated and analyzed the quantitative performance of two

widely used localization ranging techniques based on TOA and RSS for UWB

and WiFi transmission medium, respectively. We further examined the merits of

hybrid WiFi-UWB for our main scenario which tends to be more applicable due

to ubiquity of WiFi reference points and the advantage of UWB precision. The

results are tabulated in tables 4.4, 4.5 & 4.6. As an example we refer to table4.4.
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FIGURE 4.4: RMSE(m) for 2 and 3 Robots using 4 Anchors configura-
tion and UWB mode.

Hybrid Coop with 3.22 meters in error versus 3 No Coop with 7.76 meters in

error renders an improvement of 59 percent.

For the effect of anchors, we see that (table4.6) by doubling the number of an-

chors we get anywhere from 20 to 34 percent improvement in each likewise

scenarios, for example Hybrid versus Hybrid or 2 Coop (WiFi) versus 2 Coop

(WiFi) and so forth.

In conclusion, hybrid WiFi-UWB which by default is assumed to be in cooper-

ative mode can render 49 percent improvement over 3 No Coop in 8 anchors

configuration. The combination of hybrid WiFi-UWB localization and 8 anchors

yields the least error among other scenarios considered in this study.
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FIGURE 4.5: RMSE(m) for 2 and 3 Robots using 8 Anchors configura-
tion and UWB mode.

Hybrid localization, with almost 50 percent improvement and widespread avail-

ability of WiFi, appears to be a viable alternative for precise indoor localization.
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FIGURE 4.6: RMSE(m) for 2 and 3 Robots using 4 Anchors configura-
tion and Hybrid mode.

TABLE 4.4: Error improvement 4 anchors configuration, in per-
centage

Hybrid Coop 3 Coop 2 Coop 3 No Coop
Mean error (m) 3.22 6.04 6.53 7.76
Hybrid Coop n/a 47 51 59
3 Coop – n/a 8 22
2 Coop – – n/a 16
3 No Coop – – – n/a

TABLE 4.5: Error improvement 8 anchors configuration, in per-
centage

Hybrid 3 Coop 3 Coop 2 Coop 3 No Coop
Mean error (m) 2.57 4.47 4.73 5.09
Hybrid Coop n/a 43 46 49
3 Coop – n/a 6 12
2 Coop – – n/a 7
3 No Coop – – – n/a
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FIGURE 4.7: RMSE(m) for 2 and 3 Robots using 8 Anchors configura-
tion and Hybrid mode.

TABLE 4.6: Taking the average of all RMSE(m) points, below table
shows on average improvement for 8 Anchors versus 4, in percent-

age

Hybrid Coop 3 Coop 2 Coop 3 No Coop
8 Anchors 2.57 4.47 4.73 5.09
4 Anchors 3.22 6.04 6.53 7.76
8 versus 4 20 26 28 34
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FIGURE 4.8: Comparing RMSE(m) for WiFi, UWB and hybrid modes
in 4 Anchors configuration.
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FIGURE 4.9: Comparing RMSE(m) for WiFi, UWB and hybrid modes
in 8 Anchors configuration.
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5 Particle Filter for Localization

In this chapter, we propose a novel Hybrid WiFi-UWB cooperative localization

using Particle Filter. There are different issues in implementing particle filters,

one important implementation issue is the Resampling. Our implementation of

the PF is similar to Systematic Resampling approach discussed in [109–111]. Due

to the complex nature of radio propagation, employing Hybrid and Cooperative

localization methods has become increasingly attractive. Accuracy of methods

such as TOA and RSS are highly susceptible to non-linear, non-Gaussian channel

models in indoor environments. The Particle Filter is chosen for this work to

deal with such an environment. We analyze the performance of the Particle Fil-

ter versus CRLB by using the theoretical, IEEE 802.11 channel model for RSS and

the empirical one for UWB ranging error as presented in [44]. For our perfor-

mance platform, we leverage off the previous findings in [61], where we used

eight fixed anchors (FAs) along with three moving objects (MOs). The perfor-

mance of the PF results are evaluated in a typical indoor scenario and are com-

pared with CRLB result for the Hybrid (UWB & WiFi), in Cooperative (COOP)

and non-Cooperative (NCOOP) modes.

The rest of the chapter is organized as follows: In section 5.1, we define distance

measurement error, describe power calculation based on 802.11 RSS model, use

the power for TOA-based link error variance selection according to empirical

model from [44] and calculate RSS-based link error variance from [40]. Section
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5.2, a brief CRLB formulation is outlined. Section 5.3, we formulate the Particle

Filter steps based on Bayesian method. Section 5.4, we describe the simulation

environment, the definition for Hybrid, Cooperative, non-Cooperative and vari-

ous configurations. Section 5.5, the results of our research are analyzed in detail.

Section 5.6, we show the conclusion of our research and findings.

5.1 Channel models and Ranging error variances

In this section, we define ranging error, power calculation and channel models

for ranging error variances of UWB TOA-based and WiFi RSS-based ranging

techniques. First, we describe the distance definition and its error, Distance

Measurement Error (DME). We then describe the IEEE 802.11 channel model for

power (RSS) calculation. The calculated power is used to select link error vari-

ance for UWB TOA-based ranging technique according to empirical data [44].

Lastly, we describe the theoretical ranging error variance of RSS-based ranging

technique [40].

5.1.1 Ranging Error

Let us assume there are M moving objects (MOs) and A fixed anchor points

(FAs), the 2-dimensional coordinates for M MOs, LM and A FAs, LA are given

by:

LM = [(x1, y1), ...., (xM , yM)]T

LA = [(xf1, yf1), ...., (xfA, yfA)]T
(5.1)

where (xi , yi); i = 1, ... ,M denotes the x-y coordinate of M moving objects. and

(xfj , yfj); j = 1, ... ,A denotes the x-y coordinate of A fixed anchors.
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For pairs of MO-to-MO or MO-to-FA within the communication range, a mea-

surement of Euclidean distance dij =
√

(xi − xj)2 + (yi − yj)2 can be obtained

using TOA-UWB or RSS-WiFi ranging techniques. The ranging techniques are

susceptible to noise variation of the channel models hence, the Distance Mea-

surement Error (DME), εij is defined as:

εij = d̂ij − dij (5.2)

where d̂ij is the estimate of the distance between pairs. εij will vary between the

pairs according to selected link error discussed in subsections 5.1.3 and 5.1.4.

The intent is to find the location of moving object with respect to fixed Anchor

(FA) locations and compare it with actual location.

We are only analyzing the ranging error variance resulting from distance esti-

mate, d̂ij using the non-linear, non-Gaussian channel model and Particle Filter

estimator. We make no assumptions of the speed and the trajectory complexity

of the MOs in our analysis.

5.1.2 Power calculation to select ranging error variance for TOA-

based technique

The Received Signal Strength (RSS) for a link between a pair is calculated based

on the distance, dij by:

RSS(dij) = RSS1m − 10α · log(dij) + χ (5.3)
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Where RSS1m is the received signal strength at a reference distance of 1m, α is

the path loss gradient and χ is the lognormal shadow fading with zero mean

and variance σ2
χ. The values of α, σχ for LOS and NLOS conditions are listed in

different rows in table 5.1.

