
MQP-BC-DSA-0804 

 

 

Specific Inhibition of Rac1 Activation 

 
 

 

A Major Qualifying Project Report 

Submitted to the Faculty of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for the 

Degree of Bachelor of Science  

in 

Biochemistry 

 

by 

 

_________________ 

Scott Beaurivage 

 

April 27, 2006 

 

 

APPROVED: 

 

____________________     ____________________ 

Stephen Miller, Ph.D.      David Adams, Ph.D. 

Biochemistry and Mol Pharmacology   Biology and Biotechnology 

Umass Medical Center     WPI Project Advisor 

Major Advisor 



 2 

ABSTRACT 
 

 

 Rac1 is a member of a family of small GTPases that are primarily responsible for 

cellular motility and morphology. Activation of Rac1 by Rac-specific guanine nucleotide 

exchange factors (GEFs) is thought to be important for the metastasis of cancer cells. The 

scope of this project was to synthesize a minimal extended peptide sequence that would 

block interaction between Rac1 and the Rac1-specifice exchange factor GEF-H1. 

Inhibition of Rac1 activation by Rac-specific GEFs would be a useful tool for the study 

of Rac-mediated cellular processes and may ultimately result in cancer therapeutics.  
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BACKGROUND 
 

 

 

GTPases 

 

 GTPases are a large family of proteins that hydrolyze guanosine triphosphate 

(GTP) into guanosine diphosphate (GDP).  The function of a GTPase at any given time is 

determined by the nucleotide to which it is bound. When a GTPase is bound to GDP it is 

in its “off” form and is unable to bind effectors. Binding GTP turns it “on” and allows 

effectors to bind. Most effector proteins are autoinhibited; the binding of these proteins to 

GTP bound GTPases activates the effector and enables it to perform biological effect 

such as rearrangement of the actin cytoskeleton. The switch between active and inactive 

forms can be seen by certain conformational changes that take place when the protein 

binds GTP. The process of switching GDP for GTP is mediated by a guanosine 

nucleotide exchange factor (GEF). The GEF allows the transfer of a GTP to replace GDP 

so that the GTPase is effectively reloaded. At this point the GTPase is free to hydrolyze 

the GTP, a process helped along by GTPase activating proteins, or GAPs. GAPs increase 

a GTPases’ intrinsic hydrolysis rate by forming a more stable transition state.  

 GTPases of the Ras superfamily contain two distinct regions that change 

conformation upon binding GTP. These regions are known as switch I and switch II. 

Switch I is an extended structure that participates in binding Mg
2+
. The conformation of 

switch II is a loop attached to a helix (Fig. 1, left panel, white and red) [11]. These both 

undergo conformational changes that facilitate binding of effectors. When bound to GDP, 
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the switches are flexible and loose. After binding GTP, however, the structures become 

rigid and well defined (Fig. 1, right panel). 

 

 

Figure 1: Cdc42 (left panel) and Cdc42 in complex with the GTPase binding domain of ACK, an 

effector protein  (right panel).   Switches I & II are both shown in white (left) and red (right).  White 

represents random coil structure, red represents fixed structure. From Owen et al [8]. 

 

Between switch I and II in Rac are two β strands, β2 and β3 (See Fig. 2).  These β 

strands have an extended conformation that resembles a flat sheet. Since the 

GTPase/effector interface has this specific conformation a mimicking molecule that 

displays this type of structure would be a good candidate for competitive inhibition. 
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Figure 2: Switches and ββββ-sheets of Rac1.  Switch I shown in red; ββββ2 shown in orange; ββββ3 shown in 

yellow; switch II shown in blue; rest of Rac1 shown in gray. 

 

Rho GTPases 

 The Rho family is comprised of 20-30 kDa GTPases and includes isoforms of 

Rho, Rac and Cdc42 among others. Rho GTPases have a large variety of functions in the 

cell including organization of actin filaments, signal transduction pathways, and making 

up components of larger complexes such as NADPH oxidase. This variety of functioning 

is due to the fact that there are approximately 22 Rho family GTPases, 80 GAPs and 80 

GEFs. The three GTPases mentioned in Figure 3 (Rho, Cdc42, and Rac) are among the 

most thoroughly studied of the Rho family. The number of biological effects that any one 

GTPase may have shows the importance of specificity relating to these molecules. For 

example, Cdc42 and Rac have approximately 70% sequence homology [3]. It is not 

surprising that they share several effectors, exchange factors and GAPs. Despite their 
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similarities, there are also regulatory molecules that react specifically with either Cdc42 

or Rac. These are the molecules of the most interest in this study.    

 

Figure 3: Biological Pathways Induced by Various Rho Family Members.  The table shows various 

pathways that are regulated by Rho, Rac and Cdc42 [1]. 
 

