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Abstract

We study the problem of updating XML views defined over XML doents. A view update
is performed by finding thbase updatesver the underlying data sources that achieve the desired
view update. If such base updates do not exist, the view epdataid to beuntranslatableand
rejected. In SQL, determining whether a view update is tedable is performed usingchema
level analysiswhere the view definition and the base schema are used. Xkiknsas are more
complex than SQL schemas, and can specify recursive tygkesaadinality constraints.

There are two kinds of view updates: single view element tgydehere the user requires for an
update over a particular view element, and a set of view adsngodate, where the user requires
for an update over all view elements that satisfy a given KRaer the view. Accordingly, we
propose one solution for each kind of view update problensetban schema level analysis for
determining whether an update over XML views is translaaiid for finding the translation if

one exists, while considering the features of XML schemas.
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Chapter 1

Part I:

Introduction

1.1 Motivation

In databases systems, a user sees a portion of the base ltldaacaew. Therefore he/she may
need to update base data through these views (view upddispecially in shared databases,
it is essential to provide the capacity to support view upslatin the relational scenario, there
have been many studies on determining whether a view upslatanislatable[9]. A common
semantics used for determining whether a view update islatable isside-effect free semantics
In this semantics, a view update is said to be translataltheie exists base updates that achieve
the desired view update without affecting any other portbbthe view. Current relational/SQL
systems usschema level analysfer determining whether a view update is translatable, whies
view definition and the base schemas are used.

There are two kinds of view updates based on how the uselfigsdbie required view elements:
single view element update and a set of view element updateetimes a user may just want to
update a particular view element. Then he may prefer to Bpaity point out a view element and
try to update it. This is called single view element updateer€ are also situations where the user

prefer to update those view elements satisfying certailitioms specified by predicates. In this



case, he may prefer to specify a condition expression andrestjupdates.

Nowadays, as XML is becoming the standard format for dath&xge, database community
is exploring its ability to store data. In fact, view updabExome more common as many XML
databases are available on the internet, and a large nurhbgers have access to such databases.
In this paper, we study how to perform XML view updates over Xdata sources, using schema
level analysis. This problem is much harder than for refeticchemas because of the hierarchical
structure and other complex features in XML schema, sucleasrsive types and cardinality
constraints.

Let us consider an example XML document with its schema asgaré 1.1. Note the base
schema elemenburse is recursive, as a course may have a child elementwhich stands for
pre-requisite for thigourse, andpre in turn can haveourse elements as its children. Similarly,
the base elemenit-e is also recursive. Now consider two queries oigras shown in Figure 1.2
and Figure 1.3.

<IDocType roof[ <course,>

<IElement root( institute*)>
<IElement institute (name, department+)> <name> Database </name>

<IElement department (name, professor+, <prea>
course+)> <courseb>
<IElement professor( name, student*)> <name>

<IElement student( name)>

<IElement course( name, pre?)> Algorithm
<|Element pre( course+)> </name>
<IElement name( #PCDATA)>]> <prep>
<r0<9t> fitute> <coursec>
institute
<name> WPI </name> <name>
<department> Data Structure
<name> CS</name> </name>
<pr<c|)’1fgr?1$g>r>Henry </name> </course>
<student,> </pre>
<name,>John </name> </course>
</student> </pre>
<student,> </course>
<name,> Joe </name> </department>
</student> <finstitute>
</professor> </root>

Figure 1.1: XML documenD with Schema(D)

In Figure 1.2, (a) is the XQuery statement which defines teav(b) is the view schema tree
that corresponds to the XQuery. (c) is the view instancedeseerated by the XQuery and XML

documentD. The same goes with Figure 113.

1The subscripts, b, ¢ in Figure 1.1 and,2,3 in Figure 1.2(c) and Figure 1.3(c) are for illustration posp only.



<result> {

<result> FOR $pre IN Document(‘base.xml”) ffpre Tesult
{ result RETURN +| FOR $pre IN
“ " FOR $course IN Document(*base.xml" ) /fpre
FOR $course IN Document(‘base.xml" ) lcourse, Documen(base ) fcous <pre> { ore
RETURN <course> colrse FOR $course IN $pref/course . ;OR /SlScourseIN
re /icourse
{ Scoursefmame } ‘ RETURN oot
<course>
<lcourse> (@ (b) coursemame b
{$coursename} @ ()
} () resut course/name
</course>
<restit> }<lpre> © resut
coursg  coursg coTrsg } <lresult> s e

a) view quer ‘

(a) . query ame MAME  rame I coTrsq coTrsg co‘ursg

(b) view schema tree ST, name name name

o ‘ (b) view schema tree ST,
(c) view instance tree o .
(c) view instance tree Algorithm  Data Structur Data Structur

Databas Algorithm Data Structur

Figure 1.3: Queny), and corresponding
view

Figure 1.2: Queryy, and corresponding view

Let us consider the first kind of view update, e.g. single veéésment update. A user may want
to deletecourse; in Figure 1.2(c). If we deleteourse, in D, this update would causeurse,,
coursez and their descendants to be removed in Figure 1.2(c). Thiside-effect and therefore
it is not a correct translation. Now let us consider Figu@d).and try to deleteourse,. We can
achieve this by deleting the base elementrse. which has the.ame child. However, doing so
will also deletecourses in the view and therefore it is also not a correct translation

Intuitively, recursive base schemas and queries causebtihe goroblems. However, are the
above two scenarios the only cases where recursion may derefects? If not, how can we
effectively check out all such side-effects? This probleas hot been studied, to the best of our
knowledge.

There are also other XML features that need to be considereXiMIL view update problems,
such as cardinality constraints in the base schema. Waktlfieatures make the problem different
from the relational scenario? Let us take a look at the queRigure 1.4(c). It indicates that each
professor element in the base will join with evertudent element. Therefore eaghofessor
andstudent may be used more than once and we cannot dgtetg student view element. How-
ever, let us reconsider this query, given the base schenieassn Figure 1.4(a). It indicates that

there is only onerofessor in the base. We now know that eaehudent will be used only once

They do not appear in the actual documents or views.
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and we can delete a certaino f-student by deleting the correspondingudent in the base XML

document. From this example, we can observe that utilizardinality information provided in
the base schema may give a better translation for the vieatap#iow to fully handle cardinality

is also discussed in the thesis.

<result>
<IDocType root]
<IElement root( institute)> { result
<IElement institute (name, department)>
<IElement department (name, professor, FOR $professor IN . .
course+)> <result> Document(*hase.xmI")/fprofessor
<IElement professor( name, student*)> FOR fIN D Ndent
<IElement student( name)> { $pro ocument RETURN $professor (b) professor studen

<IElement course( name, pre?)> (“base.xml”) //professor,
lEtement pre( course+)> $student IN Document FOR Ssutent N result
<!Element name( #PCDATA)>]> b Fylsuden Document(*base.xml")//student
(a) base schema asexmijfistuden A (o
RETURN <prof-student> RETURN $student @ professor
result student, student,
. { $profiname, }
<Iresult> name student’, student), name, name
prof-student $student/name } a b ) )
</prof-student> )
P J (a) view query name’, name), John  Joe
<[result>
b) view schema tree ST, ‘
Sprofiname ~ $student/name (c) query statement Q ) vew Henry  John'  Joe'

(b) view schema tree ST, (c) View instance tree

Figure 1.5: Query), and corresponding

Figure 1.4: Query)s; and corresponding view ; o
view: side-effects over invisible elements

Last but not the least, let us take a look at another examplehich view update problem
arises due to the hierarchical structure of XML. ConsiderXiQuery statement in Figure 1.5(a).
It requires to return all thero fessor andstudent base elements. For each returned base element,
all of its descendants will appear in the view, as we can sddguare 1.5(c). However, as the
view schema tree in Figure 1.5(b) is generated from XQuewyill display the schema node for
professor andstudent only. Note the base elemestudent appears as two different elements
in the view. One of themstudent, appears because XQuery explicitly extracts the base eleme
student; while the other, view elementtudent’ 2, appears as XQuery requires to extract the
contents of base elememto fessor and base elementudent is a descendant gf-o fessor. For
the view elementtudent’, there is no schema node in Figure 1.5(b) corresponding Wetcall
those view elements which has no corresponding view schea@ asnvisible elementsThis is
quite different from relational scenario, where all thewieiples are visible, in the sense that each

of them corresponds to the only view schema node in the vibera tree.

2just like subscripts in Figure 1.3, superscripts is forsthation purpose only.
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Now let us examine these invisible elements to see if thest egdates that could cause side-

effects related to them. As the view elemestsdent, andstudent! come from the same base

element, deleting one of them will have side-effects overdther. This means deleting a visible
view element may have side-effects over some invisible etes) and vice versa. In addition, let
us consider deleting the view elementmne,, which is an invisible element. This will obviously

have side-effects over view elementme!,, which is also an invisible view element. As both the
updated view element and affected view element are notlgigilthe view schema tree, how are
we going to detect the side-effects on the schema level nedwstackled.

View update problems caused by the above three XML featusssramain in the scenario
where a set of view elements are required to get updated itch.dzet us examine the difference
between scenario in which only one view element needs topggted and the scenario in which
a set of view elements needs to get updated. A naive algogdmbe to check the side-effects
and find the translation for each view element update in therse by one. If any update of the
view elements have side-effects, we need to reject the epdas updating these view elements
will cause side-effects. The following example, howewvedjcates that this is not always the case.
Consider a user may want to delete all the course view elemeiigure 1.2(c). Though deleting
such a single view element may cause side-effect, as welsthteve, the corresponding update
of deleting all such view elements is straightforward; wi sanply delete all the course elements
in the base XML document and this translation causes noedidets. The reason is those view
elements which may have side-effects also belong to thefsgew elements that we want to
delete. As a result, there is no side-effects on the resteovigw.

Therefore, we can observe that those view elements that @&y dide-effects, may be able
to get updated along with other view elements and leavesd®ediects over the rest of the view.
How a required set of view elements can be specified in XML agerand how to check their
update translatability will also be discussed in the thesis

Our main technical contributions include: we study how dea$ in XML schemas, such as

recursive types and cardinality constraints, along withhikerarchical structure of XML, impact
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the XML view update problem. We examine two update scenand®re one is to delete one

single view element and the other is to delete a set of viemet#s. Accordingly, we propose
two algorithms. The first one is to determine whether a viedatp over XML data sources is
translatable and to find the translation if one exists, baseschema level analysis. The second
one is to determine whether updating a set of view elemermgsifsggd by some conditions over
XML data sources is translatable and to find the translafi@meé exists, based on schema level
analysis. Our algorithms are sound (a translation retubyedur algorithm is guaranteed to not
cause side-effects) and complete (a translation is guegdrnb be returned by our algorithm if
there exists one). We believe these results go a long wayrdswanderstanding the XML view

update problem and provide the capacity to efficiently upddiiL views.

