
Clutter-Based Dimension Reordering in Multi-Dimensional
Data Visualization

by

Wei Peng

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

January 2005

APPROVED:

Professor Matthew O. Ward, Thesis Advisor

Professor Daniel J. Dougherty, Thesis Reader

Professor Michael A. Gennert, Head of Department



Abstract

Visual clutter denotes a disordered collection of graphical entities in information

visualization. It can obscure the structure present in the data. Even in a small

dataset, visual clutter makes it hard for the viewer to find patterns, relationships

and structure.

In this thesis, I study visual clutter with four distinct visualization techniques,

and present the concept and framework of Clutter-Based Dimension Reordering

(CBDR). Dimension order is an attribute that can significantly affect a visualiza-

tion’s expressiveness. By varying the dimension order in a display, it is possible to

reduce clutter without reducing data content or modifying the data in any way.

Clutter reduction is a display-dependent task. In this thesis, I apply the CBDR

framework to four different visualization techniques. For each display technique,

I determine what constitutes clutter in terms of display properties, then design a

metric to measure visual clutter in this display. Finally I search for an order that

minimizes the clutter in a display. Different algorithms for the searching process are

discussed in this thesis as well.

In order to gather users’ responses toward the clutter measures used in the

Clutter-Based Dimension Reordering process and validate the usefulness of CBDR,

I also conducted an evaluation with two groups of users. The study result proves

that users find our approach to be helpful for visually exploring datasets. The users

also had many comments and suggestions for the CBDR approach as well as for

visual clutter reduction in general. The content and result of the user study are

included in this thesis.
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Chapter 1

Introduction

1.1 Exploratory Data Analysis and Data Visual-

ization

A picture is worth a thousand words.

- Chinese proverb

Exploratory data analysis (EDA), as opposed to confirmatory data analysis

(CDA), was first defined by John Tukey [2, 3], with the goal to maximize the ana-

lyst’s insight into a data set and into the underlying structure of a data set, while

providing all of the specific items that an analyst would want to extract from a

data set [4]. In EDA, the role of the researcher is to explore the data in as many

ways as possible until a plausible “story” of the data emerges. As [4] summarized,

this approach/philosophy for data analysis employs a variety of techniques (mostly

graphical) to:

• maximize insight into a data set;

• uncover underlying structure;
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• extract important variables;

• detect outliers and anomalies;

• test underlying assumptions;

• develop parsimonious models; and

• determine optimal factor settings.

Many EDA techniques are graphical in nature, with a few quantitative tech-

niques. They are often referred to as Data Visualization, which is a basic element

in exploratory data analysis [4].

1.2 Multi-Dimensional Data Visualization

Multi-dimensional visualization is one sub-field of data visualization that focuses on

multi-dimensional (multivariate) datasets. Multi-dimensional data can be defined as

a set of entities E, where the ith element ei consists of a vector with n variables, ( xi1,

xi2, ..., xin ). Each variable (dimension) may be independent of or interdependent

with one or more of the other variables. Variables may be discrete or continuous in

nature, or take on symbolic (nominal) values. Applications such as censuses, surveys

and simulations are some of the most common sources of multi-dimensional data.

Visual exploration of multi-dimensional data is of great interest in Statistics and

Information Visualization. It helps the user find trends and relationships among

dimensions. When visualizing multi-dimensional data, each variable may map to

some graphical entity or attribute. According to the different ways for dimension-

ality manipulation, we can broadly categorize the display techniques as:

• Axis reconfiguration techniques, such as parallel coordinates [5, 6] and glyphs

[7, 8, 9, 10, 11].
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• Dimensional embedding techniques, such as dimensional stacking [12] and

worlds within worlds [13].

• Dimensional subsetting, such as scatterplot matrices [14].

• Dimensional reduction techniques, such as multi-dimensional scaling [15, 16,

17], principal component analysis [18], and self-organizing maps [19].

1.3 Visual Clutter Reduction in Multi-Dimensional

Data Visualization

A good visualization clearly reveals structure within the data and thus can help the

viewer to better identify patterns and detect outliers. Visual clutter, on the other

hand, is characterized by crowded and disordered visual entities that obscure the

structure in visual displays. In other words, visual clutter is the opposite of visual

structure; it corresponds to all the factors that interfere with the process of finding

structures. Clutter is certainly undesirable since it hinders viewers’ understanding

of the content of the displays. However, when the number of dimensions or data

items grows high, it is inevitable for displays to exhibit some clutter, no matter

what visualization method is used. For example, Figure 1.1 denotes the parallel

coordinates visualization of the Iris dataset (4 dimensions, 150 data items), and

Figure 1.2 represents the AAUP salary dataset (14 dimensions, 1161 data items). For

the Iris dataset, each individual green line is well separated and easy to identify, while

for the AAUP dataset, the number of data items and dimensionality both exceed

those in the Iris dataset, resulting in more axes and polylines on the screen and

cluttering the display. It is much more difficult for the viewer to identify individual

data items or find patterns in the AAUP dataset.
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Figure 1.1: Iris dataset (4 dimen-
sions, 150 data items) in Parallel Co-
ordinates.

Figure 1.2: AAUP salary dataset (14 di-
mensions, 1161 data items) in Parallel Co-
ordinates.

Clutter reduction in data visualization is not a simple problem with one solution

or one type of solution, due to the variety of visualization techniques and analysis

goals. As stated before, the crowded and disordered visual entities are the compo-

nents of visual clutter in a display. Obviously, visual entities vary from one type of

visualization to another, and thus so do the definitions of “structure” and “pattern”.

As a result, there is no one “magic” solution to address the clutter reduction prob-

lem as a whole; instead, various distinct approaches have been proposed to address

this problem from different perspectives. Some of these target reducing the density

of visual entities, such as lines, dots and shapes, while others try to organize the

entities in a certain way to enhance the structure in a display so that it can be better

interpreted.

In multi-dimensional data visualization, the clutter reduction problem has been

widely discussed. Typical approaches include multi-resolution techniques [20, 21,

22], dimensionality reduction [18, 15, 17, 19], and distortion [23, 24]. These ap-

proaches attack this problem focusing on different aspects of the dataset and dis-

play, and thus make it possible to reduce clutter under different conditions. However,
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each approach has its own advantages and disadvantages, working well with some

displays and tasks, but performing poorly with others. What is more, to serve the

purpose of clutter reduction, these solutions choose to sacrifice some information

that’s considered “unimportant”. They either sacrifice the integrity of the data or

fail to generate an unbiased representation of the data. Under some circumstances,

this is acceptable and even desirable, especially when the user wants to obtain an

overall image of the data and does not care very much about the details and pre-

cision. However, there are also cases where the user wants to reduce clutter in a

display as much as possible without losing any information or getting any incor-

rect information. The current approaches, unfortunately, don’t cope well with these

goals. In order to complement these approaches by reducing clutter in visualization

techniques while retaining the information in the display, I have developed a clutter

reduction technique using dimension reordering.

1.4 Dimension Reordering in Multi-Dimensional

Data Visualization

In many multivariate visualization techniques, such as parallel coordinates [5, 6],

glyphs [7, 8, 9, 10, 11], scatterplot matrices [14] and pixel-oriented methods [25], di-

mensions are positioned in some one- or two-dimensional arrangement on the screen

[26]. Given the 2-D nature of this medium, some order or organization of the di-

mensions must be assumed. This organization can have a major impact on the

expressiveness of the visualization. Different orders of dimensions can reveal differ-

ent aspects of the data and affect the perceived clutter and structure in the display,

causing completely different conclusions to be drawn based on each display. Unfor-

tunately, in many existing visualization systems that encompass these techniques,
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dimensions are usually ordered without much care. In fact, dimensions are often

displayed by the default order in the original dataset. Realizing the importance of

dimension order in a multi-dimensional visualization, we choose it to be our object

to work on for clutter reduction.

Manual dimension reordering is available in some systems. For example, Polaris

[27] allows users to manually select and order the dimensions to be mapped to

the display. Similarly, in XmdvTool [26], users can manually change the order of

dimensions from a reconfigurable list of dimensions. However, the exhaustive search

for the best order is tedious even for a modest number of dimensions. Also, the user

will have difficulty remembering all the views and corresponding dimension orders

she has traversed. Therefore, we are in need of a way to automatically search for

the best dimension order in a display.

1.5 Goals of This Thesis

Visual clutter reduction is a visualization-dependent task because visualization tech-

niques vary largely from one to another. However, by experimenting with a few pre-

vailing visualization techniques, we can demonstrate the importance of dimension

order in terms of clutter reduction and acquire guidelines that are also applicable in

other visualization techniques.

The basic goal of this thesis is to:

• present the concept of Clutter-Based Dimension Reordering (CBDR),

• sketch a general framework for performing the clutter-reduction task using

dimension reordering,

• design clutter measuring and reducing approaches for several of the most pop-
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ular multivariate data visualization techniques.

