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i
Abstract

We study the problem of updating XML views defined over XML documents. A view update

is performed by finding thebase updatesover the underlying data sources that achieve the desired

view update. If such base updates do not exist, the view update is said to beuntranslatableand

rejected. In SQL, determining whether a view update is translatable is performed usingschema

level analysis, where the view definition and the base schema are used. XML schemas are more

complex than SQL schemas, and can specify recursive types and cardinality constraints.

There are two kinds of view updates: single view element update, where the user requires for an

update over a particular view element, and a set of view elements update, where the user requires

for an update over all view elements that satisfy a given XPath over the view. Accordingly, we

propose one solution for each kind of view update problems based on schema level analysis for

determining whether an update over XML views is translatable and for finding the translation if

one exists, while considering the features of XML schemas.
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Chapter 1

Part I:

Introduction

1.1 Motivation

In databases systems, a user sees a portion of the base data called a view. Therefore he/she may

need to update base data through these views (view updates).Especially in shared databases,

it is essential to provide the capacity to support view updates. In the relational scenario, there

have been many studies on determining whether a view update is translatable[9]. A common

semantics used for determining whether a view update is translatable isside-effect free semantics.

In this semantics, a view update is said to be translatable ifthere exists base updates that achieve

the desired view update without affecting any other portionof the view. Current relational/SQL

systems useschema level analysisfor determining whether a view update is translatable, where the

view definition and the base schemas are used.

There are two kinds of view updates based on how the user specifies the required view elements:

single view element update and a set of view element update. Sometimes a user may just want to

update a particular view element. Then he may prefer to specifically point out a view element and

try to update it. This is called single view element update. There are also situations where the user

prefer to update those view elements satisfying certain conditions specified by predicates. In this

1
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case, he may prefer to specify a condition expression and required updates.

Nowadays, as XML is becoming the standard format for data exchange, database community

is exploring its ability to store data. In fact, view updatesbecome more common as many XML

databases are available on the internet, and a large number of users have access to such databases.

In this paper, we study how to perform XML view updates over XML data sources, using schema

level analysis. This problem is much harder than for relational schemas because of the hierarchical

structure and other complex features in XML schema, such as recursive types and cardinality

constraints.

Let us consider an example XML document with its schema as in Figure 1.1. Note the base

schema elementcourse is recursive, as a course may have a child elementpre, which stands for

pre-requisite for thiscourse, andpre in turn can havecourse elements as its children. Similarly,

the base elementpre is also recursive. Now consider two queries overD, as shown in Figure 1.2

and Figure 1.3.

<!DocType root[
<!Element root( institute*)>
<!Element institute (name, department+)>  
<!Element department (name, professor+, 

course+)>   
<!Element professor( name, student*)> 
<!Element student( name)>
<!Element course( name, pre?)>
<!Element pre( course+)>
<!Element name( #PCDATA)>]>
<root>

<institute>
<name> WPI </name>
<department>

<name> CS</name>
<professor>

<name>  Henry </name>
<studenta>

<namea>John </name>
</student> 
<studentb>

<nameb> Joe </name>
</student>

</professor>

<coursea>
<name>  Database </name>

<prea>
<courseb>

<name> 
Algorithm 

</name> 
<preb>

<coursec>
<name>

Data Structure
</name>      

</course> 
</pre> 

</course>
</pre>

</course> 
</department>

</institute>
</root> 

Figure 1.1: XML documentD with Schema(D)

In Figure 1.2, (a) is the XQuery statement which defines the view. (b) is the view schema tree

that corresponds to the XQuery. (c) is the view instance treegenerated by the XQuery and XML

documentD. The same goes with Figure 1.3.1

1The subscriptsa, b, c in Figure 1.1 and1,2,3 in Figure 1.2(c) and Figure 1.3(c) are for illustration purpose only.
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<result>
{

FOR $course IN Document(“base.xml” ) //course

RETURN  <course>

{   $course/name    }

</course> 

}

</result>

course/name

(c)  view instance tree

(a) view query

(b) view schema tree STView

(c) result

course1 course2

DatabaseAlgorithm

course3

Data Structure

result

course
*

FOR $course IN 
Document(“base.xml” ) //course

(b)(a)

name name name

Figure 1.2: QueryQ1 and corresponding view

(c)  view instance tree

(a) view query

(b) view schema tree STView

(c)

(b)(a)

result

course/name

FOR $pre IN 
Document(“base.xml” ) //pre

course

*

pre
FOR $course IN 
$pre //course*

result

Data Structure

course3

Data Structure

pre pre

course1

Algorithm

course2

<result>  {
FOR $pre   IN Document(“base.xml” ) //pre

RETURN   

<pre> { 

FOR $course  IN $pre//course

RETURN  

<course>   

{ $course/name } 

</course>

} </pre>

} </result>

namenamename

Figure 1.3: QueryQ2 and corresponding
view

Let us consider the first kind of view update, e.g. single viewelement update. A user may want

to deletecourse1 in Figure 1.2(c). If we deletecoursea in D, this update would causecourse2,

course3 and their descendants to be removed in Figure 1.2(c). This isa side-effect and therefore

it is not a correct translation. Now let us consider Figure 1.3(c) and try to deletecourse2. We can

achieve this by deleting the base elementcoursec which has thename child. However, doing so

will also deletecourse3 in the view and therefore it is also not a correct translation.

Intuitively, recursive base schemas and queries cause the above problems. However, are the

above two scenarios the only cases where recursion may have side-effects? If not, how can we

effectively check out all such side-effects? This problem has not been studied, to the best of our

knowledge.

There are also other XML features that need to be considered for XML view update problems,

such as cardinality constraints in the base schema. Will these features make the problem different

from the relational scenario? Let us take a look at the query in Figure 1.4(c). It indicates that each

professor element in the base will join with everystudent element. Therefore eachprofessor

andstudent may be used more than once and we cannot deleteprof -student view element. How-

ever, let us reconsider this query, given the base schema as shown in Figure 1.4(a). It indicates that

there is only oneprofessor in the base. We now know that eachstudent will be used only once

They do not appear in the actual documents or views.
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and we can delete a certainprof -student by deleting the correspondingstudent in the base XML

document. From this example, we can observe that utilizing cardinality information provided in

the base schema may give a better translation for the view update. How to fully handle cardinality

is also discussed in the thesis.

<result>

{  FOR   $prof IN   Document

( “base.xml”) //professor,

$student IN Document

(“base.xml”)//student

RETURN <prof-student>

{  $prof/name,

$student/name }

</prof-student>  }

</result>

(c) query statement Q

result

prof-student

$student/name

*

(b) view schema tree STView

(a) base schema

$prof/name

<!DocType root[
<!Element root( institute)>
<!Element institute (name, department)>  
<!Element department (name, professor, 
course+)>   
<!Element professor( name, student*)> 
<!Element student( name)>
<!Element course( name, pre?)>
<!Element pre( course+)>
<!Element name( #PCDATA)>]>

Figure 1.4: QueryQ3 and corresponding view

<result>

{   

FOR $professor IN 

Document(“base.xml”)//professor

RETURN $professor

FOR $student IN

Document(“base.xml”)//student

RETURN $student

}

</result>

result

studentprofessor

* *

result

(a)

studentb

name

professor

student’a student’b

Henry

John Joe

John’ Joe’

(a) view query

(b) view schema tree STview

(c) View instance tree

(b)

(c)

studenta

name’a name’b

namea nameb

Figure 1.5: QueryQ4 and corresponding
view: side-effects over invisible elements

Last but not the least, let us take a look at another example, in which view update problem

arises due to the hierarchical structure of XML. Consider the XQuery statement in Figure 1.5(a).

It requires to return all theprofessor andstudent base elements. For each returned base element,

all of its descendants will appear in the view, as we can see inFigure 1.5(c). However, as the

view schema tree in Figure 1.5(b) is generated from XQuery, it will display the schema node for

professor andstudent only. Note the base elementstudent appears as two different elements

in the view. One of them,student, appears because XQuery explicitly extracts the base element

student; while the other, view elementstudent′ 2, appears as XQuery requires to extract the

contents of base elementprofessor and base elementstudent is a descendant ofprofessor. For

the view elementstudent′, there is no schema node in Figure 1.5(b) corresponding to it. We call

those view elements which has no corresponding view schema node asinvisible elements. This is

quite different from relational scenario, where all the view tuples are visible, in the sense that each

of them corresponds to the only view schema node in the view schema tree.

2just like subscripts in Figure 1.3, superscripts is for illustration purpose only.
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Now let us examine these invisible elements to see if there exist updates that could cause side-

effects related to them. As the view elementsstudenta andstudent′a come from the same base

element, deleting one of them will have side-effects over the other. This means deleting a visible

view element may have side-effects over some invisible elements, and vice versa. In addition, let

us consider deleting the view elementnamea, which is an invisible element. This will obviously

have side-effects over view elementname′a, which is also an invisible view element. As both the

updated view element and affected view element are not visible in the view schema tree, how are

we going to detect the side-effects on the schema level needsto be tackled.

View update problems caused by the above three XML features also remain in the scenario

where a set of view elements are required to get updated in a batch. Let us examine the difference

between scenario in which only one view element needs to get updated and the scenario in which

a set of view elements needs to get updated. A naive algorithmcan be to check the side-effects

and find the translation for each view element update in the set one by one. If any update of the

view elements have side-effects, we need to reject the updates, as updating these view elements

will cause side-effects. The following example, however, indicates that this is not always the case.

Consider a user may want to delete all the course view elements in Figure 1.2(c). Though deleting

such a single view element may cause side-effect, as we stated above, the corresponding update

of deleting all such view elements is straightforward; we can simply delete all the course elements

in the base XML document and this translation causes no side-effects. The reason is those view

elements which may have side-effects also belong to the set of view elements that we want to

delete. As a result, there is no side-effects on the rest of the view.

Therefore, we can observe that those view elements that may have side-effects, may be able

to get updated along with other view elements and leaves no side-effects over the rest of the view.

How a required set of view elements can be specified in XML scenario and how to check their

update translatability will also be discussed in the thesis.