1.2 Related Work

There are many studies on view updates in relational segreuch as [10, 9, 14, 8]. In [10],
authors introduce the concept of a complementary view. Tihileoas argue that when changing
the data in the base corresponding to the updates on thettiewest of the database that is not in
the view should remain unchanged. This solution tends tobetrict, as many view updates are
not translatable by this theory. In [9], authors argue thatan perform a view update by deleting
base tuples that contribute to the existence of this viemefg. Also such base tuples are required
not to contribute to other view elements to avoid side-¢ffeSimilarly, in [14], Keller proposes
an algorithm to check whether 1-1 mapping exists between af seew tuples and a set of base
tuples. This mapping indicates that a certain view elemanttie deleted without side-effects.
In [18], authors consider the problem of detecting indegewce of a query expressed by datalog
programs from updates.

While in [10, 9, 14] authors study the view update problemhendchema level, there are other
works, such as [8], that study the problem on the instanca.I&herefore in [8], more updates
can be performed without side-effects. However, becauskeofarge size of the database, such

data-centric algorithms tend to be more time-consuming.
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In recent work [15], authors propose a new update semantiaddating relational views.

Every update in the view is encoded using special identifighe database, which ensures the
uniqueness of set of base elements generating the updateékment. This uniqueness indicates
all view updates are translatable without side-effecty.oBd those special encodings, side effects
are hidden in the actual base data via an extended view qlieig/paper, however, does not study
how to check the translatability of the view updates in thategt of this special semantic. In
[3], authors propose a novel approach to view update probler@lational scenario. It defines a
bi-directional query language, in which every expressiamloe read both as a view definition and
as an update policy.

In order to utilize the maturity of relational database teéghes and also adapt to the current
required web applications, people tend to build XML view®iorelational databases, such as
[19, 20]. There are some research that consider XML viewsoasgpositions of flat relational
views, such as [11], for the purpose of querying relatiorsdbdases. Some other work further
study the updatability of XML views over relational dataéss In [5], authors study the update
overwell-nestedXML views. However, as authors map XML view into relationakw updating
problem, some of the constraints such as cardinality caimésrand recursive types in XML context
cannot be captured. In [23], the authors discuss how to chelkeffects for updating XML
view elements over a relational database. In [4], authoesthes nested relational algebra as the
formalism for an XML view of a relational database to studg ffroblem of when such views
are updatable. In [7], authors revise the update semamtiesdcommodate XML side effects
based on the semantics of XML views, and present efficiemrébgns to translate XML updates
to relational view updates. Also, they provide new techagto efficiently support XML view
updates specified in terms of XPath expressions with remuesid complex filters.

However, given an XML view over XML data, how to check the ugadlity of the view
elements and further give the correct, efficient transtedithis view update remains unsolved. In
[2], the authors introduce a view architecture and discugé Xiew updates for the first time. In

[22], authors study both closed and open view update stest@grelational scenarios and discuss
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their applicability to an XML setting. In [17], authors stutype checking in XML view updates.

In [21], the authors study execution cost of updating XMLwseusing triggers versus indices.
In [16], authors consider virtual updatable views for a guanguage addressing native XML
databases, including information about intents of updetsview definitions. In [6], authors
develop an ER based theory to guide the design of valid XMlvsjevhich avoid the duplication
from joins and multiple references to the relations. In [18]thors consider finding a correct
translation of a given update in a user-defined XML views ol documents, avoiding side-
effects over other view elements. This thesis will extenel @algorithm in this paper and try to

handle more kinds of views and updates.



Chapter 2

Part II:

Problem Definitions and Notations

2.1 View Update Translatability and Problem Scope

2.1.1 View Update Translatability Definition
A view update operation can be a delete, an insert or a replacement. The corresgpapdate

on the XML base is said to be the translation of the view update

Definition 1 Let D be an XML document and V a view defined’by 'V over D. An XML docu-
ment update sequenéé” is a correct translation of a view update’ if vV (DEFY(D))=DEFV
(UH(D)).

This definition is depicted in Figure 2.1. The update is adriethe diagram in Figure 2.1

commutes.
— @

M @
DEF” DEFY
D

URD)
Figure 2.1: Correct View Updates Definition

(3) UR
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2.1.2 Problem Scope

Update Operations Considered

As we introduced above, a view update operation can be aedelatinsert or a replacement.
Deletions are typically considered to be different fromeiri®ns. For instance, consider an SQL
view defined as a join betweettudent table andprofessor table, where atudent row joins
with at most onerofessor row. The SQL standard [12] supports deleting a row in thiswiy
deleting a correspondingtudent row, whereas inserts are rejected as they might need ta inser
into student table, orprofessor table or even both, which is more complex and hard to decide.
As the first work considering view updates over XML data seareve consider only deletions and
inserts are out of our scope. We study both single view el¢arehset of view elements deletions.
For single view element deletion, we do not use a view updatguage, as how the view element
is specified (by the view update language) is not significant.

There are two ways to specify the set of view elements whidulshget updated in a batch.
The user can specifically point out every view element thatdsdo get updated. Those view
elements can correspond to different schema nodes. To thedkanslatability of such updates,
we can check the translatability of deleting every view adatrin the set. Therefore we will not
discuss this situation. The second way is the user can gpibefelements to be deleted by an
XPath expressioX P, starting from the root of the view. In the latter situatiany view element
ve; Will get updated if the path from root of the view te; qualifiesX P. For short, we say these
view elements qualifyX P. We will use XPath as our view update language when we conside
deleting a set of view elements in a batch. As XPath could toecguite complicated, we will set

constraints on using it, please refer to Chapter 4 for detalil
Base Schema Language
We use DTD (Document Type Definition) as schema languagesirithe the underlying databases.

DTD is a very expressive and complex language. The two mgetfgiant features in DTD that

we consider are recursion and cardinality. The cardinalftyrmation is obtained from the content
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model in DTD, which uses ™", "+", "?", " or "|”. We will not consider other features in XML

schema languages, for doing so will make the algorithm eie complicated and hard to under-
stand. More specifically, we will not consider ID/IDREF ctaits in DTD, and sub-typing and

key/foreign key constraints in XML schema.

View Definition Language

We will use a subset of XQuery as the view definition languaggedbed as follows:

1. The XQuery we consider could have FOR, WHERE and RETURDses and dirElemCon-

structor [1] in the statement.
2. In each FOR clause, there can be multiple variable binsliaggments.

3. In an XPath expression, multiple "//* and”’can exist. Further, a node test [1] can be

specified as a wildcard.

4. RETURN can contain nested XQuery statements.

Even though we consider WHERE clause, the predicates sgbaifithe WHERE clause are
not used to determine whether a view update is translatdbleugh considering such predicates
might result in more view updates being translatable, itlwamandled similarly as in relational
scenario and we want to focus on the unique XML features. AlsoLET clause is not considered
because an XQuery that has LET can be rewritten into one utithe LET clause. Similar to SQL

solutions, we do not consider aggregation, user-definectitums and Orderby clauses.

Restrictions on Translations Considered

There are various strategies for translating view updakes. those base XML elements corre-
sponding to the view element to be deleted, we can set ite valaull, or delete it but keep its de-
scendants, etc. However, we consider only the translatitiese we delete an XML view element
by deleting the corresponding base elements and also tlvertdents. This keeps the problem
tractable, and is similar to existing solutions in SQL/tielaal scenarios. Now the problem we

study can be described as:
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2.1.3 Problem Definitions

For single view element deletion, we give the problem ded@inibelow:

Deleting Single View Element Problem StatementLet Schema(D) be an XML schema
and @ a view query ovetSchema(D). Given a view schema node n € (), does there exist
a translation for deleting a view element whose view scheodensn that is correct for every
instance ofSchema(D)?

For set of view element deletions, we give the problem dédimibelow:

Deleting Set of View Elements Problem StatementLet Schema(D) be an XML schema
and @ a view query ovelSchema(D). Given an XPathX P, does there exist a translation for
deleting the view elements, which qualifyP, that is correct for every instance 8thema(D)?

Note that we study the problem with schema level analysis;iwtilizes the view definition
and the schema of the base XML data sources. In other worddpwet examine the base data to
determine whether there exists a translation. Such scherbanalysis is similar to the approach

in relational scenarios [9, 14]; data level analysis forttesv update problem has been studied in

[8].

2.2 Notations

In this section we first introduce some concepts and notatiamch are the foundation of later
discussions. A summary of them can be found in Table'2llet D be an XML document(base
XML data sources) with schentechema(D). Schema(D) can be represented as a tree called the
base schema tree, denotedsds;,,.. The ST, Of the XML Document in Figure 1.1 is shown
in Figure 2.22. Consequently, every element$iahema(D) has a corresponding schema node in
STpase, denoted as Np,s.. FOr example, the elemeptofessor in Schema(D) in Figure 1.1

has aSNg,.. in Figure 2.2, which is the node-ofessor.

1S Nyew Stands for View Schema Node astfy;.,, Stands for View Schema TreeS Np,se and STgqs. are
analogously defined for the base XML document.

°Note there is some information not captured$#¥z,.. such as order of elements. We only capture those infor-
mation that will be utilized by our algorithm, such as cagdity constraints and recursive types.
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Semantic Meaning Semantic Meaning
Notations Notations
D XML data sources Q XQuery Statement defining
the view
Schema(D) XML schema oD Vv view instance defined b®
STgase | SChematree of XML data ST, |Schema tree @@
sources
SNi.ee | @node inSTy,, SNjew | @ NOde inST,,
bg a base element ve | aview element iV
source(vg | a base element that sources(vg| All base elements that
contribute to the existenge contribute to the existence g
of ve ve
Source(vg | a SN, that contributes | Sources(vg all theSN;, . that contribute
to the existence ofgin V to the existence ofg
des(source) The set of base elements Des(Source)The set of schema nodes th
that are the descendantg of are the descendants $éurce
source includingsource including Source

Table 2.1: concepts and notations summary

The XML view is defined as a quer§y over Schema(D). The corresponding instance is de-
noted ad’/. () specifies a view schema tree, denoted&s,;..,, such as Figure 1.2(b), Figure 1.3(b)
and Figure 1.4(b).

ve; IS a view element irV that is to be deleted. The node $77,.,, corresponding tae; is
called the view schema node of;, denoted as$$ Ny..,(ve;). Let us consider the view element
coursey in Figure 1.2(C)S Ny e (coursey) is the nodeourse in Figure 1.2(b).

