
Towards a Transition System Semantics for Alloy

A Major Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Computer Science

by

Theophilos John Giannakopoulos

March 16, 2009

APPROVED:

Professor Daniel Dougherty, MQP Advisor

Professor Michael Gennert, Head of Department

Abstract

Alloy is a language for modeling systems using first order logic and relational al-
gebra. In this paper we examine the use of Alloy for creating models of stateful
systems, and we explore semantics for Alloy that define transition systems over
database instances based on Alloy specifications written in the state-signature id-
iom. One such semantics is fully adequate for the original semantics of Alloy. We
prove an undecidability result concerning the automatic synthesis of programs from
specifications under this semantics.

Acknowledgments

I would like to thank my advisor Professor Daniel Dougherty (WPI) for his help with
this project, and Professor Kathi Fisler (WPI) and Professor Shriram Krishnamurthi
(Brown) for starting me on this research along with Professor Dougherty during my
fellowship over the summer.

I also would like to thank many times over Danny Yoo, Timothy Nelson and Yu
Feng in the ALAS lab for accepting me in their research group and giving me the
advice and moral support I needed to finish this project.

i

Contents

1 Introduction 1

2 Alloy and Stateful Systems 3
2.1 Alloy . 3
2.2 Stateful Systems . 5

3 Näıve Transition System Semantics 8
3.1 Satisfiability does not imply non-trivial implementability 13
3.2 Non-trivial implementability does not imply satisfiability 14

4 A New Specification Language: AlloyII 17
4.1 Kernel Syntax . 18
4.2 Kernel Logical Semantics . 18
4.3 Full Language . 19
4.4 AlloyII Examples . 21

5 A Transition System Semantics for AlloyII 25
5.1 Properties of the Transition System Semantics of AlloyII 27

6 A Second Transition System Semantics for Alloy 31
6.1 Two vs. One . 31
6.2 New Things in the Universe . 32
6.3 Fixing the Problems with NTSS . 33
6.4 State-Signature Transition System Semantics 34
6.5 Properties of SSTSS . 39

7 Advice for Alloy Users 43

8 Related work 45

Appendices 49

A Implementation of a Prototype for an AlloyIIAnalyzer 49
A.1 Future work . 50

ii

A.1.1 Assertions . 50

B Implementation of a Prototype for AlchemyII 51
B.1 Future work . 52

iii

List of Figures

2.1 Modeling an address book in Alloy 5

3.1 An transition of the address book example in NTSS 12
3.2 Specification showing discrepancy between Alloy and NTSS 12
3.3 The transition for the counterexample 15
3.4 The satisfying instance for the counterexample 16

4.1 The kernel syntax of AlloyII . 18
4.2 Semantics of AlloyII . 20
4.3 The address book example in AlloyII 22
4.4 A partial model of a media library in AlloyII 23

6.1 Two states merged into one instance 33
6.2 Specification for an address book that works better with SSTSS . . . 37
6.3 A transition in the state-signature semantics 38
6.4 Instance corresponding to the transition in Figure 6.3 38
6.5 A very simple specification . 42

B.1 Algorithm for AlchemyII . 53

iv

Chapter 1

Introduction

Alloy is a language for specifying properties of systems. The AlloyAnalyzer tool

is used for reasoning about specifications written in the Alloy language. Because

Alloy is based on first order logic and relational algebra, it is general enough to be

used for modeling many different systems. One of the common uses of Alloy and

the AlloyAnalyzer is to model operations of a stateful system and then check that

the operations have examples corresponding to their execution or to check that the

operations have some desired properties.

A main use of Alloy advocated by Daniel Jackson in Software Abstractions [9]

is to write specifications such that instances of those specifications resemble traces

(sequences of transitions) in a transition system. Assertions can then be written

about the traces and checked against instances of the specification using the Alloy-

Analyzer tool. Alloy is used in this manner to rapidly explore design choices before

building complete prototypes.

The Alchemy project [10] is an attempt to address the gap between creating and

reasoning about a specification written in Alloy and creating the implementation

itself. In order to make Alloy more useful for software engineers, Alchemy creates

1

software libraries for prototyping implementations of Alloy specifications of stateful

systems, where the state being modeled is a relational database. In the process of

developing Alchemy it was discovered that formally defining implementations based

on Alloy specifications in a manner consistent with Alloy’s logical semantics was a

non-trivial task. The problem was difficult enough that, as observed in [10], a näıve

transition system semantics is not consistent with with Alloy’s logical semantics.

In this paper we address the difficulty of connecting Alloy specifications with

implementations–specifically, transition systems over databases. A first attempt to

define an operational semantics for Alloy in a natural manner while maintaining the

connection with Alloy as a logic will demonstrate the difficulties in the task. In order

to explore the nature of the connections between logical semantics and transition

system semantics, we invent an Alloy-like language named AlloyII that has a natural

connection to transition systems. We formalize the transition system and offer a

pair of tools for analyzing AlloyII specifications in the same manner as Alloy and

for generating code from AlloyII specifications in the same manner as Alchemy.

Using the experience from developing AlloyII, we examine the discrepancy be-

tween the näıve transition system semantics and the logical semantics of Alloy. We

also propose an alternative transition system semantics for Alloy and discuss its

benefits and drawbacks along with the benefits and drawbacks of the semantics

described in [10].

From the insights gained in this work, we offer advice (which may be better

characterized as warnings) to software engineers who use Alloy for modeling stateful

systems.

2

Chapter 2

Alloy and Stateful Systems

2.1 Alloy

We assume that the reader is familiar with the Alloy language and the logical seman-

tics of the language. For those readers who are not, a brief introduction is included

in this section, and further information can be found in [9].

For the purposes of this paper, we will be considering an Alloy specification to

be a collection of signatures, facts and predicates.

Definition 2.1 (Alloy specification). An Alloy specification is a triple 〈Sigs,Facts,

Preds〉 where

• Sigs is a set of Alloy signatures,

• Facts is a set of Alloy facts, and

• Preds is a set of Alloy predicates.

Figure 2.1 shows an example of an address book modeled in Alloy, based on

an early example in Software Abstractions [9]. The address book is modeled as a

dynamic system. Each element of the Book relation represents a state of the address

3

book being modeled. The predicates add and del describe the operations of adding

a name-address pair to the address book and deleting a name-address pair from

the address book. The command run add instructs the AlloyAnalyzer to find an

example of adding a name-address pair to an address book.

The assertion delUndoesAdd claims that if a name-address pair is added to a

book with no entries, and then the same pair is deleted from the resulting book,

the final book will be identical to the first one. When issued the command check

delUndoesAdd the AlloyAnalyzer will search for a counterexample to the claim (and

not find one).

The example gives a general idea of the syntax of Alloy. Signatures declare the

names of relations and their arities. The relations whose names appear after sig

are called signature relations and those whose names appear in the bodies of a sig

are called field relations.

Facts state constraints about the system using first order logic and relational

algebra. Predicates and assertions also declare constraints about the system, but

they are only used when the AlloyAnalyzer is instructed to run the predicate or

check the assertion, or when the predicate is referenced in a fact or other predicate

or assertion that is being used.

We will formally define the formulas that correspond to predicates with respect

to each transition system semantics individually, since each semantics makes use of

a slightly different formula. In general, each predicate and assertion corresponds to

a formula in the kernel language of Alloy. The formula includes the body of the

predicate with the variables from the header existentially quantified conjoined with

the constraints in the bodies of the facts. When the AlloyAnalyzer is searching

for an example for a predicate or a counterexample for a assertion, it is actually

looking for an Alloy instance, a function from the names declared in the signatures

4

to relations, that satisfies or does not satisfy the formula according the semantics

of the Alloy kernel language, which are essentially those of first order logic and

relational algebra.

sig Name {}

sig Addr {}

sig Book { entries : Name -> Addr }

fact {

entries in Book -> (Name -> lone Addr)

}

pred show {

#Book.entries > 1

}

pred add[b, b’ : Book, nNew : Name, aNew : Addr] {

b’.entries = b.entries + (n -> a)

}

pred del[b, b’ : Book, n : Name, a : Addr] {

b’.entries = b.entries - (n -> a)

}

assert delUndoesAdd {

all b, b’, b’’ : Book, n : Name, a : Addr |

(no b.entries and add[b,b’,n,a] and del[b’,b’’,n,a])

implies

(b.entries = b’’.entries)

}

Figure 2.1: Modeling an address book in Alloy

2.2 Stateful Systems

The main focus of this paper is understanding specifications of stateful systems. For

our purposes we will take the operational model of stateful systems to be transition

systems.

