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Abstract 

The ever-growing need for high speed data transmission is driven by multimedia and 

telecommunication demands.  Traditional metallic media, such as copper coaxial cable, 

prove to be a limiting factor for high speed communications.  Fiber optic methods 

provide a feasible solution that lacks the limitations of metallic mediums, including low 

bandwidth, cross talk caused by magnetic induction, and susceptibility to static and RF 

interferences. 

The first scientists to work with fibers optics started in 1970.  One of the early challenges 

they faced was to produce glass fiber that was pure enough to be equal in performance 

with copper based media.  Since then, the technology has advanced tremendously in 

terms of performance, quality, and consistency.  The advancement of fiber optic 

communication has met its limits, not in the purity of its fiber media used to guide the 

data-modulated light wave, but in the conversion back and forth between electric signals 

to light.  A high speed optic receiver must be used to convert the incident light into 

electrical signals. 

This thesis describes the design of a 2.5 GHz Optoelectronic Amplifier, the front end of 

an optic receiver.  The discussion includes a survey of feasible topologies and an 

assessment of circuit techniques to enhance performance.   The amplifier was designed 

and realized in a TSMC 0.18 µm CMOS process. 
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Chapter 1: Introduction 1 

Chapter 1: Introduction 

The advancement of the communications industry has placed increasing importance on 

high-speed data transfer with the development of multimedia technologies. Several 

impediments pertaining to high-speed electronic data communications exist, including 

low bandwidth of metallic mediums, cross talk caused by magnetic induction, and 

susceptibility to static and RF interferences.  An alternative to conventional metallic or 

coaxial cable facilities is the transmission of data via glass and plastic fiber optic cables.  

Fiber optics offer a high bandwidth medium with none of the aforementioned restrictions 

of electronic data transmission [25]. 

In March of 2003, a group of scientists broke the internet transmission speed record.  The 

Cable News Network, CNN, reported: 

Scientists at the Stanford Linear Accelerator Center used fiber-optic cables 

to transfer 6.7 gigabytes of data -- the equivalent of two DVD movies -- 

across 6,800 miles in less than a minute. The center is a national 

laboratory operated by Stanford University for the U.S. Department of 

Energy….  The team was able to transfer uncompressed data at 923 

megabits per second for 58 seconds from Sunnyvale, California, to 

Amsterdam, Netherlands. That's about 3,500 times faster than a typical 

Internet broadband connection….  “You have this inversion where the 

limitations on advances will not be the speed of the Internet but rather the 

speed of your computer,” [Les Cottrell, assistant director of the Stanford 

Linear Accelerator Center] said. [15] 

Optoelectronic, or optic-to-electric, communications is a rapidly developing field with 

many new applications that deal with the transmission of serial data through fiber optic 

links at extremely high speeds between electronic components.  As noted by [15] and 

 



 

Chapter 1: Introduction 2 

[23], despite advances in materials allowing for faster communication mediums, the 

interface to electronic devices is still one of the greatest challenges.   

The conversion of data between electrical signals and light is accomplished with a 

photonic system, as illustrated by Figure 1.  The modulation of the data to light takes 

place at the optic transmitter.  The data, in the form of an electrical signal, is converted to 

current by the laser driver.  Light is produced with the current responding laser diode.  

The data-modulated light is channeled to the receiver via a fiber guide.  The receiver uses 

a photodiode to convert the incoming light to current.  The data is recovered by two 

amplification stages which convert the current to an electrical signal. 

 

Figure 1: Photonic Communication Link 

The project detailed by this document is an endeavor to design an Optoelectronic 

Amplifier, the front-end electronics of an optic receiver. 

This thesis is organized into 8 chapters.  Chapter 2 introduces the general layout of an 

optic receiver and defines its four basic components.   Each of the functional blocks is 

discussed to better understand the role the Optoelectronic Amplifier plays in an optic 

receiver.  At the end of the chapter, the specifications for the endeavor are outlined.  

Chapter 3 conducts a survey of the possible topologies for the first functional block of the 

Optoelectronic Amplifier, the Transimpedance Amplifier (TIA).   Chapter 4 examines the 

Limiting Amplifier (LA), the second stage of the endeavor.  The chapter also considers 

the feasibility of active inductors and other circuit techniques to enhance the performance 

of the LA.   Chapter 5 examines different methods to interface the single-ended TIA to 
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the differential LA.  An Offset Feedback method is introduced as a possible solution.  

Chapter 6 describes the silicon implementation of the Optoelectronic Amplifier system 

and 9 independent TIA circuits and examines the results of the test chip.  The 1/f 

characteristics of the CMOS process are also discussed.  Chapter 7 presents the 

conclusions of the thesis with suggestions for future design considerations.   
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Typical optoelectronic receiver topologies consist of four major components: photo-

detector, preamplifier, limiting amplifier, and clock and data recovery [14].  Figure 2 

illustrates the generic block diagram of the system.  In addition to these, miscellaneous 

circuitry may be included in a design for biasing and compensation.    

 

Figure 2: Typical Optoelectronic Amplifier Block Diagram 

The objective of this thesis is to design an Optoelectronic Amplifier which consists of the 

preamplifier and post amplifier.  The following sections will detail the four components 

of an optic receiver to better understand the concerns and motivations involved with the 

design. 

2.1 Photo-detector 

When a reverse biased p-n junction is illuminated by incident light, the photons 

impacting the junctions cause covalent bonds to break.  The disruption causes the 

generation of holes and carriers in the depletion region.  The electric field in the depletion 

region allows the freed electrons to move across to the n side and the holes to the p side, 

giving rise to current flow across the junction [26].   
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Two-terminal devices designed to respond to photon absorption are called photodiodes. 

When the photodiode is operated in the reverse-biased region of its I-V characteristic, the 

current is independent of voltage but is proportional to the incident light. Such a device 

serves as a very useful means of measuring illumination levels or of converting time-

varying optical signals into electrical signals [24]. 

In most optical detection applications the response speed of the detector is critical.  The 

photodiode has to respond to a series of light pulses of very short duration.  Thus, the 

photo generated minority carriers must diffuse to the junction and be swept quickly 

across to the other side. The carrier diffusion time determines the response time of the 

detector. Since the carrier diffusion takes longer compared to the carrier drift, the width 

of the depletion is made very wide so that most of the photons are absorbed within it 

rather than in the neutral p and n regions.  In operation these detectors, which are reverse 

biased, absorb the incident radiation.  This process generates electron-hole pairs which 

drift to the detector electrodes, generating a current in the external circuit. The most 

commonly used photo-detectors are the PIN diode and the Avalanche photodiode [26], 

[30]. 

P-type-Intrinsic-N-type Diodes 

PIN diodes are the leading candidates for optical receiver applications due in large part to 

their capacity to exceed speeds of hundreds of gigahertz [25].  The basic construction of a 

PIN diode is shown in Figure 3.  
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Figure 3: PIN Photodiode Construction 

An intrinsic layer of n-type semiconductor material is placed between the junction of two 

heavily doped contact areas, one of n-type and the other of p-type.  Light falls on the 

carrier-void intrinsic material, which is built thick enough to absorb nearly all of the 

photons.  The absorption of the majority of the photons is achieved by the electrons in the 

valence band of the atoms in the intrinsic material.  The absorption of photons provides 

the electrons with sufficient energy to move from the valence band into the conduction 

band, as illustrated in Figure 4.  The shift in bands provides carriers in the depletion 

region allowing current to flow through the device.  The increase in the number of 

electrons that move into the higher conductive band is matched by an increase in the 

number of holes in the valence band [25], [26]. 
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Figure 4: Photoelectric Effect 

To cause current to flow in a photodiode, the light energy must be sufficient enough to 

impart the required amount of energy for electrons to jump the energy gap between 

bands.  The energy gap for silicon is 1.12 eV at room temperature (in electron Volts), 

which corresponds to 

 ( ) J
eV
JeVEg

1919 10792.1106.112.1 −− ⋅=





 ⋅=  (1) 

The energy of a photon is the product of Planck’s constant, h = 6.65256⋅10-34 J/Hz, and 

its frequency, ν. 

