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Abstract 
A robust software package was developed for modeling the far field radiation pattern of phased array 

radars. The application of this package will assist SRI International’s Geospace Division model the 

radiation pattern of their AMISR arrays. With this package, SRI will be able to calibrate their 

measurements of phenomena occurring in the upper atmosphere. Additionally, tools have been 

developed for beam analysis and radiation pattern characterization. Methods of validation for the 

computed radiation pattern’s accuracy are included in the package. 
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Executive Summary 
Research of the upper atmosphere has brought forth important information about space 

weather and its effects on modern technological systems. In order to collect data on the upper 

atmosphere, SRI International has developed the Advanced Modular Incoherent Scatter Radar (AMISR). 

SRI tasked senior WPI students to develop a software package to model the far-field radiation pattern of 

the AMISR system. The students have created a software package that added to the baseline model of 

the AMISR radiation pattern by incorporating authentic error factors and array status data, which has 

increased practicality of the model. 

The radiation pattern of a phased array antenna (such as the AMISR) is dependent upon the 

radiation pattern of an individual element (assuming all antennas in the array are the same) and the 

geometry of the array (the locations of the antennas with respect to each other). The software package 

gives the user the ability to specify the array geometry and use data generated external simulators to 

compute the radiation pattern. Using this framework, the WPI students were able to model a phased 

array of all shapes and sizes. 

 The WPI team confirmed that Python would be an appropriate platform to model the radiation 

pattern of the AMISR by first comparing a two antenna array model from [16] with the model ported 

into Python. The students then created the model for a 4096 element array, which was compared to the 

baseline MATLAB model for 4096 elements. Once this accuracy was established, the team incorporated 

situational factors into the model including element gain, mutual coupling, phase error, and array status 

data. Using a satellite pass test, the model output was confirmed to be accurate. While the framework 

of the software package can be used for all AMISR systems, this characteristic was only confirmed using 

the RISR-N system due to time constraints. 

 The development of this software package enabled the Geospace Division at SRI to investigate 

the radiation pattern of phased array radars. Specifically, they can apply the package to model the 

radiation pattern of their AMISR. By including features which can pull data from externally generated 

sources, such as NEC modeling for element pattern, the package can be further refined with parameters 

of increasing accuracy. Additionally, the package offers the user the ability to pull real life status data 

about each antenna and incorporate and analyze this status’s effect on the radiation pattern. To validate 

their model, a satellite pass test was created which compares computed data and measured data. By 

comparing the simulated data (white dots) and the measured data (red dots), the results show that the 

model is accurate (See Figure 1). 
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Figure 1-SNR Model Validation (Red dots- Recorded Data, White dots- Simulated Data) 
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Section 1: Introduction and Goals 
This year’s group of students from Worcester Polytechnic Institute chosen to work at SRI 

International assisted the Geospace Division’s effort to analyze a radar system they have been 

developing. They will do so by creating a robust software package to simulate and analyze the far-field 

radiation pattern [7] of the Advanced Modular Incoherent Scatter Radar (AMISR).  SRI International is a 

nonprofit research organization that works with private, government, and industrial organizations to 

promote science and discovery. It was established in 1946 by Stanford University, but split from the 

university in 1970, later becoming known as SRI International in 1977 [1]. SRI International has been 

using its various projects as opportunities to collaborate with academic engineering programs 

throughout the nation. Specifically, WPI has had involvement in the development of SRI’s AMISR. The 

AMISR is an operational phased array radar system funded by the National Science Foundation capable 

of collecting data on space weather in the ionosphere. This information can help researchers develop a 

better understanding of weather and climatology of the space environment, and ultimately how space 

weather impacts the power grid, satellites, and communication systems [2]. 

 A simple MATLAB model of the AMISR’s radiation pattern exists. This model helped researchers 

predict the behavior of the AMISR and demonstrate the functionality of the system. Predicting the 

behavior of the radiation pattern with a model is a pivotal step in the process of understanding the data 

that is actually collected from the AMISR.  

The main goal of this year’s project was to develop SRI’s model of the AMISR’s beam by 

incorporating mutual coupling (the interaction between antennas) and the power measurements of the 

AMISR’s AEUs. Doing so allows for researchers to draw significant findings from the data being collected 

by the AMISR. In order to accomplish this goal, the group needed to develop an understanding of radar, 

a topic incorporating many disciplines of study. The next step in accomplishing this goal was translating 

the preexisting MATLAB model into a Python environment. Accurately modeling the AMISR’s radiation 

pattern requires an accurate model of the individual AEU’s radiation pattern. Using modeling software, 

the group incorporated the effect that mutual coupling (cross-talk between antennas in an array) has on 

each antenna system. Doing this enhanced the accuracy of the AEU’s radiation model and therefore the 

accuracy of the entire system’s radiation pattern.  
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Section 2: Background Information  
 A functional understanding of waves in space, antennas, radar applications, phased array radars, 

the AMISR and modelling software is needed in order to develop and refine a model of the radiation 

pattern of a phased array radar.  Section 2 introduces the concepts relevant to understanding these 

disciplines.   

2.1: Waves in Space 
 Before delving into a scientific explanation of what a wave is, a simple analogy to oceanic waves 

can be useful to describe the concepts of amplitude, frequency, and wavelength. If one were to stand in 

the ocean, the amplitude of an oncoming wave is considered to be the maximum height that the wave 

reached on one’s body as it flowed past to shore. The rate, with respect to time, at which the waves 

flowed passed the observer is the wave frequency. Additionally, if one were to take a picture of the 

waves, the distance between the peaks of two sequential waves would describe the wavelength. Now 

that the analogy has been set, the scientific explanations for these concepts will be introduced.    

 The following is the general equation used to define a time-continuous waveform in one-

dimensional space: 

 (   )       (
  

 
  

  

 
    )        [Eq. 1] 

For analysis, Equation 1 can be broken up into two main parts: amplitude (ym), and oscillation 

(    (
   

 
 

  

 
    )). The amplitude of a waveform is “the magnitude of maximum displacement of 

elements from equilibrium position as a wave passes through a point” [3]. The part of the equation 

which describes the oscillation of a wave y(x,t) is characterized by both the sinusoid and its phase 

(
   

 
 

  

 
    ). The phase can be characterized further into three components, the angular 

frequency (   ), the angular wavenumber(
  

 
), and the phase constant (φo). [3], [4].  

 The frequency (f) of a wave is the number of oscillations per unit of time. This value is equal to 

the inverse of the time period (T) that it takes for a wave to complete one cycle of oscillation. Angular 

frequency is equal to the frequency multiplied by 2π (the number of radians in a circle). Angular 

frequency has units of radians per second. Figure 2 below illustrates the concept of a time-continuous 

wave’s frequency. [3], [4]. 

 

Figure 2- Demonstration of a Period of Wave Oscillation [s] 
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     Angular wavenumber is analogous to angular frequency. Instead of looking at a waveform with 

respect to time, however, one can look at it with respect to space. To do so, one can look at the amount 

of space between distinct repetitions of a wave (such as peak values), rather than the amount of time 

between said repetitions. This length is classified as wavelength, represented by λ, and has units of 

meters (See Figure 3). Angular wavenumber is equal to 2π multiplied by the inverse of wavelength, 

which yields units of radian per meter. [5], [4].  

 

Figure 3-Demonstration of Wavelength [m] 

 The phase constant (φo) represents the displacement at time zero such that y(x,0) is not equal to 

zero. A sine wave is equal to a cosine wave when sine has a phase constant of 
 

 
 radians. [5].  

2.2 Antennas  
 As defined by IEEE, an antenna “is that part of a transmitting receiving system that is designed 

to radiate or to receive electromagnetic waves” [6]. There are many kinds of antennas, and each will 

demonstrate a characteristic behavior, known as the antenna pattern, which depends on its geometry 

(shape and size) and material of composition. The antenna pattern refers to the magnitude and 

direction of electromagnetic radiation of the antenna when a signal is being used for transmission or 

reception. If an antenna demonstrates the same pattern while receiving as it does while transmitting, it 

is a considered a reciprocal device. [4]. 

 An isotropic antenna is a reciprocal antenna which radiates EM waves uniformly in all directions, 

as seen in Figure 4. Although this type of antenna does not exist, because no antenna can radiate 

uniformly in all directions, it does serve as a good starting point in conceptualizing the idea of antenna 

pattern. [5].  
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Figure 4- Antenna Pattern of an Isotropic Antenna  

 Although antennas cannot radiate in all directions uniformly, certain antennas and their 

respective orientation can be optimized to radiate EM waves in a desired direction. The directivity of an 

EM wave is described by the orientation of an antenna such that its radiation is at a maximum in a 

specific direction. The concept of directivity can be represented visually in a coordinate system classified 

by a zenith elevation plane (θ) and an azimuth plane (φ). This coordinate system is shown in Figure 5 

below. [4], [7]. Gain is a term used to describe the efficiency (ability to transfer input power to output 

power) and directivity of an antenna. An antenna characterized by large gain signifies that most of its 

input power is converted into EM waves in a certain direction. [12].  

 

 

Figure 5-Specifying the Direction of a Radiated Waveform  

Consider the simple dipole antenna consisting of two cylinders of specified length and radius 

shown in Figure 6. When a voltage is applied simultaneously to each of the cylinders, they become 

excited and radiate an electric field of differing magnitude in certain directions. Figure 6 demonstrates a 

simulation of a dipole antenna using COMSOL [8]. Knowing the orientation of the antenna in which the 

highest magnitude of radiation occurs is beneficial, thereby allowing the designer to direct the antenna 

where he or she needs the EM waves of highest magnitude to be sent. [7].   
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Figure 6-An Isolated Antenna and its Radiation Pattern  

2.3 A Brief Description of Radar 
 Radar is an acronym standing for “Radio Detection And Ranging”. The purpose of radar is to 

locate and track objects in a three dimensional space. Figure 7 shows a block diagram of a basic radar 

system. The “Transmitter” block represents a generator being used to produce a discontinuous electric 

signal, which is sent by transmission line to an antenna [9]. The antenna is the medium through which 

the electric signal is converted into an electromagnetic wave, or “Radar Pulse”, through free space. This 

pulse can be oriented in a specific direction characterized relative to where an object is expected to be 

located. After the pulse is transmitted, the radar switches to its “Receiver” mode in which it is waiting 

for a return pulse. This return pulse, described as “Scattered Pulse”, is the pulse that hits an object and 

returns back to the antenna [10]. The data received from the wave, such as phase and amplitude, can be 

used to describe physical features of the object it has detected, such as velocity (speed and direction), 

location, and shape. The accuracy of the data being used to describe the features is dependent on the 

antenna and processing capabilities of the radar. [9].  
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Figure 7-Block Diagram of a Basic Antenna System [10] 

The radar’s process of transmitting and receiving is periodic. This behavior is demonstrated in 

Figure 8 below. The time in which the radar is transmitting is referred to as the Pulse Width (“PW”). The 

time in which the radar is waiting for a return signal is known as the Rest Time (“RT”). Pulse Repetition 

Time (“PRT”) is the time between the transmitting cycles. It is important to select an RT with long 

enough duration such that transmit pulses do not interfere with return pulses. RT can be selected if the 

general location of the object being searched for with respect to the radar system can be estimated. 