The Clutter-Based Dimension Reordering approach has two primary advantages:

(1) the display retains all the information in the data after clutter reduction; (2) the

optimal dimension order is derived automatically, so as to lessen the burden from

the user’s side. Hopefully this solution will remedy the shortcomings of the current

tools in some way, and this general framework will be of use for clutter reduction in

other multi-dimensional visualization techniques.

1.6 Overview of The Approach

Gestalt Laws [28] are robust rules of pattern perception. These laws emphasize

that we perceive objects as well-organized patterns rather than separate component

parts. According to [29], the focal point of Gestalt theory is the idea of ”grouping,”

or how we tend to interpret a visual field or problem in a certain way. The main

factors that determine grouping are:

• proximity - how elements tend to be grouped together depending on their

closeness.

• similarity - how items that are similar in some way tend to be grouped together.

• closure - how items are grouped together if they tend to complete a pattern.

• simplicity - how items are organized into figures according to symmetry, reg-

ularity, and smoothness.

We use these laws as our guidelines for defining visual clutter and structure. In

the following chapters, the definition and measure for specific visualizations will be

discussed respectively, following the Gestalt laws.

7



I implemented the work in the context of the XmdvTool [26, 30] project, a public

domain visualization system that integrates multiple techniques for displaying and

visually exploring multi-dimensional data. Among these, parallel coordinates [5, 6],

scatterplot matrices [14], star glyphs [9] and dimensional stacking [12] are the focused

visualization techniques.

In order to automate the dimension reordering process for a visualization gener-

ated by XmdvTool, we are concerned with three issues:

1. determining the way clutter manifests itself in the display,

2. designing a metric to measure visual clutter, and

3. arranging the dimensions for the purpose of clutter reduction.

I will discuss the CBDR process applied to four visualization techniques sepa-

rately, one per chapter. I follow the same framework in all of them. Within each

chapter, I first determine the visual characteristics that would be labeled as clut-

ter, and then carefully define a metric for measuring clutter. The clutter analyses

and measures I provide are specifically tuned to each individual technique, which

are quite different due to the diversity of the four techniques. At the end of each

chapter, I apply an optimal ordering algorithm to arrange the dimensions to achieve

the best order under our clutter measure. Heuristic reordering algorithms that can

significantly reduce processing time are discussed in a separate chapter.

1.7 Organization

This thesis is organized as follows. Chapter 2 provides a review of related work

in current clutter reduction and dimension reordering techniques in data visual-

ization. Chapter 3 gives an overview of the XmdvTool system. Chapters 4, 5, 6
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and 7 describe the Clutter-Based Dimension Reordering framework for four differ-

ent visualization techniques respectively. In Chapter 8, algorithms for dimension

reordering are discussed. Chapter 9 presents the results from an evaluation targeted

at the users’ ability to distinguish the improved visualizations from the original one.

Chapter 10 concludes the thesis and points out directions for future work.
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Chapter 2

Related Work

2.1 Clutter Reduction Techniques

Many approaches have been proposed to overcome the clutter problem in data visual-

ization from various perspectives. We can classify the strategies into two categories:

View Related and Data Related.

In view related approaches, the spatial characteristics of graphical entities are

modified to address the clutter problem. Techniques such as distortion and zooming

are view related techniques. Data related approaches reduce the dataset itself by

clustering, sampling and filtering, resulting in a view with fewer graphical entities,

thereby reducing the clutter in a view. Both the data volume and dimensionality

can be reduced in multi-dimensional datasets.

2.1.1 View Related Approaches

Zoom/Semantic Zoom Techniques

Zooming is an intuitive method to facilitate the user in retrieving information in

a dense display. It allows the user to zoom in and out on the interesting objects.
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Most visualization systems support zoom in/out; Treemap [31], Xgobi [32], DataS-

pace [33], and XmdvTool [26, 30] are among those that support this functionality.

Zooming helps to remove unnecessary information from the display and make the

interesting objects easier to examine. However, due to this very nature, the user can

only explore one part of the data at a time, and thus can lose track of the global

context.

In systems that involve a spatial metaphor, a common technique is to automat-

ically change the representation of objects as the user zooms. This functionality is

described as semantic zooming [34, 35, 1]. Pad [34] and Pad++ [35] are two graph-

ical interfaces intended to be alternatives to traditional windows and icon-based

approaches to interface design. Objects in these systems (such as a text file, a clock

program, or a personal calendar) can be represented differently as the user zooms in

and out on them. For example, when a text document is small on the screen the user

may only want to see its title. As the object is zoomed in, this may be augmented

by a short summary or outline. At some point the entire text is revealed. Woodruff

et al. [1] applied the cartographic Principle of Constant Information Density in in-

teractive visualizations of cartographic and non-cartographic data. They supported

two density metrics, number of objects and number of vertices. As the user zooms

in or out, the shape and size of displayed objects will change accordingly to keep

the information density constant. Figure 2.1 is an example of semantic zooming in

DataSplash [36], a database visualization system. These techniques will reduce the

clutter only when the objects have multiple spatial metaphors.

Distortion Techniques

Distortion is a widely used technique for visually exploring dense information dis-

plays. Distortion-oriented techniques allow the user to examine a local area in detail
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Figure 2.1: Visualizations of housing cost (x axis) and income (y axis) of states
in the United States before and after semantic zooming according to information
density. Figure taken from [1]

on a section of the screen, and at the same time present a global view of the space to

provide an overall context to facilitate navigation [24]. By intentionally disregarding

some details in the uninteresting area, distortion techniques can significantly unclut-

ter the view so that the interesting area can take up more space and be carefully

examined.

Focus+Context techniques are applied in many multi-resolution visualization

systems, including Radial, Space-Filling (RSF) hierarchy visualizations [37, 38, 39].

Andrews and Heidegger’s information slices technique [37] uses two semi-circular ar-

eas to represent a file system. By selecting a focus (typically small) directory in an

overview window and displaying that directory and its descendant file/directories in

the other view, they provide a form of two-level “overview and detail” information

visualization. Stasko et al. proposed another file system examination tool, Sunburst

[38], that employs three major techniques to show the focus+context of the hierar-

chy, namely the Angular Detail method, the Detail Outside method and the Detail
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Inside method. The Angular Detail method first shrinks the overview hierarchy

and moves it to the boundary of the window, then expands the selected item and

its children radially outward to occupy a larger display area. The Detail Outside

method first shrinks the entire hierarchy to the center of the window, and then ex-

pands the selected item and its children to be a new complete circular ring-shaped

region around the overview. The Detail Inside method works similarly to Detail

Outside, except that it pushes the overview outward to take a large ring shape and

expands radially the selected item as well as its children to occupy the center of the

display. Figure 2.2 illustrates an example of Focus+Context visualization using the

Sunburst system. Yang et al. visualized hierarchies of dimensions using a system

called InterRing [39]. This system allows the user to distort a node both circularly

and radially. The circular distortion of a node and its children is done by increasing

or decreasing the sizes of its siblings, but the size of the selected node can’t exceed

that of its parent. The radial distortion can increase or decrease the thickness of

the selected layer by changing those of the other layers.

Figure 2.2: Directory visualization using Sunburst system. Figure taken from
http://www.cc.gatech.edu/gvu/ii/sunburst/

The Fisheye View concept was originally proposed by Furnas [40] as a presenta-
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tion strategy with the motivation of providing a balance of local detail and global

context. The essence of this technique is called thresholding. Each information

element in a hierarchical structure is assigned a number based on its relevance (a

priori importance or API) and a second number based on the distance between the

information element under consideration and the point of focus in the structure. A

threshold value is then selected and compared with a function of these two numbers

to determine what information is to be presented or suppressed. Consequently, the

more relevant information will be presented in great detail, and the less relevant

information presented as an abstraction, based on a threshold value. The Fisheye

View is a great technique for navigating dense charts, graphs and maps, where the

user is concerned with graphical details and hopes to retain the global view at the

same time.

The distortion techniques discussed above change the spatial relationship be-

tween graphical entities, which is intentional in some visualizations but not proper

for more accurate quantitative data exploration and analysis. What is more, in

many visualizations, the user focuses not on the local details but on the overall

trends and patterns in the dataset or relationships between dimensions; distortion

is not sufficient to serve this purpose.

2.1.2 Data Related Approaches

In recent years, many techniques have been proposed to reduce the dataset size

while preserving significant features. Some of these focus on reducing the number

of data items to be visualized, and the others deal with high dimensionality.
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Reducing Data Volume

There are many approaches towards reducing the size of a dataset for visualization.

Some common ones are briefly described below.