5

Definition 2.2 (Labeled transition system). A labeled transition system is a triple

〈Q,A, δ〉, where

• Q is a set of states,

• Act is a set of actions, and

• δ ⊆ Q× A×Q is a set of transitions.

Henceforth we will refer to labeled transition systems as “transition systems.” A

transition system which is trivial is one in which the set of transitions is the empty

set.

We define the notion of implementability for an Alloy specification with the

understanding that transition systems are implementations.

Definition 2.3 (Implementability and non-trivial implementability). A specifica-

tion is implementable according to a semantics if that semantics assigns a transition

system to that specification. A specification is non-trivially implementable accord-

ing to a semantics if that semantics assigns a non-trivial transition system to that

specification.

The transition system semantics that we will introduce in this paper differ in

the mechanisms they use for assigning transition systems to specifications, but all

share the same notion of implementability and non-trivial implementability.

Fix a countable set of atoms adom, of variable names, and of operation names,

from a database schema S we can construct a general transition system TS such

that every transition system with the same associated schema with which we will be

concerned in this paper will be a subsystem. This system is essentially the complete

directed graph on the set of database instances of S, where each edge is labeled with

every operation name and argument combination.

6

Definition 2.4 (TS). Define QS as the set of database instances on S (with atoms

taken from adom), and Act as the set of possible operation name, argument pairs,

where an argument is a map from a finite set of variable names to finite relations

over adom. Then TS = 〈QS ,Act, QS × Act×QS〉.

We also care about the transition system where the transitions are restricted by

a bound on the post-state given the pre-state and arguments.

Definition 2.5 (Strict transition). A transition 〈q, 〈n, args〉 , q′〉 ∈ QS × Act × QS

is strict if the set of all atoms in the relations in the range of q′ is a subset of the

set of those of q union those in the range of args.

With these definition, the operational interpretation of a specification associated

with the schema S becomes a definition of which transitions in TS are acceptable

and which transitions are associated with which operation names and arguments.

In other words, in the transition system semantics that we will define in this paper,

the meaning of a predicate in a specification is a set of transitions in a transition

system.

7

Chapter 3

Näıve Transition System

Semantics

The motivation for examining how Alloy specifications are interpreted as specifica-

tions of transition systems comes from a discrepancy discovered between the seman-

tics defined in [10] and the logical semantics of Alloy. When creating the Alchemy

tool for synthesizing Alloy specifications from Alloy specifications one of the desired

properties of the code synthesis was that a specification would be satisfiable if and

only if it were non-trivially implementable. However, the notion of “implementable”

defined there did not possess this property with the implication going in either di-

rection. In this section we will provide a formal counterexample to the consistency

of those underlying semantics of Alchemy.

The troublesome specification identified in [10] was the one appearing in Figure

3.2. We will use this specification as the basis for our counterexample, but first we

must give the formal definition of our näıve transition system semantics (or NTSS).

The Alloy specifications for which NTSS defines transition systems have the

following properties:

8

• There is a distinguished state-relation, which without loss of generality we will

call State.

• Each predicate in Preds has in its header exactly two variables (which we

will call s and s’) of the type of State, which are identical except for an

additional terminating prime on one of the variables. No primes appear in the

specification except for on uses of that variable.

• Each argument in the header of the predicate is an element of a signature

relation.

From an Alloy specification A = 〈Sigs,Facts,Preds〉 we can define a database

schema SA that is associated with that specification. The schema SA is exactly the

schema of Alloy instances of the specification. This schema is based entirely on the

signatures of the specification, and not on the facts or predicates. From the headers

of the predicates in the specification we can also determine a set of operation names

and arities that are associated with the specification. It is worth noting that this

information is independent of the constraints (the facts and bodies of predicates) in

a specification.

Define

• QA the set of database instances over SA, and

• ActA is a set of name-argument pairs, where the names are those of the predi-

cates in Preds and the argument is a function mapping each name in the header

of the named predicate to a relation of the specified arity and sort. Note that

ActA is a subset of the action space of TSA .

The definition of the transitions δA is somewhat more involved. First we define a

maximal expression occurrence as an expression p or q in the form p in q. That is,

9

maximal expression occurrences are those expressions that are the left- and right-

hand-side subexpressions of atomic in formulas.

Informally, there is a transition from a database instance q to a database instance

q′ when both q and q′ satisfy the facts, and when the body of the predicate holds

when maximal primed expressions are interpreted in q′ and all other expressions are

interpreted in q. Also, the universe of q′ is a subset of the universe of q union the

atoms bound to variables annotated New in the header of the predicate. The New

atoms may not appear in the pre-state.

More formally, we first define � as follows.

Definition 3.1. Let A = 〈Specs,Preds,Facts〉 be an Alloy specification and let

q, q′ ∈ QA. Let p = 〈H,B〉 ∈ Preds, where H is an association of the variable names

in the header of p to the signature types and B is the body of p. Let the parameter

environment E be bind every non-new, non-state variable in H to some atom in I

of the corresponding type for that variable. E also binds the variables of the type

State to the unique atom in the state relation. Enew maps every new variable in H

to an atom of the corresponding type q that does not appear in q′.

We say q, q′ �E,Enew p,Facts if the following conditions hold:

1. With the exception of the atoms in the co-domain of Enew, the universe of q

and of q′ have the same atoms.

2. B evaluates to true under the semantics of Alloy when every maximal non-

primed expression is evaluated under q, every maximal primed expression is

evaluated under q′, and E ∪ Enew is used as the environment.

3. The facts are true in both q and q′.

Given this definition of �, we define when a specification determines that a

transition is acceptable.

10

Definition 3.2 (NTSS acceptable transition). Let A = 〈Sigs,Facts,Preds〉 be an

Alloy specification. A transition 〈q, 〈pname,E ∪ Enew〉 , q′〉 is A-acceptable if for

some p ∈ Preds named pname we have that q, q′ �E,Enew p,Facts.

Definition 3.3 (NTSS). Let A = 〈Sigs,Facts,Preds〉 be an Alloy specification.

From A, NTSS defines the transition system 〈QA,ActA, δA〉 where δA is the set of

A-acceptable transitions for A.

Remark. NTSS is a semantics that assigns transition systems to specifications, so we

may discuss implementability with respect to NTSS. Since NTSS does not assign

transition systems to all Alloy specifications, there are some specifications which

are not implementable according to NTSS. The distinction between those those

specifications which are implementable and those which are not implementable is

an explicit part of the definition of NTSS.

We are interested in the distinction between specifications which are trivially

implementable and those which are non-trivially implementable. We are also inter-

ested in whether that distinction is manifested in the logical semantics of Alloy. In

the case of NTSS, we shall find that it is not.

For example, the signatures, fact, and the add predicate from the address book

example in Figure 2.1 in the Appendix form a specification for which NTSS defines

a transition system. The instances in Figure 3.1 show an example of a pre-state,

action, and post-state for the specification under NTSS.

Despite the niceness of the example in Figure 3.1, NTSS does lack the aforemen-

tioned correspondence between satisfiability and non-trivial implementability. This

discrepancy between NTSS and the logical semantics of Alloy puts a damper on the

usefulness of Alloy. The point of modeling systems in Alloy was so that we could

explore or guarantee some properties of the corresponding implementations. If our

11

Pre-state q, such that

q(Name) = {Bob}
q(Addr) = {30 School Rd}
q(Book) = {b}

q(entries) = {〈b,Bob, 30 School Rd〉}

Action

〈add, {n 7→ Sue, a 7→ 5 College Ln}〉

Post-state q′, such that

q′(Name) = {Bob, Sue}
q′(Addr) = {30 School Rd, 5 College Ln}
q′(Book) = {b}

q′(entries) = {〈b,Bob, 30 School Rd〉 , 〈b, Sue, 5 College Ln〉}

Figure 3.1: An transition of the address book example in NTSS

sig State { r : B }

sig B {}

fact { one r }

// this is non-trivially implementable, but not satisfiable

pred change_r1[s, s’ : State] {

s.r != s’.r

}

// this is satisfiable, but not non-trivially implementable

pred change_r2[s, s’ : State, bNew: B] {

s’.r = s.r + bNew

}

Figure 3.2: Specification showing discrepancy between Alloy and NTSS

12

intuitive or formal notion of the transition system associated with a specification

does not adhere somehow to the semantics of Alloy, then whatever properties of

the system that were verified in Alloy’s logical semantics may not be true of the

implementation under consideration. This lack of a correspondence extends even

to checking for the existence or non-existence of a transition corresponding to an

execution of the operation modeled by a predicate.

3.1 Satisfiability does not imply non-trivial im-

plementability

In the case of change r1, because NTSS interprets s.r and s’.r in different states

and require that one r holds in each state individually, the predicate is easily im-

plementable by anything changes the value of r from the pre-state to the post state.