 As can be seen from Figure 3 Rac and Cdc42 are very similar in function yet still 

display some specificity, for example only Rac is present in NADPH oxidase and only 

Cdc42 shows an effect on cell polarity. One important role of Rac and Cdc42 is their 

effects on the actin cytoskeleton. Rearrangements of the actin cytoskeleton allow for 

cellular motility [12]. Lamellipodia and filopodia are cellular protrusions of the 

cytoskeleton which allows for cell motility; these are controlled by Rac1 and Cdc42 

respectively. Cellular motility is important to biological process such as wound healing 

and angiogenesis. Metastasis, the movement of cancerous cells through tissues, relies 

heavily on lamellipodia/filopodia formation. This identifies Rac and Cdc42 as possible 

targets for prevention of cancer metastasis [14].  

 

Guanosine Nucleotide Exhange Factors (GEFs) 

 There are at least three GEFs that interact specifically with Rac and not Cdc42. 

These are of particular interest considering there are such similarities between Rac and 

Cdc42’s binding interactions. The GEFs are TiamI, Trio and GEF-H1 (which also binds 

Rho A, B and C). Each of these GEFs contains a certain sequence homology that has 

been shown to influence binding specificity and catalytic function. This similarity in 
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sequence is composed of two domains, the Dbl homology (DH) and the pleckstrin 

homology (PH). The PH domain almost always follows the Dbl domain, and the two 

together have been found to be the minimal sequence required for full GEF functionality 

[3,15]. While the DH domain seems to be the necessary domain for nucleotide exchange, 

the PH domain seems to both enhance the exchange process and specificity as well as 

influence cellular localization [10]. The crystal structure of the DH/PH domain of TiamI 

in complex with Rac1 has recently been published [13]. From this crystal structure one 

can identify the points of interaction between the two proteins. 

  

 

Figure 4: Crystal Stucture Model for the Interaction of Rac1 with GEF TiamI.  The DH domain of 

TiamI (yellow) shows several contacts with Rac1 (red). The PH domain (blue) shows no visible 

contacts. 

 

Figure 4 shows that there is no interaction between Rac1 and the PH domain (blue) of 

TiamI and there is also only a small area that interacts with the DH domain (~residues 

52-60 of Rac1) .  
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Rac Specific GEF Inhibitory Peptide 

 Gao et al. set out to determine which sections of Rac1 are necessary for 

specificity and binding to Tiam1, Trio and GEF-H1. This study was done before the 

crystal structure of Rac1/Tiam1 was published so it was not clear what sections of the 

proteins were interacting. They began their study by running simple assays to determine 

GEF nucleotide exchange activity on Rac1 and Cdc42. Figure 4 shows their results which 

clearly indicate that all their GEFs bind specifically to Rac1 only.  

 

Figure 5: Results of GEF binding specificity. Decrease in fluorescence shows exchange of MANT-

GDP for GTP and therefore indicates GEF activity. From Gao et al [3]. 

 

Due to the amount of evidence that shows switch I & II to be of high importance to 

binding, the researchers next made point mutations to both regions. They found that 

mutations of certain residues in both sections resulted in the inability to bind GEFs and 

the loss of ability to exchange nucleotide once bound. 

 Although these residues are important to GEF binding and activity, it is not likely 

that they allow for specificity between Rac and Cdc42. The reason for this is that switch I 

& II are highly conserved across most GTPases, especially between Rac and Cdc42. The 

only difference between switch I & II of Rac and Cdc42 is at residue 33; in Rac it is an 

isoleucine, in Cdc42 a valine, a highly conservative substitution [7]. To test for residues 
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that determine specificity a series of Rac1/Cdc42 chimeras (Fig. 6) were tested for their 

ability to bind GEF’s. The assumption was that any chimera that contained the necessary 

sequence from Rac1 would bind GEFs. 

 

 

Figure 6: Schematic representation of tested Rac1/Cdc42 chimeras. The dark areas 

indicate the amino acid residues from Rac1; white designates residues from Cdc42.   

From Gao et al [3]. 

 

They found that chimeras containing residues 53-70 of Rac1 were able to bind and 

function, whereas chimeras lacking this sequence could not. 

 Next they determined which residues of this sequence were important to 

specificity between Rac and Cdc42. This was a relatively easy problem to solve because 

the only residue that is different between the two GTPases in this range is 56 which is a 

tryptophan in Rac1 and a phenylalanine in Cdc42. The crystal structure of Rac1 

associated with TiamI shows that the W56F mutation results in the loss of a hydrogen 

bond to His1178 of TiamI. There is also a loss of a considerable amount of Van der 

Waals interactions due to the loss of the indole side chain of the tryptophan. 
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Figure 7: Left image shows wild type Rac in complex with GTPase binding domain of TiamI. Right 

image shows Rac1 W56F mutant in complex with the GTPase binding region of TiamI [13]. 