Our main technical contributions include: we study how features in XML schemas, such as

recursive types and cardinality constraints, along with the hierarchical structure of XML, impact
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the XML view update problem. We examine two update scenarios, where one is to delete one

single view element and the other is to delete a set of view elements. Accordingly, we propose

two algorithms. The first one is to determine whether a view update over XML data sources is

translatable and to find the translation if one exists, basedon schema level analysis. The second

one is to determine whether updating a set of view elements specified by some conditions over

XML data sources is translatable and to find the translation if one exists, based on schema level

analysis. Our algorithms are sound (a translation returnedby our algorithm is guaranteed to not

cause side-effects) and complete (a translation is guaranteed to be returned by our algorithm if

there exists one). We believe these results go a long way towards understanding the XML view

update problem and provide the capacity to efficiently update XML views.

1.2 Related Work

There are many studies on view updates in relational scenario, such as [10, 9, 14, 8]. In [10],

authors introduce the concept of a complementary view. The authors argue that when changing

the data in the base corresponding to the updates on the view,the rest of the database that is not in

the view should remain unchanged. This solution tends to be too strict, as many view updates are

not translatable by this theory. In [9], authors argue that we can perform a view update by deleting

base tuples that contribute to the existence of this view element. Also such base tuples are required

not to contribute to other view elements to avoid side-effects. Similarly, in [14], Keller proposes

an algorithm to check whether 1-1 mapping exists between a set of view tuples and a set of base

tuples. This mapping indicates that a certain view element can be deleted without side-effects.

In [18], authors consider the problem of detecting independence of a query expressed by datalog

programs from updates.

While in [10, 9, 14] authors study the view update problem on the schema level, there are other

works, such as [8], that study the problem on the instance level. Therefore in [8], more updates

can be performed without side-effects. However, because ofthe large size of the database, such

data-centric algorithms tend to be more time-consuming.
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In recent work [15], authors propose a new update semantic for updating relational views.

Every update in the view is encoded using special identifier in the database, which ensures the

uniqueness of set of base elements generating the updated view element. This uniqueness indicates

all view updates are translatable without side-effects. Beyond those special encodings, side effects

are hidden in the actual base data via an extended view query.This paper, however, does not study

how to check the translatability of the view updates in the context of this special semantic. In

[3], authors propose a novel approach to view update problemin relational scenario. It defines a

bi-directional query language, in which every expression can be read both as a view definition and

as an update policy.

In order to utilize the maturity of relational database techniques and also adapt to the current

required web applications, people tend to build XML views over relational databases, such as

[19, 20]. There are some research that consider XML views as compositions of flat relational

views, such as [11], for the purpose of querying relational databases. Some other work further

study the updatability of XML views over relational databases. In [5], authors study the update

overwell-nestedXML views. However, as authors map XML view into relational view updating

problem, some of the constraints such as cardinality constraints and recursive types in XML context

cannot be captured. In [23], the authors discuss how to checkside-effects for updating XML

view elements over a relational database. In [4], authors use the nested relational algebra as the

formalism for an XML view of a relational database to study the problem of when such views

are updatable. In [7], authors revise the update semantics to accommodate XML side effects

based on the semantics of XML views, and present efficient algorithms to translate XML updates

to relational view updates. Also, they provide new techniques to efficiently support XML view

updates specified in terms of XPath expressions with recursion and complex filters.

However, given an XML view over XML data, how to check the updatability of the view

elements and further give the correct, efficient translation of this view update remains unsolved. In

[2], the authors introduce a view architecture and discuss XML view updates for the first time. In

[22], authors study both closed and open view update strategies in relational scenarios and discuss
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their applicability to an XML setting. In [17], authors study type checking in XML view updates.

In [21], the authors study execution cost of updating XML views using triggers versus indices.

In [16], authors consider virtual updatable views for a query language addressing native XML

databases, including information about intents of updatesinto view definitions. In [6], authors

develop an ER based theory to guide the design of valid XML views, which avoid the duplication

from joins and multiple references to the relations. In [13], authors consider finding a correct

translation of a given update in a user-defined XML views overXML documents, avoiding side-

effects over other view elements. This thesis will extend the algorithm in this paper and try to

handle more kinds of views and updates.



Chapter 2

Part II:

Problem Definitions and Notations

2.1 View Update Translatability and Problem Scope

2.1.1 View Update Translatability Definition

A view update operationu can be a delete, an insert or a replacement. The corresponding update

on the XML base is said to be the translation of the view update.

Definition 1 Let D be an XML document and V a view defined byDEFV over D. An XML docu-

ment update sequenceU
R is a correct translation of a view updateuV if u

V (DEFV (D))=DEFV

(U R(D)).

This definition is depicted in Figure 2.1. The update is correct if the diagram in Figure 2.1

commutes.
v


D


u
v
(v
)


DEF
v

DEF
v


(2) 
u
v


(3) 
U
R

U
R
(D)


(1)
 (4)


v


D


u
v
(v
)


DEF
v

DEF
v


(2) 
u
v


(3) 
U
R

U
R
(D)


(1)
 (4)


Figure 2.1: Correct View Updates Definition
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2.1.2 Problem Scope

Update Operations Considered

As we introduced above, a view update operation can be a delete, an insert or a replacement.

Deletions are typically considered to be different from insertions. For instance, consider an SQL

view defined as a join betweenstudent table andprofessor table, where astudent row joins

with at most oneprofessor row. The SQL standard [12] supports deleting a row in this view by

deleting a correspondingstudent row, whereas inserts are rejected as they might need to insert

into student table, orprofessor table or even both, which is more complex and hard to decide.

As the first work considering view updates over XML data sources, we consider only deletions and

inserts are out of our scope. We study both single view element and set of view elements deletions.

For single view element deletion, we do not use a view update language, as how the view element

is specified (by the view update language) is not significant.

There are two ways to specify the set of view elements which should get updated in a batch.

The user can specifically point out every view element that needs to get updated. Those view

elements can correspond to different schema nodes. To checkthe translatability of such updates,

we can check the translatability of deleting every view element in the set. Therefore we will not

discuss this situation. The second way is the user can specify the elements to be deleted by an

XPath expressionXP , starting from the root of the view. In the latter situation,any view element

vei will get updated if the path from root of the view tovei qualifiesXP . For short, we say these

view elements qualifyXP . We will use XPath as our view update language when we consider

deleting a set of view elements in a batch. As XPath could become quite complicated, we will set

constraints on using it, please refer to Chapter 4 for details.

Base Schema Language

We use DTD (Document Type Definition) as schema language to describe the underlying databases.

DTD is a very expressive and complex language. The two most significant features in DTD that

we consider are recursion and cardinality. The cardinalityinformation is obtained from the content
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model in DTD, which uses ”*”, ”+”, ”?”, ”,” or ”|”. We will not consider other features in XML

schema languages, for doing so will make the algorithm extremely complicated and hard to under-

stand. More specifically, we will not consider ID/IDREF constraints in DTD, and sub-typing and

key/foreign key constraints in XML schema.

View Definition Language

We will use a subset of XQuery as the view definition language described as follows:

1. The XQuery we consider could have FOR, WHERE and RETURN clauses and dirElemCon-

structor [1] in the statement.

2. In each FOR clause, there can be multiple variable bindingstatements.

3. In an XPath expression, multiple ”//” and ”|” can exist. Further, a node test [1] can be

specified as a wildcard.

4. RETURN can contain nested XQuery statements.

Even though we consider WHERE clause, the predicates specified in the WHERE clause are

not used to determine whether a view update is translatable.Though considering such predicates

might result in more view updates being translatable, it canbe handled similarly as in relational

scenario and we want to focus on the unique XML features. Also, the LET clause is not considered

because an XQuery that has LET can be rewritten into one without the LET clause. Similar to SQL

solutions, we do not consider aggregation, user-defined functions and Orderby clauses.

Restrictions on Translations Considered

There are various strategies for translating view updates.For those base XML elements corre-

sponding to the view element to be deleted, we can set its value to null, or delete it but keep its de-

scendants, etc. However, we consider only the translationswhere we delete an XML view element

by deleting the corresponding base elements and also the descendants. This keeps the problem

tractable, and is similar to existing solutions in SQL/relational scenarios. Now the problem we

study can be described as:
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2.1.3 Problem Definitions

For single view element deletion, we give the problem definition below:

Deleting Single View Element Problem Statement:Let Schema(D) be an XML schema

andQ a view query overSchema(D). Given a view schema noden, n ∈ Q, does there exist

a translation for deleting a view element whose view schema node isn that is correct for every

instance ofSchema(D)?

For set of view element deletions, we give the problem definition below:

Deleting Set of View Elements Problem Statement:Let Schema(D) be an XML schema

andQ a view query overSchema(D). Given an XPathXP , does there exist a translation for

deleting the view elements, which qualifyXP , that is correct for every instance ofSchema(D)?

Note that we study the problem with schema level analysis, which utilizes the view definition

and the schema of the base XML data sources. In other words, wedo not examine the base data to

determine whether there exists a translation. Such schema level analysis is similar to the approach

in relational scenarios [9, 14]; data level analysis for theview update problem has been studied in

[8].

2.2 Notations

In this section we first introduce some concepts and notations which are the foundation of later

discussions. A summary of them can be found in Table 2.11. Let D be an XML document(base

XML data sources) with schemaSchema(D). Schema(D) can be represented as a tree called the

base schema tree, denoted asSTBase. TheSTBase of the XML Document in Figure 1.1 is shown

in Figure 2.22. Consequently, every element inSchema(D) has a corresponding schema node in

STBase, denoted asSNBase. For example, the elementprofessor in Schema(D) in Figure 1.1

has aSNBase in Figure 2.2, which is the nodeprofessor.

1SNV iew stands for View Schema Node andSTV iew stands for View Schema Tree.SNBase andSTBase are
analogously defined for the base XML document.

2Note there is some information not captured bySTBase such as order of elements. We only capture those infor-
mation that will be utilized by our algorithm, such as cardinality constraints and recursive types.
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The set of schema nodes that 
are the descendants of Source, 
includingSource

Des(Source)The set of base elements 
that are the descendants of 
source, includingsource

des(source)

all the SNBasethat contribute 
to the existence of vei

Sources(vei)a SNBasethat contributes 
to the existence of vei in V

Source(vei)

schema tree of QSTViewschema tree of XML data 
sources

STBase

All base elements that 
contribute to the existence of 
vei

sources(vei)a base element that 
contribute to the existence 
of vei

source(vei)

a view element in Vveia base element in Dbej

a node in STViewSNViewa node in STBaseSNBase

view instance defined by QVXML schema of DSchema(D)

XQueryStatement defining      
the view

QXML data sourcesD

Semantic Meaning
Notations 

Semantic Meaning
Notations

Table 2.1: concepts and notations summary

The XML view is defined as a queryQ overSchema(D). The corresponding instance is de-

noted asV . Q specifies a view schema tree, denoted asSTV iew, such as Figure 1.2(b), Figure 1.3(b)

and Figure 1.4(b).

vei is a view element inV that is to be deleted. The node inSTV iew corresponding tovei is

called the view schema node ofvei, denoted asSNV iew(vei). Let us consider the view element

course1 in Figure 1.2(c),SNV iew(course1) is the nodecourse in Figure 1.2(b).