Let us examine the view elemeaiurse; in Figure 1.3(c) again. It exists in the view only

when the following two conditions are both satisfied:
1. In the base XML document, there exists gme element, denoted ase,, and onecourse
element, denoted asursey,.
2. Thecourse, element is a descendant of the:, element.

coursey in Figure 1.3(c) exists becauseofe, andcourse, in base XML Document. Deleting
any one of these base elements will lead to deleting se;. Therefore, these base elements are

considered as candidates for deletingrse;. Let us now define those candidates

3In fact, deleting an ancestor of any of these base elementsecaonsidered as a candidate for deleting-se;
also. Doing this, however, will delete some base elemeatsfe not required to get updated. Further not considering
these ancestors does not affect translatability. Thezefee do not include them in our candidates.
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Given aSNyew(ve;) in STy, €very XPath expression that appears on the path from the

root till SNy e, (ve;) in STy, COrresponds to a base schema node, which is caltediace and
denoted asource(ve;). The name indicates that it is a way to delete the view elemEme set

of all such XPath expressions is denotedSasrces(ve;). In the rest of the thesis, for an XPath
expression, we will use the name of the corresponding baseegit for short as long as there does
not exist any ambiguity.

For example, in Figure 2.3(c), let us consider the view el@meme;. According to Fig-
ure 2.3(b), there are four path expressions fromrthetill name;, which areDocument (" base.xml”)
//department, Sdept /| professor,$prof [student, $student /name. Therefore Sources(name;)
={Document ("base.xml”) / /department, $dept// professor, $prof /student, $student/name}.
And we can also write it aSources(name;) = {department, professor, student, namesydent
for short.

For eachSource(ve;), there exists a set of base elemehtSource(ve;)) in D corresponding
to it. In I(Source(ve;)), there exists one base element contributing to the existefice;, and
we call this asource, denoted asource(ve;). For example, in Figure 2.3(cypurces(name;) is

{department, professor, student,, name,}.

<result>
FOR $dept IN

result

root
Document(“base.xml” )//department,

*
- $prof IN $dept/professor protessor

institute RETURN <professor> $prof /name *
N $prof/name, stTdem
d t t FOR $student IN $prof/student(b)
name epartmen RETURN ;StUddem; $student/nan
student/name
* + </student> (a) rerult
professor . </professor> (© professor
name * courde’ <lresult>

student

Henry StTdth studen
Nnamerofessor

(a) view query
(b) view schema tree ST, njmq ”Tm%
(c) view instance tree Johr  Joe

name
n m%tudenl

Figure 2.3: Queryy, and correspond-
ing view
Note while we can delete a source to delete its correspona@vgelement, it is possible that

Figure 2.2: base schema bf

some other view elements got unexpectedly affected beaHubes update, which are normally
called side-effects. There are two kinds of side-effecke flrst kind of side-effects is a descendant
of source(ve;) is a source of another view element. For example, we may walgletecourse, in

Figure 1.1 to deleteourse; in Figure 1.3(c), agourse, is a source ofourse;. Howevercourse,
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which is a descendant eburse,, is the source ofourse, in Figure 1.2(c). Therefore, such update

will cause side-effects over view elememnturse;,as one of its sources get deleted. The second
kind of side-effects isource(ve;) is also a source of another view element. For exampte;se,

in Figure 1.1 is the source eburse, in Figure 1.3(c). However, it is also a sourcecofirses. If

we want to deleteourse;, to deletecourse,, there will be side-effects oveburses, as one of its
sources get deleted.

Our goal is to find, given a view element;, whether there exists a non-empty subset of
sources(ve;) such that deleting any soureeurce(ve;) in this subset will deletee; without af-
fecting any other non-descendant view elementef Deletingsource(ve;) does not affecte; if
des(source(ve;)) N sources(ve;) = (. Based on the above concepts, the definition of correctly
translating the deletion of a view element problem can beedfas:

Problem Statement: Let Schema(D) be an XML schema an@ a view query over it. Given
a view schema node, does the following condition hold for every instanceSefiema (D) whose
corresponding view instance i&. For any elemente;, whose schema nodens does there exist
source(ve;) such thaw ve; € V, ve; # ve; andve; is not descendant afe;, desgource(ve;)) N

sources(ve;) = 0.



Chapter 3

Part llI;

Solutions for Single View Element Update

3.1 Algorithm Analysis

3.1.1 A Naive Algorithm

Using the above concepts, we can observe the following. i@endeleting a view element; by
deleting a certain base elemenirce(ve;). Let this element correspond to the base schema node
Source(ve;). Consider all base schema nodes that could be descendahitsret:(ve;), basically
Des(Source(ve;)). If none of these nodes form&urce(ve;), then deletingource(ve;) will not
affectve;. This is stated below.

Lemma 1 Deleting asource(ve;) will not affect view elemenite;, if Des(Source(ve;)) N Sources(ve;)
= 0.

For example, consideH enry and student, in Figure 2.3(c). Suppose we want to delete
studenty. Source(student,) is student in Figure 2.2. AndDes(Source(studenty)) = {student,
namespdent §- ON the other handSources(Henry) = {department,professor,namep,ofessor }-
SoDes(Source(studenty)) N Sources(Henry) = {student, namegygent } N {department, professor,
nameprofessor t = 0. Thisimplies deleting theource(student,) will not affect anysource( Henry)

and thereforeéd enry will not be affected.

16
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As course in DTD in Figure 1.1 is aSource(courses), Des(course) N Sources

(courses) = {course, pre}, which is not empty. This implies if we deleteurse;, some base
elements contributing to the existencewfirse; may also get deleted and therefore there may
exist side-effects onourses, which gives the same result as in our previous analysis.

Using Lemma 1, we can come up with a naive algorithm.dwet be the union ofSources of
every non-descendant view elemeat of ve,. If there existsSource(ve;), such thatDes(Source(ve;))
N sum = (), Source(ve;) is a correct translation of deleting; .

However, this algorithm cannot be applied for all view eletse Consider view elements
whose view schema nodes are the same, suglwuasnt; andstudents, in Figure 2.3(c). If we
want to deletestudent,, it is easy to observe that we can delete ¢helent, element in the base
document, corresponding to the base schema sad&nt in Figure 1.1. However, according to
the above lemma)es(student) N Sources (studenty) # () and thusstudent; cannot be updated.

Also, Lemma 1 cannot be applied to detect side-effects om glements whose schema nodes
are descendants 6fNy,.,,(ve;). Because for such a view element, we haveSources(ve;) C
Sources(ve;), as all the base schema nodes that contribute to the exésténe;, also contribute
to the existence of every view element that is the descerafant. For the above two cases, we
need other strategies, which will be illustrated respetfiin the following sections.

Obviously, Lemma 1 forms an incomplete algorithm, as outyamaidentified two kinds of
view-elements that cannot be handled by the lemma. Howdverpvides a systematic way to
study the problem. We will accordingly partition the viewhsma tree into three parts, as shown
in Figure 3.1. Letr = SNy, (ve;) be the view schema node foe;. The first group, marked as
1, is view schema nodes that are non-descendants \bfe apply Lemma 1 to detect side-effects
on view elements whose schema nodes are in this group. Thadgecoup, marked as 2, is view
schema node itself. We discuss how to detect side-effects on view eldmehose schema node
is inthis group in Section 3.1.3. The third group, marked,as Schema nodes that are descendants
of n. We discuss how to detect side-effects on view elementsescisema nodes are in this group

in Section 3.1.4.
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Note we have not considered invisible elements, since timenie only acquires information

from view schema tree, which is directly generated from Xi@s¢atement. In the next section 3.3,

how we are going to tackle invisible elements related sitEets will be presented in detail.

result

n
professor stiaent

% *

name  student’ Name’yugene NAMEggen;

Figure 3.2: Schema tree of query in Fig-
ure 1.5 after appending schema nodes
for invisible elements

After all the discussions in the following sections, ouraithm will cover all schema nodes

Figure 3.1: Schema Tree Structure

without any overlap. Thus we can check all view elementsitte-gffects effectively, and a correct

translation is returned if there exists one.

3.1.2 Making Invisible Elements Visible

As we have shown in Figure 1.5, there are some view elemeatsithnot have corresponding
view schema nodes. These view elements are cadlasible elementsThe rest of view elements
are calledvisible elementsview elements become invisible when XQuery requires torred base
elementbe;, which has other base elements as its descendants. As JWemadree is generated
merely based on XQuery statement, only a view schema 8dde.,, corresponding tée; will
appear. However, in the view instance tree, all the desceadd be; will appear. Thus these
descendant elements become invisible in the view schema tre

This makes Lemma 1 not useful to detect side-effects ovesible view elements. Because
Lemma 1 traverses the whole view schema tree and exarfimes:cs of any view schema node
are affected. Since invisible view elements do not haveesponding schema nodes in the view
schema tree, Lemma 1 will not detect any side-effects owesible view elements if there exists
any.

Note as the user sees the view instance only, the view elemguired to be deleted could be
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either visible or invisible. We will first assume the requirgew element is always visible. We will

study how to detect side-effects over both visible and ibleslements in each group in Figure 3.1
in the following sections. Then we will study how to detedeseffects when the required view
element is invisible in Section 3.3.

In order to make all the view elements visible in the view sohdree, we extend the view
schema as follows. For every view schema n6d€,..,, let SN, be the base schema node
of the base elemerik,; ;. that XQuery requires to return f&fN,;..,. Get the descendants of
S Nyisivie @nd add them as children 8tV,;.,, in the view schema tree. Let us consider the query in
Figure 1.5 again. Botpro fessor andstudent in the original view schema tree have descendants
that are invisible. After appending these descendantsifth@ of professor and student, the
schema tree is shown in Figure 3.2. Now consider deletingga element whose view schema
node isstudent. Using Lemma 1, this will cause side effects, as there eristshema node in
Group 1,student’, that Des(Source(student)) N Sources(student”) # ().

After extending the view schema tree as above stated, Lemaoaa Hetect side-effects over

both visible and invisible view elements.