 ν⋅= hE  (2) 

Thus, the frequency of the photon necessary for the energy gap jump in a silicon 

photodiode is 

 Hz

Hz
J

J
h
E 14

34

19

10705.2
106256.6

10792.1
⋅=

⋅

⋅
==

−

−

ν  (3) 

Converting the frequency to wavelength yields 
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ν
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where the c denotes the speed of light.  Consequently, light waves of 1109 nm or shorter 

are required to cause electrons to jump the energy gap of a silicon photodiode [25].  

Avalanche Photodiodes 

An Avalanche photodiode (APD) is a p+ipn- structure, shown in Figure 5. 

 

Figure 5: Avalanche Photodiode Construction 

Light enters the diode and is absorbed by a thin, heavily doped n-layer.  Impact ionization 

is caused by a high electric field intensity developed across the i-p-n junction, supplied 

by an external bias voltage.  Impact ionization allows the carrier to gain adequate energy 

in order to ionize bound electrons.  The newly ionized electrons, in turn, will cause more 

ionization to occur.  The process continues in a manner similar to an avalanche, thus its 

name.  The progression of the “avalanche” is equivalent to an internal gain or carrier 

multiplication specific to the device.  It is for this reason that APDs are more sensitive 

than PIN diodes and require less amplification.  The major disadvantages of the APD are 

the relatively long transit times, in comparison to the fast PIN diode, and the additional 

internally generated noise due to the avalanche multiplication factor [24], [25]. 
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The trade-offs of each photo diode are listed in Table 1 [28]. 

Table 1: Comparison of Photodiodes 

PIN Photodiode Avalanche Photodiode 

� No Internal Gain � Internal Gain ( ≈100) 

� High Bandwidth � Small Bandwidth 

� Low Noise � Excessive Noise 

 

Photodiode Model 

The model for a generic photodiode is illustrated in Figure 6.  All diodes consist of two 

major current players - photocurrent, ip, and dark current, id.  Photocurrent is the medium 

through which the data is transferred from light to current.  Dark current, produced by 

thermally generated carriers in the diode, is the leakage current that flows through a 

photodiode with no light input. The photodiode is also susceptible to thermal and shot 

noise, ins and int, respectively [28]. 

 

 

Figure 6: Photodiode Model 

The most significant portion of the model, second only to the photocurrent, is that of the 

large photodiode capacitance.  This is especially true when considering the transmission 
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speed demands placed on the subsequent amplification stage of an external photodiode, 

where packaging and interconnection have to be considered. 

To simplify the discussion, only the major contributors, ip and Cpd, will be considered 

throughout the document.  The rest of the pieces will be omitted as they are negligible 

within the scope of this project. 

2.2 Preamplifier 

The photocurrent generated by the detector must be converted to a usable signal for 

further processing with a minimum amount of added noise.  The preamplifier is the first 

stage in the amplification of the photocurrent and, therefore, will be the dominant source 

of noise added to the signal.  Due to this fact, the preamplifier design will be the principal 

factor in determining the sensitivity of the entire receiver system. 

There are three options for the optical receiver front-ends:  low-impedance preamplifier, 

high-impedance preamplifier, or transimpedance amplifier.  These three options are 

depicted in Figure 7.  All of the optical to electrical conversion configurations would 

interface with the photodetector (either a PIN or an Avalanche photodiode). 

 

Figure 7: Preamplifier Configurations 

The low-impedance receiver has the advantage of being able to use a very wide variety of 

commercially available amplifiers.  Because of the low signal levels at the input of the 



 

Chapter 2: System Overview 11 

 

preamplifier, this configuration has the widest dynamic range and can easily achieve the 

widest bandwidths.  Unfortunately, its wide input range is at the expense of its poor noise 

performance due to the small RD.   

Photodiodes act as current sources and are able to interface with high resistance.  The 

added resistance of a high-impedance receiver can be used to increase the signal voltage 

from the input photocurrent.  To improve the noise performance, higher values of 

terminating resistance, Rd, are used.  While the higher input impedance levels improve the 

sensitivity, they limit the bandwidth and lead to early saturation of the amplifier.  Large 

amplitudes at the input of the amplifier will limit the dynamic range of the configuration.  

In practice, high-impedance front ends require equalization to compensate for their lack 

of bandwidth. 

Transimpedance amplifiers typically have wider input current ranges than the high-

impedance preamplifiers and have better sensitivity than low-impedance preamplifiers.  

These advantages are due in large part to the negative feedback used in the configuration 

[28]. 

Table 2 summarizes the trade-offs of the preamplifier configurations.  Due to the 

transimpedance amplifier’s adaptability to this application, it was selected as the best 

option for this endeavor.   

Table 2: Comparison of Preamplifier Topologies 

Low-impedance High-impedance Transimpedance 

� High Bandwidth � Small Bandwidth � High Bandwidth 

� Low Sensitivity � High Sensitivity � High Sensitivity 
(dependent on RF)

� High Noise � Low Noise � Medium Noise 
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More detail of the transimpedance amplifier is discussed in the following chapter.  

Throughout this document, any unspecified mention of preamplifiers will be inferring the 

Transimpedance Amplifier (TIA). 

2.3 Post Amplifier 

The post amplifier provides the remaining amplification of the signal so that the output 

signal swings rail-to-rail.  Due to the rail-to-rail saturation of the post amplifier, it is also 

referred to as a limiting amplifier.  The post amplifier does not contribute significant 

input referred noise in the system because the dominant noise source is the preamplifier 

due to its gain.  In some applications, the post amplifier contains features such as 

automatic level control to keep the signal level constant, as well as clamping circuitry to 

reference the signal to particular voltage levels. 

 

Figure 8: Inverter Chain Post Amplifier 

The post amplifier is typically an open-loop voltage amplifier.  A chain of properly 

biased inverters can be used to provide the necessary gain, shown in Figure 8.  However, 

this option is not viable because it is susceptible to common-mode noise, including the 

power supply noise [1].  An alternative is the differential voltage amplifier which can be 

used to suppress the common-mode noise.  The differential voltage amplifier is illustrated 

in Figure 9 [22]. 
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Figure 9: Differential Amplifier Post Amplifier 

The challenges of various amplifier realizations are explored in Chapter 4.  Future 

mention of post amplifiers will be in reference to the differential Limiting Amplifier 

(LA). 

2.4 Clock and Data Recovery 

Connected to the LA is the Clock and Data Recovery (CDR) circuitry.  The purpose of 

the CDR block is to extract the clock timing from the incoming data, while also retiming 

the data and reducing its jitter.  The extracted clock signal must have small timing jitter to 

prevent the system from having increased bit error rate (BER) [17].  Optical networking 

standards mandate that data be transmitted in synchronized format, as in the case of the 

Synchronous Optical Network (SONET) standard.  Synchronized networks are generally 

prone to phase differences due to jitter and propagation delay.  It is for this reason that 

SONET has very strict jitter tolerance, jitter transfer, and jitter generation specifications 

to avoid poor data quality [4], [17]. 
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A generic clock and data recovery circuit is illustrated in Figure 10.  The data enters the 

CDR where it is compared to an internally generated clock signal by the phase detector.  

The clock signal comes from the voltage-controlled oscillator (VCO).  Any difference in 

the phase will result in an error signal, which controls the charge pump.  Together, the 

charge pump and a low-pass filter generate the VCO control voltage.  The VCO will then 

increase or decrease its frequency to match the incoming data phase.  The settled VCO 

output signal represents the extracted clock.  The newly generated clock is fed back to the 

phase detector and the process repeats.  The clock signal also drives the decision circuit 

which will retime the data and reduce the jitter [23]. 