However, in Alloy’s semantics, there is only one instance. Since r is declared as

a function from State to B, the constraint that r only have one row causes State

to only have one row as well. Thus, the same atom is witness to both s and s’, so

s.r must always equal s’.r, making the predicate unsatisfiable.

Proposition 3.1. There exists an Alloy specification A = 〈Specs,Preds,Facts〉

with corresponding transition system T = 〈QA,ActA, δA〉 according the semantics

of NTSS such that δA is non-empty, yet there is no satisfiable predicate in Preds.

Proof. Consider the specification in Figure 3.2 〈Sigs,Facts,Preds〉, excluding change r2.

The transition in Figure 3.3 is a transition in the transition system for the specifi-

cation according to NTSS.

The predicate change r1 is the only predicate in the specification, so we only

need to show that it is unsatisfiable to show that the conjecture is false. Assume the

13

predicate to be satisfied by some instance I. I(s) and I(s’) must be different atoms,

since otherwise the expressions s.r and s’.r are equivalent. However, because r

is a function from State to B and r is constrained to be a singleton, State is also

constrained to be a singleton relation. Therefore, I(s) must be the same as I(s’).

This is a contradiction. Therefore, the predicate must not be satisfiable.

3.2 Non-trivial implementability does not imply

satisfiability

In the case of change r2, the predicate is satisfiable in Alloy’s semantics, because

the witness to bNew may be the same as a.r, so when that the union is taken,

there is no change, and the one row of r may serve as both pre-state and post-state

without issue.

In NTSS, however, variables annotated as New may not appear in the pre-state.

Therefore, bNew may not be the same as s.r, and so there is no transition that will

satisfy the constraint.

Proposition 3.2. There exists an Alloy specification A = 〈Specs,Preds,Facts〉

with corresponding transition system T = 〈QA,ActA, δA〉 according the semantics

of NTSS such that there is a predicate in Preds that is satisfiable but δA is empty.

Proof. Consider the specification in Figure 3.2 〈Sigs,Facts,Preds〉, excluding change r1.

The instance in Figure 3.4 is a satisfying instance of change r2 according to the

semantics of Alloy.

Let 〈QA,ActA, δA〉 be the transition system corresponding to the specification

according to NTSS. Assume δA is non-empty. Then there is some q,q′ and E ∪Enew

such that 〈q, 〈change r2, E ∪ Enew〉 , q′〉 is in δA. Since the transition is is in δA, it

14

must be that q, q′ �E,Enew change r2,Facts. Since there is a variable annotated New

in the header of change r2, Enew binds that variable to an atom that appears in q′

but not in q.

Note that as before, r must be a singleton due to the fact that declares one r.

Also note that since the atom bound to bNew by Enew cannot appear in q, it does

not appear in the evaluation of s.r, which is interpreted in q. Thus, according to

the body of the predicate, r must have at least two tuples, which is impossible.

Therefore δA must be empty.

Pre-state q such that

q(State) = {s0}
q(B) = {b0, b1}
q(r) = {〈s0, b0〉}

Action

〈change r1, ∅〉

Post-state q′ such that

q′(State) = {s0}
q′(B) = {b0, b1}
q′(r) = {〈s0, b1〉}

Figure 3.3: The transition for the counterexample

15

The instance I such that

I(State) = {s0}
I(B) = {b0}
I(r) = {〈s0, b0〉}
I(s) = {s0}
I(s’) = {s0}

I(bNew) = {b0}

Figure 3.4: The satisfying instance for the counterexample

16

Chapter 4

A New Specification Language:

AlloyII

In order to better understand why the transition systems defined by NTSS are not

fully adequate for the logical semantics of Alloy, we chose to create a new Alloy-like

language designed to make the transition system semantics of the language follow

naturally from the logical semantics. The new language AlloyII accomplishes this

goal by using a pair of Alloy instances as an AlloyII instance (hence the name, where

the Roman numeral II has the appearance of a pair of instances).

The key insight in creating the syntax of AlloyII was that the placement of the

prime in expressions in Alloy was an accident of the idiom used to specify stateful

systems. In AlloyII the prime is placed on the relations whose post-state we are

actually referring to: those that are declared in the signatures of the specification.

17

formula ::= formula fbinop formula

| not formula

| quant var : expr | formula

| expr in expr

fbinop ::= and | or

quant ::= some | all

expr ::= expr binop expr

| unop expr

| univ maybeprime

| reln maybeprime

| iden

| var

maybeprime ::= | ’

binop ::= + | & | - | -> | .

unop ::= ~ | ^

Figure 4.1: The kernel syntax of AlloyII

4.1 Kernel Syntax

The syntax of the kernel language AlloyII essentially the same as that of Alloy with

the addition of the prime (’) as a special character. The syntax for a formula is

given by the BNF grammar in Figure 4.1.

4.2 Kernel Logical Semantics

The semantics of the kernel language for AlloyII are very much like those of Alloy

(unsurprisingly, since both are based on relation algebra and first order logic). The

key differences are between the two languages are the definition of an instance and

how identifiers are interpreted. An instance in AlloyII is a triple 〈ipre, ipost, η〉 that

consists of two Alloy-like instances ipre and ipost that map from relation names

(declared in the signature of a specification) to relations, and an environment η

18

which maps from variable names to relations. Without loss of generality, the set of

relation names and variable names can be considered disjoint.

When a variable name is interpreted, the binding in the environment is used.

When an unprimed relation name is interpreted, the binding in the first instance is

used, and which a primed relation name is interpreted, the binding in the second

instance is used.

The semantics for AlloyII are given in Figure 4.2 in the same style as the semantics

of Alloy are in Software Abstractions [9]. M is a function from formulas and instances

to boolean values and E is a function from expressions and instances to relations.

If M [f] 〈ipre, ipost, η〉 is true, then the instance 〈ipre, ipost, η〉 satisfies the formula f .

4.3 Full Language

The full language of AlloyII is similar to Alloy. Signatures may be written in the

same way as in Alloy, but each name declared in a signature corresponds to two

relations: one in the first part of an instance and one in the second part. Predicates

may be written as in Alloy as well, but special conventions involving state-variables

are not necessary for declaring operations. Facts may be written as in Alloy.

Just as an Alloy specification corresponds to a formula consisting of the con-

junction of the facts, implicit facts, and predicate body, an AlloyII specification

does as well. This means that constraints written without primes in facts only refer

to the first part of an AlloyII instance Because facts are frequently intended to be

written as state-invariants, facts may be written as global.1 This may be viewed

as syntactic sugar for replicating the body of the fact (which contains no primed

names), priming all of the relation names in the replicated body, and conjoining the

1Calling the facts global is a reference to Linear Temporal Logic, in which the G operator
means that a formula should hold globally over the rest of an execution.

19

M : fmla× instance→ boolean

M : expr× instance→ relation

M[f and g] 〈ipre, ipost, η〉 = M[f] 〈ipre, ipost, η〉 ∧M[g] 〈ipre, ipost, η〉
M[f or g] 〈ipre, ipost, η〉 = M[f] 〈ipre, ipost, η〉 ∨M[g] 〈ipre, ipost, η〉
M[not f] 〈ipre, ipost, η〉 =¬M[f] 〈ipre, ipost, η〉

M[some v : p | f] =
∨
{M[f] 〈ipre, ipost, η[v 7→ t]〉

|t ⊆ E[p] 〈ipre, ipost, η〉 ∧#t = 1}

M[all v : p | f] =
∧
{M[f] 〈ipre, ipost, η[v 7→ t]〉

|t ⊆ E[p] 〈ipre, ipost, η〉 ∧#t = 1}
M[p in q] 〈ipre, ipost, η〉 = E[p] 〈ipre, ipost, η〉 ⊆ E[q] 〈ipre, ipost, η〉

E[p + q] 〈ipre, ipost, η〉 = E[p] 〈ipre, ipost, η〉 ∪ E[q] 〈ipre, ipost, η〉
E[p & q] 〈ipre, ipost, η〉 = E[p] 〈ipre, ipost, η〉 ∩ E[q] 〈ipre, ipost, η〉
E[p - q] 〈ipre, ipost, η〉 = E[p] 〈ipre, ipost, η〉 \ E[q] 〈ipre, ipost, η〉

E[p -> q] 〈ipre, ipost, η〉 ={〈p1, . . . , pn, q1, . . . , qm〉 |
〈p1, . . . , pn〉 ∈ E[p] 〈ipre, ipost, η〉
∧ 〈q1, . . . , qn〉 ∈ E[q] 〈ipre, ipost, η〉}

E[p.q] 〈ipre, ipost, η〉 ={〈p1, . . . , pn−1, q2, . . . , qm〉 |
∃t. 〈p1, . . . , pn−1, t〉 ∈ E[p] 〈ipre, ipost, η〉
∧ 〈t, q2, . . . , qn〉 ∈ E[q] 〈ipre, ipost, η〉}

E[∼ p] 〈ipre, ipost, η〉 = {〈y, x〉 | 〈x, y〉 ∈ E[p] 〈ipre, ipost, η〉}
E[∧p] 〈ipre, ipost, η〉 ={〈x, y〉 |

∃x1, . . . , xn.