 

Since it appeared that Trp56 was the only residue that provided specificity between Rac1 

and Cdc42, the researchers tested Rac1 W56F vs. Cdc42 F56W. The results showed no 

binding of GEFs to Rac1 W56F, but binding similar to that of wild type Rac1 by Cdc42 

F56W. 

 Finally, they constructed two Rac1 based peptides to use for testing in an 

inhibition assay. The peptides were identical to residues 45-60 of Rac1 except in one the 

W56F mutation was made. Results showed a dose-dependent inhibition of Rac1 binding 

to Trio, TiamI and GEF-H1 when treated with the peptide containing Trp56. There was 

no inhibition by the Phe56 peptide [3]. 

 The crystal structure of residues 45-60 of Rac1 in complex with TiamI is shown 

in Figure 8. The conformation is such that residues 45-51 are coiled and make no 

apparent contact with TiamI. Residues 52-60, however, adopt an extended conformation 

and have three points of contact with TiamI; Asn52, Trp56 and Gly60. Since these appear 

to be the main contact points of Rac1 to TiamI it should be possible to truncate this 

peptide to residues 52-60 and still retain the ability to inhibit interaction.  
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Figure 8: Residues 45-60 of Rac1 (red) in complex with the GTPase binding domain of Tiam1 (blue). 

 

 

Furthermore, since Trp56 has been determined as the only residue to determine GTPase 

specificity, [3] it may also be possible to truncate even further depending on the roles of 

Asn52 and Gly60. There is also the potential to increase inhibition efficiency by 

modifying the peptide so that it always exhibits an extended conformation similar to that 

seen at the binding interface.  

 

N-Methylated Peptides 

 The conformation of a peptide is very important to how active it is biologically 

[9]. While short peptides are generally unstructured, the conformation can be specifically 

hindered such that it gives a desired structure. These hindrances come primarily from 

amino acid side chains and alterations of groups that prevent rotation around peptide 

bonds. N-methylated amino acid substitutions have been shown to restrict the altered 

amino acid and the one preceding it to an extended conformation. N-methylation is done 

by replacing the amide hydrogen on a residue with a methyl group. Doing this locks the 
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conformation of the modified amino acid as well as the residue that precedes it [9]. 

Alternating sites of N-methylation, then, should lock the entire peptide in an extended 

conformation. Gordon et al. used this alternating N-methylation strategy when they 

constructed a peptide to inhibit Aβ1-40 fibrillogenesis. 

 Gordon et al. synthesized a five amino acid sequence comprised of Aβ16-20. 

They also synthesized the same sequence containing alternating N-methylations. The 

structure of these sequences was determined by circular dichroism, a method that 

measures the ellipticity of light. The spectra obtained showed that the methylated version 

of the peptide was a β-strand; the un-methylated version showed characteristics of a 

random coil [4]. 

 Some other important characteristics arise because of N-methylation. These 

include increased cell permeability and reduced susceptibility to proteolysis both of 

which increase potential as inhibitory molecules in live cells. The reason these 

characteristics show up is because N-methylation reduces the number of available 

hydrogen bond donors (Fig. 9) [4]. 

 

Figure 9: The top image is of an N-methylated peptide (K(Me)LV(Me)FF). The bottom image is of 

the same peptide sequence (KLVFF) with no methylation. From Gordon et al. 
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A peptide has to be desolvated of the water that is hydrogen bound to it before it can pass 

through the membrane. Reducing the amount of hydrogen bond donors reduces the 

energy required to desolvate the peptide and therefore increases its chances of crossing 

the membrane. Alternating N-methylation also produces a chain with two faces. On one 

face of the peptide there is normal bonding capabilities contributed from side chains and 

amide hydrogens; this face should function like a normal peptide chain. The second face 

has lost the hydrogen bonding capabilities of the amide hydrogens because they have 

been replaced by methyl groups which make no such hydrogen bonds. Removal of these 

hydrogen bond donors greatly changes the way this face interacts. The loss of hydrogen 

bonding capabilities also makes the molecule more hydrophobic. Gordon et al. also 

studied this aspect and found that N-methylated derivatives of their peptide were able to 

make it into cells while un-methylated versions could not [4]. These N-methylated 

peptides should also make for good inhibitors of intracellular β-strand interactions 

because of their extended conformation and increased cell permeability. 