Knowing that electromagnetic waves travel through air at the speed of light of the medium, it is possible 

to estimate the amount of time it will take a transmitted signal to return to the antenna after reflecting 

off an object. [11]. 

 

 

Figure 8-Transmit and Receive Periods of Radar [11] 

 

 There are many factors that affect a signal transmitted and received by the antenna during its 

time traveling through space. After the EM wave is propagated into free space by the antenna it is 
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subject to environmental factors which can attenuate (weaken the amplitude of) or scatter the beam. 

According to Dr. Robert O’Donnell of MIT’s Lincoln Lab, the four main causes of attenuation and scatter 

of a signal propagated by a radar system are atmospheric attenuation, reflection off of the earth’s 

surface, over the horizon diffraction, and atmospheric refraction. When EM waves propagate through 

the atmosphere, energy of the wave will scatter throughout the atmosphere and reduce the strength of 

the radar beam. Power is dissipated by water and oxygen in the air. Energy in lower angular portions of 

the beam will be reflected off of the earth’s surface. Depending on the surface (water or land) these 

portions will be affected in various ways. Atmospheric refraction is caused by humidity and density, 

varying temperatures, pressure, fog and cloud water content and rain rate. All of these parameters are 

not homogeneous throughout the different layers of earth’s atmosphere and attenuate the waveform 

as it propagates through space. [9].  

2.4 Phased Array Radar 
In order to build a radar system capable of transmitting higher power over longer distances, an 

array of antennas, referred to as a phased array, can be implemented. There are many benefits to using 

phased array radar. One such benefit is that it allows for remote control of the direction of the radar’s 

beam by controlling the phase and amplitude that each antenna transmits with a stationary physical 

orientation of the radar. Another advantage is that each antenna can constructively interfere with the 

other antennas in the system, causing additive waves to increase the magnitude of a beam in a specified 

direction. This type of system allows for increased gain, increased Signal to Interference and Noise Ratio 

(SINR), and beam forming and determining of direction received signals.  

The radiation pattern of a phased array radar system can be calculated as the sum of the 

product of each antenna’s “element pattern” multiplied by its respective “array factor” [14]. The 

computation of radiation pattern is shown in Figure 9 below, where ‘Y’, ‘X1,2..N’ and ‘w1,2,…N’ represent the 

array’s radiation pattern, the single element pattern and array factor for each element in an array. The 

element factor is synonymous with the concept of antenna pattern described in Antennas (Section 2.2). 

Element factor can be affected by mutual coupling, a phenomenon that occurs when one or more 

antennas cause the impedance of another antenna to change during transmit and receive. Array factor 

is a vector product representing the relative phase shift of an antenna element, its radial distance from 

the origin of the array face, and the excitation which is applied to achieve radiated electromagnetic 

waves from the element [15].  
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Figure 9-Schematic for the Input and Output Gain of an Antenna Array 

 An illustration of beam formation with four sources of transmitted waves is shown in Figure 10 

below. Notice the sources on the Figure’s left transmitted wave formations earlier than those on the 

right. As a result, the four sets of wave fronts constructively interfere with each other in common 

locations. The solid line drawn through these overlapping propagations represents the transmit 

direction of the main lobe. The main lobe is the beam formed in which the transmitted signal has 

highest amplitude due to phase shifting. Its width can be defined by the range of angles (in the 

Directional-Sine coordinate system, see [17] and Appendix C) with magnitudes greater than or equal to 

3dB less than the maximum gain. Phase shifting is a method used to adjust the direction of the main 

lobe through constructive interference of transmitted signals. Increasing the number of transmitting 

elements in a phased array radar will create a narrower main lobe. It is also important to note that there 

are other directions in which some antenna sources add to each other to create side lobes. In these 

directions, the magnitude is less than the main beam formed. In Figure 10, the dashed line shows where 

the waves are combining to form a side lobe. In addition to the side lobes, a grating lobe may be present 

in the radiation pattern of a beam directed at a large angle off of boresight (perpendicular to the face). 

The grating lobe’s magnitude is much higher than those of the side lobes. [7], [9], [10]. 
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Figure 10-Phased Array Beam Formation 

2.5 A Description of the AMISR 
  The AMISR is a robust system because of its ability to be controlled remotely, and the 

redundancies and organization incorporated into its design. SRI’s AMISR project consists of 3 separate 

“faces”. Each face encompasses the body on which all of the 4096 Antenna Element Units (AEUs) are 

housed. The AEU contains a solid-state power amplifier (SSPA) and cross dipole antenna. The face is 

divided into 8 groups of 16 panels (making 128 identical panels) which contain Panel Control Units 

(PCUs) used for AEU control and monitoring. There are 32 AEUs on each of the panels. Figure 11 shows 

the organization of AMISR’s system previously described. One of the faces, Poker Flat Incoherent Scatter 

Radar (PFISR), is located in Poker Flat, Alaska. It has been in operation since 2007. The North Face and 

Canadian AMISR faces are both located in Resolute Bay, Nunavut Territory, Canada. They are referred to 

as RISR-N and RISR-C, respectively. [2]. 
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Figure 11-The AMISR System [2] 

2.6 Modeling Software and Simulation Tools  
 There are many powerful software packages which simulate antenna radar systems. Advances in 

computational power of computers serve as the backbone for carrying out the complex solutions to the 

systems of equations used to model antennas. The group modeled antenna systems in the frequency 

domain using numerical analysis. There are two main types of computational electromagnetic software 

to choose from, Method of Moment (MoM) and Finite Element Method (FEM). Each type offers certain 

advantages in the solution of a computational model, however each must assume certain idealizations 

in order to make the simulation of a model feasible. Although these idealizations may simplify the 

solution of a model, they may decrease the accuracy of the results. The hierarchy of computational 

electromagnetics is organized in Figure 12 below. 
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Figure 12-Variety of Computer Aided Antenna Design and Analysis 

MoM is an approximation method implementing the computation and solution of linear partial 

differential equations. User defined or automatically set boundary conditions define the geometry of 

the model being simulated. The simulator calculates values for various equations according to the 

boundaries defined during its computation. Simulation tools available in market such as NEC2 and 

EZNEC implement MoM for solving antenna models. The group has implemented the modeling 

techniques as described in [14]. These techniques are interchangeable depending on the array being 

modeled and the desired accuracy of the user [14].  

The second type of computational electromagnetic software of interest to the group is FEM. 

FEM was originally developed for structural analysis and is good for irregular constraints inconsistencies 

intrinsic in a material’s properties. This type of electromagnetic simulation uses the following process: 

discretization of the total environment into polygon elements with an associated and approximate 

constant value, element characterization by potential equations and field estimates, and lastly solving 

the system of equations which relate the interactions that each element has on one another. Simulation 

tools like Ansoft HFSS, COMSOL Multiphysics, and FEKO are based on this modeling approach. 
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Section 3: Methodology 
 The ultimate goal of the group’s work was to develop an accurate model of the AMISR’s far-field 

radiation pattern. In order to do so, a software package, which served as a platform for radiation 

modeling and performance investigating, was created. Further iterations of the model enhanced the 

accuracy of the computed results. These iterations included an investigation of the array behavior. 

Phase errors were introduced to the array factor calculation. Element pattern was then introduced into 

the radiation pattern calculation. Finally, the group validated their model with an SNR test comparing 

calculated SNR with the measured SNR data from the PFISR. 

3.1 Objective 1: Port Model from MATLAB to Python  
 The group was provided with a MATLAB model of the AMISR’s radiation pattern which they 

translated into a Python environment. Using object oriented design allowed the group to produce a 

model of the AMISR with a more robust framework and additional functionality control. The hierarchy of 

the code emulates the modular design of the AMISR described in Description of the AMISR (Section 2.5). 

Working with one of their SRI mentors enabled the group to develop this hierarchy with Python’s data 

structures. The use of control options are permitted by the modular design of the Python class structure 

of the AMISR model. Control options include having the ability to enable or disable JetPower status, 

individual panels, and individual AEUs.  

 To begin the transition between MATLAB and Python, the group needed to validate that Python 

can produce the same computation results as MATLAB. To do so, it was necessary to recreate a two-

element array in Python and compare the computed radiation pattern results with those achieved by 

the MATLAB model. Additionally, the Python modeling results were compared with [16] which include 

contour plots and three dimensional representations of the two-element array’s radiation pattern. The 

group had to develop tools to compare their simulated results against the resources provided by SRI. 

Such analysis tools include: robust contour plotting techniques, filtering through the computed radiation 

pattern matrix to see the radiation pattern in a specific direction, finding the local maxima of the main 

and side lobes, and calculating the beam width using the 3dB half power. By comparing the results and 

plots created by the Python model to those generated by MATLAB and shown in [16], the group was 

able to validate their results and move forward with modeling a larger array.   

3.2 Objective 2: Investigate the Array Behavior  
 As described in Phased Array Radar (Section 2.4), the array pattern is defined by the sum of the 

product of the element pattern and its array factor for each element in the array. In order to understand 

the theoretical limits and behavior of the AMISR’s radiation pattern, the group developed its modeling 

of the array factor and element pattern. 

