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Abstract

We are in an era of big data, sensors, and monitoring technology. One consequence

of this technology is the continuous generation of massive volumes of streaming

data. To support this, stream processing systems have emerged. These systems

must produce results while meeting near-real time response obligations. How-

ever, computation intensive processing on high velocity streams is challenging.

Stream arrival rates are often unpredictable and can fluctuate. This can cause

systems to not always be able to process all incoming data within their required

response time. Yet inherently some results may be much more significant than oth-

ers. The delay or complete neglect of producing certain highly significant results

could result in catastrophic consequences. Unfortunately, this critical problem of

targeted prioritized processing in overloaded environments remains largely unad-

dressed to date. This dissertation now addresses four issues. First, the problem of

optimally processing the most significant tuples identified by the user at compile-

time is addressed. Proactive Promotion (PP), a new targeted prioritized processing

data stream (TP) methodology for preferential CPU resource allocation, selectively

pulls the most significant tuples ahead of less significant tuples. Second, a new

aggregate operator, TP aggregation (TP-Ag), that effectively increases the accu-
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racy of aggregate results produced for TP systems is proposed. TP-Ag generates

reliable results from incomplete aggregation group populations by selectively con-

trolling which subsets in the aggregate group population are used to generate each

result. Third, the problem of identifying significant tuples at run-time via dynamic

determinants is addressed. Preferential Result (PR), a novel TP methodology for

preferential CPU resource allocation, uses carefully designed statistics to identify

effective dynamic determinants online and efficiently determines the placement of

where in the query pipeline each dynamic determinant is evaluated. Fourth, a new

join operator, PR Join operator (PR-Join), that efficiently produces the join results

in significance order is proposed. To achieve this, PR-Join empowers the atomic

join scan process to be interruptible at a finer level of granularity than previously

achieved. The experimental studies in this dissertation explore a rich diversity of

workloads, queries, and data sets, including real data streams. The results substan-

tiate that the proposed approaches are a significant improvement over the state-of-

the-art approaches.
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Executive Summary

Main Problem: The main problem addressed in this dissertation is to develop data

stream processing models and operators that prioritize the processing of critical

tuples in data stream management systems. In such systems the load may adapt

over time. In addition, such systems may at times get overloaded. When this

occurs, not all incoming tuples will be processed within the response time required

by the end-user. These critical tuples are tuples that are essential to produce results

for. They should be processed before less critical tuples. They can be identified by

either a multi-tiered preference model specified by the user at compile-time or by

using dynamic preferences identified at run-time by the data stream management

system.

Importance: Users now require data stream management systems that produce

results while meeting near-real time response obligations. Our TP models and

operators allow users to gain a fine level of control over which tuples are processed

when a data stream management system is overloaded. This control is essential

in data stream management systems where certain results are more critical than

others and each result has a degree of criticalness compared to the other results. If

the most critical results are not produced then the end-user may be missing some
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critical information. Any decision made by the user based upon the incomplete

knowledge is likely to be sub par.

There are no proposed systems that support allowing users to gain a fine level

of control over which tuples are processed when a data stream management system

is overloaded. We are the first to look at such an approach.

Main Accomplishments:

• Our data stream query optimization approach efficiently determines how best

to allocate resources to ensure the processing of certain subsets of tuples

within the query pipeline. For each subset of critical tuples, we consider

the cost of precedence determination to identify these tuples. Our model

determines the best position in the query plan to perform the precedence

determination for each subset of critical tuples.

• Our execution infrastructures support the online adaption of how resources

are allocated without requiring any infrastructure changes. This allows the

system to quickly adjust how resources are allocated.

• Our operators produce accurate results while ensuring that resources are al-

located to producing the most significant results first.

• Our cost models factor in the overhead of precedence determination.

• Our systems support complex and costly precedence determination. They

are designed to support any precedence criteria that can be specified by the

user or identified at run-time.

General Take-Away Message: In data stream management systems, where some

results are more critical than others, our TP models and operators can produce a
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higher quantity of the most critical results. Ultimately TP allows the end-user to

make better decisions by providing the user with the most critical information.
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Chapter 1

Introduction

1.1 Background

The recent advances in hardware and software have enabled the capture of dif-

ferent measurements of data in a wide range of fields. Technology that generates

rapid, continuous, and large volumes of data streams include readings from sensors

used in applications, such as weather sensors [Uni02, HFAE03, FJK+05], health

sensors [SB03], network sensors [Uni02], online auctions, credit card operations

[TMSF03, TTPM03], financial tickers, and web server logs. The world is primed

for a variety, scale, and importance of real-time applications - from dynamic traffic

management, environmental monitoring, to health care. Query processing technol-

ogy that supports real-time query processing on such continuously changing, often

unpredictable, and possibly unbounded data streams, is crucial for these mission

critical applications. A flurry of research activity addressing the problem of data

stream processing has arisen, ranging from the design of continuous query opera-

tors [CLYY92, UF99, DGGR02, DRH03, GÖ03, VNB03, SW04, DR04, MLA04,
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DMRH04, WRGB06, SB13, CFMKP13] to new operator scheduling algorithms

[UF01, BBD+02, HFAE03, CcR+03, SPZ+05, DLX07, WXL+09, QL10, FY11,

ZWL13], and beyond. Database companies have developed data stream processing

systems. These efforts include Microsoft SQL Server StreamInsight [Stra], Oracle

Event Processing (OEP) [Ora], IBM System S [IBM], Coral8 [Cor], StreamBased

Systems [Strb], and Esper [Esp]. However, the critical problem of processing tu-

ples in significance order where tuple precedence is multi-tiered remains unad-

dressed, as demonstrated below.

Processing queries over large volumes of data arriving from high-speed data

streams with fluctuating arrival rates for days, months, or even indefinitely can be

extremely resource intensive. At times these systems may not be able to process all

incoming data within their response time [CcC+02], especially when supporting

complex queries with large operator states. Yet inherently some results may be

more valuable to the user than others. Ideally, when CPU resources are limited,

the precious resources should be dedicated to assure the production of the most

significant results, followed by the next most important ones, and so on, until all

resources are exhausted. The delay or even complete neglect of processing such

highly significant query results can have catastrophic consequences.

1.2 Electronic Monitoring Applications

Electronic monitoring applications (or EMAs) [GP00, KPP+02, LCH+06] track the

most up-to-date data on objects to answer continuous queries. Objects periodically

transmit their current status. They process continuous queries online over large

volumes of data arriving from high-speed data streams. EMAs can be resource
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intensive. At times EMAs cannot process all incoming data [CcC+02], especially

when queries are complex and have huge operator states. The problem is further

complicated by the significance of objects which is often multi-tiered as motivated

by the examples that follow.

EMA Example: Outpatient Health Care

EMAs track people with dementia [LCH+06]. It is critical to monitor people away

from their proper location for an extended time (i.e., lost). Monitoring people

who live on their own (i.e., need help) may be reduced based on whether or not

resources remain after processing people likely to be lost. Until enough resources

are available, monitoring other people could be temporarily skipped. These EMAs

can experience technical glitches such as overloads [KMH+10].

1.3 Running Examples & Their Challenges

1.3.1 Home Arrest Example

The Home Arrest Example is based upon EMAs that monitor prisoners assigned to

home arrest [GP00]. Such EMAs can also be overloaded. In October 2010, an ap-

plication monitoring released sex offenders across 49 states shut down for 12 hours

[Pre10]. Consider a Home Arrest EMA that reports any prisoner at an improper lo-

cation who is within 3 miles of a police officer (see CQL query [ABW06] below).

Patrol cars (via GPS) and prisoners (via ankle bracelets) continuously submit their

locale. First, each prisoner’s current locale is compared to a table of permitted lo-

cations. Then the results are joined with the officer’s current locales.

Home Arrest Query:
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SELECT PL.PrisonerID, PL.Locale, OL.OfficerID

FROM prisonerLocation PL, prisonerInfo PI, officerLocation OL

WHERE PL.Locale != PI.ProperLoc AND PL.PrisonerID = PI.PrisonerID

AND Distance(PL.CurrentLoc, OL.CurrentLoc) ≤ 3 miles

WINDOW 30 seconds

Consider the following criteria to establish the monitoring order of prisoners

(Table 1.1). First, escaped violent prisoners (i.e., may cause harm) must be mon-

itored with the highest level of urgency. Next, prisoners at an improper location

(i.e., likely to be in violation) shall be monitored. Finally, if resources permit,

prisoners known to be flight risks ought to be monitored.

Table 1.1: Home Arrest Example: Criteria for Desired Resource Allocation
System Load Desired CPU Resource Allocation Order
System not overloaded all tuples processed in FIFO order

System mildly overloaded tuples from prisoners
1) escaped and likely to cause harm
2) likely to be in violation
3) considered a flight risk

System moderately overloaded tuples from prisoners
1) escaped and likely to cause harm
2) likely to be in violation

System extremely overloaded tuples from prisoners
1) escaped and likely to cause harm

As illustrated by real events [Pre10, Net12], EMAs may not be able to accu-

rately estimate their system load. Without an accurate estimation, the system may

have inadequate resources to support the load and will shut down. It is critical to
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ensure that the EMAs do not shut down and that the monitoring of certain objects

continues until additional resources can be provided to the EMA. This requires an

infrastructure capable of selectively allocating CPU resources to significant tuples

in progressive order - assuring that at any time the available resources are allocated

to processing the most significant tuples before less significant ones throughout

the pipeline. The overhead of processing may adapt over time. Thus such a data

stream management system (or DSMS) should be agile to rapidly adapt to system

load changes (i.e., act proactively) and pull certain more significant tuples ahead of

less significant ones (i.e., promote specific tuples). For example, highly significant

tuples are generated by escaped violent prisoners (Table 1.1).

1.3.2 Stock Market Example

EMAs also monitor stocks online [KPP+02]. Online financial applications can

also get overloaded. In 2012, the London Stock Exchange shut down after a rash

of computer-generated orders overwhelmed the system [Net12].

Consider an application that monitors the average price of stocks by their busi-

ness sector that appear in recent news and “street research” (See Stock Market Join

Query below).

Stock Market Join Query: /*Operators*/

SELECT S.company name, S.symbol, S.price

FROM Stock as S, News as N, Blogs as B

WHERE contains(S.BusinessSector, N.BusinessSector) /*op1*/

AND contains(S.BusinessSector, B.BusinessSector) /*op2*/

WINDOW 30 seconds
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Consider an application that monitors the average price of stocks by their busi-

ness sector that appear in recent news and “street research” (See Stock Market

Aggregate Query below).

Stock Market Aggregate Query: /*Operators*/

SELECT avg(S.price)

FROM Stock as S, News as N, StreetResearch as SR

WHERE contains(S.sector, News[10 min]) /*op1*/

AND contains(S.sector, StreetResearch[15 min]) /*op2*/

Group by S.sector /*op3*/

WINDOW 30 seconds

Mutual fund companies often invest in diverse stock portfolios. It is critical

to ensure that every object of a certain class (e.g., their aggressive investments)

is monitored. While the monitoring of other objects (e.g., their conservative in-

vestments) may be reduced based on what resources remain after processing the

more significant objects. Until all important objects can be processed within their

response time, monitoring of certain less important objects can be temporarily

skipped altogether (e.g., stocks under evaluation).

Consider an overloaded EMA executing the Stock Market Join Query in the

Stock Market Example. CPU resources will be dedicated to process the most sig-

nificant tuples (i.e., aggressive stock investments) ahead of any other tuples.

Resources should be allocated to particular tuples based upon the application’s

desired result precedence order (Table 1.2) and the amount of available resources.
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Table 1.2: Stock Market Example: Desired Result Precedence Order
System Load Desired Result Precedence Order
System not overloaded all results produced

System mildly overloaded 1) aggressive investments
2) conservative investments
3) stocks under evaluation

System moderately overloaded 1) aggressive investments
2) conservative investments

System extremely overloaded 1) aggressive investments

When the Stock Market Application is extremely overloaded, only the tuples most

critical for the application should be dedicated CPU resources. These tuples create

the most critical results, namely, results about aggressive investments. These most

critical results are formed when news tuples join with aggressive stock tuples based

upon their business sector, i.e., op1. Next, these join results from operator op1 are

joined with blog tuples based upon their business sector, i.e., op2.

We distinguish between two classes of tuples that create these most critical

results. The first class corresponds to so called native significant tuples. That is,

significant tuples satisfy static precedence criteria defined explicitly by the user at

compile-time. For example, a significant tuple in the stock stream can be identified

as an aggressive or as a conservative investment simply by checking if its attributes

match the given significance criteria (Table 1.2).

The second more interesting class of tuples are promising tuples. Promising

tuples are tuples estimated to be highly likely to produce significant results by as-

sociation, i.e., by joining with significant tuples. For example, tuples in the news

stream may join with significant stock tuples and thus produce significant query



1.3. RUNNING EXAMPLES & THEIR CHALLENGES 8

results due to their association with their join partners. In this case, the criteria to

identify promising tuples are indeed dynamic. This requires knowledge of which

join attributes of the current significant stock tuples are also prevalent in tuples in

both the news and blog streams. Put differently, this requires identifying which

business sectors of significant stock tuples appear in both recent news and recent

blogs. The identification of such dynamic criteria must be accomplished at run-

time. This is not only complex but also prohibitively costly.

Promising tuples are deemed likely to join with significant tuples at specific

join operators. However, these promising tuples may also join with insignificant

tuples. Hence, unfortunately, such promising tuples may create both significant and

insignificant join results. Producing all join results generated by these promising

tuples places less desirable results into the pipeline.

The issues listed above may cause highly significant results to not be produced.

This can result in dire consequences such as a large monetary loss.

Now consider an overloaded EMA executing the Stock Market Aggregate Query

in the Stock Market Example. Recall that the CPU resources will be dedicated to

process the most significant tuples (i.e., aggressive stock investments) ahead of any

other tuples.

This may cause the average price per business sector produced by aggregate

operator op3 in the Stock Market Aggregate Query to be skewed, incomplete, or

even erroneous. Namely, under limited resources tuples from all other less signifi-

cant tuples may have been ignored and thus not be reflected in the aggregate result.

In this case, the aggregate result produced will be generated only from those most

significant tuples in the aggregate group that reach operator op3. Clearly, this gener-

ated aggregate result may not match the final aggregate result that would have been
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produced if all tuples in the aggregate group had reached operator op3. The average

price computed for business sectors that appear in recent news and blogs would

correspond to the average price of the aggressive stocks in that business sector.

It may however not correspond to the average price of all stocks in that business

sector.

Given such an aggregate result, a broker would also not necessarily know which

subset of tuples was considered when computing the aggregate value. Without

such knowledge, a broker is bound to make sub-optimal trades, which may lead to

investors losing money.

1.4 Requirements for the Multi-Tiered Priority-Driven Pro-

cessing Problems

The above scenarios motivate the need for distinct levels of response according

to the risks of the objects being monitored. That is, resource allocation must be

aligned to the monitoring priorities of objects and the system load. We refer to

the system that achieves this as targeted prioritized data streams (or TP). TP utilize

user-defined preference criteria to determine the order in which tuples should be

allocated resources.

We derive the following requirements for TP system models.

1) Prioritization is a multi-level preference scheme. 2) Tuples typically arrive at the

system without any assigned significance. 3) Each resource allocation preference

level has its own distinct criteria to identify tuples at this significance level. 4)

Determination and assignment of significance to tuples at run-time can be costly.

5) Certain criteria can only be found at runtime and depend upon the current tuples
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in other streams. 6) Priority determination must be lightweight to not delay the

production of significant results.

We derive the following requirements for aggregate operators in TP systems.

1) The user must be informed about which tuples were used to create the result.

Consider the example above. The aggregate result should at the very least anno-

tate that it is formed from mostly aggressive investments only (i.e., a sub group

population) instead of from all investments (i.e., the full group population). 2)

The aggregate operator must be designed to generate certain aggregate results only

from sub group population(s) where each population best represents their actual

sub group population. There may not even be enough resources to process all tu-

ples from a sub group population, e.g., all tuples from aggressive investments. In

such cases, a result may be produced that does not match the actual aggregate re-

sult for aggressive investments. This again could cause a broker to make improper

trades. Aggregate results produced from these incomplete sub group populations

may be inaccurate. That is, the incomplete sub group population that the result is

generated from (e.g., some stocks from aggressive investments) may not accurately

represent the complete sub group population (e.g., all stocks from aggressive in-

vestments). An aggregate operator must be designed to generate certain aggregate

results only from sub group population(s) where each population best represents

their actual sub group population.

We derive the following requirements for join operators in TP systems.

1) The join operator must control which join results are emitted from the join pro-

cess. That is, only a selective subset of the possible join results that can be pro-

duced by tuple ti during the state scan should actually be produced at any given

time. This defies the common design assumption in stream joins that encapsulate
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the state scan task as one atomic process [WA91]. 2) To achieve this, the join scan

process must be interruptible, i.e., the join operator must be able to halt the produc-

tion of join results from tuple ti at any time. 3) Correspondingly, the join operator

needs the capability to reinstate the processing of tuple ti to resume the production

of still missing join results. 4) Such a join operator must be carefully designed to

not either erroneously produce duplicate join results or fail to create all significant

join results. 5) The join process must be light weight. Otherwise it defeats the

purpose of TP, namely, of optimizing the production of significant results under

severe resource shortages.

1.5 TP Problem Challenges

Determining the significance of a tuple (a.k.a. precedence determination) may not

be cheap. Reconsider the Home Arrest Query. To locate the most significant tuples

(i.e., escaped violent) requires the current locale and time attributes to be compared

to stored known permitted locations by time. The number of permitted locations

by time may be too large for main memory. This may require a costly database

look-up. To identify the next most significant tuples (i.e., prisoners likely to be in

violation) may also be expensive. Being likely to be in violation is not a constant

value; it pertains to a prisoner’s recent movements. It requires a spatial-temporal

query to compare the sensor locations of prisoners with the spatial restrictions im-

posed upon them. This again requires access to permitted locations by time. This

leads to the observation that precedence determination itself is expensive and must

be taken into consideration for design of effective EMA processing.

The cost of precedence determination affects the latency of tuples. Latency is
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also affected by the time spent on performing precedence determination of incom-

ing tuples against other significant levels. EMAs must consider the cost of prece-

dence determination (i.e., which and where precedence criteria are evaluated) as

it affects the latency of tuples in each tier.

It is challenging to locate promising tuples (e.g., join partners for significant

stock tuples) at each join operator. For this, we propose to exploit the join criteria of

such stock tuples. These selected join criteria effectively act as selection preference

criteria. They thus could then be pushed backwards through the query pipeline to

identify and pull forward promising tuples from news or blog streams before their

respective join operators.

However, promising tuples may join not only with significant but also with

insignificant tuples. That is, they may also produce undesired insignificant query

results. The key challenge is thus how to select dynamic criteria online that are ef-

fective at identifying promising tuples that create the largest quantity of significant

query results while not clogging the pipeline with critical tuples.

To complicate the problem, queries may contain multiple join operators. Each

join operator may have its own distinct join criteria. It thus can be rather costly

to determine the most effective combination of criteria that should be exploited to

identify promising tuples. If the optimization overhead is costly then the produc-

tion of significant query results may be delayed or even worse yet prevented. In

the Stock Market application this could result in the company losing money or in

the worse case, going bankrupt.

Informing the user about which tuples were used to create each aggregate result

is challenging. We must design an aggregate operator that can quantify for each ag-

gregate result its group population, e.g., only stocks from aggressive investments.
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In addition, designing an aggregate operator to generate certain aggregate results

only from sub group population(s) where each population best represents their ac-

tual sub group population is also challenging.

It is challenging to always produce the most significant join results first. A

sophisticated solution is required that examines the join process in a new light. In

particular, we must control which join results are emitted from the join process.

That is, only a selective subset of the possible join results that can be produced by

tuple ti during the state scan should actually be produced at any given time.

1.6 Key TP Tasks

The multi-tiered priority-driven processing problem provides the following key

tasks that need to be addressed.

One task is to develop a flexible framework that can adaptively and contin-

uously change how resources are allocated such that the more significant tuples

are pulled ahead of less significant ones. To complicate matters, determining the

significance of tuples introduces additional costs at a time when resources are al-

ready at a premium. Hence at runtime, the query executor must efficiently adapt

which and where significant tuples (i.e., tuples that meet precedence criteria) are

preferentially dedicated resources in the query pipeline. A query optimizer must

be developed to effectively determine online when and how to adapt how resources

are allocated to promotable tuples.

Another task is to ensure that correct results are produced. Namely, correct

results may not be produced by particular query operators if only certain tuples are

processed. In particular, under limited resources only the most significant tuples
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may be processed and thus be available to create the aggregate results with. Ide-

ally, the aggregate operator should generate correct aggregate results from only the

tuples pulled forward. That is, the optimization decisions made by TP should not

be adjusted. In addition, the aggregate operator should limit the aggregate results

produced to those whose generation population is representative of their actual

population. TPs needs such an aggregate operator.

A third task is to ensure that the greatest number of possible significant results

are produced. To achieve this, TP must dedicate resources to both: 1) significant tu-

ples (i.e., tuples that meet precedence criteria) and 2) promising tuples (i.e., tuples

that facilitate the production of important results by combining with a significant

tuple from another stream). However this problem cannot be corrected by simply

using a semantic load shedder as identifying promising tuples is based upon the

run-time data content of significant tuples. The state-of-art approaches do not ad-

dress this issue. A solution is required that can support queries with more complex

functionality; namely, allowing the promising tuple in one stream to be identified

based upon the data content of significant tuples in another.

An additional task is to design operators that utilize CPU resources to produce

results in significance order. In particular, join operators produce results by com-

bining tuples from multiple streams. In addition, tuples can have different types of

importance (i.e., significant or promising). The importance of the join results that

can be produced by a single tuple could potentially vary based on the importance of

the tuple’s join partners. TP requires a join approach that allocates CPU resources

based upon the importance of potential join results and the importance of the tuples

waiting to produce results.

Another task is to efficiently support the resource allocation preferences of
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multiple queries. Each query may have its own defined resource allocation prefer-

ences. To complicate matters, portions of a query pipeline may be shared by more

than one query. In such instances, multiple resource allocation preferences may

be defined for tuples that reside in the same portion of the query pipeline. The

resource allocation preferences of the queries may have conflicting requirements

for the same stream. The requirements across the queries may also overlap. The

questions now arise. How to best honor the resource allocation preferences of all

the defined queries that share segments of the query pipeline? How to ensure that

the resource allocation implemented does not cause significant tuples in the query

pipeline to be completely starved of resources?

A final task is to develop a flexible architecture that allows the user to adap-

tively and continuously change their resources allocation preferences of any query

online. This is a complicated issue. Once the user selects new resource allocation

preferences, the current inprocess query plan must be adapted. In such instances,

inprocess tuples that have been pulled forward may no longer be considered impor-

tant. Conversely, inprocess tuples that have been ignored may need to be rapidly

pulled forward. In other words, inprocess tuples that were allocated resources ac-

cording to the old user preferences may need special considerations to ensure that

the new user preferences can rapidly be employed.
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1.7 State-Of-the-Art and Their Shortcomings

1.7.1 Current Resource Allocation Methods

Allocating Resources to the Most Significant Tuples

State-of-the-art resource allocation methods (i.e, shedding [ACc+03a, ZSC+03,

BDM04, NR07, WQL+10, MZS10, SH12, BKZS12, LQJQ12, TNP13] and spilling

[LZR06, WRM10]) allocate resources based on tuple significance by dropping less

significant tuples from the workload. They respectively drop or temporarily put to

disk insignificant tuples. A single binary decision of whether or not to process

each tuple is made, typically at the start of the pipeline [ANWS06]. Thereafter the

remaining tuples are processed in FIFO order. However, as illustrated below, these

prior methods do not tackle several key challenges of EMAs.

Consider the Home Arrest Query executed in a moderately overloaded sys-

tem (Fig. 1.1). Here, both shedding and spilling would only process tuples from

escaped violent prisoners (e.g., black circles) or prisoners likely to be in viola-

tion (e.g., dark gray circles). Consider what happens when the workload suddenly

fluctuates and many violent prisoners escape (e.g., many black circles arrive). In

this case, all resources should swiftly be dedicated to tuples from escaped violent

prisoners (e.g., black circles). In addition, any tuples from prisoners likely to be

in violation (e.g., dark gray circles) should be ignored. In comparison, the state-

of-the-art methods instead process all inflight tuples in FIFO order to completion

before processing more significant incoming tuples. In short, these methods allo-

cate resources to all inflight tuples regardless of workload fluctuations. This may

cause very significant tuples to not be processed to completion. It may result in
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= escaped violent prisoner

=  prisoner who is a known flight risk

= prisoner likely to be in violation

= patrol car

Results

TP

Spilling

Results

Results

Results

prisonerInfo

Disk

Shedding

Traditional

=  any other prisoner

prisonerInfo

prisonerInfo

prisonerInfo

State-of-the-Art: 
Most significant 
tuples not 
processed first
- No preferential 
treatment

No reassessment
of  how resources 
are allocated

Resource allocation 
decisions made at 
the input stream-
not throughout 
the plan

TP systems want: 
Preferential 
treatment

Reassessment
of  how resources 
are allocated

Resource allocation 
decisions made at 
throughout 
the plan

Figure 1.1: Resource Allocation in State-Of-the-Art Systems vs Desired Resource
Allocation in TP

dire consequences, e.g., an escaped violent prisoner may harm someone.

In the ideal case, EMAs would prefer to allocate resources to these most sig-

nificant incoming tuples from escaped violent prisoners (e.g., black circles) first.

Then the remaining resources (if any exist) would be allocated to the inflight tuples

from prisoners likely to be in violation (e.g., dark gray circles). Such an approach

may cause all very significant tuples to be processed to completion and may prevent

an escaped violent prisoner from harming someone. This would require EMAs to
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have agile resource allocation control to promptly adjust how resources are allo-

cated throughout the pipeline.

Allocating Resources to the Critical Tuples

We now explore the more state-of-the-art related to the general and complex prob-

lem of optimizing the processing of significant tuples also identified by dynamic

criteria.

= aggressive investment = conservative investment

= stock tuple = news tuple

Results

TP

= any other stock tuples

Figure 1.2: Issues with Allocating Resources to the Critical Tuples in TP

Consider a TP that executes the Stock Market query in a moderately overloaded

system (Fig. 1.2). In this scenario, the TP (Ch. 4) would still be able to identify

significant tuples in the stock stream using the static criteria. However, no static

criteria exist to identify promising tuples from the news stream. Thus, to reduce

the overload, news tuples would need to be randomly dropped [ACÇ+03b]. This

can cause severe problems. Most notably, news tuples that would have joined

with significant stock tuples may be dropped. Consequently, some significant join

results (e.g. aggressive investments) may not be produced.

The other related work is the inter-operator feedback punctuation framework

[FMTL09]. In this approach operators use punctuations to communicate interest

in particular subsets of the data stream. Each operator sends a ”request” to its
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adjacent operator in the pipeline asking for specific tuples to be pulled forward.

In other words, each individual operator makes local resource allocation decisions

that serve its particular interest. In complex queries that contain multiple join op-

erators, each join operator may end up requesting different types of tuples. This

could waste resources by pulling tuples forward that are only important to one op-

erator but may be irrelevant to other operators. Ultimately, such an uncoordinated

approach may produce fewer rather than more significant query results. TP in-

stead requires a global coordinated approach that considers the impact of pulling

promising tuples forward on the production of significant query results.

1.7.2 Current Aggregate Operators

= 1 = 2 = NA

Significance Level

Aggregate
Operator

Query 
Operators

State
g1

g4

Stock Stream S 1

News Stream S 2

Street Research
Stream S 3

Count = 120
Sum Prices = 1154.88
Count = 984
Sum Prices = 1189.14
Count = 3
Sum Prices = 46.56

Avg.
Price
9.26
g1

Avg. 
Price
1.25
g4

tuples from …

Figure 1.3: Aggregation Example

The state-of-the-art aggregation methodologies [BDM04, TZ06] designed to

produce reliable results in TP systems adjust which tuples are processed regardless

of their significance. [TZ06] limits the tuples dropped from a window wp. Aggre-

gate results for window wp are generated from all tuples from window wp and are

non-skewed. [BDM04] adapts where and how many tuples are randomly dropped
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to ensure that all aggregate results produced are bound by a given error rate. These

approaches require overhead to consider how to adjust the allocation of resources

at a time when resources are scarce. In addition, they ignore the desired resource

allocation order specified by the user. That is, they do not consider how to build

reliable aggregate results from the significant tuples already pulled forward.

Consider the stream aggregate operator op3 [DGGR02] in a TP system under

duress that implements the Stock Market Aggregate Query defined above. The

aggregate operator op3 computes the average price of stocks in each business sector

for sectors mentioned in recent news and in street research (Fig. 1.3). The average

price for business sector group g1 can only be produced from significant tuples at

level 1. While the average price for business sector g4 could be produced from only

tuples at significant tuples at level 1, only tuples at level 2, or a combination of

significance tuples at levels 1 and 2. However, the three significant tuples at level 2

may not be representative of the actual partial population of tuples at level 2. That

is, TP requires an aggregate operator than can selectively control which partial

populations are used to generate each result. The challenge is how to determine

which set of tuples that arrived at the aggregate operator best represent the actual

sub group population of tuples that would have arrived at the aggregate operator if

resources were available.

1.7.3 Current Join Solution

Consider a symmetric binary hash join [WA91] op1 employed in a PR system that

implements the above Stock Market Join Query (Fig. 1.4). Join operator op1 joins

stock tuples (stream s1) with news tuples (stream s2) based upon their business

sectors. Tuples in the query pipeline are stored in queues indexed by their signifi-
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cance. The top queue contains the most significant tuples (i.e., level 1). The middle

queue contains the second most significant tuples (i.e., level 2). The bottom queue

contains the insignificant tuples (i.e., level NA).

News Stream S 2

Stock Stream S 1

State S 1

C1

C3

C4

State S 2
C1

C2

C3= 1 = 2 = NA

Significance Level

C3 C4

t1t2

Query 
Operators

Stock Stream S 1

News Stream S 2

tuples from …

Join 
Operator 

op1

Figure 1.4: Example of Join Operator employed in PR

In Figure 1.4, the leading tuple in the most significant news stream queue (i.e.,

the top news stream queue) is processed first. This news tuple t1 satisfies join cri-

teria c4, namely, business sector equal to Advertising. It will produce two significant

results (at significance levels 1 and 2) and one insignificant result (at level NA) by

joining with the three stock tuples in state s1 from the advertising business sector.

Next, the second news tuple t2 in the most significant news stream queue is pro-

cessed. It satisfies join criteria c3, namely, business sector equal to Retail. The news

tuple t2 produces two significant results at level 1 by joining with the two stock

tuples at significance level 1 in state s1 from the retail business sector.

We notice that the results created by tuple t2 are more significant than some

of the results produced by tuple t1. In other words, this join operator repeatedly

produces less significant join results (with t1) before other more significant join
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results (with t2). When resources are scarce, this could create a ripple-effect along

the pipeline as resources are wasted on insignificant tuples may multiply and clog

the pipeline.

We observe that this problem is caused by the join operator being result significance-

agnostic. When it processes tuple ti, it produces all join results for tuple ti.

Reconsider the join operator op1 in the PR in Figure 1.4. Ideally, to produce

the join results in significance order, news tuple t1 should not be forced to pro-

duce all its join results at once. This leads to the following insight. Namely, the

news tuple t1 should only produce the most significant results at significance level

1, while thereafter, the processing of news tuple t1 should be interrupted. Then,

the resources should be dedicated to producing significant join results at signifi-

cance level 1 generated from other probe tuples. Only when no more join results

at significance level 1 can be produced, should the processing of news tuple t1 be

reinstated.

1.8 Dissertation Objectives

Of the key TP tasks outlined above, this dissertation addresses the following four

tasks:

Task 1 (Proactive Promotion): Design a TP framework, including developing an

efficient special-purpose operator to establish tuple significance and enhancements

to standard operators that support the ability to adaptively and continuously change

how resources are allocated such that the more significant promotable tuples are

pulled ahead of less significant ones. In addition, an optimizer must be developed

that can efficiently locate the optimal TP plan to support promotable tuples in a
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single query at run-time. Further the architecture must be able to efficiently adapt

at run-time which, where, and when promotable tuples are preferentially allocated

resources throughout the query plan.