Wavelets are mathematical functions that can be used to approximate data and

analyze them at multiple scales. Wong and Bergeron [20] described the construc-

tion of a multi-resolution display using wavelet approximations. They reduced the

data volume through repeatedly merging neighboring points. The wavelet trans-

forms identify averages and details present at each level of compression. They also

incorporated the brushing functionality into their model and the brushed data are

displayed at a higher resolution than the non-brushed ones. However, the wavelet

transform requires data to be ordered, making it useful only for datasets with a

natural ordering along one dimension, such as time-series data.

Wills [41] described a visualization technique for hierarchical clusters. He built

his work upon the tree-map idea [31] by recursively subdividing the tree based on

a similarity measure. Wills used the similarity measure as a value to control the

clustering granularity. For instance, with a small value, fewer clusters with more

elements could be shown. This measure also acted as a level-of-detail control for

smooth transitions across tree-maps of different granularity. Their main purpose was

to display the clustering results, and in particular, the data partitions at a given

similarity value. Hence, the N-dimensional characteristics of the clusterings such as

the mean or extents information were not displayed along with the tree-map.

Fua et al. [21] reduced data density by taking a hierarchical approach to structure

the data. The data were displayed at a certain level of abstraction at any one time.

The work was based on the XmdvTool [26] visualization system, and utilized varying

translucency and a proximity-based coloring scheme that visually segregates data

elements based on similarities. The population and extents of clusters were shown
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with bands of varying translucency, resulting in a less cluttered view than that with

all the data items being shown on the screen.

Reducing Dimensionality

High dimensionality is another source of clutter. Most traditional multi-dimensional

visualizations become cluttered when the dimensionality of a dataset grows high.

Many approaches exist for handling high-dimensional datasets.

Principal Component Analysis [18], Multi-dimensional Scaling [15, 16, 17], and

Self Organizing Maps [19] are three major dimensionality reduction techniques used

in data and information visualization. Principle Component Analysis (PCA) [18]

attempts to project data down to a few dimensions that account for most vari-

ance within the data. Multidimensional Scaling (MDS) [15, 16, 17] is an iterative

non-linear optimization algorithm for projecting multi-dimensional data down to a

reduced number of dimensions. Kohonen’s Self Organizing Map (SOM) [19, 42] is

an unsupervised learning method to reduce multi-dimensional data to 2D feature

maps [43].

Many new dimensionality reduction techniques also have been proposed to han-

dle this problem. For example, Random Mapping [44] used a random transform

matrix to project the high dimensional data to a lower dimensional space. [44]

presented a case study of a dimension reduction from a 5781-dimensional space to

a 90-dimensional one with Random Mapping. In [45, 46], an algorithm called An-

chored Least Stress is developed to handle very large datasets when MDS alone does

not suffice. This algorithm combines PCA and MDS and makes use of the result of

data clustering in the high dimensional space. Yang et al. [47] proposed a visual

hierarchical dimension reduction technique that groups dimensions into a hierarchy

and constructs lower dimensional spaces using clusters of the hierarchy. This tech-
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nique generates lower dimensional spaces meaningful to users, and it allows user

interactions in most steps of the process.

These data-related approaches reduce the number of data items or the dimension-

ality and map the lower data and dimension space to the screen for a less cluttered

view. The major concern of these approaches is the data integrity. In order to cope

with the clutter problem, these approaches unavoidably sacrifice some information

in the original dataset during the clustering, sampling or filtering process.

2.2 Reordering Techniques in Data Visualization

2.2.1 Reordering in General

In information visualization, the order of visual entities can greatly impact the

quality of a display. In some cases, entities have a natural order for all presentation

goals. But in other cases, where they do not have an obvious order, they can be

arranged carefully to enhance the displays.

Friendly et al. [48] designed a general framework for ordering information in

visual displays according to the desired effects or trends, and presented several

techniques for ordering items based on some desired criterion in different displays.

Their idea, termed effect-ordered data displays, can be applied to the arrangement of

unordered factors for quantitative data and frequency data, and to the arrangement

of variables and observations in multi-dimensional displays.

Ma et al. [49] ordered categorical values by: (1) constructing natural clusters of

categorical values based on domain semantics; (2) ordering values in the clusters; and

(3) ordering the categorical values within each cluster. Rosario et al. [50] proposed

a Distance-Quantification-Classing (DQC) approach for visualizing nominal values.
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They transform the data and search for a set of independent dimensions that can

be used to calculate the distance between nominal values. This distance is based

on each value’s distribution across several other nominal variables. Based on the

distance information, order and spacing can be assigned among the nominal values.

In hierarchical cluster analysis, the terminal nodes of a tree can be arranged based

on some criteria to best reveal the relationship between the nodes and enhance the

visual display. Gruvaeus and Wainer [51] presented an algorithm that applied a

series of tests for locally orienting the nodes so that objects displayed on the left

and right edges of each cluster are adjacent to those objects outside the cluster to

which they are most similar. Due to the large number of applications that construct

trees for analyzing datasets, many different heuristics have been suggested to solve

the problem of ordering the leaves of a binary hierarchical clustering tree [52, 53].

Particularly, it is intensely discussed in bioinformatics literature to better display

gene microarrays [53, 54, 55, 56, 57].

2.2.2 Dimension Reordering

Dimension order is an important issue in visualization. Bertin [58] gave some ex-

amples illustrating that permutations of dimensions and data items reveal patterns

and improve the comprehension of visualizations.

Ankerst et al. [59] pointed out the importance of dimension arrangement for

order-sensitive multidimensional visualization techniques. They defined the concept

of similarity between dimensions and discussed several similarity measures, and

proposed a method to arrange dimensions according to their similarities so that

similar ones are adjacent to each other. They proved that their problem is an NP-

complete problem by equating it to the Traveling Salesman Problem, and used an

automatic heuristic approach to generate a solution.
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Yang et al. [60] imposed a hierarchical structure over the dimensions themselves,

grouping a large number of dimensions into a hierarchy so that the complexity of

the ordering problem is reduced. They first order each cluster in the dimension

hierarchy. For a non-leaf node, they use its representative dimension in the ordering

of its parent node. Then, the order of the dimensions is decided by the order of the

dimensions in a depth-first traversal of the dimension hierarchy. User interactions

are then supported to make it practical for users to actively decide on dimension

reduction and ordering in the visualization process.

In these two approaches, dimensions are reordered according to similarities be-

tween dimensions. This is the proper thing to do when relationships between di-

mensions are the major concern of the user. Although their work is not directly

related to the results of this thesis, the idea of using dimension ordering to improve

dimension similarities inspired the technique of this thesis, ordering dimensions to

reduce visual clutter in multi-dimensional data visualization.
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Chapter 3

XmdvTool

XmdvTool is a multivariate visualization system developed by Ward et al. [26, 30]

that integrates several techniques for displaying and visually exploring multivariate

data. It is available on all UNIX platforms that support XR4 or higher. Xmdv-

Tool 4.0 and later versions are also available on Windows95/98/NT platforms, and

are based on OpenGL and Tcl/Tk. The current released version, XmdvTool 6.0

Alpha, supports four methods for displaying multi-dimensional data in both flat

(non-hierarchical) and hierarchical form. The four techniques are scatterplot matri-

ces [14], parallel coordinates [5, 6], star glyphs [9] and dimensional stacking [12]. By

combining these different techniques within one system, XmdvTool enables users to

explore their data in various views. The users can easily switch between the four

views to discover trends and patterns, reveal relationships between dimensions and

find outliers.

In addition, XmdvTool also supports a variety of interaction tools to assist users

in navigating their data. For flat visualizations, the N-dimensional brush [30, 61]

allows the user to interactively select subsets of the data by painting over them

with a mouse so that they may be highlighted, deleted or masked. For hierarchical
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visualizations, the structure-based brush [62, 63] is available to allow users to select

subsets of data by specifying focal regions within the data hierarchy as well as a

level-of-detail. Other major interaction tools include zooming/panning, interactive

dimension reduction/distortion, and color scheme selection.

In the following sections we provide a brief introduction to the four visualization

techniques available in XmdvTool. More detailed information about this tool can

be obtained from [26].

3.1 Parallel Coordinates

Figure 3.1: Parallel Coordinates visualization of Detroit crime dataset (7 dimen-
sions, 13 data items).

Parallel coordinates visualization [5, 6] is a technique pioneered in the 1980’s

that has been applied to a diverse set of multidimensional analysis problems. Be-

sides XmdvTool, it has been incorporated into many commercial and public-domain

systems, such as WinViz [64] and SPSS Diamond [65].

In this method, each dimension corresponds to an axis, and the N axes are

organized as uniformly spaced vertical or horizontal lines. A data element in an
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N-dimensional space manifests itself as a polyline that traverses across all of the

axes, crossing each axis at a position proportional to its value for that dimension.

Figure 3.1 shows a parallel coordinates display of the Detroit crime dataset,

which has 7 dimensions (depicted by the vertical axes) and 13 data items (each

depicted by a series of lines across the axes). The name of each dimension is shown

on the top of each axis. The minimum and maximum values of each dimension are

indicated at the two ends of each axis.