Let us examine the view elementcourse1 in Figure 1.3(c) again. It exists in the view only

when the following two conditions are both satisfied:

1. In the base XML document, there exists onepre element, denoted asprea, and onecourse

element, denoted ascourseb.

2. Thecourseb element is a descendant of theprea element.

course1 in Figure 1.3(c) exists because ofprea andcourseb in base XML Document. Deleting

any one of these base elements will lead to deletingcourse1. Therefore, these base elements are

considered as candidates for deletingcourse1. Let us now define those candidates3.

3In fact, deleting an ancestor of any of these base elements can be considered as a candidate for deletingcourse1

also. Doing this, however, will delete some base elements that are not required to get updated. Further not considering
these ancestors does not affect translatability. Therefore, we do not include them in our candidates.
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Given aSNV iew(vei) in STV iew, every XPath expression that appears on the path from the

root till SNV iew(vei) in STV iew corresponds to a base schema node, which is called aSource and

denoted asSource(vei). The name indicates that it is a way to delete the view element. The set

of all such XPath expressions is denoted asSources(vei). In the rest of the thesis, for an XPath

expression, we will use the name of the corresponding base element for short as long as there does

not exist any ambiguity.

For example, in Figure 2.3(c), let us consider the view element name1. According to Fig-

ure 2.3(b), there are four path expressions from theroot till name1, which areDocument (”base.xml”)

//department, $dept// professor, $prof/student, $student/name. Therefore,Sources(name1)

= {Document (”base.xml”) //department, $dept// professor, $prof/student, $student/name}.

And we can also write it asSources(name1) = {department, professor, student, namestudent}

for short.

For eachSource(vei), there exists a set of base elementsI(Source(vei)) in D corresponding

to it. In I(Source(vei)), there exists one base element contributing to the existence of vei and

we call this asource, denoted assource(vei). For example, in Figure 2.3(c),sources(name1) is

{department, professor, studenta, namea}.

root

institute

name
department

name
professor

course

student
nameprofessor

namestudent

name

*

+

+
+

*

*

Figure 2.2: base schema ofD

<result>
FOR  $dept  IN

$prof  IN  $dept//professor
RETURN <professor>

$prof/name,
FOR $student IN $prof/student
RETURN <student>

$student/name
</student>

</professor>
</result>

result

professor

$prof /name
student

$student/name

*

result

professor

Henry student1 student2

John Joe

*

(a) view query
(b) view schema tree STView

(c)  view instance tree

Document(“base.xml” )//department,

name1 name2

(a)

(b)

(c)

Figure 2.3: QueryQ4 and correspond-
ing view

Note while we can delete a source to delete its correspondingview element, it is possible that

some other view elements got unexpectedly affected becauseof this update, which are normally

called side-effects. There are two kinds of side-effects. The first kind of side-effects is a descendant

of source(vei) is a source of another view element. For example, we may want to deletecoursea in

Figure 1.1 to deletecourse1 in Figure 1.3(c), ascoursea is a source ofcourse1. However,courseb,
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which is a descendant ofcoursea, is the source ofcourse2 in Figure 1.2(c). Therefore, such update

will cause side-effects over view elementcourse2,as one of its sources get deleted. The second

kind of side-effects issource(vei) is also a source of another view element. For example,courseb

in Figure 1.1 is the source ofcourse2 in Figure 1.3(c). However, it is also a source ofcourse3. If

we want to deletecourseb to deletecourse2, there will be side-effects overcourse3, as one of its

sources get deleted.

Our goal is to find, given a view elementvei, whether there exists a non-empty subset of

sources(vei) such that deleting any sourcesource(vei) in this subset will deletevei without af-

fecting any other non-descendant view element ofvei. Deletingsource(vei) does not affectvej if

des(source(vei)) ∩ sources(vej) = ∅. Based on the above concepts, the definition of correctly

translating the deletion of a view element problem can be refined as:

Problem Statement:Let Schema(D) be an XML schema andQ a view query over it. Given

a view schema noden, does the following condition hold for every instance ofSchema(D) whose

corresponding view instance isV : For any elementvei, whose schema node isn, does there exist

source(vei) such that∀ vej ∈ V , vei 6= vej andvej is not descendant ofvei, des(source(vei)) ∩

sources(vej) = ∅.



Chapter 3

Part III:

Solutions for Single View Element Update

3.1 Algorithm Analysis

3.1.1 A Naive Algorithm

Using the above concepts, we can observe the following. Consider deleting a view elementvei by

deleting a certain base elementsource(vei). Let this element correspond to the base schema node

Source(vei). Consider all base schema nodes that could be descendants ofSource(vei), basically

Des(Source(vei)). If none of these nodes form aSource(vej), then deletingsource(vei) will not

affectvej . This is stated below.

Lemma 1 Deleting asource(vei) will not affect view elementvej, if Des(Source(vei))∩ Sources(vej)

= ∅.

For example, considerHenry and student1 in Figure 2.3(c). Suppose we want to delete

student1. Source(student1) is student in Figure 2.2. AndDes(Source(student1)) = {student,

namestudent}. On the other hand,Sources(Henry) = {department,professor,nameprofessor}.

SoDes(Source(student1))∩ Sources(Henry) = {student, namestudent} ∩ {department, professor,

nameprofessor} = ∅. This implies deleting thesource(student1) will not affect anysource(Henry)

and thereforeHenry will not be affected.

16
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As course in DTD in Figure 1.1 is aSource(course2), Des(course) ∩ Sources

(course3) = {course, pre}, which is not empty. This implies if we deletecourse2, some base

elements contributing to the existence ofcourse3 may also get deleted and therefore there may

exist side-effects oncourse3, which gives the same result as in our previous analysis.

Using Lemma 1, we can come up with a naive algorithm. Letsum be the union ofSources of

every non-descendant view elementvej of vei. If there existsSource(vei), such thatDes(Source(vei))

∩ sum = ∅, Source(vei) is a correct translation of deletingvei.

However, this algorithm cannot be applied for all view elements. Consider view elements

whose view schema nodes are the same, such asstudent1 andstudent2 in Figure 2.3(c). If we

want to deletestudent1, it is easy to observe that we can delete thestudenta element in the base

document, corresponding to the base schema nodestudent in Figure 1.1. However, according to

the above lemma,Des(student) ∩ Sources (student2) 6= ∅ and thusstudent1 cannot be updated.

Also, Lemma 1 cannot be applied to detect side-effects on view elements whose schema nodes

are descendants ofSNV iew(vei). Because for such a view elementvej , we haveSources(vei) ⊆

Sources(vej), as all the base schema nodes that contribute to the existence of vei, also contribute

to the existence of every view element that is the descendantof vei. For the above two cases, we

need other strategies, which will be illustrated respectively in the following sections.

Obviously, Lemma 1 forms an incomplete algorithm, as our analysis identified two kinds of

view-elements that cannot be handled by the lemma. However,it provides a systematic way to

study the problem. We will accordingly partition the view schema tree into three parts, as shown

in Figure 3.1. Letn = SNV iew(vei) be the view schema node forvei. The first group, marked as

1, is view schema nodes that are non-descendants ofn. We apply Lemma 1 to detect side-effects

on view elements whose schema nodes are in this group. The second group, marked as 2, is view

schema noden itself. We discuss how to detect side-effects on view elements whose schema node

is in this group in Section 3.1.3. The third group, marked as 3, is schema nodes that are descendants

of n. We discuss how to detect side-effects on view elements whose schema nodes are in this group

in Section 3.1.4.
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Note we have not considered invisible elements, since the lemma only acquires information

from view schema tree, which is directly generated from XQuery statement. In the next section 3.3,

how we are going to tackle invisible elements related side-effects will be presented in detail.

1


2


3


Figure 3.1: Schema Tree Structure

result

professor

* *

name student’ name’student

student

* *

namestudent

Figure 3.2: Schema tree of query in Fig-
ure 1.5 after appending schema nodes
for invisible elements

After all the discussions in the following sections, our algorithm will cover all schema nodes

without any overlap. Thus we can check all view elements for side-effects effectively, and a correct

translation is returned if there exists one.

3.1.2 Making Invisible Elements Visible

As we have shown in Figure 1.5, there are some view elements that do not have corresponding

view schema nodes. These view elements are calledinvisible elements. The rest of view elements

are calledvisible elements. View elements become invisible when XQuery requires to return a base

elementbei, which has other base elements as its descendants. As view schema tree is generated

merely based on XQuery statement, only a view schema nodeSNV iew corresponding tobei will

appear. However, in the view instance tree, all the descendants of bei will appear. Thus these

descendant elements become invisible in the view schema tree.

This makes Lemma 1 not useful to detect side-effects over invisible view elements. Because

Lemma 1 traverses the whole view schema tree and examinesSources of any view schema node

are affected. Since invisible view elements do not have corresponding schema nodes in the view

schema tree, Lemma 1 will not detect any side-effects over invisible view elements if there exists

any.

Note as the user sees the view instance only, the view elementrequired to be deleted could be
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either visible or invisible. We will first assume the required view element is always visible. We will

study how to detect side-effects over both visible and invisible elements in each group in Figure 3.1

in the following sections. Then we will study how to detect side-effects when the required view

element is invisible in Section 3.3.

In order to make all the view elements visible in the view schema tree, we extend the view

schema as follows. For every view schema nodeSNview, let SNvisible be the base schema node

of the base elementbevisible that XQuery requires to return forSNview. Get the descendants of

SNvisible and add them as children ofSNview in the view schema tree. Let us consider the query in

Figure 1.5 again. Bothprofessor andstudent in the original view schema tree have descendants

that are invisible. After appending these descendants as children of professor andstudent, the

schema tree is shown in Figure 3.2. Now consider deleting a view element whose view schema

node isstudent. Using Lemma 1, this will cause side effects, as there existsa schema node in

Group 1,student′, thatDes(Source(student)) ∩ Sources(student′) 6= ∅.