TABLE 5.1: Path loss gradient & Shadow fading STD

RSS1m UWB WiFi
(dBm) α σχ α σχ

LOS -42 2.0 6.8 2.0 8.0
NLOS -42 5.6 8.5 3.5 8.0

5.1.3 TOA-based ranging error variance

The variance, σ2
εUWB

of Distance Measurement Error in (5.2) for UWB-based link

is determined by comparing the value of calculated power in (5.3) with tabu-

lated range in Table 5.2 1 .

TABLE 5.2: TOA-Based Empirical data

Power σ2
εUWB

(dBm)
RSS(dij) > -80 (0.13)2

-100 < RSS(dij) ≤ -80 (0.3)2

RSS(dij) ≤ -100 (1.4)2

The thresholds and variances defined in table 5.2 are based on Empirical data

[44]. There is more general discussion of Distance Measurement Error in [91].

1 Table 2.1 is duplicated here for the ease of referencing.
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5.1.4 RSS-based ranging error variance

The variance of Distance Measurement Error in (5.2) for WiFi-based link is de-

termined theoretically based on derivation outlined in [40]. The values of α, σχ

for LOS and NLOS conditions are listed in different rows of table 5.1.

σ2
εWiFi

≥ (
ln10

10
)2 ·

σ2
χ

α2
· d2ij (5.4)

5.2 Calculation of CRLB for Performance

To calculate the CRLB, we need to calculate the variance(s) of Distance Mea-

surement Error(s) (DME) for all the links among the MOs and the MOs-to-FAs

points. The CRLB provides a lower bound on the error covariance matrix for an

unbiased estimate of LM . For a given estimate of the MOs, L̂M and Gaussian

range measurement R, the Fisher Information Matrix (FIM) can be represented

by [92]:

J(LM) = E[5LM
lnfR(r;LM)][5LM

lnfR(r;LM)]T (5.5)

where fR(r;LM) is the joint Gaussian PDF given by:

fR(r;LM) =
1

(2π)K |
∑
| 12
× E (5.6)

where

E = exp

{
−1

2
[r − µ(LM)]T

∑−1
[r − µ(LM)]

}
(5.7)

and µ(LM) is the vector of the actual distances between the nodes corresponding

to available K measurements. FIM for the specific PDF in (5.6) can be written
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as:

J(LM) = [G(LM)]T
∑−1

[G(LM)] (5.8)

where

G(LM)T =

 cosφ1 cosφ2 ... cosφk

sinφ1 sinφ1 ... sinφk

 (5.9)

∑
= diag(λ1 λ2 ... λk) (5.10)

φi representing the angle between the nodes from ith measurement. and λi is the

variance of range estimate from the ith measurement. The variance calculation

are discussed in subsections 5.1.3 and 5.1.4 that are used to replace λi based on

a given configuration shown in Table 5.3.

TABLE 5.3: Configuration & selected Ranging Technique

Mode FA MO MO to FA MO to MO (COOP mode)
WiFi WiFi RSS-based RSS-based

Hybrid WiFi UWB RSS-based TOA-based
UWB UWB TOA-based TOA-based

Hybrid UWB WiFi TOA-based WiFi-based

The CRLB is given by:

CRLB = [J(LM)]−1 (5.11)

And, the Root-Mean-Square-Error, RMSE is given by:

RMSE =
√
trace(CRLB) (5.12)

5.3 Particle Filter Formulation

The Particle Filter is chosen for this work due to nature of non-closed form, non-

linear and non-Gaussian channel models for RF localization algorithm. The PF
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state is defined by uniformly Random X or Y movement of moving object (MO).

The PF observation is modeled based on empirical data for UWB-TOA and the-

oretical approach for WiFi-RSS ranging. The distance of the moving object is

obtained with respect to fixed anchors (FA) and other moving objects in coop-

erative mode. In the following subsections we describe the assumptions for PF

setup, derive PF recursion step, outline the PF implementation and discuss the

simulation environment.

5.3.1 PF setup

The notations moving forward and the assumptions for Bayesian recursion are

defined here. First, the notations used are, P denoting probability, p denoting the

index of a particle, nP denoting number of particles and nSMP denoting num-

ber of samples (movement). Second, the PF State (or movement) and Observa-

tion (or measurement) are defined as dp and RSSp respectively. Lastly, given the

random nature of MO movements and independent Observations we assume

that the current location of MO depends only on the previous location hence, a

Markov Process for the MOs movement (PF State),

P(dp/d0:p−1) = P(dp/dp−1) (5.13)

and, the current PF observation, RSSp depends only on the current PF state dp,

therefore:

P(RSSp/d0:p, RSS0:p−1) = P(RSSp/dp) (5.14)



Chapter 5. Particle Filter for Localization 67

5.3.2 PF Recursion Step

Leveraging off of the assumptions highlighted in subsection 5.3.1, we start with

Bayesian rule and skip detail derivation for future chapter, we arrive at the re-

cursion for Posterior of State given our measurements, P(d0:p/RSS0:p), applying

Bayes rule:

P(d0:p/RSS0:p) = P(RSS0:p/d0:p)∗P(d0:p)
P(RSS0:p) (5.15)

Starting with Bayes rule and applying our assumptions we arrive at PF Recur-

sion step:

P(dp/RSS0:p) = P(RSSp/dp)

P(RSSp/RSS0:p−1)
∗ P(dp/RSS0:p−1) (5.16)

where p = 1, 2, ..., nP . Basically, we want to pick the most suitable next state dp

given the set of observations RSSp. Obviously, we like to pick the most likely or

highest marginal Posterior.

5.3.3 PF implementation

Our model for state are sample points shown on Fig. 5.1. The Observation

model is defined in (5.3). However, this is just a Power measurement and there

are other transformations due to LOS, NLOS, UWB, WiFi conditioning in order

to evaluate our Distance Measurement Error hence, link error variance.

By observing (5.16), it appears that the Prior for the past p− 1 observations are

scaled to form the marginal Posterior on the left hand side. The Scale factor can

be considered as Weight factor where we can recursively update by performing
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FIGURE 5.1: Eight Fixed Anchors {AF1, AF2,.....,AF8} and three
moving objects {MO1, MO2, MO3}. The objects move along the

dotted lines and in the direction of arrows.

nP scaled version of Prior to form a new Posterior distribution.

Weightp = P(RSSp/dp)

P(RSSp/RSS0:p−1)
(5.17)

Given dp, the numerator can be measured and the denominator does not depend

on the state, dp. For the purpose of our simulation we will use a Gaussian Prior

with variance σ2
RSS and the mean is adjusted by the power calculated for dp,

RSSp.

fW (wp) =
1

2πσ2
RSS

exp

{
−(RSSref −RSSp)2

2σ2
RSS

}
(5.18)

RSSref is the power at the actual location. The state samples are also distributed

in random using Gaussian with a different variance σ2
dp

prior to Observation

(measurement). All the configurations outlined in Table 5.3 are simulated using
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the pseudo steps in Algorithm 1. Now that we got some idea of the work in-

volved, let us evaluate some initial result for performance of PF in subsection

5.4.1 and set the stage for the intended evaluation in section 5.5.