3.2 Scatterplot Matrix

Figure 3.2: Scatterplot Matrices visualization of Iris dataset (4 dimensions, 150 data
items).

Scatterplots [14] are one of the oldest and most commonly used methods to

project high dimensional data to 2-dimensions. Two data variables are used to

specify the location of a dot or other marker on the plot. In a scatterplot matrix

visualization of an N-dimensional dataset, N 2 two-dimensional scatterplots are gen-

erated, each giving the viewer a general impression regarding relationships within

the data between pairs of dimensions. The plots are arranged in a grid structure to
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help the user remember the dimensions associated with each projection. Figure 3.2

is a scatterplot matrix visualization of Iris dataset.

3.3 Star Glyphs

Figure 3.3: Star Glyphs visualization of Detroit crime dataset (7 dimensions, 13
data items).

A glyph [7, 8, 10, 11] is a representation of a data element that maps data values

to various geometric and color attributes of graphical primitives or symbols. A Star

glyph [9] is one type of glyph visualization. In this technique, each data element

occupies one portion of the display window. Data values control the length of rays

emanating from a central point. The rays are then joined by a polyline drawn around

the outside of the rays to form a closed polygon. Figure 3.3 represents the Detroit

crime dataset. The 13 data items are displayed with 13 glyphs, and the lengths of

rays are proportional to the data values on the corresponding dimensions.
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Figure 3.4: Dimensional Stacking visualization of Iris dataset (4 dimensions, 150
data items).

3.4 Dimensional Stacking

The dimensional stacking technique is a recursive projection method developed by

LeBlanc et al. [12]. It displays an N dimensional dataset by recursively embed-

ding pairs of dimensions within each other. Each dimension of the dataset is first

discretized into a user-specified number of bins, which is termed the dimension cardi-

nality. Then two dimensions are defined as the horizontal and vertical axes, creating

a grid on the display. Within each box of this grid this process is applied again with

the next two dimensions. This process continues until all dimensions are assigned.

Each data point maps to a unique bin based on its values in each dimension, which

in turn maps to a unique location in the resulting image (See Figure 3.4). In Xmdv-

Tool, the dimensions are mapped to horizontal and vertical axes alternatively, from

outer-most (slowest) to inner-most (fastest), based on their order in the input file.
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Chapter 4

Clutter-Based Dimension

Reordering in Parallel Coordinates

4.1 Clutter Analysis of Parallel Coordinates

In the parallel coordinates display, as the axes order is changed, the polylines rep-

resenting data points take on very distinct shapes. In Figures 4.1 and 4.2, the two

displays depict the same dataset with different dimension orders. As can be seen

in the figures, a parallel coordinates display makes inter-dimensional relationships

between neighboring dimensions easy to see, but does not disclose relationships

between non-adjacent dimensions. Therefore, our hope is that by changing the

dimension orders, the inter-dimensional relationships of the dataset can be better

revealed to the user.

According to the Gestalt Laws [28], users tend to perceive objects in groups and

consider these groups to be more well-organized than separate components. Bearing

this in mind, in parallel coordinates visualization, we conjecture that more clustered

polylines between dimensions make pattern recognition easier for the user. In a
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Figure 4.1: Parallel coordinates visualization of Cars dataset. Outliers are high-
lighted in (b).

Figure 4.2: Parallel coordinates visualization of Cars dataset after clutter-based
dimension reordering. Outliers are highlighted in (b).

display of parallel coordinates without data-related clutter reduction approaches,

such as sampling, filtering or multi-resolution processing, if polylines between two

dimensions can be naturally grouped into a set of clusters, we assume the user

will likely find it easier to comprehend the relationship between them. Instead, if

there are many lines that don’t belong to any cluster, the space between the two
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dimensions can be very cluttered. These polylines make it hard for the viewer to

find patterns and discover relationships; we refer to them as outliers. According to

[4], the definition of outlier is:

Definition 1 An outlier is an observation that lies an abnormal distance from other

values in a random sample from a population.

For clutter reduction in parallel coordinates visualization, we developed our own

formal definition for an outlier in a dataset:

Definition 2 Let D be a dataset, and let i, j be two variables. A data point d is an

outlier for i and j if d’s Euclidean distance to any of the other data points is greater

than a defined number, t, in the two-dimensional space formed by i and j.

It is true that one of the strengths of parallel coordinates visualization is to

help find outliers, but in our case, a lot of outliers between a pair of dimensions

often indicates that there is little relationship between them. Since our goal is to

disclose more relationships and patterns between dimensions, we want to minimize

the impact from outliers; in other words, we carefully order the dimensions to avoid

them.

4.2 Clutter Measure in Parallel Coordinates

4.2.1 Defining and Computing Clutter

With our conjecture discussed in the last section, we can define a visual clutter

measure in parallel coordinates visualization. Due to the fact that outliers often

obscure structure and thus confuse the user, clutter in parallel coordinates can be

defined as the proportion of outliers against the total number of data points.
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To reduce clutter in this technique, our task is to rearrange the dimensions

to minimize the outliers between neighboring dimensions. In order to calculate

the score for a given dimension order, we first count the total number of outliers

between neighboring dimensions, Soutlier. If there are n dimensions, the number of

neighboring pairs for a given order is n − 1. The average outlier number between

dimensions is defined to be Savg = Soutlier/(n−1). Let Stotal denote the total number

of data points. The clutter C, the proportion of outliers, can then be defined as

follows:

C = Savg/Stotal =
Soutlier

n−1

Stotal

(4.1)

Since n − 1 and Stotal are both fixed for a given dataset, dimension orders that

reduce the total number of outliers also reduce clutter in the display according to

our notion of clutter.

Now we are faced with the problem of how to decide if a data item is within

a cluster or is an outlier. Since we have restricted the notion of clutter to the

number of outliers within neighboring pairs of dimensions, we can use the normalized

Euclidean distances between data points to measure their closeness. If a data point

does not have any neighbor whose distance to it is less than threshold t, we treat

it as an outlier. In this way, we are able to find all the data points that don’t

have any neighbors within the distance t in the specified two-dimensional space. If

the number of data points is m, this can be done in O(m2) time. We do this for

every pair of the n dimensions and store the outlier numbers in a outlier matrix M .

The total time for building this matrix is O(m2n2). Given a dimension order, we

can then decide the clutter in the display by adding up outlier numbers between

neighboring dimensions.

Instead of letting the user specify the threshold, we could have let it be based on
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the dataset, or develop algorithms that don’t involve thresholds. However, since we

want to give the user more flexibility and interaction when ordering the dimensions,

we believe that allowing the user to decide the thresholds for cluster distance is

preferable. Thus the threshold here and those in the following chapters all can be

user-defined, though each has a fixed default value.

4.2.2 Deciding Dimension Order

In a given dimension order, we can add up outlier numbers between neighboring

dimensions in the display. This takes O(n) time. The optimal dimension order is

decided by selecting the one dimension order that minimizes this number. This

exhaustive search takes O(n!) time.

4.3 Example

Figures 4.1 and 4.2 both represent the Cars dataset. In Figure 4.1 the data is

displayed with the default dimension ordering. Figure 4.2 displays the data after

being processed with clutter-based ordering. In the rightmost image in each figure,

polylines highlighted in red are outliers according to our clutter metric. With a

glimpse we can identify more outliers in the original visualization than the improved

one, which suggests the neighboring dimensions in the latter visualization are more

closely related to each other. From our evaluations, we discovered that most users

found that data points were better separated in the improved view and they could

identify patterns and outliers more easily with this view.
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Chapter 5

Clutter-Based Dimension

Reordering in Scatterplot

Matrices

5.1 Clutter Analysis in Scatterplot Matrices

In clutter reduction for scatterplot matrices, we focus on finding structure in plots

rather than outliers, because the overall shape and tendency of data points in a plot

can reveal a lot of information. Some work has been done in finding structures in

scatterplot visualizations. PRIM-9 [66] is a system that makes use of scatterplots. In

this system data is projected onto a two-dimensional subspace defined by any pair of

dimensions. Thus the user can navigate all the projections and search for the most

interesting ones. Automatic projection pursuit techniques [67] utilize algorithms to

detect structure in projections based on the density of clusters and separation of

data points in the projection space to aid in finding the most interesting plots.

With a matrix of scatterplots, users are not only able to find plots with struc-
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ture, but also can view and compare the relationships between these plots. Since

all orthogonal projections are displayed on the screen, changing the dimension or-

der does not result in different projections, but rather a different placement of the

pairwise plots. According to the Gestalt Laws [28], proximity is a factor which

will affect the user’s perception of groupings. The conjecture with the scatterplot

matrices visualization technique is that similar plots should be placed near each

other. Specifically, we assume the user would find it beneficial to have projections

that disclose a related structure to be placed next or close to each other in order

to reveal important dimension relationships in the data. To make this possible, we

have defined a clutter measure for scatterplot matrices. The main idea is to find

the structure in all 2-dimensional projections and use it to determine the position

of dimensions so that plots displaying a similar structure are positioned near each

other.