After extending the view schema tree as above stated, Lemma 1can detect side-effects over

both visible and invisible view elements.

3.1.3 Detecting Side-Effects in Group 2

In this section, we study how to detect side-effects over view elements in Group 2 when deleting

a visible view element,vei. Note by definition all view elements in Group 2 share the sameview

schema node, which is visible. This is similar to the relational view update problem, and we can

utilize the solutions from the relational scenario.

Updating Relational Views

In [14], Keller proposes an algorithm to check whether thereis a 1-1 mapping between the set of

tuples in the relational view and the set of tuples in a base relation. This algorithm can be used to

check whether we can delete a tuple in the view without side-effects in the relational scenario. We

use Keller’s algorithm as the basis for studying view updates in XML scenario as well. Therefore,

in this section, we will first introduce and discuss this algorithm.
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Keller’s Algorithm : Given a relational databaseD and a relational viewV , in order to find all

possible relationsr1, r2, . . . , ri such that there is a 1-1 mapping between the set of tuples inV and

the set of tuples in everyrp, 1 ≤ p ≤ i, construct a directed graph, also called as atrace graph,

as:

1. every relation used by the view forms a node in the graph. Suppose there are nodesr1, r2, . . . , rn

in the graph.

2. letri, rj be two nodes (ri 6= rj). There is an edgeri → rj iff there is a join condition of the

form ri.a =rj.k (rj.k is the key forrj .).

If there is any noder which can reach all other nodes, then there is a 1-1 mapping from tuples

in V to tuples in the relation which is denoted by noder. 2

computer1

nameid

1Smith2

1Henry1

deptnameid

2Kim3

1Joe2

1John1

professornameid

department

professor

student

SQL 1:

SELECT student.name, professor.name

FROM department, professor, student

WHERE professor.dept = department.id

AND   student.professor = professor.id

SQL 2:

SELECT student.name, professor.name

FROM department, professor, student

WHERE professor.dept = department.id

Figure 3.3: Queries over relational tables

SmithKim

HenryJoe

HenryJohn

pnamesname

SmithKim

SmithJoe

SmithJohn

HenryKim

HenryJoe

HenryJohn

pnamesname

department professor student

professor

(a) view 1

(b) view 2

(c) trace graph for view 1

(d) trace graph for view 2

department student

Figure 3.4: Views and their trace graphs

Let us consider two queries in Figure 3.3. According to Keller’s algorithm, we have their trace

graphs shown in Figure 3.4. In the trace graph of view 1,student can reach all the nodes, which

implies we can delete fromstudent to delete any single view element in view 1. On the other

hand, there is no node that can reach all the nodes in the tracegraph of view 2. Therefore, there is

no correct translation of deleting any single view element in view 2.

In the above algorithm, an edge stands for a 1 to many join condition. Let us now examine what

a path between two nodes in the graph signifies. This attribute is the base of our correctness proof.

In the following proof, the name of the node is also the name ofthe relation this node represents.
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Lemma 2 For a certain noderi in this directed graph, if there is a path fromri to rj, then each

tuple inri will be joined with at most one tuple inrj .

Base
 Induction


r
i


r
j
 (n-1)

edges


 1 edge


r
i


r
i+1


r
j-1


r
j


Figure 3.5: path fromni to nj

Proof 1 This can be proved by induction on the length of path fromri to rj, as shown in Figure 3.5.

Base Step. If the number of edges fromri to rj is 1, then tuples inri will join with at most one

tuple inrj.

Induction Hypothesis. Assume the claim holds when the number of edges fromri to rj is up to

n-1.

Induction Step. We shall demonstrate the claim is true when the number of edges fromri to rj is

n. Consider the path fromri+1 to rj with (n-1) edges. A tuple inri+1 will be joined with at most

one tuple inrj (from induction hypothesis). We also know that a tuple inri will join with at most

one tuple inri+1. Therefore, a tuple inri will join with at most one tuple inrj. 2

Proof 2 Correctness of Keller’s Algorithm: If the node which stands for relationr reaches all

other nodes through edges, any tuple in relationr will join at most once with any tuple in any other

relation, from Lemma 2. We can thus prove that tuples in the view have a 1-1 mapping with tuples

in r by contradiction.

For the sake of contradiction, let us assume it is possible tohave two tuples in the view that

map to the same tuple in the relationr, as shown in Figure 3.6. These two view tuples cannot map

to the same tuple in all relations (from SQL query definition); suppose one of the relations where
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tn
tn

r

j

(a) Relationship between   
nodes

(b) two tuples in view

tj1
tj2

Figure 3.6: view and query graph for contradiction

they map to different tuples is relationj and one of the view tuples maps totj1 , the other totj2 .

On the other hand, noder can reach nodej. But tn should have joined with at most one tuple in

relation j, which is a contradiction. So the assumption does not hold. So tuples in the view have a

1-1 mapping with tuples in the relationr.

Completeness of Keller’s Algorithm: Given a relational databases with Key constraints and an

SPJ view over it, we can come up with a trace graph described inthe algorithm. If there isn’t any

noder that can reach all other nodes, then any tupletr in r may join with more than one tuple in

any other relation. This meanstr may contribute to more than one tuple in the view. Naturally,

tuples in the view can not be guaranteed to have a 1-1 mapping with set of tuples in any relation.

2

With Keller’s algorithm, we can find a set of base tuples to which the view elements have 1-1

mapping. This implies we can delete any view element by deleting its corresponding base element,

which contribute to no other view elements.

Adapting Keller’s Algorithm to XML scenario

In Keller’s Algorithm, an edgeri → rj represents that a tuple inri joins with at most one tuple in

rj. The same intuition can be applied to XML scenario. Given view elementvei, its trace graph

has aroot element and one node for everySource(vei). Let Sourcei, Sourcej ∈ Sources(vei).

We draw an edge fromSourcei to Sourcej if the XPath expression ofSourcei starts with the

variable representingSourcej. We draw an edge fromSourcei to root if the XPath expression of
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Sourcei starts withDocument(”base.xml”). Let us consider elementstudent in Figure 2.3(b);

Sources(student) = {department, professor, student}. The corresponding XPath expressions

areDocument(”base”)// department, $dept //professor, $prof/student respectively. Every

professor will join with at most onedepartment 1. Similarly, everystudent is guaranteed to

join with at most oneprofessor. According to Keller’s algorithm, we can draw the trace graph

of student, shown in Figure 3.7. Asstudent can reach all the other nodes, we can delete view

elementstudent1 by deleting base elementstudent1 in D, as analyzed before.

studentprofessordepartmentroot

Figure 3.7: trace graph forstudent in Figure 2.3(b)

studentprofessor

Figure 3.8: trace graph forprofessor-
student in Figure 1.4(a)

However there are differences between relational and XML scenarios. For instance, a node in

the trace graph that does not reach all other nodes can still be a correct translation. Consider view

schema nodeprof -student in Figure 1.4(b). A view element ofprof -student hasSources =

{professor, student}, without any edge between them in the trace graph, shown in Figure 3.8.

However, as base schema in Figure 1.4(a) implies that there is only oneprofessor element in

the base, any view element whose schema node isprof -student can be deleted by deleting a

base element whose schema node isstudent. So cardinality constraints should be considered to

determine whether aSource can be a correct translation.

On the other hand, a node in the trace graph that reaches othernodes might not be a correct

translation. Considercourse1 in Figure 1.3(c),Sources(course1) = {pre, course}. In the trace

graph there is an edge fromcourse topre. However,course1 cannot be deleted by deletingcourseb

in Figure 1.1. This is becausecoursec is a descendant ofcourseb and issource of bothcourse2

andcourse3. Also course2 in Figure 1.3(c) cannot be deleted because it shares the samesource as

course3. Both of these occur because of recursive types in XML.

In the rest of the section, we study how we can extend Keller’salgorithm to handle cardinality

1For now we assume all the XML elements are not recursive types. How recursive types cause side-effects will be
discussed later in this section
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Figure 3.9: Keller’s algorithm and cardinality constraints

constraints and recursive types in XML.

Handling Cardinality Constraints

How cardinality information impacts the translatability of view updates in relational scenario is

illustrated in Figure 3.9, whereri andrj can reach all other nodes except each other. Without

any cardinality information, a view tuple cannot be deletedeither fromri or rj, as there can be

side-effects shown in Figure 3.9(b). However, if we know thecardinality information that there is

only one tuple inri
2, then view tuples can be deleted fromrj , shown in Figure 3.9(c).

While such cardinality information cannot be specified easily in relational schema, it does exist

in XML schema, as we mentioned in section 2.1.2. We only capture cardinality constraints *, 1

and 0. Note XML schema can specify more complex cardinality constraints such as MaxOccurs

and MinOccurs. However they do not affect whether a view element can be updated or not. So we

ignore them in this paper.

Given two base schema nodest andtn which are of ancestor-descendant relationship, what is

the cardinality between them? Here we give the formal definition:

Definition 2 Let t/a1 :: t1/a2 :: t2/ . . . /an :: tn be a path expression between two nodest and

tn in the base schema, where∀ai, 1 ≤ i ≤ n, can be one of these axes: child, descendant, or

attribute. The cardinalitycard(t, tn) betweent andtn, which can also be denoted ascard(t, /a1 ::

t1/a2 :: t2/ . . . /an :: tn), is defined as:
2This is a quite strict requirement for an intuitive explanation, which will be relaxed in later discussions.
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1. if n >1, card(t, /a1 :: t1/a2 :: t2/ . . . /an :: tn) = card(t, /a1 :: t1) × card(t1, /a2 ::

t2) × . . . × card(tn−1, /an :: tn). For the cardinality multiplication operation, please refer

to Figure 3.10(a).

2. if n=1:

(a) if a1 is descendant,card(t, /a1 :: t1) = *.

(b) if a1 is attribute,card(t, /a1 :: t1) = 1.