Algorithm 1 PF Algorithm flow

1: if (NCoop) then . MOs in NCoop mode
2: RefPoints = 8; . 8 Fixed Anchors
3: else . 3 Coop MOs
4: RefPoints = 11;
5: end if
6: for S = 1→ nSMP do . Objects movement
7: for R = 1→ RefPoints do
8: for p = 1→ nP do . Particle iterations
9: a) Measurement

10: b) Weight update
11: end for
12: 1) Normalize the Weight
13: 2) Randomly Sample the above CDF
14: 3) Pick maximum likelihood sample
15: 4) Selection of new State, hence lowest DME
16: end for
17: end for

5.4 Performance Analysis scenarios

In this section, we describe the simulation environment and setup in detail. The

Hybrid, Cooperative, non-Cooperative are defined and various configurations

are presented in tabular form.
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5.4.1 Simulation environment

In Fig. 5.1, there are eight FAs and three MOs, two moving clockwise and the

third counter-clockwise. The X or Y movements are advanced according to uni-

formly random distribution. In this section we are evaluating the effect of num-

ber of particles nP , different variance values for State and Observation to set the

stage for the intended evaluation. In Fig. 5.2, we are evaluating the effect of 8

and 16 particles (nP = 8, 16) for FA and MO in WiFi-enabled mode. In COOP

mode, the results are very close however, in NCOOP mode the result for higher

number of particle (nP = 16) is slightly better, from here on the evaluation is

focused on nP = 16.

FIGURE 5.2: 32 Samples, 8 Fixed Anchors and 3 Moving Objects.
Comparison of 8 vs. 16 particles for Coop. and Non-Coop. mode.

In Fig. 5.3 and 5.4 the variances for State (st) and Observation (oz) are varied

for COOP and NCOOP respectively. The FAs and MOs are UWB-enabled. As
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expected, at low variances for state and observation, both at 2 we get the best

performance and conversely we get the worst when both are set to 8. The result

for UWB-enabled mode is presented graphically in Figs. 5.3 and 5.4. For other

scenarios (WiFi, Hybrid) are reviewed (is not included in this chapter) and the

results corroborates with the results shown in this chapter. After this initial PF

evaluation, we use the following parameters for the reset of this chapter: nP =

16, σ2
dp

= 8, & σ2
RSS = 8.

FIGURE 5.3: Using 16 particles and assessing the Effect of different
State and Observation variances on error in cooperative (COOP) mode.

5.4.2 Hybrid and Cooperative Configuration

Hybrid is when a pair (MO-to-MO or MO-to-FA) can communicate over WiFi

and UWB RF signaling hence RSS-based and TOA-based ranging is applied

respectively. Cooperative, refers to MOs communicating among each other in
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FIGURE 5.4: Using 16 particles and assessing the Effect of different
State and Observation variances on error in Non-cooperative (NCOOP)

mode.

pairwise configuration. The choice of ranging technique is determined based on

a given configuration shown in Table 5.3.

5.5 Results and Discussion

The simulation environment for all our simulation runs moving forward is based

on parameters outlined in Table 5.4. In this section, the Figs. 5.5, 5.6, 5.7, 5.8 and

tabulated results in tables 5.5 and 5.6 are analyzed and the performance of PF is

compared to CRLB. In our review of the results we use the 50th percentile and

assess the performance accordingly. Also, in each of the figures to be discussed,

there is a mix of COOP and NCOOP both for PF and CRLB. The COOP and
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TABLE 5.4: Simulation environment

Sim Parameters PF Parameters
nSMP FAs MOs nP σ2

dp
σ2
RSS

32 8 3 16 8 8

NCOOP graphs for CRLB are represented by solid Blue and Red lines respec-

tively. In general, one can observe an improving trend stemming from Hybrid

COOP mode. However, it is evident that PF does not perform as well in low

error condition, for example UWB. The highlights are as follow:

WiFiAnc.,WiF iObj., Fig. 5.5, where FAs and MOs are WiFi-enabled hence high

RMSE values, the PF tracks the CRLB both in COOP and NCOOP mode. The PF

is off by 0.5 meter both in COOP and NCOOP mode with respect to the CRLB.

FIGURE 5.5: Particle filter error versus CRLB operating in COOP and
NCOOP mode using WiFi signaling where FAs and MOs are both WiFi-

enabled.
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Hybrid (WiFiAnc., UWBObj.), Fig. 5.6, in Hybrid mode, the MOs are UWB-

enabled and FAs remain WiFi-enabled. In here, we have high RMSE values

aided by low RMSE values MOs improving the overall RMSE. As a result, the

PF outperforms the CRLB when in COOP mode. In NCOOP mode, there are not

much differences relative to non-Hybrid mode per Fig. 5.5. The PF performs bet-

ter by 0.5 meter in COOP and is off by 0.7 meter in NCOOP mode relative to the

CRLB.

FIGURE 5.6: Particle filter error versus CRLB operating in COOP and
NCOOP mode using Hybrid signaling where FAs are WiFi-enabled and

MOs are UWB-enabled.

UWBAnc., UWBObj., Fig. 5.7, where FAs and MOs are UWB-enabled hence low

RMSE values, the PF does not perform well relative to the CRLB in neither cases,

COOP or NCOOP mode. The PF performs worse by 0.12 meter in COOP and

0.17 meter in NCOOP mode compared to the CRLB.
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FIGURE 5.7: Particle filter error versus CRLB operating in COOP and
NCOOP mode using UWB signaling where FAs and MOs are both

UWB-enabled.

Hybrid (UWBAnc.,WiF iObj.), Fig. 5.8, in Hybrid mode, the MOs are WiFi-enabled

and FAs remain UWB-enabled. In here, we have low RMSE values mixed in with

high RMSE values MOs which are not helping the overall RMSE as compare to

5.6. The PF performs better in COOP than NCOOP mode. In NCOOP mode, the

performance is similar to non-Hybrid mode result per Fig. 5.7. The PF performs

worse only by 0.025 meter in COOP and worse by 0.15 meter in NCOOP mode

in comparison to the CRLB.

The RMSE deviation results for the PF with parameters (nP = 16, σ2
dp

= 8, &

σ2
RSS = 8) are tabulated in tables 5.5 and 5.6. There is higher Mean values for

the PF except in Hybrid COOP where the FAs are WiFi-enabled and MOs are

UWB-enabled. The STD ratio (PF/CRLB) for UWB COOP is almost the same as

WiFi NCOOP. The STD for the PF is higher than the CRLB in all cases.
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FIGURE 5.8: Particle filter error versus CRLB operating in COOP and
NCOOP mode using Hybrid signaling where FAs are UWB-enabled and

MOs are WiFi-enabled.