 

Figure 10: Generic Clock and Data Recover Architecture 

For the purpose of this endeavor, the output of the Optoelectronic Amplifier to the Clock 

and Data Recovery will require a differential signal with a peak-to-peak voltage of 250 

mV, the commonly used input range of a CDR [22], [29]. 

2.5 Definition of Specifications 

Once again, the project detailed by this document is an endeavor to design an 

Optoelectronic Amplifier, the front-end electronics of an optic receiver, as illustrated in 

with the shaded region of Figure 11.  The Optoelectronic Amplifier consists of the TIA 

and LA in a monolithic semiconductor. 
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Figure 11: Optoelectronic Amplifier Block Diagram 

The Optoelectronic Amplifier must be sensitive to various levels of optical power that are 

directly related to the length of the fiber link.  A photodiode is expected to produce a 5 

µAp-p current signal under the worst optical attenuation conditions as defined by SONET-

48 [22].  The two most important parameters of the transimpedance amplifier are its 

sensitivity and the maximum bit rate [8].  The sensitivity of the TIA is a result of the 

transimpedance [9].  The TIA amplifies the current signal to a gain of near 66 dBΩ.  

High gain is desired for a TIA to produce high system performance.  However, the large 

transimpedance leaves the TIA as the dominant noise contribution to the system.  In an 

effort to reduce the input noise contribution of the TIA to 400 nArms, the bandwidth 

should be limited [22].  The maximum bit rate is a consequence of the TIA bandwidth, 

therefore, binding the bandwidth must be done carefully to avoid Intersymbol 

Interference (ISI).  For an NRZ data format, the bandwidth should be between 0.6 and 0.7 

of the data rate [14].  The determined bandwidth for the TIA is 1.65 GHz, which is a 

good balance between ISI and noise for a 2.5 GHz bit rate. 

 GHzBitratef dB 65.165.03 ≈⋅=  (5) 

The TIA feeds a voltage signal of 10 mVpp to the input of the Limiting Amplifier (LA).  

The task of the LA is to amplify the incoming voltage signal to a sufficient voltage level 

of 250 mVpp for the reliable operation of a clock and data recovery (CDR) circuit [22], 

[29].  The LA must have a small-signal gain of 28 dB to allow the minimum allowable 
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input signals to reach the full voltage swing.  If the input current to the TIA is greater 

than the minimum, the large gain of the LA will cause the output into saturation, thereby 

cutting off or ‘limiting’ the output voltage level [22].  

Throughout the following documentation, it will be verified that an Optoelectronic 

Amplifier with the subsequent specifications, listed in Table 3, can be built in TSMC 

0.18 µm CMOS technology. 

Table 3: Proposed Optoelectronic Amplifier Specifications 

Parameter  Value 
CMOS Technology 3.3V, 0.18 µm 
Maximum Bit Rate 2.5 Gb/s 
Bandwidth (-3dB) 1.65 GHz 
Transimpedance 66 dBΩ 
LA DC Gain 28 dB 
Imin 5µA 
Imax 500µA 
TIA Input Noise, in 400nArms 
Diode Capacitance, CD 1pF 

 

Throughout this document, the project will be referred to as the Optoelectronic Amplifier 

(to distinguish it from the optic receiver). 

2.6 Conclusion 

In this chapter, the major blocks of an optoelectronic receiver were presented.  Some of 

the various component details were presented and some options were eliminated in order 

to focus the design to a smaller assortment of suitable solutions. The project scope was 

declared along with the definition of the specifications to be met by the design. In the 

next chapter, the Transimpedance Amplifier configurations will be dissected to provide 

the best possible solution.  Subsequent chapters will discuss the remaining blocks. 
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The most vital component of an Optoelectronic Amplifier is that of the Transimpedance 

Amplifier (TIA).  That being the case, its design becomes the most challenging of all of 

the system modules [9]. 

The demands on the TIA stage require a balance of tradeoffs of transimpedance gain, 

bandwidth, and input noise.  The TIA must be sensitive enough to detect small current 

levels produced by the photodiode and yet possess an input range wide enough to handle 

signals that are one hundred times larger than the minimum required input.  High gain 

addresses the sensitivity issue by allowing the TIA to respond to smaller input currents.  

However, greater gain serves as an obstruction to achieving a suitable bandwidth [8], 

[11].  The TIA is the first stage of amplification and will be injecting the dominant noise 

contribution to the system.  The undesirable consequence of the large bandwidth is the 

inability to eliminate high frequency noise.  The goals set to balance the TIA tradeoffs are 

listed below: 

High Bandwidth – 1.65 GHz 

High Transimpedance Gain – 2 kΩ 

Low Input Referred Current Noise – 400 nArms  

Large Input Current Range – 5 to 500 µAp-p  

3.1 Transimpedance Amplifier System 

The highest priority of the design of the TIA was placed on bandwidth and the 

transimpedance gain.  Two limiting factors of the design of the TIA are the input 

capacitance introduced by the photodiode and the resistor closing the negative feedback 
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link around the TIA.  Figure 12 shows a generalized schematic of a TIA used in an optic 

system. 

 

Figure 12: Typical Transimpedance Amplifier Configuration 

For an ideal voltage gain, A, for the inverting gain stage, the closed-loop transimpedance 

gain of the TIA is given by  
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The bandwidth of the TIA is specified by the pole of the system described in the equation 

above.  The bandwidth is given by 
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[8], [9], [12].  The desired bandwidth of 1.65 GHz and the transimpedance gain of 2 kΩ 

require the open-loop gain of the inverting gain stage to be approximately 20, or 26 dB. 

The former was corroborated by work done by [9]; however, it is important to note that 

the bandwidth required by [9] was in the magnitude of hundreds of MHz, not GHz.  The 

equation developed above must be used with the caveat that the necessary A must be 

achieved at the desired f3dB.  The inverter has a transfer function of  
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A
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+
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where Ao is the DC gain of the inverting stage and τ is its corner frequency.  Thus, the 

new model for the TIA is 
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A simplified equation for the open-loop gain is given by  

 ( ) 12 33 −≈ dBinfdB fCRfA π  (11) 

where A(f3dB) is at the desired bandwidth of the TIA.  The design of the inverting gain 

stage block must achieve the gain of at least 20, or 26 dB, at the high frequency of 1.65 

GHz. 

The input capacitance and transimpedance are set by the specifications, leaving the open-

loop gain of the inverting gain stage as the sole parameter for TIA optimization.  In the 

following sections several configurations for the inverting gain stage, or inverter, will be 

examined. 
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3.2 Inverter Configurations 

There are many variations of inverters regularly available.  Figure 13, Figure 14, and 

Figure 15 illustrate some of the different inverter configurations. 

 

Figure 13: Current Load Inverter 

 

Figure 14: Push-Pull Inverter 
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Figure 15: Cascode Inverter 

The following sections will examine the inverter configurations and outline the strengths 

and weaknesses of each. 

3.2.1 Current Load 

The current load inverter has two variables with which the necessary open-loop gain can 

be achieved:  the transistor dimensions and the bias current.  The small-signal 

performance can be analyzed with the aid of Figure 16 [1]. 
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Figure 16: Small-signal Model for the Current Load Inverter 

 The small-signal voltage gain for the current load inverter is 
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The equivalent TIA thermal input noise is  
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which yields 
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The first two terms are the noise generated by the drain currents of the transistors; the 

third term represents the noise generated by the feedback resistor.  It is important to note 

that the noise added by the feedback resistor is inversely proportional to the resistor size, 

i.e. a larger feedback resistor results in lower current noise at the input of the TIA [27]. 

Unfortunately, the optimized current source inverter can only produce an open-loop gain 

of 10 at the TIA bandwidth frequency, as can be seen in Figure 17. 
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Figure 17: Open-loop AC Response of Current Load Inverter 

The failure to meet the necessary open-loop gain is also evident in the closed-loop 

response, shown in Figure 18.  The bandwidth of the TIA is limited to 1.12 GHz.  The 

simulated input referred noise figure is 315 nArms; a seemingly promising measure due to 

the low bandwidth.  
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Figure 18: Closed-Loop AC Response of Current Load TIA 

The total performance of the current load TIA is summarized in Table 4.  The open-loop 

gain of the inverter is 14, or 23 dB, at the bandwidth of 1.12 GHz which agrees with the 

relationship of equation 11.  