Figure 5.1 gives two views of a scatterplot matrix visualization. In this type of

visualization, we can separate the dimensions into two categories: high-cardinality

dimensions and low-cardinality dimensions. In high-cardinality dimensions, data

values are often continuous, such as height or weight, and can take on any real

number within the range. In low-cardinality dimensions, data values are often dis-

crete, such as gender, type, and year. These data points often take a small number

of possible values. It is often perceived that plots involving only high-cardinality

dimensions will place dots in a irregular cloud-like shape, while plots involving low-

cardinality dimensions will place dots in straight lines because a lot of data points

share the same value on this dimension. In this thesis, we determine if a dimension

is high or low-cardinality depending on the ratio of its cardinality and the pixel

number of the scatterplots’ sides. If it exceeds the specified threshold, then the

dimension is considered high-cardinality, otherwise low-cardinality.
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Figure 5.1: Scatterplot matrices visualization of Cars dataset. In (a) dimensions
are randomly positioned. After clutter reduction (b) is generated. The first four
dimensions are ordered with the high-cardinality dimension reordering approach,
and the other three dimensions are ordered with the low-cardinality approach.

We will treat high-cardinality and low-cardinality dimensions separately because

they generate different plot shapes. The clutter definition and clutter computation

algorithms for these two classes of dimensions will differ from each other.

5.2 High-Cardinality Clutter Measure in Scatter-

plot Matrices

5.2.1 Defining and Computing Clutter

The correlation between two variables reflects the degree to which the variables are

associated. The most common measure of correlation is the Pearson Correlation

Coefficient [68], which can be calculated as:

r =

∑

i (xi − xm)(yi − ym)
√

∑

i (xi − xm)2

√

∑

i (yi − ym)2

(5.1)

where xi and yi are the values of the ith data point on the two dimensions, and
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xm and ym represent the mean value of the two dimensions.

Since plots similarly correlated will likely display a similar pattern and tendency,

we can calculate the correlations for all the two-dimensional plots (in fact half of

them because the matrix is symmetric along the diagonal), and reorder the dimen-

sions so that plots whose correlation differences are within threshold t are displayed

as close to each other as possible. To achieve this goal, we define the sum of the dis-

tances between similar plots to be the clutter measure. In our implementation, we

define the plot side length to be 1 and calculate the distance between plots X and

Y using
√

(RowX − RowY )2 + (ColumnX − ColumnY )2. For example, in Figure

5.2, the distance between similar plots A and B will be
√

(1 − 0)2 + (1 − 0)2 =
√

2.

Larger distance sum means similar plots are more scattered in the display, thus the

view is more cluttered.

Figure 5.2: Illustration of distance calculation in scatterplot matrices.

In the high-cardinality dimension space, our approach to calculate total clutter

for a certain dimension ordering is as follows. Let pi be the ith plot we visit. Let

threshold t be the maximum correlation difference between plots that can be called

”similar”. Note that we are only concerned with the lower-left half of the plots,

because the plots are symmetric along the diagonal. The plots along the diagonal
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will not be considered because they only disclose the correlations of dimensions with

themselves. This is always 1.

In a fixed matrix configuration, we do the following to compute the clutter of the

display. First, a correlation matrix M [n][n] is generated for all n high-cardinality

dimensions. M [i][j] represents the Pearson correlation coefficient for the plot on the

ith row and jth column. If data number is m, the complexity of building up this

matrix is O(m ∗ n2). Then, for any plot pi, we find all the plots that have a similar

correlation with it, i.e, the differences between their Pearson correlation coefficients

with pi’s are within a user-defined threshold t. This process will take O(n3). We

store this information so we only have to do it once.

5.2.2 Deciding Dimension Order

For any scatterplot matrix display, we can get a total distance between similar plots.

With this measure, comparisons between different displays of the same data can be

made. Unlike the one-dimensional parallel coordinates display, we have to calculate

distances for every pair of plots. If a pair of plots has similar correlation, their

distance is added to the total clutter measure of the display. This is an O(n2)

process. An optimal dimension order can be achieved by an exhaustive search for

the smallest total distance with complexity O(n!).

34



5.3 Low-Cardinality Clutter Measure in Scatter-

plot Matrices

5.3.1 Defining and Computing Clutter

In low-cardinality dimensions, we also want to place similar plots together. But we

use a different clutter measure than for high-cardinality dimensions.

For plots with low-cardinality dimensions, the higher the cardinality, the more

crowded the plot seems to be. Therefore, instead of navigating all dimension or-

ders and searching for the best one, we will order these dimensions according to

their cardinalities. Dimensions with higher cardinality are positioned before lower-

cardinality dimensions. In this way, plots with similar density are placed near each

other. This satisfies our purpose for clutter reduction. The dot density of plots will

appear to decrease gradually, resulting in less clutter, or more perceived order, in

the view.

5.3.2 Deciding Dimension Order

With low-cardinality dimensions, the dimension reordering can be envisioned as a

sorting problem. With a quicksort algorithm, we can achieve the desired dimension

order for low-cardinality dimensions within an average of O(n ∗ log n) time.

5.4 Example

From Figure 5.1 we notice that plots generated by two high-cardinality dimensions

are very different in pattern than plots involving one or two low-cardinality dimen-

sions. We believe that separating the high and low-cardinality dimensions from each
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other is useful in identifying similar low-cardinality dimensions and finding similar

plots in the high-cardinality dimension subspace.

36



Chapter 6

Clutter-Based Dimension

Reordering in Star Glyphs

6.1 Clutter Analysis in Star Glyphs

In star glyph visualization, each glyph represents a different data point. With

dimensions ordered differently, the glyph’s shape varies. Gestalt Laws [28] state

that the simplicity of shapes, for example, symmetry, regularity, or smoothness, can

determine groupings of objects. Therefore, our clutter measure in this visualization

technique is related to the simplicity of glyph shapes in a view. We conjecture

that reducing clutter here means making the shape of glyphs seem more regular

and smooth. Our clutter measure is defined according to this conjecture. We call

a glyph well structured if its rays are arranged so that they have similar length to

their neighbors and are well balanced along some axis. In our approach, we define

monotonicity and symmetry as our measures of structure for glyphs. In a perfectly

structured glyph:

• Neighboring rays have similar lengths.
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• The lengths of rays are ordered in a monotonically increasing or decreasing

manner on both sides of an axis.

• Rays of similar lengths are positioned symmetrically along either a horizontal

or vertical axis.

The perfectly structured star glyph is thus a teardrop shape. With such shapes

in glyphs, the user will find it easier to identify relative value differences between

dimensions, and can better discern rays and the bounding polylines. For instance,

the data points shown in Figure 6.1 present very different shapes with different

dimension order. The original order in Figure 6.1-(a) makes them look irregular

and display a concave shape, while the dimension order in Figure 6.1-(b) makes

them more symmetric and easy to interpret.

Figure 6.1: The two glyphs in (a) represent the same data points as (b), with a
different dimension order.

6.2 Clutter Measure in Star Glyphs

6.2.1 Defining and Computing Clutter

To reduce the clutter for the whole display, we seek to reorder the dimensions to

minimize the total occurrence of unstructured rays in glyphs. Therefore, we define

clutter as the total number of non-monotonic and non-symmetric occurrences. We
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believe that with more rays in data points displaying a monotonic and symmetric

shape, the structure in the visualization will be easier to perceive.

In order to calculate clutter in one display, we test every glyph for its monotonic-

ity and symmetry. Suppose the user chooses both monotonicity and symmetry as the

structure measure, and specifies the first half of the dimensions being monotonically

increasing and the second half of the dimensions being monotonically decreasing.

The user can then choose a threshold t1 for checking monotonicity, and a thresh-

old t2 for checking symmetry. t1 and t2 are measures for normalized numbers and

thus can take any number from 0 to 1. Suppose a point has normalized values

on two neighboring dimensions (dimensionn−1 and dimension0 are not considered

neighbors), pi and pi+1. If the two values don’t violate the user’s specification for

monotonicity, nothing happens. However, if the two values violate the user’s specifi-

cation for monotonicity, we will check their difference and decide if they clutter the

view or not. For instance, if pi+1 is less than pi while dimensioni and dimensioni+1

are among the first half of the dimensions, it is a violation of the monotonicity rule.

We will see if pi − pi+1 is less than threshold t1 or not. If so, we consider this

non-monotonicity occurrence as tolerable. If not, we will add this occurrence to our

measure count of unstructuredness. Similarly, for two dimensions that are symmet-

rically positioned along the horizontal axis, if their difference is within threshold

t2, they are considered symmetric to each other. Otherwise the total occurrence of

unstructuredness is incremented.