Developing the Array Factor Model 
To achieve a higher understanding of the AMISR’s array factor, the group assumed element 

pattern and excitation fields with normalized magnitudes. By calculating the array pattern under these 

conditions, the group was able to investigate the effect that changing the steering angle of the main 

lobe or disabling certain parts of the AMISR has on the array factor. When the beam is directed near the 

limits of the functional range of the AMISR, grating lobes are formed. The group was able to further 

investigate what angles these grating lobes occur at and confirmed the range of steering angles of safe 

operation. Next, the group simulated what happens to the array factor when JetPowers, panels, or AEUs 
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malfunction. This provided insight into how drastically the output power and directivity of the beam 

decrease when elements are malfunctioning.  

Introducing Phase Error into the Array Factor Calculation  
Phasing each element allows the user to direct the AMISR’s main lobe. Phase error in the AMISR 

system is caused by PCU software and hardware limitations. By incorporating this feature in the model, 

the group was able to understand the effect on the behavior of the main lobe when the magnitude of 

that error increases. Understanding the array factor under various scenarios, such as those described 

above, assisted in understanding and predicting the AMISR’s performance when a realistic element 

pattern and excitation is applied.  

Developing the Element Pattern Model 
The next iteration of our model introduced the element pattern into the radiation pattern 

calculation. The group used the Hertzian Dipole approximation in their first iteration of the cross-dipole 

element pattern [20]. This approximation changes with respect to each antenna’s angular elevation, a 

magnitude represented in the azimuth-elevation coordinate system by radians away from the ground 

plane [17]. NEC software was used to calculate the element pattern specific to the geometry of the 

AMISR’s cross dipole pair. In this stage of the modeling process, the group used the NEC data files 

produced by their mentor, Dr. Michael Nicolls, to investigate the effect that mutual coupling has on the 

individual pattern of an element. To do so, the group and their mentor ran simulations on the pattern of 

an isolated AEU, on each AEU independently in one panel, and then on each of the 288 AEUs in a 3x3 

array. Because of computational, computer memory, and time limits, the group was not able to model 

the element pattern of each AEU on an entire AMISR face. After the group implements the NEC model of 

the element pattern, they compared the computed element pattern results with those produced by 

using the Hertzian dipole for each of the three cases. 

3.3 Objective 3: Validating the Radiation Pattern Calculation 
 As mentioned in Description of the AMISR (Section 2.5), data has been collected on the status 

and health of the PFISR since 2007. The group populated the fields of their AMISR model’s classes with 

the relevant information (power, and status of each AEU) taken from data sheets to calculate the far-

field radiation pattern which the PFISR is exhibiting.  

Satellite Pass Test 
SRI’s Geospace Division has been recording data (Signal to Noise Ratio data) defining the 

backscatter gain measured from spherical satellites which have passed through the PFISR’s main lobe. 

Backscatter gain is defined as the total energy received by a radar which is reflected off of a conductive 

surface in space after being transmitted by the radar. Using known trajectory information about satellite 

passes, the Geospace Division can steer their beam multiple times to track the satellite passing through 

an AMISR’s Grating Lobe Free Area (the star shape in Figure 13). The satellite’s trajectory is shown as the 

orange line in Figure 13. The five red dots are the five successive steering angles of the AMISR’s main 

lobe to track the satellite’s passing. 
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Figure 13-Satellite Trajectory through AMISR Grating Lobe Free Area 

The group developed a method to model the passing of a satellite through the radiation pattern 

of an AMISR steering its main lobe in a specified direction. Knowing the beam’s steering angle, one can 

produce its respective radiation pattern. By interpolating the satellite’s known trajectory (defined by 

Directional-Sine angle pairs) against the calculated radiation pattern, one can find the corresponding 

“gain” for each point in the pass. These interpolated gain values are then used to calculate the 

theoretical power received by the AMISR. The following equations demonstrate how the theoretical SNR 

is calculated. The definition of each variable can be found in Table 1. 
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Table 1-Definition for SNR Calculation Variables 

Parameter Description Units 

c cross section m^2 

lam wavelength m 

Rtx range on Tx m 

Rrx range on Rx m 

B bandwidth Hz 

Tsys system temperature K 

Gtx transmit gain  

Grx receive gain  

Pt Total Power W 

Ncoh nummber of coherent integrations  
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Section 4: Results 

4.1 Objective 1: Port Model from MATLAB to Python 
 The group implemented a structure for their software platform developed by one of their 

mentors. The platform’s structure is set up with a class for each modular section of the AMISR: a Face 

class, an Array class, a Panel class, and finally an AEU class. Within each class there is a dictionary which 

contains the next sublevel of the modular design. The Face class contains a dictionary filled with an 

object of the Array class. The Array class has a dictionary which contains as many objects of the Panel 

class as there are panels on the specific AMISR. The Panel class has a dictionary which contains as many 

objects of the AEU class as there are AEU’s per panel. Each modular class has an associated 

configuration file which stores user defined parameters. A more elaborate description of the code 

organization and implementation of the software is provided in the user manual attached in Appendix B. 

The hierarchical set up of the code is displayed in Figure 14 below. 

 
Figure 14-Code Flow Chart to Model the AMISR 
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To ensure that Python would yield results comparable in accuracy to the previous MATLAB 

model, the group researched the floating-point number’s precision of Python (53 bits) [18] versus 

MATLAB’s single-precision floating point (32 bits) and double-precision floating point (64 bits) [19]. 

According to Dr. Nicolls, this 53 bit level of accuracy would suffice for the precision needed in the 

model’s computation and the implementation of a two element array was developed.  

The first investigation is a comparison between an existing MATLAB model of a two element 

array and the group’s initial Python model of a two element array. Plotting methods were created to 

produce three-dimensional images of the computed data, as the group was limited to using open source 

libraries for their code development. In Figure 15, the plots taken from [16] are provided. In Figure 16, 

the group’s rendering is depicted. The leftmost three dimensional plot in Figure 15 is the radiation 

pattern of a two element array with a wave length spacing of one and an excitation of one [amp]. The 

rightmost three dimensional plot in Figure 15 is the radiation pattern of a two element array with one 

wave length spacing and an excitation of (1+i) and 1 in each element, respectively. The two-dimensional 

plots beneath the 3D plots demonstrate the radiation pattern at a specific azimuth slice through the 3D 

contour data. [See [17] and Appendix C for an explanation of the coordinate system being used in the 

following figures]. 

 
Figure 15-Contour Plots of a Two Element Array from PowerPoint [16] 
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For modeling the AMISR, it was only relevant to compute the radiation pattern excited north of 

the face. As such, Figure 16 demonstrates only the radiation pattern from 0° to 360° in azimuth and 0° to 

90° in elevation for each discrete azimuth angle. It is important to note that the computed results are 

shown in a normalized magnitude whereas the MATLAB provided results are given in normalized 

decibels [dB]. It is clear from Figure 16 that Python produced comparable results to the MATLAB 

generated computations. 

  

 Aside from [16], SRI provided a MATLAB baseline model of the AMISR’s radiation pattern. Using 

SRI’s simple MATLAB model of the AMISR’s radiation pattern, the group loaded in a two element array 

Figure 16-Contour Plots of a Two Element Array from the WPI Group 
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and computed its corresponding radiation pattern. The results are shown below in Figure 17 

represented in the Directional-Sine coordinate system (Theta-X, Theta-y) [17] [Appendix C]. The group 

developed a method to plot a two dimensional contour plot, also in the Directional-Sine coordinate 

system, shown in Figure 18 the using Python. In Figure 18, a masking circle which encapsulates all “real 

components” of the radiation pattern is demonstrated visually. All components of the pattern which are 

seemingly missing from the plot are ones which are not realizable in the Directional-Sine coordinate 

system [17].  

 
Figure 17- Two Element Radiation Pattern [SRI’s MATLAB Baseline Model] 

 
Figure 18-Two Element Radiation Pattern [Python] 
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It is clear from the plots that the values computed by Python and MATLAB produce comparable 

results in terms of magnitude and overall beam characteristics. As such, the group extended their model 

to include all 4096 AEUs. The relevant information for each AEU was initialized into the array object 

created by the code. Figure 19 is the radiation pattern of the AMISR using the MATLAB model. Looking 

at the axes of the plot, one can tell that the direction of the main lobe was steered at an angle (0°, 0°) 

from boresight. The magnitude of the main lobe is around 30dB, a value which was lower than expected 

from the theoretical model of a 64x64 element array [16].   

 
Figure 19-AMISR Radiation Pattern with a Normalized Element Gain and Excitation [MATLAB] 

Figure 20 is the Python replication of the AMISR radiation pattern with normalized element gain 

and excitation. The value of maximum gain of the main lobe computed by the Python model at 43dB 

corresponds to what was expected using the theoretical model of a 64x64 element array at a steering 

angle of (0°, 0°) from boresight. 
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Figure 20-AMISR Radiation Pattern with a Normalized Element Gain and Excitation [Python] 

At this point in the group’s progress, the radiation pattern results were presented to Dr. Nicolls 

to confirm their validity. The maximum dB value of the main lobe for the 64x64 Python model versus the 

existing MATLAB model proved to be comparable. More importantly, the shape and side lobe 

formations of the Python model matches the expected pattern of the MATLAB models. This ideal 

radiation pattern shows the capability of the code structure and the robust plotting tools which will be 

used as a platform to add many more system parameters to the Python Model.  

4.2 Objective 2: Investigate the Array Behavior:  
 The group began their investigation by normalizing the AEU excitation and element pattern. 

Doing so provided insight about the operational range of the array factor as a function of steering angle 

and active (transmitting and receiving) elements. Phase errors, which are a result of the computational 

limitations of the AMISR PCUs, and element pattern were then introduced into the array radiation 

pattern calculation. 

Developing the Array Factor Model 
 In this section of the results, a description of the AMISR’s array factor and an analysis of its 

behavior is provided. A description of the tools used to calculate the data and generate the visual 

representations of the array factor is included in the User Manual [Appendix B]. The purpose of these 

tests was to develop a full understanding of the pattern of the array factor. The array factor is can be 

characterized by the magnitude and radius of the main lobe, magnitude and location of the first side 

lobes, and the appearance of grating lobes. These characteristics were investigated as numerous 
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parameters of the array were varied. These parameters include size of the array and the steering angle 

of the main lobe. 