Table 4: Summary of Current Load Inverter Performance 

Parameter  Value 
M1 Dimensions, W/L 3.30 µm/0.18 µm 
M2 Dimensions, W/L 62.64 µm/0.18 µm 
Current Bias, IBIAS 2.544 mA 
Transimpedance, RF 2 kΩ 
Open-loop Gain @ 1.65 GHz 20.0 dB 
Bandwidth, f3dB 1.12 GHz 
Input Referred Noise, in 315 nArms 

 

3.2.2 Push-Pull 

The push-pull inverter is another two-transistor amplifier solution.  The small-signal 

model is illustrated in Figure 19.   
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Figure 19: Small-signal Model of the Push-pull Inverter 

The small-signal gain of the inverter is 
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which can only be modified with the dimensions of the two transistors [1].  For a 

homogenous voltage swing, the nMOS and pMOS transistors are traditionally sized to 

have close transconductances.  The open-loop gain of the push-pull configuration can 

achieve higher gains than the current load inverter.  It is for this reason that this topology 

has a better possibility of reaching the necessary bandwidth than the current load inverter. 

The noise injected by this configuration is composed predominately of drain currents.  

The TIA equivalent thermal input noise is 
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which yields 
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where the first term is the noise model of the nMOS transistor and the second term 

corresponds to the pMOS transistor [1].  The third term represents the feedback resistor.  

Note that the noise model is the same as the current load configuration. 

As expected, the push-pull configuration can achieve a higher open-loop gain; however, 

the gain at the needed TIA bandwidth is merely 5, as shown in Figure 20.  

 

Figure 20: Open-loop AC Response of Push-Pull Inverter 

The closed-loop response of the system is affected by the low open-loop gain of the 

inverter.  The push-pull TIA can only boast of a bandwidth of 1 GHz, illustrated in Figure 

21.  The simulated input referred noise figure is 289 nArms.  This value is apparently a 

good figure.  However, it is significantly reduced because the bandwidth is only 2/3 of 

the specification. 
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Figure 21: Closed-Loop AC Response of Push-Pull TIA 

It is important to note that due to the higher gain of the TIA, some peaking is evident in 

the AC behavior.  This topic will be covered in the following section, with reference to 

the Cascode TIA. 

The total performance of the push-pull TIA is summarized in Table 5. 

Table 5: Summary of Push-pull Inverter Performance 

Parameter  Value 
M1 Dimensions, W/L 30.15 µm/0.35 µm 
M2 Dimensions, W/L 60.21 µm/0.35 µm 
Transimpedance, RF 2 KΩ 
Open-Loop Gain @ 1.65 GHz 14.1 dB 
Bandwidth, f3dB 1.0 GHz 
Input Referred Noise, in 289 nArms 
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3.2.3 Cascode 

The cascode inverter is a three-transistor amplifier.  This configuration is very similar to 

the current load inverter with variables including the bias current and the dimensions of 

the transistors.  Recall that the current load inverter suffered from small gain, yet it had a 

wider bandwidth than the push-pull inverter.   With the added transistor, M2, of Figure 

15, the configuration is less susceptible to the Miller capacitance on the input of the 

amplifier.  The small-signal performance can be analyzed with the aid of Figure 22.  

 

Figure 22: Small-signal Model for the Cascode Inverter 

 The small-signal voltage gain for the cascode inverter is 
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[1].  The equivalent TIA thermal input noise is  
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which yields the noise contributions 
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where the first two terms represent the two transistors, M1 and M2, respectively [12].  As 

in the case of the other inverter configurations, the feedback resistor is the last term in the 

noise model. 

With the improved open-loop bandwidth performance and higher gain, the optimized 

cascode inverter is able to meet the required gain of 20 at a specified TIA bandwidth 

frequency of 1.65 GHz.  Figure 23 shows the cascode inverter meeting the open-loop 

gain at a frequency approaching 2 GHz. 
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Figure 23: Open-loop AC Response of Cascode Inverter 

The closed-loop performance of the TIA, is shown in Figure 24.  The Cascode 

Transimpedance Amplifier meets the required bandwidth.  The closed-loop response was 

simulated using a 2 KΩ feedback resistor.  The simulated input referred noise figure is 

363 nArms, well below the required specification. 
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Figure 24: Closed-Loop AC Response of Cascode TIA 

As mentioned in the previous section, the high open-loop gain of the inverter, in 

conjunction with the large input capacitance, leads to some instability with the evidence 

of peaking at high frequencies [19].  This is a common effect of transimpedance 

amplifiers.  [13] and [19] offer the solution of using a capacitor in parallel with the 

feedback resistor to reduce the amount of ringing at high frequencies, as shown in Figure 

25. 



 

Chapter 3: Transimpedance Amplifier 32 

 

 

Figure 25: Transimpedance Amplifier with Capacitive Feedback  

The optimum value of the capacitor can be found using the relationship 
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where the unit frequency of the inverter is represented by fu.  The feedback capacitor used 

in the above simulation for the Cascode TIA was 37 fF in order to achieve a 45° phase 

margin [13]. 

The total performance of the current load TIA is summarized in Table 6.  The cascode 

performed within specifications and was thus chosen as the inverting gain stage for the 

Optoelectronic Amplifier. 
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Table 6: Summary of Push-pull Inverter Performance 

Parameter  Value 
M1 Dimensions, W/L 12.00 µm/0.18 µm 
M2 Dimensions, W/L 77.70 µm/0.18 µm 
M3 Dimensions, W/L 278.25 µm/0.18 µm 
Voltage Bias, VBIAS 1.04 V 
Current Bias, IBIAS 4.775 mA 
Transimpedance, RF 2 KΩ 
Feedback Capacitor, CF 37 fF 
Open-Loop Gain @ 1.65 GHz 27.4 dB 
Bandwidth, f3dB 1.7 GHz 
Input Referred Noise, in 363 nArms 

3.3 Conclusion 

The theory and design of three different Transimpedance Amplifier configurations were 

discussed in this chapter.  The current load and push-pull inverters provide satisfactory 

noise performance while providing the specified transimpedance gain.  Nevertheless, the 

two inverter topologies were unable to meet the bandwidth required to transmit 2.5 GB/s.  

The cascode inverter was able to surpass the needed bandwidth and achieve the other 

provisions.  At the end, the high gain, high bandwidth Cascode Transimpedance 

Amplifier was chosen as the preamplifier stage in the Optoelectronic Amplifiers design.  

The following chapter will discuss the design of the Limiting Amplifier, the second 

amplification stage of the Optoelectronic Amplifier.  
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Up to this point it is assumed that the Transimpedance Amplifier converts the photodiode 

current to a minimum peak-to-peak voltage of 10 mV.  The voltage signal at the output of 

the preamplifier must be further amplified by the Limiting Amplifier to reach the proper 

voltage swing necessary for data and clock recovery.  The design of the LA must 

demonstrate high gain to achieve the 250 mVpp necessary for clock and data recovery 

while still conserving the bandwidth at the output of the TIA [22], [29].  Noise 

considerations are not a major concern of the LA because the TIA is the dominant noise 

source.  Nevertheless, it is desirable to minimize the noise contributions of the post 

amplifier stage so that the complete input referred noise contributions of the system are 

no worse than 10 % of the original TIA noise figure (after root-mean-square addition). 

The interface used to compensate for the single-ended TIA to the differential LA is 

addressed in the next chapter.  For now, the discussion will continue with the design of 

the LA with the assumption of a differential input. 

As mentioned in the prior discussion on Optoelectronic Amplifier specifications, the LA 

must achieve a gain of 30 dB.  A conventional Limiting Amplifier is shown in Figure 26.  