5.6 Summary

In this chapter, we implemented a Particle Filter for the non-linear, non-Gaussian

channel models for RF localization in a Hybrid Cooperative configuration. We

used UWB TOA-basedand WiFi RSS-based ranging techniques. We formulated

the Bayesian approach to show the recursion step for Particle Filter implemen-

tation. We simulated and analyzed the quantitative performance of PF versus

CRLB in Cooperative (COOP) and Non-Cooperative (NCOOP) both in Hybrid

and non-Hybrid configurations. When the moving objects (MOs) and fixed an-

chors (FAs) are UWB-enabled, hence low error (RMSE) value, we showed that

the PF performs poorly both in COOP and NCOOP compared to CRLB. How-

ever, in a case when moving objects and fixed anchors are all WiFi-enabled,
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TABLE 5.5: RMSE deviation for PF with WiFi-enabled FAs

Mean STD
WiFi-enabled MOs in Coop mode

PF 5.0500 0.9775
CRLB 4.5540 0.8112

WiFi-enabled MOs in NCoop mode
PF 5.4630 1.1340
CRLB 5.0400 0.4436

UWB-enabled MOs in Coop mode
PF 2.4230 1.2320
CRLB 2.7010 1.1280

UWB-enabled MOs in NCoop mode
PF 5.8140 1.0890
CRLB 5.0670 0.4977

TABLE 5.6: RMSE deviation for PF with UWB-enabled FAs

Mean STD
WiFi-enabled MOs in Coop mode

PF 0.3631 0.1955
CRLB 0.2294 0.0778

WiFi-enabled MOs in NCoop mode
PF 0.4334 0.2079
CRLB 0.3104 0.1661

UWB-enabled MOs in Coop mode
PF 0.2361 0.0956
CRLB 0.1940 0.0459

UWB-enabled MOs in NCoop mode
PF 0.4083 0.2283
CRLB 0.2785 0.1350

hence high error (RMSE) value, the PF performs more closely and consistently

compared to CRLB. In general, the particle filter performs much better in envi-

ronment with high RMSE value in non-Hybrid configurations. We showed that

in Hybrid WiFi/UWB and Cooperative configuration, the Particle Filter consis-

tently performs well in either of low or high RMSE value environments.
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6 Precise Tracking of Things

In this chapter, we focus on WiFi RF signaling simulation and analysis. We dis-

cuss our solution for overcoming the WiFi’s sub meter error (accuracy) by in-

troducing our novel Hybrid 3D Database for localization using Kernel Method

Particle Filter to achieve sub centimeter precision. One important implemen-

tation issue in PF is the Resampling. Our implementation of the proposed PF

is complemented by our 3D database where the stored Probability Mass Func-

tions, PMFs of a Grid point is used for Importance Sampling. This is used in a

similar fashion to Systematic Resampling as discussed in [109–111].

Due to complex nature of radio propagation and high degree of error in WiFi, a

hybrid of Bluetooth and WiFi RF signaling along with fusion of LIDAR coordi-

nate and IMU is proposed for creation of this high resolution signature database

that includes PMF data per grid point. This database, cooperative (COOP) mov-

ing objects and Kernel Method Particle Filter is our solution to sub-centimeter

localization and navigation. Employing Hybrid database and Cooperative lo-

calization has been gaining momentum. Accuracy of methods such as TOA and

RSS are highly susceptible to non-linear, non-Gaussian channel models in in-

door environments. The Particle Filter with a Kernel approach and Hybrid 3D

database are chosen to perform with precision in an indoor environment. Unlike

the previous chapter 5, the simulations are recreated exclusively for WiFi rang-

ing using the theoretical, IEEE 802.11 channel model for RSS and the empirical
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data for UWB ranging error is not applicable here as discussed in [44]. Fur-

thermore, for the purpose of performance analysis, we leverage off our work

in [61] to stay with eight fixed anchors (FAs) along with three moving objects

(MOs). The new simulations are focused on WiFi ranging and line of sight as-

sumption (LOS) which is more relevant for analysis to high resolution signature

database. We analyze the effect of different parameters on PF performance ver-

sus CRLB, address limitations and discuss our novel solution for precise indoor

localization. In our novel approach, we are not bounded by fixed anchor points

and our reliance for precision is our high resolution signature databases hence,

lower variance for distance measurement error. The high resolution signature

databases are stored and accessed to and from the Cloud storage respectively.

The rest of the chapter is organized as follows: In section 6.1, we define channel

model describing distance measurement error, power calculation based on 802.11

RSS model, variance of WiFi-link and finally describe the Grid, the baseline for our

high resolution signature database. Section 6.2, we define our new approach to Ker-

nel Method Particle Filter based on Bayesian method and empirical PMF. Section

6.3, we describe the Notations, Assumptions and simulation setup. Section 6.4,

we analyze the effect of various parameter settings on Particle filter and compare

the results to CRLB. Section 6.5, we summarize the conclusion of our research

and findings. Appendix A, a brief CRLB formulation is outlined. Appendix B,

The detailed derivation of Bayesian Recursion for Particle Filter.
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6.1 Channel models and High Resolution Signature

Database

In this section, a WiFi channel model is described by distance measurement er-

ror, WiFi-link variance is calculated according to RSS-based ranging technique

[40], power calculation of Received Signal Strength (RSS) based on 802.11 RSS

model.

Lastly, the high resolution signature database is described.

6.1.1 WiFi Channel Model

Considering M moving objects (MOs) and A fixed anchor points (FAs), the 2-

dimensional coordinates for M MOs, LM and A FAs, LA are given by:

LM = [(x1, y1), ...., (xM , yM)]T

LA = [(xf1, yf1), ...., (xfA, yfA)]T
(6.1)

where (xi , yi); i = 1, ... ,M denotes the x-y coordinate of M moving objects. and

(xfj , yfj); j = 1, ... ,A denotes the x-y coordinate of A fixed anchors.

For pairs of MO-to-MO or MO-to-FA within the communication range, a mea-

surement of Euclidean distance dij =
√

(xi − xj)2 + (yi − yj)2 can be obtained

using RSS-WiFi ranging techniques. The ranging techniques are susceptible to

noise variation of the channel models hence, the Distance Measurement Error

(DME), εij is defined as:

εij = d̂ij − dij (6.2)
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where d̂ij is the estimate of the distance between pairs. εij will vary between the

pairs according to link error discussed in subsection 6.1.2. This is how the loca-

tion of moving object is determined with respect to fixed Anchor (FA) locations

and compared to its true location.

We are only analyzing the ranging error variance resulting from distance esti-

mate, d̂ij using the non-linear, non-Gaussian channel model and Particle Filter

estimator.

6.1.2 WiFi-link variance

The variance of Distance Measurement Error in (6.2) for WiFi-link is determined

theoretically based on derivation outlined in [40]. The values of α, σχ for LOS

condition are listed in table 6.1.