6.2.2 Deciding Dimension Order

The calculation for a single glyph involves going through n− 1 pairs of neighboring

dimensions to check for monotonicity and n/2 pairs of dimensions symmetric along

the axis. Therefore, for a dataset with m data points, the calculation takes O(n∗m).
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With the exhaustive search for best ordering, the computational complexity for

dimensional reordering in star glyphs is O(n ∗ m ∗ n!).

6.3 Example

For each ordering we can count the unstructuredness occurrences to find the order

that minimizes this measure. Figure 6.2 displays the Coal Disaster dataset before

and after clutter reduction. In Figure 6.2-(a), many glyphs are displayed in a concave

manner, and it’s hard to tell the dimensions from bounding polylines. This situation

is improved in Figure 6.2-(b) with clutter-based dimension reordering.
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Figure 6.2: Star glyph visualizations of Coal Disaster dataset. (a) represents the
data with original dimension order, having a clutter count of 488, and (b) shows the
data after clutter is reduced, clutter count is 190. The shapes on (b) should mostly
appear simpler.
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Chapter 7

Clutter-Based Dimension

Reordering in Dimensional

Stacking

7.1 Clutter Analysis in Dimensional Stacking

Figure 7.1-(a) illustrates the Iris dataset with the original dimension order, i.e.,

dimensions in the order: sepal length, sepal width, petal length and petal width,

represented in this display as “outer horizontal”, “outer vertical”, “inner horizontal”

and “inner vertical” respectively. Each of the four dimensions is divided into five

bins (ranges of values).

In this technique, the dimension order determines the orientation of axes and

the number of cells within a grid. The inner-most dimensions are named the fastest

dimensions because along these dimensions two small bins immediately next to each

other represent two different ranges of the dimensions. In contrast, the outer-most

dimensions have the slowest value changing speed, meaning many neighboring bins
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Figure 7.1: Dimensional stacking visualization for Iris dataset. (a) represents the
data with original dataset, and b) shows the data with clutter reduced.

on these dimensions are within the same value range. Therefore, in dimensional

stacking, the order of dimensions has a huge impact on the visual display.

For dimensional stacking, the bins within which data points fall are shown as

filled squares. These bins naturally form groups in the display. Gestalt Laws [28]

can be applied here as well. We hypothesize that a user will consider a dimensional

stacking visualization as highly structured if it displays these squares mostly in

groups. Compared to a display with mainly randomly scattered filled bins, those

that contain a small number of groups appear to have more structure and thus

can be better interpreted. The data points within a group share similar attributes

in many aspects. Thus this view will help the user to search for groupings in the

dataset as well as to detect subtle variances within each group of data points. The

other data points that are considered outliers may also be readily perceived if most

data falls within a small number of groups.
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7.2 Clutter Measure in Dimensional Stacking

7.2.1 Defining and Computing Cluttern

According to our conjecture, we define the clutter measure as the proportion of

occupied bins aggregated with each other versus small isolated “islands”, namely

the filled bins without any neighbors around them. A measure of clutter might then

be number of isolated filled bins

number of total occupied bins
. The dimension order that minimizes this number will

then be considered the best order. The user can define how large a cluster should

be for its member bins to be considered “clustered” or “isolated”. Besides that, we

need to also define which bins are considered neighbors. The choices are 4-connected

bins and 8-connected bins. 4-connectivity and 8-connectivity are terms from image

science, which help to define neighbors of pixels. Since we are dealing with bins

in grids that are quite similar to pixels in images, we employ the concept here.

Two bins are 4-connected if they lie next to each other horizontally or vertically,

while they are 8-connected if they lie next to one another horizontally, vertically,

or diagonally. With 4-connectivity being used, the adjacent bins would share the

same data range on all but one dimension, while the 8-connectivity bins may fall

into different data ranges on at most two dimensions.

Given a dimension order, our approach will search for all filled bins that are

connected to neighbors and calculate clutter according to the above clutter measure.

The dimension order that minimizes this number is considered the best ordering.

7.2.2 Deciding Dimension Order

This algorithm is similar to that used with high-cardinality dimensions in scatterplot

matrices. However we are comparing the position of bins instead of plots. It takes

O(m2) to seek all the neighbors for one dimension order. With an exhaustive search
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for the least isolated bins, it would thus take O(m2∗n!) to find the optimal dimension

order.

7.3 Example

An example of clutter reduction in dimensional stacking is given in Figure 7.1. We

use 8-adjacent neighbors in our calculation. Figure 7.1-(a), denoting the original

data order, is composed of many “islands”, namely the filled bins without any

occupied neighbors. In Figure 7.1-(b), the display has the optimal ordering: petal

length, petal width, sepal length, sepal width. We can discover that there are fewer

“islands”, and the filled bins are more concentrated. This helps us to see groups

better than in the original order. In addition, the bins are distributed closely along

the diagonal, which implies a tight correlation between the first two dimensions:

petal length and petal width.
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Chapter 8

Analysis of Reordering Algorithms

As stated previously, the clutter measuring algorithms for the four visualization

techniques take different amount of time to complete. Experiments were indispens-

able to gauge the performances of these algorithms. Let m denote the data size,

and n denote the dimensionality. The computational complexity of using dimension

reordering to reduce visual clutter in the four techniques is presented in Table 8.1.

The experiments were run on a Windows PC with Intel Celeron 1.2GHz CPU and

256M memory.

Exhaustive search would guarantee the best dimension order that minimizes the

total clutter in the display. However, in [59], Ankerst et al. proved that computing

Table 8.1: Table of computation times using optimal ordering algorithm

Visualization Alg. Complexity Dataset Data No. Dim. No. Time

Parallel Coordinates O(n!) AAUP-Part 1161 9 3 sec.
Cereal-Part 77 10 23 sec.
Voy-Part 744 11 4:02 min.

Scatterplot Matrices O(n!) Voy-Part 744 11(5 high-card) 5 sec.
AAUP-Part 1161 9(8 high-card) 3:13 min.

Star Glyphs O(m ∗ n!) Cars 392 7 18 sec.
Dimensional Stacking O(m2 ∗ n!) Coal Disaster 191 5 10 sec.

Detroit 13 7 5 sec.
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the best dimension order is an NP-complete problem, equivalent to the Brute-Force

solution to Traveling Salesman Problem. Therefore, we can do the optimal search

with only low dimensionality datasets. To get a quantitative understanding of this

issue, we performed a few experiments for different visualizations, and the results

obtained are presented in Table 8.1 as well. We realized that even in a low dimen-

sional data space - around 10 dimensions - the computational overhead could be

significant. If the dimension number exceeds that, we need to resort to heuristic ap-

proaches. For example, nearest-neighbor, greedy algorithms and random swapping

have been implemented and tested.

The nearest-neighbor algorithm starts with an initial dimension, finds the nearest

neighbor of it, and adds the new dimension into the tour. Then, it sets the new

dimension to be the current dimension for searching neighbors. We continue doing

it until all the dimensions have been added into the tour. The greedy algorithm [69]

keeps adding the nearest possible pairs of dimensions, until all the dimensions are in

the tour. These two algorithms are very time-efficient and always try to maximize

the relationship between neighboring dimensions.

The nearest-neighbor and greedy algorithms are good for parallel coordinates and

scatterplot matrices displays. In those displays, there is some overall relationship

between dimensions that can be calculated, such as the number of outliers between

dimensions and correlation between dimensions. However, in the star glyph and di-

mensional stacking visualizations, we calculate the clutter of a display under certain

dimension arrangements, instead of defining a relationship between each two dimen-

sions. Thus these algorithms are not very amenable to the latter two techniques.

In addition, they are apt to cause the problem of “local optimum”, where a better

global arrangement can only be achieved by separating some very closely related

dimensions from each other.
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Table 8.2: Table of computation times using heuristic algorithms

Visualization Dataset Data No. Dim No. Alg Time

Parallel Coordinates Census-Income 200 42 Nearest-Neighbor Algorithm 2 sec.
Greedy Algorithm 3 sec.
Random Swapping 2 sec.

AAUP 1161 14 Nearest-Neighbor Algorithm 7 sec.
Greedy Algorithm 9 sec.
Random Swapping 6 sec.

Scatterplot Matrices Census-Income 200 42 Nearest-Neighbor Algorithm 2 sec.
Greedy Algorithm 3 sec.
Random Swapping 2 sec.

AAUP 1161 14 Nearest-Neighbor Algorithm 8 sec.
Greedy Algorithm 8 sec.
Random Swapping 7 sec.

Star Glyphs Census-Income 200 42 Random Swapping 2 sec.
AAUP 1161 14 Random Swapping 7 sec.

Dimensional Stacking Those datasets are too big for dimensional stacking visualization.