3.1.3 Detecting Side-Effects in Group 2

In this section, we study how to detect side-effects oveneements in Group 2 when deleting
a visible view elementye;. Note by definition all view elements in Group 2 share the saiew
schema node, which is visible. This is similar to the relaioview update problem, and we can

utilize the solutions from the relational scenario.

Updating Relational Views

In [14], Keller proposes an algorithm to check whether theme 1-1 mapping between the set of
tuples in the relational view and the set of tuples in a balsgioa. This algorithm can be used to
check whether we can delete a tuple in the view without sftests in the relational scenario. We
use Keller’s algorithm as the basis for studying view upsglateXML scenario as well. Therefore,

in this section, we will first introduce and discuss this aitn.
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Keller's Algorithm : Given a relational databade and a relational view’, in order to find all

possible relations;, r,, . . ., r; such that there is a 1-1 mapping between the set of tuplésand

the set of tuples in every,, 1 < p < i, construct a directed graph, also called dsaae graph,

as:
1. everyrelation used by the view forms a node in the grappp8se there are nodes -, . .., r,
in the graph.
2. letr;, r; be two nodesi( # r;). There is an edge, — r; iff there is a join condition of the
formr;.a=r;.k (r;.k is the key forr;.).

If there is any node which can reach all other nodes, then there is a 1-1 mappong fuples

in V' to tuples in the relation which is denoted by node O

(a) view 1
shame pname

department department  professor  student

id name SQLL: John Henry

1 computer | SELECT student.name, professor.name Joe Henry

FROM , professor, student - -

Kim Smith c) trace graph for view 1

(professor WHERE professor.dept = department.id © grap

id [name |dept

AND  student.professor = professor.id

1 |Hemy |1 P P (b) view 2

2 [Smih |1 sname pname

student J

. ohn Henr

id |name |professor sQLz y

T l3onn L SELECT student.name, professor.name Joe Henry department  professor  student

2 ljoe 11 FROM department, professor, student Kim Henry Q—@ O

3 |Kim |2 WHERE professor.dept = department.id John Smith
Joe Smith (d) trace graph for view 2
Kim Smith

Figure 3.3: Queries over relational tables
Figure 3.4: Views and their trace graphs

Let us consider two queries in Figure 3.3. According to K&lalgorithm, we have their trace
graphs shown in Figure 3.4. In the trace graph of viewtiddent can reach all the nodes, which
implies we can delete fromtudent to delete any single view element in view 1. On the other
hand, there is no node that can reach all the nodes in thegrapé of view 2. Therefore, there is
no correct translation of deleting any single view elemantiew 2.

In the above algorithm, an edge stands for a 1 to many joinitondLet us now examine what
a path between two nodes in the graph signifies. This atérilsithe base of our correctness proof.

In the following proof, the name of the node is also the nanthefelation this node represents.
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Lemma 2 For a certain noder; in this directed graph, if there is a path fromto r;, then each

tuple inr; will be joined with at most one tuple ir.

i

ri li+1

1 edge |

I | (n-1)
rj-1 [edges
rj

Base | nducti on

Figure 3.5: path from; to n;

Proof 1 This can be proved by induction on the length of path frpta r;, as shown in Figure 3.5.
Base Step. If the number of edges from to r; is 1, then tuples im; will join with at most one
tuple inr;.

Induction Hypothesis. Assume the claim holds when the number of edgesfrdaor; is up to
n-1.

Induction Step. We shall demonstrate the claim is true when the number ofseitiger; to r; is
n. Consider the path from, to r; with (n-1) edges. A tuple in_; will be joined with at most
one tuple inr; (from induction hypothesis). We also know that a tuple; iwill join with at most

one tuple inr; ;. Therefore, a tuple im; will join with at most one tuple im;. O

Proof 2 Correctness of Keller's Algorithm: If the node which stands for relationreaches all
other nodes through edges, any tuple in relatiomill join at most once with any tuple in any other
relation, from Lemma 2. We can thus prove that tuples in tee Yiave a 1-1 mapping with tuples
in r by contradiction.

For the sake of contradiction, let us assume it is possibleaee two tuples in the view that
map to the same tuple in the relationas shown in Figure 3.6. These two view tuples cannot map

to the same tuple in all relations (from SQL query definitiauppose one of the relations where
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o)

(a) Relationship between

b) two tuples in view
nodes (b) P

Figure 3.6: view and query graph for contradiction

they map to different tuples is relatigrand one of the view tuples mapsttp, the other ta, .

On the other hand, nodecan reach nodg. Butt, should have joined with at most one tuple in
relation j, which is a contradiction. So the assumption does not hadufles in the view have a
1-1 mapping with tuples in the relation

Completeness of Keller's Algorithm: Given a relational databases with Key constraints and an
SPJ view over it, we can come up with a trace graph describéldemlgorithm. If there isn't any
noder that can reach all other nodes, then any tuplen » may join with more than one tuple in
any other relation. This means may contribute to more than one tuple in the view. Naturally,
tuples in the view can not be guaranteed to have a 1-1 mappithgset of tuples in any relation.

O

With Keller’'s algorithm, we can find a set of base tuples toakithe view elements have 1-1
mapping. This implies we can delete any view element by ohgjétis corresponding base element,

which contribute to no other view elements.

Adapting Keller's Algorithm to XML scenario

In Keller's Algorithm, an edge; — r; represents that a tuple i joins with at most one tuple in
r;. The same intuition can be applied to XML scenario. Givenwiementve;, its trace graph
has aroot element and one node for eve$yurce(ve;). Let Source;, Source; € Sources(ve;).

We draw an edge fron$ource; to Source; if the XPath expression afource; starts with the

variable representin§ource;. We draw an edge frorGource; to root if the XPath expression of
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Source; starts withDocument(”base.xml”). Let us consider elemenrtudent in Figure 2.3(b);

Sources(student) = {department, professor, student}. The corresponding XPath expressions
are Document(”base”)// department, $dept //professor, $prof /student respectively. Every
professor Will join with at most onedepartment *. Similarly, everystudent is guaranteed to
join with at most oneprofessor. According to Keller's algorithm, we can draw the trace drap
of student, shown in Figure 3.7. Astudent can reach all the other nodes, we can delete view

elementstudent; by deleting base elemestudent; in D, as analyzed before.

professor student
root department professor student O O

O O O O

Figure 3.8: trace graph fqrrofessor-

Figure 3.7: trace graph fattudent in Figure 2.3(b) student in Figure 1.4(a)

However there are differences between relational and XMinados. For instance, a node in
the trace graph that does not reach all other nodes canestilldorrect translation. Consider view
schema noderof-student in Figure 1.4(b). A view element girof-student hasSources =
{professor, student}, without any edge between them in the trace graph, showngur&i3.8.
However, as base schema in Figure 1.4(a) implies that tlsenaly oneprofessor element in
the base, any view element whose schema nogedg-student can be deleted by deleting a
base element whose schema nodetiglent. So cardinality constraints should be considered to
determine whether 8ource can be a correct translation.

On the other hand, a node in the trace graph that reachesraities might not be a correct
translation. Considefourse; in Figure 1.3(c),Sources(course,) = {pre, course}. In the trace
graph there is an edge framurse to pre. Howevercourse; cannot be deleted by deletingurse,
in Figure 1.1. This is becauseurse, is a descendant @burse;, and issource of both course,
andcourses. Also course, in Figure 1.3(c) cannot be deleted because it shares thesamee as
courses. Both of these occur because of recursive types in XML.

In the rest of the section, we study how we can extend Kel&gsrithm to handle cardinality

IFor now we assume all the XML elements are not recursive tyges recursive types cause side-effects will be
discussed later in this section
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Handling Cardinality Constraints

How cardinality information impacts the translatabilit/\oew updates in relational scenario is
illustrated in Figure 3.9, where, andr; can reach all other nodes except each other. Without
any cardinality information, a view tuple cannot be deledettier fromr; or r;, as there can be
side-effects shown in Figure 3.9(b). However, if we know¢hedinality information that there is
only one tuple in; 2, then view tuples can be deleted from shown in Figure 3.9(c).

While such cardinality information cannot be specified lgasirelational schema, it does exist
in XML schema, as we mentioned in section 2.1.2. We only aaptardinality constraints *, 1
and 0. Note XML schema can specify more complex cardinabtystraints such as MaxOccurs
and MinOccurs. However they do not affect whether a view el@hcan be updated or not. So we
ignore them in this paper.

Given two base schema nodeandt,, which are of ancestor-descendant relationship, what is

the cardinality between them? Here we give the formal déedimit

Definition 2 Lett/a; :: t1/ay :: t3/ ... /a, :: t, be a path expression between two notlesd
t,, in the base schema, wheve;, 1 < ¢ < n, can be one of these axes: child, descendant, or
attribute. The cardinalityard(t, t,) betweernt andt,,, which can also be denoted as-d(t, /a; ::

ti/as :ta) ... Jay, i ty,), is defined as:
2This is a quite strict requirement for an intuitive explaoat which will be relaxed in later discussions.
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1. if n>1, card(t, Jay == t1/ay =t/ ... /a, = t,) = card(t, /ay = t1) X card(ty, /as :

to) X ... %X card(t,—1, /a, :: t,). For the cardinality multiplication operation, please eef

to Figure 3.10(a).
2. ifn=1:

(@) if ay is descendantard(t, /a; :: t1) =*.

(b) if a; is attribute,card(t, /a; :: t1) = 1.

(c) if ay is child, and the content modelois re. Thencard(t, /a, :: t;) = cardRE(t1,re).

cardRE(t,,re) is defined as follows:

i. if re = (rej,res), cardRE(t,re) = cardRE(t1,re1)+ cardRE(t1,res). For the
cardinality addition operation, please refer to Figure B(b).

i if - re = (rer | rea), cardRE(ty,re) = max{
cardRE(ty,rey), cardRE(t1,re3)}. For the cardinality max operation, please
refer to Figure 3.10(c).

iii. if re = (req)*, cardRE(t,re) = cardRE(t1,1e1) X *.

iv. if re =1t;:

A. ift; = ty, thencardRE(t1,re) = 1.

B. ift; # t1, thencardRE(t1,re) = 0.

Consider Figure 2.2, cardinality betweewt anddepartment can be computed agrd(root,
/child :: institute/child :: department) = card(root, /child :: institute) x card(institute,
/child :: department) = % X % = .

Our proposition below uses the cardinality informatiortia base schema for deciding whether

a base element is a correct translation of deleting the redjuiew element.