σ2
εWiFi

≥ (
ln10

10
)2 ·

σ2
χ

α2
· d2ij (6.3)

As evident from (6.3) the variance is directly impacted by the square of distance,

d2ij hence, impacting Root Mean Square Error (RMSE) of localization accuracy.

The RMSE can significantly be lowered due to confluence of Hybrid of WiFi,

Bluetooth, LIDAR, IMU and smaller distances as a result of Grid density. That

is how a high resolution signature database (HRSD) can enable us to achieve

much lower RMSE and as result more precise localization and tracking.
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6.1.3 Received Signal Strength calculation

The Received Signal Strength (RSS) for a WiFi-link between a pair is calculated

based on the distance, dij according to:

RSS(dij) = RSS1m − 10α · log(dij) + χ (6.4)

Where RSS1m is the received signal strength at a reference distance of 1m, α is

the path loss gradient and χ is the lognormal shadow fading with zero mean and

variance σ2
χ. The values of α, σχ are chosen for Line of Sight (LOS) condition

listed in table 6.1.

6.1.4 High Resolution Signature Database

A High Resolution Signature Database (HRSD) is pivotal to precise localization.

We start with collection system known as the Mobile Indoor Geo-Location Sur-

vey Unit (MIGSU) to collect high resolution data to create signature databases.

The MIGSU system is remotely controlled and collects Wi-Fi, Bluetooth, Mag-

netic and LIDAR data for the purpose of indoor Geo location and digital map-

ping. MIGSU is remotely controlled within a building or venue while it collects

the signal data in real time, parses the data, and creates the signature databases.

The 3D digital map is developed from LIDAR data during post processing. The

MIGSU system uses specially designed hardware platform in a self-contained

TABLE 6.1: Path loss gradient and Shadow fading STD for Line of
Sight condition

Condition RSS1m(dBm) α σχ

LOS -42 2.0 8.0
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mobile unit to collect the signals in real time. MIGSU utilizes a precision Inertial

Measurement Unit (IMU) to precisely calculate its known position then uses the

position data to tag the captured signals. The Wi-Fi collection component uti-

lizes three dual band 802.11 a/b/g/n (2.4/5.2 GHz) chip sets as the receivers.

These receivers also collect Bluetooth 802.15 data. The three receivers antennas

are spaced at precise lateral spacing of 25cm to provide uncorrelated position

signal data. Experiments have shown that at 25cm, which is the lowest common

denominator for 2.4 and 5.2 GHz wavelengths, the received signals are uncorre-

lated and independent. This means that at this spacing the RF signal is distinct.

Each antenna and antenna cable are also measured using a network analyzer

to create a calibration table for amplitude corrections to compensate for small

differences in the receive chain.

A grid point is a position in space correlated to the venue in X,Y, Z coordinates

for the building being mapped, North(X), East(Y) and Down(Z), NED navigation.

Grid Spacing is the distance between grid points and defines the database den-

sity. Each grid point will consist of WiFi and Bluetooth RF signature as well as

the fusion of LIDAR coordinate and IMU attributes.

LIDAR is a LASER Detection and Ranging technology and uses lasers to de-

termine the range of an object by calculating the time of flight for the signal to

hit an object and return plus its intensity. The magnetic fingerprint is created

from the IMU and is binned and tagged by the database management with a

position. The key difference with this data is that there is only a single emitter,

earth’s magnetic field. All magnetic collections are stored for a collection period

creating an array of X,Y,Z axis magnetic measurements.

The Wi-Fi signature database is made up of individual grid points spaced at

25cm each. The collected data is pre-processed for faster cloud access and placed
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in the signature. This data will consist of the Mean RSS, Standard Deviation RSS,

Min RSS, and Max RSS values for each emitter. The Probability Mass Function

(PMF) is also stored for each signature. The current required number of samples

for the PMF is 50 samples per grid point per emitter. An accurate timestamps is

crucial for correlating and fusion of LIDAR 3D coordinate and IMU attribute to

ensure the accuracy of database. The effects of these time varying fields, sample

density on accuracy, stability of the database will be submitted in a separate paper.

The outcome from this Novel approach in creation of high resolution database, is shorter

spacing or distance hence, lower RMSE. Furthermore, the availability of Probability

Mass Function (PMF) for use in Importance Sampling of Kernel Method Particle

Filter (KMPF).

6.2 Particle Filter Formulation

The Particle Filter is chosen for this work due to nature of non-closed form, non-

linear and non-Gaussian channel models for RF localization algorithm. The PF

state is defined by uniformly Random X or Y movement of moving object (MO).

The PF observation is modeled based on theoretical approach for WiFi-RSS rang-

ing. The distance of the moving object is obtained with respect to fixed anchors

(FA) and other moving objects when in cooperative mode. The published results

in our previous work [84] was based on choice of Gaussian with a different vari-

ances for our importance sampling. It is important to note that the choice of more

appropriate probability Mass function for importance sampling results in more re-

alistic Posterior estimation. The PMF information and RSS values are provided

by HRSD.
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The main engine driving the Particle Filter implementation is the recursion for

estimating Posterior and proper choice for importance sampling. The assumption

and the derivation of Bayesian recursion for Posterior estimation is detailed out

in Appendix B.

Our model for state are sample points shown on Fig. 6.1. The Observation

model is defined in (6.4). However, this is just a Power measurement and is pre-

processed along with fusion of LIDAR coordinates and IMU attributes as well

as cross validation across different data points to ensure a robust build of HRSD

as previously described in subsection 6.1.4.

Let us consider the importance weight, (6.5) derived in Appendix A:

Weightp = P(RSSp/dp)

P(RSSp/RSS0:p−1)
(6.5)

Given dp, the numerator can be measured and the denominator is not dependent

on the state, dp. For the purpose of our simulation we will use a Gaussian Prior

with variance σ2
RSS and the mean is adjusted by the power calculated for dp,

RSSp.

fW (wp) =
1

2πσ2
RSS

exp

{
−(RSSref −RSSp)2

2σ2
RSS

}
(6.6)

RSSref is the power at the actual location. The state samples are also distributed

in random using Gaussian with a different variance σ2
dp

prior to Observation

(measurement). Simulations are performed using the pseudo steps in Algorithm

2.

In the case of Kernel Method Particle Filter (KMPF), the information provided

by HRSD are further processed for the best candidate in PMFs. The best of three

PMFs provided by HRSD is sorted out using Kullback Leibler divergence (KLD)

method (6.7). The select, an empirical PMF will be used for Importance Sampling
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instead of the theoretical Gaussian distribution that is used for simulations in

Algorithm 2. Having a true sample representation for PMF will be pivotal for

more precise localization and tracking of things, PToT.

DKL(PMFi||PMFj) =
50∑
k=1

PMFi(k)× log
PMFi(k)

PMFj(k)
(6.7)

Next we evaluate our preliminary simulation results for parameter effects on

performance of PF in section 6.4.