The random swapping algorithm starts with an initial configuration and ran-

domly chooses two dimensions to switch their positions. If the new arrangement

results in less clutter, then this arrangement is kept and the old one is rejected; oth-

erwise the old arrangement is left intact and another pair of dimensions are swapped.

We keep doing this until no better result is generated for a certain number of swaps.

This algorithm can be applied to all the visualization techniques. It is simple and

intuitive, and in many situations this algorithm results in a relatively good dimen-

sion order that reduces clutter significantly. Plus, in most cases, random swapping

helps avoiding local optimum by randomly choosing dimensions to swap. With this

algorithm, however, we have to pay attention to the number of swaps, since when

the dimensionality is high, we need to increase the number of swaps accordingly,

otherwise dimensions don’t get enough chances to be swapped.

With these heuristic algorithms, we perform dimension reordering for datasets

with much higher dimensions with relatively good results. Experimental results are

presented in Table 8.2.
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Chapter 9

User Study

The goal of this thesis is to provide visual clutter reduction approaches to enhance

the quality of visualizations. To verify the improvement, we need some kind of eval-

uation. It would be helpful if we have a way to quantitatively gauge the “goodness”

of a visualization, but unfortunately we don’t. By nature, visual quality is hard to

measure. Pictures can be interpreted very diversely by different users in different

contexts, and the judgment is tightly related to the users’ knowledge about the data,

the visualization techniques used, and the tasks to be accomplished. Therefore, vi-

sualization quality should be decided by the user who will be using the visualizations

to analyze data. It is apparently impossible to make everyone agree that one certain

view is better than another. However, by conducting a series of user studies, we can

observe the reactions of the majority of users to our clutter reduction approaches.

The study’s goal is to examine if the CBDR approaches can assist the user to better

interpret the dataset and accomplish their tasks.
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9.1 Testing Procedure

We divided the subjects into two groups: the XmdvTool expert users and non-expert

users. The expert users were familiar with multi-dimensional visualization notions

and the four visualization techniques, and most importantly, they were clear what

they should look for in a visualization to explore the dataset. The non-experts didn’t

have much knowledge in the visualization field, and needed to be instructed on it.

Both groups of users were given some simple tasks to accomplish within a limited

time and were asked to identify the view that was more helpful for the exploration

between two views differing only in the dimension orders.

The non-expert users were first given an introduction of the four multi-dimensional

visualization techniques they would work with. They had to be certain that they

understood how the data items and dimensions were represented in these visualiza-

tions in order to make the judgments. Next, both groups of users were introduced

to the general notion of visual clutter. Then they were given a survey. In this

survey, a series of visualizations of different types were presented to the user. Each

dataset was represented in both its original form and the dimension order after

the Clutter-Based Dimension Reordering process. Without knowing which one had

been processed, our subjects were requested to perform the task of deciding whether

order resulted in a better visualization than the other, or there was not much dif-

ference between the two. The subjects were given 15 seconds to work on one pair of

visualizations. In addition, we also recorded their comments on the visual features

that they thought would be useful in clutter reduction.
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9.2 Testing Results

We did the evaluation among 13 users. Five of them are expert users of XmdvTool

and are very familiar with visual data exploration. The other eight users had no

knowledge in this field before the study. The number for each column in the following

tables corresponds to the percentage of users who prefer that view. The percentages

of users who picked the processed view over the original view are shown in bold.

Table 9.1 shows the result we got with the parallel coordinates visualization.

The visualizations of seven datasets were demonstrated to the users. From the table

we discovered that the users had a major preference for the CBDR processed views,

whether or not they were expert users. This result suggests the users’ approval

of our use of grouping level as the clutter measurement. However, there are also

some cases where most users did not choose our desired view, or did not have any

preference between those pairs, such as in the Detroit Crime Dataset. This might

have happened because the dataset size is very small and the data points not very

clustered in this dataset, which makes it tough for the user to identify clusters and

outliers. In general, we achieved some satisfactory results from the user study for

CBDR in parallel coordinates visualization.

Table 9.1: User study result of CBDR in Parallel Coordinates visualization
Dataset Expert Non-Expert

A B No Difference A B No Difference
Acorns Dataset 100% 0% 0% 75% 12.5% 12.5%
Cars Dataset 0% 40% 60% 12.5% 75% 12.5%

Cereal Dataset 20% 60% 20% 37.5% 50% 12.5%
Coal Disaster Dataset 80% 20% 0% 100% 0% 0%
Detroit Crime Dataset 40% 0% 60% 12.5% 25% 62.5%

Iris Dataset 0% 80% 20% 37.5% 50% 12.5%
Rubber Dataset 0% 80% 20% 12.5% 75% 12.5%

Scatterplot Matrices visualization is the most controversial one. Many users

chose “No Difference” instead of picking one preferred view. We believe this also
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has something to do with the dots in plots being sparse, which makes the patterns

hard to see. In addition, correlation is the measure of plot similarity we used, but

it is not the only measure. The users view the plots in an intuitive way, decided

by their visual perception systems. However, we did find our approach was helpful

in datasets with larger number of data items, especially those with both high and

low-cardinality dimensions, such as the Cars and Voy dataset.

Table 9.2: User study result of CBDR in Scatterplot Matrices visualization
Dataset Expert Non-Expert

A B No Difference A B No Difference
Acorns Dataset 0% 20% 80% 25% 37.5% 37.5%
Cars Dataset 0% 100% 0% 12.5% 50% 37.5%

Cereal Dataset 40% 20% 40% 50% 25% 25%
Coal Disaster Dataset 0% 20% 80% 12.5% 50% 37.5%
Detroit Crime Dataset 20% 20% 60% 12.5% 50% 37.5%

Iris Dataset 40% 20% 40% 12.5% 37.5% 50%
Rubber Dataset 40% 20% 40% 62.5% 12.5% 25%

Voy Dataset 40% 60% 0% 25% 62.5% 12.5%

In the user study of CBDR in star glyph visualization, we got some satisfactory

results. We found the users did a better job when most or a major portion of the

glyphs have similar shapes. It is because clutter is related to the “unorderedness”

of all the views. When we optimized the order for some glyphs, the other ones

inevitably got less ordered. But when we showed the users only one single glyph,

most of them agreed the shape generated with our optimal dimension order is more

regular and preferable to the original order.

As shown in table 9.4, most expert users could tell the difference between di-

mensional stacking visualizations before and after the CBDR process, and prefered

the processed view. The non-expert users liked our solution most of the time, but

occasionally some of them preferred the unordered view because the filled bins were

more well scattered and balanced, making the view more aesthetically attractive.

From the survey we also found that few “No Difference” were chosen, because the
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Table 9.3: User study result of CBDR in Star Glyph visualization
Dataset Expert Non-Expert

A B No Difference A B No Difference
Acorns Dataset 0% 20% 80% 75% 12.5% 12.5%

Coal Disaster Dataset 60% 40% 0% 75% 25% 0%
Detroit Crime Dataset 80% 0% 20% 75% 25% 0%

Iris Dataset 0% 100% 0% 50% 25% 25%
Rubber Dataset 0% 40% 60% 25% 62.5% 12.5%

CBDR process generates views very different from the original ones, for better or

worse.

Table 9.4: User study result of CBDR in Dimensional Stacking visualization
Dataset Expert Non-Expert

A B No Difference A B No Difference
Acorns Dataset 100% 0% 0% 50% 50% 0%

Coal Disaster Dataset 0% 100% 0% 62.5% 37.5% 0%
Iris Dataset 100% 0% 0% 87.5% 12.5% 0%

Rubber Dataset 0% 80% 20% 50% 37.5% 12.5%

9.3 User Comments

We got many comments and suggestions from our users. Here is a list of things they

mentioned:

• User 1: CBDR is very useful for scatterplot matrices and dimensional stacking

visualizations. For glyphs, it makes them look more beautiful.

• User 2: For parallel coordinates and dimensional stacking, CBDR works well.

Glyph placement might be a better solution to reduce visual clutter.

• User 3: The clutter measures for parallel coordinates and dimensional stacking

make sense. Clutter depending upon number of data points and dimensions

scatterplot matrices doesn’t seem to make sense.
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• User 4: Among the shapes in star glyphs visualization, diamond shape is

preferable.

This user study is substantial because it helped us measure the validity and

usefulness of our ordering approaches. We got a lot of very informative feedback on

the current solutions as well as suggestions on other ordering strategies and clutter

reduction solutions. A lot of these thoughts have proven to be very insightful and

beneficial to our research. In our future work, we will try to combine many of their

ideas into our system.
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

In this thesis, we have proposed the concept of visual clutter measurement and

reduction using dimension reordering in multi-dimensional visualization. We also

proposed a Clutter-Based Dimension Reordering framework for different visualiza-

tions. We studied four rather distinct visualization techniques. For each of them,

we analyzed its characteristics and then defined an appropriate measure of visual

clutter. In order to obtain the least clutter, we searched for a dimension order that

minimizes the clutter in the display.