 The design of a minimal peptide domain that will specifically inhibit GEF-H1’s 

binding capabilities to Rac1 should incorporate all of these features. Since residues 45-51 

of Rac1 make no contacts with the DH/PH domain of TiamI they should be able to be 

removed with little to no effect on inhibition. It is also likely that other truncation of 

residues 52-60 could be made and still be effective as long as they contain Trp56. Since 

residues 52-60 of Rac1 adopt a β-strand conformation when in complex with TiamI, it is 

likely that an N-methylated version of the inhibitory peptide would be more effective. If 

the peptide were already in an extended conformation the entropic cost of changing to an 

extended conformation would be reduced, so binding to the peptide would be favored.  
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N-methylation should also make the inhibitory peptide cell permeable and useful for in 

vivo assays. Given the information collected, construction of a truncated, Rac1 derived, 

N-methylated peptide sequence should provide better inhibition of GEF-H1/Rac1 

interaction than the previously made inhibitory peptide. There is also potential for 

blocking other GTPase/GEF and GTPase/effector interactions that have similar binding 

interfaces. 
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PROJECT PURPOSE 
 

  

 The aim of this project was to synthesize potential inhibitory peptides that could 

block the interaction between Rac1 and GEF-H1. To accomplish this, Rac1 was 

expressed and purified, and GEF-H1 was obtained from a fellow member of the lab. 

Analysis and purification of peptides also required the use of analytical methods such as 

HPLC and MALDI. These proteins and peptides are now available to use in assays to test 

the inhibition ability of the peptides on the binding ability and function of GEF-H1. 
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METHODS 

 
 

 The primary preparative methods were solid phase peptide synthesis (SPPS) and 

protein expression & purification. Peptide purity and identity was assessed by high 

performance liquid chromatography (HPLC) and matrix assisted laser 

desorption/ionization was used to back up HPLC data with mass data. The two main 

routes of testing were pull down assays and fluorescence microscopy.  

 After research into the subject had been done and there was a plan of how to 

accomplish the goal, the first step was to produce the required materials. Since the aim of 

this project was to block interaction between Rac1 and GEF-H1 it was necessary to 

express Rac1 and GEF-H1 and also to synthesize candidates for inhibitory peptides. The 

lab in which this project took place was currently working on the expression of GEF-H1. 

The GEF-H1 used in assays was provided by Katryn Harwood. 

 

Cloning of Rac1 

 The wild type Rac1 I.M.A.G.E clone was obtained from Open Biosystems. 

Polymerase chain reaction (PCR) was used to amplify the full-length Rac1 cDNA, 

incorporating 5’ BamHI and 3’ EcoRI restriction sites. Following the PCR reaction the 

DNA was double digested with BamHI and EcoRI. The digested DNA was separated on 

a 1% agarose gel and the band containing the desired PCR product was excised and 

purified. This purified fragment was then ligated into a pGEX-6P1 vector using T4 

ligase. This vector contains a PreScission protease cut site.  

 Following ligation, a small amount of the plasmid was digested with BamHI and 

EcoRI to ensure it contained the desired insert. Once the insert’s presence was confirmed, 
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the plasmid was transformed into DH5α cells.  DH5α is a strain of E. coli that lacks recA 

and endA making them useful primarily for the expression of plasmid DNA. Once the 

cells had taken up the DNA they were plated on Luria broth (LB) agar plates that 

contained the antibiotic carbenicillin. The following day individual colonies were picked 

and grown up into 5 mL cultures. These cell cultures were pelleted, lysed and their DNA 

purified using a QIAGEN miniprep kit. The purified DNA was again checked for 

presence of the desired insert and sequenced by the Nucleic Acid Facility at UMass 

Medical School.  

 

Rac1 Expression 

 Protein expression was carried out in BL21 cells. BL21’s are a strain of E. coli 

that lacks lon and ompT making them useful for expression of protein. The purified 

plasmid from the DH5αs was transformed into BL21 cells. Colonies were allowed to 

grow overnight on an LB agar plate containing carbenicillin. Individual colonies were 

picked and grown into 5 mL cultures. The next day, 1 L of 2xYT (yeast tryptone) was 

inoculated with the BL21 cells from one of the 5 mL cultures. The cells were allowed to 

grow at 37
o
 C until they reached their exponential growth phase. This was determined by 

measuring the cultures optical density at a wavelength of 600 nm (O.D. 600). Once the 

O.D. 600 was between the values of 0.8 and 1.0 (indicating exponential growth) protein 

expression was induced using 0.1 mM isopropyl-beta-D-thiogalactopyranoside (IPTG). 

The culture was allowed to grow at 20
o
C for another 4 hours. The cells were then 

centrifuged down, separated from the supernatant, flash frozen in liquid nitrogen and 

stored at -80
o
C. 
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Protein Purification 