We refer to the TP framework described in task 1 as proactive promotion or

PP. PP proactively pulls certain more significant tuples ahead of less significant

ones (i.e., promotes specific tuples).

Proactive Promotion Contributions:

1). Our promotion continuous query language (P-CQL) supports the specifica-

tion of multi-tiered monitoring criteria. We propose a continuous query al-

gebra to determine and propagate tuple significance.

2). We analyze the PP optimization problem of choosing which priority deter-

minants to use for precedence determination and where in the pipeline to

evaluate each determinant. The PP optimization complexity is shown to be

exponential in the number of determinants.

3). We design the rank order pruning PP optimizer which exploits the rank of the

tuples (i.e., how some tuples are more significant than others) to prune the

search space. We prove that it locates the optimal query plan. Its complexity

is polynomial in the number of determinants.

4). Our PP execution infrastructure agilely supports online resource allocation

adjustments without requiring any expensive query plan infrastructure changes.

5). Our experimental study shows that PP consistently produces more significant

results, up to 18 fold on a wide variety of data sets, compared to the state-of-

the-art approaches with minimal run-time overhead.
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Task 2 (TP Aggregate Operator): TP requires an aggregate operator that produces

non-skewed aggregate results. It must support producing only valid results gen-

erated from portions of tuples that belong to an aggregate group. In addition, it

must quantify the quality of each possible aggregate result. It should only produce

aggregates results that are derived from sets of tuples that most closely represent

their actual aggregate group populations. This requires new logic and data struc-

ture design to support the generation of aggregate results from subset aggregate

group populations bound by significance levels. It also requires the results to be

denoted by how representative their subset population is of the actual population.

We refer to the aggregate operator outlined in task 2 as TP-Ag. TP-Ag is an

aggregate operator designed for any TP framework.

TP Aggregate Operator Contributions:

1). We formulate the TP-Ag operator problem.

2). We enhance our TP-Ag operator to selectively control which subsets in the

aggregate group population are used to generate each result.

3). We propose a carefully designed estimation model and application of Cochran’s

sample size methodology to measure if any subset of the actual population

is large enough to generate a reliable aggregate result.

4). We propose a method to track the number of tuples that do not reach the

aggregate operator due to limited resources.

5). We outline and propose the physical and logical design of our novel TP-Ag

operator.
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6). Our experiments demonstrate that TP-Ag produces up to 90% more accurate

aggregate results than the state-of-the-art methodologies on a wide variety

of data sets and workloads.

Task 3 (Preferential Results): Enhance the TP framework to support queries with

more complex functionality such that the most significant and promising tuples are

pulled ahead of less significant and promising ones. This requires the formulation

of a cost model to determine which significant and promising tuples to pull forward

and how to locate such tuples in the PP plan. Different strategies to locate the tuples

as well as underlying cost models may be required to support promising tuples.

The TP Executor should be extended to efficiently support both user defined and

complex significance promotion with minimal overhead at run-time. In addition,

the optimizer must be enhanced to efficiently locate the optimal PP plans which

support the pulling of promising tuples at run-time.

We refer to the TP framework described in task 3 as Preferential Result (or

PR). Task 1 (Ch. 4) presents a TP infrastructure to solve a simple subproblem

of priority-based processing, namely, it introduces an infrastructure for processing

tuples identified by static criteria only. PR explores the more general and com-

plex problem of optimizing the processing of significant tuples also identified by

dynamic criteria.

Preferential Results Contributions:

1). Our PR Executor supports custom algebraic operators that propagate and

assign preference related meta data to tuples. Our algebra supports at runtime

the online adjustment of which tuples are significant or promising throughout

the query pipeline.
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2). We formally define the PR optimization problem of generating a PR plan

which involves discovering criteria to identify promising tuples, selecting

which criteria to use to pull particular significant, and/or promising tuples

forward, and deciding where in the plan to evaluate selected each criteria.

The PR optimization search time complexity is shown to be exponential in

the number of both dynamic criteria and the join operators that promising

tuples are pulled forward for.

3). Our PR Optimizer design for criteria placement provides an efficient opti-

mization algorithm that prunes the query plan search space. First, it utilizes

a statistics reduction methodology to eliminate inferior statistics used to find

criteria to locate promising tuples online. Second, it reduces the number

join operators that pull promising tuples by combining the needs of multi-

ple consecutive join operators. The complexity of PR-Prune is shown to be

significantly less than exhaustive PR optimization.

4). Our PR Adaptor changes the PR query plan to support online resource allo-

cation adjustments. It is aided by our PR execution infrastructure that allows

the PR plan to adapt without requiring any expensive query plan infrastruc-

ture changes.

5). Our experimental study, using real data, synthetic data sets, and a wide va-

riety of queries, shows that PR consistently produces between 1.3 to 23 fold

more more significant results than the state-of-the-art systems.

Task 4 (Preferential Result Join Operator): PR requires a join operator that utilizes

the available CPU resources to maximize the production of significant results in
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precedence order. The join operator must have special policies and data structure

design to achieve effective selection of which tuples to process based upon their

significance. It must also support the production of some (not all) join results

from a tuple. That is, it must allow the production of some results to be purposely

delayed while others are pushed forward. It must only create proper join results

and not create any duplicate join results.

We refer to the join operator addressed in task 4 as PR-Join. PR-Join is a join

operator designed for PR.

Preferential Result Join Operator Contributions:

1). We analyze the limitation of current join operators that do not produce join

results in significance order and formulate the result significance-aware pref-

erential result join operator problem.

2). We develop the foundation of how to support atomic and non-atomic join re-

sult production, and propose policies that optimally select at run-time when

to use them.

3). We propose an innovative PR-Join operator design that is shown to efficiently

support non-atomic join result production. Our PR-Join operator design is

comprehensive. It includes both infrastructure as well as logic design.

4). We prove that Our PR-Join only produces correct results and never produces

duplicate results.

5). Our experiments demonstrate that PR-Join produces up to 190 fold more

significant query results than the state-of-the-art methodologies on a wide

variety of data sets, workloads, and queries.
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1.9 Dissertation Organization

The rest of this dissertation is organized as follows. Related work is outlined in

Chapter 2. Basic background of this dissertation is provided in Chapter 3. Chap-

ter 4 introduces the Proactive Promotion model (Task 1). The background and

design for a TP Aggregate Operator is discussed in Chapter 5 (Task 2). The Pref-

erential Result methodology for the online identification of dynamic criteria for

priority determination (Task 3) is proposed in Chapter 6. The Preferential Result

Join Operator (Task 4) is presented in Chapter 7. The dissertation work conclusion

is covered in Chapter 8. Finally, Chapter 9 contains ideas for future work.
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Chapter 2

Related Work

2.1 Data Streams

2.1.1 Tuple Level Resource Reduction

There are many resource allocation approaches that reduce the workload. One

approach is load shedding. Load shedding drops less significant tuples. It only al-

locates resources to the tuples not dropped. Once a tuple is chosen to be processed,

it will not be shed at any point along the query pipeline.

Aurora [ACc+03a, ZSC+03] is a system to manage data streams for monitoring

applications. It supports real-time requirements. To achieve this, they proposed

using load shedding to reduce the system of less critical tuples. Their key idea was

to propose load shedding as a means to control the workload.

Tatbul et al. [TÇZ+03] explored a technique for dynamically inserting and

removing drop operators into query plans as required by the current load. They

considered both semantic and random shedding. Their cost model does not con-
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sider the cost of the drop operators to evaluate tuples. It assumes that this cost is

low.

Reiss et al. [RH05] proposed the Data Triage architecture. It supports systems

with bursty arrival rates that can fluctuate. During such bursts, Data Triage captures

an estimate of the query results that the system did not have time to compute. They

combined these results with the query results to generate more accurate statistics.

These statistics are used to evaluate which tuples should be shed.

Tatbul et al. [TÇZ07] proposed load shedding techniques for distributed stream

processing environments. They modeled the distributed load shedding problem as

a linear optimization problem. They proposed a distributed approach. It was built

for dynamic environments in large-scale deployments.

Nehme et al. [NR07] proposed a load shedding technique for spatio-temporal

stream data. Their load shedding model considered spatio-temporal properties by

grouping similarly moving objects into clusters. Then they shed selective objects

within each cluster. The locations of the objects shed are approximated based upon

their associated clusters.

Wang et al. [WQL+10] proposed a load shedding technique for real-time data

stream applications. The goal of their approach is to reduce the workload while at

the same time preserving the system timing constraints. They proposed different

modes. These modes define how the load on the stream is adjusted.

Ma et al. [MZS10] proposed a semantic load shedding technique for real-time

data stream applications that utilizes a priority table. It considers both the execution

costs and tuple attribute values when deciding which tuples are shed.

Basaran et al. [BKZS12] proposed a load shedding method that applies dis-

tributed fuzzy logic. It considers the per-stream backlog and selectivity of each
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query operator. Their approach is event-driven. This allows it to react to bursty

workloads.

Lin et al. [LQJQ12] proposed a linear programming based load shedding

method for distributed data stream processing systems. It models the system load

as a simple query network with network constraints. It considers two factors. These

factors are the amount of available CPU and network resources.

Labrinidis et al. [TNP13] proposed a load shedding strategy that manages the

load shedding without requiring any input from users, namely, any manually tuned

parameters. Their approach works with complex query networks containing joins,

aggregations or shared operators.

In contrast to these approaches, TP seeks to adaptively adjust how resource

allocation throughout the query pipeline. These approaches simply decide to pro-

cess a tuple or not and never revisit this decision. In TP, a tuple may be allocated

resources for a portion of the query pipeline. Later on, if more significant tuples

are present then this same tuple may be denied resources. This allows the more

significant tuples to be processed.

2.1.2 Tuple Level Resource Reorder

Another resource allocation approach reorders the workload. Spilling temporar-

ily moves less significant tuples to memory to be processed later and allocates

resources to the tuples not spilled.

Spilling XJoin [UF00] is a non-blocking join operator that adapts to data arrival

rates. It has a small memory footprint. It’s goal is to limit the number of tuples

in the workload. To achieve this, it temporarily pushes tuples from portions of the
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query to disk when the memory is exhausted.

Hash-Merge Join [MLA04] is also a new non-blocking join algorithm that

adapts to data arrival rates. It’s goal is also to produce results. To achieve this,

it utilizes a policy that adaptively flushes certain tuples stored in-memory for a

given operator to disk storage when the memory is exhausted.

Liu et al. [LZR06] considered how spilling tuples in one operator affects the

other operators in the same plan. They introduced several state spill strategies.

The bottom-up state spill strategy treats all data in one operator state equally. The

partition-level data spill strategies consider different characteristics of the input

data such as the local and global output.

In contrast to these approaches, TP seeks to adaptively reorder tuples through-

out the query pipeline. These approaches simply reorder tuples at a given operator

in the query plan. In TP, the order in which tuples are processed may change

throughout the query pipeline. This ensures that the more significant tuples to be

pulled forward so that the most significant results can be produced.

Locally reorder the workload There are also resource allocation approaches

that locally reorder the workload.

Gedik et al. [GWYL05] introduced a load shedding approach based upon a

localized decisions of which tuples are best to perform join operations on. These

decisions are made locally at each individual join operator. Their approach per-

forms load shedding based upon three different changes in the system that affect

which and how many join results are produced. These areas are the input stream

rates, the time correlation between the streams, and the join direction (or which

stream is pushing out the join results).
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Fernandez-Moctezuma et al. [FMTL09] introduced a load shedding approach

that makes localized decisions about how to allocate resources. It identifies subsets

of interest in the data stream between neighboring operators in the query pipeline

and allocates resources to these subsets of interest. It utilizes punctuations to com-

municate information about the subsets of interest between operators.

In contrast to these approaches, TP requires centralized decisions to be made

about how it is best to allocate resources at each operator in the query pipeline.

TP is concerned about the throughput of significant results across the entire query.

These approaches are focused on the throughput of significant results at individual

operators.

2.1.3 Join Operators that support Tuple Level Resource Reduction

and Reorder Systems

The current join operator designs in the literature all process tuples using the atomic

result production approach introduced by the symmetric binary hash join [WA91].

In the atomic result production approach, all join results that can be generated from

a given tuple are produced when that tuple is processed.

A symmetric binary hash join [WA91] maintains a state for each input stream.

When it processes a tuple, first it stores the tuple in the state associated with the

tuples input stream. Next, results are created by joining the tuple with all its join

partner tuples in the state of the other input stream.

The MJoin operator [VNB03] joins tuples from input stream sx with other

streams by determining via statistics the best order of streams which the tuples

from input stream sx should probe against. Then a symmetric binary join algo-

rithm is used to produce results. This is orthogonal to our effort. We could also
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apply a MJoin approach in a TP system.

The STeM operator [RDH03] is a join operators used in adaptive query pro-

cessing techniques. It is not concerned with significance nor load shedding. It

allow the system to support adaptive query processing where tuples are processed

by different orders of operators. The goal of adaptive query processing is to maxi-

mize the overall throughput. SteM is a semi-join operator. It joins incoming tuples

to a single stream state.

Kang et al. [KNV03] proposed a cost model that considers the cost of perform-

ing the join from each of the incoming streams to the join operator individually.

Based upon this cost model, they propose strategies for maximizing the efficiency

of processing joins in three scenarios. These scenarios are where one stream faster

than the other, when the system can not process all tuples from the input streams,

and when memory is limited.

The STAIRS operator [DH04] was also built to support adaptive query pro-

cessing techniques. It is also not concerned with significance nor load shedding.

STAIRS, an extension to the ripple join operator, allows the system to dynamically

adjust the intermediate tuples stored in the cache to optimally process tuples based

upon changes in the statistics and/or performance of operators in the query plan. It

allows certain tuples to undo some join operations that were performed on them.

The goal is to unblock these tuples so that they can perform other join operations.

Gedik et al. [GWYL07] extended join operators to makes localized decisions

about how to allocate resources to process the most profitable segments of the join

windows. It uses knowledge of the time correlation of join partners in a MJoin

operator to optimize the stream join order amongst multiple streams.

Dong-Hong et al. [HXZ+06, HWXZ07] explored several load shedding tech-
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niques to benefit queries containing a single sliding window join. They developed

efficient methods to collect statistics on each stream and a load shedding strategy

whose goal is to maximize the join results produced. They proposed strategies to

address when streams have high and/or variable arrival rates.

Law et al. [LZ07] explored load shedding strategies for multi-way joins. Their

approach utilized a sketching-based technique to estimate the contribution that each

tuple has on the number of results produced. The estimated contribution is used

when determining which tuples will be processed and not shed.

Lin et al. [LL07] presented an adaptive load shedding approach for windowed

stream joins. When resources are scarce, they do not drop tuples from the input

streams. They instead shed tuples from the join state. They propose different

methods to adjust to three possible run-time adaptions. These run-time adaptions

are the input stream rates, time correlation between the streams, and join directions.

Ren et al. [RJH07] presented a load shedding technique for sliding window

joins based upon clustering-based indexing. They proposed to collect statistics on

the indices for each sliding window. The statistics are stored using a clustering

technique. These clustered statistics are used when determining which tuples will

be processed (or shed) to maximize the number of join results produced.

Ma et al. [MLZ+09] proposed a load shedding strategy to support shared win-

dow joins in multi-queries stream processing systems. Their load shedding ap-

proach reduces overhead by adjusting the size of the sliding windows. Their ap-

proach tries to find the common subset of tuples required by the majority (if not

all) the queries.

Kwon et al. [KLK11] also proposed a load shedding strategy to support shared

window joins in multi-queries stream processing systems. Their approach deter-
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mines which tuple will be processed (or shed) based upon the join attribute values.

For a given join attribute value, the decision made is based on the streams where

there exists tuples that contain the join attribute value.

TP requires a join operator that can support the production of some (not all)

join results from a tuple. That is, it must allow the production of some results to be

purposely delayed while others are pushed forward.

2.1.4 Aggregate Operators that support Tuple Level Resource Reduc-

tion and Reorder Systems

Some aggregation operators proposed to support data stream systems that utilize

tuple level resource allocation and reduction aim to only produce non-skewed ag-

gregate results (Sec. 1.7.3) by requiring that certain tuples from selective windows

are never shed. This is limiting in what tuples will and will not be processed. It

does not address the TP systems where the user selects which tuples will and will

not be processed. These approaches simplify aggregation because they force a

complete set of tuples from these windows to arrive at the aggregate operator.

Hellerstein et al. [HHW97] proposed an online interface that allows users to

both observe the progress and halt the execution of their aggregation queries. In

their approach, load shedding is initiated by the end user. To help ensure the most

accurate aggregate results are produced, their approach returns the output in ran-

dom order, adjusts the rate at which different aggregates are computed, and com-

putes running confidence intervals. The running confidence intervals are displayed

to the user.

Olston et al. [OW00] proposed a system that creates an aggregate result from

cached results and the actual data set with the goal of creating an aggregate result
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within a high confidence interval range as quickly as possible. They propose a

methodology to determine which results to cache that considers the trade off be-

tween precision and performance. Their algorithm delivers an answer that is bound

by a specified precision constraint.

Babcock et al. [BDM04] proposed a system that supports load shedding. The

goal of the system is drop tuples such that accuracy of the aggregate results pro-

duced are within certain limits. They consider the probability that dropping certain

tuples has on the accuracy of query answers produced by the multiple queries.

Longbo et al. [LZZM07] propose a load shedding system for continuous slid-

ing window join-aggregation queries over data streams. Their load shedding strat-

egy partitions the domain of the join attribute into certain sub-domains. Then they

filter out selected input tuples based on their join values.

Guo et al. [GH09] proposed a load shedding approach for aggregation queries

with sliding windows. They analyzed the characteristics of subset model and defi-

ciencies of current load shedding methods. Their load shedding algorithm is based

on the strategy of dropping tuples from certain window.

Senthamilarasu et al. [SH12] proposed load shedding techniques for queries

consisting of one or more aggregate operators with sliding windows. Their load

shedding method utilizes a window function that divides the input into portions of

the windows of the aggregate operators. It then utilizes this function to probabilis-

tically determine which tuple to shed.

Akin to these approaches, any aggregate operator in a TP system must also

contend with the time versus accuracy trade off. TP requires an aggregate operator

that can creates a reliable aggregate result using only the available tuples within the

group population. The approach should not adjust how the TP system is allocating
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resources. It should not change which tuples are pulled forward.

2.1.5 Prioritization of Results

The current prioritization techniques can be classified by the purpose of the prior-

itzation decisions, specifically either for the purpose of 1) ordering or 2) restricting

the results.

Ordering the Results There are many efforts that introduce methods whose fo-

cus is to order the results produced.

Raman et al. [RRH99] proposed a non-blocking mechanism for reordering

tuples over data streams. Their reordering policies are based on different perfor-

mance goals.

The Juggle operator [RH02], built for exploratory queries, allows the users

to adapt the order in which results are generated. Users can specify which specific

rows or columns should be produced first. They proposed a query processing archi-

tecture that generates partial results quickly and adapts to changing user interests.

Jacobi et al. [JBG+10] proposed an out-of-order execution of tuples in the

data stream. They approach reorders tuples in the data stream system per user

preferences. Their system produces all results. The prioritized results are simply

produced earlier than the insignificant results.

These approaches produce all results regardless of how long it takes to produce

them. They do not restrict the results produced by any response time limit. As

a result, results may take as long as they need to be produced and resources are

allocated to producing all results. TP systems require that results be produced

within a response time limit.
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Restricting the Results There are many efforts that introduce methods whose

focus is to restrict which results are produced. They can be categorized into three

different areas. These areas are Top k, web search, and preference queries.

These approaches limit the number of results produced by ranking tuples based

upon the user preferences. They return the most preferred results, often a fixed

small cardinality. For instance, they may only return the top most results that will

fit on a screen. They do not concern themselves with the overhead of ranking the

tuples, nor how this affects the latency of the results produced.

Top K Mouratidis et al. [MBP06] proposed top-k query methodology that sup-

ports multi data stream queries. Their approach explores methods to store the

most recent data in main memory. The goal is to produce rapid online results. To

achieve this, they adjust when the system returns computed or partially precom-

puted results.

Ilyas et al. [IBS08] provided a survey where they described top-k process-

ing techniques in relational databases. They outlined and analyzed the current

techniques by their query model, data access method, implementation, support of

certainty, and scoring functions provided.

Shen et al. [SCL+12] proposed a top-k framework which supports multiple

top-k queries. They allow each query to define their own scoring function and

sliding window. They support complex scoring functions and out-of-order data

streams.

Web Search Teevan et al. [TMB09] proposed methods that utilize information

about the end-user to identify the most relevant results for that person. They group
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people using different criteria. Then they explored the similarity of query selection

and how relevant they find the results produced across people in each group.

Durao et al. [DLDC12] explored different methods to determine a users result

generation preferences. They utilized the tagging activity of the user. Their user

preference model considers multiple factors.

Kramar et al. [KBB13] proposed a method that adds additional keywords to

end-user search queries. It utilized social network knowledge generated from the

user’s activity on the Web.

Preference Queries Chomicki [Cho07] proposed two properties of the semantic

optimization of preference queries. The first property concerns validating prefer-

ence relations against integrity constraints. The second property concerns the order

in which axioms are satisfied in integrity constraints. There properties are applied

to the evaluation and optimization of preference queries.

Roocks et al. [REH+12] proposed a context-aware preference query frame-

work. It supports end-user input, and domain-specific and contextual knowledge

input. They introduced methods to optimize and generate preference queries. using

these inputs

TP has a novel prioritization goal, namely, producing the most significant re-

sults given the resources available. When resources are sufficient, TP aims to pro-

duce all results. When resources are scare, TP aims to produce as many of the most

significant results as possible. TP considers the overhead of ranking the tuples and

how it affects the latency of the results produced.
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2.1.6 Operator Scheduling

Broadly, operator scheduling methods determine which operator to run and for how

long to improve different metrics.

Single Query There are many efforts that introduce methods whose focus is to

improve the metrics of a single query.

Urhan et al. [UF01] proposed policies for pipelined query plans to produce fast

results. Their rate based scheduling policy is based upon a response time metric

for a query. They also proposed a scheduling policy to support Top-K queries

where certain results may be more important than others. This policy dynamically

regulates which tuples are processed.

Aurora [ACc+03a, ZSC+03], the first system to propose load shedding, used a

Round Robin method to schedule the order in which each query is executed. They

also proposed a scheduling policy based upon the average tuple latency metric to

determine the order in which operators within a query are executed.

Sharaf et al. [SLCP05] proposed a scheduling policy for continuous queries.

The objective is to maximize the number of most current results produced. Their

scheduling policy decides the execution order of continuous queries. It considers

query properties and the variability of new data in the input streams.

Tick scheduling [OYY+05] proposed a deadline-scheduling strategy for con-

tinuous queries. The goal is to minimize the latency of each individual tuple. Their

strategy utilizes a batch scheduling plan to reduce the overhead.

Multiple Queries Similarly, there are many efforts that introduce methods whose

focus is to improve the metrics across multiple queries.
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Hammad et al. [HFAE03] proposed a multi-query scheduling method that uses

a metric based upon reducing the average response time per query. Their approach

prioritized shared join operators (i.e., join operators that process tuples for more

than one query) by adapting the window constraints.

Babcock et al. [BBMD03] proposed an adaptive, load-aware, multi-query

scheduling method for data stream systems. Their approach optimizes the order

of selections, projection operators in single-stream queries. It is driven by a mem-

ory usage metric.

Babcock et al. [BBD+04] extended their multi-query scheduling method for

data stream systems. Their enhanced approach utilized a combined memory us-

age and response time metric. They prove that this approach is near-optimal in

minimizing runtime memory usage.

Sharaf et al. [SCLP06] proposed a multi-query scheduling policy for data

stream systems that balances the needs for performance with the fairness needs

of multiple queries. They demonstrated that optimizing for average response time

across queries is a distinct new metric.

Deng et al. [DLX07] proposed a multi-query scheduling policy for data stream

systems that seeks to minimize the memory overhead and output latency. It achieves

this by estimating the future workload. Their approach utilizes a scoring function

to determine the execution order of the operators.

Wu et al. [WTZ09] introduced a multi-query scheduling strategy that recasts

the problem into a job scheduling problem. It utilizes input from the end-users to

measure the QOS metric.

Wang et al. [WGM10] extended the Chain scheduling to support complex

directed acyclic graph query plans. Their approach enhances stream tuples with
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scheduling meta-data.

Falt et al. [FY11] introduced a multi-query scheduling strategy for parallel pro-

cessing systems. They explored the scheduling of complete tasks. Their approach

utilizes metrics based upon hardware statistics of each node in the system.

Adapting the Scheduling Method Sutherland et al. [SPZ+05] proposed an

adaptive scheduling policy for data stream systems. Their approach adapts the

scheduling algorithm used online to the current statistics. Their approach can sup-

port meeting multiple metric objectives.

Ghalambor et al. [GSA09] proposed an adaptive scheduling policy for data

stream systems. Their approach located the best scheduling method to use for

different scenarios. They periodically select a scheduler based upon the current

system statistics to support multiple metric objectives.

Mohammadi et al. [MSAH11] proposed an adaptive scheduling policy for data

stream systems that utilized machine learning. Their system adapts parameters to

improve the output latency from knowledge gained about the system.

Real Time Deadlines Metrics Other efforts use real time deadlines metrics to

schedule operators.

Schmidt et al. [SLSL05] proposed a real-time scheduling strategy that seeks

to improve the quality of service of multiple queries. In particular, they consider

that sections of the query pipeline may be shared by queries and how to meet the

constraints of multiple queries.

Wei et al. [WSS06] proposed a real-time data stream system. It utilized an

earliest deadline first strategy to schedule the periodical queries. They proposed
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periodic query semantics for real-time data stream systems.

Ma et al. [MLWW09] proposed scheduling strategies for real-time data stream

systems. They modeled the progress of one tuple as a real-time task instance. Their

approach schedules the operator path with the earliest deadline of the tuples in the

input queue.

In contrast to these approaches, TP seeks to select the order in which tuples

are processed and control the amount of CPU resources dedicated to processing

tuples based upon how critical they are throughout the query pipeline. Traditional

operator scheduling approaches make coarse grained decisions on how to utilize

the CPU resources available. TP requires fine grained decisions on how to utilize

the CPU resources available.

2.1.7 Query Optimization

Query optimization considers how to adjust how the query is processed to improve

a given metric. Query optimization techniques can be classified by what the opti-

mization decisions are based upon; optimizing for 1) individual tuples, 2) groups

of tuples, or 3) all tuples.

Individual Tuples Query optimization techniques for individual tuples consider

which operator each tuple should be processed by next.

Eddies [AH00] optimizes query processing by adapting the query execution

plans for each individual tuple processed. They use a router to adaptively send

tuples to individual operators in a query based on localized heuristics. It was the

first to propose to use a router to adapt the order of operators in which individual

tuples are processed.
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Madden et al. [MSHR02] proposed a system that utilized the Eddies approach

over multi-queries. They propose sharing of work. To support this, they imple-

mented special query operators.

Tian et al. [TD03] proposed routing policies for the Eddies system executing

a distributed stream query plan. They monitor performance by evaluating the re-

sponse time and system throughput. They also evaluated how the routing policy

effects the system throughput.

Groups of Tuples Query optimization techniques for groups of tuples consider

the order of operators that each tuple in a selected group should be processed by.

CBR [BBDW05] adapt query execution plans to optimize query processing for

groups of tuples. It is a specialized version of Eddies. It adaptively routes tuples

through individual operators in a query based on the data content of the tuples.

QMesh [NWRB09, NWL+12] groups incoming tuples by characteristics and

routes each group along a predefined path determined to be optimal for tuples with

such characteristics. The main idea of QMesh is to compute multiple routes (i.e.,

query plans). Each path is designed for a particular subset of the data with distinct

statistical properties. They define a classifier model. It assigns the best route to

process incoming tuples based upon their data characteristics.

Nehme et al. [NRB09] introduced an adaptive version of QMesh which collects

current run-time statistics. Their approach is to identify concept drifts. These

drifts indicate when a change in the environment has occurred. Their execution

infrastructure is easily adaptable. It only requires changes in the classifier operator.
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All Tuples Query optimization techniques for all tuples consider the order of

operators that all tuples should be processed by.

Kabra et al. [KD98] proposed a method that detects the sub-optimality of a

query plan at run-time. It then attempts to correct the problem by adapting how

the resources are allocated to operators in that query plan or by changing the query

plan itself.

Stillger et al. [SLMK01] proposed comparing the optimizer’s estimates with

the actual cost values. From this comparison, it computes adjustments to cost esti-

mates and statistics. These adjustments are used during future query optimizations.

This allows the optimizer to learn whether or not their estimates are correct from

the system.

Golab et al. [GÖ03] classified continuous queries into four types of update

characteristics. They propose the best implementations of query operators based

upon these four types of update characteristics. Their implementations include the

best data structures to store tuples in the state.

Babu et al. [BMM+04] proposed an optimized approach to determine the op-

timal order of filters in a continuous query. The goal is to minimize the processing

cost. They propose a greedy approach that is proven to converge to an ordering

within a small constant factor of optimal.

Babcock et. al. [BC05] proposed using the probability distribution of the ap-

proach selected. Their optimizer selects the appropriate query plan after consid-

ering the relative importance of predictability vs. performance preference of the

user. Prior to optimization, the user selects the trade-off between the two goals

of predictability and performance (which could be at odds sometimes) to find the

appropriate query plan.
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Safaei et al. [SH10] proposed a parallel processing system for continuous

queries over data streams. Their optimizer models the query as a weighted graph.

It utilizes the finding the shortest path in a weighted graph problem to determine

how to best allocate resources to the operators.

Guirado et al. [GRR13] proposed an optimizer for parallel processing database

systems. Their optimizer exploits tasks shared by multiple query tasks. It also

supports the replication of multiple instances of data. This allows tasks that share

the same data to be run in parallel.

Balkesen et al. [BTO13] also proposed an optimizer for parallel processing

database systems. They introduced a framework that decides how to adjust the

distribution of which nodes process the incoming streams. The goal is to minimize

the size of the cluster and balance the load across the nodes.

TP seeks to adjust the order in which tuples are processed not the order in

which operators are executed within the query. The query optimization approach

is orthogonal to our effort. TP will work with any query optimization approach.

2.1.8 Monitoring Load Changes

Monitoring load changes has been studied in the literature.

Schlimmer et al. [SG86] proposed methods that are able to tolerate noise (less

than perfect feedback) and drift (concepts that change over time) in data over time.

They use these to predict the expected outcome by considering the noise and drift.

Haas et al. [HNS94] proposed to use sampling techniques to estimate the se-

lectivity and cost of a join operator. They showed that the bounds on the cost of

sampling depends on the size of the input relations, the number of input relations,

and the precision required. They covered how skewed data effects the cost of sam-
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pling.

Poosala et al. [PI97] proposed two approaches that use histograms to esti-

mate the selectivity and cost of a join operator. The first approach uses a multi-

dimensional histogram. The second approach uses the Singular Value Decomposi-

tion (SVD) technique from linear algebra.

Wei et al. [WPSS06] proposed a Quality-of-Service management scheme for

periodic queries in data streams systems. Their method utilizes query workload

estimators. These estimators use profiling and sampling to predict the future query

workload.

TP requires that the workload of critical tuples (i.e., the estimated number of

incoming tuples that belong will produce a significant result) in each operator to

be measured. TP utilizes the sampling-based approach to estimate the data stream

query workloads proposed by [WPSS06]. Other sampling methods including de-

caying the importance of older statistics [SG86] could also be applied.

2.1.9 Commercial Stream Systems

Database companies have developed data stream processing systems.

Microsoft SQL Server StreamInsight [Stra] supports building data processing

over real-time event streams. It can handle high volumes of event stream data.

Oracle Event Processing (OEP) [Ora] supports the processing of tuples in real-

time. It is designed for service oriented and/or event-driven applications that need

real-time intelligence.

IBM System S [IBM] is a streaming architecture. It can deliver nearly instanta-

neous results. It supports the creation of incomplete results from partial knowledge.

More refined results can be created as more data is processed.
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Coral8 [Cor] develops event processing software. They have many products.

One of their products, Engine, is a platform for developing, deploying, and scaling

complex event processing applications. Studio, another product, is a CEP appli-

cation development environment. The company has a strategic partnership with

IBM.