The total gain can be achieved with several stages of smaller differential amplifiers 

cascaded for improved bandwidth performance.   
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Figure 26: Limiting Amplifier Block Diagram 

[22] suggests that the issue of maintaining high bandwidth in an LA can be corrected by 

gradually decreasing the size of the internal amplifiers by a factor of two, for example, a 

system of 4 amplifying stages with gains of 8x, 4x, 2x, and 1x.  The steady decrease of 

sizes also lowers the load capacitance seen by the previous stage thus causing bandwidth 

extension.  The limits to this method lay in the demands of the last stage’s output drive 

capabilities and the maximum allowable LA input capacitance. 

An alternative is to have matched amplifier blocks for equal input capacitance and drive 

capabilities.  This method is advantageous in its simplicity of layout.  As long as the load 

capacitance of blocks is small enough, the bandwidth can be achieved with this 

configuration.  In this case, the total gain of the LA is given by   

 ( ) 1+= n
nTotal AA  (22) 

where An is the differential gain of each stage and n+1 denotes the number of cascaded 

stages. 

The matched differential amplifier topology was chosen given the aforementioned 

advantages.  There are several possible architectures for a matched LA.  The simplest 

solution is a cascade of resistive load differential amplifiers. 
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4.1 Resistive Load differential amplifier 

The basic model for a LA block is that of a resistive load differential amplifier, depicting 

in Figure 27.  The output voltage swing will be placed in the upper portion of the supply 

voltage of 3.3 V, i.e. a differential swing centered at 3.0 V with rails of plus or minus 300 

mV. 

 

Figure 27: Resistive Load Differential Amplifier Schematic 

The gain of the symmetric differential amplifier is set by the transconductance of the 

matched differential transistors, M1 and M2.  Due to the symmetry of the design, the 

small-signal performance can be analyzed with the aid of half-circuit model in Figure 28 

[24]. 
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Figure 28: Small-signal Model of Differential Half-circuit 

The gain expression is  

 ( Rrg
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V
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ind

outd //2 ⋅⋅=
−
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The common mode of the output voltage is determined by the resistor value and half of 

the bias current, Ibias, which is demonstrated by the relationship 

 R
I

VV bias
DDCM ⋅−=

2
 (24) 

With parameters Ibias and RL set appropriately for DC operating points, the 

transconductance of the transistors can be changed to meet the appropriate gain 

requirements. 

Figure 2 shows the AC response of a single stage of the LA.  Note that the individual 

bandwidth of the device is seemingly sufficient to preserve the TIA bandwidth.   The 

corner frequency of the differential stage is 2.5 GHz. 
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Figure 29: AC Response of Single Stage Resistive Load LA 

Unfortunately, the bandwidth of a single stage must be greater to provide the LA, 

consisting of four cascaded stages, with sufficient bandwidth.  A more complex design is 

required to achieve the desired bandwidth.  Figure 30 shows the AC response of the four-

stage resistive load LA with a bandwidth of 1.1 GHz 
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Figure 30: AC Response of Cascaded Resistive Load LA 

The total performance of the resistive load LA is summarized in Table 7. 

Table 7: Summary of Resistive Load LA Performance 

Parameter  Value 
Resistive Load, R 170 Ω 
M1 & M2 Dimensions, W/L 159.94 µm/0.35 µm 
Current Bias, IBIAS 3.0 mA 
Single Stage LA  

DC Gain  7.3 dB 
Bandwidth, f3dB 2.5 GHz 
Input Referred Noise, en 273 µVrms 

Cascaded LA  
DC Gain  29.4 dB 
Bandwidth, f3dB 1.1 GHz 

4.2 Inductive Load Differential Pair 

A well known technique called “shunt peaking” is a possible solution used to extend the 

bandwidth.  Shunt peaking allows for bandwidth extension with the addition of an 

inductor to the circuit, as shown in Figure 31.  With the addition of the inductor, the 
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improved bandwidth for each differential stage will allow for sufficient improvement to 

meet the desired performance of the overall LA system [18]. 

 

Figure 31: Shunt Peaking Configuration 

With the addition of an inductive load to the resistive load already in place, the 

bandwidth can be further enhanced by moving the pole to a higher frequency.  The small-

signal performance of the simple common-mode buffer and the buffer with the added 

shunt peaking inductor can be analyzed with the aid of Figure 32 and Figure 33. 

 

Figure 32: Small-signal of Common-source Buffer 
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Figure 33: Small-signal of Common-source Buffer with Shunt Peaking 

The transfer function of the simple common-source buffer in Figure 32 is 
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The added inductor in Figure 33 alters the transfer function as shown by  
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The introduction of an inductor adds a zero to the LA stage transfer function in addition 

to a second pole.  A properly sized inductor can strategically place a zero to partially 

tune-out the capacitive load, thereby extending the bandwidth.  The second pole pushes 

the 3dB corner to a higher frequency [18].  [22] suggests that the optimal inductance can 

be found using the values of the load resistance and capacitance with the relationship   

  (27) CRLopt ⋅⋅= 24.0

for a bandwidth extension of nearly 70%.  Figure 34 shows the effects of a differential 

amplifier using the shunt peaking technique.  The bandwidth was increased from 3.98 

GHz to over 5 GHz with minimum peaking. 
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Figure 34: Bandwidth Extension Using Shunt Peaking in a Differential Amplifier 

Unfortunately, a spiral inductor with high inductance, of magnitude greater than 20 nH, 

can be very cumbersome to design as well as expensive in silicon real estate [18].  Active 

inductors can be implemented to greatly reduce the area. 

4.3 Differential Pair with Active Inductors 

An active inductor can be created with the use of a FET and a resistor.  As shown in 

Figure 35, the resistor connects the gate to the drain, putting the transistor in the active 

region. 



 

Chapter 4: Limiting Amplifier 43 

 

 

Figure 35: Active Inductor Schematic 

Figure 36 shows the small-signal model of the active inductor. 

 

Figure 36: Small-signal Model for Active Inductor 

The approximate small-signal impedance looking into the source of the active inductor is  
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The impedance of the configuration consists of the resistive and inductive components.  

The resistive component is composed purely of the transistor parameters.  Once the 

desired resistance of the transistor is achieved, the resistor between the gate and drain of 

the transistor can be sized for inductance. 

 

Figure 37: Schematic of Differential Amplifier with Active Inductors 

The drawbacks of active inductors are the added noise and the voltage drop caused by the 

nMOS threshold voltage, which is worsened by the body effect [22].  The differential 

amplifier configuration with active inductors, depicted in Figure 37, puts a severe strain 

on the voltage range of the differential transistors.   The nMOS threshold voltage 

demands a large voltage drop and leaves a very low ceiling in which the differential 

transistors must operate.  Raising the voltage ceiling can be accomplished by biasing the 

gate of the active inductor above the VDD level, as shown in Figure 38. 
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Figure 38: Active Inductor with a High Bias 

With the low voltage drop active inductor in place of the load resistor from Figure 27, the 

voltage swing can be centered at 3.0 V with a bandwidth exceeding the BW of the TIA.  

Figure 39 illustrates one of the four identical differential amplifier stages used to create 

the LA.  
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Figure 39: Schematic of Differential Amplifier with Low Voltage Drop Active Inductor 

The bandwidth of the single stage low voltage active inductor is above 3 GHz, as 

demonstrated by Figure 40.  The AC response of the cascaded Limiting amplifier is 

shown in Figure 41 with a bandwidth of 1.75 GHz.    
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Figure 40: AC Response of Single Stage LA with Low Voltage Active Inductors 

 

Figure 41: AC Response of Cascaded LA with Low Voltage Active Inductors 
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Figure 42 illustrates the noise model for the cascaded Limiting Amplifier.  Due to the 

root-square method of noise addition, the input noise of each stage, en, can be referred 

back to the input of the first LA stage by the relationship 
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where in-TIA is the input referred noise of the Transimpedance Amplifier. 