 Purification of the protein was accomplished using immobilized glutathione beads 

and PreScission protease. The frozen cell pellet was thawed and resuspended in 25 mL of 

lysis buffer (50 mM Tris, 0.5 M NaCl, 0.1% Tween 20). To inhibit general protease 

activity 250 µL of 1 M PMSF was added to the resuspended cells. The cells were 

sonicated for 10 seconds five times to lyse the cells. 250 µL of 1 M DTT was added to 

the lysate as a reducing agent. The cells were then centrifuged for 1 hour at 35,000 rpm 

and 4
o
C. The clarified supernatant was then incubated for 2 hours with immobilized 

glutathione beads. After 2 hours the beads were filtered, washed once using lysis buffer 

and once using wash buffer #2 (50 mM Tris, 250 mM NaCl, 5 mM MgCl2, pH 8.1). The 

beads were then washed with PreScission Protease buffer (50 mM Tris, 150 mM NaCl, 1 

mM EDTA, pH 7.4) twice. Beads were then incubated overnight with 960 µL of 

PreScission Protease buffer and 40 µL of PreScission Protease.  After incubation the 

beads were filtered and washed twice with PreScission Protease buffer. Following 

cleavage, samples of every step of the purification process were run on a 12% SDS-

PAGE gel in order to determine where Rac1 ended up. Aliquots of the protein were 

made, flash frozen and stored at -80
o
 C for later use. 

 

Peptide Synthesis and Purification 

 Synthesis of the inhibitory peptide was done using solid phase peptide synthesis 

(SPPS). SPPS is the sequential addition of amino acids to a chain tethered to a solid 
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support. The amino acid chain can then be cleaved from the support. The support used 

during the course of this project was Rink Amide MBHA resin obtained from 

Novabiochem.  

 First the resin was deprotected of its Fmoc group using 20% piperidine (Pip) in 

N’N’-dimethylformamide (DMF) 2x 2 minutes. Following deprotection 4 equivalents of 

amino acid and 4 equivalents of coupling agent (HBTU or HATU) were dissolved in 0.4 

M N-methylmorpholine (NMM).  HBTU was used when coupling to a normal amino acid 

or to the resin; HATU was used when coupling to an N-methylated amino acid. This 

mixture was added to the resin and allowed to couple for 1.5 hours for regular coupling 

and 3 hours when coupling to N-methylated amino acids. This process was repeated until 

the desired amino acid sequence was made. Following the addition of the final amino 

acid, the Fmoc group is removed and the product is cleaved from the resin. The cleavage 

process was done using 1 mL of the cleavage cocktail [95:2.5:2.5 trifluoroacetic acid 

(TFA):H2O:triisopropylsilane (TIS)] for 1 hour. The resin was washed with 1 mL of 

TFA. Precipitation into ether was used for quick clean up of the peptides. Adding the 

cleavage mixture to cold diethyl ether causes the formation of the TFA salt which 

precipitates out of solution. When the peptide was cleaved with the Fmoc group still 

attached or when dealing with N-methylated peptides the cleavage mixture was removed 

using a rotary evaporator equipped with an acid trap that would collect the TFA. The 

dried peptide in either case was dissolved into acetonitrile (ACN)/H2O 0.1% TFA, frozen 

and finally lyophilized to give a powdery product. 
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N-Methylation of Asp on Solid Support 

 Some N-methylated amino acids, for example (Me)Leu and (Me)Ala, are 

commercially available. For N-methylated amino acids that were not commercially 

available a three step methylation process was used. This process was originally 

described by Stephen Miller and Thomas Scanlan [6]. First the amino acid was 

deprotected using 20% Pip in DMF 2x 2 minutes. The residue was then reprotected using 

133 mg of nitrobenzylsulfonyl chloride (NBS-Cl) and 133 µL collidine. The amino acid 

was then methylated using 174 mg methyl p-nitrobenzylsulfonate (Me-NBS) and 86 µL 

of 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD). Finally the NBS-Cl was 

removed using 140 mL of β-mercaptoethanol and 151 mL of 1,8-diaza-

bicyclo[5.4.0]undec-7-ene (DBU). The product is the N-methylated amino acid that can 

be coupled to the next amino acid using HATU. 

 

High Performance Liquid Chromatography (HPLC) 

 High performance liquid chromatography (HPLC) was used for both analysis and 

purification during the course of this project. The type of HPLC used during this project 

was RP-HPLC. An Atlantis C-18 column was used from Waters. Mobile phases used 

were 0.1% TFA in H2O and 0.1% TFA in acetonitrile (ACN). A gradient of Solvent A 

(0.1% TFA in H2O) to Solvent B (0.1% TFA in ACN) was used to elute the samples. A 

typical gradient was 15-85% Solvet B over the course of 20 minutes. Detection of 

compounds was accomplished using a Waters 2996 photodiode array detector which is 

able to measure reflected light from 200nm-600nm.  A Waters 474 scanning fluorescence 

detector was also used for detection of fluorescent compounds.  
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Matrix Assisted Laser Desorption/Ionization (MALDI) 

 Mass analysis of the peptides was done using matrix assisted laser 

desorption/ionization (MALDI). MALDI was performed by mixing the sample with a 

matrix of α-cyano-4-hydroxycinnamic acid in 1:1 ACN:water. The mixture was then 

spotted on a metal plate and placed in a dessicator to allow the solvent to dry leaving only 

the matrix and sample. A laser was then fired at the spot which ionizes the matrix 

allowing it to transfer its charge to the sample. Once the sample was charged, time of 

flight (TOF) mass spectrometry was used. This uses retention times based on how long a 

compound takes to travel a known distance to determine mass.  