〈x, x1〉 , 〈x1, x2〉 , . . . , 〈xn, y〉 ∈ E[p] 〈ipre, ipost, η〉}
E[r] 〈ipre, ipost, η〉 =ipre(r)

E[r′] 〈ipre, ipost, η〉 =ipost(r)

E[v] 〈ipre, ipost, η〉 =η(r)

Figure 4.2: Semantics of AlloyII

20

replicated body with the original as a normal fact.

AlloyII currently has no notion of assertions, but the meaning of running a

predicate in AlloyII is the same as in Alloy: find a satisfying instance. Theorem 4.1

demonstrates that this is a decidable problem, as expected.

Theorem 4.1. The following problem is decidable:

Input: An AlloyII specification A = 〈Sigs,Facts,Preds〉

Quesiton: Is there some instance I such that I satisfies the formula

corresponding to some p ∈ Preds?

Proof. Given a set of atoms that acts as an upper bound on the universe of an

AlloyII instance, we may conduct a brute force search through instances within that

bound to determine if a formula is satisfiable.

4.4 AlloyII Examples

In order to clarify the AlloyII syntax and semantics, we will translate the address

book example into AlloyII and present a second example in which we give the sig-

natures and facts for a model of a media library.

The address book example as written in AlloyII appears in Figure 4.3. Note

that the explicit support for modeling stateful programs in AlloyII alloys for a more

“object-oriented” syntactic style of specifying the relations in a model. That is,

instead of having to bundle the relations that make up the state under a single

signature, relations can be organized as if they were fields of classes.

Also, we do not need any special syntax or semantics for enforcing the “newness”

of values. All we do is specify that each value is not in the signature relation in the

pre-state. The inclusion of the value in the post-state is ensured by the declaration

21

sig Name {

addr : lone Address

}

sig Address {}

pred add[n : Name’, a : Address’] {

n not in Name // n is new

a not in Address // a is new

addr’ = addr + (n -> a)

}

pred del[n : Name, a : Address] {

addr’ = addr - (n -> a)

}

Figure 4.3: The address book example in AlloyII

of the variables in the header of the predicate and by the inclusion of the values in

addr. As with many Alloy models, this AlloyII model is underspecified. There is no

constraint on the contents of Name and Address aside from what appears in addr.

That is, some atoms may be added to or removed from each of these relations from

the pre-state to the post-state portion of an instance, so long as their addition or

removal does not impact whether the instance satisfies the predicate under consid-

eration. The ability to underspecify a model is presented as an advantage of Alloy

[9], and so we kept that advantage in AlloyII.

The address book can be more completely specified by stating in the predicate

how the Name and Address relations should be constrained from the pre-state to

the post-state. Most likely one would add framing conditions like Name’ = Name +

n to the add predicate and Name’ = Name - n to the del predicate.

The portion of a media library specification in Figure 4.4 demonstrates how

global facts act as state invariants, as NTSS wanted to treat facts.

In the media library example, the cardinality constraint on CurrentCatalog

22

sig Catalog {

assets: set Asset,

// ’disj’ is not part of the kernel, but its meaning is the

// same as in Alloy

disj hidden, showing: set assets,

selection: set assets

}

global fact {

all c : Catalog | c.hidden+c.showing = c.assets

}

sig CurrentCatalog in Catalog {}

global fact {

one CurrentCatalog

}

sig Asset {}

sig Buffer in Asset {}

pred showSelected [] {

// changes

CurrentCatalog.selection != none

CurrentCatalog.showing’ = CurrentCatalog.selection

// ’framing’ conditions: things that stay the same

selection’ = selection

assets’ = assets

Catalog’ = Catalog

CurrentCatalog’ = CurrentCatalog

Asset’ = Asset

Buffer’ = Buffer

// only part of showing stays the same

all c : Catalog - CurrentCatalog |

c.showing’ = c.showing

}

Figure 4.4: A partial model of a media library in AlloyII

23

does act as a state invariant, so that for any satisfying instance I of some predicate

in the specification there is one atom in I(CurrentCatalog) for each of the pre-state

and post-state. As with Alloy, any fact that was not marked as global would be

treated as written, constraining relations in the pre- or post-state as the presence

of primes indicated.

24

Chapter 5

A Transition System Semantics for

AlloyII

The definition of the logical semantics of AlloyII allows for a natural mapping from

instances to transitions. In contrast to Alloy, where each instance contained a

transition or a trace, in AlloyII each instance in essence is a transition. This makes

the definition of the transition system semantics trivial: those transitions that satisfy

the specification appear in the transition system.

For each specification A = {Sigs,Facts,Preds}, let IA be the set of AlloyII in-

stances of A. First define a database schema SA associated with the specification.

The schema is exactly the schema of each of the Alloy instances that make up each

AlloyII instance of the specification. As with NTSS and Alloy, from the headers of

the predicates in the specification, we can determine the a set of operations names

and arities that are associated with the specification. Again, this information is

independent of the constraints in the specification.

Define

• QA the set of database instances over SA,

25

• ActA the set of name-argument pairs, where the names are those of the pred-

icates in Preds and the argument is a function from each name in the header

of the named predicate to a relation of the specified arity and sort.

Definition 5.1. Given a specification A = 〈Sigs,Facts,Preds〉, for each predicate

p ∈ Preds, define a formula φA,p that is the conjunction of the bodies of the facts,

the implicit constraints present in the signatures, the body of the predicate and the

implicit constraints in the header of the predicate. This formula is the translation

of the predicate into the kernel language of AlloyII with the existentially quantified

variables from the header of the predicate removed.

Denote the universe of i as |i| and the co-domain of η as |eta|. An instance

〈ipre, ipost, η〉 strictly satisfies φA,p if 〈ipre, ipost, η〉 satisfies φA,p and |η| − |ipre| ⊆

|ipost| ⊆ |η| ∪ |ipre|.

Instead of inventing an independent way of determining if a transition is in the

transition system, we take seriously the notion of a transition being embedded in an

AlloyII instance. For each specification and predicate under consideration we can

use the natural method of extracting a transition from an AlloyII instance1. The

method is the function τA : Preds×IA → QA×AA×QA, such that for each predicate

p ∈ Preds and instance 〈ipre, ipost, η〉 ∈ IA, τA(p, 〈ipre, ipost, η〉) = 〈ipre, a, ipost〉 where

a = (pname, args) where args is such that for each variable name v declared in the

header of the predicate p ∈ Preds named pname, args(v) = η(v).

Definition 5.2 (Acceptable AlloyII transition). Fix a specification A = {Sigs,Facts,

Preds}. A transition 〈q, a, q′〉 is A-acceptable if there is some instance I ∈ IA such

that there is some p ∈ Preds named pname such that τA(p, I) = 〈q, a, q′〉 where

1The idea of extracting transitions from instances has the feel of hitting the instance with just
the right hammer, so that a transition falls out. The function τ is that hammer.

26

a = 〈pname, args〉, args is a function from the variables in the header of p to relations

of the corresponding types, and I satisfies φA,p.

Definition 5.3 (AlloyII transition system semantics). The transition system se-

mantics for AlloyII are defined such that for each Alloy specification A there is

an associated transition system (QA, AA, δA) where if δA is the set of acceptable

transitions in QA × AA ×QA.

Definition 5.4 (Strict AlloyII transition system semantics). The strict transition

system semantics for AlloyII is defined such that for each Alloy specification A

there is an associated transition system (QA, AA, δA) where if δA is the set of strict

acceptable transitions in QA × AA ×QA.

Once again we have semantics that assigns transition systems to specifications.

Therefore, we may discuss the notions of trivial and non-trivial implementability

with respect to these semantics.

5.1 Properties of the Transition System Seman-

tics of AlloyII

The purpose of creating the logical and transition system semantics of AlloyII was

to aid in understanding how to create the transition system semantics so that the

transition systems defined for a specification has a connection to the interpretation

of the specification in the logical semantics. Theorem 5.2 verifies that the transition

system semantics defined for AlloyII achieve that goal. Theorem 5.3 in conjunction

with Theorem 5.4 demonstrate that it decidability is not a barrier to creating an

Alchemy-like tool for the semantics such that the generated implementations are

connected to the logical semantics of AlloyII.