Algorithm 2 PF Algorithm flow

1: if (NCoop) then . MOs in NCoop mode
2: RefPoints = 8; . 8 Fixed Anchors
3: else . 3 Coop MOs
4: RefPoints = 11;
5: end if
6: for S = 1→ nSMP do . Objects movement
7: for R = 1→ RefPoints do
8: for p = 1→ nP do . Particle iterations
9: a) Measurement

10: b) Weight update
11: end for
12: 1) Normalize the Weight
13: 2) Randomly Sample the above CDF
14: 3) Pick maximum likelihood sample
15: 4) Selection of new State, hence lowest DME
16: end for
17: end for

6.3 Simulation Environment

In this section, we describe the notations, assumptions for Particle Filter im-

plementation, describe CRLB for our analysis and the setup of our simulation

environment.
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6.3.1 Notations

The notations used are, P denoting probability, p denoting the index of a particle,

nP denoting number of particles and nSMP denoting number of samples and

MO denoting a moving object. The PF State (or movement) and Observation (or

measurement) are denoted by dp and RSSp respectively.

The legend in figures differentiates the COOP from NCOOP as well as PF versus

CRLB. For example, COOP nP16 oz8 st2 in the legend of Fig. 6.3a, denotes a

Particle Filter in cooperative mode with the parameters nP = 16, σ2
RSSp

= 8

and σ2
dp

= 2 and compared to CRLB also in cooperative mode, with the legend

denotation as COOP CRLB.

6.3.2 PF Assumptions

Given the random nature of MO movements and independent Observations, we

assume that the current location of MO depends only on the previous location

hence, a Markov Process for the MOs movement (PF State), and, the current PF

observation, RSSp depends only on the current PF state dp, there is more details

in Appendix B.

6.3.3 CRLB as a measure of performance

The Cramer-Rao Lower Bound (CRLB) is used as a measure of the lower bound

on the variance of estimators for deterministic parameters [92, 112]. The CRLB

defines that the bound on the variance of any unbiased estimator is at least as

high as the inverse of the Fisher information [112]. From CRLB calculation we

can easily find the lowest possible Root Mean Square Error (RMSE) among all
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unbiased algorithms. The CRLB is routinely utilized in navigation application

and science [113, 114]. CRLB is used to measure the max possible performance

of localization algorithm and guidance on implementation feasibility of an algo-

rithm [115]. In this chapter, the CRLB is used to measure the performance of our

Particle Filter in different scenarios. To calculate the CRLB, we need to calculate

the variance(s) of Distance Measurement Error(s) (DME) for all the links among

the MOs and the MOs-to-FAs points. The CRLB provides a lower bound on the

error covariance matrix for an unbiased estimate of LM . For a given estimate

of the MOs, L̂M and Gaussian range measurement R. The CRLB calculation for

this study is outlined in details in Appendix A. The RMSE =
√
trace(CRLB)

is used throughout this chapter for our performance analysis.

6.3.4 Simulation setup

In Fig. 6.1, there are eight FAs and three MOs, two moving clockwise and the

third counter-clockwise. The X or Y movements are advanced randomly accord-

ing to uniform distribution. The simulations are performed in WiFi-link mode

and there has not been any consideration for NLOS, LOS is assumed through-

out. The LOS assumption is due to the fact that in our future work we will be

using the digital map that will include the LIDAR information which is based

on having Line Of Sight, LOS. The collection of this digital map was discussed

in subsection 6.1.4.
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6.4 Simulation Analysis

In this section, we analyze the performance of Particle Filter with respect to

CRLB in Cooperative (COOP) and Non-Cooperative mode. We first start by

examining the effect of Particle Filters parameters such as Observation vari-

ance (σ2
RSSp

), State variance ( σ2
dp

) and number of particles (nP ) as it pertains to

RMSE value. In subsection 6.4.1, we analyze Particle Filters accuracy (in terms

of RMSE) under different parameter settings. After analyzing the results in sub-

section 6.4.1, we then select the best performing parameters for comparison to

the lower bound of errors hence, CRLB in subsection 6.4.2.

6.4.1 Effect of Variances and number of Particles on PF

In this subsection, we are evaluating the effect of number of particles nP , dif-

ferent variance values for State and Observation in order to set the stage for

the remaining simulation runs. In Fig. 6.2, we are evaluating the effect of dou-

bling, 8 versus 16 particles (nP = 8, 16) where FAs and MOs are in WiFi-enable

mode. In COOP mode, the results are very close however, in NCOOP mode

the result for higher number of particles (nP = 16), is slightly better. For the

remaining simulations we focus on using nP = 16. In Fig. 6.3(a) and 6.3(b), the

nP is left at 16 and only the variances of State1 (st) and Observation2 (oz) are

changed3. In Fig. 6.3(a), the Moving Objects (MOs) are in COOP mode where

their location information are shared among each other. The RMSE value for the

1 st, is used in legends for figures in place of dp
2oz, is used in legends for figures in place of RSSp
3oz8 st2, in figure legend, denotes that σ2

RSSp
= 8 and σ2

dp
= 2
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50th percentile mark, is the worst (RMSE = 6.349) when the state and obser-

vation variances4 are set to 8. In Fig. 6.3(b), the Moving Objects (MOs) are in

NCOOP mode where they do not share their location information. At the 50th

percentile mark, similar to COOP mode the RMSE is the worst (RMSE = 7.293)

when the variances are set to 8. Conversely in a low variance environment when

both State and Observation variances are set at 2, the RMSE is the lowest both

in COOP (RMSE = 6.07) and NCOOP (RMSE = 6.892). In general, when in

COOP mode, the RMSE is lower than NCOOP for all combination of variances.

For example, at the 50th percentile mark, the RMSE ranges between 6.07− 6.349

in COOP mode and 6.892 − 7.293 in NCOOP mode. There is about 1 meter im-

provement in RMSE value while in COOP mode. After this initial evaluation

of parameter effect on PF, we continue using nP = 16. Next, we evaluate the

performance of Particle filter versus CRLB considering the effect of distance and

variances (σ2
dp

, σ2
RSS) in subsection 6.4.2.

6.4.2 PF performance compared to CRLB

The simulation results discussed here are based on configuration values out-

lined in Table 6.2. In this subsection, we analyze the effect of Observation vari-

ance (σ2
RSSp

) and State variance (σ2
dp

) of Particle Filter and distance reduction in

(6.3). Here, we compare the performance of Particle Filter versus CRLB. The re-

sults of the simulations for the effect of variance changes are captured in Fig. 6.4

and for the distance reduction in Fig. 6.5 respectively. The statistics (Mean and

STD) of simulation runs for this subsection is tabulated in Table 6.3. Unlike the

previous figures in subsection 6.4.1 where there were only Particle Filters with

differing parameters, here the Particle Filter performance is compared to CRLB.

4σ2
dp

and σ2
RSSp
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FIGURE 6.1: Eight Fixed Anchors {AF1, AF2,.....,AF8} and three mov-
ing objects {MO1, MO2, MO3}. The objects MO1 and MO2 traverse
clockwise along the dotted lines and MO3 in the oposite direction, counter

clockwise.

In our review of the results, we use the 50th percentile for our performance as-

sessment. The results are analyzed in the following order, Fig. 6.4, Fig. 6.5, and

Table 6.3.