 

Cell Permeability Tests 

 Purified K(MeL)V(MeF)F was labeled with N-methylanthranilic acid (MANT) 

and was tested for cell permeability in HeLa cells. Cells were incubated for 1 hour with 

100 µM and 10 µM MANT-K(MeL)V(MeF)F in Leibovitz L-15 media. Following 

incubation, the cells were washed three times with media to remove extracellular 

fluorophore. The cells were then examined by fluorescence microscopy. 

 

Binding Assays 

 25 µL  of GST-GEF-H1 fusion protein bound to immobilized glutathione beads 

was incubated for 1 hour with 100 µg of nucleotide free Rac1 in a buffer containing PBS, 

50 mM NaCl and 1 mM TCEP. This assay was done in presence or absence of inhibitory 

peptides. Peptides tested were the Gao et al W56 peptide (synthesized by the Peptide 

Core Facility), Ac-NLGLWDTAG-NH2, Ac-WDTAG-NH2, and Ac-W(MeD)T(MeA)G-
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NH2. All peptides were added at a concentration of 200 µM. After incubation, the beads 

were filtered from the liquid and washed twice with buffer containing PBS, 2 mM TCEP 

and 0.1% Tween 20. A 12% SDS-PAGE gel was run of the samples to view bound versus 

unbound protein. 
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RESULTS 

Rac1 Expression and Purification 

 Rac1 expression using E. coli cells was successful. The polymerase chain reaction 

gave one major product with a few truncated products (Fig. 10). The major product was 

sequenced after it had been purified and expressed in DH5α cells.  

 

Figure 10: Agarose gel of PCR product.  Lane 1: 1 kB Ladder.  Lane 2: 100 bp Ladder.   

 Lane 3: Rac1 PCR Product. 

 

The sequence obtained was compared to known sequences of Rac1 using New England 

Biolabs NEBcutter and NCBI BLAST. The sequence matched up with full length, wild 

type Rac1. 

 Purification of Rac1 done with immobilized glutathione beads and PreScission 

Protease was also successful. SDS-PAGE gels were run to show the cleavage of the Rac1 

from the beads. The gel (Fig, 11) that was run shows all steps of the purification process 

from left to right: molecular weight standard, cell lysate, cell pellet, clarified supernatant, 

supernatant after incubation with beads, wash #1, wash #2, wash #3, wash #4, unbound 

protein, cleavage wash #1, cleavage wash #2, bound protein.  
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Figure 11: SDS-PAGE gel of Rac1 purification. Lane 10 shows purified Rac1, Lane 13 shows GST 

that is still bound to the immobilized glutathione. 

 

 

Peptide Synthesis 

 The first peptides synthesized were the same as the β-amyloid peptides described 

in the Gordon et al paper. Their sequences were K(MeL)V(MeF)F and KLVFF. 

Fluorescently tagged versions of these peptides were also made. The purpose of making 

these peptides was to practice peptide synthesis skills with N-methylated peptides known 

previously to work and to test membrane permeability of these peptides. Following this, 

inhibitory peptides were synthesized using the described techniques. These were to be 

used in any functional or inhibitory assays. 

 

ββββ-Amyloid Peptide  

 The first batch of K(MeL)V(MeF)F that was made was labeled with N-

methylanthranilic acid (MANT). It was analyzed by HPLC and was found to be of low 

purity. Low concentration of peptide prevented analysis by electrospray mass 

spectroscopy. The second batch of MANT-K(MeL)V(MeF)F behaved much more 
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reliably on the HPLC yet still had several impurities as can be seen from its HPLC 

chromatogram (Fig. 12). 

 
Figure 12: HPLC chromatogram of MANT-K(MeL)V(MeF)F batch 2.  

Product peak highlighted in red. 

 

Impurity Analysis 

 The largest impurity, seen at 15.946 min in Fig. 12 (batch 2) and the proposed 

product peak, seen at 17.021 min in Fig. 12, were analyzed by MALDI. The mass 

analysis showed that the product peak was of the correct mass and that the impurity peak 

was off by 10 mass units. Professor Miller proposed that this change in mass would 

coincide with DMF (a solvent used for washing the resin) cyclizing between MANT and 

the N-terminal amine in the presence of TFA (Fig 13). 
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Figure 13: MANT attached to a peptide plus DMF in the presence of TFA forms the cyclized 

compound seen at the right. 
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After revising the procedure to exclude washing with DMF and synthesizing batch 3 of 

MANT-K(MeL)V(MeF)F there was a large reduction in the amount of impurity at that 

retention time. There was still, however, a significant impurity with a retention time of 

around 14 min. This impurity was thought to be a deletion peptide caused by incomplete 

couplings. To remedy this a fourth and final batch of MANT-K(MeL)V(MeF)F was 

prepared using acetic anhydride to cap after each step. This capping step would prevent 

any unreacted amines from reacting at some point later during the synthesis. The result 

was a much cleaner peptide with fewer impurities (Fig. 14) and the correct mass as 

determined by MALDI (Fig. 15). In the data from the MALDI there are other noticeable 

peaks after the product peak. These are due to the fact that the sample was not desalted 

before analysis. 