Proposition 1 Given Sources(ve;), draw the trace graph according to Keller’s algorithm. Sup-
pose there are n 0-indegree nodes in the trace graphysay, . . ., r,,. AmongSources(ve;), find

one that is the lowest common ancestor of all 0-indegreesyatbnoted as' N, ...:.-- FOr eachr;,
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$prof

x |1 [0 |* + /1 |0 |* | |max |1 [0 |* root
1 o |* 1 * (1 |* 1 1 |1 |*
oo oo |lo]1 fo [ 1o [* *
* * 0 |* * * * * * * * * $student
(a) Multiplication (b) Addition (c) Max
Figure 3.11: trace graph oprof-
Figure 3.10: Cardinality operations student in Figure 1.4(b) with cardinali-

ties
card(S Nancestor, 7)) 1S Called the relative cardinality of;. Let the number of relative cardinalities

whose value is 1 be

1. if I = n, we can deletee; from anysource(ve;) whose corresponding node in trace graph

has 0-indegree.

2. ifl = n— 1, we can deletee; by deleting thesource whose base schema node is the

0-indegree node with cardinality as ™.

3. ifl <n — 2, there is no correct translation.

Let us consider the query in Figure 1.4 again. Figure 3.1dad¢race graph qgirof-student in
Figure 1.4(b). With Definition lgard(root, professor) = 1, card(root, student) = *. Therefore,
to delete the view element whose view schema nog@ed$-student, we can delete from Source

student.

Handling Recursive Type

Recursive types may cause two kinds of side-effects as orediearlier. Let us first consider the
side-effects whereource(ve;) € des(source(ve;)), ve; andve; share the same view schema node.
Considercourse; in Figure 1.2(c). Deleting it will have side-effects becag®me descendants of
its source source,, also contribute to the existence of other view elementsh siscourse,. To

identify such side-effects, we definecursive Sourcas below.

Definition 3 Let Schema be an XML schema and a view query defined over this schema. Eet
be aSource for a view element whose view schema node iS is said to be a recursive Source if

3D, an XML Document confirming t8chema, where the conditions below are all satisfied:
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1. there exist two view elements@i D), ve; and ve;, such thati # j but SNy ., (ve;) =

SNyiew(ve;) =n.

2. 1(S) containsbe; andbe;, be; andbe; is source of ve; andve; respectively, and they have

ancestor-descendant relationship.

One might think that if a path expression for a Source hasoération, then the Source is re-
cursive. However, this need not be the case, such as in thia ¥RaressioDocument(” base.xml”)

//department /course. To identify recursive Sourcene defineAbsolute X Path below.

Definition 4 The path in the trace graph frorfiource to root is called a branch, denoted as
branchs..r... The XPath expression obtained by concatenating all theX&gressions ibv-anchgsou,ce

is called the absolute XPath 6burce.

To identify whether a Source is recursive, we check its alisoXPath. If the absolute XPath
retrieves two base elements that have ancestor-desceartttianship, then the Source is recur-

sive.

Proposition 2 Let P be the absolute XPath of Source(ve;) for view elemente;. We call

Source(ve;) as recursive iff the following two conditions are both stid:

1. Pis of the form/ P,/ /be,./ P, /be;, whereP;, P, are path expressions artd,., be; are base

schema nodes.

2. the last base elemeby; in P can havée,. as its descendant.

Proposition 2 is illustrated in Figure 3.13(a). Here bothif’s satisfy P and have ancestor-
descendant relationship. Th&urce, student, for a student view element in Figure 2.3 has
the absolute XPattDocument(”base.xml”)//department//professor |student, which does
not match Proposition 2, thereforgudent is not recursive. However th&ource, course, for
a course view element in Figure 1.2 has the absolute XPRtvument(”base.xml”)//course.
This matches Proposition 2 whefg is Document(”base.xml”), P, is empty antbe,. = be; =

course, andcourse hascourse as descendant.
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O,
a Q P,
~a (a) base schema tree 7 z
* STBaSe Cl bere P
(b) base instance \O b, z
¢ \b . P,
(c) view query a, y
(d) view instance tree be, P

@ () €, \O : be. x
root c) bz %
<root> P2 @
e,

FOR $a IN Document(‘base1.xml")//a

0.
& %  |RETURN <a> (5 be,
FOR $cIN $alc,
$b IN $c//b
RETURN $b (a) Proposition 2 (b) Proposition 3
by b b,

<la>

<lroot>

Figure 3.12:ST}y,,., QueryQs and corresponding Figure 3.13: lllustrating Proposition 2

view _ _ and Proposition 3
Now let us consider the second type of side-effects, whetece(ve;) is alsosource(ve;).

Consider the query in Figure 1.3(ayourse. in Figure 1.1 contributes to two view elements,
course; and courses, in Figure 1.3(c). A more general example is shown in Figude 3 Fig-
ure 3.12(a) is the base schema and Figure 3.12(b) is onébpsstance. Based on the query in
Figure 3.12(c), we have the view instance tree shown in Ei§ut2(d). Specified by the queby,
joins with a; anda, and thus appears multiple times in the view. Deleting anyefrt may cause

side-effects over other appearances.ofFor such situations we have the following proposition:

Proposition 3 Consider the trace graph of a view element whose view scheua isn. Let
Source; and Source; be two Sources in this trace graph, with an edge fi&nrce, to Source;.
I(Sourcey) may contain a base element that is the source of two view alsme; andve,, if all

the following conditions below are satisfied:
1. The absolute XPath cfource; is of the formP,//z/P,/y. Lety be the variable that
Source, binds to andSource; is marked as recursive using Proposition 2.

2. The absolute XPath fource, is of the form$y /P //x// Py.

3. z € Des(x).

Figure 3.13(b) illustrates Proposition 3. Here, there are view elements whergources,
binds to the rightmosP,, andSource; binds to the two differeng’s.
Actually this scenario implies a much stronger conditiohere exists no correct transla-

tion for deleting view elemente; that has suctbources. Let us examine this. Lefource;,
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O root
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Source, O S
\ ~. _Source

O Source,,

Figure 3.14: trace graph that qualifies Proposition 3

a Source(ve;), to be candidate we consider to deletg. Sinceve; hasSources described in
Proposition 3,Source; can either reactbource, or not. If Source; can reachSources, an in-
stance ofSource; can be the source of two different view elements. Therefarerce; cannot
be a correct translation. Now let us consider the case intwhiw:rce; cannot reachbource,,
shown in Figure 3.14. Here we must consider cardinality taimgs. LetSources; be a 0-
indegree that reachiource, 3. As the lowest common ancestor of all 0-indegree no6&5,,.cs:or»
must be a node in the path from root $ources;, card(S Nypcestor, Sources;) = *. According
to Proposition 1, ifcard(S Napcestor, Source;) = *, Source; cannot be a correct translation. If
card(S Napcestor, Source;) = 1, then the only possible correct translatiorbisurces;;. However,
as we discussed,ourcey; cannot be a correct translation. Therefdfeyrce; cannot be a correct

translation if it cannot reacKources. This is stated in the corollary below:

Corollary 1 Consider the trace graph of view element. If 3Source;, Source, in this graph

that satisfy Proposition 3, there is no correct translatfon deletingve;.

With Proposition 1, Proposition 2 and Proposition 3, we catect all the possible side-effects
on view elements whose schema node is in Group 2 when del§tiagee(ve;). Please refer to

Section 3.2 for how to integrate these propositions intoadgorithm.

3.1.4 Detecting Side-Effects in Group 3
In this section, we will discuss how to detect side-effects/ew elements whose schema nodes
are descendants af wheren is the view schema node of a visible view elemetit Note view

elements that are descendants@fwill get deleted withwe;, according to the hierarchial structure

SNote S,; can beSs
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of XML view. Therefore, we focus on whether any view element, that belongs to descendants

of siblings ofve;, gets affected when deletingurce(ve;). Noteve; could be either visible or

invisible.
(a) base schema tree

e a a bcc
a/C) O (b) base instance aO 2
Cc
b O O
(a) bb

(c) view query
) (d) view instance tree b,

(b)

O (d) (©
<root>

a, 2z FOR $a IN Document(‘basel.xml")//a
RETURN <a>
Document(“basel.xml")//b,
Document(“basel.xml")//c

</a>

Par by Ca Doz Bz €2 | <ioot>

Figure 3.15:5T%,,.., Query Qs

Figure 3.15 illustrates side-effects on Group 3. If we defgtin Figure 3.15(d) by deleting
a, in Figure 3.15(b), then the view elemént, the descendant af, in Figure 3.15(d) is deleted.
This is a side-effect. On the other hand, there is no sidsstffon view element.,.

Let us analyze why view element does not get affectediources(a;) = {a} andSources(c.)
={a, c}. Intuitively, deletinga, by deleting the: element may cause side-effects owgr because
a is also aSource(c.o). However, this is not true as, is a descendant af,, which is a sib-
ling of a;. a; anda, share the same view schema ahdirces, but they have differentources:
sources(ay) ={a,}, sources(ay) = {ap}. AS c.y is the descendant af, it also hasi, as one of its
source, which is different from theurces of a;. Therefore, deleting from will not change the
part of sources of c., which comes fromu. In addition,a and its descendants in the base tree do
not have ancestor-descendant relationship witlthich ensures deleting fromwill not change
the part ofsources of c., which comes frome. So, deleting fronu will not change anyource of
¢, therefore it is not affected.