 In order to vary array size, the transmit and receive power fields of a number of AEUs were 

enabled. As the array size increased, the maximum magnitude of the radiation pattern’s main lobe 

increased and its width decreased. Although data in Table 2 was collected for many iterations of 

increasing the array size, a visual representation has been provided for only a 1x2 panel array (64 active 

elements, Figure 21), to a 5x10 array (1600 active elements, Figure 22), to the full 8x16 AMISR array 

(4096 active elements, Figure 23). In each of the following three figures, the enabled AEUs are 

demonstrated in green and all disabled elements are red. The radiation pattern is shown to the right of 

the active elements plot. The maximum magnitude of the array factor (AF) and directivity of the main 

lobe increases substantially as the number of active elements increases. This behavior is characteristic of 

phased array radar systems and matches what was expected in both magnitude and performance [16]. 

The circumference of the main lobe is shown visually in Figure 21, Figure 22, and Figure 23 as the dotted 

white line. It is defined by a 3dB cutoff from maximum magnitude as described in Section 2.4. It is 

relevant to note that the magnitude of each of the three aforementioned plots is relative to 42.67 dB, 

the maximum measured magnitude for the AF of a 4096 element array. 

 
Table 2-Radiation Pattern Magnitude and Beam Width as Array Area Increases 

Enabled 
Elements Max Magnitude of AF [db] BW X [deg] BW Y [deg] 

RMS Radius 
[deg] 

64 6.540176915 9.734734936 8.555127199 4.614809691 

256 18.57929734 4.865069543 4.267055184 2.305940667 

576 25.61948116 3.244529409 2.843756399 1.537366683 

1024 30.61217487 2.434065754 2.135426734 1.151490532 

1600 34.4823344 1.949588325 1.710055744 0.926040566 

2304 37.64195566 1.623711165 1.422880294 0.769586942 

3136 40.31080716 1.392515523 1.220167542 0.660376217 

4096 42.62007577 1.218767984 1.070258493 0.579010462 

 

 
Figure 21-Active Elements and Radiation Pattern of a 1x2 Panel Array 
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Figure 22-Active Elements and Radiation Pattern of a 5x10 Panel Array 

 
Figure 23-Active Elements and Radiation Pattern of an 8x16 Panel Array 

 The next iteration of the AF characteristics came with an investigation of the operation region of 

the AMISR’s main lobe. The region of safe operation is limited by the directional angles at which grating 

lobes are formed. After producing AF plots at various steering angles, it was found that grating lobes 

occur around 30° to 40° away from boresight in both Theta-x and Theta-y directions. An example of the 

production of a grating lobe is shown below when the main lobe was steered at an angle (0°, 35°) in 

Figure 24. The AF calculated at the steering angle of the main lobe is 42.67 dB as expected, but a grating 

lobe appears at around (0°, -40°). Although others exist, this is one example of a steering angle which 

produced a grating lobe. From this experiment, it is now confirmed that the AMISR’s steering operation 

range (also referred to as the “Grating-Lobe Free Zone”) is limited to roughly 30° from boresight in 

Theta-x and Theta-y coordinates. 



26 
 

 
Figure 24- AF and Grating Lobe at a Steering Angle of (0°, 35°) 

 To summarize the results found in this section, investigating the array factor was made possible 

by normalizing the element gain and excitation. Doing so showed that the maximum magnitude and 

directivity of the main lobe increases as the number of elements in an array (and correspondingly array 

size) increases. Additionally, the 64x64 hexagonally-spaced element array configuration of the AMISR 

will produce grating lobes when the steering angle of the main lobe is directed more than 30° away from 

boresight (in either Theta-x or Theta-y).  

Introducing Phase Error into the Array Factor Calculation  

 To compensate for the phase errors inherent in the AMISR system (due to software and 

hardware limitations), phase errors have been introduced into the model. The purpose of doing so was 

to characterize how the directivity of the main lobe deviates from its intended direction due to the 

phase errors and to gauge the overall effect that phase errors have on the radiation pattern 

performance. 

 The first test compared the model with no phase errors to one in which truncation (rounding 

errors) and phase offset were introduced. In this test, the phase offset was set to a maximum value of 1. 

This offset value was randomly selected from 0 to 1 and added to the phase which was calculated in the 

array factor equation in the model. The truncation of the sum of phase and phase offset was set to 5 

decimal points. In Figure 25 and Figure 26, the array factor pattern (on the left) is shown with the 

magnitude of each lobe along a cut line of Theta-y equal to 0 (on the right). The results of having no 

phase error introduced into the model are shown in Figure 25, while the model with truncation and a 

phase offset is shown in Figure 26. 
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Figure 25-Array Factor Pattern and a Cutline Representing Magnitude of Side Lobes 

 
Figure 26-Array Factor Pattern and a Cutline Representing Magnitude of Side Lobes with Phase Error 

 It is clear that by introducing phase offset and truncation, there is significant performance 

degradation due to the emergence of new side lobes in the model. Although not depicted previously, 

there was extreme degradation in the uniformity of radiation pattern as the maximum phase offset was 

increased. Additionally, the magnitude of the main lobe decreased with the introduction of phase error. 

Introducing phase error into the model had no considerable effect on the direction of the main lobe. In 

other words, the center of the main lobe remained at its intended steer angle. This information is shown 

in Error! Reference source not found.. 
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Table 3-Phase Error Comparisons 

Truncation Maximum Phase Offset Main Lobe [dB] xCenter yCenter RMS Radius 

0 0 42.62007577 49 49 0.579010462 

5 0.1 42.60673119 50 50 0.578811063 

5 1.0 41.08777679 50 50 0.579084076 

5 2.0 35.69175923 49 50 0.577111369 

 

 To summarize the results found in this section, phase error does have an effect on the 

performance of the AMISR’s array factor and therefore on its radiation pattern. Although it was 

anticipated that increasing the phase error would compromise the steering direction of the main lobe 

from its intended angle, the results proved otherwise. Additionally, the width of the main lobe did not 

increase due to an increasing phase error. Introduction of the phase error did however create more side 

lobes and eventually would decrease the maximum magnitude of the main if too large. 

Developing the Element Pattern Model  

 When introducing element gain into the array pattern calculation, it was important to choose a 

model which accurately represented the element pattern of an AEU in the array. In the first iteration, 

the Hertzian dipole model, shown in Figure 27, was used to represent the element pattern of a 

theoretical cross dipole antenna. It is important to note that this approximation does not take into 

consideration the geometry or the material composition of the actual AEU. As such, it is not expected to 

accurately represent the AEU’s radiation pattern in every direction. It does serve as a sufficient baseline 

for comparing future iterations, however.  

 
Figure 27-3D and 2D Representations of the Hertzian Dipole Model of a Cross Dipole Antenna 

 NEC modeling software was implemented to produce the element pattern specific to the 

composition and orientation of an AEU. The results of the calculated pattern are shown in Figure 28 

below. The plot shows that the magnitude of highest radiation occurs at boresight for the isolated 

antenna. The 3D plot demonstrates this phenomenon. The plot in Figure 29 depicts a 2D slice of the 

element pattern of the isolated AEU at azimuth cut angles of 0°, 45°, and 90°. 
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Figure 28-3D and 2D Representations of the NEC Model of an Isolated AEU 

 
Figure 29-2D Slices of the Isolated AEU Element Pattern 

 

 The next iteration of the element pattern included expanding the NEC simulation to investigate 

mutual coupling’s effect on an AEU pattern in the panel. If mutual coupling had an effect on the 

individual pattern of an AEU, it would be discernable in the differences computed between element 

patterns for each AEU. The method used to achieve this model was to recreate a panel with 32 AEUs in 

NEC. Each AEU would be excited individually and its respective element pattern would be computed. If 

the computed pattern differed amongst the AEUs, it would conclusively demonstrate that mutual 

coupling affects the AEU element pattern.   
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The results demonstrated that the element pattern varied amongst each AEU in the panel. Thus 

mutual coupling did affect AEU pattern. The 3D and 2D plots representing the average element pattern 

calculated from each of the 32 individually computed element patterns is demonstrated in Figure 30 and 

Figure 31, respectively. The highest magnitude of radiation for this model does not occur at boresight, as 

it did with the Hertzian and isolated AEU models, but instead at an elevation around 65°. The RF 

engineers at SRI designed an electrical system in the AEU which would compensate for not using quarter 

wavelength spacing. This creates a dimple at boresight which widens the width of the element pattern. 

This ultimately increases the operation range of steering the AMISR’s main lobe at the cost of reducing 

the maximum magnitude of the element pattern [16]. Figure 32 shows a cut of the 3D element pattern 

demonstrating the dimple and widening of the pattern as compared to Figure 29. 

 
Figure 30-3D Representation of the Averaged Element Pattern of a 1Panel Array Using 

 
Figure 31-2D Representation of the Averaged Element Pattern of a 1x1 Panel Array and its Standard Deviation 
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Figure 32-2D Slice of the 1x1 Panel Average Element Pattern 

 In order to see if the AEU average could be further refined, the 1 panel method for producing an 

average AEU element pattern was extended to a 1x3 and 3x3 panel model. Figure 33 is the 3D 

representation of the average element pattern computed for a 3x3 Panel. It is the average computed 

element pattern representing 288 individual AEU element patterns. The element pattern very closely 

represents that which is depicted in Figure 30. Its respective 2D average pattern and corresponding 

standard deviation are depicted in Figure 34. 

 
Figure 33-3D Representation of the Averaged Element Pattern of a 3x3Panel Array 
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Figure 34-2D Representation of the Averaged Element Pattern of a 3x3 Panel Array and its Standard Deviation 

 The entire purpose of investigating the Hertzian dipole was to use it as a baseline for comparing 

the accuracy of each of the four NEC simulations previously described. The results are shown in Figure 

35 below, as well as being numerically represented in Error! Reference source not found.. The isolated 

AEU has the lowest standard deviation when compared to the Hertzian and isotropic models. This was 

the result expected, as the effect of mutual coupling is not incorporated in either the Hertzian dipole or 

isotropic models. The purpose of the data represented in Figure 35 and Table 4 was to show that as the 

number of AEUs being modeled increased, the overall deviation from the baseline model(s) did not 

change significantly between the 1 panel, 1x3 panel, and 3x3 panel models. What did change, however, 

was the accuracy of the average models of each simulation compared to its respective samples. This 

information can be seen in the standard deviation contour plots shown in Figure 28, Figure 31, and 

Figure 34. As the number of AEUs being modeled increased, the standard deviation of the average 

model for each computed point decreased (with diminishing returns). As such, it was decided that the 

average element pattern representing the 3x3 panel model would suffice for an accurate representation 

of the element pattern for each AEU on the face of a full AMISR array.  