 

Figure 14: HPLC chromatogram of MANT-K(MeL)V(MeF)F batch 4.  

Product peak highlighted in red. 

 



 30 

P u ls e  V o l ta g e  =  2 6 5 0  V
D e te c to r  V o l ta g e  =  1 8 5 0  V

L a s e r  E n e rg y  =  5 0  %

M o d e  =  R e f le c t ro n  P o s it iv e  Io n
F i lte r  =  L ow

B AA 0 2 32 6 -J a n -2 0 0 6

5 00 5 5 0 6 0 0 65 0 7 0 0 7 5 0 80 0 85 0 9 00 9 50 1 0 00 1 05 0
m /z0

1 0 0

%

s cm 06 0 12 6 0 7  2  (0 .0 64 )  C m  (2 :3 1 ) T O F  LD +  
5 .8 2e 38 3 5 .6 6 5 6

8 1 3 .6 9 90

6 2 2 .0 8 4 2

5 0 4 .4 9 74 5 2 0 .4 9 9 6

5 6 8 .1 55 2 5 8 8 .0 8 9 2

6 6 6 .0 50 1
6 81 .9 94 0

6 9 2 .0 1 6 2

8 7 5 .5 8 3 4

8 3 6 .6 6 9 3

8 5 1 .6 3 4 2 8 7 7 .5 7 7 1

8 7 8 .5 8 5 1

8 7 9 .5 9 3 6
93 9 .4 8 7 4

 
Figure 15: MALDI of MANT-K(MeL)V(MeF)F. Correct mass peak (M) at 813. 835 is M+ sodium 

(Na), 851 is M+ potassium (K), 875 is M+ copper (Cu). 

 

 

Inhibitory peptides 

 Truncated versions of the Gao et al peptide were synthesized using the methods 

described. Peptides that were successfully synthesized were Ac-NLGLWDTAG-NH2, 

Ac-WDTAG-NH2 and Ac-W(MeD)T(MeA)G-NH2.  Difficulty optimizing HPLC for the 

peptides led to no chromatograms for the inhibitory peptides. The peptides were analyzed 

by MALDI prior to their acetylation. MALDI analysis (Fig. 16) showed that there was 

some amount of the correct peptide sequence for all inhibitory peptides, though the 

amount is difficult to quantify given the lack of HPLC data. 

 
Figure 16: MALDI of unacetylated WDTAG. Correct mass peak at 548, other large peaks are salts. 
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Purification of Inhibitory Peptides 

 Purification of the inhibitory peptides was left at precipitation into cold ether. 

This would remove the bulk of non-peptide impurities. Purification of the β-amyloid 

peptides was initially removal of TFA by rotary evaporation followed by the collection of 

individual peaks from the HPLC for analysis by MALDI. 

 

Cell Permeability Test 

 MANT-K(MeL)V(MeF)F was tested for cell permeability on HeLa cells as 

described previously. The excitation and emission wavelengths of MANT are similar to 

that of autofluorescence of the cells, but Fig. 17 shows that there is a definite increase in 

fluorescence dependant on concentration of MANT-K(MeL)V(MeF)F (Fig.17). Figure 17 

also shows effective nuclear exclusion as can be seen by the darker spots in the middle of 

the cells. 

 

Figure 17: Cell permability test using MANT-K(MeL)V(MeF)F. Left is untreated HeLa cells.  Middle 

panel is cells treated with 10 µµµµM peptide. Right panel is cells treated with 100 µµµµM peptide. 

 

 

Binding Assay 

 The binding assay that was performed was inconclusive. As can be seen from Fig. 

18 there is no binding of GEF-H1 to Rac1 when there was no inhibitory peptide present. 

There also appeared to be no binding in the lanes treated with peptide. The untreated 



 32 

protein was supposed to act as a positive control and without it there is no way to tell if 

there was any inhibition caused by the inhibitory peptides. 