Again, let us analyze why view elemdnt gets affectedSources(a,) = {a} andSources(b,s)
={a,b}. Same with.,, deleting froma does not change the part @furces of b2 which comes
from a. However deleting frona changes the part gburces of b, which comes frond: deleting
a, in the base instance tree will also delétewhich is asource(b,s). b is a descendant afin the

base schema tree, which means every base elemémtitbhave an ancestor whose view schema
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node isa. However in the view definition there is no condition to rettthat each base element

of b can only join with one base element®{e.g. b’s ancestor). In the trace graph ©f, this is
shown a$ cannot reaclr. Therefore the base eleméptalso joins witha,, and together become

sources(b,s). The above discussions can be generalized as the folloemma:

Lemma 3 For every descendant schema no#l&/; of SNy,..(ve;), get its trace graph. Let
veq be a view element such th&tNy .., (veg) = SNy. If 3 r; € Sources(vey) such thatr; €
Des((Source(ve;))) and there is no path in the trace graph fronto Source(ve;)), Source (ve;)

cannot be the correct translation of deleting;.

root

root x
| (a) base schema tree " s
: SToase Py s
p 2 ; *
(b) base instance PaO p“% N .
S (c) view query O p
@ (d) view instance tree S s’
oot ? -
/O © s P s A
. s, O O O O O
) ! <root> - . .
P e P P2 feomssinsosmenttaseo s Cohormatrceand  graph afier making all mvisibie
RETUEN <> P— trace graph view elements visible
Jocument("baseZ.xml
</s> b
S s g <lroot>
e e Figure 3.17: view schema trees and
Figure 3.16:Q; and corresponding view trace graphs for query in Figure 3.16(c)

before and after making invisible view
elements visible
Note the above lemma can also detect side-effects overbieigiew elements in Group 3,

assuming we have made all invisible view elements visibte.example, we want to deletg in
Figure 3.16(d)s; comes from a base element whose base schema nedekgure 3.16(a). Now
we will try to use Lemma 3 to detect if deleting frosnin Figure 3.16(a) will cause any side-effects
over view elements in Group 3. According to the trace gragiufe 3.17(a) generated from the
original view schema tree, we cannot identify any problerallat After making all the invisible
view elements visible, just like in Figure 3.17(b), we cars@tye that we add a new node in the
trace graphs’. s’ € Sources(s),;) ands’ € Des(Source(s;)). However there is no path in the
trace graph from¥’ to s. Therefore deleting from in Figure 3.16(a) will cause side-effects over
invisible view elements in Group 3 and hence cannot be a cotranslation for deleting; in

Figure 3.17(d).



3.2 Algorithm for Correctly Deleting Single Visible View Elé:

ment in XML Scenario
In this section, we will present the three-step algorithnfifading the correct translation of delet-

ing a visible view elemente;.

3.2.1 Optimizations

As we discussed in the last section, in order to find a corranstation of deleting a visible view
element, we partitioned the schema tree into three grougpgparposed different proved lemma
and propositions to detect the side-effects in each gragectively. As these three groups covers
the whole schema tree, we can always correctly find a comaashation if exists. In this section,
we will propose two kinds of optimizations to make the alyon effective, which are all based on

the following observations.
Observation 1 Letve; be a descendant ek, in the view,Sources(ve;) C Sources(ve;).

In Lemma 1, in order to check if there exists side-effects roup 1 when deletinge; from
Source(ve;), we need to check if angource is affected for every view schema node in this
Group. In fact we only need to check those view schema nodesth leaves in Group 1. Given
any non-leaf view elemeniz;, it always has at least one leaf descendantysaylf Sourceve;)
is affected, asourceve;) € Sources(vey) according to Observation ¢, will also get affected.
Therefore only checking the leaf view elements suffice tecteside-effects in Group 1. This
will greatly decrease the view elements we will check. Faregle, consider deletingame; in
Figure 2.3(c). The view schema nodes in Group 1 drerofessor, student, $prof /name }.
However we only need to check if there exists any side-etfeet $prof /name.

The second kind of optimizations enables us to decreaseatididates we consider to delete
ve; without affecting other view elements. Let; be the view element we want to delete and

ve; the parent ofve;. From Observation 1, we know th&burces(ve;) C Sources(ve;). This
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means if we try to deletee; from anySource € Sources(ve;), ve; will also get affected. There-

fore, only Source € Sources(ve;),-une N€Ed to be considered as candidate of deletingwhere
Sources(ve;)prune = Sources(ve;) - Sources(ve;). For example, consider deletingudent, in
Figure 2.3(c). We havBources(professor)={ department, professor } andSources(student)
= { department, professor, student }. S0 Sources(student)prune = { student }. This implies
we only need to consider deleting from base schema nodént as the candidate of deleting

view elementstudent; .

3.2.2 Algorithm

In this section, we will demonstrate the optimized algantAlgorithm 3.2.2 that detects the cor-

rect translation of deleting a visible view elemeat.
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Algorithm 1 Algorithm 3.2.2 that correctly translating the deletioracdingle visible view element
Step Q
0. Append all the invisible view schema nodes as childreiheif thearest visible ancestor.

1. Candidates = Sources(ve;)prune
Step 1
2. Let Sources’ be the union ofSources of ancestor ofve; and all non-descendant leaf view
elements oS N (ve;).

3. For everySource(ve;) € Candidates, if Des(Source(ve;)) N Sources’ # (), Candidates
= Candidates — Source(ve;).
4. If Candidates = (), the algorithm terminates; else go to Step 2.
Step 2
5. Draw the trace graph ak;. Let Sourcesk.u., b€ the set of n 0-indegree nodes in the trace
graph.

6. Use Proposition 1 to checKourceskeuer-. Let 1 be the number of nodes whose relative
cardinality is "1".

(@) if Il = n — 1, Sourceskeyer = {SNyest}, WhereSN,.,; is the only schema node in
Sourcesg .- Whose relative cardinality is ™.

(b) if I < n — 2, Candidates = (; the algorithm terminates.

7. Use Proposition 2 to check$fource(ve;) is recursive. If s@Candidates = Candidates —
Source(ve;).

8. For every branch of the trace graph, find two consecutivec®s that satisfy the condition in
Proposition 3. If there exists such two Soura@andidates = (); the algorithm terminates.

9. Candidates = Candidates N Sourcesgeyer. If Candidates = (), the algorithm terminates;
otherwise go to Step 3.

Step 3

10. For everySource € Candidates, if deleting Source has side-effects on a descendant ac-
cording to Lemma 3('andidates = Candidates — Source.

11. The algorithm terminates. @fandidates = (), there is no correct translation of deleting;
otherwise eactyource € Candidates is a correct translation.




3.3 Detecting side-effects when deleting an invisible elemt >

In the last two sections, we discussed how to detect sidsisffof deleting a visible element.
However, the problem of detecting the side-effects of dededn invisible view element remains
unsolved. Ideally, we want to use Algorithm 3.2.2 developeprevious sections. In this chapter,
we will first introduce some concepts and explain why Aldarit3.2.2 cannot be directly applied
here, then we will give two propositions to efficiently chettie side-effects when deleting an
invisible view element. At last, we will propose an algonittior efficiently checking side-effects

when deleting an invisible element.

3.3.1 Compositions ofSources(vepisivie) &N DataSource(vepisivie)

In Section 3.1.2, we discussed how to make invisible viewnelats visible in the view schema
tree. Letve;isivie D€ @n invisible view element and,;,;,;. its nearest visible view element. Their
view schema nodes areN;,,isivie aNd .S N,iqne respectively. The return statement ®IV,;;e
requires to display values of base elements 6f,,.., shown in Figure 3.18. In order to make
invisible descendants &f V.. Visible, we append them as children N,;,.. For example,

SN, in Figure 3.18(a) is appended 89V,;c., Of SN, iN Figure 3.18(b).

(a) base schema tree (b) view schema tree

Figure 3.18: appending invisible view schema nodes
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Let us consider what would happen if we apply Algorithm 3diractly upon invisible view el-

ements. First we need to check side-effects in GroupSlgf,..;sin.. Consider deleting an invisible
view elementtudent, in Figure 3.19(c). Obviously, deleting itsurce, the firststudent element

in Figure 1.1, is a correct translation. However, applyirggrima 1 over the view schema tree,
shown as Figure 3.19(b), will show that this causes sidectedf becaus®es(Source(student))

N Sources(nameggugent) 7 0.

This happens becausemeg,,q.; IS appended directly underofessor as child and appears
in Group 1 ofstudent, whereas its instances are actually the descendants ofalewents of
student. Generally, this means there exist some invisible view elaisithat are descendants of
instances o5 N;,,..isinie DUt their view schema nodes are childrerbdf,;,;,,. and appears in Group
1 in view schema tree.

Now we will introduce two new concepts. By definitidhVy,,. is a Source of SNz pe. AS
the values of view elements 6fV,,;.;,;,. come from base elements 8fV,,.., we callS N,,.. as the
DataSourceof S Ny;sine, denoted aPataSource(SNyisine). Similarly, DataSource(S Ninvisivie)

IS S Nipvisivle Base» WNereS N;,.isiveBase 1S the corresponding base schema nodé 8§, ,;siv.. FOr
example DataSource(vey,) is SN, in Figure 3.18(a), wheree,, is a view element 06 N, Cor-
respondingly, the base elementodtaSource(ve) thatissource(ve) is denoted agatasource(ve).

Let us consider how to comput@urces(venisive ). FOr example, what consists 8burces(vey,)
in Figure 3.18(b), wheree, is a view element 06 V,;..,,? According to Observation Bources(veysipe)
C Sources(vey). Also SN, and any base schema no#l&/; that is an ancestor df N, and de-
scendant ofS N, is alsoSource(ve,). Because deleting a base elementSof; will delete its
descendants, including one whose base schema nédé,id~or example, letlatasource(ve,) of
SN, be the ancestor afatasource(ve,). Note SN, is the descendant &fN,,s. and ancestor of
SN,. If we deletedatasource(ve,) to deleteve,, this will deletedatasource(vey), which will in
turn deletevey,.

In summarysSources(venyisivie) CONSists of three partSources(veysine ), DataSource(veisivie)

and all base schema nodes that are ancestatsiofSource(ve;nisive) @nd also descendants of
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SNbase .

3.3.2 Propositions that check side-effects when deletingvisible view ele-

ments

We only use it for checking side-effects over non-descendements ofS N,;e, Which is the
blank area in Figure 3.20 arflV, ;.. itself. However, among the children 61V, Which is
the grey area in Figure 3.20, there may still exist some vielwesa nodes whose instances are
also non-descendants 8fV,,...inie. In order to check the side-effects over these nodes, we need
to examine the invisible view schema nodes more carefully.

Let us consider what are the candidates of correctly dgletif ;5. Using the optimizations
in Section 3.2, we do not consid€ources(ve,;sinie) aS candidates because deleting from them will
have side-effects over view elements%V,,;.,... Also, we do no consider any base schema node
that is the ancestor dbataSource(veipisine) @and descendant dbataSource(vey;sive). Because
each of them is @ataSource of an invisible view schema node, appearing as child &%,y
in the view schema tree. For exampigy, in Figure 3.18 is the ancestor 6V, and descendant
of SN,isinie. Suppose there is a view elemert, of SN, that has descendant, of SN,. If we
delete fromS N, to deleteve,, view elemente, will get affected. Therefore, the only candidate
we consider isDataSource(veisine). Now we give the following proposition to check side-
effects over view schema nodes in grey area of Figure 3.1&&hwstances are non-descendants

Of SNinvisible .