 The computed average element pattern representing the 3x3 panel array was used in the overall 

array radiation pattern calculation. An investigation of the array radiation pattern is presented in Section 

4.3. 
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Figure 35-Comparison of the STD of the Various NEC Model Simulations Compared to the Hertzian and Isotropic Models 

 
Table 4-Standard Deviation of the Various Average Models versus the Isotropic and Hertzian Models of a Cross Dipole 

 
num AEUs Vs. Hertzian [Std] Vs. Isotropic [std] 

1 AEU 1 0.72234636 0.47818727 

1 Pan 32 3.29700967 3.89287224 

3 Pan 96 3.45248988 4.03932733 

9 Pan 288 3.45847678 4.04661816 

 

4.3 Objective 3: Validating the Radiation Pattern Calculation 

Satellite Pass Test  

Data files containing information about a satellite pass through PFISR’s Grating Lobe Free Area 

were made available. These data files contain the measured SNR, ranges, and location of a satellite 

passing through the main lobe. The pass was traced successively with 5 different steering angles as the 

satellite passed through the Grating Lobe Free Area. Using the methodology described in Section 3.3, 

the theoretical SNR data was computed for each of the five steering angles. For each of the five beams, 

an average range value was used in [Eq. 4] to approximate the results. Furthermore, the system 

variables were approximated to the following values: 
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Table 5-Values Used to Calculate SNR 

Parameter Value Units 

c 0.122π m^2 

lam 0.67 m 

Rtx ~1200*103 m 

Rrx ~1200*103 m 

B 1.0*106 Hz 

Tsys 300 K 

Gtx transmit gain dB 

Grx receive gain dB 

Pt 200*106 W 

Ncoh 1000  

  

 The passing of a satellite through one directed beam is shown in Figure 36 below. For each 

discrete point of its trajectory through the beam (shown as white dots), an interpolated magnitude 

representing gain is recorded. The corresponding “cut line” is shown in Figure 37. The range of this 

theoretical gain information was over the directional-sine angles (-9.2, 9.7) to (-3.3,8.5) each of which 

were associated with time as the object passed through the radiation pattern.  

 
Figure 36-Satellite Passing through One of the Five Radiation Patterns 
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Figure 37-Cut Line Representing the Recorded Gain of a Satellite Pass 

 

The plot in Figure 38 showed the first look at a comparison from the group's model to the actual 

received SNR data. Although there were many approximations used within the SNR equation and a 

difference in noise filtering, the plots line up within a reasonable degree of accuracy. 
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Figure 38-Calculated SNR for the Specified Pass 

Figure 38 shows two sets of data overlaid on top of one another. The white markers represent 

the theoretical calculated SNR and the red markers show the actual measured SNR. Note that the 

measured SNR has a noise floor around 10 dB, meaning any signal below this line was lost in ambient 

noise in the backscatter gain. Furthermore, a small side lobe in the SNR data can be seen in the 2-4 

second time frame. This lines up well with the position of the theoretical SNR side lobe in the same time 

frame.  

An additional factor that was discovered was that the trajectory information and pass time 

information has a degree of inaccuracy as the satellite's orbit changes slightly year round. This 

introduced a time delay between the two peaks of the actual SNR and theoretical SNR data. In order to 

account for the discrepancy, which resulted in the above graph, a correlation factor was computed to 

quantify a time shift to a best fit. After reviewing the data plots it was necessary to create statistical 

comparisons between the two.  

 Since there were many sources of error in this beginning model it was most important to 

compare two characteristics of each data set; their signal width and maximum peak value. The signal 

width was determined as half power from the local peak of the signal, and the maximum peak value 

being the maximum value of the local signal. Table 6 summarizes the statistical fit properties of all the 

five passes. Note that the above satellite plot images correspond to Beam 5. 
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Table 6-Computed Values for the Satellite Pass 

Beam Calculated BW [s] Measured BW [s] Percent Error Max Calculated 

Gain 

Max Measured 

Gain 

1 5.01819387108 4.73940515037 0.059 22793.7905893 14897.2851168 

2 3.3818248113 3.50606862222 0.035 24868.8571144 29892.7612335 

3 2.64545973142 2.96667391122 0.108 23603.0717693 40078.4086873 

4 2.34545976465 2.60606681939 0.100 23738.2812379 25669.695111 

5 2.50909560618 2.48182282785 0.011 24867.7022585 13145.2164142 

 

Table 6 shows a method to compare the simulated and measured results of the satellite pass 

test. As a proof of concept for code functionality, SNR computation, and system modeling, these proved 

to be acceptable results. A maximum percent error of 10% was found on two of the beams which imply 

a slight inconsistency with the model. These inconsistencies may be inherent in the model, but they 

could come from calibration issues, or inaccurate measurements. In some cases, this error was as low as 

3% and in others, 1% off.  

After comparing the results of the ideal array’s theoretical and measured SNR data, the same 

satellite pass test was conducted with sampled PFISR data. The model of the radiation pattern 

corresponding to the status of each AEU in the PFISR is depicted in Figure 39. This pattern will be 

confirmed if the theoretical SNR matches the measured SNR for its respective pass. The cut line 

corresponding to the satellite passing through the radiation pattern for this beam is shown in Figure 40. 

 
Figure 39-PFISR Radiation Pattern at the Time of the Satellite Pass 
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Figure 40-Cut Line Representing the Recorded Gain of a Satellite Pass 

 The calculated SNR corresponding to the recorded gain for this satellite pass, and the measured 

SNR data is displayed in Figure 41. Again, there is a nice visual representation of the noise floor at an 

SNR around 100. Additionally, the effect of a side lobe is seen at around 3 seconds for both SNR plots.  

 

Figure 41-Satellite SNR Comparison Incorporating PFISR Status Data 
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Table 7-Computed Values for the Satellite Pass with PFISR Status Data 

Beam Calculated BW [s] Measured BW [s] Percent Err Max Calculated Gain Max Measured Gain 

1 5.239404941 4.73940515 0.105 12077.31264 8588.616848 

2 3.506067765 3.506068622 2.45E-007 11879.90388 17233.843 

3 2.733339021 2.966673911 0.0786 10045.71439 23106.09573 

4 2.424248011 2.606066819 0.0698 9797.306415 14799.15127 

5 2.618186719 2.481822828 0.0549 11973.54901 7578.510197 

 

 When compared to the data to Table 6, the data shown in Table 7 demonstrates that by 

incorporating PFISR status data, the accuracy of the model increases. The results demonstrate that the 

unknown coefficients such as the number of coherent integrations, system temperature or range could 

be the potential sources of error in the SNR calculation. As such, the deviation between the calculated 

and measured data does not necessarily reflect errors in the array radiation pattern calculation. 
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Section 5: Deliverables 

Final Report 
 The first deliverable of the work is this report. It encapsulates all relevant information needed 

for a successful completion of the project. Additionally, it provides the methodology used for achieving 

the results and the impact that those results had. 

User Manual 
 The user manual can be found in Appendix B. In it, one can find an extensive description of the 

class structure used to replicate the modular design of the AMISR. Additionally, descriptions of each 

method, specific to a class or library, are included. These descriptions contain information about the 

input needed for the method to function and the output that is computed. Instructions for setting up 

the Python platform are included. This includes the interpreter used for execution and any additional 

packages needed for the code to be interpreted. 

Software Package 
 The software package was handed off to SRI’s Geospace Division for further iterations of the 

model and any bug corrections. The package was developed to be as robust as possible and include any 

method thought to be of interest to the Geospace Division. 
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Section 6: Conclusion and Recommendations 
The developed software package is able to model the radiation pattern for any AMISR system, 

while incorporating realistic factors like phase error, mutual coupling, and the inconsistent transmit 

power antenna elements. While many concepts were proven in the creation of the AMISR radiation 

pattern model, there are many options for continuation of this project. One option involves NEC 

modeling considerations, and the other involves the usability of the software package. 

More factors can be incorporated into the NEC model of the antenna. The Cross-Dipole radiates 

in all directions. It is possible that the ground plane (the caging that holds the panels on the array) may 

reflect radiation from the opposite direction back to the modeled direction.  Including the conductivity 

of the ground plane in the NEC model may account for this reflection, and increase the practicality of 

the model.  

It may be useful to investigate the difference between using an average radiation pattern for all 

elements and distinguishing between internal and external antenna elements. The effect of mutual 

coupling affects the radiation pattern of antennas differently depending on their location relative to 

other antennas. The one possible distinction is between internal elements (antennas completely 

surrounded by other antennas) and external elements (antennas at an edge of the panel). Depending on 

how drastic a difference there is between the two, incorporating the radiation pattern for external 

elements in combination with the radiation pattern for internal elements may augment the realism of 

the model. 

In addition to modeling considerations, the usability of the software package can be improved 

by developing methods that add convenience for the user. One feature that would add convenience 

would be a saving function. This function would give the user the ability to save a specific AMISR 

configuration as well as its radiation pattern. In doing so, the user will be able to load the configuration 

and radiation pattern at a later time to compare them to other configurations. This makes the ability to 

compare the performance of multiple AMISR systems much easier. 

 A graphical user interface would make all the methods readily available, while also intuitively 

connecting the methods to the related data visualization technique. For instance, after plotting the 

active elements, the fields of each antenna element could be edited by clicking on the element in the 

plot. Overall, this graphical user interface would further simplify the use of the software package, while 

keeping all of the functionality intact. While there are many opportunities for further improvements, the 

software package is robust enough to be applied to all AMISR systems, and can easily be used by SRI 

International for future upper atmospheric research.   
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Appendices 

Appendix A: Email Correspondance with Dr. Nicolls 
“Hi Landon, Patrick, and Jarred, 

 

I wanted to get back to you with some additional information and responses to your questions. 

 

 1) When you say “health” of each of the 4096 elements, what specifically are you referring to? Is it the power out of 

each?  

 

The AMISR system consists of 4096 antenna element units.  We measure things like the current, forward and 

reflected power, voltage, etc. of each of the elements. The primary criteria here will be (a) is the element on (is it 

receiving E&M waves) (b) is it transmitting and (c) how much power is it transmitting. From this info, we can 

compute the gain on transmit and receive, and the total backscatter gain. 