StreamBased Systems [Strb] develops high performance Complex Event Pro-

cessing (CEP) applications and software that analyzes real-time streaming data.

Esper [Esp] is a complex event processing component for Java. It can sup-

port real-time stream processing. It enables more efficient development of stream

processing applications.

2.2 Publish/Subscribe Systems

In publish/subscribe systems there are publishers and subscribers. The publish-

ers post messages. They do not know which subscribers (if any) can read their

messages. Each message is classified into different classes. Subscribers request to

receive messages from certain classes.

Banavar et al. [BCM+99] proposed a content-based publish/subscribe systems.

It allows subscribers to request messages based on the content of published mes-

sages. They proposed a link matching algorithm that determines which messages

should be forwarded.

Fabret et al. [FJL+01] proposed a novel data structures and implementation

to support high performance publish/subscribe systems. Their main memory algo-

rithm filters the content of messages. It utilizes a clustering scheme to minimize

the number of searches over the possible subscribers.
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Campailla et al. [CCC+01] proposed an efficient algorithm to filter incoming

messages in high performance publish/subscribe systems. Their approach scales

the published messages with the subscriptions. Their model uses binary decision

diagrams.

Tam et al. [TAJ04] proposed a distributed content-based publish/subscribe sys-

tem. Their approach is based upon distributed hash tables systems. These systems

have been effectively used in large peer-to-peer networks.

Carvalho et al. [CAR05] proposed a scalable QoS-aware publish/subscribe

system. Their model decentralizes the message-broker based upon underlying

network-level QoS reservation mechanisms. To improve efficiency, they replicate

the information for each message classification.

Moro et al. [MBT07] proposed a filtering approach for XML aware pub-

lish/subscribe systems. Their model is based upon a tree-like indexing structure

that organizes the queries based on their similarity. They provided lower and upper

bound estimations on when pruning is required.

Patel et al. [PRGK09] proposed a a peer-to-peer feed-based publish-subscribe

service. To create a ”‘fair system”’, they utilize methods to relayed the messages

to true subscribers of that class of messages. They also take into consideration the

characteristics of subsets in the population of subscribers.

Cheung et al. [CJ10] proposed a load balancing scheme for distributed pub-

lish/subscribe system. Their load balancing framework contains detection and me-

diation mechanisms at the local and global load balancing levels. They propose

three offload algorithms. Each is designed to load balance on a particular perfor-

mance metric.

Zhang et al. [ZMJ12] proposed a total ordering publish/subscribe system.
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Their approach incorporates total ordering into the publish-subscribe logic instead

of treating it as a separate function. Their solution is fail-safe. It gracefully handles

conditions where it is not possible to support total order.

Vavassori et al. [VSL+13] presented a context-aware publish-subscribe model.

Their approach decouples each subscription from the changing context in which

it is produced. It then filters the contextual subscription bounds to reduces the

subscription cost per class.

In contrast to publish/subscribe systems, TP queries define the attributes and

criteria of the most critical results that should be produced. In addition, TP queries

also define which subset of tuples in the incoming streams should be processed

when resources are scarce.

2.3 Networking Packet Priority Scheduling and Queuing

Prior data stream system problems have been mapped to networking problems

(e.g., Eddies [AH00]). Similar to the TP problem can be mapped to network packet

priority scheduling and queuing research.

Lin et al. [LM97] proposed a network routing protocol for nonadaptive, fragile,

and robust network traffic. It tracks the number of packets per flow. This is used

to impose a loss rate on each flow that is based upon the flow’s buffer use. They

demonstrate that their approach is able to isolate non-adaptive greedy traffic more

effectively.

Lakshman et al. [LS98] proposed a packet classification schemes. It classifies

packets by using a range match on more than 4 packet header fields. Their algo-

rithm supports two classification dimensions. Their approach is applicable to many
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areas, including security policy enforcement, resource management decisions, and

routing.

Paris et al. [PJS99] proposed an active queue management policy to protect

TCP from all UDP flows. It also ensures reasonable throughput and latency for

well-behaved UDP flows and provides congestion avoidance benefits and protec-

tion for TCP.

Wang et al. [WSS01] proposed a packet-scheduling protocol to support a pre-

mium service in the differentiated service architecture. It adds a weight to each

packet. Packets are scheduled based upon their weight. To adjust which packets

are scheduled, weights on packets are adaptively adjusted.

Kumar et al. [KMPS04] proposed a packet-scheduling protocol for wireless

networks. The focus of their work is to develop fully-distributed (decentralized)

protocols. They modeled the network as a graph and proposed approximation and

near-optimal approximation algorithms.

Ashour et al. [ALN08] proposed a multi-queue infrastructure for network traf-

fic. They provided a cost model that estimates the queue length and delay survivor

functions for a priority queuing system with varying service rate. They outlined a

method to support variable service of packets using the multi-queue infrastructure.

Karim et al. [KNTA12] proposed a priority scheduling protocol for packets. It

is a three-class priority packet scheduling tiered- scheme. The highest tier contains

emergency real-time packets. They can preempt all other packets. The other two

tiers are prioritized based upon the sensor nodes locale. They address starvation by

allowing the lowest priority packets to preempt other packets after a certain period

of time has elapsed.

Yang et al. [YU12] proposed a packet scheduling protocol that adaptively
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changes the transmission rate to adjust to the traffic load and available energy.

At the same time, they seek to minimize the transition time of all packets. They

developed optimal off-line scheduling policies that minimize the the transition time

of all packets.

Jiang [JJ12] proposed a differentiated queuing service method to support qual-

ity of service requirements for different applications. They utilize a controller that

queues packets according to their qos requirements. The controller can also down-

grade packets who are perceived to not be able to meet their qod requirements to

reduce network resource waste.

Similar to TP, these approaches also pull significant objects forward. However,

query processing adds additional complexities not seen in networking. First, in-

coming tuples in data stream systems do not know the last operator (akin to the

packet destination) that they will be processed by. Rather, they could be filtered

out at any operator in the pipeline. Second, the amount of work required to com-

plete processing a single tuple in transit increases or decreases depending on if the

tuple produces multiple join results or if the tuple gets filtered out and produces

few results.

2.4 Operating Systems Scheduling and Queuing

Operating system scheduling and queuing consider how to adjust the order in which

the tasks are processed to improve a given metric.

Davis et al. [DTB93] addressed the problem of jointly scheduling tasks with

both hard and soft time constraints. They proposed the foundations for synchro-

nization, release jitter and stochastic execution times. These are the basis for slack
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stealing algorithms.

Zhang et al. [ZHC02] proposed a two-phase task scheduling method that con-

siders both the task as well as the voltage required to execute the task. The goal

is to minimize the energy consumption of real-time dependent tasks executing on

a given number of variable voltage processors. Their approach orders the task as-

signment to maximize the opportunities to reduce the voltage overhead.

Goossens et al. [GFB03] proposed a task scheduling method for periodic tasks

upon multiprocessor platforms. Their priority-driven algorithm schedules periodic

task systems upon multiple platforms. It is based upon the total utilization of the

system and the maximum utilization of any specific task.

Abdelzaher et al. [ASL04] proposed a task scheduling method for aperiodic

tasks. They derived a bound for schedulability of aperiodic tasks. It is based upon

a metric that measures the amount of available schedulability overtime.

Davis et al. [DB05] explored a scheduling systems on a single processor where

there is a hierarchical priority of tasks. Their approach addressed fixed priority

pre-emptive scheduling at both global and local levels.

Kim et al. [KLJ+09] proposed a task scheduling method for virtual machines.

It utilizes inference techniques. Their approach estimates the I/O-bounds of cer-

tain tasks. Their scheduler selectively chooses tasks to executed with the goal of

ensuring that the tasks incoming events are promptly processed.

De et al. [DNLR09] proposed a task scheduling method for embedded systems.

Their approach utilizes a protection scheme. It prevents lower priority tasks from

interfering with higher priority tasks. Their algorithm works offline and reduces

the time low priority tasks are preempted by high priority ones.

Lakshmanan et al. [LKR10] proposed scheduling methods of periodic real-
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time tasks on multiprocessors under the fork join structure used in OpenMP. They

outlined the best and worse case scenarios. They proposed an efficient multipro-

cessor scheduling algorithm.

Dubey et al. [SD13] proposed a task scheduling method for Cloud Computing

service operation. It incorporates a task QoS metric. Their approach supports the

tasks requested by many users at the same time where each task may have different

QoS requirements.

Similar to TP, these approaches also pull significant objects forward. However,

in query processing a tuple (i.e., task) may expire and never complete processing.

In addition, the amount of work required to complete processing a single tuple

in transit increases or decreases depending on if the tuple produces multiple join

results or if the tuple gets filtered out and produces few results.
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Chapter 3

Background

This chapter defines general background knowledge about data stream manage-

ment systems, Continuous Query Language (a.k.a CQL) queries, query plans, ag-

gregate and join operators needed for the remainder of this dissertation. It also

provides information on CAPE [RDS+04]. CAPE is the DSMS where our pro-

posed TP systems and operators were implemented.

3.1 Data Stream Management System (DSMS)

In the DSMS model, data providers send an unbounded sequence of tuples to be

processed by a set of continuous queries {q1,. . .qn}. Each tuple ti is a triplet [SId, A,

at] where ti.SId, ti.A, and ti.at are respectively the stream identifier, set of attribute

values, and arrival time of ti.

Consider the stream model example in Figure 3.1. In this example there are

three sets of data providers, namely, prisoners, police officers, and patrol cars. A

stream is dedicated to each data provider. Streams 1, 2, and 3 are respectfully
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dedicated to prisoners, police officers, and patrol cars. In Figure 3.1 each stream

uses a distinct shape to represent their tuples. Streams 1, 2, and 3 are respectfully

represented by rectangles, circles, and triangles.

Results
Query 1

Data Stream 1 

Data Stream 2 

Results
Query 2

Data Stream 3

OP 1 OP 2

OP 3

OP 4

c

Data Providers

Figure 3.1: Example of a DSMS

3.2 CQL Query

The Continuous Query Language (CQL) [ABW06] supports the specification of

continuous queries. The main difference between CQL and Structured Query Lan-

guage (SQL) (i.e., the standard query language for traditional databases) is the

window specification. DSMS can receive an endless amount of data. However,

most DSMS are only interested in producing results from the most recent informa-

tion. A window specifies the finite set of recent tuples from the unbounded stream

that are used to create results. To define which tuples belong to the set of recent

tuples, users specify window bounds. For instance, a user may specify the window

bounds via a start time st and end time et. The user can define window bounds

as time-based (e.g., tuples that arrived within the last 30 seconds) or count-based
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(e.g., the last 30 tuples that arrived).

There are two types of window semantics, sliding window and hopping win-

dow. In sliding windows, there is only one window, i.e., the current window. All

tuples in the current window compose the set of recent tuples. As tuples arrive

from the data providers, they are included in the set of recent tuples. Older tuples

are removed from the set of recent tuples when the arrival date of the tuple ti is

beyond the windows start time and end time, i.e., ti.at ≤ st ≤ et. The set of recent

tuples evolves and adapts over time as incoming tuples arrive. A tuple ti belongs

to the set of recent tuples if and only if its arrival time stamp is ti.at is within the

windows starts time and ends time, i.e., st ≤ ti.at ≤ et. Hence, the current window

adapts overtime by changing its start and end time to match the specified window

bounds. The window bounds slide to include the most recent incoming tuples.

In hopping windows, each window has a set distinct start and end time. The

bounds of each window do not overlap, the next window starts at the end time of the

preceding window. Hence, multiple windows may exist. As tuples arrive from the

data providers, they are added to the set of tuples that compose the window whose

bounds contain the tuple’s arrival time. A tuple ti belongs to the set of tuples that

compose a window if and only if its arrival time stamp ti.at is within the windows

starts time and ends time, i.e., st ≤ ti.at ≤ et. When the current time is beyond a

windows bounds, it produces any and all results generated by its tuples, i.e., st ≤ et

≤ Current Time. Then all the tuples in the set of tuples that compose the window are

purged.
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3.3 Query Plans

A CQL query [ABW06] qi can be represented by one of many query plans pj . Each

plan pj corresponds to a directed acyclic graph composed of operators as nodes

and data exchange interfaces as edges. Operators take in set(s) of tuples from data

exchange interfaces, produce results by running an algebraic function on the set(s)

(e.g., filter or union), and output the resulting tuples to data exchange interfaces.

Data exchange interfaces (e.g., queues or stacks) transfer tuples between operators.

Reconsider the example of a stream model in Figure 3.1. In this example there

are two queries. Namely, Figure 3.1 contains query 1 and query 2, i.e., q1 and q2

respectfully. Query q1 is represented by query plan p1. Query plan p1 is the acyclic

graph composed of algebra operator nodes OP1 and OP2 and their connecting edges.

In Figure 3.1 query q2 is represented by query plan p2. Query plan p2 is the acyclic

graph composed of algebra operator nodes OP1, OP3, and OP4 and their connecting

edges.

The PP (Ch. 4) and PR (Ch. 6) frameworks support both stateless, blocking

stateful, and nonblocking stateful operators. Stateless operators (e.g., select and

project) do not need to maintain a state (i.e., a table) of data to produce results.

Nonblocking stateful operators (e.g., join, union, and intersection) maintain a state

(i.e., a table) of data used to produce results. They do not need to wait until the

state contains the entire set of recent tuples in the current window to be able to

produce results. Blocking stateful operators (e.g., group-by, aggregate (e.g., max,

min, and count), and difference) also maintains a state of data used to produce

results. They do need to wait until the state contains the entire set of recent tuples

in the current window to be able to produce results. A description of typically used
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CQL operators in PP and PR models can be respectively found in Chapters 4 and 6.

The two most commonly used stateful operators work are now explained, namely,

aggregation (i.e., a blocking stateful operator) and join (i.e., a nonblocking stateful

operator).

3.4 Aggregate Operators

Results
Query 1

Data Stream 3 

OP 1c

Data Stream 2 

Figure 3.2: Aggregate Operator Example

Aggregate operators maintain a state and incrementally return a value for the

given aggregate function. Figure 3.2 is the query plan for a query looking for

the officer or police car closest to a location (i.e., minimum distance). Consider

the aggregate operator OP1 in Figure 3.2. OP1 maintains a state for all incoming

tuples. For each incoming tuple ti, the aggregate operator stores ti in the state and

periodically returns an updated result.

Consider tuple ti that arrives from a policeman on stream 2 at aggregate opera-

tor OP1 in Figure 3.2. First, the aggregate operator stores tuple ti in the state. Then

when OP1 is set to return a result, the tuple stored in the state that is closest to the

given location will be returned as a result.

Periodically, aggregate operators will purge their states of any stored tuple that
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are no longer required, e.g., any tuples stored in the state whose arrival time is

older than the query window of any future tuples that will arrive at the aggregate

operator.

3.5 Join Operators

Results
Query 1

Data Stream 1 

Data Stream 2 

OP 1 OP 2

c

State Stream 1 State Stream 2 

Figure 3.3: Join Operator Example

A symmetric binary hash join [WA91] maintains a state for each input stream

that it combines. For example, in Figure 3.3, join operator OP2 maintains a state for

stream 1 as well as a state for stream 2. Each incoming tuple ti to a join operator

is stored in the state according to tuple ti’s stream identifier, i.e., ti.SId. Results are

created by joining ti with tuples in the states of the other streams according to the

join and window predicates specified in the CQL query.

A join predicate is expressed in the WHERE clause of a CQL query composed

of 1) a join expression (=, <, >, ≥, ≤) (e.g., ≤ 3 mi), 2) an attribute stream ref-

erence (e.g., OL.CurrentLocation), and 3) another attribute stream reference (e.g.,

OL.CurrentLocation), i.e., Distance(PL.CurrentLocation, OL.CurrentLocation) ≤

3 mi (Home Arrest Query in Section 1.2).

A window predicate expressed in the CQL query is composed of 1) a window
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bound expressed in the WITHIN clause (e.g., 30 seconds), and 2) a window se-

mantic expressed in the Range clause (e.g., slide every 1 second) (Home Arrest

Query in Section 1.2).

Figure 3.3 is the query plan for the Home Arrest Query in Section 1.2. Consider

tuple ti that arrives from data provider for a policeman on stream 2 at join operator

OP2 in Figure 3.3. First, tuple ti will be stored in the state for stream 2. Then

results will be created by joining tuple ti with prisoner tuples in the state for stream

1 such that the distance between officer tuple ti and any prisoner tuple in the state

for stream 1 is ≤ 3 miles and the tuples arrival times are within 30 seconds of each

other.

Periodically, join operators will purge their states of any stored tuple that are

no longer required. Any tuples stored in the state whose arrival time is older than

the query window of any future tuples that will arrive at the join operator.

3.6 The CAPE DSMS

Our proposed TP system and operators were implemented in the same DSMS,

namely, CAPE [RDS+04] (Fig. 3.4). To ensure fairness, and all systems we com-

pare against were also implemented in CAPE.

CAPE is composed of many modules. The Stream Receiver gathers incoming

tuples from external devices and sends them to the Execution Engine. The Exe-

cution Engine executes the query plan by processing the incoming tuples through

a set of query operators. The Operator Scheduler determines when and how long

each operator in the query plan is executed based on information gathered by the

QoS Inspector. The Operator Configurator adjusts how each operator processes tu-
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Figure 3.4: CAPE Data Stream Management System

ples based on information gathered by the QoS Inspector. The Plan Re-organizer

selects a new optimal query plan based on information gathered by the QoS In-

spector. The Plan Migrator adapts the current plan to the new optimal query plan

selected by the Plan Re-organizer. The Query Plan Generator creates a query plan

from a CQL [ABW06] query.

Our proposed TP systems and operators enhance the Execution Engine module

of CAPE and add additional optimization component modules to CAPE. CAPE

was developed in JAVA. Our enhancements to the Execution Engine module of

CAPE and add additional optimization component modules were also developed

in JAVA.

Bottlenecks can occur in CAPE when more tuples arrive at an operator than the

operator can process within the time allocated to it by the Operator Scheduler. It

can occur at any operator in the query plan. The QoS Inspector collects statistics to

identify bottlenecks. When a bottleneck is identified, the Operator Scheduler will
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adjust when and how long each operator in the query plan is executed. The Plan

Re-optimizer may also selects a new optimal query plan.

When bottlenecks occurs and the system is overloaded, state-of-the-art re-

source allocation methods (i.e, shedding and spilling) respectively drop or tem-

porarily put to disk insignificant tuples. They utilize specialized operators in the

Execution Engine whose sole purpose is to shed or spill specified tuples. They also

have additional optimization component modules that identify when shedding or

spilling needs to occur and which tuples must be shed or spilled. However, these

approaches do not halt the most critical tuples from expiring (Sec. 1.7.1). Our

proposed TP systems collects statistics to identify such situations and adapt how

resources are allocated in the query plan to ensure that the most significant tuples

do not expire. Our enhancements to the Execution Engine module of CAPE and

add additional optimization component modules are outlined in Chapters 4 and 6.
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Chapter 4

Proactive Promotion:

Preferential Resource Allocation

in Stream Processing Systems

4.1 The Proactive Promotion Query Model and Problem

Definition

This chapter provides details on our work towards Task 1 (i.e., Proactive Promo-

tion). The main goal of Task 1 is to design a TP framework that supports the ability

to adaptively and continuously change how resources are allocated such that the

more significant promotable tuples are pulled ahead of less significant ones.
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4.1.1 Proactive Promotion Queries

We extend CQL [ABW06] to support a processing time limit and multi-tiered mon-

itoring criteria. Our P-CQL query qh is a CQL query [ABW06] augmented by a

lifespan clause and a set of monitoring levels. Below is the P-CQL extension to the

Home Arrest Query (Sec. 1.3.1) and Stock Market Queries (Sec. 1.3.2) using the

monitoring order in Table 1.1.

(P-CQL Extension to Home Arrest Query)

LIFESPAN 1000 milliseconds

RANK 1

CRITERIA PI.CommittedViolentOffense = TRUE

AND Distance(PL.Locale, PI.ProperLoc) ≥ 1 mi

RANK 2

CRITERIA PI.RecentlyFoundInWrongLocation = TRUE

RANK 3

CRITERIA PI.KnownFlightRisk = TRUE

(P-CQL Extension to Stock Market Queries)

LIFESPAN 1000 milliseconds

RANK 1 /* aggressive investments */

CRITERIA (S.ownedByCompany=TRUE) AND (S.aggressive=TRUE)

RANK 2 /* conservative investments */

CRITERIA (S.ownedByCompany=TRUE) AND (S.conservative=TRUE)
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RANK 3 /* stocks under evaluation */

CRITERIA (S.underEvaluation= TRUE)

Table 4.1: Notations for PP Query Plans
Notation Meaning
qh a query
qh.lf lifespan of query qh
qh.M set of monitoring levels of query qh
ti a tuple
mk a monitoring level in the set of monitoring levels qh.M
mk.rnk rank of monitoring level mk

mk.mem membership criteria of monitoring level mk

pppj a PP query plan
pppj .AM set of activated monitoring levels in PP query plan pppj
PSmk

promotable subset for monitoring level mk of query qh
opl an operator
sl a stream
wp a window
Tpppj ,PSmk

est. latency for tuples in promotable subset PSmk
through PP query plan pppj

The special clauses added to CQL to form P-CQL include:

• The lifespan clause qh.lf is the processing time limit, e.g., 1000 milliseconds

above. That is, the query results generated by tuple ti are only valuable to the re-

ceiving application if they are received within the query lifespan. Thus, if the time

spent processing tuple ti exceeds the lifespan then tuple ti is no longer processed.

• The rank and criteria clauses together specify the user’s preferences about which

results would be preferred over other results when resources are scarce (Table 1.1).

These clauses are referred to as the monitoring levels qh.M . Each monitoring level

mk defines its rank mk.rnk and membership criteria mk.mem. Rank specifies the

significance of mk in relation to other levels. Each rank is an integer value rang-

ing from [1,∞] where 1 is the most significant rank. Monitoring level mk is more
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significant than level ml if mk.rnk < ml.rnk. Membership criteria mk.mem are the

predicates that a tuple must meet to have the rank of mk. They can contain multiple

predicates combined using conjunction and disjunction, and reference attributes

from different streams. Tuple ti meets the criteria of mk if mk.mem(ti) = true.

4.1.2 Tuple Significance

At times, there may be insufficient resources to pull forward all significant tuples,

i.e., preferentially allocated resource to all tuples that match the membership crite-

ria of a monitoring level. Given the available resources, the PP optimizer only pulls

forward some significant tuples. We refer to the monitoring levels used to identify

the tuples pulled forward as activated monitoring levels. The set of activated mon-

itoring levels AM is a subset of the set of monitoring levels AM ⊆ qh.M .

Definition 1 Promoted tuple ti is designated with a single rank, namely, the most

significant activated monitoring level of which tuple ti meets the criteria.

Consider that tuple ti is from an escaped violent prisoner (i.e., m1.mem(ti) =

true) and flight risk (i.e., m3.mem(ti) = true). Monitoring levels 1, 2, and 3 are

activated, i.e., AM = {m1, m2, m3}. Then tuple ti will be assigned rank m1.

Definition 2 A back burner tuple has not yet been designated a rank.

4.1.3 Proactive Promotion Query Plans

A P-CQL query qh can be represented by many alternative PP query plans. Each

PP plan pppj is represented as a directed acyclic graph composed of PP algebra

operators (Sec. 4.2.1) as nodes and data exchange interfaces that transfer tuples
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between operators as edges. A rank classifier RC is a specialized operator that

computes and assigns ranks to tuples. All other operators are variants of CQL

operators extended to propagate promoted and back burner tuples (Sec. 4.2.1).

The data exchange interface is designed to efficiently pull more significant tu-

ples ahead of less significant tuples. If a traditional buffer were deployed between

operators, then all tuples, both promoted and back burner, would be intermingled.

Prior to processing, each operator would have to sort or scan the complete input

buffer to locate the most significant tuples. This may introduce unacceptable de-

lays. Inspired by priority queuing in differentiated services architectures [ALN08],

PP instead uses a multi-queue approach. Each operator supports a queue for each

monitoring level and one for back burner tuples. All operators place their results

into the appropriate queue of the next down stream operator.

= escaped violent prisoner

=  prisoner who is a known flight risk

= prisoner likely to be in violation

= patrol car

Results

Proactive Promotion

=  any other prisoner

prisonerInfo

RC
1

RC
2

Figure 4.1: PP Plan ppp1 for Home Arrest Query (Sec. 1.3.1)

Consider PP plan ppp1 for the Home Arrest Query (Sec. 1.3.1) and P-CQL ex-

tension (Sec. 4.1.1) in Figure 4.1 in a moderately overloaded system. In Figure

4.1, the flag above the RC operator designates which ranks the RC evaluates and

assigns to tuples. First, rank classifier RC1 locates and assigns rank m1 to tuples

from escaped violent prisoners (e.g., black circles). Next, the join operator com-
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pares each prisoner’s current locale to a table of permitted locations. Then rank

classifier RC2 locates and assigns rank m2 to tuples from prisoners likely to be in

violation (e.g., dark gray circles). The last join operator joins the results with the

officers in close proximity.

Each PP plan specifies which monitoring levels are activated and in which

rank classifier the membership criteria of each activated monitoring level is eval-

uated. PP plan pppj for query qh defines a set of activated monitoring levels pppj .AM

(pppj .AM ⊆ qh.M). For each activated monitoring level mk ∈ pppj .AM , PP plan pppj

specifies which rank classifier(s) performs monitoring level mks membership eval-

uation. For instance, in Figure 4.1, ppp1 ’s activated monitoring levels are monitoring

levels m1 and m2, i.e., ppp1 .AM = {m1, m2}. Monitoring level 1 is evaluated in rank

classifier RC1, while level 2 is evaluated in rank classifier RC2.

4.1.4 Proactive Promotion Problem

Broadly, the Proactive Promotion Problem is to locate the PP plan that minimizes

the latency for tuples for the largest sequence of monitoring levels in consecutive

order within the given CPU resources. To ensure that the most significant tuples

are monitored before less significant tuples, their latency should be less than the

query lifespan. The goal is to not allow any highly significant tuples to expire,

and thus, to assure less significant tuples are only processed if resources exist. To

achieve this, we must identify for each monitoring level the subset of the tuples in

the workload that satisfy the monitoring level’s membership criteria.

Definition 3 Promotable subset PSmk
for monitoring level is the set of tuples that

would have the rank of mk.rnk if monitoring level mk was activated per Def. 1.
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Table 4.2: Example: Ranking PP Plans
PP Plan CPU Tpppj ,PSm1

Tpppj ,PSm2
Tpppj ,PSm3

(pppx ) Overhead

ppp1 1022 52 65 69

ppp2 1256 69 68 50

ppp3 1956 60 77 95

ppp4 1006 83 50 87

Notion of PP Plan Optimality. We use Tpppj ,PSmk
to denote the estimated

latency for tuples in promotable subset PSmk
processed by PP plan pppj . Intuitively,

the optimal PP plan ensures that the latency is less than the query lifespan for tuples

from the largest consecutive sequence of monitoring levels starting from the most

significant level down to as many levels as possible.

Consider the example in Table 4.2 where the query lifespan lf is equal to70ms.

Assume the resources required to execute each PP plan in Table 4.2 are within the

available system capacity. PP plan ppp1 is the best among them as explained below.

For the most significant monitoring level m1, PP plan ppp4 has a latency greater than

lf , i.e., lf ≤ Tppp4 ,PSm1
. For the next most significant monitoring level m2, PP plan

ppp3 has latency greater than lf . For all monitoring levels, PP plan ppp1 and PP plan

ppp2 have a latency less than or equal to lf . However, compared to PP plan ppp2 , PP

plan ppp1 has the lowest CPU overhead cost and thus is the preferred solution.

Definition 4 PP plan pppi is the optimal PP plan for P-CQL query qh iff compared

to any other PP plan pppj for P-CQL query qh:

A) For the most significant monitoring level, i.e., (mk.rnk = 1), pppi has a latency

for monitoring level mk less than or equal to the query life span (i.e., Tpppi ,PSmk
≤

qh.lf) and pppj does not (i.e., Tpppj ,PSmk
> qh.lf). If both pppi and pppj have a latency
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less than or equal to the query lifespan for monitoring level mk (i.e., Tpppi ,PSmk
≤

qh.lf and Tpppj ,PSmk
≤ qh.lf), then for the monitoring level with the next highest

significance ml, pppj has a latency greater than the query life span (and so on). If for

all monitoring levels both PP plans pppi and pppj have latencies less than the query

life span then pppi utilizes less CPU resources than pppj .

B) The resources required to execute PP plans pppi and pppj are within the available

system capacity respectively.

4.2 PP Query Processing

4.2.1 PP Query Algebra

PP algebra extends traditional operators from the continuous query algebra [GO05]

to propagate an incoming tuple’s rank to its result tuples. In addition, special pur-

pose rank classifier operators (RCs) compute and assign the rank to tuples. Gen-

erally, each operator opi starts processing tuples from the highest priority queue.

When this queue is empty and allocated CPU resources remain, operator opi pro-

cesses tuples from the next highest priority queue. Operator opi places its results

into the appropriate incoming queues of the next operator.

Rank Classifier (RC) is an unary operator with an assessment set parameter AS.

RC assigns rank to tuples in its input stream by invoking the priority determinants

specified by its assessment set parameter AS parameter. The assessment set param-

eter AS indicates which of the activated monitoring levels the RC evaluates. Each

tuple ti processed is designated the most significant of either ti’s current rank or

the rank of the priority determination functions that are being evaluated and that ti

satisfies. Tuples are sent with their assigned rank, if any, to the next operator.
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Projection discards unwanted attributes from tuples in its input stream. Selection

drops tuples in its input stream that don’t satisfy the selection condition. Both send

their results to the next operator without changing their rank.

Join, a symmetric binary hash join [WA91], maintains a state for each input stream

(sp and sq). To process tuple ti, first ti is stored with its rank in the state of ti’s stream

sp. Next, results are created by joining ti with tuples tj in the other stream sq’s state.

Each result (ti,tj ) is assigned the highest rank of its composing join partners, i.e., ti

and tj . Join result (ti,tj ) with its rank, if any, is sent to the next operator. To prevent

the blockage of significant results, each join operator allocates the same number of

CPU resources to process tuples from each of its incoming streams.

As confirmed by our experiments (Sec. 4.5), our simple join strategy is effec-

tive for the following reasons. First, if tuple ti is significant (i.e., mk.mem(ti) = true),

then any join result that ti contributes to will be significant by definition (i.e., have

at least rank mk.rnk). When the system is overloaded, all resources are devoted

to processing the most significant tuples first. This automatically produces only

significant results. Second, for the same reason, join states for streams containing

promoted tuples will mostly contain significant tuples and few, if any, back burner

tuples. Thus even when a back burner tuple joins with such a state, it is likely to

combine with promoted join partners and produce significant results.

Reconsider the Home Arrest Query (Sec. 1.3.1) using the P-CQL extension

in Section 4.1.1 executed in a moderately overloaded system (e.g., PP plan in Fig.

4.1). In this case, the prisoner stream pulls significant tuples forward, i.e., tuples

from escaped violent or likely to be in violation prisoners. As such, the state of the

join operator that combines the current locales of prisoners and officers will con-

tain significant prisoner tuples. Any incoming officer tuple processed will create
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significant results as the prisoner tuples it is matched against are likely all signifi-

cant. While other join methods are perceivable, such as actively attempting to pull

potential join partners up the pipeline, they require additional resources without

any guarantee of success. Therefore, we do not consider such strategies here, as

they add extra demands on the already scarce resources.

4.2.2 Stateful Operators & Out-of-Order Handling

PP actively causes tuples to become out-of-order by pulling some tuples ahead

of others. Out-of-order methods from the literature [LLG+09] were designed to

tackle out-of-order issues caused by external causes such as network transmis-

sions. Broadly, these methods synchronize the progression of time within the query

pipeline to address correctness and completeness of query processing [LLG+09].

These existing methods can also be applied to PP.

Broadly, this requires stateful operators to organize and manage their states.

First, states must allow stored tuples to be located by query window to support the

correct production of results. Second, to ensure that states do not grow unbounded,

they must purge stored tuples. However, states should only purge stored tuple ti

when it can be guaranteed that ti will not create any results in the future.