Proposition 4 If deletingue;,pisivie from aDataSource(vepisive) has no side-effect overV, ;e ,
then there is also no side-effect over childrerbdf,;.;,; Whose instances are non-descendants of

view elements o NV;,,,isivie-

proof: Let ve, be a non-descendant view elementvef, ;... FOr the sake of contradic-
tion, let us assume deleting froMata.Source(venyisine) has side-effects ovefe,. This implies

DataSource(veppisivie) € Sources(ve,).
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As we discussed above&ources of an invisible view elemente, consists of three parts:

Sources(veysine ), DataSource(ve,) and base schema nodes that are ancest@sfS ource(ve,)
and descendants ofN,;sn.. However, as deleting fromdataSource(vepisie) has no side-
effects over view elements & N,sipe, DataSource(ve,) ¢ Sources(veysine). According to
definition, view elements of N, are non-descendants @f;,,,;sii.. Therefore,DataSource(ve,)

is non-descendant ddata.Source(veisive ). According to the hierarchial structure of XML Doc-
ument, DataSource(venyisive) CaNNOt beDataSource(ve,) or its ancestors. SdataSource
(Veinwisivie) ¢ Sources(ve,), which contradicts the assumption.

Therefore deleting fromDataSource(venvisive) Nas No side-effects over,, Hence proved.

For example, if deleting fromy IV, in Figure 3.18 to deletee, has no side-effects ov8I\V, ;v
then there is no side-effects OVEN, ;e ANAS Nyicrvd-

Now let us consider how to check side-effects over other \#elaema nodes in the grey area
of Figure 3.20. These view schema nodes are of two kinds: nath@seDataSources are de-
scendants oDataSource(vevisive ), Called asnvisible descendantsf SNV, isivie ANAS N;puisivie
itself. For example, we need to check side-effects &&r,;..., and.S N,;.... in Figure 3.18. We
will first give the following proposition to check side-effis overS N;,,visibie:

<result>
result

{ |
FOR $professor IN

professor
Document(“base.xml”)//professor
RETURN $professor name student, student,
} Henry name, name,
</result> (@) (c)
John Joe
(b)
result
* .
(a) view query
professor

(b) view schema tree ST,
*

(c) Viewinstance tree g re 3.20: Schema Tree Partition for

_ _ _ _ an invisible view schema node
Figure 3.19: Applying Previous algorithm over

deleting invisible view elements

name  student’  NaMe’gent
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Proposition 5 Considerve;,.;sine @and its nearest visible ancestoe, ;... Let their view schema

nodes beSN;,isivie @aNA SN, ;sine respectively. Deleting fromvataSource(ve,pisie) Will have
side-effects oves V;,.isiie If and only if deleting fronDataSource(veysime) has side-effects over

SNvisible-

Note this does not meaata.Source(ve,;sine ) IS required to be a correct translation of deleting
VEyisible-

proof:

First we will show if deleting fromDataSource(vey;sine) has side-effects overN,; iy, delet-
ing from DataSource(vepisine) Will have side-effects oves V,,isine- AS there are two kinds of
side-effects introduced in Section 2.2, we will discusddand separately.

Let us consider the case when the first kind of side-effectugccThis implies there exist a
view elemenvel, ,,., whose view schema node is alS&,,;;pi.. And datasource(vel, ....) is the
descendant ofatasource(veysine). SO When we deletdatasource(vey;sipe) 10 deleteve,;gipie,
datasource(vel, . ,,.) Will also get deleted. This in turn causes side-effects ovgr,,,.. So base
elements ofS V... have ancestor-descendant relationship. There§dvg,,. is a recursive node
by definition.

Q root

datasource( Ve gy )

Q root

VE,isible

datasource( Ve' e )

(a) base instance tree (b) view instance tree

Figure 3.21: example that illustrates the case when thechradition holds
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A possible view instance can be as displayed as Figure 3.2, andve’ share the

visible

sameDataSource. And datasource(vey;sipe) iS the ancestor odatasource(ve, ) shown in

visible
Figure 3.21(a). Also, as the return statemerti 8%,;;,, requires to display the contentsf, ; ;e

there must be a descendant f,.;,., ve whosedatasource is datasource(ve, ).

visible2? visible

Veinmvisinle May be a descendantof This implies there exists another descendantff,,,.,

visible* S

Vel isivies that share the sandlatasource with ve;,.isinie. Therefore, if we want to delet&itasource

(Veinvisivie) 10 deleteve,, s, this will in turn deletesie’, .. ..., which causes side-effects.

Now let us consider the case when the second kind of sidetefficcurs. This condition

implies that there is another view element, that shares the same view schema node and

isible
the samelatasource with ve,;sipie. FOr S Niisivie, there will be two view elementsie;,visivie

andve’ that are descendants of,;,;,;,. andve’ respectively and they share the same

invisible? visible
datasource. So deletingdatasource(vepisivie) t0 deleteve;,isine Will have side-effects over
V€ pisible
Second, we will show if deleting fromata.Source(ve;pisive ) has side-effects oOVErN, . isivie
then deleting fromDataSource(ve,;sine) Will have side-effects ovef Ny;sipe. L€t ve;pisive @and

ve! be descendants ot, ;. anduve’ respectively. If deletinge;,,.;sine has side-effects

invisible visible
over vel, ..., thendatasource(ve;n,isine) 1S €ither the ancestor afatasource(vel,, ;i) OF
datasource(vel, .....) itSelf. As datasource(ve,sipe) 1S the ancestor ofatasource(veyisivie)

anddatasource(vel, ....) IS the ancestor afatasource(ve,

visible invisible

), the relationship betweetutasource

(veyisinie) @nddatasource (ve, ) will fail into one of the following three cases:

visible
1. datasource(veyisipe) IS datasource(ve, ). Then deletinge,;sipe OF ve, will have

visible visible

side-effects over the other.

2. datasource(veysipe) 1S an ancestor oflatasource(ve, ). Then deletingve, ;s Will

visible

have side-effects over’

visible*

3. datasource(veysipe) 1S an descendantatasource(ve, ). Then deletingue, will

visible visible

have side-effects over,;q;pie..
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As we can see, no matter in which case, deleting fldaiaSource(ve,;sine) Will have side-

effects overS N,sivie-

In one word, the assumption leads to contradictions in @aésaSo the assumption is not true.
Hence proved. O

For example, consider deleting an invisible view elemeft, .., whose view schema is
student in Figure 3.19(c). The nearest visible view schema nogedgessor. The DataSource
(professor) is professor in the base. Since there is no side-effect of deleting a viement
of professor in the view by deleting fronprofessor in the base, there is no side-effects over
student in Figure 3.19(c) if we delete fromtudent in the base to deletes,;,4en:-

Lastly, we need to check the side-effects over invisiblededants ob N;,,.i.in. When deleting
from DataSource(venyisivie ) t0 deleteve;,isime. LEt US review the example wity, in Figure 3.15
gets affected in Section 3.1.4. The reason is in the view iiefirthere is no condition to restrict
that every base elemehbf can only join with one base element®fe.g. its ancestor).

However, this will not happen when the view element, ;... IS invisible. Because its de-
scendants will only display the values of descendant&iisource(ve;,pisine)- IN other words,
be descendant Will NEVEr jOin with any base element dfataSource(ve,visine) €XCEPL itS OWn ances-
tor, whereébe jescendant 1S @ descendant @fitasource(ve;pisive ). Thus if deleting fromDataSource
(veinvisivie) OVEr invisible descendants 6fN;,,isiue, it mMust because thalutasource(ve,pisivie)

is datasource(ve, ), whereve! is another view element & N;,,,;isi.. Therefore we

invisible invisible

have the following proposition:

Proposition 6 deleting fromDataSource(ve;isine) causes side-effects over invisible descen-

dants ofS' N;,.isiie If @and only it causes side-effects oVeN;,,isivie-
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3.3.3 Algorithm for Correctly Deleting Single Invisible View Element in XML

Scenario

With the above discussions, we propose the algorithm forrfaqndorrect translation of deleting an

invisible view elemente;,.isinie, Whose nearest visible ancestonis; ...

Algorithm 2 Algorithm 3.3.3 that correctly translating the deletionao$ingle invisible view ele-
ment
Step Q
0. Append all the invisible view schema nodes as childreheif thearest visible ancestor.
Step 1
1. LetSources’ be the union oSource(vesine) andSources of all non-descendant leaf view
elements o5 N (vey;sipie )-

2. If Des(DataSource(vepisive)) N Sources’ # B, the algorithm terminates. There is no
correct translation. Else go to Step 2.

Step 2
3. Use Step 2 in Algorithm 3.2.2, wheree; = veyane and Candidates =
DataSource(veysipie)-

4. The algorithm terminates. [fandidates # (), then DataSource(veyisine) IS @ correct
translation; otherwise there is no correct translationeétingve;,isivie -




Chapter 4

Part |V:

Solutions for A Set of View Elements Update

4.1 Algorithm Analysis

As we discussed in Section 2.1, we will use XPatl¥ to specify the view elements that need to
get deleted. Howevery P can be quite complex. We will set the following constraimts<Path

X P and try to relax them in future work*

1. X P cannot have any axis except child axis (no ”//” axis, for epéan
2. X P does not have wildcards.

3. For everyelement in X P, it can have predicates. Each predicate is of the fgrmh = v,
wherev is a value of primitive type angath is an XPath that starts from a child @ement,

having child axis only.

With the above constraints, the set of view elements that ave specify withX P always

corresponds to view elements with the same view schema fibv@eefore, we will again partition

INote these restrictions do not apply to XPath expressiomim definition.
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the view schema tree into three groups as in Figure 3.1 artkchthere exists side-effects over

any group for each candidate of translation.

4.1.1 Differences between Deleting a Set of View Elementsda Single View

Element

If elements inX P have predicates such that only one view element is specified,we will be
dealing with how to correctly translate the deletion of om@welement, which has been tackled
in the previous chapter. Let us consider Figure 1.2 in Sedtih. Suppose the user only wants to
delete the view element that can be specified byXieuth: result /course[l], e.g. course; in
Figure 1.2(c). One way is to deleteurse, in Figure 1.1 but this will causevburses andcourses

in Figure 1.2(c) to get deleted, which are side-effects.alst,fthere is no way to deleteurse;
without any side-effect. Therefore deletingurse; is untranslatable. From this, we can observe
that deleting a single view element is a special case ofidglatset of view elements.