 

 2) Is backscatter gain the phenomenon of a transmitted signal’s strength when it is received after bouncing off of 

the ionosphere (or an object) and returning to the radar?  

 

Gain refers to the directivity (and efficiency) of an antenna - a large gain means that the antenna is very directive, or 

converts most of its input E&M waves to power in a specific direction.   Backscatter gain is useful for us because we 

detect volume scatter from all over the sky.  The total received power is a weighted function of the power from 

individual volume elements, with the weighting determined by the backscatter gain.  Backscatter gain is the average 

value of Grx times Gtx where Grx is the gain on receive and Gtx is the gain on transmit. For many applications, one 

can assume these are equal; for us, we may have a narrower beam on receive because of non-transmitting parts of 

the array.  I've attached a paper that describes backscatter gain more rigorously.  Take a look at the Introduction and 

let me know if you have any questions. 

 

3) One of our objectives lists software development to predict beam patterns. We assume that there are currently 

software packages available to model parts of the AMISR project. To what extent will we be incorporating Python 

with the software packages? 

 

We are working on putting together some basic software in Python to start you off.  This code will allow you to turn 

on and off specific elements and predict the beam pattern of the array. We are hoping you will develop this software 

further, and compare to observations.  We are also looking at more comprehensive electromagnetic modeling 

software to simulate the entire array, including mutual coupling effects. 

 

4) What deliverables do you expect from our team throughout our time? We are unsure of how to prioritize our 

objectives. And overall, what is the expected result/ outcome of these 8 weeks that we will present to SRI 

International? 

 

In the next couple of weeks, we'll put together a more detailed plan and schedule.  The main components of this 

project will be: 

(a) writing software to model the array gain 

(b) data analysis of calibration spheres that fly through the beam pattern to compare model and observation 

(c) analysis of many sphere passes to build up a picture of the far field radiation pattern of the array 

(d) analysis of radio-star tracks to determine the receive gain of the array 

** (e) potentially modeling the array in a more comprehensive electromagnetics code. 

One goal of this project is to actually measure the far-field radiation pattern of our antenna, and show that we 

understand it. 

Another is to provide a metric for calibration - when we lose portions of the array to failures, we'd like to predict in a 

systematic way the effect on the beam pattern and backscatter gain.  We are hoping the results can provide us with 

this information.   

 

Regarding resources and computing, you will be working in our offices in Menlo Park in the G building on SRI's 

campus.  We will provide you with a computer to use while you are here, which we hope to set up with Python and 



45 
 

other tools that you need. Because we will be mainly using Python, it seems easiest to have you use a Linux machine 

- do you have any objections to that? 

 

Does Friday the 6th, 3 PM PST still work for an initial telecon? 

 

Thanks, 

Mike” 
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Appendix B: AMISR Modeling Software Package User Manual 
User Manual Presented by: 

Landon Airey 

Patrick Sullivan 

Jarred Velazquez 

 

To: 

SRI International’s Geospace Division 
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Set Up and Initialization 
The software was written in Python and interpreted using Python 2.7.3.  

The organization of the code represents the modular setup of the AMISR. 

There is a class for: the Face, the Array, the Panel and the AEU. Object(s) of each class, depending on the 

configuration settings specific to the AMISR being modeled and established in the .ini files, are used as 

dictionaries. When a Face is finally initialized with all relevant data, it becomes the input of the Gain 

class. Figure 42Error! Reference source not found.Error! Reference source not found. shows the 

hierarchical flow of the code.  

 

 
Figure 42-Flow Chart of the AMISR Modeling Package 
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Imported Packages 
The following Python packages are imported into classes. 

 

Package Application 

sys This is used for path directing and system specific 
parameters and functions. 

logging Logs run time information.  

LoggerInit.LoggerInit Keeps track of code processes for the purpose of 
future debugging. 

ConfigReader.ConfigReader Reads in information from the configuration files. 

matplotlib.pyplot Contains plotting tools for visual representations. 

numpy Contains scientific computing tools. 

scipy  Contains scientific computing tools. 

time Contains functions to record the time it takes for 
software processes. 

re Regular expression matching operations. 

random Generates random values. 

tables Pulls information from HDF to be stored into table 
format. 

PlotTools* Plotting techniques specific to AMISR modeling. 

CoordConv* Coordinate conversion techniques specific to 
AMISR modeling. 

  

*Produced by the WPI team working with SRI. 
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Class-Specific Methods 
All classes are initialized using the “Initialize” method. Generally, the Initialize() pulls data from the .ini 

files stored within the config folder of ArrayModeling. Initialize() is used to update various fields with 

other methods specific to that class. Additionally, Initialize() cascades through the hierarchy of the code 

to produce the dictionaries relative to each class as shown in Figure 42. 

Gain Class 
The gain class is used to calculate the gain of a given AMISR object.  

Initialize() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will initialize the Gain class by pulling the element gain data from .npy files and 

the dy, dx element spacing from the Panel class. 

gainCalcRange(steerAngles, elazFlag, degFlag, dth, tht, trunc, phaseErr) 

Inputs:    steerAngles (list of tuples, tupleOrder: (thx, thy)) 

 elazFlag (True/False) 

 degFlag (True/False) 

 dth (float) 

 tht (float) 

 trunc (int) 

 phaseErr(int)                                           

Outputs:   gain (array) 

 txGain (array) 

 rxGain (array) 

 thxr (array) 

 thyr (array) 

Summary:  This method computes the radiation pattern of an array input into the gain class. It requires a 

either a tuple (or list of tuples) corresponding to the steer angle (or list of steer angles) 

which the user wishes to compute the gain for. The user denotes whether the angle is input 

as an Azimuth-Elevation pair (elazFlag) and if it is in degrees (degFlag). The computed 

angular resolution is defined by dth. The viewing window is 2*tht. The variables trunc and 

phaseErr are used for incorporating the effect of phase error due to the AMISR’s hardware 

and software PCU limitations. For a n steering angles, arrays of length n are computed for 

the arrays: gain, txGain, rxGain, thxr, thyr. Gain is the array which contains the radiation 

pattern of a given Face object in a specified look angle. Thxr, thyr are the meshgrid arrays 

needed to visually represent the computed gain. This method calls gainCalc() n times. 

gainCalc (anglePair, elazFlag, degFlag, dth, tht, trunc, phaseErr) 

Inputs:    steerAngles (tuple: (thx, thy)) 

 elazFlag (boolean) 

 degFlag (boolean) 

 dth (float) 

 tht (float) 

 trunc (int) 

 phaseErr(int)                                           

Outputs:   gain (array) 

 txGain (array) 
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 rxGain (array) 

 thxr (array) 

 thyr (array) 

Summary:  This method computes the radiation pattern [in dB] of an Face object input into the gain 

class. If elaz is true, the angle pair is converted to Directional Sine coordinate system. 

Gaindb, txGain, rxGain, thxr and thyr are returned. 

 

find3dB(Garrdb, thxr, thyr, steerAngle, degFlag) 

Inputs:    Garrdb (array returned from either gainCalc ()or gainCalcRange()) 

 Thxr (meshgrid array) 

 Thyr (meshgrid array) 

 steerAngle (tuple) 

 degFlag (Boolean) 

Outputs:   gain (array) 

 txGain (array) 

 rxGain (array) 

 thxr (array) 

 thyr (array) 

Summary:  Given a radiation pattern array (Garrdb), its meshgrid arrays (thxr, thyr), and steerAngle, the 

main lobe is found. The steerAngle can be input as either degrees or radians. If degFlag is 

true, the angle is converted from degrees to radians. The values returned are the RMS radius 

(int) of the main lobes half power beam width, distanceRange and angle.  A plot is generated 

which plots a dotted line of the area encapsulating the half power beam width of the main 

lobe. 

findLocalMax(G, thxr, thyr,magFlag) 

Inputs:    G (array returned from either gainCalc ()or gainCalcRange()) 

 Thxr (meshgrid array) 

 Thyr (meshgrid array) 

 magFlag (boolean) 

Outputs:   maxGinfo (list) 

Summary:  The local maxima of the first side lobes of a radiation pattern array’s (G) are found. Their 

locations and magnitude are passed to findLocMax_Contour() as well as magFlag which will 

center the magnitude’s value on its respective lobe.  

interpolateElementGainLookup(elementGainLookup, theta, phi) 

Inputs:    elementGainLookup (array) 

 theta (float) 

 phi   (float) 

Outputs:   elementGain 

Summary:  The element gain for a given theta, phi combination is interpolated from the 

elementGainLookup table which is loaded in Initialize() as a numpy array from the NEC 

modeling simulation files. 
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satellitePass(dth, tht, trunk, phaseErr) 

Inputs:    dth (float) 

 tht (float) 

 trunk (int) 

 phaseErr (int)  

Outputs:   compareStats (array) 

Summary:  This method reads in orbit pass data using OrbitReading(). The relevant information is taken 

from the files produced to replicate a satellite pass and compute the SNR based off of gain 

calculated with gainCalc. Necessary substeps have been explained within the method. A 

visual representation of the satellite pass is produced for each direction the beam is pointed 

in in order to track the satellite. compareStats, an array, is returned which contains measured 

and calculated: time stamps, percent errors and maximum calculated SNR. compareStats is 

an array of length n. n corresponds to the number of discrete steerings of the beam to track 

the satellite. satellitePass calls SNRCompareBW() to calculate the difference in values 

between measured and calculated values. 

SNRCompareBW(calcGain, MeasuredSNR, BeamTime, Range) 

Inputs:    calcGain (list) 

 MeasuredSNR(list) 

 BeamTime (list) 

 Range (list) 

Outputs:   theoreticalTime, actualTime, percentErr, maxCalc, maxMeas 
Summary:  This is a helper function used to calculate the difference between the calculated SNR data and 

the measured SNR data. This method calls smooth(). Smooth is used to filter an array so that 

it can be interpolated more smoothly. 

 

smooth(x) 

Inputs:    x (list) 

Outputs:   x (list) 
Summary:  This method will refit a data sample by “smoothing” the data within it. The method was 

developed by another and further documentation can be found at 

wiki.scipy.org/Cookbook/SignalSmooth. 

Face Class 
The Face class selects the specific AMISR face being modeled (e.g. “PFISR”, “RISR-N”, “RISR-C”) and 

creates a dictionary of type ArrayModel. 