27

Before we prove these theorems, we will show the connection between the satis-

fiability of an AlloyII predicate p and the satisfiability of φA,p from Definition 5.1.

Lemma 5.1. Given an AlloyII specification A = 〈Sigs,Facts,Preds〉, a predicate

p ∈ Preds is satisfiable if and only if φA,p is satisfiable.

Proof. Assume p is satisfiable. This means that the corresponding formula ψ in the

kernel semantics of AlloyII is satisfiable. Because φA,p is identical to ψ except for

the initial existential quantifiers, by the definition of satisfiability for AlloyII, φA,p is

also satisfiable.

Assume φA,p is satisfiable. An instance which satisfies φA,p trivally satisfies the

kernel language formula ψ corresponding to p. Therefore, p is satisfiable.

Theorem 5.2. Given an AlloyII specification A = {Sigs,Facts,Preds}, there is some

p ∈ Preds such that φA,p is satisfiable if and only if A is non-trivially implementable

in the AlloyII transition system semantics. Moreover, for each p ∈ Preds such

that φA,p is satisfiable, there is some transition 〈q, a, q′〉 ∈ δA where p is the first

component of Act.

Proof. This follows directly from the definition of the AlloyII transition system se-

mantics.

Let A = 〈Sigs,Facts,Preds〉. Assume that p ∈ Preds is such that φA,p is satisfi-

able. Then there is some instance 〈ipre, ipost, η〉 such that 〈ipre, ipost, η〉 � φA,p. There-

fore, τ(〈ipre, ipost, η〉) = 〈ipre, a, ipost〉 is a transition in δA. Also, a = 〈pname, args〉

where pname is the name of p.

Assume that there is some transition 〈ipre, a, ipost〉 in δA where a = 〈pname, args〉.

Then there is a corresponding instance 〈ipre, ipost, η〉 such that 〈ipre, ipost, η〉 � φA,p

where p is the predicate in Preds named pname.

28

Remark. Lemma 5.1 demonstrates that Theorem 5.2 is a proof of our desired result

about the connection between satisfiability in AlloyII’s logical semantics and non-

trivial implementability in AlloyII’s transition system semantics.

Theorem 5.3. Given an AlloyII specification A = 〈Sigs,Facts,Preds〉, there is some

p ∈ Preds such that φA,p is strictly satisfiable if and only if A is non-trivially im-

plementable in the strict AlloyII transition system semantics. Moreover, for each

p ∈ Preds such that φA,p is strictly satisfiable, there is some transition 〈q, a, q′〉 ∈ δA

where p is the first component of Act.

Proof. This follows directly from the definition of the strict AlloyII transition system

semantics.

Let A = 〈Sigs,Facts,Preds〉. Assume that p ∈ Preds such that φA,p is strictly

satisfiable. Then there is some instance 〈ipre, ipost, η〉 such that 〈ipre, ipost, η〉 strictly

satisfies φA,p. Therefore, τ(〈ipre, ipost, η〉) = 〈ipre, a, ipost〉 (where the universe of ipost

is a subset of the universe of ipre and the atoms bound to the arguments in the

action) is a transition in δA. Also, a = 〈pname, args〉 where pname is the name of

p.

Assume that there is some transition 〈ipre, a, ipost〉 in δA where a = 〈pname, args〉

and the transition is strict. Then there is a corresponding instance 〈ipre, ipost, η〉

such that 〈ipre, ipost, η〉 strictly satisfies φA,p where p is the predicate in Preds named

pname.

Remark. Lemma 5.1 in conjunction with Theorem 5.3 does not yield a relationship

between satisfiability and non-trivial implementability in the strict AlloyII transition

system semantics. This differs from the results drawn from Theorem 5.2 about the

AlloyII transition system semantics because Lemma 5.1 only concerns satisfiability

of φA,p not strict satisfiability of φA,p.

29

Theorem 5.4. The following problem is decidable:

Input: An AlloyII specification A = 〈Sigs,Facts,Preds〉, a state q ∈ QA,

an action a ∈ AA

Question: Is there some q′ ∈ QA such that the transition 〈q, a, q′〉 ∈ δA

as defined by the strict AlloyII transition system semantics?

Moreover, there is a procedure that yields q′ if it exists.

Proof. The bound imposed on the post-state of the transition implies that there are

a finite number of potentially acceptable transitions. Each of these transitions may

be mapped to several instances such that applying τA to the instance-predicate pair

will yield the original transition. However, all of the variables which are free in φA,p

(where p is the predicate named in the action of the transition) are necessarily the

same in each of those instances. So, if any one of those instances satisfies φA,p, every

one of them does.

Therefore, there are a finite number of instances which to test to determine if

there is some post-state that forms an acceptable transition. Also, once a satisfying

instance has been found, the post-state can be determined from that instance using

τA.

30

Chapter 6

A Second Transition System

Semantics for Alloy

Using the experience of creating a transition system semantics for AlloyII we can

now identify what caused the näıve transition system semantics to not match the

logical semantics of Alloy. Once we have identified what caused the mismatch, we

can create a new transition system semantics that does correspond to the logical

semantics.

6.1 Two vs. One

The most obvious candidate for causing the mismatch is that in NTSS is that there

are two Alloy instances under consideration–one for each of the pre- and post-state–

and in Alloy’s semantics there is one instance under consideration at a time. When

modeling stateful operations, the multiple states are embedded in the instance using

the atoms in the state-relation bound to the state variables in a predicate header to

identify different states.

31

This becomes apparent when we consider what it was about the counter examples

that was the source of the semantic mismatch. When we interpret one r in an

instance that is representing multiple states, the interaction between the one r

constraint, which means the relation r has only one tuple, and the declaration of r

as a function from State to B imposes a constraint that makes State a singleton

relation. Thus, the same atom from state will be assigned to each of s and s’ in

the predicate, essentially ensuring that the predicate is only satisfiable if it is when

the state does not change from pre-state to post-state. Since change r1 explicitly

says that the pre-state and post-state should be different, the predicate becomes

unsatisfiable.

NTSS doesn’t reflect this problematic interaction because it keeps two separate

relations for r in the pre-state and r in the post-state and applies the constraint to

each state individually. This is the fundamental mismatch between NTSS and the

logical semantics of Alloy.

6.2 New Things in the Universe

The second place where issues occur involves the special meaning in NTSS for the

variables annotated as New. In a sense this break is more fundamental than the last.

The semantics of the New variables involve adjoining atoms to signature relations.

This is something that simply cannot be done in Alloy, and unlike the previous

break that corresponded to a technique used within the semantics of Alloy to model

statefulness in other relations, there is no corresponding technique for changing

signature relations.

32

6.3 Fixing the Problems with NTSS

Small adjustments to NTSS give us a transition system semantics for Alloy specifica-

tions that have the satisfiability-implementability correspondence property that we

would like. These adjustments primarily involve repairing the two above-mentioned

problems with Alchemy’s semantics.

To fix the first problem, we use a single instance, instead of two, to represent

both states of a transition. So, instead of the two separate instances that appear in

Figure 3.1, when discussing the address book example, we have the single instance

in Figure 6.1.

Pre-state and post-state in one instance I, such that

I(Name) = {Bob, Sue}
I(Addr) = {30 School Rd, 5 College Ln}
I(Book) = {b1, b2}

I ′(entries) ={〈b1,Bob, 30 School Rd〉 , 〈b2,Bob, 30 School Rd〉 ,
〈b2, Sue, 5 College Ln〉}

The corresponding action

〈add, {〈n, Sue〉 , 〈a, 5 College Ln〉}〉

Figure 6.1: Two states merged into one instance

Whether or not a transition exists between the two states represented here can

now be determined by whether this instance satisfies the specification. However, we

now have to figure out how to interpret this as two distinct states for the purposes

of the transition system semantics. Separating the single instance into the two

instances we had originally considered is simple enough, but because they must

come from one instance, we have complicated the notion of new variables.

Instead of using an entire instance as the state in the transition system, we will

33

use only the part of the instance that can be modeled as changing: the fields of the

state signature. With this we can formally define a new imperative semantics for

Alloy.

6.4 State-Signature Transition System Semantics

The key to defining the transition system semantics for AlloyII was in defining the

connection between instances and transitions explicitly and then using satisfiability

of the instance to determine acceptability of the transition. We repeat this con-

struction with the state-signature transition system semantics (SSTSS) so that it

will correspond to the logical semantics of Alloy.