As shown in an example in Section 1.1, deleting a set of viemmehts may be translatable even
when deleting a single view element in this set is untraablat For example, if the user wants
to deleteresult /course in Figure 1.2 in Section 1.1, e.goursey, course; andcourses together,
then deletingourse, in Figure 1.1 is a correct translation, as the original ®feets overourse,
andcourses become expected updates now. The side-effectsofse; arecancelled

From the above examples, we observe that the reason whyndetetset of view elements
Setqaete May be translatable while deleting one of tharay,,.:., is untranslatable is that unex-
pected updates from deleting,.... Over view, e.g. side-effects, become required from degdetin

other view elements ifet 4..:.. From this, we can directly get the following proposition:

Proposition 7 Given a set of view elemertist ;... required to get deleted an€lV ..., which is
their view schema node. Consider deleting ardy,..., any of such view elements. If deleting from
a Source(vegeere) Causes side-effects in Group 1 in Figure 3.1, deleting ffarmrce(vegejere ) tO

deleteSet 4..: Will also cause side-effects in Group 1.
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This is because by definition, view elements in Group 1 aredestendant elements of all

view elements o5 Ngeere, Which includesSet ... Therefore any updates in Group 1 are always
unexpected when deletirffet joere.-

Also, from the above discussion, we notice that when theme igredicate inX Path, we need
to delete all the view elements of a view schema node anddesiendants. Therefore we do not

need worry side-effects over Group 2 and Group 3. So we haygoBition 8.

Proposition 8 If there is no predicates itX P that specifies the view elements we want to delete,

we do not need to check side-effects over Group 2 and Group 3.

If there exists predicates in XPath, this means only a suifsaew elements in Group 2 will
get deleted. So we need to consider not only all the XML fesstuiout also how having predicates
makes impact over Algorithm 3.2.2 and Algorithm 3.3.3 immsrof checking side-effects over
Group 2, which will be discussed in section 4.1.2. Note asnwgpredicates is the only new
feature here, we will first discuss how to handle predicatethe schema level without considering
other XML features such as recursive types and cardinatibstaints. Algorithms for these two
features are the same as those for correctly translatindele¢ion of a single view element.

For Group 3, deleting only a part of view elements of the sachema node still need to use
Proposition 3. Otherwise for a view elememat;.;.c.dan: OFf S Nyescendant, @ ViEW SChema node that
is descendant o Ny, base elements whose base schema node beldhy,tg, may join with
more than one element of the candid&te.rce, whereSN,,.,, are the set of base schema nodes
that exist in the trace graph oé,.;.c.4.n: DUt NOt in the trace graph ot,.;.... This in turn causes

side-effects over descendantsvef, whereve; is in Group 2 that needs to remain in the view.

4.1.2 Discussions on Predicates in XPath

In relational scenario, we have predicates in the foemwv, wheret is an attribute of a tablé and

v is a value of a primitive type. Each such predicate specifset af tuples irl".
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<root>

{ FOR $aIN Document(“base.xml")//a,

*
$b IN  Document(“base.xml")//b S‘N
ab
RETURN <ab>
%
$alc,
root $b/d SN, SNyq
o> b) base schema
;utx a, a b, /b& } <root> (b) base schema tree
A NS D (@) view query root
A B o i g clr id er Tz "d er m
A /»\E ‘1 l id‘l id id 2 id a,  ab, aby a
PR T et TRTL] AN NN
.L .L id ‘1 2‘ 1 12 2 O O O c,d ¢, d, ¢ d; ¢, d,
I I
(c) trace graph for the predicate ‘ ‘
(a) base schema tree (b) base instance tree /_\ i‘d i‘d i‘d i‘d i‘d i‘d i‘d i‘d
Figure 4.1: Base Instance A (b) (d) t1r 12 21 22
(d) trace graph for deleted elements (e) view instance tree

Figure 4.2: example for deleting a set of
view elements specified hy P

In XML scenario, a predicate is associated with an elentg¥it in X P. SN; is either the
ancestor o5 N.iere OF SN geiere 1tself, whereS Ny..:e 1S the view schema node of the view elements
the user wants to delete. Therefore each predicate assdevdh S N; specifies a subset of view
elements whose view schema nodeSs;. Take Figure 4.2 as an example. Suppose the base
schema tree and base instance tree is as in Figure 4.X Pdteroot /SN, [SNye/id = 1] /S Nyg.

If there is no predicate, it means we want to delete all vieemgnts ofS V,, in Figure 4.2(b) that
are descendants ab;, aby, abs andab, in Figure 4.2(e). However, as the predicate specifies that
view elementsS N, need to have descendantsx¥,. whose id is 1, the user only wants to delete
view elements ob N, that are descendants @f;, andab,, which is a subset of view elements of
SNyp.

Now let us consider if we can find a correct translation of tketethe elements specified by
the aboveX P: root /SNy [SN,./id = 1]/SNye. Let one such element be,,;. Sources(veyq) =
{A,B,D}. A andB are alsaSources of view elements of N,,, SO we can only considép. How-
ever if we delete from base schema view elements of view schenaV,, that are descendants
of abs andab, will also get affected. Therefore there is no correct tratsh.

Then how to detect this on the schema level? Let us first exapriedicates more carefully.
As X P specifies restrictions over view elements<aV,., we draw the trace graph ofN,. as

in Figure 4.2(c). As we can see, the base schema nbdan reach4, this implies every base
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element ofC' will join with only one base element of, which is its ancestor. More specifically,

¢ in Figure 4.1(b) will join with its ancestosi; only. Therefore we want to delete those view
elements ofS V,; whose ancestors ¢f V,, havea, as theirsource. According to Observation 1,
we want to delete those view elementssaY,,; that has:; as theirsource. Then let us take a look
at the trace graph of view scheri&’,; shown in Figure 4.2(d), which is the view schema node of
view elements we want to delete. As the base schBntannot reachy, this implies that every
base element oD may join more than one element df Specifically,d; in Figure 4.1(b) joins
with botha; andas.

Now it is clear how side-effects happens. We want to delete/\alements ob V,,; that has
a; assource. And we can only delete fronv. However, as there is no join condition betweén
andD, every element ob joins with more than one element df Hence there will always occur
second kind of side-effects. To prevent this, we need to rsake that every base elementiof
joins with at most one base element4f This can be ensured I can reach4 in the trace graph
of SNyq.

To generalize the above observation, we can have the faltppiioposition:

Proposition 9 In X P, for every predicate&s N, /SN, /.../SN,, = v, get the trace graph of N,,.
Suppose there are a set8burces, Sources,., that can be reached byataSource(ve,), where
ve, is aview element of V,,. LetSources,coen = Sourcesse N Sources(vegeete ), WHEreveeere
is one of the view elements to delete. Draw the trace grapleff..., if a Source(vegeer.) €aN
reach all theSource € Sources,cqcn, then deleting fronbource(vegeer.) Will Not cause second

kind of side-effects.

Note even though &ource € Sources, ..., cannot be reached by the candidateirce(ve,,),
we can still check its relative cardinality using Propasitil, which is the same to correctly trans-

lating the deletion of a single view element.



4.2 Algorithm for Correctly Deleting A Set of View Elements
specified by XPath in XML Scenario
Similar to the case in deleting a single view element, we giie two algorithms respectively for

deleting a set of visible view elements and invisible vieanegnts.

4.2.1 Algorithm for Correctly Deleting A Set of Visible View Elements spec-

ified by XPath in XML Scenario

Let ve; be one of the view elements to delete. With our above anadygigpropositions, we have

the following algorithm:

Algorithm 3 Algorithm 4.2.1 that correctly translating the deletiorafet of visible view elements
Step Q

0. do Step 0 in Algorithm 3.2.2
Step 1

1. do Step 1 in Algorithm 3.2.2.
Step 2

2. LetSourcesy; be the union ofSources,.s of all predicates, eactourcess.; computed as
in Proposition 9.

3. Draw the trace graph ok;. Let Sourcesg.. b€ the set of n 0-indegree nodes in the trace
graph.

4. LetSources,eaen, = Sourcesy N Sources(ve;).

5. For every elemenfourcesee, € Sourcesgener, check if it can reach all the elements in
Sources,cqch-

6. If not, then check ifcard(Source,otreach, Sourcegene-) = 1 for every Source,oireacn €
SourcesSnot Reach, WhereSources, qireacn, are allSources thatSourcey. ., fail to reach. If
Not, Sourcesgeer = SOUTCES Keller = S OUT CCLeller-
7. Do Step 2.7 to Step 2.9 in Algorithm 3.2.2.
Step 3
8. do Step 3 in Algorithm 3.2.2.
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4.2.2 Algorithm for Correctly Deleting A Set of Invisible View Elements

specified by XPath in XML Scenario

The following algorithm correctly translate the deletiais set of invisible view elements speci-
fied by X P. The idea is the same as deleting a single invisible view et¢nirhe only difference
is, in order to consider predicates, we need to check si@etsfoverS N;,.isive USINg Step 2 in
Algorithm 4.2.1. Letve;,..sine D€ ONe of the view elements to delete ang;,;;,;. be one of its

ancestors.

Algorithm 4 Algorithm 4.2.2 that correctly translating the deletionao$et of invisible view ele-
ments
Step Q
0. Append all the invisible view schema nodes as childreiheif thearest visible ancestor.
Step 1
1. LetSources’ be the union oSource(vesine) andSources of all non-descendant leaf view
elements o5 N (vey;sipie )-

2. If Des(DataSource(vepisive)) N Sources’ # (), the algorithm terminates. There is no
correct translation. Else go to Step 2.

Step 2
3. Use Step 2 in Algorithm 4.2.1, wheve; = ve,;sipe.

4. The algorithm terminates. f'andidates # (), then DataSource(vepisine) iS @ correct
translation; otherwise there is no correct translationedétingve;,isivie -




Chapter 5

Part V.

Conclusion and Future Work

5.1 Conclusion
In this paper we presented algorithms for correctly traimgjathe deletion of a visible or invisi-
ble XML view element as deleting an element in the underlyidL base. We also presented
algorithms for correctly translating the deletion of a sketisible or invisible view elements. Our
algorithms use a schema-level analysis to efficiently findreect translation and it is based on the
previous work for updating relational views, extendingsthiith recursive types and cardinality
constraints in XML, and ”//” operator in XQuery. Our algdnih is sound and complete.

This paper forms a major step in studying view updates in Xkgknario. Future work needs to
consider incorporating other update operations such agtjmsplace and XML specific operations.
Further, we need to consider more semantics and featurésimotML Schema and XQuery

statements.
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