In Fig. 6.4a and Fig. 6.4b, the results of PF simulations with two sets of variances

both in COOP and NCOOP mode are compared to CRLB. In Fig. 6.4a, shows

the result of simulation for high variances value of σ2
dp

and σ2
RSSp

where both are

set to 8 and Fig. 6.4b shows the result for low variances, where both are set to 2.

Despite the quadruple values of variances (8 versus 2) in two different scenarios,

the RMSE result in low variance scenario, is only better by 5%. This is a very

small improvement. It is evident that the variance does not have that drastic of

effect on Particle Filter performance (RMSE).
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FIGURE 6.2: Comparing the performance of Particle filters with differ-
ent number of particles (8 versus 16) for the same set of State variance, σ2dp
and Observation variance, σ2RSSp

(both set at 2) in COOP and NCOOP
modes.

As for distance reduction, Fig. 6.5 shows the result of simulation where the dis-

tance is reduced by a factor of 2 and the variances are set to 2. Here is a great

case for discussion, comparing this result with the one in Fig. 6.4b, the RMSE

improvement is very noticeable. With half the distance, the RMSE is lowered

by one-fourth. In COOP mode, the RMSE is lowered from 6.072 to 1.451 me-

ter and from 6.838 to 1.675 meter in NCOOP mode. In our earlier introduction

to grid, High Resolution Signature Database in subsection 6.1.4, the distances

among grid points are only 25 centimeter apart. This dense spacing among the

grid points would result in more stable RSS reading, less factor due to distance

variation. We also can benefit from more accurate empirical PMF as opozed to a

theoretical model (i.e. Gaussian) for our Particle Filter implementation.
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TABLE 6.2: Simualtion environment for two sets of State (dp) and
Observation (RSSp) Variances

Sim Parameters PF Parameters
nSMP FAs MOs nP σ2

dp
σ2
RSSp

32 8 3 16 2 2
32 8 3 16 8 8

In Table 6.3, the RMSE statistics, Mean and STD for the PF performance versus

CRLB are tabulated for three different settings. First, the variances ( σ2
dp

, σ2
RSSp

)

are both set at 8. Second, the variances are set to 2. Lastly, in more optimal

scenario, the variances are left at 2 and distance is reduced by a factor of 1/2.

It is evident that overall there is an improving (lowering) RMSE from perspec-

tive of Mean and STD. Starting from high variance values of 8 to low values of

2. However, in case of distance reduction by a factor of 1/2 (dp/2), there is a

significant improvement on statistics. The low STD in the latter case (dp/2), bodes

well for our digital mapping approach, HRSD.

6.5 Summary

In this chapter, we focus on WiFi localization and Line of Sight (LOS) simulation

TABLE 6.3: RMSE Mean and STD for three different set of param-
eters for Particle Filter simulation . State (dp) and Observation
(RSSp) Variances for the first two modes and lastly State (dp) or

distance reduction.

Estimation Parameters COOP NCOOP
Mean STD Mean STD

PF σ2
dp

, σ2
RSSp

= 8 6.287 1.2020 7.113 1.0160
CRLB 5.360 0.6943 6.239 0.6995
PF σ2

dp
, σ2

RSSp
= 2 6.032 0.9558 6.822 0.9146

CRLB 5.385 0.9080 6.259 0.6289
PF σ2

dp
, σ2

RSSp
= 2 with dp/2 1.456 0.2313 1.680 0.2163

CRLB 1.340 0.1959 1.575 0.1737
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in Cooperative and Non-Cooperative mode. A Particle Filter was chosen due

to nature of Non-linear, non-Gaussian channel models for RF localization. The

assumptions for our Particle Filter state (dp) and observation (RSSp) were stated

upon which, the details of Bayesian Recursion were derived. We started with

extensive simulation for the effect of different parameter settings on Particle Fil-

ter performance and pointed out limitation and introduced a new approach for

more precise localization that comprises of a Hybrid 3D database (High Reso-

lution Signature Database) and Kernel Method Particle Filter. In our simulation

results we showed that the distance reduction has the most effect on lowering

the Root Mean Square Error (RMSE) than low value of variances (σ2
dp

, σ2
RSSp

). We

also showed the overall improvement of RMSE when the Moving Objects (MOs)

collaborate (COOP mode). In order to achieve a more Precise Tracking of Things

(PToT), we introduced two essential components, a High Resolution Signature

Database (HRSD) and an Empirical choice for Empirical Importance Sampling of

our Kernel Method Particle Filter. The results will be published in a separate

paper.
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(a)

(b)

FIGURE 6.3: Comparing the performance of Particle filters in four
different combination of State variance, σ2dp and Observation variance,
σ2RSSp

in COOP and NCOOP modes: (a) PF in COOP mode (b)
PF in NCOOP mode
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(a)

(b)

FIGURE 6.4: Comparing the performance of Particle Filter versus
CRLB both in COOP and NCOOP mode for two different sets of State
and Observation Variance: (a) σ2dp , σ2RSS = 8 (b) σ2dp , σ2RSS = 2
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FIGURE 6.5: The effect of distance (dp, the state) reduction by a fac-
tor of two resulting an improvement on RMSE by a factor of four. Here,
the state variance (σ2dp) and observation variance (σ2dp) are both set at 2,
and simulations are run in COOP and NCOOP mode and the PF perfor-

mance is compared to CRLB.



98

7 Conclusion and Furture work

In this dissertation, we utilized two RF signaling medium, WiFi, and UWB. Al-

though there are different methods for localization, we focused on two most

popular, Wifi-RSS-, UWB-TOA-based methods. Due to the complexity of UWB

theoretical model, we resorted to an empirical model. Due to nonlinear and

non-Gaussian nature of our channel models, we opted for Particle Filter (PF)

for our research. In our study, we explored many variants for optimal localiza-

tion. From an environmental perspective, we examined the effect of, number of

fixed anchors, cooperation among moving objects and, as for Particle Filter, we

explored the efficiency regarding the number of particles, state and observation

variances and resampling methods. And finally, we addressed ways to more

accuracy by resorting to 3D finger- print database. Through our simulation, we

always measured the performance of our methods and algorithm against CRLB.

We showed that in three moving objects (MOs) and eight fixed anchors con-

figuration, hybrid mode (WiFi & UWB) while MOs collaborate, resulted in 49

percent improvement over when they are not. We showed that in general, the

particle filter performs much better in an environment with high RMSE value

in non-Hybrid configurations. We demonstrated that in Hybrid (WiFi & UWB)

and Cooperative configuration, the Particle Filter consistently performs well in

either of low or high RMSE value environments.

In summary, the increase in the number of anchors and cooperation rendered
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better localization. The Hybrid was superior to the WiFi-only method. As for

Particle Filter, it behaved much better in the high RMSE environment than the

low RMSE. More particle helps, and it is highly dependent on the size of the

area. We also introduced the KMPF to achieve a more Precise Tracking of Things

(PToT), we introduced two essential components, a High-Resolution Signature

Database (HRSD) and an Empirical PMF feed for Importance Sampling of the

Kernel Method Particle Filter (KMPF).