(c) if a1 is child, and the content model oft is re. Thencard(t, /a1 :: t1) = cardRE(t1, re).

cardRE(t1, re) is defined as follows:

i. if re = (re1, re2), cardRE(t, re) = cardRE(t1, re1)+ cardRE(t1, re2). For the

cardinality addition operation, please refer to Figure 3.10(b).

ii. if re = (re1 | re2), cardRE(t1, re) = max{

cardRE(t1, re1), cardRE(t1, re2)}. For the cardinality max operation, please

refer to Figure 3.10(c).

iii. if re = (re1)∗, cardRE(t, re) = cardRE(t1, re1) × ∗.

iv. if re = ti:

A. if ti = t1, thencardRE(t1, re) = 1.

B. if ti 6= t1, thencardRE(t1, re) = 0.

Consider Figure 2.2, cardinality betweenroot anddepartment can be computed ascard(root,

/child :: institute/child :: department) = card(root, /child :: institute) × card(institute,

/child :: department) = ∗ × ∗ = ∗.

Our proposition below uses the cardinality information in the base schema for deciding whether

a base element is a correct translation of deleting the required view element.

Proposition 1 GivenSources(vei), draw the trace graph according to Keller’s algorithm. Sup-

pose there are n 0-indegree nodes in the trace graph, sayr1, r2, . . . , rn. AmongSources(vei), find

one that is the lowest common ancestor of all 0-indegree nodes, denoted asSNancestor. For eachri,
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Figure 3.10: Cardinality operations
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*
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Figure 3.11: trace graph ofprof -
student in Figure 1.4(b) with cardinali-
ties

card(SNancestor, ri) is called the relative cardinality ofri. Let the number of relative cardinalities

whose value is 1 bel.

1. if l = n, we can deletevei from anysource(vei) whose corresponding node in trace graph

has 0-indegree.

2. if l = n − 1, we can deletevei by deleting thesource whose base schema node is the

0-indegree node with cardinality as ”*”.

3. if l ≤ n − 2, there is no correct translation.

Let us consider the query in Figure 1.4 again. Figure 3.11 is the trace graph ofprof -student in

Figure 1.4(b). With Definition 1,card(root, professor) = 1, card(root, student) = *. Therefore,

to delete the view element whose view schema node isprof -student, we can delete from Source

student.

Handling Recursive Type

Recursive types may cause two kinds of side-effects as mentioned earlier. Let us first consider the

side-effects wheresource(vej) ∈ des(source(vei)), vei andvej share the same view schema node.

Considercourse1 in Figure 1.2(c). Deleting it will have side-effects because some descendants of

its source,sourcea, also contribute to the existence of other view elements, such ascourse2. To

identify such side-effects, we definerecursive Sourceas below.

Definition 3 LetSchema be an XML schema andQ a view query defined over this schema. LetS

be aSource for a view element whose view schema node isn. S is said to be a recursive Source if

∃D, an XML Document confirming toSchema, where the conditions below are all satisfied:
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1. there exist two view elements inQ(D), vei and vej , such thati 6= j but SNV iew(vei) =

SNV iew(vej) = n.

2. I(S) containsbei andbej , bei andbej is source of vei andvej respectively, and they have

ancestor-descendant relationship.

One might think that if a path expression for a Source has ”//”operation, then the Source is re-

cursive. However, this need not be the case, such as in the XPath expressionDocument(”base.xml”)

//department /course. To identify recursive Source, we defineAbsoluteXPath below.

Definition 4 The path in the trace graph fromSource to root is called a branch, denoted as

branchSource. The XPath expression obtained by concatenating all the XPath expressions inbranchSource

is called the absolute XPath ofSource.

To identify whether a Source is recursive, we check its absolute XPath. If the absolute XPath

retrieves two base elements that have ancestor-descendantrelationship, then the Source is recur-

sive.

Proposition 2 Let P be the absolute XPath of aSource(vei) for view elementvei. We call

Source(vei) as recursive iff the following two conditions are both satisfied:

1. P is of the form/P1//bere/P2/bel, whereP1, P2 are path expressions andbere, bel are base

schema nodes.

2. the last base elementbel in P can havebere as its descendant.

Proposition 2 is illustrated in Figure 3.13(a). Here both the bel’s satisfyP and have ancestor-

descendant relationship. TheSource, student, for a student view element in Figure 2.3 has

the absolute XPathDocument(”base.xml”)//department//professor /student, which does

not match Proposition 2, thereforestudent is not recursive. However theSource, course, for

a course view element in Figure 1.2 has the absolute XPathDocument(”base.xml”)//course.

This matches Proposition 2 whereP1 is Document(”base.xml”), P2 is empty andbere = bel =

course, andcourse hascourse as descendant.
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<root>
FOR $a IN Document(“base1.xml”)//a
RETURN <a>

FOR   $c IN $a/c,
$b  IN $c//b

RETURN  $b
</a>

</root>

a1

c1

b1
a2

b2

c2

*

a

c b

a1

b1 b2 b2

a2

(a) base schema tree   
STBase

(b) base instance

(c) view query

(d) view instance tree
(a)

(b)

(c)
(d)

root

Figure 3.12:ST ′

Base, QueryQ5 and corresponding
view
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(b)  Proposition 3

Figure 3.13: Illustrating Proposition 2
and Proposition 3

Now let us consider the second type of side-effects, wheresource(vei) is alsosource(vej).

Consider the query in Figure 1.3(a).coursec in Figure 1.1 contributes to two view elements,

course2 andcourse3, in Figure 1.3(c). A more general example is shown in Figure 3.12. Fig-

ure 3.12(a) is the base schema and Figure 3.12(b) is one possible instance. Based on the query in

Figure 3.12(c), we have the view instance tree shown in Figure 3.12(d). Specified by the query,b2

joins witha1 anda2 and thus appears multiple times in the view. Deleting any of them may cause

side-effects over other appearances ofb2. For such situations we have the following proposition:

Proposition 3 Consider the trace graph of a view element whose view schema node isn. Let

Source1 andSource2 be two Sources in this trace graph, with an edge fromSource2 to Source1.

I(Source2) may contain a base element that is the source of two view elements,ve1 andve2, if all

the following conditions below are satisfied:

1. The absolute XPath ofSource1 is of the formP1//z/P2/y. Let y be the variable that

Source1 binds to andSource1 is marked as recursive using Proposition 2.

2. The absolute XPath ofSource2 is of the form$y/P3//x//P4.

3. z ∈ Des(x).

Figure 3.13(b) illustrates Proposition 3. Here, there are two view elements whereSource2

binds to the rightmostP4, andSource1 binds to the two differenty’s.

Actually this scenario implies a much stronger condition: there exists no correct transla-

tion for deleting view elementvei that has suchSources. Let us examine this. LetSourcei,
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root

Sourcei

Source21

Source2

SNancestor

Figure 3.14: trace graph that qualifies Proposition 3

a Source(vei), to be candidate we consider to deletevei. Sincevei hasSources described in

Proposition 3,Sourcei can either reachSource2 or not. If Sourcei can reachSource2, an in-

stance ofSourcei can be the source of two different view elements. ThereforeSourcei cannot

be a correct translation. Now let us consider the case in which Sourcei cannot reachSource2,

shown in Figure 3.14. Here we must consider cardinality constraints. LetSource21 be a 0-

indegree that reachSource2
3. As the lowest common ancestor of all 0-indegree nodes,SNancestor,

must be a node in the path from root toSource21, card(SNancestor, Source21) = *. According

to Proposition 1, ifcard(SNancestor, Sourcei) = *, Sourcei cannot be a correct translation. If

card(SNancestor, Sourcei) = 1, then the only possible correct translation isSource21. However,

as we discussed,Source21 cannot be a correct translation. Therefore,Sourcei cannot be a correct

translation if it cannot reachSource2. This is stated in the corollary below:

Corollary 1 Consider the trace graph of view elementvei. If ∃Source1, Source2 in this graph

that satisfy Proposition 3, there is no correct translationfor deletingvei.

With Proposition 1, Proposition 2 and Proposition 3, we can detect all the possible side-effects

on view elements whose schema node is in Group 2 when deletingSource(vei). Please refer to

Section 3.2 for how to integrate these propositions into ouralgorithm.

3.1.4 Detecting Side-Effects in Group 3

In this section, we will discuss how to detect side-effects on view elements whose schema nodes

are descendants ofn, wheren is the view schema node of a visible view elementvei. Note view

elements that are descendants ofvei will get deleted withvei, according to the hierarchial structure

3NoteS21 can beS2
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of XML view. Therefore, we focus on whether any view element,vej , that belongs to descendants

of siblings ofvei, gets affected when deletingsource(vei). Note vej could be either visible or

invisible.

<root>
FOR $a IN Document(“base1.xml”)//a
RETURN <a>

Document(“base1.xml”)//b,
Document(“base1.xml”)//c

</a>
</root>

aa
ccab

a
c

b

a1

ba1 bb1 ba2

a2

(a) base schema tree   
STBase

(b) base instance

(c) view query

(d) view instance tree(a)

(b)

(c)(d)
root

ba
bb

cc1 bb2
cc2

Figure 3.15:ST ′

Base, Query Q6

Figure 3.15 illustrates side-effects on Group 3. If we delete a1 in Figure 3.15(d) by deleting

aa in Figure 3.15(b), then the view elementba2, the descendant ofa2 in Figure 3.15(d) is deleted.

This is a side-effect. On the other hand, there is no side-effects on view elementcc2.

Let us analyze why view elementcc2 does not get affected.Sources(a1) = {a} andSources(cc2)

= {a, c}. Intuitively, deletinga1 by deleting thea element may cause side-effects overcc2, because

a is also aSource(cc2). However, this is not true ascc2 is a descendant ofa2, which is a sib-

ling of a1. a1 anda2 share the same view schema andSources, but they have differentsources:

sources(a1) = {aa}, sources(a2) = {ab}. As cc2 is the descendant ofa2, it also hasab as one of its

source, which is different from thesources of a1. Therefore, deleting froma will not change the

part ofsources of cc2 which comes froma. In addition,a and its descendants in the base tree do

not have ancestor-descendant relationship withc, which ensures deleting froma will not change

the part ofsources of cc2 which comes fromc. So, deleting froma will not change anysource of

cc2, therefore it is not affected.