To safely purge tuples from states, similar to [LMT+05], each leaf operator opi

periodically sends progress indicator punctuations when opi will no longer process

any tuples from a set period of time. When operator opi receives such notification,

first opi assures that no more tuples are waiting to be processed related to this period

of time. Then progressively each operator sends similar punctuations to its next

operator down stream (and so on).
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4.2.3 PP Algebraic Rewriting

Rank classifiers (RCs) evaluate and assign rank to tuples. They don’t modify tuple

attributes, remove nor produce tuples. Clearly, creating a new PP plan by changing

where monitoring levels are evaluated by splitting, merging, removing, or relocat-

ing RCs (or rather their assessment sets) maintains the logical correctness of the

original plan semantics. Hence, rewrite rules can be designed similar to those for

pushing selections through a plan [Che99]. Given adequate resources, a rewritten

PP plan would produce the same results as the original plan. Given insufficient

resources, fewer results may be produced, namely, only the most significant ones.

However, each result output is still guaranteed to be valid, i.e., satisfies all query

predicates.

4.3 PP Optimization

4.3.1 PP Architecture

The PP architecture (Fig. 4.2) is composed of the PP Executor, PP Monitor, PP

Optimizer, and PP Adaptor. The PP Executor runs the physical PP plan (Sec.

3.4). The PP Monitor gathers statistics (Sec. 3.5.1). Periodically, the PP Monitor

triggers the PP Optimizer to find a more optimized PP plan (Sec. 3.5.3-3.5.5). The

PP Adaptor adapts the current PP plan into the new optimal PP plan (Sec. 3.6). To

reduce overhead, the PP Monitor, PP Optimizer, and PP Adaptor run on a separate

thread from the PP Executor.
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Figure 4.2: PP Architecture

4.3.2 PP Monitor

The PP Monitor quickly and cheaply identifies when to trigger the PP Optimizer.

Similar to [WPSS06], the PP Monitor monitors the work load. The PP Monitor

gathers statistics to estimate the estimated latency for each promotable subset (Sec.

4.3.3). These statistics include the number of expired tuples for each promotable

subset, the queue lengths, and average tuple computation time of all operators. The

PP Monitor will trigger the PP Optimizer when, either tuples from a promotable

subset expire or there may be adequate resources to process all incoming tuples.

This consists of three cases.

The first case is when tuples from promotable subset PSmk
expire and monitor-

ing level mk is deactivated. Adapting to a PP plan where monitoring level mk is
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activated will pull tuples in promotable subset PSmk
forward.

The second case is when tuples from promotable subset PSmk
expire, monitoring

level mk is activated, and less significant monitoring levels are also activated. In

this case, the latency of promotable subset PSmk
may be reduced by adapting to

a PP plan that changes the evaluation location of monitoring level mk and/or de-

activates some less significant activated monitoring levels. This would reduce the

precedence determination overhead and dedicate more resources to tuples in pro-

motable subset PSmk
.

The third case is when no tuples expire and some monitoring levels are activated.

In this case, PP Optimization will explore PP plans that deactivate some monitoring

levels. This may reduce the precedence determination overhead and dedicate more

resources to processing tuples.

4.3.3 Latency Metric of Promotable Subsets

iq1

iq2

iq3

input output input output

t1

Traditional

Op

PP 

Opt1 t1

Figure 4.3: Traditional vs PP Operator Latency Example

Estimated Operator Latency of a Promotable Subset: The estimated latency

for tuples in PSmk
at operator opl, Topl,PSmk

, is the sum of the average tuple wait

time at rank mk.rnk and the average tuple computation time Tt(opl) (or the time for

operator opl to process a tuple) (Equation 4.1). The average tuple wait time is the

time it takes to process all tuples with greater or equal significance that arrived
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before the new tuple. It is affected by the workload of tuples at each rank, i.e., the

queue lengths QL(opl, mk). The average tuple wait time at rank mk.rnk is the product

of the sum of the lengths of each queue with greater or equal significance and the

computation time Tt(opl). The estimated latency for back burner tuples through opl,

Topl,bb, is simply a special case of Topl,PSmk
, namely, waiting for all queues to empty

prior to processing. Latency notations are listed in Table 4.3.

Topl,PSmk
= ((

mk∑
x=1

QL(opl, x)) ∗ Tt(opl)) + Tt(opl) (4.1)

Consider tuple t1’s latency through operator opl in Fig. 4.3. If tuple t1’s rank = 1

(in queue iq1) then tuple t1’s latency is 3 ∗ Tt(opl). If tuple t1’s rank = 3 (in queue iq3)

then tuple t1’s latency is 6 ∗ Tt(opl).

Estimated Query Latency of a Promotable Subset: The estimated latency for

tuples in promotable subset PSmk
through PP plan pppj , Tpppj ,PSmk

(Equ. 4.2), where

rank classifier opm evaluates monitoring level mk consists of two parts. 1) The esti-

mated latency before tuples in promotable subset PSmk
are preferentially allocated

resources ∑opm
x=op1

Tx,bb, i.e., processed as back burner tuples at each operator prior

to and through rank classifier operator opm. 2) The estimated latency after they are

preferentially allocated resources ∑opn
x=op(m+1)

Tx,PSmk
, i.e., processed as promoted

tuples at rank mk at each operator after rank classifier operator opm.

Tpppj ,PSmk
= (

opm∑
x=op1

Tx,bb +

opn∑
x=op(m+1)

Tx,PSmk
) (4.2)
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Table 4.3: Latency Notations for PP Query Plans
Notation Meaning
Tpppj ,PSmk

est. latency for tuples in promotable subset PSmk
in PP plan pppj

Topl,PSmk
est. latency for tuples in promotable subset PSmk

in operator opl
Tt(opl) avg. tuple computation time in operator opl
QL(opl, mk) tuple queue len. for monitoring level mk in operator opl

4.3.4 The PP Plan Search Space

Observation: We now observe that the estimated latency for a promotable subset

depends upon where the evaluation of each activated monitoring level mk occurs.

The goal of PP is to ensure that given the available memory tuples from the

most significant promotable subsets do not expire. Namely, when resources are

scarce, they are first dedicated to ensuring that the most significant tuples do not

expire. If resources remain, then they are dedicated to ensuring that the next most

significant tuples do not expire (and so on). This means that we first seek to reduce

the latency of tuples in the most significant promotable subset. In addition, the

latency of tuples in the most significant promotable subset is affected by which

monitoring levels are activated and where each priority determinant is evaluated.

Hence, as shown in the example PP plan in Section 3.3, the optimal PP plan may

evaluate the priority determinants of the most significant monitoring level in an RC

early in the query pipeline and the priority determinants of another less significant

monitoring level in an RC later on.

There is no benefit to simply placing the evaluation of each priority determinant

in the earliest RC in the plan. The placement of where each priority determinant is

evaluated depends upon the selectivity and cost of each operator. That is, if the cost

of evaluating a priority determinant is high then it may take less CPU processing

time to evaluate it after a highly selective operator rather than before. Consider the
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following scenario. There are 300 back burner tuples in the pipeline before operator

op1. It costs 2 milliseconds to evaluate if a tuple satisfies priority determinant d1. It

costs 1 millisecond for operator op1 to process a tuple. The selectivity of operator op1

is .5, i.e., many tuples are dropped.

Now, consider the latency of tuples in promotable subset PSmk
. The cost to

evaluate the 300 back burner tuples in an RC after operator op1 against priority de-

terminant d1 is 300 milliseconds (e.g., op1 process 300 tuples) + 300 milliseconds (e.g., RC

process 150 tuples as 1/2 of the tuples are dropped by operator op1) = 600 milliseconds

total. However the cost to evaluate the 300 back burner tuples in an RC before oper-

ator op1 against priority determinant d1 and then be processed by operator op1 is 600

milliseconds (e.g., RC process 300 tuples) + X milliseconds (e.g., where X is the number of

tuples that have been promoted to rank mk.rnk) = 600+X milliseconds total. Even if one

tuple is promoted to rank mk.rnk then it will cost 601 milliseconds. In this case, it does

not make sense to move the evaluation to the earliest RC in the plan.

Locating the Optimal PP Plan: The PP Optimizer optimizes resource alloca-

tion by exploring which monitoring levels to activate and where in the pipeline

to evaluate each activated priority determinant, i.e., in which RC. Beyond adapt-

ing resource allocation, the traditional question of the optimal order of operators

within a PP plan must also be explored.

Two possible alternatives to locate the optimal PP plan are 1) Similar to [AH00,

NRB09], we could support a separate optimal ordering of operators for each pro-

motable subset using a multiroute architecture. However, this would not allow

the precedence determination overhead to be reduced or ideally even eliminated

online. Rather, potentially expensive precedence determination would need to be

performed on each and every single incoming tuple to locate their best route prior
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to processing. 2) Alternatively, a combined optimization approach would consider

both the regular and PP costs at the same time [RG00]. However, finding an optimal

query plan considering only the regular costs is known to be NP-hard [BMM+04].

To consider both costs would only increase the complexity. If the system is over-

loaded, such expensive reordering of operators may delay the processing of signif-

icant tuples even further.

To eliminate these issues, we propose a two-phased approach. Our approach

supports agile changes to resource allocation online by separating the resource

allocation from the standard plan operator ordering decisions. First, the query

optimizer using traditional query optimization [RG00] selects an optimal order of

operators as query plan pi. Then, our PP Optimizer transforms this query plan pi

into an optimized PP plan pppi by locating the optimal allocation of resources (Sec.

4.1.3) for this query pipeline. Whenever a new query plan ordering is chosen, the

resource allocation (i.e., a new PP plan) is determined for the new query plan.

Creating a PP Plan: Transforming a traditional query plan pi into a PP plan pppi

requires the addition of rank classifiers, i.e., RCs. Any number of RCs could be

placed in query plan pi. However, there is no benefit in placing two RCs directly

adjacent to each other. Their functionality can always be merged into one RC

(Sec. 4.2.3). Thus, one RC is placed before each standard operator. Any RC that

evaluates no monitoring levels (i.e., empty assessment set) is skipped. Recall the

RCs in PP plan ppp1 for the Home Arrest Query in Figure 4.1.

Where can a Priority Determinant be Evaluated? A monitoring level may con-

tain multiple criteria combined via conjunction and disjunction (Sec. 4.1.1). No

benefit exists in evaluating some but not all criteria of a given monitoring level

in an RC. In such a case, whether or not a tuple satisfies the partial criteria will
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not be enough to establish the tuple’s significance. Thus the membership criteria

of each monitoring level is transformed into a disjunctive normal form. We refer

to each disjunct as a priority determinant. Each RC uses priority determinants to

determine tuple significance. An RC can only evaluate a priority determinant di if

the attributes used by the predicates of di are available in the incoming tuples to

the RC. Each di is associated with an evaluation path of RCs that begins at the first

and ends at the last RC in the pipeline where all predicates of di are defined.

Reconsider PP plan ppp1 (Fig. 4.1). If priority determinant di contains attributes

from the prisoner stream then the evaluation path of di would contain RC1 and

RC2. However, if di contains attributes from the prisoner information table then

the evaluation path of di would only contain RC2.

How many RCs Evaluate a Priority Determinant?

Observation: Each priority determinant di of monitoring level mk needs to only be

evaluated by one RC in the plan.

Reconsider PP plan ppp1 in Figure 4.1 where priority determinant di’s evaluation

path contains RC1 and RC2. If RC1 evaluates di then all tuples that satisfy di will

have been promoted before they reach RC2. That is, RC2 will not pull any new

tuples forward by evaluating di.

Observation: The estimated latency for promotable subset PSmk
is affected by

which RC evaluates the priority determinants of mk.

Reconsider PP plan ppp1 where priority determinant di ∈ mk and di’s evaluation

path contains RC1 and RC2 (Fig. 4.1). If RC1 evaluates priority determinant di

then tuples in promotable subset PSmk
will be preferentially allocated resources in

both join operators. If RC2 evaluates priority determinant di then tuples in PSmk

will only be preferentially allocated resources in the last join operator.
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Two Critical Factors of the PP Search Space Size are 1) the number of RCs

that can evaluate each priority determinant and 2) the number of possible sets of

activated monitoring levels.

Theorem 1 The PP search space size for query plan pi is∑2|qh.M|

amx=1

∏|EP |
epy=1 |epy.RC||AMepk

|. AMepk is the set of priority determinants from

the activated monitoring levels whose evalation path is epk.

Proof The number of PP plans for query plan pi is equal to the sum of PP plans

for each possible activated monitoring level set, i.e., ∑2|qh.M|
amx=1 . There are 2|qh.M|

combinations of creating an activated monitoring level set AM from the monitoring

levels in qh.M . amx is one possible activated monitoring level set AM .

For activated monitoring level set amx all PP plans must be generated. This

is the sum of the combinations of placing each priority determinant from the ac-

tivated monitoring levels whose evalation path is epk (i.e., AMepk) into an RC in

evaluation path epk. epy is one evaluation path in the set of all evaluation paths EP .

epy .RC is the set of RCs in evaluation path epy. This problem can be mapped to the

well known problem of placing each ball in a set of n distinguishable balls into a

bin from a set of m distinguishable bins [Ree07]. Each ball represents a priority

determinant di whose monitoring level is in the set of activated monitoring levels

AMepk . Each bin represents a RC epy .RC in evaluation path epy. Each PP plan is

modeled by placing a priority determinant di (i.e., a ball) into one of its |epy .RC|

bins. The number of PP plans for amx is thus ∏|EP |
epy=1 |epy .RC|

|AMepk
|.

The complexity of the PP problem is exponential in the number of priority

determinants (Thm. 1). Hence, it is impractical to exhaustively search for the

optimal PP plan for complex PP queries with many priority determinants.
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4.3.5 Pruning the PP Search Space

As foundation for pruning the search space, we now establish properties of ranking

that reduce the latency of promotable subsets. First, tuples that skip being evaluated

by RCn reduce their latency by the processing costs of RCn. Second, the evaluation

order of monitoring levels within an RC and across the evaluation paths of the plan

can allow some tuples to skip being evaluated by some priority determinants. This

can further reduce latency.

Property 1: If the rank already assigned to promoted tuple ti is more significant

than the monitoring levels in RCj’s assessment set, i.e., ∀ml ∈ RCj .AS (ml.rnk >

ti.rnk), then ti is guaranteed to never be assigned a rank by RCj . Thus ti can skip

being evaluated by RCj .

For PP plan ppp1 (Fig. 4.1), promoted tuple ti is assigned rank 1. Rank Classi-

fier RC2 evaluates the determinants for monitoring level m2 and assigns rank 2 to

tuples. Tuples are assigned the highest rank that they satisfy the criteria for (Sec.

4.1.2). Tuple ti is already assigned a higher rank than 2. Thus RC2 will never

assign a rank to tuple ti.

Property 2: Rank classifier RCj that evaluates the priority determinants of

the monitoring levels in its assessment set in rank order reduces the latency of

significant tuples compared to evaluating the same criteria not in rank order.

For PP plan ppp1 in Figure 4.1, consider that rank classifier RC1 evaluates the

determinants for monitoring levels m1 and m2. Assume that first RC1 evaluates

the determinants for monitoring levels m2 and then for m1. If tuple ti belongs to

the most significant promotable subset PSm1 then ti will need to be evaluated by

determinants for both monitoring levels. Now assume that first RC1 evaluates the
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determinants for monitoring level m1 and then for m2. In this case, tuple ti will only

need to be evaluated by determinants for m1.

From these properties, we derive that the fewer priority determinants evaluated

by a tuple before it is promoted the lower its latency. The order of the ranks of

where each priority determinant is evaluated across RCs from the first RC to the

last RC in the plan also lowers the latency of significant tuples. We now show that

PP plans that evaluate monitoring levels out of order are never optimal. Hence they

can safely be removed from the search space.

Definition 5 PP Plan pppi is called an ordered PP plan if given any RCj in PP plan

pppi , no RC past RCj in the pipeline, say RCk, evaluates determinants for any ac-

tivated monitoring level more significant than the activated monitoring levels of

the determinants evaluated by RCj , i.e., (∀mm ∈ RCj .AS) (∀ml ∈ RCk.AS) (mm.rnk ≤

ml.rnk). All other plans are called unordered PP plans.

Theorem 2 For any unordered PP plan pppi of query plan pi, there exists an ordered

PP plan pppj (Def. 5) of query plan pi such that the ordered PP plan pppj is superior

to the unordered PP plan pppi (Sec. 4.1.3).

Proof First, consider a PP plan with one RC and several activated monitoring

levels. Per property 2, all activated monitoring levels should be evaluated in rank

order in the sole RC. Hence the ordered PP plan is superior.

Now, assume an unordered PP plan pppi for query qh is optimal. Let pppi have

multiple RCs and activated monitoring levels. mj is the most significant monitoring

level evaluated out-of-order. The priority determinant mj .dk of mj is evaluated by

RCl. Thus, by assumption, some monitoring levels less significant than mj are eval-

uated prior to RCl. The latency for promotable subset PSmj through pppi includes
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three costs. First, prior to RCl, tuples in PSmj are processed as back burner tuples.

This includes the cost to evaluate and promote tuples less significant than mj , i.e.

tuples evaluated out-of-order. Second, in RCl, tuples are evaluated by determinant

mj .dk. Third, after RCl, tuples in PSmj are processed as promoted tuples.

We now create an ordered PP plan pppj from the unordered PP plan pppi by

relocating the priority determinants less significant than mj which are evaluated

prior to RCl. The newly constructed ordered PP plan pppj now evaluates monitoring

levels in significance order up to RCl. The latency for promotable subset PSmj

through pppj also includes the same three costs outlined above. However, in contrast

to the unordered PP plan pppi , the cost prior to RCl does not include the cost to

evaluate and promote tuples less significant than mj .

The latency of promotable subset PSmi for PP plans pppi and pppj are similar with

two exceptions. First, the unordered PP plan pppi has additional overhead prior to

RCl to evaluate less significant monitoring levels. Second, the unordered PP plan

pppi processes tuples less significant than mj before tuples in PSmj prior to RCl. This

may increase the latency of PSmj . Namely, compared to the ordered PP plan, the

unordered PP plan will almost always process more tuples before tuples in PSmj

in operators prior to RCl. The only case when the unordered PP plan will process

an equal number of tuples as the ordered PP plan is when all tuples less significant

than mj arrive last. Compared to the ordered PP plan, the unordered PP plan will

never process less tuples before tuples in PSmj in operators prior to RCl.

Thus, ordered PP plan pppj has a lower latency for promotable subset PSmi and

is superior to pppi . Contradiction.

Theorem 3 The optimal PP plan pppi for a plan pi will always be an ordered PP
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plan (per Definition 5).

Proof An unordered plan pppj is never optimal because an ordered plan superior to

pppj always exists (Thm. 2).

4.3.6 Rank Order Pruning PP Optimizer

Per Thm. 3, we are now ready to introduce the Rank Order Pruning Optimizer or

ROP. ROP significantly reduces the search space, yet is guaranteed to find the opti-

mal PP plan. ROP performs an ordered evaluation of the activation and evaluation

of each monitoring level in the plan from the most to least significant (Fig. 4.4).

First, ROP initializes a default PP plan by placing an RC before each standard oper-

ator in the plan (line 1). For each priority determinant mi.dj for the most significant

monitoring level mi, ROP locates the ”best” RC in mi.dj’s evaluation path to eval-

uate mi.dj within the available system capacity (lines 6-16). The best RC results

in an estimated latency lower than the query lifespan and has the lowest overhead.

If no best RC is found then either all possible RCs result in an estimated latency

higher than the lifespan or the overhead to evaluate mi.dj is above the available

system capacity. In this case, mi is not activated, the search stops. The previously

found optimal PP plan is returned (line 17). Otherwise, mi is activated, mi.dj is

added to the assessment set of the best RC (line 18). The search continues with the

next most significant monitoring level. Each search begins at the RC that is either

the best RC for the last monitoring level evaluated (i.e., maintaining rank order)

or the earliest possible RC for the priority determinant. This continues until either

a monitoring level is found to not be worthwhile for activation (line 19), no more

resources are available (line 17), or all monitoring levels are activated (line 21).
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ROP(S=stats.,pi=plan,availCPU=avail.res.,qh.l=lifespan)
1: Initialize pppi from pi; lastRC← last RC in pppi ;
2: for epi = ep1 to |EP | do
3: startRC[epi]← first RC in epi; {Init. each eval. path}
4: end for
5: for mi = m1 to mn where n = |qh.M | do
6: for dj = d1 to dp where p = |mi.d| do
7: bestRC[dj ]← null; bestCost←∞; {each deter. dj in level mi}
8: for RCk = startRC[dj .ep] to lastRC do
9: assume mi.dj is evaluated in rank classifier RCk;

10: estLat← Tpppi ,PSmi

11: estCost← est. CPU overhead;
12: If(estLat < qh.l) and (estCost ≤ bestCost) and (estCost ≤ availCPU)
13: then bestRC[dj ]← RCk; bestCost← estCost; endif
14: end for
15: if (bestRC[dj ] 6= null) then

startRC[dj .ep]← bestRC[dj ]; endif
16: end for
17: if (estCost ≥ availCPU) then return pppi ; endif
18: if (∀bestRC[] 6= null) then add each mi.dj to bestRC[dj ].AS in pppi
19: else return pppi ; endif
20: end for
21: return pppi ;

Figure 4.4: Rank Order Pruning PP Optimizer ROP

Theorem 4 ROP finds an optimal PP plan.

Proof ROP searches all ordered PP plans and returns the best one. An ordered

plan will be optimal (Thm. 3). ROP is guaranteed to find an optimal PP plan.

Theorem 5 ROPs complexity is∑|EP |
k=1 (|epk.rc|∗|AMepk |) where amx is the sequence

of monitoring levels activated starting from the most significant monitoring level.

Proof In the worst case scenario, the first RC of each evaluation path is optimal

for all priority determinants of every monitoring level. Then, each determinant

needs to consider all possible RCs in its evaluation path.

4.4 Resource Allocation Adaption

Our agile execution framework makes online resource allocation adjustments with-

out requiring infrastructure changes. That is, operators are not added, removed,
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or reordered. Instead, upon receiving a notification from the PP Adaptor, each

operator adapts which tuples are preferentially allocated resources. To not delay

adaption, a control exchange interface is dedicated to transfer such notifications

between each operator and the PP Adaptor.

Each operator opi preferentially allocates resources to incoming promoted tu-

ples. Incoming promoted tuples to operator opi are designated a rank by an RC that

proceeds operator opi. The activated monitoring levels evaluated by any RC that

proceeds operator opi may change. Hence, operators must adapt which incoming

tuples they preferentially allocate resources to.

4.4.1 Adaption and In-process Tuples

Run-time adaption is triggered when the PP Optimizer selects a new PP plan (Sec.

4.3). There are two types of possible changes between the current and new PP

plan. First, the number of activated monitoring levels may change. Second, the RC

where each priority determinant is evaluated may change. The number of activated

monitoring levels decreases or increases when respectively some activated levels

are deactivated or some deactivated levels are activated. The evaluation location of

a priority determinant may move to a new RC that resides in the pipeline after or

before the current RC where the evaluation occurs.

Operators adjust how resources are allocated to in-process tuples by changing

which queue they reside in. Only tuples in priority queues will be preferentially

allocated resources. Operators promote or demote tuples by respectively placing

them into the proper priority or back burner queue of the next operator.

Over time, a monitoring level may be activated then deactivated then reac-

tivated. Similarly, an inprocess tuple may be promoted then demoted then re-
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promoted again. To avoid repeated precedence determination, once a tuple is as-

signed a rank it retains its rank for the duration of processing. However, the queue

in which the tuple resides may change.

In-process promoted tuples. When the number of levels decreases, operators de-

mote any promoted tuple that is no longer associated with an activated monitoring

level. When the number of levels increases, operators promote any demoted tuple

residing in the back burner queue whose associated monitoring level is activated.

When an evaluation location is moved to a new RC that resides after the current

RC, a promoted tuple will be demoted for a portion of the pipeline, namely, until

they reach the new RC. Nothing happens to promoted tuples when an evaluation

location is pushed before the current RC. Such tuples should be promoted.

In-process back burner tuples. Nothing happens to back burner tuples when

either the number of levels decreases or an evaluation location is moved after the

current RC. These tuples should remain back burner tuples.

This is not the case when an evaluation location is moved before the current

RC or the number of levels increases. Current in-process back burner tuples that

belong to the promotable subset of an activated monitoring level and reside in the

pipeline between the new and the current RC could be identified and promoted.

However, there is very limited number of such tuples that will currently reside in

this small portion of the query pipeline. Thus, we choose not to undertake any

special checks as the overhead outweighs the gains achievable.

4.4.2 Skipping Extraneous RCs

The physical query plan remains constant while parameters of each operator are

adjusted to adapt resource allocation. At times a RC may no longer evaluate any
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monitoring levels (i.e., its assessment set = ∅) and will be skipped. To skip ex-

traneous RCs, each standard operator controls where it sends its results. That is,

operators send results to either: 1) its adjacent down stream RC and thereafter to

the next down stream standard operator or 2) directly to the down stream standard

operator (skipping the RC).

Monitoring levels are evaluated in rank order (Thm. 2). Thus, a promoted result

never needs to be evaluated by any subsequent RCs (Sec. 4.3.5), i.e., they skip all

future RCs. Back burner tuples are only sent to the next RC if its assessment set is

not empty. Hence, the special routing decision is executed once and is cheap. In

short, each operator either sends all back burner results to the next RC or directly

to the next standard operator.

4.4.3 PP Plan Adaption

The optimal PP plan selected by the PP Optimizer defines changes to the parame-

ters of each operator. For each RC, it defines an assessment set. For each standard

operator opi it defines where operator opi’s back burner results are sent and which

promotable subsets operator opi preferentially allocates resources to. The optimal

PP plan is forwarded to the PP Adaptor which reconfigures the current PP plan into

the new one as follows. The PP Adaptor informs each standard operator opi and

RC opj of required changes to their parameters via a notification. Upon receipt of

a notification, operators and RCs adjust their parameters. In summary, PP supports

agile online adjustments to resource allocation without requiring any infrastructure

changes.
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4.5 Experimental Evaluation of PP

4.5.1 Experimental Set Up

Experimental Methodology: All experiments are conducted on nodes in a cluster

that consists of 20 processing nodes. Each host has two AMD 2.6GHz Dual Core

Opteron CPUs and 1GB memory. Each system uses three machines. One runs the

query plan. One monitors statistics, determines, and implements any changes to

resource allocation. One tracks for each monitoring level the running online count

of the number of results and expired tuples.

We explore: 1) if PP decreases the latency and increases the throughput of

significant tuples, 2) how PP is affected by the number of monitoring levels, % of

incoming tuples in each promotable subset, and lifespan parameters, 3) PP’s run

time CPU overhead and memory overhead, and 4) ROP’s performance in locating

the optimal PP plan compared to the alternative.

These variables most directly affect PP. The number of tuples in a promotable

subset in the incoming streams affects the number of significant tuples in the work-

load. The number of monitoring levels affects the number of different membership

criteria, i.e., increases the complexity of precedence determination. The lifespan

affects the total number of tuples, significant or not, in the workload, i.e., all tuples

may remain in the system for a longer duration. This clearly puts more pressure

upon the system by imposing more resource consumption.

Alternative Solutions: We compare PP to traditional DSMS with no shedding,

semantic shedding, and random shedding. These alternatives are respectively re-

ferred to as trad, sem, and rand. Rand randomly selects tuples to process at the

incoming stream based on the estimated number of tuples that can be processed
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within their lifespan given the current statistics. Sem uses both the monitoring

level criteria and the estimated number of tuples that can be processed to select

which incoming tuples from which promotable subsets to process. Sem sheds all

other tuples. Both sem and rand process tuples in FIFO order and determine sig-

nificance (i.e., whether or not to process tuples) as soon as possible. PP instead

selects which monitoring levels to activate and where in the query plan each acti-

vated level criteria is evaluated. PP processes all tuples in significance order and

assigns significance at the best location in the pipeline.

In the PP, rand, and sem approaches, the PP Monitor collects statistics on the

latency of all tuples. In addition, for PP and sem the PP Monitor also collects

statistics on the latency of each promotable subset. Then rand and sem perform

a cost analysis of which tuples to shed. PP uses the PP Optimizer to determine

which monitoring levels to activate and where it is best to evaluate each priority

determinant.

Data Streams and Queries: To vary the workload, three key features are varied

for each data-set, namely: 1) number of monitoring levels, 2) percent of incoming

tuples in each promotable subset, and 3) query lifespan.

Each data-set is denoted by a triplet. Data-set ‘5-10-15’ has 3 monitoring levels,

i.e., m1 − m2 − m3. 5% of the tuples in the prisoner stream belong to promotable

subset PSm1 , 10% to promotable subset PSm2 , and 15% to promotable subset PSm3 .

Each data-set varies the number of significant tuples in the prisoner stream. For

each data-set, the prisoners in each promotable subset are randomly chosen. Each

data-set has a different workload and number of possible significant results.

Our experiments use the Home Arrest query (Sec. 1.3.1) and P-CQL extension

(Sec. 4.1.1). The prisoner data streams is a stream from [DL] that contain the daily
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movement of people in Portland, Oregon. The officer data stream was created by

dividing Portland, Oregon into regions. Each officer randomly moves modeling a

police man patrolling an assigned region.

Metrics and Measurements: All results are the average of 3 experimental runs

executed for 10 minutes. Our experiments measure for each promotable subset

PSmk
1) the latency of PSmk

(Sec. 4.3.3) and 2) throughput of PSmk
or the number

of results produced that belong to PSmk
.

Each experiment can produce roughly 750,000 results (both significant and in-

significant) over 10 minutes (See the execution-run-time CPU overhead experiment

below). The number of possible significant results compared to insignificant results

is small by design. Namely, PP is designed to allocate resources to ensure the pro-

duction of the most significant results. Hence, we measure how many significant

results are produced for each promotable subset PSmk
.

4.5.2 Experimental Results

Effectiveness in decreasing latency and increasing throughput First, we com-

pare PP’s effectiveness in decreasing latency to the alternative solutions. The data-

set used is ‘15-5-5’. Respectively, 15%, 5%, and 5% of the prisoner stream contains

tuples in PSm1 , PSm2 , and PSm3 . The lifespan l = 7500000 ns. Figures 4.5 a, b,

and c respectively show the average latency over 10 minutes for promotable sub-

sets PSm1 , PSm2 , and PSm3 . Overall compared to the alternatives, PP consistently

achieves the lowest latency for each monitoring level. At specific points in time,

PP may not have the lowest latency for a given level. Consider minute 5. At this

moment, PP adjusts the activated level set to only contain m1 and m2. That is, PP

deactivates m3 to allow more resources to be dedicated to tuples in PSm1 and PSm2 .
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Figure 4.5: Effectiveness in Decreasing Latency and Increasing Throughput

This does lower the latency of the most significant monitoring levels, namely, at

minute 6, PP again achieves the lowest latency for m1 and m2. PP is effective at

continuously adapting which monitoring levels are activated to minimize the la-

tency of the most significant tuples.

Now, we compare PP’s effectiveness in increasing throughput for the data-set de-

fined above (Fig. 4.5 d). We observe that, besides reducing the latency, PP also

increases the throughput of most significant results. Consider how many more sig-
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nificant results were produced by PP at each level to the alternatives. Compared

to the alternative solutions, PP produced from 467% - 1444% more of the most sig-

nificant results (m1). While for the least significant results (i.e., m3) the range is

from 101% - 212%. In summary, compared to the alternative solutions, PP produced

a greater quantity of the most significant results.
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Figure 4.6: Overall Throughput of Results

Figure 4.5.2 shows the overall throughout of all query results (regardless of

significance) using the experimental set up outlined above. Overall compared to

the alternatives, PP achieved the lowest overall throughput. The number of results

produced by PP, Sem and Rand are within 1 % of each other. Compared to Trad,

PP produced 17 % fewer results. This is as expected. PP dedicates resources to en-

suring that when resources are scarce that the most significant results are produced.

The overhead to support PP takes away resources from processing insignificant tu-

ples. This is by design. PP is designed for EMAs where they is a need to ensure

that at all costs certain tuples are processed.