 

 
Figure 18: Preliminary inhibition assay using synthesized peptides. Lanes were loaded as follows. 1: 

Benchmark Ladder 2: Untreated Unbound (UB) 3: Untreated Bound (B) 4: Gao et al Peptide UB 5: 

Gao et al Peptide B 6: NLGLWDTAG UB 7: NLGLWDTAG B 8: WDTAG UB 9: WDTAG B 10: 

W(MeD)T(MeA)G UB 11: W(MeD)T(MeA)G B 12: Rac1 13: GEF-H1 14: Benchmark Ladder 
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DISCUSSION 

 

Proteins 

 Initial attempts to purify Rac1 using a pGEX-4T vector, which contains a 

thrombin cleavage site, were ineffective. Thrombin has to be purified using benzamidine 

sepharose beads which experience a lot of unspecific binding. As a result of this, there 

was marked loss of Rac1 during purification. The switch to a pGEX-6P1 vector which 

contains a PreScission Protease site proved to be much more effective. The reason for 

this being that PreScission Protease is also expressed as a GST fusion protein. This 

allows it to cleave Rac1 from the glutathione beads then attach to the beads itself, 

effectively cleaving and purifying itself out in one step. The Rac1 that was expressed and 

purified during the course of this project is the right construct and has shown to be active 

in experiments done by other members of the lab for different purposes. The protein is in 

frozen aliquots and ready for use in any number of inhibition assays. The limiting factor 

that prevented assays from being done was active GEF-H1. The GEF-H1 was expressed 

and had the right sequence. The problem came when attempting to remove it from the 

immobilized glutathione beads. The PreScission Protease that was used to cut it from the 

beads was found to be inactive, therefore the GEF-H1 remained stuck to the beads. In the 

time spent trying multiple times to cleave the protein from the beads there was a 

significant amount of degradation of the protein. This explains the lack of activity seen in 

the GEF-H1/Rac1 pulldown assay (Fig. 18). 
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Peptides 

 Based on previous studies it is known that an inhibitory peptide can block the 

interaction between Rac1 and GEF-H1. The crystal structure of Rac1 and TiamI, which 

interacts in the same way as GEF-H1, shows that there is a portion of the inhibitory 

peptide made by Gao et al that does not come in contact with the GEF at all. This would 

lead us to believe that the Ac-NLGLWDTAG-NH2 peptide would block the interaction 

just as well. There is also a significant chance that the shorter truncation, Ac-WDTAG-

NH2, would work also. This is because the most significant attachment points to the GEF 

seem to be at N52, W56 and G60.  N-methylation should also increase activity of the 

inhibitor because it will reduce the entropic cost of forming an extended conformation.  

 The problem with the N-methylation and with the sequences of the peptides is 

that synthesis, purification, and analysis become more difficult. Synthesis of N-

methylated peptides requires longer coupling times which still do not necessarily go to 

completion because of the nature of the secondary amine found on N-methyl amino acids. 

When an amino acid is not commercially available with the N-methyl substitution the 

problem of methylating it arises. These problems are easily fixed, but the fix can be time 

consuming. 

 Synthetic obstacles aside, the purification and analysis of these peptides has 

become the largest problem. The inhibitory peptides would not run reliably on the HPLC 

making it difficult to assess the purity of the compounds. This was a problem due more 

likely to the sequence than the N-methylation because the N-methylated β-amyloid 

peptide was easy to optimize on HPLC. Furthermore, the inhibitory peptides had to be 

analyzed by MALDI before acetylation. After acetylation the peptides were more 
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difficult to ionize and as a result would not show as easily by MALDI. Though these 

problems have potential solutions there was not enough time in the scope of this project 

to optimize them. 

 

Cell Permeability 

 Testing of MANT-K(MeL)V(MeF)F on HeLa cells showed that the peptide is cell 

permeable. The data showed an increase in fluorescence, but that is difficult to quantify 

given the similarity between background autofluorescence of the cells and the fluorescent 

spectra of MANT. What is important is the nuclear exclusion that was seen. This shows 

that the peptide is in the cells as opposed to attached to the surface. Had it not been 

permeable, there would be no dark spot where it was left out of the nucleus. Attempts 

were made to couple K(MeL)V(MeF)F to the bright green fluorophore BODIPY-FL 

(Invitrogen) and a bright near-IR oxazine derivative prepared by a member of the lab. 

Coupling to BODIPY-FL was successful, but the treatment with TFA to cleave the 

peptide from the resin inactivated its fluorescence (data not shown). The oxazine 

derivative was stable to TFA, but there was little coupling to the peptide sequence (data 

not shown). No attempts were made to label the inhibitory peptides due to inability to 

purify and analyze properly. 

 

Future Research 

 The proteins and peptides made during this project will be useful to future 

experiments. The Rac1 is functional and the inhibitory peptides are of the correct 

sequence. The peptides will require some equipment optimization to get them to a desired 
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purity and to analyze their mass after acetylation. Provided that functional GEF-H1 can 

be obtained, the peptides will be very useful in binding inhibition assays as well as assays 

to test for GEF-H1 functionality. Given the proper amount of time one would be able to 

determine whether N-methylated peptides are good candidates for blocking these types of 

interactions. 
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