Initialize() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will initialize the Face class by creating the dictionary of ArrayModels. This calls 

ArrayModel's method Initialize(), self.updatePos(), self.updateActivity, self.updateJP_id().   

updatePos() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will update the coordinate position of the Face “radar” based on the .ini 

configuration file. This method calls ArrayModel’s method updatePos(). 
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updateActivity () 

Inputs:    stat (integer 1 or 0)                                           

Outputs:   N/A 

Summary:  The method will update the Tx and Rx fields in the AEU class based on the input status field. 

This method calls ArrayModel’s method updateActivity(). 

 

updateJP_id() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will update the ID fields of the ArrayModel class. 

 

plotPan (xcoord, ycoord) 

Inputs:    xcoord, ycoord (integers)                                           

Outputs:   N/A 

Summary:  The method will plot the position of the AEUs of a specific panel (selected by x/ycoord). This 

calls ArrayModel’s method plotPan(). 

plotActiveElts () 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will plot the position of the AEUs of the entire face “radar”. Each AEU will have a 

color associated to it relative to the Tx/Rx power set to it from either the .ini configuration or 

.hdf data (taken from the AMISR using StatusPullRISR()). This method calls on PlotTools* 

plotActiveEltsHelp() function. 

printStatus () 

Inputs:    N/A 

Outputs:   N/A 

Summary:  The method will print which Face has been created. 

 

StatusPullRISR () 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will update the Tx and Rx fields in the AEU class based on the value associated 

to it in the .hdf data files. This method calls ArrayModel’s StatusPullRISR(). 

ArrayModel Class 
The ArrayModel class selects the array information specific to the AMISR face being modeled.  

Initialize() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will initialize the ArrayModel class by creating dictionaries of PanelModel’s. 

This calls PanelModel’s method Initialize() for each Panel, specified by Row and Column 

location, of the array.  
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updatePos() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will update the coordinate position of the specific panel based on the .ini 

configuration file. This method calls PanelModel’s method updatePos(). 

updateActivity(stat) 

Inputs:    stat (integer 1 or 0)                                          

Outputs:   N/A 

Summary:  The method will update the Tx and Rx fields in the AEU class based on the input status field 

and the jetStatus field in the .ini file corresponding to the specific panel. This method calls 

PanelModel’s method updateActivity(). 

updateJP_id() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will update the ID fields of the PanelModel class. It selects the jet power 

associated, “ind”, with the specific panel (classified by row and column) and calls on 

PanelModel’s updateJP_id(ind). 

plotPan(xcoord, ycoord) 

Inputs:    xcoord, ycoord (integers)                                           

Outputs:   N/A 

Summary:  The method will plot the position of the AEUs of a specific panel (selected by x/ycoord). This 

calls PanelModel’s method plotPan(). 

randomOff(numPans, numAEUs) 

Inputs:    numPans, numAEUs (integers)                                           

Outputs:   N/A 

Summary:  This method will randomly turn off the number of panels and/or AEUs input by the user. This 

calls PanelModel’s updateActivity() to disable the amount of panels and AEUs specified as 

input. 

StatusPullRISR() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  This method pulls data from the h5 file that contains status data (AEU tx/rx power 

levels/statuses) of an AMISR array. 

printStatus () 

Inputs:    N/A 

Outputs:   N/A 

Summary:  The method will print which ArrayModel has been created. 
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PanelModel Class 
The PanelModel class selects the Panel level AEU information to successfully model a specific AMISR 

face. 

Initialize(row, column) 

Inputs:    row, column (integers) 

Outputs:   N/A 

Summary:  The method will initialize the AEUModel class by creating dictionaries of AEUModels. The 

values for the number of AEUs and dy-dx element spacing are pulled from the .ini file. 

This calls AEUModel’s method Initialize() for each AEU, specified by element number in the 

panel.  

updatePos() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will update the coordinate position of the specific AEU based on the configuration 

specifications (dy-dx). This method calls AEUlModel’s method updatePos(x,y). 

updateActivity(stat) 

Inputs:    stat (integer 1 or 0)                                          

Outputs:   N/A 

Summary:  The method will update the Tx and Rx fields in the AEU class based on the input status field. 

This method calls AEUModel’s method updateActivity(stat). 

updateTx(stat) 

Inputs:    stat (integer 1 or 0)                                          

Outputs:   N/A 

Summary:  The method will update the Tx field in the AEU class based on the input status field. This 

method calls AEUModel’s method updateActivity(stat). 

updateRx(stat) 

Inputs:    stat (integer 1 or 0)                                          

Outputs:   N/A 

Summary:  The method will update the Rx field in the AEU class based on the input status field. This 

method calls AEUModel’s method updateActivity(stat). 

randomOff(numAEU) 

Inputs:    numPans                                      

Outputs:   N/A 

Summary:  This method will randomly turn off the number AEUs input by the user. This calls AEUModel’s 

updateActivity(stat) to disable the amount of panels and AEUs specified as input. 

updateJP_id(id) 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will update the ID fields of the PanelModel class. 
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plotPos() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  This method will plot the position of the AEUs on the entire face of the radar. 

plotPan() 

Inputs:    N/A                                           

Outputs:   N/A 

Summary:  The method will plot the position of the AEUs of a specific panel (selected by x/ycoord).  

printStatus () 

Inputs:    N/A 

Outputs:   N/A 

Summary:  The method will print which Panel has been created and how many AEUs it has. 
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AEUModel Class 
The AEUModel class is the lowest level in the AMISR hierarchy.  

Initialize(element) 

Inputs:    element (integer) 

Outputs:   N/A 

Summary:  The method will initialize the AEUModel. 

updatePos(x,y) 

Inputs:    x,y (floats)                                           

Outputs:   N/A 

Summary:  The method will update the coordinate position of the specific AEU based on the configuration 

specifications (dy-dx). 

updateActivity(stat) 

Inputs:    stat (integer 1 or 0)                                          

Outputs:   N/A 

Summary:  The method will update the Tx and Rx fields in the AEU class based on the input status field.  

updateTx(stat) 

Inputs:    stat (integer 1 or 0)                                          

Outputs:   N/A 

Summary:  The method will update the Tx field in the AEU class based on the input status field.  

updateRx(stat) 

Inputs:    stat (integer 1 or 0)                                          

Outputs:   N/A 

Summary:  The method will update the Rx field in the AEU class based on the input status field.  

updateTxPower(power) 

Inputs:    stat (integer 1 or 0)                                          

Outputs:   N/A 

Summary:  The method will update the Tx field in the AEU class based on the input power field based on 

the hdf data. 

updateAEUonPan(x,y) 

Inputs:    x,y (float)                                          

Outputs:   N/A 

Summary:  The method will update the AEU position relative to a panel.   

printStatus () 

Inputs:    N/A 

Outputs:   N/A 

Summary:  The method will print which AEU has been created. 
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Libraries Containing Helper Functions 

CoordConv Library  

elaz2Dir (elazPair, degFlag) 

Inputs:    elazPair (tuple or list of tuples) 

 degFlag (Boolean) 

Outputs:   dirPair (tuple or list of tuples) 

Summary:  The function will take an elevation-azimuth angle (deg or rad) and return a Directional-Sine 

thetaX, thetaY tuple pair in radians. 

dir2elaz (dirPair, degFlag) 

Inputs:    dirPair (tuple or list of tuples) 

 degFlag (Boolean) 

Outputs:   elazPair (tuple or list of tuples) 

Summary:  Converts Directional-Sine thetaX, thetaY tuple pair to elevation , azimuth Polar-Coordinate 

pair in radians. 

Geo2faceElAz(geoElAzPair, degFlag) 

Inputs:    geoElAzPair (tuple or list of tuples)  

Outputs:   faceElAzPair (tuple or list of tuples) 

Summary:  This function will convert geodetic (earth) relative points to PFISR-face relative points. This 

calls on Rotate_PFISR(). 

Rotate_PFISR () 

Inputs:    N/A 

Outputs:   N/A 

Summary:  The method will produce the coefficients needed in the conversion from geodetic to face-local 

points. These coefficients are specific to the PFISR face. 
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PlotTools Library 

plotActiveEltsHelp(numRows, numCols, normalized, dx, dy, yadj, x, y, xRemoved, yRemoved, colorvals) 

Inputs:    numRows (int) 

 numCols (int) 

 normalize() 

 dx (float) 

 dy (float) 

 yadj(float) 

 x (list) 

 y (list) 

 xRemoved (list) 

 yRemoved (list) 

 colorvals (array) 

Outputs:   N/A 

Summary:  The method will generate a plot of all AEUs in an AMISR. Each AEU is represented by a 

hexagon filled with a color corresponding to the power that that AEU is transmitting at. 

makeHexagon(x0,y0, dx, c) 

Inputs:    x0 (float) 

 y0 (float) 

 dx (float) 

 c (string) 

Outputs:   hexagon (patch object of type hexagon for plotting) 

Summary:   The function will produce a correctly spaced and shaped hexagon which is plotted. This is a 

helper function. 

gainContour (Garr, thxr, thyr, minimum, maximum, maskFlag) 

Inputs:    Garr (array) 

 thxr (array) 

 thyr (array) 

 minimum (int) 

 maximum (int) 

 maskFlag (Boolean)  

Outputs:   N/A 

Summary:  The method will produce a contour plot to illustrate dB gain in the form of 

color, corresponding to thx and thy coordinates. The colorbar range will be set to the min 

and max of the Garr unless specified by user. The maskFlag, if set to True, will mask the 

imaginary parts of Garr and will show up as white space in the contour map. 

contourCutLine(dth, tht, thxr, thyr, thx0, thy0, alpha, Garr) 

Inputs:    dth (float) 

 tht (float) 

 thxr (array) 

 thyr (array) 

 thx0, thy0 (float) 

 alpha (float) 

 Garr (array) 

Outputs:   N/A 
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Summary:   dth is the angular resolution in degrees, tht is the viewing window of the contour plot (-

tht,tht in width). Thxr, thyr are the meshgrid coordinates. thx0, thy0 are the steering angle 

of the main lobe. alpha is the cut angle, Garr is the calculated gain array.  