Varying the Number of Monitoring Levels We now vary the number of moni-

toring levels from 3 to 6, i.e., data-sets 5-5-5, 5-5-5-5, 5-5-5-5-5, and 5-5-5-5-5-5 (Fig. 4.7
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Figure 4.7: Varying the Number of Monitoring Levels

a-d). The percentage of incoming tuples in each promotable subset = 5% and lifes-

pan l = 7500000 ns are constant. No matter how many monitoring levels exist, PP

produces a markedly larger quantity of significant results. Clearly, the overhead of

supporting many monitoring levels has little effect on PP producing a larger quan-

tity of the most significant results than the other approaches. This is as expected

as both rand and sem make a single coarse binary decision on resource allocation

(Sec. 1.7.1). In contrast, PP efficiently pulls the most significant tuples (e.g., m1)

forward throughout the pipeline no matter how many other tuples may coexist in
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the same pipeline.
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Figure 4.8: Varying the Number of Incoming Tuples in each Promotable Subset

Varying the Number of incoming Tuples in each Promotable Subset Now, we

vary the percentage of incoming tuples in each promotable subset from 20% to 50%,

i.e., data-sets 20-0-0, 30-0-0, 40-0-0, and 50-0-0 (Fig. 4.8 a-d). The number of moni-

toring levels = 1 and lifespan l = 7500000 ns are constant. In all experiments, PP

again increases the throughput of the most significant results compared to the other

approaches. As the percentage of incoming tuples in each promotable subset in-
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creases, the throughput gains achieved by PP compared with the alternative solu-

tions narrows. As shown, increasing the % of incoming tuples a promotable subset

to a large portion of the stream data (e.g., 50%) also increases the likelihood of ap-

proaches like rand processing more significant tuples by chance. Thus, scenarios

where the majority or the entire stream is highly significant would not benefit from

deploying PP. The stream is so saturated with significant tuples that there are few

insignificant tuples to pull them ahead of.

monitoring levels

th
ro

u
g

h
p

u
t 

(t
u

p
le

s)
 o

ve
r 

10
 m

in

0

200

400

600

1 2 3

Trad
Rand

Sem
PP

monitoring levels

th
ro

u
g

h
p

u
t 

(t
u

p
le

s)
 o

ve
r 

10
 m

in

0

4000

8000

12000

1 2 3

Trad
Rand

Sem
PP

a) dataset 5-5-5 (l= 2500000 ns) b) dataset 5-5-5 (l= 5000000 ns)

monitoring levels

th
ro

u
g

h
p

u
t 

(t
u

p
le

s)
 o

ve
r 

10
 m

in

0

6000

12000

18000

1 2 3

Trad
Rand
Sem
PP

monitoring levels

th
ro

u
g

h
p

u
t 

(t
u

p
le

s)
 o

ve
r 

10
 m

in

0

10000

20000

30000

1 2 3

Trad
Rand
Sem
PP

c) dataset 5-5-5 (l= 7500000 ns) d) dataset 5-5-5 (l=10000000 ns)

Figure 4.9: Varying the Size of the Lifespan
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Varying the Size of the Lifespan We now vary the size of the lifespan, i.e., l =

2500000 ns, l = 5000000 ns, l = 7500000 ns, and l = 10000000 ns (Fig. 4.9 a-d). The number

of monitoring levels (= 3) and % of incoming tuples in each promotable subset

(= 5%) are constant, i.e., data-set = 5-5-5. Compared to the alternative approaches, PP

consistently has a higher throughput of most significant results. The throughput of

most significant results produced by PP increases as the lifespan increases. These

results were expected. As the lifespan increases, fewer significant tuples expire.

In shedding, this increases the number of in-process less significant tuples. When

a highly significant tuple ti arrives, there will be more in-process less significant

tuples that ti will need to wait behind. In contrast, PP pulls the most significant

tuples ahead of any less significant ones. In PP the latency of the most significant

tuple is thus not affected by any in-process less significant tuples.

Overhead We now measure the execution-run-time CPU overhead by evaluating

the cumulative throughput in the worst case for PP using data-set 5-5-5 (Fig. 4.10

a). The worst case is when no tuples expire, i.e., l =∞ and thus the PP Optimizer

(Sec. 4.3.2) is never triggered. No monitoring levels will ever be activated. No

tuples will be promoted. The overhead of PP and shedding is the cost to gather

and evaluate run-time statistics. Namely, even if the system is never overloaded,

these systems would continue to analyze run-time statistics. In this worst case, PP

produced only slightly fewer results after 10 minutes than sem and rand, namely

3.1% and 4.5% respectively. Thus in summary, as our experiments above demonstrate

the benefits outweighs PP’s minor overhead.

We now measure the memory overhead by assessing the average number of tuples

in the join states and input queues when PP promotes tuples (Fig. 4.10 b & c).

This experiment uses data-set 5-5-5 and lifespan l = 7500000 ns. Trad has the most
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tuples in its state and queue. It is unable to keep up with the volume of incoming

tuples. Thus, they accumulate. If this were not true then promotion or shedding

would not be required. All other methods compared to trad have negligible queue

and state sizes because they reduce load to the point that they can keep up with the

stream. Rand has roughly the same state size as PP. Although PP’s state contains

more significant tuples (Sec. 4.2.1). This is confirmed by our experiments as PP

produces more significant results. Sem has a larger state size than PP, roughly 29.3%
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more. This is also expected. Sem never sheds any in-process tuples. Thus, although

sem’s states contain many tuples, many of them will not be highly significant. This

causes sem to devote more resources to producing less significant results which

reduces the resources dedicated to creating the most significant results.

Effectiveness of ROP Now we evaluate the effectiveness of ROP. We compare the

average search time of our Rank Order Pruning Algorithm (ROP) (Sec. 4.3.5) to

the exhaustive PP plan search when varying the key factor as identified by our

cost model (Thm. 5), namely, the number of priority determinants (Fig. 4.10

d). Both methods return the same optimal PP plan (Sec. 1.3.1) for the Home

Arrest query (Sec. 1.3.1). Recall the PP plan (e.g., Fig. 4.1) for the Home Arrest

query. These experiments use one monitoring level m1. However, the number of

priority determinants defined for m1 varies from 2 to 10. ROP and exhaustive have

roughly the same execution time when the number of determinants is equal to 2.

Yet ROP takes significantly less execution time than the exhaustive approach as the

number of determinants increases, roughly 1-20 fold. As expected, when the number

of determinants increases, ROP exponentially performs better than the exhaustive

method (Thm. 5).

Effects of the Selectivity of the Significant Tuples on the Throughput of Sig-

nificant Results If the significant tuples in the stream are highly selective then

some of these tuples will be dropped at an operator in the query pipeline before

they produce query results. Compared to when the selectivity is low, in this case

fewer resources will be required to process the significant tuples. This will reduce

the overhead on the system. Given this reduction, it is likely that the majority of

significant tuples will be processed within their lifespan. Thus, in this case, it is not

likely that any tuples will be preferentially allocated resources. In addition, there
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will be adequate resources to produce all significant results.

There are many systems where it is critical to ensure the processing of certain

tuples. In some of these systems, the selectivity of the significant tuples may not be

known at compile-time. Reconsider the Home Arrest example. The selectivity of

prisoner tuples who try to escape is not likely to be stable, periodic, or predictable.

Prisoners are human beings with unpredictable behavior. However, as seen by real

events [Pre10], these systems can get overloaded. Given how critical it is to process

these significant tuples, such applications require a TP system.

Effects of the Data Set of the Significant Tuples chosen on the Throughput of

Significant Results As stated above, the selectivity of the significant tuples effects

whether or not any tuples will be preferentially allocated resources. In some cases,

there will be adequate resources to produce all significant results. In other cases,

preferential allocation of resources will ensure that the most significant tuples are

processed. In such cases, resources will allocated first to ensuring that as many

of the most significant results that can be produced are produced. The significant

tuples in our data sets were randomly chosen. As shown by the throughput of the

trad system utilizing these data sets a TP system is required. If this were not the

case then Trad would have outperformed the other systems (similar to the overhead

experiment).

In any cases where a TP system is required, PP ensures that resources are dedi-

cated to producing the most significant results first. The throughput of most signif-

icant results produced by PP will depend upon the availability of resources. In our

workload examples above the amount of available resources is variable. However

in all cases, PP produces a higher quantity of the most significant query results

compared to the competitors.
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4.5.3 Summary of Experimental Findings

Key findings:

1) Whenever preferential resource allocation is required, PP consistently lowers

latency and increases the throughput of significant results by many orders of mag-

nitude compared to the state-of-the-art approaches.

2) PP is increasingly more effective than the state-of-the-art approaches when the

number of monitoring levels or life-span expands.

3) PP is worse than the state-of-the-art approaches in scenarios where the majority

of the stream population is significant.

4) Compared to the state-of-the-art shedding approaches, PP’s CPU run-time over-

head is negligible (roughly 3-4.5%).

5) ROP locates an optimal PP plan faster than exhaustive search. The time saved

by ROP is significant if there are many priority determinants.

6) All PP experiments include the cost of promotion. Clearly the benefits of PP

outweigh the minor overhead observed.
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Chapter 5

Aggregation in Targeted

Prioritized Data Streams

5.1 State-of-the-Art Aggregation

This chapter provides details on our work towards Task 2 (i.e., TP Aggregate Op-

erator). The main goal of Task 2 is to design an aggregate operator that produces

non-skewed aggregate results.

We focus on the aggregation operator in the TP context with the goal of pro-

ducing reliable aggregate results from the significant tuples pulled forward by the

TP.

Basic Aggregate Operator: Typically an aggregate operator [CKT08] com-

putes a function over the set of tuples that belong to the same aggregate group

within the current query window wp of the data stream. The aggregate groups are

defined by the user in the CQL query [ABW06]. For example, in our Stock Market

Aggregate Query, the user chooses to group tuples by business sector. Incoming
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tuples are stored in the state and associated with their respective aggregate group

that they contribute to. When it is determined that no future incoming tuples for the

current window wp will arrive then the aggregate result(s) are generated for each

aggregate group in wp.

Out-of-Order Aggregate Operator: In the TP context, aggregation causes

new challenges. Some TP systems [WR11] (Ch. 4) actively cause tuples to be-

come out-of-order by pulling some tuples ahead of others. Thus, TP aggregate op-

erators require special support to know when all tuples from a window have been

processed so that results could then be produced. Such special support for out-

of-order result progression is not new, rather prior work [LLG+09] addresses out-

of-order issues caused by external causes such as network transmissions. Broadly,

these methods synchronize the progression of time within the query pipeline to as-

sure correctness and completeness of query processing [LLG+09]. These existing

methods can also be applied to support aggregate operators in TP.

We now explain this process in more detail. An aggregate operator should only

produce results for window wp when no tuples from window wp will be processed

in the future. To support this, [LMT+05] proposed to use punctuations to trig-

ger the creation of aggregate results whenever a window is complete. To quickly

identify tuples within a given window, windows are divided into groups of tuples

(a.k.a. panes) whose arrival times are a constant length portion of the query win-

dow [LMT+05].

Each pane pq is assigned a pane number. When a tuple arrives, it is associ-

ated with a pane number. This pane number determines which windows the tuple

will produce results for. Each query window is composed of a set number of panes.

Each aggregate result is only generated from tuples whose panes compose the spec-
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ified query window wp.

To discern when no tuples from pane pq will be used to produce aggregate

results in the future, the progress of tuples is tracked. Each leaf operator opo pe-

riodically sends a punctuation when operator opo has no more tuples from pane pq

to process. Upon receiving such a notification, the aggregate operator produces

all results for the window whose set of panes ends with pane pq. Thereafter, any

tuples stored in the state within the panes that are guaranteed to not produce any

aggregate results in the future are purged.

State-Of-the-Art TP Aggregate Operator: We now outline an aggregation

operator using the state-of-the-art aggregation methodology outlined above. As

seen in Section 1.7.3, the results produced by this operator may be skewed and

unreliable.

Algorithm Aggregation Operator( Qp() pane complete punct. queue, Cavail avail. res., Qinc(s1) queues for
stream s1)
1: while ((Cavail() > 0) and (Qp() is not empty)) do
2: Punc← first pane complete punctuation in Qp()
3: create aggregate results that for window that ends with pane in Punc
4: place aggregate results into input queue of next query plan operator
5: purge state of tuples within panes that will not produce any future results
6: end while

7: LevelProcessed← 1
8: while ((Cavail() > 0) and (Qinc(s1) is not empty)) do
9: if (Qinc(s1, LevelProcessed) contains a tuple) then

10: Tup← first tuple in Qinc(s1, LevelProcessed)
11: store Tup in state and associate with the aggregate group and pane
12: else
13: LevelProcessed← LevelProcessed + 1
14: if LevelProcessed > max(Monitoring Level) then
15: LevelProcessed← Insignificant Tuples;
16: end if
17: end if
18: end while

Figure 5.1: State-Of-the-Art TP Aggregate Operator

The State-Of-the-Art TP aggregation algorithm works as follows (Fig. 5.1).
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Each incoming notification punctuation states that no more tuples from pane px will

arrive. Once a punctuation has been received, then aggregate results are created for

the window whose last pane is pane px (line 3). These results are sent to the next

operator (line 4). Finally, tuples stored in the state within panes that will not produce

any future results are purged (line 5). This continues until either no resources or

incoming punctuations remain (line 1).

If after processing all incoming punctuations, resources remain then starting

from the most significant incoming queue tuple ti is selected to be processed (line

10). Next tuple ti is stored and associated with the aggregate group and pane of

tuple ti (line 11). After all tuples from one significance level have been processed,

tuples in the next level are processed (lines 13-16). This continues until either no

resources remain or all queues are empty (line 8).

5.2 TP-Ag Problem Definition

Our TP-Ag operator must meet the following requirements.

1). It must produce the most reliable aggregate result from the largest set of

tuples that arrived at the aggregate operator and belong to selective sub group

populations. That is, the set used to create each result must be estimated to

represent the actual selected sub group populations of tuples that would have

arrived at the aggregate operator if resources were available.

2). It must annotate each aggregate result with the sub group population(s) that

the result is generated from.

3). It can not adjust which tuples the TP optimizer chose to process (Sec. 4.1).
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That is, it can not ignore the desired resource allocation order specified by

the user. It must build reliable aggregate results from the significant tuples

already pulled forward.

5.3 TP Aggregation Foundation

5.3.1 Population Each Aggregate Result is Generated From

Per the requirements (Sec. 1.5), each aggregate result must be annotated with

which tuples it is generated from. In TP, tuples chosen to be processed satisfy the

membership criteria of an activated monitoring level (Sec. 4.1). Thus we propose

to logically divide the population of tuples within an aggregate group and pane

into subsets based upon their significance levels. Each population is divided into

subsets, namely, one subset for each significance level and one for insignificant

tuples.

We denote aggregate result ai as (val; gj ; wk; rnk; ssl). Here, val denotes

the aggregate result value (e.g., average stock price 9.26 in Fig. 1.3). gj denotes the

aggregate group (e.g., g1 in Fig. 1.3), wk the query window, and rnk the significance

level of the aggregate result ai. Subsets flag ssl annotates which tuples the aggregate

result ai is generated from. ssl is represented as a bit vector with one bit for each

monitoring level lvl1, lvl2, ..., lvln and one bit for insignificant tuples. For instance,

subsets flag ss1 = 100 signifies that the aggregate result ai is generated from only

tuples at significance level 1. Subsets flag ss2 = 110 signifies that the aggregate result

ai is generated from only tuples at significance levels 1 and 2. Finally, subsets flag

ss3 = 111 signifies that the aggregate result ai is generated from all tuples (both

significant and insignificant).
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Traditionally, aggregate operators produce a single aggregate result for each

group and window. It is possible for each subset in an aggregate group and window

to create an aggregate result. Given the limited resources, we propose to follow the

traditional method. We will combine multiple subsets in an aggregate group and

window to create a single aggregate result. The goal of TR-Ag is to produce the

single most reliable aggregate result from the largest number of subsets for an

aggregate group. To achieve this, TR-Ag selectively choses which of the available

subset(s) are used to create each aggregate result.

5.3.2 Sample Population Evaluation Strategies

Result Accuracy

Aggregate result ai is generated from a sample population spopm. The sample pop-

ulation spopm corresponds to the tuples that belong to the subset(s) in an aggregate

group gl and window wk that were used to generate aggregate result ai. Some tu-

ples that belong to group gl and window wk may expire before reaching aggregate

operator opo and not be in the sample population spopm. The actual population popm

is the set of tuples in the aggregate group gl and window wk that given adequate

resources should have reached aggregate operator opo and been in the sample pop-

ulation spopm. The sample population is often a subset of the actual population (i.e.,

spopm ⊂ popm). The aggregate result ai may not be correct, i.e., match the aggregate

answer a∗i (a∗i 6= ai). The aggregate answer a∗i is the aggregate result generated from

the actual population popm.

Reconsider the aggregate operator op3 in Figure 1.3. The sample population

spop1 for aggregate group g4 includes 987 tuples where 984 tuples have significance



5.3. TP AGGREGATION FOUNDATION 111

level 1 and 3 tuples have significance level 2. Some tuples may expire prior to

reaching aggregate operator op3 and belong to the actual population pop1 for group

g4. The aggregate results produced by sample population spop1 will be inaccurate if

the sample population spop1 does not accurately portray the actual population pop1.

Sample Population Accuracy Determination Strategies

Comparing the Mean of the Sample and Actual Population: One method to

determine if a sample population accurately portrays the actual population is to

compare the mean of the sample and the mean of the actual population. The

Hoeffding [Hoe63] inequality equation computes the probability that the mean

result x̄ for a sample population spopm deviates from the the expected mean an-

swer µ by an error threshold ε or Pr{|x̄ − µ| ≥ ε|µ|}. Many aggregation operators

[HHW97, OW00, LMT+05] that process aggregate results from most (if not all)

tuples in a given query window use the Hoeffding equation. However, these ap-

proaches seek to create accurate aggregate results from all tuples within specific

windows. To achieve this, they limit the number of tuples dropped from such win-

dows. That is, they adjust how resources are allocated. This adds an additional

overhead at a time when resources are scarce. In addition, their resource allocation

decisions will not reflect the desired resource allocation order specified by the user

(Sec. 6.1.1).

We instead seek to build reliable aggregate results solely from the tuples pulled

forward by controlling which of the available subset(s) are used to create an aggre-

gate result. TP-Ag cannot use the Hoeffding equation to determine the accuracy of

the sample population. The Hoeffding equation requires that the actual mean µ be

precisely measured. TP cannot ensure that tuples do not expire before reaching TP-
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Ag opo. Thus to calculate the actual mean µ requires knowledge of which expired

tuples will satisfy the query constraints of all operators prior to TP-Ag opo. Such

an evaluation would amount to running the full query. Clearly, this is prohibitively

costly. We now explore a less costly approach.

Estimating the Required Sample Size: Another method to determine if a

sample population accurately portrays the actual population is to estimate the sam-

ple size required to determine the actual mean within a given error threshold [Coc77].

If the size of sample population, denoted by |spopm|, is less than the estimated re-

quired sample size |spopest|, then the sample population spopm may not accurately

represent the actual population popm. No aggregate results should be generated

from such sample populations.

We propose to use the Cochran’s sample size formula [Coc77]. It determines

the sample size by considering the limits of the errors in the mean values of items

in the sample population. |popm| is the size of the actual population. ε is the user

selected error rate. σ is the standard deviation of the actual population. z is the user

selected confidence level or the estimated percentage of the values in the sample

population within two standard deviations of the mean of the actual population.

The Cochran’s sample size formula [Coc77] is |spopest| = (z2 ∗ σ2 ∗ (|popm|/(|popm| −

1)))/(ε2 +((z2∗(σ2)/(|popm|−1)))). Roughly, z2∗σ2∗(|popm|/(|popm|−1))) represents the

percentage of tuples from the sample population are within the confidence interval

of the estimated mean. (ε2 + ((z2 ∗ (σ2)/(|popm| − 1)))) represents the percentage

of tuples from the sample population that per the error rate must be within the

confidence interval of the estimated mean.

The Cochran’s sample size formula requires that the aggregate values in the

population follow a normal distribution. While not all streaming data has this dis-



5.3. TP AGGREGATION FOUNDATION 113

tribution, many practical streams are known to experience such fluctuations. One

example are stock market prices. They can be mapped to the normal distribution

[Fam65]. That is, the market can be viewed as a large number of independent or

weakly dependent random events.

The standard deviation of the actual population σ is commonly calculated using

the standard deviation of the sample population and Bessel’s correction [Hoy88]

as σ =

√
(1/(|spopm| − 1)) ∗

∑|spopm|
x=1 (xi − x̄)2. To estimate the actual population size

|popestm |, we thus must measure how many expired tuples would have reached TP-Ag

operator opi if given adequate resources, as further explained below.

5.3.3 Actual Population Size Measurement

The estimated actual population size |popestm | is the sum of the sample population

size |spopm| and the estimated number of tuples that expire too early |expTE(opx, gl, lvlp)|

over a window.

Reconsider the aggregate operator op3 (Fig. 1.3). If tuple t1 expires while wait-

ing in the incoming queue to operator op2 then tuple t1 has satisfied the constraints

of operator op1 and all operators before operator op1. However, tuple t1 may still not

satisfy the constraints of any subsequent operators. In other words, the probability

that the expired tuple ti at significance level lvlp and aggregate group gl would have

reached aggregate operator opo is the product of the probability that any tuple ti at

significance level lvlp and aggregate group gl that expires at operator opx satisfies

the constraints of all operators between operator opx and aggregate operator opo.

The probability of tuples at significance level lvlp and aggregate group gl that

expire at operator opx but if given adequate resources would have reached aggre-

gate operator opo is the product of the selectivity of tuples at significance level
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lvlp and aggregate group gl for each operator between opx and aggregate operator

opo, i.e., P (opx, opo, lvlp, gl) =
∏operator precedes opo

op=opx
sel(op, lvlp, gl). The selectivity of tu-

ples at significance level lvlp and aggregate group gl at operator opo is denoted as

sel(opx, lvlp, gl).

To compute the estimated number of tuples that expire too early |expTE(opx, gl,

wk, lvlp)|, we track how many tuples expire at each operator op in the query path

before aggregate operator opo by group gl, significance level lvlp, and aggregate

operator opo or exp(op, gl, lvlp). In addition, we also track the probability that a

tuple that is processed by operator op will reach the aggregate operator opo or

P (op, opo, lvlp). To determine how any tuples that expire at operator op but could

have reached aggregate operator opo, we simply compute the product of the prob-

ability of expired tuples reaching aggregate operator opo and the number of tuples

that expire at operator op or P (op, opo, lvlp) ∗ |exp(op, gl, lvlp)|. Thus, the estimated

number of tuples that expire too early |expTE(opx, gl, wk, lvlp)| for group gl, signifi-

cance level lvlp, and aggregate operator opo is for each operator in the query path

before aggregate operator opo (i.e.,
opo∑

op=ops

) the sum of the product of the proba-

bility of expired tuples reaching aggregate operator opo and the number of ex-

pired tuples (i.e., P (op, opo, lvlp) ∗ |exp(op, gl, lvlp)|), i.e., |expTE(opx, gl, lvlp)| =
opo∑

op=ops

(P (op, opo, lvlp) ∗ |exp(op, gl, lvlp)|). The estimated number of tuples that expire over

a window at operator opx that belong to group gl and significance level lvlp is

|exp(opx, gl, lvlp)|.

5.3.4 Sample Population Selection Policy

The key idea of TP-Ag is that only sample populations representative of their ac-

tual populations are used to create aggregate results. The aggregate result ai can
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be generated from a sample population that includes one or more subset(s) in the

aggregate group gl and window wk. There are many ways of selecting which sub-

set(s) are included. TP is based upon certain tuples being more significant than

others. Thus, we propose to include in the sample population the largest number of

reliable subsets in consecutive significance order. For example, aggregate result ai

could be created from only tuples at significance level 1, only tuples in significance

levels 1 and 2, or all tuples.

Reconsider the aggregate operator op3 (Fig. 1.3). An aggregate result could be

created in the two subsets for group g4. These subsets include 984 tuples at sig-

nificance level 1 and 3 tuples at significance level 2 respectively. Assume that the

estimated actual population size |popestm | for this sample population is 1984 tuples.

The estimated standard deviation σ is 7.9. The error rate ε is .1. The critical stan-

dard score z is 1.96 (95% confidence level). Then the estimated required sample

size |spopest| (i.e., = (1.962 ∗ 7.92 ∗ (1984/(1984− 1)))/(.12 + ((1.962 ∗ (7.92)/(1984− 1)))) is

1832 tuples. The sample population contains 984 tuples. It is not large enough to

create a reliable aggregate result , i.e, 984 < 1832.

However, an aggregate result could be created from the sample population for

group g4 that only includes the 984 tuples at significance level 1. Assume that the

estimated actual population size |popestm | for this sample population is 1000 tuples.

The estimated standard deviation σ is 5.9. The error rate ε is .1. The critical standard

score z is 1.96 (95% confidence level). Then the estimated required sample size

|spopest| (i.e., = (1.962 ∗ 5.92 ∗ (1000/(1000− 1)))/(.12 + ((1.962 ∗ (5.92)/(1000− 1)))) is 930

tuples. The sample population contains 984 tuples. It is large enough, i.e, 984 > 930.

Hence, an aggregate result will be produced for this sample population.
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Figure 5.2: TP-Ag State Example

5.4 TP Aggregation Operator

We now propose our TP aggregate operator (or TP-Ag).

5.4.1 Tracking Expired Tuples

Periodically each operator opx sends statistics on the selectivity of tuples sel(opx, lvlp, gl)

at significance level lvlp and aggregate group gl at operator opx to the TP Optimizer.

From these statistics, the TP Optimizer informs each operator opx in the query (Sec.

5.4.1) of the probability that tuples at significance level lvlp from aggregate group

gl expire at operator opx but if given adequate resources would have reached TP-Ag

opo.

Operators must also track the number of tuples that expire too early over a win-

dow by aggregate group and significance level (Sec. 5.3.3) and send this count to

the TR-Ag operator. TR-Ag will use this count to estimate the actual population

size when deciding whether or not a sample population should produce a result.

To achieve this, TR-Ag uses an expiration count punctuation. Each operator tracks
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the estimated number of tuples that expire too early by pane, aggregate group, and

significance level. When no tuples in a pane remain to be processed by an operator,

the operator sends an expiration punctuation for each aggregate group and signifi-

cance level where tuples expired. Upon receiving an expiration punctuation, each

operator adds on their estimated number of tuples that expire too early. The expira-

tion punctuation moves along the pipeline until it reaches the TP-Ag (Sec. 5.4.3).

When, the expiration punctuations reach the TP-Ag they contain the number of tu-

ples that expire too early over a window for each aggregate group and significance

level.

Consider expiration punctuations p1 < 48, 1, 6, Beverage > and p2 < 48, 2, 40, Beverage >

in Figure 5.2. Expiration punctuation p1 states that 6 tuples from pane 48, signifi-

cance level 1, and group Beverage are estimated to have expired too early. While

expiration punctuation p2 states that 40 tuples from pane 48, significance level 2,

and group Beverage are estimated to have expired too early.

5.4.2 TP-Ag Physical Design

To support the production of aggregate results from certain subset(s) of the sample

populations, TP-Ag must support the efficient look-up and purging (Sec. 5.4.4) of

stored aggregate variables by pane (Sec. 5.1), group, and significance level.

State Design: TP does not always process tuples in arrival time order (Sec.

5.1). Thus, the state can contain tuples from more than one query window. That

is, a multitude of tuples with the same aggregate group and significance level are

likely to exist across multiple panes. However, the number of tuples within each

pane is limited. Thus stored tuples are first grouped by the panes they belong to.

Next, tuples are indexed by their aggregate group. Finally, tuples are stored by
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their significance level. Consider the insertion of stock tuple t1 < Beverages, $45.13 >

with pane 48 and significance level 1 into state aggregate values (Fig. 5.2). Stock

tuple t1 is stored in the state for pane 48, business sector Beverages, and significance

level 1.

5.4.3 TP-Ag Algorithm

TP-Ag supports the production of aggregate results from representative sample

populations that contain tuples from the largest number of consecutive significance

levels in significance order.

Consider the production of aggregate results triggered by punctuation p2 < 48 >

(Fig. 5.2). p2 signals that all tuples from pane 48 have either expired or been

processed by the operators that reside in the query pipeline prior to the aggregate

operator. First, TP-Ag locates the group attributes for pane 48 which are Technol-

ogy, Automotive, ..., and Beverage. Then for each group attribute (e.g., Beverage),

it creates a sample population from all tuples from the window (composed of 4

panes) that ends with pane 48 (i.e., pane 45 − 48). If the size of the sample pop-

ulation is greater than or equal to the estimated required sample size then TP-Ag

creates an aggregate result for tuples from this sample population. Otherwise, TP-

Ag creates a new sample population by removing the least significant subset from

the current sample population. The process of testing the current sample population

and creating a new sample population continues until either a result is generated or

the sample population is empty. In the latter case, no aggregate result will be pro-

duced. Then TR-Ag moves to the next aggregate group for pane 48 (and so on...).

For any result created, a subsets flag (Sec.5.3.2) that signifies which significance

levels were in the sample population is added to the aggregate result tuple.
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Algorithm TP-Ag Operator( Qep() exp. punct. queue, Qnp() not. punct. queue, Cavail avail. res., Qinc(s1)
queues for stream s1)
1: while ((Cavail() > 0) and (Qnp() is not empty)) do
2: Punc← first punctuation in Qnp()
3: while ((Qep() is not empty) and (first punctuation in Qep = pane in Punc)) do
4: ExpPunc← first punctuation in Qep()
5: store the values in ExpPunc
6: end while
7: popFlag← to a bit of length num promotion levels +1 and each bit = 1
8: for each group gl in defined by the pane in Punc do
9: while (no result has been produced) and (significant subsets can be removed) do

10: sample population← population defined by the pane in Punc and group gl and subsets in popFlag
11: if sample population represents actual population then
12: create aggregate results for sample population
13: add the popFlag to the result
14: place aggregate results into input queue of next query plan operator
15: else
16: set the last bit in popFlag that is a 1 to a 0
17: end if
18: end while
19: end for
20: purge state of tuples within panes that will not produce any future results
21: end while
22: LevelProcessed← 1
23: while ((Cavail() > 0) and (Qinc(s1) is not empty)) do
24: if (Qinc(s1, LevelProcessed) contains a tuple) then
25: Tup← first tuple in Qinc(s1, LevelProcessed)
26: store Tup in state and associate with the pane, aggregate group, and significance level
27: else
28: LevelProcessed← LevelProcessed + 1
29: if LevelProcessed > max(Monitoring Level) then
30: LevelProcessed← Insignificant tuples;
31: end if
32: end if
33: end while

Figure 5.3: TP Aggregation Operator TP-Ag

PP-Ag algorithm works as follows (Fig. 5.3). For each incoming notification

punctuation to the aggregate operator, first any incoming expiration punctuation

for the same pane is stored (lines 3-6). Then, the groups in the window pane are

identified (line 8). Next, for each group, we test to see if the sample population

for all tuples represents the actual populations (line 11). If so, results are created,

flagged with the significance levels of tuples in the sample population, and sent

to the next operator (lines 12-14). Otherwise, the sample population is reduced by
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tuples that belong to the least significant subset (line 16) and the test starts over (line

11). This continues until either a result is produced or all sample populations have

been explored (line 9). Then, results for the next group are produced. This continues

until either no resources remain or there are no more incoming punctuations (line

1). Finally, tuples stored in the state within panes that will not produce any future

results are purged (line 20).

If after processing all punctuations resources remain then starting from the

most significant incoming queue, tuple ti is selected to be processed (line 25). Next,

tuple ti is stored and associated with the pane, aggregate group, and significance

level of tuple ti (line 26) (Sec. 5.4.2). Once all tuples from one level are processed,

then tuples in the next level are processed (lines 28-30). This continues until either no

resources remain or all queues are empty (line 23).

5.4.4 Memory Resource Management

Beyond CPU resources, memory resources may also be limited.

State Management: To ensure complete results, tuples stored in states are not

purged if they may create aggregate results in the future (Sec. 5.1). However, this

purging method assumes that sufficient memory is available to store all tuples that

will create future aggregate results. This may not always be the case. In the case

of insufficient memory, we propose to purges tuples from the oldest panes in the

state first. Our approach is based upon the fact that the majority of aggregate re-

sults generated from the oldest tuples would have already been produced. Memory

resources are allocated to storing the freshest tuples.