 

Figure 42: Noise Model of Limiting Amplifier 

The simulated noise of the cascaded Limiting Amplifier resulted in an LA input referred 

noise figure of 270 µVrms, which corresponds to a Optoelectronic Amplifier input referred 

current of 135 nArms.  This LA input noise figure is well below the desired specification 

of 330 µVrms.  The total performance of the LA with Low Voltage Active Inductors is 

summarized in Table 8. 
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Table 8: Performance Summary of LA with Low Voltage Active Inductors  

Parameter  Value 
Active Load Resistors, R ≈10 KΩ 
M1 & M2 Dimensions, W/L 159.94 µm/0.35 µm 
M3 & M4 Dimensions, W/L 159.94 µm/0.35 µm 
Current Bias, IBIAS 3.0 mA 
Single Stage LA  

DC Gain  7.3 dB 
Bandwidth, f3dB 3.7 GHz 
Input Referred Noise, en 281 µVrms 

Cascaded LA  
DC Gain  29.4 dB 
Bandwidth, f3dB 1.8 GHz 

 

4.4 Conclusion 

The theory and design of a Limiting Amplifier was discussed in this chapter.  At the end, 

a high gain, high bandwidth LA was described.  The benefits of shunt-peaking were 

exploited with the use of active inductors to extend the bandwidth of the LA.  The next 

chapter will discuss the offset correction scheme used to interface the single-ended TIA 

to the differential LA.  
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As previously mentioned, there is an interface conflict between the output of the 

Transimpedance Amplifier and the input of the Limiting Amplifier.  The output of the 

TIA is single-ended and must interface with the differential LA.  There are several 

possible solutions to this problem. 

In an ideal differential system, an amplified differential signal would be produced from a 

differential input, as illustrated in left side of Figure 43.  It is also possible to produce a 

favorable differential output when introducing a single-ended source.  If the input 

amplitude to a differential amplifier is small enough, the differential input can be imitated 

with the original single-ended signal and its common mode bias (or DC offset), as 

illustrated in the right side of Figure 43. 

 

Figure 43: Effects of Pure Differential versus Common Mode Biased Single-ended Input  

Performing DC offset correction by finding the proper bias point must be precise.  Two 

examples of biasing are shown in Figure 44.  The first example is that of a poorly biased 

differential input.  If the DC offset of the signals was to increase, the output differential 

signals of the amplifier would begin to drift away from each other.  The same holds true 

for a decreased DC offset.  The second example in Figure 44 shows the effects of proper 

biasing.   The output waveform is generated as a result of the common mode voltages of 

both signals being equal.   
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Figure 44: Effect of Poor Biases in Differential Signals 

5.1 Low Pass Filter and AC Coupling 

In order to find the proper dc bias point, there are two fundamental options:  low pass 

filtering or AC coupling the single-ended output of the TIA at the input of the LA.  The 

common mode of a signal can be found with a low pass filter.  This simple method is 

illustrated in Figure 45.  The original signal is fed to one of the inputs of the differential 

LA.  The second LA input is biased with the result of a low pass filter, which centers the 

differential signal at the proper common-mode voltage. 

 

Figure 45: Low Pass Filter Offset Correction Method 
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The low-pass filter has the response shown in Figure 46.  Simulations provided 

satisfactory high frequency attenuation with a corner frequency of 16 MHz, which can be 

achieved with resistor and capacitor values of 1 kΩ and 10 pF, respectively.  

 

 

Figure 46: Low-Pass Filter Response 

An alternative consisting of the same fundamentals is the AC Coupling method.  This 

configuration, depicted in Figure 47, uses a high pass filter to center the single-ended 

signal to a predetermined bias voltage, Vb.  Essentially, the bias of the incoming signal is 

forced to the desired voltage [21]. 

 

Figure 47: Offset Correction with AC Coupling 
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The AC Coupling method has a response as shown in Figure 46.  The DC offset is 

completely removed with AC coupling, regardless of the corner frequency; however, the 

high frequency components of the signal must be conserved for signal integrity.  The 

corner frequency should be as small as possible.  Simulations with corner frequency of 16 

MHz provided adequate signal propagation in terms of frequency components. 

 

Figure 48: AC Coupling Response 

Although the AC coupling and low-pass filter offset correction methods are effective 

solutions, their major drawback is the dependence on the DC signal component.  The best 

results are achieved only when a 50% duty cycle is assured.  As the duty cycles vary to 

either extreme, the DC offset also strays.  The duty cycle dependency can be addressed 

with a properly tuned transmission encoding scheme.  However, a more robust, duty 

cycle independent solution is more desirable. 

5.2 Offset Feedback 

The feedback method is much more complex in nature than the AC coupling and low-

pass solutions.  The goal of the loop is to constantly compare the bias levels of the output 

signals and adjust the input bias accordingly.  Figure 49 illustrates the Offset Feedback 

method. 
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Figure 49: Offset Control with Feedback 

The outputs of the first differential amplifier are monitored to insure that their maximum 

swings share the same offset.  The rectifier generates DC bias voltages that are 

proportional to the peaks of differential voltage swings.  A difference in the bias voltages 

indicates misbalanced differential signals caused by an erroneous offset at the input of 

LA1.  The error correction behavior of the current injector and capacitor is similar to an 

integrator.  The bias voltages are monitored by the current injector, which will sink or 

source current to the capacitor to remove the error.  The voltage across the capacitor is 

then buffered with a gain of 4 and fed back to the input of LA1.  At steady state, the 

capacitor will maintain a scaled-down version of the offset voltage necessary for proper 

DC biasing of the LA. 

As with any feedback system, stability is an issue.  Figure 50 illustrates the stability 

analysis model for the offset feedback. 



 

Chapter 5: Offset Correction 55 

 

 

Figure 50: Model of Offset Feedback Method 

The transfer function of the loop can be represented by the standard form equation 
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The LA parameters, ALA and τLA, were already predetermined from the design in the 

previous chapter.  The rectifier poles, τ1 and τ2, are essentially set in order to produce 

clean control voltages and do not offer much flexibility.  Thus, optimization to ensure 

stability must be performed with the use of the remaining model variables: Cint, Abuff, ginj.   

In a stable system, all pole locations are in the open left half-plane of the s-Plane.  The 

closed-loop function will become unstable only when its denominator equals zero.  The 

Routh-Hurwitz Stability Criterion  states that for a fourth order polynomial, with a 

denominator of  
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is guaranteed to have all of its roots in the left half-plane if all of the coefficients, an, are 

strictly positive and  

 1423 aaaa ⋅>⋅  (33) 

  (34) 0
2
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2
24123 aaaaaaa ⋅+⋅>⋅⋅

The expanded coefficients of H(s) correspond to  

 4 int 1LAa C 2τ τ τ= ⋅ ⋅ ⋅  (35) 

 ( )3 int 1 2 1 2LA LAa C τ τ τ τ τ τ= ⋅ ⋅ + ⋅ + ⋅  (36) 

 ( )2 int 1 2LAa C τ τ τ= ⋅ + +  (37) 

 int1 Ca =  (38) 

 injectorbuffer gAGa ⋅⋅=0  (39) 

After assuring that the system was stable with the Routh-Hurwitz Stability Criterion, the 

values were then further massaged to achieve satisfactory performance [31].  The 

transient response of the Offset Feedback method is shown in Figure 51.  The figure 

shows the output of the first stage LA as the Offset Feedback circuit converges to the 

proper DC offset. 
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Figure 51: Transient Response of the Offset Feedback Method 

Table 9 summarizes the parameters of the Offset Feedback configuration. 