 

The user defines alpha which is the cutting angle through the origin (thx0, thy0). The points 

of intersection between this line and the masking circle of an imaginary boundary in the gain 

matrix is found using the cutLineFind() function. Those points of intersection are used to 

define x,y indices along the line. The corresponding magnitude along the line is found by 

interpolating through the Garr matric. The resulting gain data is plotted verses the thx, thy 

pairs and the corresponding contour plot with a superimposed line representing the cut is 

also plotted.  

contourCutCustom (dth, tht, thxr, thyr, thxylist, Garr) 

Inputs:    dth (float) 

 tht (float) 

 thxr (array) 

 thyr (array) 

 thxylist (list) 

 Garr (array) 

Outputs:   Ginterp (array) 

Summary:   The function produces an interpolated gain array of a satellite pass. This information is used 

to track a satellite through the gain of an array and to visually represent that trajectory. 

lineIntersectSquare(x0,y0, alpha, boxLen) 

Inputs:    x0 (float) 

 y0 (float) 

 alpha (float) 

 boxLen (int) 

Outputs:   coords (list of tuples) 

Summary:   This helper function finds the intersection points between a line and a square, where the line 

is defined by a point and an angle. The coords returned are the indices of the positions 

where the cut line intersects with the window of the contour plot. 

lineIntersectCircle(x, y, theta, r, xorigin, yorigin) 

Inputs:    x (float) 

 y (float) 

 theta (float) 

 r (float) 

 xOrigin (float) 

 yOrigin (float) 

Outputs:   coords  (list of tuples) 

Summary:   The helper function finds the intersection points between a line and a circle, where the line is 

defined by a point and an angle and the circle is defined by an origin point and radius. The 

coords returned are the indices of the positions where the cut line intersects with the circle. 

satellitePass_SNRplot(BeamSNR, SatSNR, BeamTime, SatTime) 

Inputs:    BeamSNR (array) 

 SatSNR (array) 

 BeamTime (array) 

 SatTime (array) 



60 
 

  

Outputs:   N/A 

Summary:   This method overlays SNR data for both the calculated model and actual collected data 

versus time. 

find3db_Contour(thxr, thyr, Garrdb) 

Inputs:    thxr (array) 

 thyr  (array) 

 Garrdb (array) 

Outputs:   CS (plot handle) 

Summary:   The function produces a contour plot representing the gain pattern of the radar. The main 

lobe half power beam width is illustrated by the dotted line. 

findLocMax_Contour(x, y maxGinfo, magFlag) 

Inputs:    x (list) 

 y (list) 

 maxGinfo (array of tuples) 

 magFlag (Boolean) 

  

Outputs:   N/A 

 

Summary:   Plots the location of the first side lobes maximum. If the user chooses a magFlag true, the 

magnitude will be displayed centered at its location. Otherwise, a circle marker will be 

displayed at the location of maximum gain. 
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Appendix C: Coordinate Systems 
Coordinate System Conversion And Usage: 

 

 Radar systems and more specifically 

phased array radar system require engineers 

to use many different coordinate systems. It 

is important to establish a coordinate system 

that makes sense to use when representing 

data. For example, when referring to the 

direction of the main lobe of the radar system 

it would make sense to discuss it in terms of 

Azimuth and Elevation coordinates. It would 

not, however, be entirely useful to discuss the 

lobe with its normalized direction vector in 

terms of Cartesian coordinates X, Y, Z. This 

section will serve as a review about 

coordinate systems and their use within 

modeling the AMISR [17]. 

 Rectangular, or Cartesian, 

coordinates simply expand the XY plane to 

include the Z dimension such that making 

one coordinate a constant establishes a 2d 

plane with the other two components. This is illustrated in the diagram which shows a three-

dimensional surface where each face is 

a plane made up of two coordinate 

components. This coordinate system is 

the most basic of the three used in this 

project. However, most all 

computation and three-dimensional 

data plotting is done relative to X,Y,Z 

locations [17].  

 The next system widely used in 

this industry is spherical, or Azimuth & 

Elevation, coordinates. Points in space 

are determined by first its angle of 

direction at the ground plane (Azimuth: 

φ), shown in the diagram in the XY 

plane. Next the angle above the ground 

plane (Elevation: θ, sometimes called 

zenith) is determined. Lastly the 

magnitude of distance away from the 

origin is determined by the coordinate 

r. This coordinate system is useful for 

visualizing wave propagations from 

Figure 43-Cartesian Coordinate System 

Figure 44-Polar Coordinate System (Azimuth-Elevation) 
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origins outward into space and is well suited for demonstrating the phenomena of radar systems. More 

specifically, far field gain patterns of phased array radar systems, like the AMISR, may be described in 

terms of Azimuth, Elevation, and Transmit Gain [dBi]. Other uses include describing orbital patterns of 

satellites and target spheres. Known trajectory paths of these objects are then used for the AMISR to 

calibrate it's focal point from observing the Transmit Gain and Receive Gain [17]. 

 The third coordinate system used in modeling the AMISR is called Directional-Sine. In a three-

dimension space, with X, Y, Z axis for reference, there are two angles of importance. Angle Beta: β is 

defined as the angle between the y-axis and vector to the point of interest in space. The next angle is 

Alpha: α which determines the angle from the x-axis to the point vector. Lastly to define an absolute 

point in space, the coordinate r determines the distance the point is away from the origin. Note that 

these values by themselves can only represent positions in the upper hemisphere. The reason being that 

a set of angles  α and  β satisfies a line direction above the XY plane (positive Z value) and the angle pair 

can satisfy a mirrored line direction below the XY plane (negative Z value). To avoid this discrepancy 

usually an angle Gamma: γ defines the angle from the z-axis to the point vector. However, there is little 

use to model radiation in the lower hemisphere (for example, this region corresponds to the area below 

the AMISR face) other than determining if its healthy to walk underneath the phased array. Therefore, 

the angles used within the calculations for the AMISR with this coordinate system exclude the γ 

coordinate. Furthermore, when talking about the AMISR, the two coordinate angles describe position 

off bore sight as Theta-x, Theta-y. The relation between this convention and the classical Directional-

Sine system is compared by: 90deg - Theta-x = angle α and 90deg - Theta-y = angle β. The r coordinate 

associated with that angle pair is the radius or radiation gain in dB referring to either the transmit or 

receive operation [17]. 

  

 

 Now with all these coordinate 

systems defined it is important to be able to 

translate between them. By relating the 

Directional-Sine angles to Cartesian vectors 

we get the following: 

 

xhat = sin(Theta-x) 

yhat = sin(Theta-y) 

 

(x^2 + y^2 + z^2 = 1) therefore: 

zhat = sqrt(1 – (x^2 + y^2)) 

 

 The following relates the Cartesian 

coordinates to Azimuth, Elevation: (φ, θ) 

coordinates. By using these relations one can 

translate between all three types of 

coordinate systems. 

(tan(φ) = yhat/xhat + pi/2) therefore: 

φ = arctan(yhat/xhat + pi/2) 

 

Figure 45-Directional Sine Coordinate System 
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(cos(θ) = zhat) therefore: 

θ = arccos(zhat) 

 

 

Pictures are taken from [17]  

 

 The fourth coordinate system used in modeling the AMISR is perhaps the most important. It’s 

called the Geodetic Azimuth-Elevation coordinate system. The Geodetic system is used frequently in the 

scientific RADAR community as it describes locations of events relative to a point on the Earth’s surface. 

The world is not a perfect sphere, and because of that non-ideal characteristic, drawing a line from the 

center of a tangential plane on the Earth’s surface towards the center of the earth will most likely not 

actually hit the “center”. The figure below illustrates this important characteristic of the Geodetic 

Coordinate system. First a point on the Earth’s surface has been established as a relative position to 

work from Then Geodetic Coordinates use an Azimuth-Elevation system (described previously) with that 

point as a center of origin. Note thatn when representing the x,y,z axis for the Azimuth Elevation system, 

the x axis points in the direction towards the north pole (but tangent to the surface), y points west (but 

again tangent), and z points up (normal).  

 

 
Figure 46-Geodetic Coordinate System 

 

In the case of the AMISR, Satellite Pass information and steering angle information is stored as 

Geodetic relative coordinates. In order to compute Gain equations and other quantities relative to a 

particular AMISR Face, one needs to convert from Geodetic Azimuth-Elevation to Face Relative Azimuth-

Elevation. Below is an image which describes the location of the PFISR Face in relation to a Geodetic 

Coordinate system. The axis of the PFISR relative system is rotated on the Azimuth plane by 15 degrees 

from Geodetic Coordinates and then tilted downwards in 16 degrees Elevation. Below is an image which 

shows the Geodetic Coordinate System (solid line), overlaid with the PFISR Local Coordinate System 

(dotted line). [21] 
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Figure 47-PFISR Coordinate System 

 

 In order to convert between the two systems one must use a transformation matrix that takes 

x,y,z Geodetic Coordinates and translates them to x,y,z PFISR Relative Coordinates. These x,y,z 

coordinates in either the Geodetic or Face Relative system can then be computed as Azimuth-Elevation 

points, or Directional Sine points but it is important to have a solid understanding of the x,y,z 

transformation from Geodetic to Face Relative. Below shows the transformation matrix from Face 

Relative to Geodetic Relative. 

 

Step1) Rotate azimuth by +15 deg (clockwise) [z axis fixed here, x and y changes] 
Step2) Tilt elevation by -16 deg [newer y axis fixed here z and newer x changes] 
 
R_FG1 describes step 1 
R_FG2 describes step 2 
 

R_FG1 = scipy.array([[ cos(AZ_ROT),-sin(AZ_ROT),     0     ], 

                     [ sin(AZ_ROT), cos(AZ_ROT),     0     ], 

                     [      0,           0,          1     ]]) 

 

 

R_FG2 = scipy.array([[ cos(E_TILT),      0,    -sin(E_TILT)], 

                     [      0,           1,          0     ], 

                     [ sin(E_TILT),      0,     cos(E_TILT)]]) 

 

R_FG describes R_FG1 dotted with R_FG2 
To convert xg,yg,zg (Geodetic x,y,z) to  xf,yf,zf (Face x,y,z) use R_FG 
 
xf = xg*R_GF[0,0] + yg*R_GF[0,1] + zg*R_GF[0,2] 

yf = xg*R_GF[1,0] + yg*R_GF[1,1] + zg*R_GF[1,2] 
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zf = xg*R_GF[2,0] + yg*R_GF[2,1] + zg*R_GF[2,2] 

 