Queue Management: In the case of insufficient memory, the incoming queues

(Sec. 4.1.3) must also be purged. We also utilize the oldest pane method defined



5.5. EXPERIMENTAL EVALUATION OF TP-AG 121

above to purge the queues.

5.5 Experimental Evaluation of TP-Ag

5.5.1 Experimental Set Up

Alternative Solutions. We compare TP-Ag (or TP w/ TP-Ag) to the state-of-the-

art aggregate operators in TP systems. That is, we compare to the out-of-order

aggregate operator [LMT+05] implemented in PP (or PP) [WR11] (Ch. 4) and the

data stream aggregation operator [CKT08] implemented in semantic (or sem) and

random (or rand). PP requires the out-of-order aggregate operator as PP processes

tuples out of arrival time order (Sec. 5.1). Sem and rand do not require any punc-

tuations to trigger the creation of aggregate results because they process tuples in

FIFO order. We also compare to the traditional aggregate operator [CKT08] imple-

mented in a non-targeted prioritized data stream systems (i.e., a data stream system

that processes tuples in FIFO order) (or trad). We compare to trad to demonstrate

that our experimental scenarios require a TP system. TP-Ag uses the critical stan-

dard score z = 1.96 (95% confidence level).

TP w/ TP-Ag, PP, and sem use the same monitoring level criteria to select the

tuples processed. Rand randomly selects tuples to process in FIFO order based

upon the estimated number of tuples that can be processed within their lifespan.

Trad simply processes all tuples in FIFO order. It neither drops nor allocates re-

sources to tuples based upon their significance.

Data Streams and Query. The experiments use the Stock Market Aggregate

Query in Section 1.3.2. There are three monitoring levels (Sec. 6.1.1) used to

pull significant tuples forward.
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The stock market stream was created from stock ticker information on the S&P

500 stocks gathered over July 18, 2012 via Yahoo Finance [Yah]. A selection

committee from Standard & Poor’s determines which of the 500 leading companies

publicly traded in the U.S. stock market are in the S&P 500. It is considered to be

a good model of how well the U.S. economy is doing.

News and blog data streams were created by randomly selecting sectors from

the global industry classification standard (GICS). GICS, developed by Morgan

Stanley Capital International (MSCI) and Standard & Poorś, contains 10 sectors

that categorize the S&P 500 stocks. Most experiments use Data Set 1 which mimics

the monitoring levels of a financial company monitoring diversified mutual funds.

Given the stock market’s ability to change rapidly, the stocks in many mutual funds

are diversified. That is, the stocks chosen to belong to a fund are distributed across

different business sectors and investment types (i.e., aggressive versus conservative

investments). It is highly unlikely that all stocks in a mutual fund from a GICS

sector will be from aggressive (level 1) or conservative investments (level 2). It is

equally improbable that a financial company would be evaluating all stocks from

one sector (level 3). Thus, Data Set 1 was created by randomly selecting 5% of the

500 stocks (or 25 stocks) to have genuine significance at each of the three levels.

Hardware. All experiments are conducted on nodes in a cluster that consists of 20

processing nodes. Each host has two AMD 2.6GHz Dual Core Opteron CPUs and

1GB memory.

Metrics and Measurements. PP, sem, rand, and trad generate aggregate results

from a sample population. Each sample population includes all tuples that arrive

at the aggregate operator. In PP and sem, only the most significant tuples reach

the aggregate operator, while in rand and trad, both insignificant and significant
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tuples are equally likely to reach the aggregate operator. TP w/ TP-Ag produces

an aggregate result from the sample population whose size is sufficient based upon

the required sample size. To validate whether or not the results are correct, each

aggregate result produced by any of these methods is annotated with the significant

levels of the tuples in the sample population (i.e., a subsets flag (Sec. 5.3.2)).

There are eight possible sample populations for aggregate results produced by

these methods. That is, the sample population could contain tuples at significance

level 1, tuples at significance level 2, tuples at significance level 3, tuples at sig-

nificance levels 1 and 2, tuples at significance levels 1 and 3, tuples at significance

levels 2 and 3, tuples at significance levels 1 2 and 3, or all tuples.

For each experiment, the actual aggregate answers (Sec. 5.3.2) for each of

the eight possible sample populations listed above were found. That is, for each

possible sample populations the query was executed through the trad system using

a dataset that only contains tuples from the given sample populations. Then, for

each query execution the tuples in the input stream is adjusted so that they belong

to a sample population spopm in the eight possible sample populations. To generate

the accurate results, the query lifespan is set to ∞. Thus, no tuples expire and

the actual aggregate answers are generated from all tuples in the stream. These

aggregate results are the actual aggregate answers. We stored each accurate result

with their the group, window, and subsets flag.

The experiments were run 3 times for 10 minutes. The results are the average

of these runs. Our experiments measure for all aggregate results produced the per-

centage of correct aggregate results. Each aggregate answer produced is compared

to the actual aggregate answer for the same group, window, and subsets flag. Any

result that is within 5% of the actual answer is considered to be correct.
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The goal of TP-Ag is to improve the percentage of aggregate results produced

that are correct. Thus, this is what we measure.

Methodology. We explore the following: 1) Is TP-Ag more effective at producing

a larger percentage of correct significant aggregate results than the state-of-the-art

solutions? 2) What effect does the number of significant tuples that belong to each

aggregate group have on the effectiveness of the TP-Ag strategy compared to the

state-of-the-art solutions? 3) How do changes in the error rate (Sec. 5.3.2) affect

the percentage of correct results produced by TP-Ag? 4) What is TP-Ag’s runtime

CPU and memory overhead in the worst case scenario compared to the state-of-

the-art solutions?

We vary the number of significant tuples that belong to each aggregate group

and the error rate as they directly affect TP-Ag. When the number of significant

tuples that belong to each aggregate group decreases, this reduces the number of

tuples in each sample population. The smaller the sample population is the more

likely that the result produced may be skewed. Consider a significant tuple ti that

expires before reaching the aggregate operator. Sample population spopm is the

sample population that tuple ti would have belonged to if tuple ti had not expired.

The aggregate result produced by sample population spopm will be more affected

if the sample population spopm contains few tuples (smaller population) rather than

many tuples (larger population). Decreasing the error rate increases the accuracy

in the estimated required sample size. This should in turn increase the percentage

of correct aggregate results produced by TP-Ag. These variables affect TP-Ag’s

ability to produce accurate results. Thus, we experiment by varying them.
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5.5.2 Experimental Results
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Figure 5.4: Effectiveness at Increasing the % of Correct Aggregate Results

Effectiveness at Increasing the Percentage of Correct Aggregate Results Pro-

duced. First, we compare the percentage of correct aggregate results produced

by each approach. This experiment uses Data Set 1 and Stock Market Aggregate

Query where the query lifespan = 1,000,000 ns and the window size = 500 tuples.

Figure 5.4 a shows the average difference between the number of the correct and

incorrect aggregate results produced at each minute. This measures whether more

correct (if number is positive) or incorrect results were produced (if number is pos-

itive). Overall TP w/ TP-Ag compared to sem, rand, and trad consistently produces

more correct aggregate results.

PP produced more correct aggregate results than TP w/ TP-Ag at startup (min-

utes 1 through 3). However, after the system start-up (minutes 4 through 10) PP

produced a larger number of incorrect aggregate results than correct aggregate re-

sults. This is as expected. Namely, PP has less overhead than TP w/ TP-Ag. In

addition, the aggregate results produced by PP will only be incorrect when signifi-
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cant tuples expire. This only occurs after the queues are full.
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Figure 5.5: Overall Throughput of Correct Results

As the overall percentage of correct and incorrect significant results in Figure

5.4 b shows, compared to all alternative solutions, TP w/ TP-Ag produced a much

higher percentage of correct aggregate results. Of all the aggregate results pro-

duced by TP w/ TP-Ag, 91.5% were correct. The percentage of correct aggregate

results produced by trad, sem, rand, and PP respectively was 0.0%, 0.09%, 48.6%,

and 20.1%. Our results support that TP w/ TP-Ag is effective at increasing the

percentage of correct aggregate results produced compared to competitor solutions

in scenarios that require a TP system.

Figure 5.5.2 shows the overall throughout of all correct aggregate results (re-

gardless of significance) using the experimental set up outlined above. Overall

compared to the alternatives, PP achieved the lowest overall throughput of correct

aggregate results. Compared to PP, TP w/ PR-Ag produced 14% fewer correct re-

sults. TP w/ PR-Ag produced 16% fewer correct results than rand. It produced

18% fewer correct results than sem. Finally, compared to trad, TP w/ PR-Ag pro-
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duced 22 % fewer correct results. This is as expected. TP-Ag requires additional

overhead. This takes away resources from producing insignificant aggregate re-

sults. This is by design. TP-Ag is designed for EMAs where they is a need to

ensure that at all costs certain tuples are processed.
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Figure 5.6: TP w/ TP-Ag versus State-of-the-art

TP w/ TP-Ag versus State-of-the-art. We now compare TP w/ TP-Ag to state-of-

the-art aggregate operators for TP systems [BDM04, TZ06]. These systems limit

which tuples are dropped from specific windows. We refer to these systems as

Shed Window Ag. We implemented Shed Window Ag in CAPE [RDS+04]. First,

we compare the percentage of correct aggregate results produced by each approach.

This experiment also uses Data Set 1 and Stock Market Aggregate Query where the

query lifespan = 1,000,000 ns and the window size = 500 tuples.

As the overall percentage of correct and incorrect significant results in Figure

5.6 b shows, all aggregate results produced by Shed Window Ag were correct.

Of the aggregate results produced by TP w/ TP-Ag produced 91.5% were correct.

Clearly, Shed Window Ag will always produce correct aggregate results. Recall

that Shed Window Ag will ensure that no tuples from specific windows are dropped
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or expire. As a result, Shed Window Ag will only produce correct aggregate results.

In contrast, TP w/ TP-Ag seeks to produce results that are estimated to be correct

from incomplete windows of tuples.

However, Shed Window Ag may not produce as many aggregate results as TP

w/ TP-Ag. As Figure 5.6 a shows, TP w/ TP-Ag produced roughly 2.9 fold more

correct aggregate results than Shed Window Ag. Shed Window Ag will process all

tuples (both significant and insignificant) from selected windows. This requires a

significant amount of CPU overhead. Hence, Shed Window Ag will not produce

as many correct aggregate results as TP w/ TP-Ag.

Clearly, Shed Window Ag and TP w/ TP-Ag have different goals. The goal

of Shed Window Ag is to produce correct aggregate results by adjusting how re-

sources are allocated. The goal of TP w/ TP-Ag is to build reliable aggregate results

from the significant tuples pulled forward by the TP. Thus, henceforth we no longer

compare TP w/ TP-Ag to Shed Window Ag.

Varying the Sample Population Size. We now explore how the number of the

significant tuples in each aggregate group affects TP-Ag. This experiment uses the

Stock Market Aggregate Query where the query lifespan = 1,000,000 ns and the

window size = 500 tuples. All significant tuples belong to two GICS sector groups.

This experiment uses four Data Sets (i.e., DS25, DS50, DS75, and DS100). Each

Data Set adapts the percentage of significant tuples that belong to the two GICS

sector groups. In DS25, 25% of the stocks in the two sectors are significant. That

is, 75% of the tuples in the two sectors are insignificant. Similarly, in DS50, DS75,

and DS100, respectively 50%, 75% and 100% of the tuples in the two sectors are

significant. This causes the sample population size to vary.

Figures 5.7 a-d show the overall percentage of correct and incorrect aggregate



5.5. EXPERIMENTAL EVALUATION OF TP-AG 129

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

a) Data Set DS25 b) Data Set DS50

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand

PP
TP w/ 
 TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

c) Data Set DS75 d) Data Set DS100

Figure 5.7: Varying the Sample Population Size

results respectively for DS25, DS50, DS75, and DS100. As can be seen, compared

to the alternative solutions, TP w/ TP-Ag produced the highest percentage of cor-

rect aggregate results. The closest competitors were rand and PP. In DS25 (where

the sample populations are the smallest for the two groups), TP w/ TP-Ag pro-

duced 100% and 84.0% more correct aggregate results than rand and PP. In DS100

(where the sample populations are the largest for the two groups), TP w/ TP-Ag

produced 19.1% and 24.2% more correct aggregate results than rand and PP. This

is as expected. Namely, TP-Ag achieves the highest gains when few tuples in the
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sample population expire. Fewer tuples will expire when there are fewer signifi-

cant tuples in the stream (visa versa). TP-Ag is best suited for environments where

the stream is not saturated with significant tuples. When it is saturated, most tuples

are significant and thus more significant tuples are likely to expire.
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Figure 5.8: Varying the Error Rate

Varying Error Rate. Now, we compare the percentage of correct aggregate results

produced by TP w/ TP-Ag when the error rate (i.e., the desired level of precision ε

of Cochran’s sample size formula (Sec. 5.3.2)) varies. This experiment uses Data

Set 1 and Stock Market Aggregate Query where the query lifespan = 1,000,000 ns

and the window size = 500 tuples. We vary the error rate ε from 5%, 10%, to 20%.

Figure 8 shows the percentage of correct and incorrect aggregate results produced.

Overall the highest percentage of correct aggregate results was produced when the

error rate ε is 5%. While the lowest percentage was produced when the error rate

ε was 20%. The percentage of correct aggregate results produced by TP w/ TP-

Ag for the error rate ε from 5%, 10%, to 20% was respectively 93.9%, 91.5%,

and 88.6%. As expected, decreasing the error rate (i.e., higher level of precision

of Cochran’s sample size formula) increases the percentage of correct aggregate
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results achieved by TP w/ TP-Ag (vice versa).
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Figure 5.9: Memory & Execution-Runtime CPU Overhead

Execution-Runtime CPU Overhead. To measure the runtime overhead we eval-

uate the cumulative throughput using the worst case scenario for TP w/ TP-Ag. In

the worst case scenario, no tuples expire (i.e., query lifespan =∞) (Fig. 4.8 c). As

a consequence, for each aggregate result we always end up working with the same

sample population. Specifically, each aggregate result is produced from a sample

population that contains all tuples in a window and aggregate group. The overhead

of TP systems is the cost to gather and evaluate runtime statistics. Even if these

systems are never overloaded, they continue to evaluate how to best allocate re-

sources. In addition, TP-Ag has the additional overhead of tracking statistics (Sec.

5.4.1) to estimate the actual population (Sec. 5.3.3), evaluating the required sample

size (Sec. 5.3.2), and determining if there is a sample population for each group

and window whose size is comparable to the required sample size (Sec. 5.3.4).

This experiment uses the Stock Market Aggregate Query where the query lifespan

is∞ and the window size is 250 tuples.
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As can be seen in our results, the difference between the throughput of TP

w/ TP-Ag and trad, sem, rand, and PP is respectively 40.2%, 37.9%, 39.1%, and

39.0%. For systems with extremely limited resources, TP w/ TP-Ag may not be a

good approach. However, TP w/ TP-Ag is a great fit for systems that require a TP

system and desire reliable accuracy in the aggregate results produced.

Memory Overhead. To measure the memory overhead we evaluated the average

number of tuples in the state and input queue of the aggregate operator using the

worst case scenario for TP w/ TP-Ag (outline above) (Fig. 4.8 a & b). As our

results demonstrate, the memory overhead of TP w/ TP-Ag is higher than the cur-

rent state-of-the-art approaches. The state of the aggregate operators in trad, sem,

rand, and PP respectively have 74.0%, 83.0%, 84.2%, and 75.7% less tuples in

their states than TP w/ TP-Ag. The queues of the aggregate operators in trad, sem,

rand, and PP respectively have 47.4%, 46.6%, 49.2%, and 70.6% less tuples in

their queues than TP w/ TP-Ag. This is as expected. Namely, the TP-Ag design re-

lies upon a memory-intensive physical design to support the production of results

from subsets of the actual sample population. Again, TP w/TP-Ag is a great fit

for systems that require a TP system and desire reliable accuracy in the aggregate

results produced. Ensuring the production of reliable aggregate results however

carries an overhead.

5.5.3 Summary of Experimental Findings

We now summarize our key findings.

1) TP-Ag is effective at increasing the percentage of correct aggregate results pro-

duced in TPs (TP-Ag produces up to 91% more correct aggregate results).

2) Decreasing the error rate increases the percentage of correct aggregate results
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achieved by TP w/ TP-Ag and vice versa.

3) TP-Ag is best suited for environments where the stream is not saturated with

significant tuples. When the stream is saturated with significant tuples, more sig-

nificant tuples are likely to expire.

4) TP w/TP-Ag is a great fit for systems that require a targeted prioritized data

stream system and desire reliable accuracy in the aggregate results produced.
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Chapter 6

Utilizing Dynamic Precedence

Criteria For Producing

Significant Results

6.1 PR Optimization Problem

This chapter provides details on our work towards Task 3 (i.e., Preferential Re-

sults). The main goal of Task 3 is to design a TP framework that pulls the most

significant and promising tuples are pulled ahead of less significant and promising

ones.

6.1.1 PR Queries

In the PR model, a set of P-CQL queries {q1,. . .qj} process continuous streams

{s1,. . .sn} of tuples (Symbols in Table 6.1). Each P-CQL query is a CQL query
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[ABW06] extended to support a processing time limit and multi-tiered monitoring

criteria. Recall the P-CQL extension to the Stock Market Queries (Sec. 6.1.1).

Notation Meaning
ti a tuple
ti.srnk significant rank of ti
ti.prnk promising rank of ti
ti.opc designated operator of ti
ti.rnk rank of ti (max rank of ti.srnk or ti.prnk)
qj a query
qj .lf lifespan of query qj
qj .SML set of static monitoring levels of query qj
smlk a static monitoring level in qj .SML

smlk.srnk significant rank of smlk
smlk.mem membership criteria of smlk
DML set of dynamic monitoring levels
dmll a dynamic monitoring level in DML

dmll.sx stream that tuples must reside in for dmll
dmll.opc designated operator for dmll
dmll.prnk promising rank of dmll
dmll.mem membership criteria of dmll
pprm a PR query plan
pprm .ASML set of activated static monitoring levels in pprm
pprm .ADML set of activated dynamic monitoring levels in pprm
sn a stream
opo an operator
ERs(pprm , srnk) expir. rate of poten. sig. tuples at sig. rank srnk in pprm
ERp(pprm , prnk) expir. rate of poten. prom. tuples at prom. rank prnk in pprm

Table 6.1: Notations for PR Query Plans.

The special clauses added to CQL to form P-CQL include:

• The lifespan clause qj .lf indicates the time limit for processing a tuple. That is,

the query results generated by tuple ti are only valuable to the receiving application

if they are received within the query lifespan. For this reason, if the time spent

processing tuple ti exceeds the lifespan then ti expires, i.e., is no longer processed.

• The rank and criteria clauses together specify the user’s preferences about which

results would be preferred over other results when resources are scarce. These
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clauses are specified as a part of the query, i.e., at compile-time. Hence, they

are referred to as static monitoring levels qj .SML. Each static monitoring level

smlk consists of a significant rank smlk.srnk and membership criteria smlk.mem.

The significant rank smlk.srnk denotes the degree of smlk’s significance. The static

monitoring level smlk is more significant than level smll if smlk.srnk < smll.srnk.

Consider the Stock Market Join query (Sec. 1.3.2) with the P-CQL extension

(Sec. 4.1.1). The query lifespan is 1,000 milliseconds. Static monitoring lev-

els sml1, sml2, and sml3 respectively identify aggressive investments, conservative

investments, and stocks under evaluation. Static monitoring level sml1 is more sig-

nificant than static monitoring level sml3, i.e., (sml1.srnk = 1) ∧ (sml3.srnk = 3) thus

(sml1.srnk < sml3.srnk).

The optimizer periodically selects which static monitoring levels are used to

identify the tuples to pull forward. These currently selected monitoring levels are

referred to as being activated denoted by Asml. If no resource shortage exists then

no monitoring levels would be activated. Tuples will then be processed in FIFO

order. However, if a resource shortage arises, then some monitoring levels would

be activated and tuples will be processed in significance order based on guidance

derived from these activated priorities.

6.1.2 Significant Tuples

Tuples that satisfy the membership criteria of an activated static monitoring level

are said to be significant tuples (Ch. 4).

Definition 6 A significant tuple ti is designated with a significant rank ti.srnk which

corresponds to the most significant of all the activated static monitoring levels that
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stock stream state
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= no rank

Join Criteria Stored Tuples

Figure 6.1: Estimated Significant Tuples Example

ti satisfies the criteria of.

Consider stock tuple ti that is both an aggressive investment (i.e., sml1.mem(ti) =

true) and is under evaluation (i.e., sml3.mem(ti) = true). ASML contains static moni-

toring levels 1 and 3, i.e., ASML = {sml1, sml3}. Tuple ti’s significant rank is thus 1,

i.e., ti.srnk = 1.

6.1.3 Promising Tuples

Tuples likely to create significant query results by joining with significant tuples

at a join operator are called promising tuples. To explain this, let us consider a

symmetric binary hash join operator opi [WA91] that combines tuples from streams

s1 (e.g., news stream) and s2 (e.g., stock stream). This join operator opi uses a state

data structure to store incoming tuples for the news s1 and stock s2 streams in the

news and stock stream state respectively. Results are created by combining an

incoming tuple ti from one stream (e.g., news stream) with matching tuples tj in

the state for the other stream (e.g., stock stream state) based upon the join criteria.

Consider news tuple ti and the two stock tuples stored in the stock state that
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satisfy join criteria c2 (with business sector = Advertising) (Fig. 6.1). One of the

stock tuples from the advertising business sector is a significant tuple, while the

other is not. If news tuple ti is from the advertising business sector (i.e., satisfies

the join criteria c2) then ti will be a promising tuple. That is, ti has a high chance to

produce a significant join result when it joins with the significant stock tuple from

the advertising business sector in the stock stream state. However, this news tuple

ti may also join with the insignificant stock tuples from the advertising business

sector and thus produce insignificant join results.

Observation: If a tuple is promising or not may change during processing. Sig-

nificant tuples can produce significant query results on their own and thus are sig-

nificant for the entire query pipeline. Thus if stock tuple ti is an aggressive invest-

ment then it retains its significance throughout the pipeline (Fig. 6.1). In contrast,

promising tuples are only promising because of their potential to join with signif-

icant tuples at a future join operator opo. After proceeding past this operator opo

they may no longer have any known potential of producing significant query re-

sults. Hence after they have been processed by operator opo, these promising tuples

should no longer be preferentially allocated resources. They are only promising for

a portion of the query pipeline, namely, until they reach the operator opo.

Reconsider Figure 6.1. Consider news tuple tj from the advertising business

sector (i.e., join criteria c2). In this case, tuple tj has the potential to join with a

significant stock tuple from the advertising business sector due to the existence of

such a tuple in the stock stream state. Thus tuple tj is a promising tuple only until

it reaches the join operator in Figure 6.1.

The set of dynamic monitoring levels (DML) are constructed at run-time by

the optimizer to indicate the criteria and rank of promising tuples at join opera-
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tors (Sec. 6.5.1). Each dynamic monitoring level dmll denoted as (sn; opc; prnk;

< attrib1, attrib2, ..., attribn >) designates 1) the stream dmll.sn of the promising tuples,

2) the operator at which the promising tuples are predicted to join with significant

tuples called the designated operator dmll.opc, 3) a promising rank dmll.prnk, and

4) the membership criteria dmll.mem defined by attribute pattern < attrib1, attrib2, ...,

attribn >. Under limited resources, the optimizer also selectively activates some

dynamic monitoring levels (Sec. 6.1.1).

The attribute pattern of a membership criteria dmll.mem specifies the values for

each attribute attribi (1 ≤ i ≤ x) in the x attributes of tuples in stream sn. For example,

attribute pattern < Advertising, ∗, ∗ > states the condition that the first attribute of the

tuple must equal business sector Advertising.

Assume for example that dynamic monitoring level dmll identifies a news tuple

tj that satisfies the join criteria c2, namely, that business sector = Advertising. Dy-

namic monitoring level dmll would thus be (s1; op2; 1; < Advertising , ∗, ∗ >). It states

that tuples from stream s1 whose business sector = Advertising are designated to be

promising tuples at rank 2 until they reach join operator op2.

Definition 7 A promising tuple ti has one promising rank ti.prnk = dmll.prnk and

designated operator ti.opc = dmll.opc. The promising rank ti.prnk is the most signif-

icant of all the activated dynamic monitoring levels that ti satisfies. In order for

tuple ti to retain its promising rank (and preferential resource allocation) for the

longest duration of the pipeline, the designated operator ti.opc is set to be the desig-

nated operator furthest down the pipeline of all the activated dynamic monitoring

criteria at promising rank ti.prnk that tuple ti satisfies.
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6.1.4 Tuple Rank

Tuple ti can have both significant and promising rank. Each designation refers to

distinct significant results that tuple ti may create. Significant rank, being global,

applies to all results that tuple ti creates at any operator. Promising rank, being

localized, applies to some results that tuple ti creates at a specific operator only.

Tuple ti can be allocated resources based upon both its significant and promis-

ing ranks. Multiple design choices are possible from selecting the maximum of its

significant and promising ranks to computing a combined weighted rank. The later

option requires periodic recalculation of the weighted ranks as the ranks adapt.

Given limited resources and this extra recalculation cost, we adopt the former

simpler method for the remainder of this manuscript. Although, in principle, any

method could be chosen.

Tuple ti is assigned a rank attribute ti.rnk that is the maximum of ti’s significant

and promising ranks. This lets us quickly determine if ti should be preferentially

allocated resources.

6.1.5 PR Optimization Problem

A PR query plan is used to represent a P-CQL query qj . We model each PR plan

pprm as a one directional flow network composed of PR algebra operators as nodes

and data exchange interfaces that transfer tuples between operators as edges (Sec.

6.3.1). The PR query algebra is composed of significance classifier operators and

PR augmented standard operators as introduced in Sec. 6.3.2.

The optimal PR plan allocates resources to tuples to maximize the throughput

of the most significant query results in precedence order. Such a plan ensures
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that any tuples with the highest rank rnk are processed first when resources are

limited. To achieve this, tuples with significant and/or promising rank of rnk must

be processed before those with lower or no rank.

Thus any tuples with significant rank srnk must be processed throughout the

query plan within the query lifespan. Hence if all tuples that can have the signif-

icant rank of srnk are being devoted adequate processing cycles then the number

of such tuples that expire throughout the query pipeline (or the expiration rate of

potential significant tuples ERs(pprm , srnk) at significant rank srnk) should be low and

ideally zero.

Definition 8 Expiration Rate of Potential Significant Tuples ERs(pprm , srnk) is the num-

ber of tuples that satisfy static criteria for rank srnk that expire throughout the

query pipeline.

Such a PR plan must also improve the flow of tuples that can have the promising

rank prnk until they reach their designated operator. The number of promising

tuples that expire before reaching their designated operator (or the expiration rate

of potential promising tuples ERp(pprm , prnk) at promising rank prnk) should be low

(ideally zero).

Definition 9 Expiration Rate of Potential Promising Tuples ERp(pprm , prnk) is the num-

ber of tuples that satisfy dynamic criteria at promising rank prnk that expire before

they reach their designated operator in pprm .

Definition 10 The goal of our PR optimizer is to identify the optimal PR plan that,

compared to all possible PR plans, minimizes the expiration rate of both significant

(Def. 8) and promising tuples (Def. 9) for each rank starting from the most signifi-

cant rank within the available system capacity.
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Table 6.2: Example: Ranking PR Plans
PR Plan CPU ERs(p

pr
m , 1) ERs(p

pr
m , 2) ERs(p

pr
m , 3)

(pprm ) Over

head ERp(p
pr
m , 1) ERp(p

pr
m , 2) ERp(p

pr
m , 3)

1022 0 2 15
ppr1 0 35 75

1256 0 2 15
ppr2 0 35 75

1956 0 2 95
ppr3 0 80 89

1006 9 123 90
ppr4 89 90 87

Consider the example in Table 6.2. Assume the resources required to execute

each PR plan are within the available system capacity. PR plan ppr1 is the best for

the following reasons. For the most significant rank rnk = 1, PR plan ppr4 has an

expiration rate of potential significant tuples greater than 0, i.e., ERs(ppr4 , 1) > 0. For

the next most significant rank rnk = 2, PR plan ppr3 has an expiration rate of potential

promising tuples greater than PR plans ppr1 and ppr2 . For all ranks, PR plans ppr1 and

ppr2 have equal expiration rates. However, compared to PR plan ppr2 , ppr1 has the

lowest CPU overhead cost. Thus, PR plan ppr1 is the preferred solution.

6.2 PR Architecture

The online adaptive PR architecture (Fig. 6.2) contains the PR Executor, PR Mon-

itor, PR Optimizer, and PR Adaptor. The PR Executor (Sec. 6.3) runs the current

PR plan. The PR Monitor (Sec. 6.4), PR Optimizer (Sec. 6.5.5), and PR Adaptor
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(Sec. 6.6) support the online PR plan adaption by respectively collecting statistics,

selecting a new PR plan, and adapting the current PR plan to the new one.

Figure 6.2: PR Architecture

6.3 PR Executor Infrastructure

We now outline our design for the back bone of PR (i.e., the PR Executor Infras-

tructure) and how it executes a PR plan efficiently.

6.3.1 Pulling Tuples Ahead of Others

The data exchange interface transfers tuples between operators. To efficiently pull

certain tuples forward, we employ a multi-queue approach. Operators support one
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queue for tuples with each possible rank and one for insignificant tuples. Signifi-

cant and promising tuples with the same rank reside in the same queue.

If no monitoring levels are activated then all tuples reside in the insignificant

queue. In this case, the query operators would process the tuples in FIFO order.

Otherwise, each tuples reside in the queue that corresponds to their rank. In this

situation, operators process tuples in rank order. Operator opo starts processing

tuples from the most significant queue. When this is empty and resources remain,

operator opo moves to the second most significant queue. Each result ti is placed

into the incoming queue for ti’s rank of the next down stream operator.

= 1

= 2

= NA

Significance 
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stock 
stream

sc2
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stream

query 
results
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op1 op2

news stream state
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blog 
stream

sc4

Figure 6.3: Stock Market Join Query PR Plan

Consider the queues for the news stream in Figure 6.3. Operator op1 has an in-

coming queue for news tuples with each possible rank (e.g., rank 1) and one for

insignificant incoming news tuples.
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6.3.2 PR Query Algebra

Our PR algebraic operators support both significant and/or promising tuples where

the rank may adapt at run-time (Sec. 6.3.3). In PR algebra, traditional operators

[GO05] process tuples as usual and propagate the appropriate preference related

meta data to the results. Significance classifier operators assign preference related

meta data to tuples.

Projection removes specified attributes from tuples in its input queues. Selection

removes tuples in its input queues that do not satisfy the specified selection condi-

tion. Both send their results with no changes of their preference related meta data

to the next operator.

Join [WA91] creates results (ti,tj ) by matching tuples from streams s1 and s2. First,

tuple ti is stored with its preference related metadata in the state of tuple ti’s stream

s1. Then, results (ti,tj ) are created by joining tuple ti with tuples tj in stream s2’s

state. Next, result (ti,tj )’s preference related metadata are set. That is, result (ti,tj )

is assigned the most significant among the preference related metadata of tuples ti

and tj . If tuples ti and tj have the same promising rank then result (ti,tj ) is assigned

the designated operator of tuples ti and tj that is furthest along the pipeline. Lastly,

the result (ti,tj ) is sent to the next operator.

If tuple ti is a promising tuple and its designated operator is this current join

operator, then prior to processing tuple ti’s promising rank and designated operator

attributes are set to null. Then tuple ti’s rank is set to its significant rank, i.e.,

ti.rnk = ti.srnk. In this case, tuple ti is not known to be a promising tuple beyond

this join operator but it may turn into a significant tuple at a lower rank.

Significance Classifier (or SC) is a special-purpose operator with static (SAS) and
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dynamic assessment set (DAS) parameters. It creates results by assigning prefer-

ence related metadata to tuples in its input stream and then sends these results to

the next operator.

The static SAS and dynamic DAS assessment sets contain the respective criteria

of the activated static or dynamic monitoring levels assessed by the SC operator

opo.

SCs process each tuple ti by comparing the criteria in SAS and DAS to tuple

ti in consecutive order starting from the most significant criteria in SAS and DAS.