Again, let us analyze why view elementba2 gets affected.Sources(a1) = {a} andSources(ba2)

= {a, b}. Same withcc2, deleting froma does not change the part ofsources of ba2 which comes

from a. However deleting froma changes the part ofsources of ba2 which comes fromb: deleting

aa in the base instance tree will also deleteba, which is asource(ba2). b is a descendant ofa in the

base schema tree, which means every base element ofb will have an ancestor whose view schema
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node isa. However in the view definition there is no condition to restrict that each base element

of b can only join with one base element ofa (e.g. b’s ancestor). In the trace graph ofba2, this is

shown asb cannot reacha. Therefore the base elementba also joins withab, and together become

sources(ba2). The above discussions can be generalized as the following lemma:

Lemma 3 For every descendant schema nodeSNd of SNV iew(vei), get its trace graph. Let

ved be a view element such thatSNV iew(ved) = SNd. If ∃ ri ∈ Sources(ved) such thatri ∈

Des((Source(vei))) and there is no path in the trace graph fromri to Source(vei)), Source (vei)

cannot be the correct translation of deletingvei.

<root>
FOR $s IN Document(“base2.xml”)//s
RETURN <s>

Document(“base2.xml”)//p
</s>

</root>
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(c) view query

(d) view instance tree(a)
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Figure 3.16:Q7 and corresponding view
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Figure 3.17: view schema trees and
trace graphs for query in Figure 3.16(c)
before and after making invisible view
elements visible

Note the above lemma can also detect side-effects over invisible view elements in Group 3,

assuming we have made all invisible view elements visible. For example, we want to deletes1 in

Figure 3.16(d).s1 comes from a base element whose base schema node iss in Figure 3.16(a). Now

we will try to use Lemma 3 to detect if deleting froms in Figure 3.16(a) will cause any side-effects

over view elements in Group 3. According to the trace graph Figure 3.17(a) generated from the

original view schema tree, we cannot identify any problem atall. After making all the invisible

view elements visible, just like in Figure 3.17(b), we can observe that we add a new node in the

trace graph,s′. s′ ∈ Sources(s′1p1) ands′ ∈ Des(Source(s1)). However there is no path in the

trace graph froms′ to s. Therefore deleting froms in Figure 3.16(a) will cause side-effects over

invisible view elements in Group 3 and hence cannot be a correct translation for deletings1 in

Figure 3.17(d).
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3.2 Algorithm for Correctly Deleting Single Visible View Ele-

ment in XML Scenario

In this section, we will present the three-step algorithm for finding the correct translation of delet-

ing a visible view elementvei.

3.2.1 Optimizations

As we discussed in the last section, in order to find a correct translation of deleting a visible view

element, we partitioned the schema tree into three groups and proposed different proved lemma

and propositions to detect the side-effects in each group respectively. As these three groups covers

the whole schema tree, we can always correctly find a correct translation if exists. In this section,

we will propose two kinds of optimizations to make the algorithm effective, which are all based on

the following observations.

Observation 1 Let vei be a descendant ofvej in the view,Sources(vej) ⊆ Sources(vei).

In Lemma 1, in order to check if there exists side-effects in Group 1 when deletingvei from

Source(vei), we need to check if anySource is affected for every view schema node in this

Group. In fact we only need to check those view schema nodes that are leaves in Group 1. Given

any non-leaf view elementvej , it always has at least one leaf descendant, sayvek. If Source(vej)

is affected, asSource(vei) ∈ Sources(vek) according to Observation 1,vek will also get affected.

Therefore only checking the leaf view elements suffice to detect side-effects in Group 1. This

will greatly decrease the view elements we will check. For example, consider deletingname1 in

Figure 2.3(c). The view schema nodes in Group 1 are:{ professor, student, $prof/name }.

However we only need to check if there exists any side-effectover$prof/name.

The second kind of optimizations enables us to decrease the candidates we consider to delete

vei without affecting other view elements. Letvei be the view element we want to delete and

vej the parent ofvei. From Observation 1, we know thatSources(vej) ⊆ Sources(vei). This
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means if we try to deletevei from anySource ∈ Sources(vej), vej will also get affected. There-

fore, onlySource ∈ Sources(vei)prune need to be considered as candidate of deletingvei, where

Sources(vei)prune = Sources(vei) - Sources(vej). For example, consider deletingstudent1 in

Figure 2.3(c). We haveSources(professor) = { department, professor } andSources(student)

= { department, professor, student }. SoSources(student)prune = { student }. This implies

we only need to consider deleting from base schema nodestudent as the candidate of deleting

view elementstudent1.

3.2.2 Algorithm

In this section, we will demonstrate the optimized algorithm Algorithm 3.2.2 that detects the cor-

rect translation of deleting a visible view elementvei.
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Algorithm 1 Algorithm 3.2.2 that correctly translating the deletion ofa single visible view element
Step 0:

0. Append all the invisible view schema nodes as children of their nearest visible ancestor.

1. Candidates = Sources(vei)prune

Step 1:

2. Let Sources′ be the union ofSources of ancestor ofvei and all non-descendant leaf view
elements ofSN(vei).

3. For everySource(vei) ∈ Candidates, if Des(Source(vei)) ∩ Sources′ 6= ∅, Candidates
= Candidates − Source(vei).

4. If Candidates = ∅, the algorithm terminates; else go to Step 2.
Step 2:

5. Draw the trace graph ofvei. Let SourcesKeller be the set of n 0-indegree nodes in the trace
graph.

6. Use Proposition 1 to checkSourcesKeller. Let l be the number of nodes whose relative
cardinality is ”1”.

(a) if l = n − 1, SourcesKeller = {SNrest}, whereSNrest is the only schema node in
SourcesKeller whose relative cardinality is ”*”.

(b) if l ≤ n − 2, Candidates = ∅; the algorithm terminates.

7. Use Proposition 2 to check ifSource(vei) is recursive. If soCandidates = Candidates −
Source(vei).

8. For every branch of the trace graph, find two consecutive Sources that satisfy the condition in
Proposition 3. If there exists such two Sources,Candidates = ∅; the algorithm terminates.

9. Candidates = Candidates∩SourcesKeller. If Candidates = ∅, the algorithm terminates;
otherwise go to Step 3.

Step 3:

10. For everySource ∈ Candidates, if deletingSource has side-effects on a descendant ac-
cording to Lemma 3,Candidates = Candidates − Source.

11. The algorithm terminates. IfCandidates = ∅, there is no correct translation of deletingvei;
otherwise eachSource ∈ Candidates is a correct translation.
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3.3 Detecting side-effects when deleting an invisible element

In the last two sections, we discussed how to detect side-effects of deleting a visible element.

However, the problem of detecting the side-effects of deleting an invisible view element remains

unsolved. Ideally, we want to use Algorithm 3.2.2 developedin previous sections. In this chapter,

we will first introduce some concepts and explain why Algorithm 3.2.2 cannot be directly applied

here, then we will give two propositions to efficiently checkthe side-effects when deleting an

invisible view element. At last, we will propose an algorithm for efficiently checking side-effects

when deleting an invisible element.

3.3.1 Compositions ofSources(veinvisible) and DataSource(veinvisible)

In Section 3.1.2, we discussed how to make invisible view elements visible in the view schema

tree. Letveinvisible be an invisible view element andvevisible its nearest visible view element. Their

view schema nodes areSNinvisible andSNvisible respectively. The return statement ofSNvisible

requires to display values of base elements ofSNbase, shown in Figure 3.18. In order to make

invisible descendants ofSNbase visible, we append them as children ofSNvisible. For example,

SNb in Figure 3.18(a) is appended asSNviewb of SNvisible in Figure 3.18(b).

SNbase

SNa

SNb

SNc
SNd

SNvisible

SNviewa SNviewb SNviewdSNviewc

(a) base schema tree (b) view schema tree

Figure 3.18: appending invisible view schema nodes
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Let us consider what would happen if we apply Algorithm 3.2.2directly upon invisible view el-

ements. First we need to check side-effects in Group 1 ofSNinvisible. Consider deleting an invisible

view elementstudenta in Figure 3.19(c). Obviously, deleting itssource, the firststudent element

in Figure 1.1, is a correct translation. However, applying Lemma 1 over the view schema tree,

shown as Figure 3.19(b), will show that this causes side-effects, becauseDes(Source(student))

∩ Sources(namestudent) 6= ∅.

This happens becausenamestudent is appended directly underprofessor as child and appears

in Group 1 ofstudent, whereas its instances are actually the descendants of viewelements of

student. Generally, this means there exist some invisible view elements that are descendants of

instances ofSNinvisible but their view schema nodes are children ofSNvisible and appears in Group

1 in view schema tree.

Now we will introduce two new concepts. By definitionSNbase is aSource of SNvisible. As

the values of view elements ofSNvisible come from base elements ofSNbase, we callSNbase as the

DataSourceof SNvisible, denoted asDataSource(SNvisible). Similarly,DataSource(SNinvisible)

is SNinvisibleBase, whereSNinvisibleBase is the corresponding base schema node ofSNinvisible. For

example,DataSource(veb) isSNb in Figure 3.18(a), whereveb is a view element ofSNviewb. Cor-

respondingly, the base element ofDataSource(ve) that issource(ve) is denoted asdatasource(ve).

Let us consider how to computeSources(veinvisible). For example, what consists ofSources(veb)

in Figure 3.18(b), whereveb is a view element ofSNviewb? According to Observation 1,Sources(vevisible)

⊆ Sources(veb). Also SNb and any base schema nodeSNi that is an ancestor ofSNb and de-

scendant ofSNbase is alsoSource(veb). Because deleting a base element ofSNi will delete its

descendants, including one whose base schema node isSNb. For example, letdatasource(vea) of

SNa be the ancestor ofdatasource(veb). NoteSNa is the descendant ofSNbase and ancestor of

SNb. If we deletedatasource(vea) to deletevea, this will deletedatasource(veb), which will in

turn deleteveb.

In summary,Sources(veinvisible) consists of three parts:Sources(vevisible), DataSource(veinvisible),

and all base schema nodes that are ancestors ofDataSource(veinvisible) and also descendants of
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SNbase.

3.3.2 Propositions that check side-effects when deleting invisible view ele-

ments

We only use it for checking side-effects over non-descendant elements ofSNvisible, which is the

blank area in Figure 3.20 andSNvisible itself. However, among the children ofSNvisible, which is

the grey area in Figure 3.20, there may still exist some view schema nodes whose instances are

also non-descendants ofSNinvisible. In order to check the side-effects over these nodes, we need

to examine the invisible view schema nodes more carefully.