Given a specification A = 〈Sigs,Facts,Preds〉, let IA be the set of instances

corresponding to the relation names defined in A. First we will define a schema

SA associated with the specification. This schema is not the same as the schema

for the Alloy instances of A. In AlloyII we were able to use the same schema as

for the instances because the mechanism for identifying which state to which each

relation belongs was made part of the semantics of the language. Alloy has no such

mechanism, so we have an extra relation whose purpose is solely to identify the state

of each tuple in each relation. Moreover, those relations that are not tagged with

atoms from this state relation are not modeled to change over time, and so can be

considered independent of the state being modeled.

With this in mind, the schema SA includes the names of the relations that are

the fields of State and associates them with the same sorts as the corresponding

schema for the Alloy instances, but with the initial State sort removed.

Now we can define

• QA the set of database instances over SA, and

34

• ActA the set of name-argument pairs, where the names are those of the pred-

icates in Preds and the argument is a function from each name in the header

of the named predicate other than s and s’ to a relation of the specified arity

and sort.

Definition 6.1. Given an Alloy specification A = 〈Sigs,Facts,Preds〉, define for

each predicate p ∈ Preds, a formula φA,p that is the conjunction of the bodies of the

facts, the implicit constraints present in the signatures, the body of the predicate

and the implicit constraints in the header of the predicate. This formula is the

translation of the predicate into the kernel language of Alloy with the existentially

quantified variables from the header of the predicate removed.

An instance I strictly satisfies φA,p if I satisfies φA,p and the set of atoms in the

image of I under the state-signature fields joined to I(s’) is a subset of the set of

atoms in the image of I under the state-signature fields joined to I(s) and the atoms

in the image of I under the variable names declared in the header of p.

As with the transition system semantics for AlloyII, we take seriously the notion

of a transition being embedded in an Alloy instance. Because the embedding is more

complicated in Alloy, the extraction is more involved1. However, the definition of

the function is still quite natural. Define τA : Preds × IA → QA × AA × QA, such

that for each predicate p ∈ Preds and instance I ∈ IA, τA(p, I) = 〈q, a, q′〉 where for

each relation name r in the state-signature q(r) = I(s).I(r) and q′(r) = I(s’).I(r),

and a = (p, args) where args is such that for each variable name v declared in the

header of p, args(v) = I(v).

This definition fixes the atom bound to s as the marker for the pre-state and

the atom bound to s’ as the marker for the post-state. The assumption that spec-

ifications intend this interpretation is part of the idiom of using Alloy to write

1We must use a more subtle hammer, and there are several choices of such hammers.

35

specifications of stateful systems in this style.

Definition 6.2 (SSTSS acceptable transition). Fix a specification A = 〈Sigs,Facts,

Preds〉. A transition 〈q, a, q′〉 is A-acceptable if there is some instance I ∈ IA such

that there is some p ∈ Preds such that τA(p, I) = 〈q, a, q′〉 and I satisfies φA,p.

When the intended specification is clear, we will simply write acceptable instead of

A-acceptable.

Definition 6.3 (SSTSS). The state-signature semantics are defined such that for

each Alloy specification A, we have the transition system (QA, AA, δA) where δA is

the set of acceptable transitions in QA × AA ×QA.

Definition 6.4 (Strict SSTSS). The strict SSTSS are defined such that for each

Alloy specification A we have a transition system (QA, AA, δA) where δA is the set

of strict acceptable transitions in QA × AA ×QA.

Examples

As an example of applying these semantics, consider the address book example in

Figure 2.1, treating the name Book as State and b and b’ as s and s’ in the

semantics. As it currently is written, the state space would consist of different

values for the entries relation. Since we would like to have access of the names

and addresses in the book that may not be in entries, it make sense to modify the

specification as in Figure 6.2.

Note that we no longer need special annotation for adding new atoms to a state.

Figure 6.3 gives an example of a transition in this specification according SSTSS,

and Figure 6.4 gives an instance that satisfies the specification and corresponds to

the transition.

36

sig Name {}

sig Addr {}

sig Book {

names : Name, // so it will be included in the state

addrs : Addr, // so it will be included in the state

// using names and addr instead of Names and Addr

// enforces that entries can only have names and address

// from names and addr at the correct timestamps

entries : names -> lone addr

}

pred show {

#Book.entries > 1

}

pred add[b, b’ : Book, n : Name, a : Addr] {

// a is new -- we could not say this before

a not in b.addrs

a in b’.addrs

// n is new -- we could not say this before

n not in b.names

n in b’.names

b’.entries = b.entries + (n -> a)

}

pred del[b, b’ : Book, n : Name, a : Addr] {

b’.entries = b.entries - (n -> a)

}

assert delUndoesAdd {

all b, b’, b’’ : Book, n : Name, a : Addr |

(no b.entries and add[b,b’,n,a] and del[b’,b’’,n,a])

implies

(b.entries = b’’.entries)

}

Figure 6.2: Specification for an address book that works better with SSTSS

37

Pre-state q

q(names) = {Bob}
q(addrs) = {30 School Rd}

q(entries) = {〈Bob, 30 School Rd〉}

Action

〈add, {〈n, Sue〉 , 〈a, 5 College Ln〉}〉

Post-state q′

q′(names) = {Bob, Sue}
q′(addrs) = {30 School Rd, 5 College Ln}

q′(entries) = {〈Bob, 30 School Rd〉 , 〈Sue, 5 College Ln〉}

Figure 6.3: A transition in the state-signature semantics

I(Name) = {Bob, Sue}
I(Addr) = {30 School Rd, 5 College Ln}
I(Book) = {b1, b2}
I(names) = {〈b1,Bob〉 , 〈b2,Bob〉 , 〈b2, Sue〉}
I(addrs) = {〈b1, 30 School Rd〉 , 〈b2, 30 School Rd〉 , 〈b2, 5 College Ln〉}

I(entries) ={〈b1,Bob, 30 School Rd〉 , 〈b2, ,Bob30 School Rd〉 ,
〈b2, Sue, 5 College Ln〉}

I(b) = {b1}
I(b’) = {b2}
I(n) = {Sue}
I(a) = {5 College Ln}

Figure 6.4: Instance corresponding to the transition in Figure 6.3

38

6.5 Properties of SSTSS

The definitions of SSTSS and strict SSTSS again merit discussion about their prop-

erties regarding trivial and non-trivial implementability. Theorem 6.2 proves that

SSTSS has the desired correspondence with the logical semantics of Alloy. Theorem

6.3 gives us the same result for the strict case, as we saw was useful for AlloyII,

however Theorem 6.4 shows that we cannot create an Alchemy-like tool that uses

the SSTSS as its underlying semantics.

As we did with the AlloyII transition system semantics, we will first show the

connection between the satisfiability of an Alloy predicate p and the satisfiability of

φA,p from Definition 6.1.

Lemma 6.1. Given an Alloy specification A = 〈Sigs,Facts,Preds〉, a predicate p ∈

Preds is satisfiable if and only if φA,p is satisfiable.

Proof. Assume p is satisfiable. This means that the corresponding formula ψ in the

kernel semantics of Alloy is satisfiable. Because φA,p is identical to ψ except for the

initial existential quantifiers, by the definition of satisfiability for Alloy, φA,p is also

satisfiable.

Assume φA,p is satisfiable. An instance which satisfies φA,p trivally satisfies the

kernel language formula ψ corresponding to p. Therefore, p is satisfiable.

Theorem 6.2. Given an Alloy specification A = 〈Sigs,Facts,Preds〉, there is some

p ∈ Preds such that φA,p is satisfiable if and only if A is non-trivially implementable

in the state-signature semantics. Moreover, for each p ∈ Preds such that φA,p is

satisfiable, there is some transition 〈q, a, q′〉 in the implementation where the name

of p is the first component of a.

Proof. Assume there is some p ∈ Preds such that φA,p is satisfiable. Let I be

a satisfying instance for φA,p. Then, τ(p, I) = 〈q, a, q′〉 is A-acceptable, and so

39

〈q, a, q′〉 ∈ δA. Thus, the implementation is non-trivial. Also, the first component

of a is the name of p.

Assume that the implementation of A is non-trivial. Then there is some tran-

sition 〈q, a, q′〉 ∈ δA. That transition is A-acceptable, so there is some p ∈ Preds

and I ∈ IA such that I satisfies φA,p. Also, the first component of a is the name of

p.

Remark. As with Theorem 5.2 for AlloyII, Theorem 6.2 demonstrates in conjunction

with Lemma 6.1 our desired result about the connection between satisfiability in

Alloy’s logical semantics and non-trivial implementability in SSTSS.