Once tuple ti satisfies a static criteria then tuple ti is not compared to any dynamic

criteria of the same or lower rank. This is because if tuple ti is a significant tuple

at rank rnk then tuple ti is guaranteed to be a significant tuple at rank rnk for the

duration of tuple ti’s processing. However, if tuple ti is a promising tuple at rank

rnk then this tuple ti is only guaranteed to be a promising tuple at rank rnk for a

portion of the query pipeline. Even if tuple ti satisfies a dynamic criteria no static

criteria comparisons are eliminated.

Before each standard operator in the PR plan pprm we place a SC operator. The

optimizer determines which monitoring levels are activated and the static SAS and

dynamic DAS assessment set of each SC (Sec. 6.5). Then the optimizer notifies

each SC of changes to their assessment sets.

Each SC in the PR plan assigns preference related metadata to particular tuples.

The assessment sets of an SC may be empty. In this case, the SC will not evaluate

the preference related metadata of any monitoring levels and all tuples will skip

being sent to the SC (Sec. 6.6).

Consider the PR Plan in Figure 6.3. Incoming news and blog tuples are respectively

evaluated by significance classifier operators sc1 and sc4 against dynamic criteria to
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identify promising tuples at rank 1. We denote the rank of the criteria in the as-

sessment sets evaluated by each SC in Figure 6.3 by the color of the tear drop in

the top of the SC. First, incoming stock tuples are evaluated by significance clas-

sifier operator sc2 against static criteria to locate significant tuples at rank 1. Then

join operator op1 joins news tuples with stock tuples. Depending upon their rank,

results from op1 are routed to either s3 and then to join operator op2 or directly to

join operator op2 (Sec. 6.6). SC sc3 evaluates incoming tuples against static criteria

to identify significant tuples at rank 2. Finally, the join operator op2 produces query

results by joining blog tuples with combined stock/news tuples.

6.3.3 Adapting Rank of Tuples

Cases when tuple ti’s rank may adapt:

1) Tuple ti’s rank may be elevated when ti is assigned a significant and/or promising

rank by an SC.

2) Tuple ti’s rank may be degraded when ti is a promising tuple and ti reaches its

designated operator.

3) Tuple ti’s rank may be either elevated or degraded when the optimizer selects a

new PR plan (Sec. 6.5). Tuple tis rank is respectively more or less significant than

the lowest rank of the monitoring levels activated in the new PR plan.

Each result ti created from an elevated or degraded tuple tj is placed into a dif-

ferent queue than the incoming queue that held tuple tj . An operator places result

ti into the appropriate queue based upon ti’s rank and the current activated moni-

toring levels. If tuple ti is placed into a priority queue then henceforth operators

will preferentially allocate resources to ti. If tuple ti is placed into the insignificant

queue then henceforth operators will not preferentially allocate resources to ti. Tu-
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ple ti retains the values of its preference related metadata in case ti is elevated or

degraded in the future.

6.4 PR Monitor

The PR Monitor gathers statistics to track the progress of tuples that have the po-

tential to be significant and/or promising tuples. Static membership criteria are

defined in the P-CQL extension at compile-time (Sec. 6.1.1). The PR Monitor

uses these static criteria to collect statistics for each operator on the how many

incoming tuples expire that have the potential to be significant tuples at rank rnk.

However, the dynamic membership criteria that identifies promising tuples in

the current system is unknown at this point. To identify this criteria requires knowl-

edge of which current join attributes of tuples that have the potential to be signif-

icant tuples are also prevalent in tuples in the join partner stream. Thus, the PR

Monitor gathers statistics that the PR Optimizer will use to identify such criteria.

We refer to these criteria as potential dynamic membership criteria.

Tuples can be both significant and promising. There is no need to pull forward

promising tuples at rank rnk if such tuples have the potential to be significant tuples

at the same or higher rank than rnk. Such tuples will already be preferentially

allocated resources at a more significant rank. The goal instead is to identify the

join criteria of tuples that have the potential to be promising tuples, but do not have

the potential to be significant tuples at a rank more significant than rank rnk.

To figure out what could serve as dynamic membership criteria, the PR Opti-

mizer needs to identify at each join operator the join criteria of incoming tuples that

have the potential to be significant tuples. Such tuples may expire before reaching
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the next join operator in the query pipeline. Thus, the PR Monitor tracks the at-

tributes of tuples that arrive at join operators as well as the attributes of tuples that

expire before they reach the next join operator in the pipeline. Each join operator

opi generates a histogram of the count of tuples that have the potential to be sig-

nificant tuples at rank rnk and arrive at operator opi by their join criteria and input

stream. Each non-join operator opj generates a histogram of the count of tuples

that have the potential to be significant tuples at rank rnk and arrive at operator opj

by the join criteria of the next join operator in the query pipeline and input stream.

The PR Monitor combines these counts to represent the frequency of potential sig-

nificant tuples.

Definition 11 The frequency of potential significant tuples FSig(opo,sn,rnk,cp) is the

count of all potential incoming tuples to join operator opo from stream sn that could

be a significant tuple at rank rnk and satisfy join criteria cp.

Consider the PR Plan (Fig. 6.3) for the Stock Market Join Query Example

(Sec. 1.3.2). The join criteria of potential significant tuples at rank 1 into the join

operator op1 from the stock stream are join criteria c1, c2, and c3. Assume that join

criteria c1, c2, and c3 respectively are business sector equal to Energy, Advertising,

and Drug Retail.

The PR Optimizer could only use the frequency of potential significant tuples

to locate potential dynamic criteria. However, tuples that satisfy a particular join

criteria may not exist in all streams. Reconsider the PR Plan (Fig. 6.3). If there

are no news tuples about the Advertising business sector (i.e., join criteria c2) then

evaluating join criteria c2 as a dynamic criteria will not identify any promising

tuples. Clearly evaluating such criteria simply adds overhead without any benefit.
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Thus, the PR Monitor also collects statistics to identify at each join operator

the join criteria of incoming tuples that have the potential to be promising tuples.

Such tuples may also expire before reaching the next join operator in the query

pipeline. Hence, the PR Monitor tracks the attributes of tuples that arrive at join

operators as well as the attributes of tuples that expire before they reach the next

join operator in the pipeline. Each operator opi (join or otherwise) generates a

histogram of the count of tuples by their join criteria and input stream (a.k.a. the

frequency of potential promising tuples) that satisfy the following criteria. First,

they must have the potential to be promising tuples at rank rnk. Second, they must

not have the potential to be significant tuples at a rank more significant than rank

rnk. Third, they must be potential incoming tuples to join operator opi.

In the PR Plan (Fig. 6.3), the join criteria of potential promising tuples from

the news stream at rank 1 into the join operator op1 are criteria c1, c3, and c4.

Definition 12 The frequency of potential promising tuples FProm(opo,sn,rnk,cp) is the

count of all tuples that could be incoming tuples to join operator opo from stream

sn at rank rnk that satisfy join criteria cp where the following conditions hold. First,

significant join partner tuples exist that also satisfy criteria cp at join operator opo

(i.e., FSig(opo,sm,rnk,cp) > 0). Second, these tuples do not have the potential to be

significant tuples at a rank more significant than rank rnk.

The number of possible join criteria is exponential given the possible domains

and range of join criteria values. Clearly, this can cause potential memory lim-

itations in collecting statistics. We propose to reduce the number of frequencies

collected by using a heavy hitter algorithm [MM02]. Informally, while collecting

the statistics each operator periodically removes any statistic whose frequency falls
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below a preset error rate. When all statistics have been collected, each operator re-

turns only the statistics whose frequencies are above a preset threshold. In addition,

if the join criteria is from a continuous domain then statistics could be gathered on

a range of values. To simplify the problem, we assume that the join criteria is from

a discrete domain. Thus, statistics are gathered on each distinct join criteria value.

Periodically, each operator transmits their statistics to the PR Monitor. Once

the PR monitor has collected statistics from all operators, it then sends them to the

PR Optimizer.

6.5 PR Optimizer

Upon receiving the statistics, the PR Optimizer selects the best order of operators

within the query plan and then generates a new PR plan. First the initial PR plan is

created by placing an SC with empty assessment sets before each standard operator

in pm. Only one SC is required as the static and dynamic assessment sets of multiple

adjacent SCs can be merged. From this initial PR plan, all possible PR plans can

be created by adjusting which static and dynamic criteria are evaluated and where

(i.e, in which significance classifier(s)) each static or dynamic criteria is evaluated.

Generating one possible PR plan roughly involves the following two steps:

Step 1: Create all possible dynamic monitoring levels.

Step 2: Iteratively for each rank rnk in significance order:

a: Select which static and dynamic monitoring levels to activate.

b: Determine where in the plan to evaluate each static and dynamic criteria from

the monitoring levels activated in Step 2a.

We now explore the details behind each of these steps.
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6.5.1 Creating Dynamic Monitoring Levels

The PR Optimizer creates a dynamic monitoring level for each join operator opo,

stream sn, rank rnk, and join criteria cp where the frequencies of both potential

significant and promising tuples are greater than 0, i.e., FSig(opo,sn,rnk,cp) > 0 and

FProm(opo,sn,rnk,cp) > 0. When either frequency equals zero then either there are no

tuples in one of the steams that satisfy join criteria cp or tuples that satisfy join

criteria cp already have the potential to be assigned to a rank more significant than

rnk.

Consider PR Plan (Fig. 6.3). Dynamic criteria at rank 1 for join operator op1

are join criteria c1 and c3. Join criteria c2 is not classified as a dynamic criteria.

Although there are significant stock tuples from the Advertising business sector

(i.e., join criteria c2), there are no news tuples in this Advertising business sector.

Hence, the frequency of potential promising tuples that satisfy join criteria c2 is 0,

i.e., FProm(op1,newsStream,c2,1) = 0. Similarly, join criteria c4 is also not classified as

dynamic criteria.

Each dynamic criteria cp may identify significant join partners at join operator

opo from more than one rank. In this case, promising tuples that satisfy cp will create

join results at more than one rank. To keep this practical, each promising tuple that

satisfies cp is assigned the highest rank of all significant join partner tuples that also

satisfy cp.

Consider PR Plan (Fig. 6.1). Stock tuples from the Drug Retail business sector

(i.e., join criteria c3) are significant tuples with ranks of 1 and 2. Thus, the rank of

the dynamic monitoring level created to locate news and blog tuples with this Drug

Retail business sector (i.e., cp = join criteria c3) is rank 1.
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6.5.2 Selecting Which Static and Dynamic Monitoring Levels to Acti-

vate

Some of the potential dynamic monitoring levels generated may reference join

operators that will not have any incoming significant tuples. A join operator opo is

said to be designated if and only if some of its incoming tuples will be significant

tuples. Whether or not significant tuples arrive at join operator opo depends upon

which static monitoring levels are activated and where they are evaluated. As a

consequence to determine which dynamic monitoring levels at rank rnk to active

the PR Optimizer must first find which join operators are designated. Hence, we

must first select which static monitoring levels to activate and determine where in

the plan to evaluate each static criteria before dynamic monitoring levels should be

considered.

From these insights, we now revise the steps executed by the PR Optimizer.

The revised steps are underlined.

Step 1: Create dynamic monitoring levels.

Step 2: Iteratively for each rank rnk in significance order:

a: Select which static monitoring levels to activate.

b: Determine where in the plan to evaluate each static criteria for the monitoring

levels activated in Step 2a.

c: Identify designated operators, i.e., join operators where significant tuples

at rank rnk may arrive.

d: Select which dynamic monitoring levels to activate.

e: Determine where in the plan to evaluate each dynamic criteria from the

monitoring levels activated in Step 2d.
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6.5.3 Determining Where to Evaluate each Static and Dynamic Cri-

teria

The PR Optimizer must determine which SC(s) should evaluate which criteria of

the activated monitoring levels. We now discuss how many SCs must evaluate each

static and dynamic criteria to ensure that all possible significant or promising tuples

are pulled forward. Each static or dynamic criteria has an evaluation path, i.e., an

ordered set of operators that begins at the first and ends at the last operator in the

plan that can evaluate the criteria.

Static Evaluation Path: Only one significance classifier (SC) in the evaluation

path needs to evaluate a given static criteria because significant tuples retain their

rank for the duration of processing. Thus the PR optimizer only needs to locate the

best SC to assess each static criteria.

Dynamic Evaluation Path: The rank of promising tuple ti has a short lifespan

because tuple ti will drop its promising rank when it reaches its designated operator.

Further along the pipeline, the tuple ti may be assigned another promising rank.

During its processing, a tuple may be pulled forward to different designated

operators along the query pipeline. Sometimes the evaluation paths of different

criteria may overlap. To ensure that for dynamic criteria cp all promising tuples

are pulled forward, dynamic criteria cp may need to be evaluated at multiple SCs,

namely, after any of its designated operator. This is because tuples may lose their

current promising rank at each designated operator. This thus would be the first

place to check if it should be assigned the promising rank of a designated operator

further along the query pipeline.

Static vs Dynamic Evaluation Paths: A static evaluation path ends at the last
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SC operator in the query plan as significant tuples remain significant for the entire

query pipeline. In contrast, a dynamic evaluation path ends at the SC operator

that proceeds their associated designated operator in the query pipeline. Hence

to determine the possible dynamic evaluation paths we must locate the designated

operators in the query pipeline.

6.5.4 PR Plan Search Space

We now explore the size of the search space to exhaustively search over all possible

options of which levels are activated and where each criteria is evaluated to find the

optimal PR plan.

Static Priority Determination: Recall that each static criteria is evaluated in one

SC in its static evaluation path. In the PR Plan (Fig. 6.3), consider identifying

significant tuples from the stock stream at rank 1, i.e., tuples from aggressive in-

vestments. Such tuples can either be identified by SC2 (i.e., before join operator

op1) or by SC3 (i.e., after join operator op1 and before join operator op2).

Complexity of Static Priority Determination: Assume that in PR plan pprm , there

are |SEP | static evaluation paths. Each static evaluation path sepk contains |sepk.sc|

SC operators. There are |SCrit(sepk, rnk)| static criteria whose static evaluation path

is sepk and rank is rnk. For rank rnk and static evaluation path sepk, there are

|sepk.sc||SCrit(sepk,rnk)| possible combinations of which SC evaluates each static cri-

teria in SCrit(sepk, rnk). Hence, for rank rnk, there are ∏|SEP |
k=1 |sepk.sc||SCrit(sepk,rnk)|

possible PR plans where the static criteria at rank rnk can be evaluated.

Reconsider the PR Plan in Figure 6.3. Assume that only one static evaluation

path sep1 exists that contains SC operators SC1 and SC2. In addition, assume that

there are 4 static criteria whose static evaluation path is sep1 and rank is rnk. In this
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case, for rank rnk, there are 24 or 16 possible PR plans where the static criteria at

rank rnk can be evaluated.

Dynamic Priority Determination: In contrast, each dynamic criteria could be

evaluated in many (and even all) SCs in its dynamic evaluation path. In the PR

Plan (Fig. 6.3), consider locating promising tuples for join operator op1 from the

news stream from the Energy business sector, i.e., join criteria c1. Such tuples will

be promising at rank 1 for designated operator op1. Operator SC1 would be the only

operator required to identify these tuples using the promising criteria (i.e., before

join operator op1). This is because there are no designated operators between SC1

and the designated operator op1.

Now consider locating promising tuples for join operator op2 from the news

stream from the Energy business sector, i.e., join criteria c1. These tuples will be

promising tuples at rank 1 with designated join operator op2. Such tuples can be

located by any SCs before join operator op2, namely, SC1 and SC3.

If only SC3 evaluates join criteria c1 then such tuples only need to be located

by SC3. This is because there are no designated operators between SC3 and the

designated operator for join criteria c1, i.e., designated operator op2. However, this

is not true if SC1 evaluates join criteria c1 and operator op1 is a designated operator

between SC1 and join operator op2, i.e., the designated operator for join criteria c1.

In this case, to ensure that promising tuples for both designated operators op1 and

op2 are pulled forward, SC3 will also need to evaluate join criteria c1.

Segments within a dynamic evaluation path where a tuple’s rank can change

exist between every pair of consecutive designated operator in the dynamic evalu-

ation path. We refer to these segments as dynamic re-evaluation paths.

For the last example above, a dynamic re-evaluation path exists between op-
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erators op1 and ends at SC3. This is because SC3 is the first SC after designated

operator op1 and the last SC before the next designated operator op2. The optimizer

must select one SC in each dynamic re-evaluation path to evaluate the dynamic

criteria.

Complexity of Dynamic Priority Determination: Consider dynamic criteria cp

whose dynamic evaluation path is depl. Dynamic criteria cp can be evaluated by

any of the |depl.sc| SCs in dynamic evaluation path depl. Assume that dynamic crite-

ria cp is evaluated by SC scx. In this case, dynamic criteria cp must be re-evaluated

in each of the dynamic re-evaluation paths that proceed scx in dynamic evaluation

path depl. This ensures that any tuple that satisfies dynamic criteria cp and an-

other dynamic criteria within dynamic evaluation path depl will be assigned as a

promising tuple for the duration of dynamic evaluation path depl. |DREP (scx, depl)|

denotes the number of dynamic re-evaluation paths that proceed scx. Each dynamic

criteria cp must be evaluated by one of the |drepm.sc| SCs in each drepm dynamic re-

evaluation paths that proceed scx in dynamic evaluation path depl. Thus, assuming

that dynamic criteria cp is evaluated by SC scx, there are ∏|DREP (depl,scx)|
m=1 |drepm.sc|

possible combinations of which other SCs evaluate dynamic criteria cp.

Thus, for each dynamic criteria cp whose dynamic evaluation path is depl, there

are ∑|depl.sc|x=1

∏|DREP (depl,scx)|
m=1 |drepm.sc| possible combinations of which SCs evalu-

ate dynamic criteria cp. scx is the SC in dynamic evaluation path depl selected by

the optimizer. |DREP (scx, depl)| denotes the number of dynamic re-evaluation paths

that proceed scx in dynamic evaluation path depl. |drepm.sc| denotes the number

of SCs in dynamic re-evaluation path drepm where dynamic criteria d-criti can be

re-evaluated.

There are |DCrit(depl, rnk)| dynamic criteria whose dynamic evaluation path is
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depl and rank is rnk. Hence, for each rank rnk, there are
∏|DEP |

l=1 (
∑|depl.sc|

x=1

∏|DREP (scx)|
m=1 |drepm.sc|)|DCrit(depl,rnk)| possible PR plans where the

dynamic criteria at rank rnk can be evaluated.

The PR search space thus is:
∑|qj .SML|

rnk=1

∏|SEP |
k=1 |sepk.sc||SCrit(sepk,rnk)|∗

∏|DEP |
l=1 (

∑|depl.sc|
x=1

∏|DREP (depl,scx)|
m=1 |drepm.sc|)|DCrit(depl,rnk)|.

We notice that the complexity of dynamic priority determination in the PR

problem is exponential in the number of dynamic criteria and the number of des-

ignated operators. It is impractical to exhaustively search for the optimal PR plan

with many dynamic criteria and designated operators.

6.5.5 PR Prune Optimization Strategy

We now introduce our PR Prune Optimization strategy that reduces the complex-

ity of dynamic priority determination. PR Prune eliminates inferior dynamic cri-

teria before creating dynamic monitoring levels (i.e., Step 2 below). This re-

duces |DCrit(depl, rnk)|). As we will see below, PR Prune discriminately chooses

which dynamic monitoring levels to activate. Finally, PR Prune also reduces the

number of designated operators it creates (i.e., Step 2d above). This reduces

|DREP (depl, scx)|).

Roughly, PR-Prune consists of the following steps: The differences between

the logic of the PR Prune and the original PR Optimizer steps are underlined.

Step 1: Eliminate inferior dynamic criteria.

Step 2: Create dynamic monitoring levels.

Step 3: Iteratively for each rank rnk in significance order:

a: Select which static monitoring levels to activate.
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b: Determine where in the plan to evaluate each static criteria from the monitor-

ing levels activated in Step 2a.

c: Identify the designated operators, i.e., join operators where significant tuples

at rank rnk may arrive.

d: Reduce the number of designated operators found in Step 2c.

e: Select which dynamic monitoring levels to activate.

f: Determine where in the plan to evaluate each dynamic criteria from the moni-

toring levels activated in Step 2e.

Pruning of Inferior Dynamic Criteria

Dynamic priority determination is more complex than static priority determination.

The number of static criteria at rank rnk is inherently small as they are defined by

users at compile-time. In contrast, the number of dynamic criteria can be pro-

hibitively large. That is, there may be a huge number of join criteria at each join

operator that identify promising tuples at rank rnk.

Observation: Some dynamic criteria cp may identify promising tuples that produce

more significant query results than others.

In the PR Plan (Fig. 6.3), dynamic criteria at rank 1 in join operator op1 are from

tuples related to the Energy and Drug Retail business sectors. More precisely, two

join results from the Energy business sector will be produced when the promising

tuple at rank 1 joins with the two significant tuple at rank 1 using join criteria c1.

Only four join results from the Drug Retail business sector will be produced for

join criteria c3.

Evaluating the optimal determination location of inferior criteria adds over-

head. Each dynamic criteria we do not evaluate reduces the complexity of dy-
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namic priority determination by : (
∑|depl.sc|

x=1

∏|DREP (depl,scx)|
m=1 |drepm.sc|) where depl

is the dynamic evaluation path of d-criti.

A dynamic criteria is inferior to the others typically when the product of the

frequencies of potential significant and promising tuples is extremely low. To elim-

inate these inferior dynamic criteria, we propose a reduction method that eliminates

inferior dynamic criteria. We remove any dynamic criteria if the product of the fre-

quencies of potential significant and promising tuples is below a preset threshold.

Activation Order of Dynamic Monitoring Levels

Rather than exhaustively searching through all possible dynamic monitoring lev-

els to decide which ones to activate, PR-Prune starts with the dynamic monitoring

levels that are estimated to produce the largest cardinality of significant join re-

sults. This corresponds to the criteria with the largest product of the frequencies

of potential significant and promising tuples. This helps ensure that resources are

allocated to the most promising tuples first.

From these insights, we thus again refine the logic of the PR Prune. The revised

steps are underlined.

Step 1: Eliminate inferior possible dynamic criteria.

Step 2: Create dynamic monitoring levels.

Step 3: Iteratively for each rank rnk in significance order:

a: Select which static monitoring levels to activate.

b: Determine where in the plan to evaluate each static criteria from the monitor-

ing levels activated in Step 2a.

c: Identify the designated operators, i.e., join operators where significant tuples

at rank rnk may arrive.
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d: Reduce the number of designated operators found in Step 2c.

e: Iteratively for each dynamic monitoring levels at rank rnk in order of highest to

lowest product of the frequencies of potential significant and promising tuples.

f: Active the dynamic monitoring levels selected in Step 2e.

g: Determine where in the plan to evaluate each dynamic criteria from the

monitoring level activated in Step 2f.

Reducing the Dynamic Evaluation Paths

Eliminating a designated operator reduces the number of dynamic evaluation paths.

This reduces the number of dynamic evaluation paths or |DEP | by one. Thus, per

the PR search space, this reduces the number of possible PR plans by

(
∑|depl.sc|

x=1

∏|DREP (depl,scx)|
m=1 |drepm.sc|)|DCrit(depl,rnk)| plans.

Reducing the number of dynamic evaluation paths may also reduce the number

of dynamic re-evaluation paths. This reduces |DREP (scx, depl)| or the number of

dynamic re-evaluation paths that proceed SC scx. Thus, per the PR search space,

each dynamic re-evaluation path eliminated reduces the number of possible PR

plans by (
∑|depl.sc|

x=1 |drepm.sc|)|DCrit(depl,rnk)| plans.

In the PR Plan (Fig. 6.3), assume that tuple ti satisfies the dynamic criteria c1

and c2 at rank rnk for respective designated operators op1 and op2. Assume that tuple

ti does not satisfy any other criteria. There are two possible ways in which ti could

be processed. First, tuple ti could be evaluated by an SC against dynamic criteria

c1. In this case, tuple ti would be a promising tuple at rank rnk with designated

operator op1. After operator op1, tuple ti would then be evaluated by an SC against

dynamic criteria c2. At this point, tuple ti would become a promising tuple at rank

rnk with designated operator op2. The second alternative is that prior to operator
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op1, tuple ti could be evaluated by an SC against dynamic criteria c2. In this case,

tuple ti would be a promising tuple at rank rnk with designated operator op2.

In both cases, tuple ti would be promoted as a promising tuple at rank rnk across

both operators. In the first case, tuple ti would be evaluated twice and promoted

as a promising tuple at rank rnk across each operator individually. In the second

case, tuple ti would be evaluated once but promoted as a promising tuple at rank

rnk across both operators.

Clearly, there is less overhead if we allocate resources to promising tuples for

the longest duration of query processing. Hence, it is best to assign tuple ti to the

designated operator that is furthest along the query pipeline, i.e., operator op2.

Observation: If multiple consecutive join operators in the query pipeline have the

same join criteria then only the last join operator in the sequence should be used

to identify potential dynamic criteria.

Reconsider PR Plan (Fig. 6.3). Join operators op1 and op2 both use the same

join criteria attribute, i.e., business sector. If we use the dynamic criteria located

at operator op1 then there is no guarantee that the same business sectors exist in

the news and blog streams over the same query window. That is, the significant

join result tuples generated by op1 may not contain a business sector in the blog

stream. This would cause no result to be created by join operator op2. Preferentially

allocating resources to pull forward news tuples from such a business sector may

not generate any additional significant query results. However, since op1 and op2

both use the same join criteria attribute the frequency statistics can be shared across

both operators. Then dynamic criteria learned by operator op2 can ensure that such

tuples will match some tuples in both the news as well as blog stream.

In summary, PR-Prune eliminates designated operators by only assigning the
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last join operator of all adjacent join operators that use the same join criteria to be

the designated operator. Then PR-Prune identifies the dynamic criteria of the join

operator furthest along the query pipeline.

PR-Prune Plan Search Space

Compared to PR, PR-Prune reduces the following sets; the set of dynamic evalua-

tion paths, the set of dynamic re-evaluation paths, and the set of dynamic criteria.

However, the possible combinations of where each static ad dynamic determinant

can be re-evaluated in the PR plan is the same for both PR and PR-Prune.

The PR-Prune search space for plan pi is thus:
∑|qj .SML|

rnk=1

∏|SEP |
k=1 |sepk.sc||SCrit(sepk,rnk)|∗

∏|RDEP |
l=1 (

∑|depl.sc|
x=1

∏|RDREP (depl,scx)|
m=1 |drepm.sc|)|RDCrit(depl,rnk)|.

RDEP is the reduced set of dynamic evaluation paths. RDREP (depl, scx) is the re-

duced set of dynamic re-evaluation paths that follow scx in dynamic evaluation

path depl. RDCrit(depl, rnk) is the reduced set of dynamic criteria whose dynamic

evaluation path is depl and rank is rnk.

6.5.6 Optimal Order of Operators in PR Plan

Selecting the optimal ordering of operators within a plan is NP-hard [BMM+04].

The complexity only increases if we simultaneously consider both the optimal or-

dering of operators and allocation of resources. Given a query plan pm selected

using traditional query optimization techniques [RG00], the PR optimizer locates

the optimized PR plan pprm for a given traditional query plan pm.
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6.6 PR Adaptor

After the optimizer selects a new optimized PR plan, the PR Adaptor adapts the

current PR plan to the new one. A key to efficiently supporting the adaption of PR

plans is the retention of an SC before each standard operator. This allows the PR

plan to adapt online without requiring any operators or data exchange interfaces to

be added, removed, or reordered.

To not delay adaption, a control exchange interface is dedicated to sending no-

tifications between the PR Adaptor and each operator. To adapt which and where

static and dynamic criteria are evaluated, the PR Adaptor simply sends each sig-

nificance classifier a notification about their new static and dynamic assessment

sets.

Operators do not send tuples to any SC whose assessment sets are empty. Such

SCs are skipped. To skip extraneous SCs, standard operators control where they

send results. They send results to either: 1) the down stream significance classifier

scp and then to the down stream operator opo or 2) directly to opo, i.e., skipping

scp. To adapt where results are sent, the PR Adaptor notifies each operator of the

whether or not to send their results to the down stream SC.

In short, PR can quickly adapt the PR plan online without requiring any infras-

tructure changes. Instead, each operator locally adapts online how they allocate

resources to any future inprocess tuples (Sec. 6.3.3).
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6.7 Experimental Evaluation of PR

6.7.1 Experimental Setup

Alternative Solutions. We compare PR with the PR-Prune Optimizer (or PR-Prune)

to our PR with basic PR Optimizer solution (or PR). Both approaches identify and

pull promising tuples forward. However, PR-Prune reduces the optimization time

for criteria placement which allows PR-Prune to pull promising tuples forward

sooner than PR. We also study traditional data stream management systems which

does not employ any resource allocation methodology (or Trad). Trad demon-

strates that our experimental scenarios require a resource allocation methodology

to ensure the throughput of the most significant results. We also analyze the state-

of-the-art resource allocation methodologies, namely, semantic (or Sem), random

(or Rand), and Proactive Promotion (or PP) (Ch. 4).

PP is the closest competitor to PR. However, it only pulls significant tuples

forward. It does not identify nor pull forward promising tuples. Sem selects which

incoming significant tuples will be processed (or dropped) upon their arrival. Rand

randomly selects tuples to process upon their arrival based upon the estimated num-

ber of tuples that can be processed within their lifespan given the current statistics.

Both Sem and Rand process all tuples in FIFO order. In contrast, PP locates sig-

nificant tuples at the optimal SC operator in the query pipeline using a cost-based

optimization strategy. PP processes all tuples in rank order. Studying these ap-

proaches highlights the benefits of pulling promising tuples forward (i.e., PR and

PR-Prune). Trad simply processes all tuples in FIFO order. It neither sheds nor

allocates resources to specific tuples based upon their rank.

PR-Prune, PR, PP, and Sem use the same set of static criteria to identify sig-
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nificant tuples. Unlike the other approaches, PR-Prune and PR generate dynamic

criteria to identify promising tuples. In our experiments, operators in PR-Prune

and PR send join criteria statistics whose frequency is above 5% to the PR monitor.

Experimental Methodology. Compared to alternative solutions, we explore the

following research questions: 1) Is PR-Prune more effective at increasing the

throughput of the most significant results? 2) What affect does the number of

promising tuples in the streams have on the effectiveness of PR-Prune? 3) How

does varying the number of join operators or dynamic evaluation paths affect PR-

Prune? 4) How does the optimization search time of PR-Prune compare to that of

the PR? 5) What is the runtime CPU and memory overhead of PR-Prune?

Our experiments adapt the variables that most directly affect PR. The quantity

of promising tuples affects the number of tuples in the workload that may bene-

fit from being pulled forward. PR’s effectiveness is based upon promising tuples

arriving at their designated join operator and creating significant join results.

The number of join operators in a query affects the query complexity and num-

ber of tuples in the workload that may benefit from being pulled forward.

Varying the number of dynamic evaluation paths affects the optimization search

time and the number of operators over which each promising tuple can be pulled

forward.

Queries. Most experiments use the Stock Market Join Query (Sec. 1.3.2) with

the P-CQL extension. There are three static monitoring levels that define the sig-

nificant tuples in the stock stream. We henceforth refer to this query as the Stock

Market Query.

Data Streams. The stock market stream used is the same stock market stream

generated in Section 5.5.
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In Stock Data Set 1 , 4.6% of the stocks in the stock stream were randomly

chosen to respectively have significant ranks 1, 2, and 3.

Similar to generated in Section 5.5, our news and blog data streams were cre-

ated by randomly selecting from either the sectors in the Global Industry Classi-

fication Standard (GICS). In these experiments we also generated news and blog

data streams from the subsectors in the Industrial Classification Benchmark (ICB).

These streams represent the industries or business sectors mentioned in current

postings.

Most experiments use the News/Blog Data Set 1 which mimics days when no

particular ICB subsector dominates the news. In News/Blog Data Set 1, the ICB

subsectors were randomly placed into the news and blog streams with the constraint

that 15% of tuples in each window in the news and blog streams are promisimg

tuples, i.e., from ICB subsectors of the significant tuples in the Stock Data Set 1.