The precision is a never ending quest. Steps towards more precision rely on

two step solution: High-resolution database and Empirically fed KMPF. There is

more work in this area from the reliability perspective and accurate time-stamp!

When it comes to location based services, there it goes the massive size of data

that requires us to manage the size and the quality of the data. With the event of

data mining, two areas warrant further research when it comes to wireless data.

We need to extract proper features for more effective clustering of data. It should

help us from the computational perspective and perhaps a better localization by

eliminating the outlier signals.

On that note, it is worth looking into some understanding for dimensionality

reduction [116–118] and feature extraction [119, 120]. For precise indoor local-

ization, machine learning can play an influential role in adaptation and calibra-

tion [121–123]. We can also combine clustering techniques [124] and the intel-

ligent source or transmitter selection [125] for a more optimal algorithm and

dynamic localization.
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A Derivation of CRLB

To calculate the CRLB, we need to calculate the variance(s) of Distance Mea-

surement Error(s) (DME) for all the links among the MOs and the MOs-to-FAs

points. The CRLB provides a lower bound on the error covariance matrix for an

unbiased estimate of LM . For a given estimate of the MOs, L̂M and Gaussian

range measurement R, the Fisher Information Matrix (FIM) can be represented

by:

J(LM) = E[5LM
lnfR(r;LM)][5LM

lnfR(r;LM)]T (A.1)

where fR(r;LM) is the joint Gaussian PDF given by:

fR(r;LM) =
1

(2π)K |
∑
| 12
× E (A.2)

where

E = exp

{
−1

2
[r − µ(LM)]T

∑−1
[r − µ(LM)]

}
(A.3)

and µ(LM) is the vector of the actual distances between the nodes corresponding

to available K measurements. FIM for the specific PDF in (A.2) can be written

as:

J(LM) = [G(LM)]T
∑−1

[G(LM)] (A.4)

G(LM)T =

 cosφ1 cosφ2 ... cosφk

sinφ1 sinφ1 ... sinφk

 (A.5)
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where ∑
= diag(λ1 λ2 ... λk) (A.6)

φi representing the angle between the nodes from ith measurement and λi is the

variance of range estimate from the ith measurement. The variance calculation

are discussed in subsections 6.1.2 that are used to replace λi. The CRLB is given

by:

CRLB = [J(LM)]−1 (A.7)

And, the Root-Mean-Square-Error, RMSE is given by:

RMSE =
√
trace(CRLB) (A.8)
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B Derivation of Bayesian Recursion

Let us recall the notations, P denoting probability, p denoting the index of a par-

ticle, the PF State (or movement) and Observation (or measurement) are defined

as dp and RSSp respectively. Given the random nature of MO movements and

independent Observations we assume that the current location of MO depends

only on the previous location hence, a Markov Process for the MOs movement

(PF State, dp),

P(dp/d0:p−1) = P(dp/dp−1) (B.1)

and, the current PF observation, RSSp depends only on the current PF state dp,

therefore:

P(RSSp/d0:p, RSS0:p−1) = P(RSSp/dp) (B.2)

Leveraging off of the assumptions highlighted in (B.1) and (B.2), we start with

Bayesian rule to arrive at the recursion for Posterior of the PF State (dp) based

on our measurements, P(d0:p/RSS0:p), applying Bayes rule:

P(d0:p/RSS0:p) = P(RSS0:p/d0:p)∗P(d0:p)
P(RSS0:p)

(B.3)

Rewriting the numerator and denominator indices, RSS0:p to (RSSp, RSS0:p−1):

P(d0:p/RSS0:p) = P(RSSp,RSS0:p−1/d0:p)∗P(d0:p)
P(RSSp,RSS0:p−1)

(B.4)
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Applying the product rule to P(RSSp, RSS0:p−1/d0:p):

P(d0:p/RSS0:p) =

P(RSSp/RSS0:p−1,d0:p)∗P(RSS0:p−1/d0:p)∗P(d0:p)
P(RSSp/RSS0:p−1)∗P(RSS0:p−1)

(B.5)

Applying BAYES rule to: P(RSS0:p−1/d0:p) in (B.5):

P(d0:p/RSS0:p) =

P(RSSp/RSS0:p−1,d0:p)∗P(d0:p/RSS0:p−1)∗P(RSS0:p−1)∗P(d0:p)
P(RSSp/RSS0:p−1)∗P(RSS0:p−1)∗P(d0:p)

(B.6)

Deleting the common term, P(RSS0:p−1) ∗ P(d0:p):

P(d0:p/RSS0:p) = P(RSSp/RSS0:p−1,d0:p)∗P(d0:p/RSS0:p−1)

P(RSSp/RSS0:p−1)
(B.7)

based on the independent observations(RSS) assumption:

P(RSSp/RSS0:p−1, d0:p) = P(RSSp/dp) (B.8)

therefore applying (B.8) into (B.7):

P(d0:p/RSS0:p) = P(RSSp/dp)∗P(dp,d0:p−1/RSS0:p−1)

P(RSSp/RSS0:p−1)
(B.9)

Applying Conditional Property to 2nd term in the numerator of (B.9):

P(d0:p/RSS0:p) =

P(RSSp/dp)∗P(dp/d0:p−1,RSS0:p−1)∗P(d0:p−1/RSS0:p−1)

P (RSSp/RSS0:p−1)

(B.10)
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based on the Markov Process assumption for the movement (PF state dp):

P(dp/d0:p−1, RSS0:p−1) = P(dp/dp−1) (B.11)

Applying assumption in (B.11) to (B.10) :

P(d0:p/RSS0:p) =

P(RSSp/dp)

P(RSSp/RSS0:p−1)
∗ P(dp/dp−1) ∗ P(d0:p−1/RSS0:p−1)

(B.12)

Integrating over the past p− 1 values of d:

∫
P(d0:p/RSS0:p) =

P(RSSp/dp)

P(RSSp/RSS0:p−1)
∗
∫
P(dp/dp−1) ∗ P(d0:p−1/RSS0:p−1)

(B.13)

After integrating over the p − 1 of d we are only left with the current value, dp

hence:

P(dp/RSS0:p) = P(RSSp/dp)

P(RSSp/RSS0:p−1)
∗ P(dp/RSS0:p−1) (B.14)

where p = 1, 2, ..., nP . nP denotes the total number of Particles.

Basically, we want to pick the most suitable next state dp given the set of obser-

vations RSS0:p. Obviously, we like to pick the most likely or highest marginal

Posterior.

By observing (B.14), it appears that the Prior for the past p− 1 observations are

scaled to form the marginal Posterior on the left hand side. The Scale factor

can be considered as Importance Weight where we can recursively update by
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performing nP scaled version of Prior to form a new Posterior distribution.

Weightp = P(RSSp/dp)

P(RSSp/RSS0:p−1)
(B.15)

Given dp, the numerator can be measured and the denominator does not depend

on the state, dp.
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