Theorem 6.3. Given an Alloy specification A = 〈Sigs,Facts,Preds〉, there is some

p ∈ Preds such that φA,p is strictly satisfiable if and only if A is non-trivially im-

plementable in strict SSTSS. Moreover, for each p ∈ Preds such that φA,p is strictly

satisfiable, there is some transition 〈q, a, q′〉 in the implementation of A where the

name of p is the first component of a.

Proof. This proof is identical to the proof of Theorem 6.2, with the addition that

an instance strictly satisfies φA,p if and only if τ(p, I) is strict.

Remark. As was the case with the strict AlloyII transition semantics, Lemma 6.1

in conjunction with Theorem 6.3 does not yield a relationship between satisfiability

and non-trivial implementability in strict SSTSS. As before, this differs from the

results drawn from Theorem 6.2 about the SSTSS because Lemma 5.1 only concerns

satisfiability of φA,p not strict satisfiability of φA,p.

In the spirit of Alchemy, we also wish to explore whether it is possible to au-

tomatically synthesize an implementation from an Alloy specification according to

strict SSTSS. Theorem 6.4 shows that it is not possible to do so in general.

40

Theorem 6.4. The following problem is undecidable:

Input: An Alloy specification A = 〈Sigs,Facts,Preds〉, a state q ∈ QA,

an action a ∈ ActA

Question: Is there some q′ ∈ QA such that the transition 〈q, a, q′〉 ∈ δA

for the implementation of A in strict SSTSS?

Proof. The key to this proof is that the bounds on the post-state under these im-

perative semantics do not necessarily mean that the instance corresponding to the

transition is bounded itself. To exploit this and show that the problem is undecid-

able, we will reduce finite satisfiability in predicate logic to this problem.

Consider the specification A in Figure 6.5. According to the state-signature

semantics, this specification corresponds to a transition system where the state-

space is the set containing the empty set and the action space is the set of pairs

where the first element is p1 and the second is a binding of s and s’. Thus, the

only possible transition is one from the empty set to itself, with some action. As is,

it is clear that δ = QA × AA ×QA.

Take any first order logic sentence σ written in Alloy and add a fact with that

sentence as its body to A to form A+. Assume there is an algorithm that can

determine whether there is an A+-acceptable transition whose pre-state is q and

whose action is 〈p1, {〈s, s0〉 , 〈s′, s0〉}〉. Note that the bound on the post-state

If that algorithm determines that there is a post-state, then we know that the

sentence σ is finitely satisfiable. If the algorithm determines that there is not, then

we know that the sentence σ is not finitely satisfiable. Thus the algorithm would

decide finite satisfiability in first order logic, which is impossible.

Therefore, the above problem is undecidable.

41

State { }

pred p1[s, s’ : State] { }

Figure 6.5: A very simple specification

The significance of this result is that we cannot create automatically create

implementations of Alloy specifications in accord with the state-signature semantics,

because finding the post state, given a pre-state and action, is undecidable.

It is worth noting that the definition of strict satisfiability for use with the

state-signature semantics hinted at this result, since the bound was only on part of

the instance as opposed to the whole instance as with the näıve transition system

semantics. This could be repaired by finding a way to extend the bound to the whole

instance, probably by specifying the state-signature semantics using a function τ−1

(such that τ(τ−1(t)) = t, where t is a transition) instead of τ itself, but this seemed

to have great potential for creating semantics that were very unintuitive and it did

not solve the usability issues with restricting the types of specifications that could

be written to a subset of all Alloy specifications.

42

Chapter 7

Advice for Alloy Users

Our results suggest advice to Alloy users: that they should make note that, despite

what may be suggested by the examples in Software Abstractions [9], facts in an Al-

loy specification are not state invariants. Facts hold over the relations that represent

all states at once, not over each state individually. To write a fact that does act as

a state invariant, Alloy users should either write the fact as a sig-fact on the State

signature, or should begin their fact with all s : State | ... and preface each

field of the State signature with s.. When using other methods for modeling state

similar approaches should be used.

The reasons for this particular convention are exemplified by the specification

that was problematic for NTSS. The problem is so nefarious because many state

invariants can be written as facts without worrying about facts holding over the

relation containing all states. In particular, formulas of the form p in q do not

cause problems, because those formulas are equivalent to all s : State | s.p

in s.q. Cardinality restrictions were probably the first examples found where treat-

ing facts as state invariants ceases to work because cardinality restrictions are a very

easy way of restricting a relation across all states.

43

Since stateful systems are being modeled within Alloy, the techniques used to

model the system must adhere to the semantics of Alloy. A more thorough under-

standing of the semantics of Alloy and of what transition system semantics are being

used to interpret Alloy specifications as stateful systems is the best way to prevent

mistakes like the one above. However, we cannot expect every software engineer

to be a theorist as well, so the syntactic advice for how to avoid the particular

misunderstanding of facts as state invariants must suffice.

An alternative would be to use a modeling language that was designed for the

modeling of stateful systems, so that the intuitive interpretation of specifications

yielded the correct understanding in both the logical semantics and the transition

system semantics. Once candidate for such a language is AlloyII, which has the

additional advantage of using a syntax familiar to Alloy users. The prototype im-

plementation of an analyzer for AlloyII which we created is discussed in Appendix

A. Since the transition system semantics for AlloyII supports the creation of a

automatic code generator for specifications written in AlloyII, we have created a

prototype AlchemyII as well, which is discussed in Appendix B.

44

Chapter 8

Related work

Our work can be seen as a result toward software synthesis, an effort initiated by

Green [6] and Waldinger and Lee [19] and summarized by Rich and Waters [16].

Subsequent projects, such as those by Burstall and Darlington [3] and Manna and

Waldinger [11], have instead attempted program synthesis in a rule-based fashion by

transformation and deduction. Some, like Smith [17], have focused on the programs

obeying certain decomposition strategies. These efforts tend to require significant

manual interaction, and also typically avoid state at least at the syntactic level.

The notion of adequacy is standard in relating two semantics for a given language.

Its introduction is usually credited to Plotkins seminal work on the treatment of LCF

as a programming language [15]. In our case, adequacy is a relationship between

the denotational world of models and analysis, and the operational world of the

implementation.

Several efforts have tried to relate proofs to running programs. Bates and Con-

stable [2] initiated a significant research program on the extraction of computational

context, in the form of programs, from constructive proofs. This effort continues in

popular proof assistants such as Coq [12]. Unfortunately, the proof structures used

45

in Alloy do not lend themselves to such extraction.

Executable UML [14] and other approaches to model-driven development are at-

tempts to proceed from specifications to programs, with the expectation of applying

rich analytic tools to the specifications. As a notable difference, their specifications

tend to cover most of the system, rather than being lightweight; this has practical

consequences in the synthesis of programs rather than libraries (as in our case).

Furthermore, the range of analyses available is correspondingly greater due to the

richness and variety of expression. Nevertheless, we are not aware of work in this

area that reconciles the problems we discuss and produces implementations that

demonstrate computational adequacy.

In contrast to Executable UML, two other efforts — SPECWARE [13] and the B-

method [1] — offer much more formal approaches to software development. Both use

refinements as a basis for converting specifications into programs. In SPECWARE,

the refinement process creates proof-obligations that the user must discharge. In B,

specifications are refined until they have been made deterministic, at which point

code-generation is straight-forward. Our approach is far more automated, and our

focus is not on synthesis but on relating verification to the resulting code. Neverthe-

less, both SPECWARE and B have been successfully applied to large, non-trivial

systems, so there are numerous lessons to be learned from them as we scale our

work.

DynAlloy [5] is an extension to Alloy to express state change in specifications.

The authors of this work make observations we echo about the difficulties of reading

predicates, and design a related language as a consequence. We believe, however,

that their design decisions result in a more traditionally imperative language than

AlloyII. More importantly for this paper, their work focuses on analysis, and does

not tackle the generation of code or its relationship to the results of analysis.

46

Our work is also related to the Semantic Data Model (SDM) [7], an influential

formalism for describing hierarchical data models. This model supports a rich set

of features such as object hierarchies, data constraints, aggregation of entities, and

definitions for derived data, but with less regularity than Alloy. Though there have

been efforts to build programming languages atop this model (DIAL [8] is an early

example), we are not aware of verification efforts for the SDM, so these efforts are

not comparable to ours in relating these two contexts. Similarly, our implementation

techniques bear a resemblance to efforts on active databases [4], but again our focus

is on relating the verification and implementation realms.

Krishnamurthi, Dougherty, Fisler and Yoo’s work [10] introduced the Alchemy

project, which was where the difficulties in interpreting Alloy specifications as defin-

ing transition systems was first discovered.