Table 9: Summary of Offset Feedback Parameters 

Parameter  Value 
LA Gain, ALA 29.5 
LA Bandwidth, τLA 1.8 GHz 
Buffer Gain, Abuff 4 
Integrator Capacitance, Cint 1 pF 
Injector Transconductance, ginj 5 µA/V 
Rectifier Pole, τ1 500 ps 
Rectifier Pole, τ2 250 ps 

5.3 Conclusion 

The theory and design of an Offset Feedback scheme used to interface the single-ended 

Transimpedance Amplifier to the differential Limiting Amplifier was discussed in this 

chapter.  The following chapter will discuss the layout of the test chip with the details of 

each functional block. 
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The goal of the test chip was to corroborate the performance results of the simulations.  

All schematic entry, simulation, and layout were developed with the use of the Cadence 

suite of design and layout tools.  The process used to fabricate the test chip was a TSMC 

0.18 µm 6-metal 1-poly CMOS process via the IC fabrication service of MOSIS. 

The test chip included ten separate circuits for simulation correlation: one full 

Optoelectronic Amplifier, three independent cascode Transimpedance Amplifiers, three 

independent current load TIAs, and three independent push-pull TIAs. 

6.1 Transimpedance Amplifier 

As mentioned earlier, the TIA serves an extremely important role in the Optoelectronic 

Amplifier.  It is the first gain stage of the system and defines the system level sensitivity.  

The TIA’s position as the first amplification stage also makes it the key contributor of 

noise in the system.   

Nine TIAs were added to the test chip to allow for analysis of the vital first stage of the 

Optoelectronic Amplifier.  The three topologies of TIAs were included on the chip, 

current load, push-pull, and cascode.  Each TIA configuration was created with three 

different transimpedance gains, 500 Ω, 1 kΩ, 2 kΩ, to further study the effects of the 

transimpedance gain on the bandwidth of the TIA.  

The output drive capabilities of the TIAs were developed for the interface with the LA.  

In order to allow the TIA output to be tangible off-chip, an output driver was required.  

The current drive necessary for off-chip TIA output signals is generated with a drive 

transistor.  The output of the TIA is connected to an open-drain P-type transistor.  The 

drain of the drive transistor is connected directly to the pad for the package pin.  An 

external resistor connected from ground to the pin will serve to create the current to 

voltage conversion off-chip.  Figure 2 illustrates the TIA on the test chip with the use of 
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the P-type driving transistor.  The bias voltages represented are generic and are not 

necessary of each TIA topology.  

 

Figure 52: Block Diagram of TIA on Test Chip 

6.2 Optoelectronic Amplifier System 

The Optoelectronic Amplifier built on the test chip included the TIA, LA, and Offset 

Feedback circuitry, as shown in the block diagram in Figure 53. 

There is an added buffer between the TIA and the LA.  The buffer serves to level shift the 

output of the TIA to the required input levels of the LA.  The LA expects an input 

centered at 3 V with a 300 mV amplitude.   The output of the TIA starts at approximately 

600 mV and must be raised to the satisfactory LA input voltage level.  The buffer also 

adds the small amount of gain that is lost due to the single-ended to differential 

conversion. 
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Figure 53: Block Diagram of Optoelectronic Amplifier System on Test Chip 

The issue of transmitting the output signals off-chip was addressed by increasing the 

drive capabilities of the last LA stage.  Three LA stages in parallel where used to drive 

the test chip pin.   

6.3 Test Chip 

A photograph of the test chip is shown in Figure 54.  The silicon real estate was shared 

between two projects:  this MS thesis to create the Optoelectronic Amplifier and PhD 

thesis for another student on the relationship between kappa, the time domain noise figure 

of merit, frequency, channel width, and channel length. 
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Figure 54: Photograph of Whole Test Chip 

The Optoelectronic Amplifier and the various TIAs used the minority of the silicon die 

space, as illustrated in Figure 55.  The die size is 2.4 mm x 2.4 mm. The Optoelectronic 

Amplifier uses 360 µm x 125 µm of die area.  Each TIA instance consumes 90 µm x 45 

µm.   
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Figure 55: Test Chip with Highlighted TIAs and Optoelectronic Amplifier 

Note the 10 independent circuits line the top and bottom pins.  The circuits required more 

pins than where available:  the Optoelectronic Amplifier uses 15 pins and the assortment 

of TIAs consumes a total of 45 pins.  Two rows of bond pads where used to increase the 

number of pins available for the project.  Two iterations of the test chips where created, 

each bonded to a different row of pads.   
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6.4 Evaluation Board 

The evaluation board interface to the TIA has to supply the bias voltages and currents, as 

well as the power supply, as illustrated in Figure 56.  The RF input to the TIA is 

generated with a voltage signal converter to a current via a resistor.  The output of the 

TIA, corresponding to the driving transistor drain, was connected to a resistor for current 

to voltage conversion. 

 

Figure 56: TIA Evaluation Board Interface 

The interface to the Optoelectronic Amplifier was similar, as shown in Figure 57.  Note 

that the output of the Optoelectronic Amplifier does not require the current to voltage 

conversion.   
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Figure 57: Optoelectronic Amplifier Evaluation Board Interface 

Both the TIA and Optoelectronic Amplifiers required some network matching, to convert 

the output impedance to a 50 Ω environment for connectivity with laboratory equipment. 

Figure 58 shows the picture the evaluation board.  Recall that two rows of bond pads 

where used to increase the number of pins available for the project.  Two iterations of the 

test chips were manufactured, each bonded to a different row of pads.  The evaluation 

board was laid out with dual footprints, corresponding with both bonding iterations.  The 

iteration with the bonded inner row of pads is placed in the device mount with no 

rotation.  The iteration with the bonded outer row of pads is placed in the device mount 

with a 90° rotation (counter clockwise).     
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Figure 58: Picture of the Evaluation Board 

6.5 Amplifier Measurements 

The goal of the test chip was to corroborate the results of the simulations of the TIAs and 

the Optoelectronic Amplifier.  Because the test chip required more than 70 pins, there 

was a limited choice for chip packages.  The package used for the test chip was an 84-pin 

ceramic leadless chip carrier from Kyocera America, Inc..  The expected bandwidth of 
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the package is in the order of 500 - 800 MHz, well below the bandwidth of the 

Optoelectronic Amplifier.  Nevertheless, simulation of the design with the estimated 

package parameters showed that the high-speed signals could propagate off chip, albeit 

with significantly attenuated signals.   

Initial high-speeds testing of the TIAs on the test chip provided unfavorable results.  The 

speed of the device was brought down well below the expected bandwidth of the package 

to verify basic functionality of the amplifiers.  The experiment was conducted by 

monitoring the input signal at the closest point to the package and the output of the TIAs.  

The input was a sinusoid of 30 mVrms with frequencies spanning the frequency range of 

the signal generator, from 300 KHz to 3 GHz.  The gain was calculated at each frequency 

interval to determine the bandwidth of the TIA.  Figure 1 shows the results of the gain 

calculations. 

 

Figure 59: Measured Bandwidth of the Current Load TIA 

The measured response was modeled with the two pole representation 



 

Chapter 6: Verification, Testing and Results 67 

 

  
( )21

)(
c

o

s
A

sA
τ+

=  (40) 

where Ao is the low frequency gain and τc is the 3 dB  bandwidth.  The bandwidth was 

found to be between 450 to 500 MHz.   

The package bandwidth of 500 to 800 MHz was expected.  Thus, it would seem that the 

ceramic package is filtering out the high frequencies.  The test board also provides some 

filtering.  Figure 60 shows the response of the test board.  The measurement was made by 

monitoring the input of the package socket while sweeping the frequency. 

    

Figure 60: Measured Bandwidth of Test Board  

The response of the board was modeled with the single pole representation 
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where τb is the 3 dB  bandwidth.  The test board bandwidth also corresponds to 500 MHz. 

The cascode and push-pull TIA configurations demonstrated bandwidth limitations 

similar to those of the current load TIA.  It was expected that the Optoelectronic 

Amplifier would be affected by the same bandwidth restrictions as the TIAs.  However, 

due to time limitations the performance of the system was not confirmed.  Since most of 

the vital signals of the Optoelectronic Amplifier are not accessible off chip, only a limited 

number of options exist for debugging.  The only accessible signal to the LA, aside from 

the output, is the offset bias to the first LA stage.  In spite of this, the offset voltage was 

changed with nominal change resulting in unconfirmed system functionality. 