We performed an evaluation on users’ response to our view enhancement using

Clutter-Based Dimension Reordering, and obtained some satisfactory feedback. In

addition, we did a quantitative comparison on the reordering algorithms that we

used in the CBDR process. We compared the exhaustive search algorithm to some

heuristic algorithms in their processing time with multiple datasets.
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10.2 Future Work

There are many more things that can be done for Clutter-Based Dimension Re-

ordering. We can try various things from all aspects in this reordering process.

First of all, we can look into different clutter measures. Currently we have

one clutter measure for each type of visualization technique. Evaluations showed

satisfactory results for these measures. However, it will be better if we have multiple

clutter measures for each technique, and multiple “good orders” generated for each

of them, so that we can give the user the ability to choose their desired measure

from a collection of them. They will then be able to compare the different results

generated. In this way we can do a more thorough study of users’ notions of visual

clutter.

We can also conduct research on visualization techniques other than the four we

discussed before. In most multi-dimensional visualization techniques, changing the

order of dimensions will always significantly affect the visual quality and information

that can be extracted from the view.

In this thesis we only experimented with an optimal search algorithm and three

relatively simple heuristics. Our next step might be to experiment with more heuris-

tic algorithms for this reordering problem and compare them in terms of visualiza-

tion quality as well as speed. The goal would be to find one or more algorithms

that can generate a fine result in most cases without taking a significant amount of

computing time.

As dimension reordering does not involve data loss or extra information, the

combination of dimension reordering with other clutter reduction approaches such

as dimension reduction or hierarchical data visualization should be possible. In this

way, we can gauge the effectiveness of these techniques in high-dimensional or high
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data volume datasets.

Another future direction can be to explore clutter reduction strategies other

than dimension reordering. As mentioned before, there are a great number of visual

aspects in every visualization. Many of them can be studied in terms of clutter re-

duction. For example, dimension spacing, glyph distances, and many other features

can all be controlled to reduce visual clutter in visualizations.

This thesis just represents a first step into the research of automated clutter

reduction using dimension reordering in multi-dimensional visualization. We have

only looked into four visualization techniques so far. There are definitely many

more that we haven’t experimented with yet, and certainly our clutter measures are

not the only ones possible. Nevertheless, our hope is to give users the ability to

generate views of their data that will enable them to discover structure that they

will otherwise not find in a view with the original or a random dimension order.
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Appendix A

User Study Materials

The following visualizations were generated for the evaluation of the Clutter-Based

Dimension Reordering functionality in XmdvTool. A set of visualizations displays a

dataset with the same technique, but with different dimension order. For each set,

please choose the view that makes it easier for you to explore and understand the

dataset.

Figure A.1: Parallel coordinates visualizations of the Acorns Dataset.
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Figure A.2: Parallel coordinates visualizations of the Cars Dataset.

Figure A.3: Parallel coordinates visualizations of the Cereal Dataset.
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Figure A.4: Parallel coordinates visualizations of the Coal Disaster Dataset.

Figure A.5: Parallel coordinates visualizations of the Detroit Crime Dataset.
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Figure A.6: Parallel coordinates visualizations of the Iris Dataset.

Figure A.7: Parallel coordinates visualizations of the Rubber Dataset.
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Figure A.8: Scatterplot matrix visualizations of the Acorns Dataset.

Figure A.9: Scatterplot matrix visualizations of the Cars Dataset.
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Figure A.10: Scatterplot matrix visualizations of the Cereal Dataset.

Figure A.11: Scatterplot matrix visualizations of the Coal Disaster Dataset.

Figure A.12: Scatterplot matrix visualizations of the Detroit Crime Dataset.
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Figure A.13: Scatterplot matrix visualizations of the Iris Dataset.

Figure A.14: Scatterplot matrix visualizations of the Rubber Dataset.

Figure A.15: Scatterplot matrix visualizations of the Voy Dataset.
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Figure A.16: Star glyph visualizations of the Acorns Dataset.

Figure A.17: Star glyph visualizations of the Coal Disaster Dataset.
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Figure A.18: Star glyph visualizations of the Detroit Crime Dataset.

Figure A.19: Star glyph visualizations of the Iris Dataset.

Figure A.20: Star glyph visualizations of the Rubber Dataset.
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Figure A.21: Dimensional stacking visualizations of the Acorns Dataset.

Figure A.22: Dimensional stacking visualizations of the Coal Disaster Dataset.
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Figure A.23: Dimensional stacking visualizations of the Iris Dataset.

Figure A.24: Dimensional stacking visualizations of the Rubber Dataset.
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Appendix B

User’s Manual

B.1 Running XmdvTool

To run the Clutter-Based Dimension Reordering functionality in XmdvTool, you

must first open the XmdvTool main window and load a dataset for visualization.

Figure B.1: Open XmdvTool and load datasets

With XmdvTool, you can visualize the dataset with the following four visu-
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alization techniques: Parallel Coordinates, Scatterplot Matrix, Star Glyphs, and

Dimensional Stacking.

Figure B.2: Parallel Coordinates visualization of Iris dataset.

Figure B.3: Scatterplot Matrix visualization of Iris dataset.
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Figure B.4: Star Glyphs visualization of Iris dataset.

Figure B.5: Dimensional Stacking visualization of Iris dataset.
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B.2 Dimension Reordering Module

Now let’s get the Dimension Reordering module running. In order to do that, click

Tools → Dimension Reorder:

Figure B.6: Activate the Dimension Reordering function.

The Dimension Reorder dialog box will pop up. This dialog box allows you to

set the parameters for reordering dimensions according to two criteria: dimension

similarities or visual clutter. Similarity-based dimension reordering was briefly men-

tioned in Chapter 2. Although it is not the focus of this thesis, we will introduce it

as an integral part of the module nevertheless.

B.3 Reordering Parameters

Various parameters and thresholds can be set by the user to better control the re-

ordering process. In this Dimension Reorder dialog box, the user should first specify

whether to reorder the dimensions using a similarity measure or a clutter measure.
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Figure B.7: The Dimension Reorder dialog box for similarity-based dimension re-
ordering.

I will describe the parameters used in both reordering techniques respectively.

B.3.1 General Reordering Parameters

Reordering Algorithms - The radio buttons allow the user to use four different al-

gorithms to search for a desired dimension order. The optimal algorithm reorders

dimensions by doing an exhaustive search. The other three are heuristic algorithms,

namely random swapping, nearest neighbor and greedy algorithm. A list of available

dimensions is provided to enable the user to pick the starting dimension in nearest

neighbor algorithm.

Brushed Data only - This check button allows the user to reorder dimensions ac-
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Figure B.8: The Dimension Reorder dialog box for clutter-based dimension reorder-
ing.

cording to a subset of the data items specified by using the manual “Brushing”

functionality provided by XmdvTool.

B.3.2 Similarity-Based Dimension Reordering Parameters

Similarity Measure - The radio buttons allow the user to use three different similarity

measures. They are:

• Euclidean Distance

• Pearson’s Correlation

• Cosine Angle Correlation
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Each similarity measure reveals dimension relationships in a different way.

Minimize/Maximize Dimension Distance - The radio buttons allow the user to re-

order dimensions to minimize or maximize total distances between neighboring di-

mensions.

B.3.3 Clutter-Based Dimension Reordering Parameters

Threshold - The scale allows the user to specify the thresholds in the four visualiza-

tion techniques. The definitions of thresholds are:

• Parallel Coordinates: Normalized Euclidean distance between two data points.

If the distance between two points is less than the threshold, they are consid-

ered clustered, otherwise not.

• Scatterplot Matrices: - Threshold 1: The difference between the Pearson Cor-

relation Coefficient of two plots. If the difference is less than the threshold, the

two plots are considered similar, otherwise not. - Threshold 2: The ratio of a

dimension’s cardinality and the pixel number of a plot’s short side. If the ratio

is greater than the threshold for a dimension, it is considered high-cardinality

dimension, otherwise low-cardinality.

• Star Glyphs: - Threshold 1: The length difference between two neighboring

rays. If the difference is less than the threshold, the two rays are considered

positioned properly, otherwise not. - Threshold 2: The length difference be-

tween two symmetric rays. If the difference is less than the threshold, the two

rays are considered positioned properly, otherwise not.

• Dimensional Stacking: The number of minimum aggregated bins. If a cluster

has more bins than the threshold, the points of the cluster are considered
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“clustered”, otherwise these points are considered isolated outliers.

4-Connected or 8-Connected - The radio buttons allow the user to indicate which

neighbor definition to use in dimensional stacking visualization.

Minimize/Maximize Clutter - The radio buttons allow the user to reorder dimensions

to minimize or maximize total visual clutter in the display.
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