Let us consider what are the candidates of correctly deleting veinvisible. Using the optimizations

in Section 3.2, we do not considerSources(vevisible) as candidates because deleting from them will

have side-effects over view elements ofSNvisible. Also, we do no consider any base schema node

that is the ancestor ofDataSource(veinvisible) and descendant ofDataSource(vevisible). Because

each of them is aDataSource of an invisible view schema node, appearing as child ofSNvisible

in the view schema tree. For example,SNa in Figure 3.18 is the ancestor ofSNb and descendant

of SNvisible. Suppose there is a view elementvea of SNa that has descendantveb of SNb. If we

delete fromSNa to deleteveb, view elementvea will get affected. Therefore, the only candidate

we consider isDataSource(veinvisible). Now we give the following proposition to check side-

effects over view schema nodes in grey area of Figure 3.18 whose instances are non-descendants

of SNinvisible.

Proposition 4 If deletingveinvisible from aDataSource(veinvisible) has no side-effect overSNvisible,

then there is also no side-effect over children ofSNvisible whose instances are non-descendants of

view elements ofSNinvisible.

proof: Let vep be a non-descendant view element ofveinvisible. For the sake of contradic-

tion, let us assume deleting fromDataSource(veinvisible) has side-effects overvep. This implies

DataSource(veinvisible) ∈ Sources(vep).
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As we discussed above,Sources of an invisible view elementvep consists of three parts:

Sources(vevisible), DataSource(vep) and base schema nodes that are ancestors ofDataSource(vep)

and descendants ofSNvisible. However, as deleting fromDataSource(veinvisible) has no side-

effects over view elements ofSNvisible, DataSource(vep) /∈ Sources(vevisible). According to

definition, view elements ofSNp are non-descendants ofveinvisible. Therefore,DataSource(vep)

is non-descendant ofDataSource(veinvisible). According to the hierarchial structure of XML Doc-

ument,DataSource(veinvisible) cannot beDataSource(vep) or its ancestors. SoDataSource

(veinvisible) /∈ Sources(vep), which contradicts the assumption.

Therefore deleting fromDataSource(veinvisible) has no side-effects overvep, Hence proved.

2

For example, if deleting fromSNb in Figure 3.18 to deleteveb has no side-effects overSNvisible,

then there is no side-effects overSNviewa andSNviewd.

Now let us consider how to check side-effects over other viewschema nodes in the grey area

of Figure 3.20. These view schema nodes are of two kinds: nodes whoseDataSources are de-

scendants ofDataSource(veinvisible), called asinvisible descendantsof SNinvisible andSNinvisible

itself. For example, we need to check side-effects overSNviewb andSNviewc in Figure 3.18. We

will first give the following proposition to check side-effects overSNinvisible:

<result>

{   

FOR $professor IN 

Document(“base.xml”)//professor

RETURN $professor

}

</result>

result

*

result

name

professor

(a)

studentb

Henry

John Joe

(a) view query

(b) view schema tree STview

(c) View instance tree

(b)

(c)

studenta

professor

name student’ name’student

* *

namea nameb

Figure 3.19: Applying Previous algorithm over
deleting invisible view elements

root

SNvisible

SNinvisible

Figure 3.20: Schema Tree Partition for
an invisible view schema node
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Proposition 5 Considerveinvisible and its nearest visible ancestorvevisible. Let their view schema

nodes beSNinvisible andSNvisible respectively. Deleting fromDataSource(veinvisible) will have

side-effects overSNinvisible if and only if deleting fromDataSource(vevisible) has side-effects over

SNvisible.

Note this does not meanDataSource(vevisible) is required to be a correct translation of deleting

vevisible.

proof:

First we will show if deleting fromDataSource(vevisible) has side-effects overSNvisible, delet-

ing fromDataSource(veinvisible) will have side-effects overSNinvisible. As there are two kinds of

side-effects introduced in Section 2.2, we will discuss each kind separately.

Let us consider the case when the first kind of side-effect occurs. This implies there exist a

view elementve′visible, whose view schema node is alsoSNvisible. Anddatasource(ve′visible) is the

descendant ofdatasource(vevisible). So when we deletedatasource(vevisible) to deletevevisible,

datasource(ve′visible) will also get deleted. This in turn causes side-effects overve′visible. So base

elements ofSNbase have ancestor-descendant relationship. ThereforeSNbase is a recursive node

by definition.

datasource( vevisible

datasource( ve’visible

datasource( veinvisible

)

)

vevisible
ve’visible

veinvisible

(a) base instance tree (b) view instance tree

)

ve’visible2 ve’invisible

root

root

Figure 3.21: example that illustrates the case when the firstcondition holds



40
A possible view instance can be as displayed as Figure 3.21.vevisible, andve′visible share the

sameDataSource. And datasource(vevisible) is the ancestor ofdatasource(ve′visible) shown in

Figure 3.21(a). Also, as the return statement ofSNvisible requires to display the contents ofvevisible,

there must be a descendant ofvevisible, ve′visible2, whosedatasource is datasource(ve′visible).

veinvisible may be a descendant ofve′visible. This implies there exists another descendant ofve′visible,

ve′invisible, that share the samedatasource with veinvisible. Therefore, if we want to deletedatasource

(veinvisible) to deleteveinvisible, this will in turn deletesve′invisible, which causes side-effects.

Now let us consider the case when the second kind of side-effects occurs. This condition

implies that there is another view elementve′visible that shares the same view schema node and

the samedatasource with vevisible. For SNinvisible, there will be two view elements,veinvisible

andve′invisible, that are descendants ofvevisible andve′visible respectively and they share the same

datasource. So deletingdatasource(veinvisible) to deleteveinvisible will have side-effects over

ve′invisible.

Second, we will show if deleting fromDataSource(veinvisible) has side-effects overSNinvisible,

then deleting fromDataSource(vevisible) will have side-effects overSNvisible. Let veinvisible and

ve′invisible be descendants ofvevisible andve′visible respectively. If deletingveinvisible has side-effects

over ve′invisible, thendatasource(veinvisible) is either the ancestor ofdatasource(ve′invisible) or

datasource(ve′invisible) itself. As datasource(vevisible) is the ancestor ofdatasource(veinvisible)

anddatasource(ve′visible) is the ancestor ofdatasource(ve′invisible), the relationship betweendatasource

(vevisible) anddatasource (ve′visible) will fail into one of the following three cases:

1. datasource(vevisible) is datasource(ve′visible). Then deletingvevisible or ve′visible will have

side-effects over the other.

2. datasource(vevisible) is an ancestor ofdatasource(ve′visible). Then deletingvevisible will

have side-effects overve′visible.

3. datasource(vevisible) is an descendantdatasource(ve′visible). Then deletingve′visible will

have side-effects overvevisible.
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As we can see, no matter in which case, deleting fromDataSource(vevisible) will have side-

effects overSNvisible.

In one word, the assumption leads to contradictions in all cases. So the assumption is not true.

Hence proved. 2

For example, consider deleting an invisible view elementvestudent whose view schema is

student in Figure 3.19(c). The nearest visible view schema node isprofessor. TheDataSource

(professor) is professor in the base. Since there is no side-effect of deleting a view element

of professor in the view by deleting fromprofessor in the base, there is no side-effects over

student in Figure 3.19(c) if we delete fromstudent in the base to deletevestudent.

Lastly, we need to check the side-effects over invisible descendants ofSNinvisible when deleting

fromDataSource(veinvisible) to deleteveinvisible. Let us review the example whyba2 in Figure 3.15

gets affected in Section 3.1.4. The reason is in the view definition there is no condition to restrict

that every base elementb of can only join with one base element ofa (e.g. its ancestor).

However, this will not happen when the view elementveinvisible is invisible. Because its de-

scendants will only display the values of descendants ofdatasource(veinvisible). In other words,

bedescendant will never join with any base element ofDataSource(veinvisible) except its own ances-

tor, wherebedescendant is a descendant ofdatasource(veinvisible). Thus if deleting fromDataSource

(veinvisible) over invisible descendants ofSNinvisible, it must because thatdatasource(veinvisible)

is datasource(ve′invisible), whereve′invisible is another view element ofSNinvisible. Therefore we

have the following proposition:

Proposition 6 deleting fromDataSource(veinvisible) causes side-effects over invisible descen-

dants ofSNinvisible if and only it causes side-effects overSNinvisible.
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3.3.3 Algorithm for Correctly Deleting Single Invisible View Element in XML

Scenario

With the above discussions, we propose the algorithm for finding correct translation of deleting an

invisible view elementveinvisible, whose nearest visible ancestor isvevisible.

Algorithm 2 Algorithm 3.3.3 that correctly translating the deletion ofa single invisible view ele-
ment
Step 0:

0. Append all the invisible view schema nodes as children of their nearest visible ancestor.
Step 1:

1. LetSources′ be the union ofSource(vevisible) andSources of all non-descendant leaf view
elements ofSN(vevisible).

2. If Des(DataSource(veinvisible)) ∩ Sources′ 6= ∅, the algorithm terminates. There is no
correct translation. Else go to Step 2.

Step 2:

3. Use Step 2 in Algorithm 3.2.2, wherevei = vevisible and Candidates =
DataSource(vevisible).

4. The algorithm terminates. IfCandidates 6= ∅, thenDataSource(veinvisible) is a correct
translation; otherwise there is no correct translation of deletingveinvisible.



Chapter 4

Part IV:

Solutions for A Set of View Elements Update

4.1 Algorithm Analysis

As we discussed in Section 2.1, we will use XPathXP to specify the view elements that need to

get deleted. However,XP can be quite complex. We will set the following constraints to XPath

XP and try to relax them in future work:1

1. XP cannot have any axis except child axis (no ”//” axis, for example).

2. XP does not have wildcards.

3. For everyelement in XP , it can have predicates. Each predicate is of the form:path = v,

wherev is a value of primitive type andpath is an XPath that starts from a child ofelement,

having child axis only.

With the above constraints, the set of view elements that we can specify withXP always

corresponds to view elements with the same view schema node.Therefore, we will again partition

1Note these restrictions do not apply to XPath expressions inview definition.
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the view schema tree into three groups as in Figure 3.1 and check if there exists side-effects over

any group for each candidate of translation.