6.6 1/f Noise 

1/f, also known as flicker noise, is one of the major concerns in IC design in CMOS.  The 

source of the noise is the carrier traps in semiconductors which capture and release 

carriers randomly [1].  The spectral density of 1/f noise is approximated by  

 ( )
f

k
fV v

n

2
2

=  (42) 

where kv is a constant.  As denoted by its name, the noise is inversely proportional to 

frequency, f.   The root spectral density of flicker noise is given by  

 ( )
f

k
fV v

n =  (43) 

It is important to note that the noise falls off at a rate of -10 dB/decade because it is 

inversely proportion to √f, as shown in Figure 61 [12].  The 1/f noise energy is 

concentrated at the low frequencies due to the inverse relationship with frequency, yet 

maintains equal power in every decade. 
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Figure 61: Noise Signal with 1/f and White Noise 

As previously mentioned, the test chip silicon was shared between the Optoelectronic 

Amplifier design and another student’s study on jitter in CMOS single-ended ring 

oscillators and the relationship between kappa - the time domain noise figure of merit, 

frequency, channel width, and channel length. 

Jitter in Deep Submicron CMOS Single-Ended Ring Oscillators  

Single-ended ring oscillators (SROs) are appealing for applications requiring high speed 

and moderate jitter.  As a guide to design, the time domain figure-of-merit κ is measured 

as a function of channel width, length, and inverter stage delay.   Although use of a deep 

submicron process allows the possibility of higher VCO frequency, it also introduces the 

problem of a higher 1/f noise corner.  In previous work [33] [34] the VCO design process 

is simplified by assuming the 1/f noise corner to lie below the PLL loop bandwidth; in 

deep submicron this assumption is no longer valid [32]. 

For a VCO dominated by white noise sources, the standard deviation of jitter after time 

delay ∆T is [3] 
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 T Tσ κ∆ = ∆  (44) 

where κ is the time domain figure of merit. 

In the frequency domain, a phase noise plot for a VCO dominated by white noise will 

have the form 

 2
1)(

f
NfS =φ  (45) 

where N1 is a frequency domain figure of merit. In this case the plot of phase noise will 

have a slope of -20dB/decade [32].   

In the presence of 1/f noise, the slope of the phase noise plot is -30dB/decade and the 

model of (42) no longer applies.  However, when the PLL loop is closed around the 

VCO, the 1/f noise contribution becomes negligible if the PLL loop bandwidth fL exceeds 

the 1/f noise corner.  Given the condition of negligible 1/f noise, a simple technique was 

given in [34] to relate time domain and frequency domain figures of merit by 

 1

o

N
f

κ =  (46) 

and to predict the closed-loop jitter with respect to the PLL reference clock 

 
L

x fπ
κσ
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1
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Thus only κ and PLL loop bandwidth are needed to predict the jitter performance in an 

oscillator dominated by white noise [32]. 
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Measured 1/f Corner 

1/f noise is caused by carrier traps in semiconductors which capture and release carriers 

randomly.  To measure the noise, the input to the system is removed.  In the case of a 

TIA, the input of the circuit is left open to ensure there is no current flow to the amplifier.  

The device is powered and the noise density is measured with a spectrum analyzer.  

Figure 62 shows the measured results of 36 TIAs. 

 

Figure 62: 1/f Noise Measurement of TIAs 

The dashed line to the left represents the 1/f fall off rate of -10 dB/decade.  The 

horizontal dashed line represents the noise floor of the analyzer.  Although the noise floor 

of the analyzer prevents the true noise corner to be measured, it is evident that the corner 

frequency is beyond 500 kHz. 
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The design of an Optoelectronic Amplifier has been investigated in this thesis.  The front 

end of the receiver, consisting of the TIA and LA blocks, was designed and simulated to 

specification.   

The Transimpedance Amplifier was designed with a bandwidth of 1.65 GHz in order to 

maintain a 2.5 Gb/s data rate.  Three inverting gain stage topologies were examined as 

options for the core of the TIA.  Only the cascode inverter was able to meet the 

bandwidth specifications while achieving a transimpedance of 2 kΩ and input referred 

current noise less than 400 nArms. 

The primary challenge in the design of the Limiting Amplifier was to preserve the high 

bandwidth at the output of the TIA.  The process began with a simple resistive load 

differential amplifier chain; however, the bandwidth was not achievable with the resistive 

load LA configuration.  The technique of shunt peaking was introduced in the LA design 

to enhance the bandwidth to 1.8 GHz.  Due to the fact that passive inductors are 

expensive in silicon real-estate, active inductors where used to make the shunt peaking 

technique feasible. 

Offset Feedback, a novel approach of to interface the single-ended output of the TIA with 

the differential LA inputs, was introduced.  The Offset Feedback method allows for the 

Optoelectronic Amplifier to dynamically change the DC offset of the LA to match the 

incoming common-mode of the TIA output. 

A test chip with the Optoelectronic Amplifier and nine TIA configurations was 

fabricated.  The TIAs varied with three transimpedance gains and the three inverting gain 

topologies discussed in Chapter 3.  Although the operation of the Optoelectronic 

Amplifier was achieved in simulation, the functionality of the system on the test chip was 

unconfirmed.  The TIA functionality was demonstrated only at low frequencies.  
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Parasitics related to the ceramic package and the test board layout limited the bandwidth 

of the chip to 500 MHz. 

The test chip was shared between the Optoelectronic Amplifier design and another 

student’s study on jitter in CMOS single-ended ring oscillators and the relationships of 

the time domain noise figure of merit, kappa, and the major jitter contributors.  The 

relationship requires only κ and the PLL loop bandwidth to predict jitter performance.  

1/f noise can be ignored because the 1/f noise corner is assumed to be inside the loop 

bandwidth frequency.  With results measured from the same deep submicron CMOS 

process, it is evident that the 1/f corner can exceed the PLL loop bandwidth.  The added 

noise causes more jitter than predicted using κ.  Although the noise floor of the analyzer 

prevents the true noise corner to be measured, it is evident that the corner frequency is 

beyond 500 MHz. 

Future Design Considerations 

High-speed data transmission requires very wide bandwidths.  In the case of this thesis, 

the required bandwidth was 1.65 GHz.   Ceramic leadless chip carriers provide a feasible 

packaging solution for RF signals with frequencies of 500 MHz or less.  RF signals 

exceeding in the GHz range should designed into smaller packages, such as chip scaled 

packages (CSP).  Unfortunately, CSPs tend to be more expensive.  Alternatively, 

measurements with die probing can be conducted to minimize the effects evident from 

package parasitics. 
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Figure 63: Current Load Inverter Schematic 
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Figure 64: Current Load Inverter Layout 
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Figure 65: Push-pull Inverter Schematic 
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Figure 66: Push-pull Inverter Layout 
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Figure 67: Cascode Inverter Schematic 
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Figure 68: Cascode Inverter Layout 
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Figure 69: Active Inductor LA Stage Schematic  
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Figure 70: Active Inductor LA Stage Layout 
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Figure 71: Rectifier Schematic 
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Figure 72: Rectifier Layout 
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Figure 73: Current Injector Schematic 
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Figure 74: Current Injector Layout 
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Figure 75: Offset Feedback Buffer Schematic 
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Figure 76: Offset Feedback Buffer Layout 
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Figure 77: TIA Buffer Schematic 
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Figure 78: TIA Buffer Layout 
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Figure 79: Optoelectronic Amplifier Schematic 
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Figure 80: Optoelectronic Amplifier Layout 
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Figure 81: TIA Layouts 
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Figure 82: Bonding Diagram of Inner Pad Ring 
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Figure 83: Bonding Diagram of Outer Pad Ring 
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