47

Appendices

48

Appendix A

Implementation of a Prototype for

an AlloyIIAnalyzer

Since bounded satisfiability is decidable, as demonstrated in Theorem 4.1, it is

possible to implement an analyzer tool for AlloyII like the AlloyAnalyzer for Alloy.

We have prototyped an analyzer that functions by translating AlloyII source into

Alloy source, which can then be analyzed using the AlloyAnalyzer.

AlloyII differs syntactically from Alloy in reserving priming as an operator. The

heart of our translation, then, is the implementation of this operator in Alloy. Repli-

cating each AlloyII signature in a primed version turns uses of the prime operator

into valid Alloy syntax over relations. For example, given AlloyII signature

sig Person { friends : set Person }

the translator produces the Alloy signatures

abstract sig Person’A {}

sig Person { friends : set Person } in Person’A

sig Person’ { friends’ : set Person’ } in Person’A

49

The abstract signature allows the pre- and post-state relations to share atoms (it

is not needed for signatures already in another signature). The new signatures

make any predicate specification from AlloyII syntactically valid in Alloy. Once

“global” facts have been de-sugared, no translation is necessary for facts. The

current prototype for the implementation does not handle signature extension or

signatures contained in unions of other signatures, simply because translating those

constructs to Alloy becomes complicated and tedious.

A.1 Future work

An production quality analyzer for AlloyII would probably translate directly into

the language used by Kodkod [18], the engine used by Alloy for finding bounded

instances that satisfy first order logic formulas. In addition, because of the similarity

between AlloyII and Alloy, it would be convenient for users if the GUI used by Alloy

was adopted for use with AlloyII.

A.1.1 Assertions

A more important area for future work on the semantics of AlloyII is creating the

syntax and semantics for assertions. In stateful specifications in Alloy, assertions are

used to verify properties of a series of states linked by the predicates that represent

operations. In this way, the assertions in Alloy bear resemblance to the linear tem-

poral logic (LTL) formulas used to describe properties of Büchi automata. This this

resemblance suggests that a sort of bounded LTL-like language might be appropriate

for writing assertions about AlloyII specifications.

50

Appendix B

Implementation of a Prototype for

AlchemyII

The simplest way to implement a code library generation tool for AlloyII would be

to use the Kodkod engine [18] to find an instance with bounds on the pre-state

and post-state portions of an instance, as given by the pre-state and action, and

to extract the post-state from that instance. Our AlchemyII prototype was created

before we realized the full power of the connection between AlloyII instances and

transitions, so it takes a slightly different approach to synthesizing the library code.

The AlchemyII prototype functions by navigating the kernel-language formula

associated with a specification for a predicate, modifying post-state relations so

that the formula is satisfied, and backtracking when conflicts occur.

The code for inserting and deleting tuples from expressions is nearly the same as

used in the Alchemy project [10], with the difference being that only relations anno-

tated with a prime are considered modifiable. Unlike Alchemy, AlchemyII operates

on the formula in negation normal form with small modifications to the base formu-

las of the form p in q and not p in q, which are rewritten as p - q in none

51

and not p - q in none, respectively.

The algorithm for determining the post-state given a pre-state and action is

given in Figure B.1. Termination of the algorithm is guaranteed by a homogene-

ity condition, indicating that any tuple cannot be both inserted and deleted from

any relation. If the algorithm encounters a situation where this would occur, it

backtracks and tries again. If no choices are left, the algorithm returns failure.

Safety for the algorithm in Figure B.1 is easily seen, as the iteration to a fixpoint

will only halt and return an answer when the post-state yields a transition that cor-

responds to a satisfying instance. Completeness is also easily seen, as the algorithm

will generate every change to the pre-state involving those relations that appear in

the formula under consideration. Since relations that do not appear in the formula

do not affect whether the formula is satisfied, this is sufficient to determine if there

is any post-state corresponding to a satisfying instance.

The code generated by the implementation is usable through a PLT Scheme

API. The code acts on a file that serves as a persistent store of the database, but

as what the code generates is the changes that are to be made to the state in terms

of the insertion and deletion of tuples, it is a simple matter to adjust the algorithm

to produce SQL statements to operate on a relational database.

B.1 Future work

The primary work that remains to be done on AlchemyII are to support a richer

full AlloyII language and to improve the user interface so that more complex inter-

actions with the database and code library are possible. The runtime of AlchemyII

is also currently painfully slow, even for a tool for prototyping projects, so either

improvements to the current algorithm or making use of the Kodkod engine may be

52

// η corresponds to the action

findPostState(f :formula, η : environment, ipre) {
ipost ← ipre
iterate until fixpoint on ipost

ipost = makeTrue(f, η, ipre, ipost)
return ipost

}

makeTrue(f : formula, η : environment, ipre : database,

ipost : database) {
case f:
f ≡ f1 and f2

makeTrue(f1, η, ipre, makeTrue(f2, η, ipre, ipost))
f ≡ f1 or f2

choose(makeTrue(f1, η, ipre, ipost),
makeTrue(f2, η, ipre, ipost))

f ≡ all x : A | f1

fold((λ v i . makeTrue(f1, η⊕(x 7→ v),
ipre, i)), ipre, eval(A))

f ≡ some x : A | f1

choose some v in A

makeTrue(f1, η⊕(x 7→ v), ipre, ipost)
f ≡ e in none

fold((λ t i . deleteTuple(t, e, η, ipre, i)),

ipost, eval(e))

f ≡ not (e in none)
choose some t of the type of e

// if possible, choose tuples in e1,...,en first,

// where e = e1 & ... & en

insertTuple(t, e, η, ipre, ipost)
}

Figure B.1: Algorithm for AlchemyII

53

appropriate for decreasing the runtime of the execution of operations. Making use

of Kodkod directly may prove the most fruitful since Kodkod is an already mature

tool for satisfiability solving for first order logic and relational algebra.

54

Bibliography

[1] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cam-

bridge University Press, 1996.

[2] Joseph L. Bates and Robert L. Constable. Proofs as programs. ACM Transac-

tions on Programming Languages and Systems, 7(1):113–136, 1985.

[3] R. Burstall and J. Darlington. A transformation system for developing recursive

programs. Journal of the ACM, 24(1), January 1977.

[4] Stefano Ceri and Jennifer Widom. Deriving incremental production rules for

deductive data information systems. Information Systems, 19(6):467–490, 1994.

[5] Marcelo F. Frias, Carlos G. López Pombo, Gabriel A. Baum, Nazareno M.

Aguirre, and Thomas S. E. Maibaum. Reasoning about static and dynamic

properties in Alloy: A purely relational approach. ACM Transactions on Pro-

gramming Languages and Systems, 14(4):478–526, 2005.

[6] Cordell C. Green. Application of theorem proving to problem solving. In

International Joint Conference on Artificial Intelligence, 1969.

[7] Michael Hammer and Brian Berkowitz. DIAL: A programming language for

data intensive applications. In ACM SIGMOD International Conference on

Management of Data, 1980.

55

[8] Michael Hammer and Dennis McLeod. The semantic data model: a modelling

mechanism for data base applications. In ACM SIGMOD International Con-

ference on Management of Data, 1978.

[9] Daniel Jackson. Software Abstractions. MIT Press, 2006.

[10] Shriram Krishnamurthi, Daniel J. Dougherty, Kathi Fisler, and Daniel Yoo.

Alchemy: Transmuting base alloy specifications into implementations. In ACM

SIGSOFT International Symposium on the Foundations of Software Engineer-

ing, 2008.

[11] Zohar Manna and Richard Waldinger. A deductive approach to program synthe-

sis. ACM Transactions on Programming Languages and Systems, 2(1):90–121,

January 1980.

[12] The Coq development team. The Coq proof assistant reference manual. LogiCal

Project, 2004. Version 8.0.

[13] James McDonald and John Anton. SPECWARE - producing software correct

by construction. Technical Report KES.U.01.3, Kestrel Institute, March 2001.

[14] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for

Model-Driven Architecture. Addison-Wesley, 2002.

[15] Gordon D. Plotkin. LCF considered as a programming language. Theoretical

Computer Science, pages 223–255, 1977.

[16] Charles Rich and Richard C. Waters. Automatic programming: Myths and

prospects. IEEE Computer, 21(8):40–51, 1988.

[17] Douglas R. Smith. Top-down synthesis of divide-and-conquer algorithms. Ar-

tificial Intelligence, 27(1):43–96, 1985.

56

[18] Emina Torlak and Greg Dennis. Kodkod for Alloy users. In Alloy Workshop,

2006.

[19] R. J. Waldinger and R. C. T. Lee. PROW: A step toward automatic program

writing. In International Joint Conference on Artificial Intelligence, 1969.

57