4.1.1 Differences between Deleting a Set of View Elements and a Single View

Element

If elements inXP have predicates such that only one view element is specified,then we will be

dealing with how to correctly translate the deletion of one view element, which has been tackled

in the previous chapter. Let us consider Figure 1.2 in Section 1.1. Suppose the user only wants to

delete the view element that can be specified by theXPath: result /course[1], e.g. course1 in

Figure 1.2(c). One way is to deletecoursea in Figure 1.1 but this will causecourse2 andcourse3

in Figure 1.2(c) to get deleted, which are side-effects. In fact, there is no way to deletecourse1

without any side-effect. Therefore deletingcourse1 is untranslatable. From this, we can observe

that deleting a single view element is a special case of deleting a set of view elements.

As shown in an example in Section 1.1, deleting a set of view elements may be translatable even

when deleting a single view element in this set is untranslatable. For example, if the user wants

to deleteresult /course in Figure 1.2 in Section 1.1, e.g.course1, course2 andcourse3 together,

then deletingcoursea in Figure 1.1 is a correct translation, as the original side-effects overcourse2

andcourse3 become expected updates now. The side-effects ofcourse1 arecancelled.

From the above examples, we observe that the reason why deleting a set of view elements

Setdelete may be translatable while deleting one of them,vedelete, is untranslatable is that unex-

pected updates from deletingvedelete over view, e.g. side-effects, become required from deleting

other view elements inSetdelete. From this, we can directly get the following proposition:

Proposition 7 Given a set of view elementsSetdelete required to get deleted andSNdelete, which is

their view schema node. Consider deleting onlyvedelete, any of such view elements. If deleting from

a Source(vedelete) causes side-effects in Group 1 in Figure 3.1, deleting fromSource(vedelete) to

deleteSetdelete will also cause side-effects in Group 1.
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This is because by definition, view elements in Group 1 are non-descendant elements of all

view elements ofSNdelete, which includesSetdelete. Therefore any updates in Group 1 are always

unexpected when deletingSetdelete.

Also, from the above discussion, we notice that when there isno predicate inXPath, we need

to delete all the view elements of a view schema node and theirdescendants. Therefore we do not

need worry side-effects over Group 2 and Group 3. So we have Proposition 8.

Proposition 8 If there is no predicates inXP that specifies the view elements we want to delete,

we do not need to check side-effects over Group 2 and Group 3.

If there exists predicates in XPath, this means only a subsetof view elements in Group 2 will

get deleted. So we need to consider not only all the XML features, but also how having predicates

makes impact over Algorithm 3.2.2 and Algorithm 3.3.3 in terms of checking side-effects over

Group 2, which will be discussed in section 4.1.2. Note as having predicates is the only new

feature here, we will first discuss how to handle predicates on the schema level without considering

other XML features such as recursive types and cardinality constraints. Algorithms for these two

features are the same as those for correctly translating thedeletion of a single view element.

For Group 3, deleting only a part of view elements of the same schema node still need to use

Proposition 3. Otherwise for a view elementvedescendant of SNdescendant, a view schema node that

is descendant ofSNdelete, base elements whose base schema node belong toSNnew may join with

more than one element of the candidateSource, whereSNnew are the set of base schema nodes

that exist in the trace graph ofvedescendant but not in the trace graph ofvedelete. This in turn causes

side-effects over descendants ofvej, wherevej is in Group 2 that needs to remain in the view.

4.1.2 Discussions on Predicates in XPath

In relational scenario, we have predicates in the formt = v, wheret is an attribute of a tableT and

v is a value of a primitive type. Each such predicate specifies aset of tuples inT .
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{   FOR $a IN  Document(“base.xml”)//a,

$b IN   Document(“base.xml”)//b

RETURN <ab>
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*
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SNac SNbd

Figure 4.2: example for deleting a set of
view elements specified byXP

In XML scenario, a predicate is associated with an elementSNi in XP . SNi is either the

ancestor ofSNdelete orSNdelete itself, whereSNdelete is the view schema node of the view elements

the user wants to delete. Therefore each predicate associated withSNi specifies a subset of view

elements whose view schema node isSNi. Take Figure 4.2 as an example. Suppose the base

schema tree and base instance tree is as in Figure 4.1. LetXP beroot/SNab[SNac/id = 1]/SNbd.

If there is no predicate, it means we want to delete all view elements ofSNbd in Figure 4.2(b) that

are descendants ofab1, ab2, ab3 andab4 in Figure 4.2(e). However, as the predicate specifies that

view elementsSNab need to have descendants ofSNac whose id is 1, the user only wants to delete

view elements ofSNbd that are descendants ofab1 andab2, which is a subset of view elements of

SNab.

Now let us consider if we can find a correct translation of deleting the elements specified by

the aboveXP : root/SNab[SNac/id = 1]/SNbd. Let one such element bevebd. Sources(vebd) =

{A,B,D}. A andB are alsoSources of view elements ofSNab, so we can only considerD. How-

ever if we delete from base schemaD, view elements of view schemaSNbd that are descendants

of ab3 andab4 will also get affected. Therefore there is no correct translation.

Then how to detect this on the schema level? Let us first examine predicates more carefully.

As XP specifies restrictions over view elements ofSNac, we draw the trace graph ofSNac as

in Figure 4.2(c). As we can see, the base schema nodeC can reachA, this implies every base
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element ofC will join with only one base element ofA, which is its ancestor. More specifically,

c1 in Figure 4.1(b) will join with its ancestora1 only. Therefore we want to delete those view

elements ofSNbd whose ancestors ofSNab havea1 as theirsource. According to Observation 1,

we want to delete those view elements ofSNbd that hasa1 as theirsource. Then let us take a look

at the trace graph of view schemaSNbd shown in Figure 4.2(d), which is the view schema node of

view elements we want to delete. As the base schemaD cannot reachA, this implies that every

base element ofD may join more than one element ofA. Specifically,d1 in Figure 4.1(b) joins

with botha1 anda2.

Now it is clear how side-effects happens. We want to delete view elements ofSNbd that has

a1 assource. And we can only delete fromD. However, as there is no join condition betweenA

andD, every element ofD joins with more than one element ofA. Hence there will always occur

second kind of side-effects. To prevent this, we need to makesure that every base element ofD

joins with at most one base element ofA. This can be ensured ifD can reachA in the trace graph

of SNbd.

To generalize the above observation, we can have the following proposition:

Proposition 9 In XP , for every predicateSN1/SN2/.../SNn = v, get the trace graph ofSNn.

Suppose there are a set ofSources,Sourcesset, that can be reached byDataSource(ven), where

ven is a view element ofSNn. LetSourcesreach = Sourcesset ∩ Sources(vedelete), wherevedelete

is one of the view elements to delete. Draw the trace graph ofvedelete, if a Source(vedelete) can

reach all theSource ∈ Sourcesreach, then deleting fromSource(vedelete) will not cause second

kind of side-effects.

Note even though aSource ∈ Sourcesreach cannot be reached by the candidateSource(ven),

we can still check its relative cardinality using Proposition 1, which is the same to correctly trans-

lating the deletion of a single view element.
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4.2 Algorithm for Correctly Deleting A Set of View Elements

specified by XPath in XML Scenario

Similar to the case in deleting a single view element, we willgive two algorithms respectively for

deleting a set of visible view elements and invisible view elements.

4.2.1 Algorithm for Correctly Deleting A Set of Visible View Elements spec-

ified by XPath in XML Scenario

Let vei be one of the view elements to delete. With our above analysisand propositions, we have

the following algorithm:

Algorithm 3 Algorithm 4.2.1 that correctly translating the deletion ofa set of visible view elements
Step 0:

0. do Step 0 in Algorithm 3.2.2

Step 1:

1. do Step 1 in Algorithm 3.2.2.
Step 2:

2. LetSourcesall be the union ofSourcessets of all predicates, eachSourcesset computed as
in Proposition 9.

3. Draw the trace graph ofvei. Let SourcesKeller be the set of n 0-indegree nodes in the trace
graph.

4. LetSourcesreach = Sourcesall ∩ Sources(vei).

5. For every elementSourcekeller ∈ SourcesKeller, check if it can reach all the elements in
Sourcesreach.

6. If not, then check ifcard(SourcenotReach, Sourcekeller) = 1 for everySourcenotReach ∈
SourcesnotReach, whereSourcesnotReach are allSources thatSourcekeller fail to reach. If
not,SourcesKeller = SourcesKeller - Sourcekeller.

7. Do Step 2.7 to Step 2.9 in Algorithm 3.2.2.

Step 3:

8. do Step 3 in Algorithm 3.2.2.
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4.2.2 Algorithm for Correctly Deleting A Set of Invisible Vi ew Elements

specified by XPath in XML Scenario

The following algorithm correctly translate the deletionsof a set of invisible view elements speci-

fied byXP . The idea is the same as deleting a single invisible view element. The only difference

is, in order to consider predicates, we need to check side-effects overSNinvisible using Step 2 in

Algorithm 4.2.1. Letveinvisible be one of the view elements to delete andvevisible be one of its

ancestors.

Algorithm 4 Algorithm 4.2.2 that correctly translating the deletion ofa set of invisible view ele-
ments
Step 0:

0. Append all the invisible view schema nodes as children of their nearest visible ancestor.
Step 1:

1. LetSources′ be the union ofSource(vevisible) andSources of all non-descendant leaf view
elements ofSN(vevisible).

2. If Des(DataSource(veinvisible)) ∩ Sources′ 6= ∅, the algorithm terminates. There is no
correct translation. Else go to Step 2.

Step 2:

3. Use Step 2 in Algorithm 4.2.1, wherevei = vevisible.

4. The algorithm terminates. IfCandidates 6= ∅, thenDataSource(veinvisible) is a correct
translation; otherwise there is no correct translation of deletingveinvisible.



Chapter 5

Part V:

Conclusion and Future Work

5.1 Conclusion

In this paper we presented algorithms for correctly translating the deletion of a visible or invisi-

ble XML view element as deleting an element in the underlyingXML base. We also presented

algorithms for correctly translating the deletion of a set of visible or invisible view elements. Our

algorithms use a schema-level analysis to efficiently find a correct translation and it is based on the

previous work for updating relational views, extending this with recursive types and cardinality

constraints in XML, and ”//” operator in XQuery. Our algorithm is sound and complete.

This paper forms a major step in studying view updates in XML scenario. Future work needs to

consider incorporating other update operations such as insert, replace and XML specific operations.

Further, we need to consider more semantics and features both in XML Schema and XQuery

statements.
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