Hardware. Our experiments were conducted in a compute cluster. Each host has

two AMD 2.6GHz Dual Core Opteron CPUs and 1GB memory. Each solution (i.e.,

PR-Prune, PR, PP, Sem, or Trad) was distributed across 2 processing nodes. The

query executor was run on one node. The system monitoring, optimizing, and plan

adaption components were run on the other node.

Metrics and Measurements. All experiments were run 3 times for 10 minutes.

The results are averaged over these runs. The majority of our experiments measure

separately for each monitoring level the cumulative throughput of significant query

results.
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Figure 6.4: Effective at Increasing Throughput of the Most Significant Results

6.7.2 Experimental Results

Effectiveness at Increasing Throughput of the Most Significant Results. First,

we compare the throughput of each approach. This experiment uses Stock and

News/Blog Data Set 1, and the Stock Market Join Query. The query lifespan = 1

billion ns. The window size = 1,000 tuples.

Figures 7.4 a-c show the average cumulative throughput for monitoring levels

1 - 3 respectively as it changes over 10 minutes. Overall compared to the alter-

native approaches PR-Prune produced more of most significant results (i.e., level

1) (Fig. 7.4 a). In addition, for the second most significant results (i.e., level 2),
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PR-Prune produced more results than PR, PP, Rand, and Trad (Fig. 7.4 b). Only

Sem produced slightly more significant results at level 2 than PR-Prune. Finally,

for the least significant monitoring level, (i.e., level 3) PR-Prune produced more

results than PR, PP, Rand, and Trad (Fig. 7.4 c). Again, only Sem produced more

of the least significant results than PR-Prune.
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Figure 6.5: Overall Throughput of Correct Results

This is in line with how we expect PR-Prune to function. Namely, the goal

of PR-Prune is to dedicate the resources to produce the most significant results,

followed by the next most significant results (and so on) until no resources re-

main. PR-Prune is indeed effective at increasing the throughput of the most signif-

icant results. This is due to PR-Prune’s ability to pull forward both significant and

promising tuples. In addition, although Sem produces more significant results at

monitoring levels 2 and 3, it produces significantly less of the most significant re-

sults. In the Stock Market Example this could have severe financial consequences.

Figure 6.7.2 shows the overall throughout of all query results (regardless of

significance) using the experimental set up outlined above. Overall compared to

the alternatives, PR achieved the lowest overall throughput. PR produced 2% fewer

results than PR-Prune. It produced 4% fewer results than PP and Sem. Compared
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to Rand, it produced 10% fewer results. Finally, compared to Trad it produced 15

% fewer results. This is by design. PR is designed for EMAs where they is a need

to ensure that at all costs certain tuples are processed. The overhead to support PR

takes away resources from processing insignificant tuples.
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Figure 6.6: Varying the Number of Promising Tuples

Varying the Number of Promising Tuples. We now explore how the number of

promising tuples in the streams affects the throughput of significant results. This

experiment uses the setup described above. However in this experiment, we use

four distinct News/Blog Data Sets. These datasets emulate days where particular

ICB subsectors dominate the news.

In the 25% News/Blog Data Set (DS25), 25% of ICB subsectors of the signif-
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icant tuples in the Stock Data Set 1 were randomly selected and placed into tuples

in each window in the news and blog streams. In other words, only 25% of all the

significant tuples have corresponding join partners and 75% have no join partners.

Similarly, in the 50% (DS50), 75% (DS75), and 100% (DS100) News/Blog Data

Sets, respectively 50%, 75%, and 100% of ICB subsectors of the significant tu-

ples in the Stock Data Set 1 were randomly selected and placed into tuples in each

window in the news and blog streams. In DS50, DS75, and DS100, respectively

only 50%, 75%, and 100% have corresponding join partners, i.e., 50%, 25%, and

0% have no join partners. Figures 7.8 a-d show the average cumulative throughput

for monitoring levels 1 - 3 respectively after 10 minutes respectively for the DS25,

DS50, DS75, and DS100 Data Sets.

In this experiment, there is no connection between the number of significant

results produced by each scenario as each scenario uses distinct News and Blog

streams. Therefore they cannot be directly compared to each other. However, we

can observe trends in how PR-Prune performs in scenarios where there are few

versus many promising tuples.

Regardless of the data set used, PR-Prune produced more of the most signifi-

cant results than the other approaches. The gains achieved by PR-Prune increases

when the stream contains fewer promising tuples (e.g., DS25) compared to when

the stream contains more promising tuples (e.g., DS100).

In all scenarios, compared to Trad, PR-Prune between 71 and 85 fold more of

the most significant results (i.e., level 1). Respectively for DS25, DS50, DS75 and

DS100, PR-Prune produced between 1.3 and 19.8 fold, 1.5 and 23 fold, 1.7 and

15.9 fold, and 1.6 and 22 fold more of the most significant results (i.e., level 1)

than PR, PP, Sem, and Rand. This is as expected. Namely, PR-Prune is designed
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to pull the promising tuples forward that have the estimated highest potential of

producing significant query results.

Locating promising tuples adds overhead. PR-Prune efficiently determines

which dynamic criteria to use to locate promising tuples while taking the over-

head of locating promising tuples. Compare the results in the DS100 scenario to

the DS25 scenario. DS100 has more possible dynamic criteria to evaluate than

DS25. However, even with these additional dynamic criteria in the DS100 sce-

nario PR-Prune still produced more of the most significant query results than the

other approaches.
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Figure 6.7: Varying the Number of Join Operators

Varying the Workload and Number of Dynamic Evaluation Paths. We now
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compare how varying the workload and number of dynamic evaluation paths af-

fects PR-Prune compared to PP and PR. Comparing PR-Prune to PP demonstrates

the benefit to pulling promising tuples forward. The comparison to PR highlights

the advantage of reducing the optimization time and thus quickly pulling promising

tuples forward. Similar to the experiment above, there is no connection between

the number of significant results produced by each scenario in these experiments.

Varying the Number of Join Operators. This experiment again uses Stock and

News/Blog Data Set 1 where the query lifespan = 1 billion ns, and the window size

= 1,000 tuples. However in this experiment we vary the number of join operators

from 2, 4, to 8 operators. The 2 join operator experiment uses the Stock Market

Join Query. While the 4 and 8 join operators query plans respectively extend the

Stock Market Join Query by 2 and 6 join operators. Each join operator added com-

bines the current results respectively with an additional news or blog stream. Such

queries are used to locate hot news trends across multiple news sources. Figures

7.6 a-c show the average cumulative throughput for monitoring levels 1 - 3 respec-

tively after 10 minutes. Overall PR-Prune consistently produced more of the most

significant results (i.e., level 1) than PR and PP. Clearly, PR-Prune is better at in-

creasing the throughput of the most significant results in complex the queries than

the competitors.

Varying the Number of Dynamic Evaluation Paths. This experiment uses the

Stock and News/Blog Data Set 1 and the 8 join query outlined above where the

query lifespan = 1 billion ns, and the window size = 1,000 tuples. The number of

dynamic evaluation paths is varied by adjusting how many of the consecutive join

operators shared the same join attribute.

In the 1 path query, all 8 join operators share the same join attribute. PR-Prune
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Monitoring Levels

C
u

m
u

la
ti

ve
 T

h
ro

u
g

h
p

u
t 

(t
u

p
le

s)

0

200,000

400,000

600,000

800,000

1 2 3

PP
PR
PR-Prune

Monitoring Levels

C
u

m
u

la
ti

ve
 T

h
ro

u
g

h
p

u
t 

(t
u

p
le

s)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

1 2 3

PP
PR
PR-Prune

a) Throughput for 1 path b) Throughput for 2 paths

Monitoring Levels

C
u

m
u

la
ti

ve
 T

h
ro

u
g

h
p

u
t 

(t
u

p
le

s)

0

50,000

100,000

150,000

200,000

250,000

1 2 3

PP
PR
PR-HH

Monitoring Levels

C
u

m
u

la
ti

ve
 T

h
ro

u
g

h
p

u
t 

(t
u

p
le

s)

0 1 2 3
0

50,000

100,000

150,000

200,000

1 2 3

PP
PR

PR-Prune

c) Throughput for 4 paths d) Throughput for 8 paths

Figure 6.8: Varying the Number of Dynamic Evaluation Paths

will seek to pull tuples forward across the entire query path. In the 2, 4, and 8

path queries respectively 4, 2, to 0 (no) join operators share the same join attribute.

In the 2 path query PR-Prune will seek to pull tuples forward across the first and

the last four consecutive join operators in the query pipeline. In the 4 path query

PR-Prune will seek to pull tuples forward across the first, second, third, and last

two consecutive join operators in the query pipeline. In the 8 path query PR-Prune

will seek to pull tuples forward across each join operator individually.

To achieve this we vary which incoming news and blog streams are gener-

ated from the GICS sectors and which streams are generated from ICB subsectors.

When there is 1 path, all 8 news streams are generated from ICB subsectors, i.e., all
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8 join operators share the same join attribute. Thus PR-Prune would pull promis-

ing tuples forward across all 8 join operators. In the 8 paths case, every other

news streams is generated from ICB subsectors or GICS sectors, i.e., no consecu-

tive join operators share the same join attribute. In this case, PR-Prune would pull

promising tuples only across one individual join operator at a time.

Figures 7.9 a-c show the average cumulative throughput for monitoring levels

1 - 3 respectively over 10 minutes. Overall PR-Prune consistently produced more

of the most significant results (i.e., level 1) than PR and PP. It can be seen that

PR-Prune produces more highly significant results than PR and PP regardless of

the number of dynamic evaluation paths. Clearly, the gains in the throughput of the

most significant results achieved by PR-Prune are also not affected by the number

of dynamic evaluation paths.
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Optimization Search Time. We now compare the optimization search time of

PR-Prune to PR to locate the ”best” or optimal PR plan for queries that contain a

varied number of dynamic evaluation paths (Figure 6.9). Namely, we analyze the

optimizer search time for the 1, 2, 4, and 8 path experiment outlined above. In the

1 path case, PR-Prune takes 31.6. % less time time than PR to search for the ”best”
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PR plan, while in the 8 paths case, PR-Prune takes 14.3 % less time.

This is as expected. In the 1 path case, PR Prune will eliminate potential des-

ignated operators and combine all join operators into a single dynamic evaluation

path (Sec. 6.5.5). In the 8 path case, PR Prune will not be able to eliminate any

potential designated operators and a dynamic evaluation path will be created for

each join operator. However, in both cases PR Prune reduces the optimizer search

time by eliminating inferior dynamic criteria (Sec. 6.5.5).
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Figure 6.10: Execution-Runtime CPU and Memory Overhead

Execution-Runtime CPU Overhead. To measure the runtime overhead we eval-

uate the cumulative throughput using the worst case scenario for PR-Prune (Fig.
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c), namely, when no static monitoring levels are defined.This experiment uses the

Stock Market Join Query (Sec. 1.3.2) without the P-CQL extension. In addition, no

tuples expire (i.e., query lifespan =∞). Thus, all tuples are processed in FIFO or-

der. The overhead of the state-of-the-art resource allocation methodologies (Sem,

Rand, PP, PR, PR-Prune) here corresponds to the cost to collect and evaluate run-

time statistics. This is the worst case scenario as although these systems will never

be overloaded, they will continue to evaluate how to allocate resources. This ex-

periment uses the Stock and News/Blog Data Set 1 where the window size is 1,000

tuples.

As shown by our results (Fig. 7.7 c), the overhead of PR-Prune compared to

the overhead of the alternative state-of-the-art resource allocation methodologies

is minimal. PR and PR-Prune require more detailed statistics than PP and Sem

(Sec. 6.4). That is, PP and Sem only collect statistics to activate static monitoring

levels. In contrast, PR-Prune and PR collect statistics to identify and activate static

and dynamic monitoring levels. Rand and Trad have respectively significantly less

and no statistics gathering overhead than the other approaches. However, as shown

in the experiments above, this minimal overhead is well worth it in systems that

require preferential resource allocation.

Memory Overhead. We now evaluate the average number of tuples in the state

and input queues of the last join operator (i.e., operator op2 in the Stock Market

Join Query) in the query pipeline using the scenario outline above (Fig. 7.7 a & b).

As per our results, the memory overhead of PR-Prune is comparable to the current

state-of-the-art approaches.

All approaches process tuples in FIFO order. In PP, PR, and PR-Prune, all

tuples will reside in the insignificant queue. The number of tuples in the queue
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of PR-Prune and PR is slightly higher than the other approaches. This is mainly

due to the extra overhead to support additional monitoring statistics which leaves

PR-Prune and PR less resources to process tuples.

Sem, Rand, and Trad process tuples in FIFO order. Their join operators inter-

nally determine when to purge their states by tracking when it processes the last

tuple from a given window. PR does not necessarily process tuples in arrival time

order. It uses punctuations to signal when to purge their states (Sec. 4.2.2). This

causes the purge to be delayed longer than for other methods and subsequently the

state to be slightly larger.

6.7.3 Summary of Experimental Findings

We now summarize our key findings.

1) PR-Prune increases the throughput of significant results (between 1.3 to 23

fold).

2) Regardless of the number of promising tuples in the streams, the query com-

plexity, or the number of dynamic evaluation paths, PR-Prune successfully pro-

duced a larger quantity of highly significant results than the state-of-the-art com-

petitors.

3) The optimization search time of PR-Prune is significantly lower than PR

especially for scenarios with dynamic evaluation paths that contain multiple oper-

ators (roughly 32% reduction in search time).

4) PR-Prune does require a modest CPU and memory overhead. As shown in

our experiments above, this overhead is justified in systems that must ensure that

resources are dedicated to producing the most significant query results first.
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Chapter 7

Join Processing in Preferential

Result Streams

7.1 Join Operators

This chapter provides details on our work towards Task 4 (i.e., Preferential Result

Join Operator). The main goal of Task 4 is to design a join operator that utilizes

the available CPU resources to maximize the production of significant results in

precedence order.

7.1.1 A General Stream Join Operator

A symmetric binary hash join maintains a state for each input stream that it com-

bines. For example in Figure 1.4, the join operator maintains one state for stock

stream s1 and news stream s2 respectively. The join operator processes tuples by

performing the following set of subtasks as one single atomic process:
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1. Select a tuple ti from an input queue to process next.

2. Insert this tuple ti into the state for tuple ti’s stream to serve as future join

partners for tuples that may arrive later.

3. Search the state of the opposite stream for the set of tuples JPi that match tuple

ti’s join attribute and fall into ti’s window. We refer to tuple ti as the probe tuple

as it probes the state, while we call the set of tuples JPi the set of join partners for

tuple ti.

4. Join probe tuple ti with each join partner tj in the set of join partners JPi to

produce join results (ti,tj ).

The join operator continues to execute this set of subtasks until either no re-

sources remain or all queues are empty.

The sequence of four subtasks executed by this join for a given probe tuple

constitutes one execution pass. We introduce the term atomic result production

to denote the process of producing all join results for a probe tuple in a single

execution pass.

7.1.2 PR Join Operator

We now review the enhanced symmetric hash join operator adopted by PR. The

special purpose enhancements include assigning significance properties to join re-

sults and scheduling to process incoming tuples in significance order. These en-

hancements are underlined in the list of subtasks below. Each join result (ti,tj ) is

assigned the highest significance properties of those of its probe tuple ti and its join

partner tj . This join operator processes tuples by performing the following set of

subtasks (See logic in Fig. 7.1).

1. Select a tuple ti to process next from the most significant input queue that contains
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tuples (line 6 in Fig. 7.1).

2. Change tuple ti’s significance properties. If tuple ti is a promising tuples tuple

and this join operator is tuple ti’s designated operator then tuple ti’s potential

significance properties are set to null. (lines 7-9 in Fig. 7.1).

3. Insert tuple ti into the state for tuple ti’s stream (line 10 in Fig. 7.1).

4. Search the state of the opposite stream for the set of join partners JPi for tuple ti

(line 11 in Fig. 7.1).

5. Join probe tuple ti with each join partner tj in JPi to produce join results (ti,tj ).

Each result tuple (ti,tj ) is assigned the highest significance properties of the probe

tuple ti and join partner tj (line 12 in Fig. 7.1). Output the join results (ti,tj ) (line 13 in Fig.

7.1).

Once all incoming tuples from one queue have been processed, then the incom-

ing tuples in the next highest significance queue are processed (lines 13-18 in Fig. 7.1).

This continues until either no resources remain or all queues are empty (line 4 in Fig.

7.1).

Clearly, this enhanced symmetric hash join adopted by PR also conforms to

atomic result production. Recall that this approach is result significance-agnostic

(Sec. 1.7.3), i.e., each tuple produces all possible results regardless of their signif-

icance.

7.2 Principles of PR-Join Strategy

7.2.1 Significance of a Join Result

The significance of a join result (ti,tj ) produced when processing tuple ti is affected

by the significance of tuple ti itself at the time the join result is formed.
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Algorithm State-of-the-Art Join( Qinc(s1) &Qinc(s2) incoming queues for streams s1 & s2, Cavail -
available resources)
1: for x = 1 to 2 do
2: Cavail(sx)← avail. res. to process tuples from sx
3: LevelProcessed← 1
4: while ((Cavail(sx) > 0) and (Qinc(sx) is not empty)) do
5: if (Qinc(sx, LevelProcessed) contains a tuple) then
6: select Tup← first tuple in Qinc(sx, LevelProcessed)
7: if (Tups designated operator is this join operator) then
8: set Tup’s potential significance to null
9: end if

10: insert Tup in the state for sx
11: search for join partners in the state of the opposite stream
12: join Tup with all join partners in the state of the opposite stream
13: place join results into input queue of next query plan operator
14: else
15: LevelProcessed← LevelProcessed + 1
16: end if
17: if LevelProcessed > max(Monitoring Level) then
18: LevelProcessed← insignificant tuples;
19: end if
20: end while
21: end for

Figure 7.1: State-of-the-Art Join operator

Observation 1: A tuple that arrives at a join operator may lose its significance

properties before it creates join results.

An incoming tuple ti to a join operator can have one of six types of significance

properties. Tuple ti can be either 1) only a significant tuple, 2) only a promising

tuple where the join operator is not the designated operator, 3) only a promising

tuple where the join operator is the designated operator, 4) both a significant tuple

and a promising tuple where the join operator is not the designated operator, 5) both

a significant tuples and a promising tuple where the join operator is the designated

operator, or 6) an insignificant tuple.

A tuple ti’s potential significance properties can be set to null before tuple

ti creates join results (Sec. 7.1.2 subtask 2). In particular, this occurs when an

incoming tuple ti is only a promising tuple and the join operator is the designated

operator (i.e., type 3 above) or both a significant tuple and a promising tuple where
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the join operator is the designated operator (i.e., type 5 above). In the former case,

tuple ti will be an insignificant tuple when tuple ti creates join results. In the later

case, tuple ti will be a significant tuple when tuple ti creates join results.

Thus there are only four types of significance that tuple ti may have when

it creates join results (subtask 5 in Sec. 7.1.2). Tuple ti can be either 1) only

a significant tuple, 2) only a promising tuple where the join operator is not the

designated operator, 3) both a significant tuple and a promising tuple where the

join operator is not the designated operator, or 4) an insignificant tuple.

Observation 2: Any join result created from a significant tuple ti at level lvlz is as

or more significant than the significance of the tuple ti itself when the join result is

formed.

This follows directly from the join operator definition (Sec. 7.1.2) as it assigns

the more significant rank of the two join partners to the join result at the time the

join result is formed.

Lemma 1 Consider that probe tuple ti and join partner tj create join result (ti,tj )

at join operator opo.

Case 1: If probe tuple ti is a significant tuple when join operator opo creates join

result (ti,tj ) then the result is guaranteed to be as or more significant than probe

tuple ti.

Case 2: If probe tuple ti is an insignificant tuple when join operator opo creates join

results (ti,tj ) then the significance of the result solely depends upon the significance

of join partner tj .

Proof In case 1, any join result (ti,tj ) generated by probe tuple ti will be as or more

significant than level lvlz (per Observation 2). On the other hand, in case 2, the
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significance of join result (ti,tj ) solely depends upon whether or not join partner tj

is significant (per Observation 2) as tuple ti is an insignificant tuple at the time the

join results (ti,tj ) are formed.

7.2.2 Processing Probe Depth

When the available CPU resources are limited, only the most significant join results

should be produced. We now consider which results should be produced by a given

probe tuple to ensure that only the significant join results at significance level lvlz

are produced first. The processing probe depth of probe tuple ti defines which

tuples that probe tuple ti should join with during a single execution pass of the join

subtasks (Sec. 7.1.2).

Lemma 2 Assume all join results more significant than level lvlz have been cre-

ated. Join operator opo is dedicating resources to produce as many join results at

level lvlz as possible.

Case 1: If probe tuple ti is a significant tuple at level lvlz then the processing probe

depth when operator opo processes probe tuple ti should be a full scan, i.e. atomic

result production (Sec. 7.1.1).

Case 2: If probe tuple ti is an insignificant tuple at level lvlz then the processing

probe depth when operator opo processes probe tuple ti should correspond to the

join results at significance level lvlz, i.e. non-atomic result production.

Proof In case 1, any join result (ti,tj ) generated by probe tuple ti will be as or

more significant than level lvlz (per Lemma 1). Assume that not all join results

(ti,tj ) produced by probe tuple ti are created. At some point, resources may be

allocated to producing join results less significant than level lvlz. If few resources
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are available then some join results at level lvlz will not be produced. The resources

allocated to producing the less significant join results could have been allocated to

producing such tuples. Thus, the probe tuple ti should be processed in its entirety.

In case 2, not all join results generated by probe tuple ti will be as significant as

level lvlz (per Lemma 1). Assume that all join results (ti,tj ) produced by probe tuple

ti are created. In this case, resources may be allocated to producing join results

less significant than level lvlz. If few resources are available then some join results

at level lvlz will not be produced. The resources allocated to producing the less

significant join results could have been allocated to producing such tuples. Thus,

the probe tuple ti should not be processed in its entirety. Probe tuple ti should only

join with significant join partners tj at level lvlz.

We now outline the process of non-atomic result production. In a nutshell, a

probe tuple ti only joins with join partners at a given significance level each time

a state scan occurs. To produce all join results for a given probe tuple requires

multiple executions of the join operator search and join subtasks. Each execution

pass results in the creation of join results only at one given significance level.

Non-atomic result production is beneficial when promising tuples arrive at their

designated operator and the significance of their join partners varies. Assume that

promising tuple ti arrives at its designated operator. Consider the following sce-

narios. Case 1: All tuple ti’s join partners are significant tuples at level lvlz. In this

case, once probe tuple ti joins with all its join partners at significance level lvlz then

no join partners are left for probe tuple ti to join with. Thus, there is no need to run

multiple execution passes (i.e., non-atomic result production) as a single pass will

results in the creation of all join results. Case 2: Some of tuple ti’s join partners

are less significant than level lvlz. In this case, this execution pass would only pro-
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duce join results at significance level lvlz. This would delay the production of tuple

ti’s less significant join results and free resources to produce results at significance

level lvlz from other tuples, i.e., it provides a benefit.

7.2.3 Processing Order of Probe Tuples

Beyond the processing probe depth of each probe tuple, we also consider the design

choice of which probe tuples should be processed first. In particular, we analyze if

we should process a significant tuples probe tuple at level lvlz versus a promising

tuples probe tuple at level lvlz first (or visa versa).

Observation 3: Unless the join operator is the last operator in the query pipeline,

there is no guarantee that a join result (ti,tj ) regardless of the type of it’s signif-

icance properties will satisfy all query constraints remaining in the pipeline and

thus produce a significant final query result.

Hence we propose to process significant tuples and promising tuples at the

same level in arrival time order.

7.2.4 Atomic & Non-Atomic Result Production

Theorem 6 If probe tuple ti is significant at level lvlz and atomic result production

is used to produce all of tuple ti’s join results then all join results (ti,tj ) will be as or

more significant than level lvlz.

Proof This is directly derived from Lemma 1. Any join result of probe tuple ti is

guaranteed to be as or more significant than level lvlz. Thus, if join operator opi

performs atomic result production on probe tuple ti, then all results produced will

also be as or more significant than level lvlz.
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Theorem 7 If probe tuple ti is insignificant and non-atomic result production is

used to join tuple ti only with significant join partners tj at level lvlz then all their

join results (ti,tj ) will be at significant at level lvlz.

Proof By Lemma 1, join result (ti,tj ) is guaranteed to be as significant as level lvlz.

Thus if join operator opi performs non-atomic result production on probe tuple ti

(i.e., only joins tuple ti with significant join partners tj whose level is lvlz) then each

result produced will be at significance level lvlz.
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Figure 7.2: Join State Example

7.3 PR-Join Design & Algorithm

To maximize the production of significant join results in precedence order, we now

design a preferential result join operator (or PR-Join) that supports both atomic and

non-atomic result production based on Thms. 6 - 7.



7.3. PR-JOIN DESIGN & ALGORITHM 188

7.3.1 PR-Join Run-Time Infrastructure Design

We first describe the data structure we design to efficiently support both atomic and

non-atomic result production.

Infrastructure Design to Store Probe Tuples: PR-Join must manage the inter-

ruption and resumption of probe runs. It must offer a light-weight mechanism to

correctly maintain their partial join states and overall join status of progression to

assure that inprocess probe tuples can produce results in the future. This includes

not only the management of unprocessed incoming tuples but also the status of

the partially processed probe tuples due to non-atomic result production. Such in-

process probe tuples may not have produced all their join results yet. Recall that

non-atomic result production joins a probe tuple with join partners at a given sig-

nificance level. To efficiently locate probe tuples by the significance levels that

they need to produce join results, we thus propose to create an inprocess queue for

each significance level and one for insignificant tuples. Each inprocess probe tuple

ti is stored in the inprocess queue for the next significance level at which it next

should create results for if it were to be awoken again due to remaining resources.

Each unprocessed incoming tuple ti is stored in the incoming queue according to

its own significance level.

State Design to Store Join Partners: To support atomic result production, tuples

stored in the state must be efficiently locatable by join criteria. To support non-

atomic result production, tuples stored in the state must be found by both their

significance level and join criteria. To complicate matters, PR does not always pro-

cess tuples in arrival time order. As a consequence, states may maintain tuples that

belong to multiple windows. Hence the state design must support flexible access
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to stored tuples by join criteria, window, and significance level. Beyond search re-

quests, each purge state scan requires locating tuples by its window. Section 7.3.2

covers how PR-Join efficiently purges tuples from the join states. Both search re-

quests and purge processes share the requirement of locating stored state tuples by

the windows they belong to.

To efficiently support both operations, stored tuples are first grouped by the

windows they belong to. To quickly identify stored tuples that fall within a given

window, states are divided into groups of tuples (a.k.a. panes) of a constant length

(Sec. 4.2.2). When creating results, only panes who compose the query window of

the result being generated are searched.

The goal of the indexing by significance levels is to identify the few significant

tuples at a given desired significance level amongst the multitude of tuples in the

stream. Thus, we estimate that there are likely to be more tuples that have the same

join criteria as compared to the number of tuples that have the same significance

level. Hence, to limit the length of the search scan, we next index stored tuples

on join criteria. Namely, within each pane, tuples are hashed based on their join

criteria. Lastly, tuples with the same join criteria must be efficiently located by

their significance level. The number of significance levels is narrow, countable,

and a known constant. Thus rather than creating a hash key for each significance

level, an array of linked lists is created. The number of elements in the array is

equal to the number of monitoring levels plus 1. Namely, there is one linked list

in the array for each significance level and one for insignificant tuples. Tuples are

stored within the linked list that represents their significance.

Consider the insertion of a stock tuple t1 < PepsiCo, $45.13 > that belongs to pane

48 and significance level 1 into the state for stream s1 (Fig. 7.2). First, the group of
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tuples for pane 48 is located by locating the hash key for pane 48. Next, the hash

bucket applied to the join attribute (i.e., A1 = PepsoCo) is found. Finally tuple t1 is

appended to the linked list for significance level 1.

Algorithm PR-Join(Qinc(s1)&Qinc(s2) incom. Qs. for s1&s2, Cavail avail. res., Qinp(s1)&Qinp(s2)
inpro. Qs. for s1&s2)
1: for x = 1 to 2 do
2: Cavail(sx)← avail. res. to process tuples from sx
3: LevelProcessed← 1
4: while ((Cavail(sx) > 0) and (Qinc(sx) and Qinp(sx) are not empty)) do
5: if (Qinc(sx, LevelProcessed) or Qinp(sx, LevelProcessed) contains a tuple) then
6: select Tup ← oldest tuple of the first tuple in Qinc(sx, LevelProcessed) or

Qinp(sx, LevelProcessed)
7: if (Tups poten. designated operator is this PR-Join Op) then
8: set Tup’s potential significance to null
9: end if

10: if (Tup is from an incoming queue) then
11: insert Tup in the state for sx
12: end if
13: if (Tup is insignificant or from inprocess queue) then
14: search for join partners in the state of the opposite stream for level LevelProcessed
15: join Tup with only the join partners in the state of the opposite stream for level LevelProcessed
16: if (LevelProcessed 6= insignificant) then
17: place Tup into the queue into the next level more significant than LevelProcessed that

contains tuples
18: end if
19: else
20: search for join partners in the state of the opposite stream
21: join Tup with all join partners in the state of the opposite stream
22: end if
23: place join results into input queue of next query plan operator
24: else
25: LevelProcessed← LevelProcessed + 1
26: end if

27: if LevelProcessed > max(Monitoring Level) then
28: LevelProcessed← insignificant tuples;
29: end if
30: end while
31: end for

Figure 7.3: Preferential Result Join Operator PR-Join
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7.3.2 PR-Join Algorithm

PR-Join Logic

We now outline our proposed PR-Join algorithm (Fig. 7.3). PR-Join processes

tuples using the following set of subtasks. Any enhancements to the state-of-the-

art join [WA91] in Section 7.1.2 are underlined.

1. Select which tuple ti to process next from the most significant input or inprocess

queue that contains tuples (line 6 in Fig. 7.3).

2. Change tuple ti’s significance properties. If tuple ti is a promising tuple and this

join operator is ti’s designated operator then ti’s potential significance properties

are set to null. (lines 7-9 in Fig. 7.3).

3. Insert tuple ti into the state for tuple ti’s stream if tuple ti is from an incoming queue

(lines 10-12 in Fig. 7.3).

4. Search the state of the opposite stream depending upon the significance of tuple

ti.

4. a) if tuple ti is insignificant or from an inprocess queue then search the state of

the opposite stream for the set of join partners JPi for tuple ti with their significance

level equal to that of the queue that tuple ti originated from (line 14 in Fig. 7.3). (Non-

Atomic Result Production)

4. b) Otherwise if tuple ti is significant and from an incoming queue then search the

state of the opposite stream for the set of all join partners JPi for tuple ti (line 20 in

Fig. 7.3). (Atomic Result Production)

5. Place probe tuple ti into the inprocess queue of the next significance level to be
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processed that contains tuples (lines 16-18 in Fig. 7.3).

6. Join probe tuple ti with each join partner tj in JPi to produce join results (ti,tj ).

Each result tuple (ti,tj ) is assigned the highest significance properties of the probe

tuple ti and its join partner tj (line 15 or 21 in Fig. 7.3). Output the join results (ti,tj ) (line

23 in Fig. 7.3).

Once all tuples in the input and inprocess queues from one significance level

have been processed, then all tuples in queues for the next highest significance level

are processed (lines 25-29 in Fig. 7.3). This continues until either no resources remain

or all queues are empty (Fig. 7.3 line 4).

Discussion: During atomic result production the entire set of subtasks is executed

once for a single probe tuple and all join results are produced. When PR-Join

utilizes non-atomic result production some of the subtasks are executed multiple

times by a single probe tuple. During the first probe, the tuple is selected (subtask

1). Its significance properties are changed (subtask 2). The tuple is inserted into

the state (subtask 3). Then join results are created at the most significant level

(subtasks 4a, 5, and 6). In subsequent probes, the tuple is again selected (subtask

1). Then join results are created at the next most significant level (subtasks 4a, 5,

and 6).

Duplicate Handling

We now demonstrate that care must be taken to avoid the generation of duplicate

results. Consider the processing of two tuples that can create a join result at oper-

ator op1 (Fig. 1.4). One tuple t1 is a significant tuple from stock stream s1 assigned

to pane 48 and level 2. The other tuple is a promising tuple t2 from the news stream

s2 also assigned to the same pane 48 with operator op1 is its designated operator.
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Let us assume that promising tuple t2 is processed first using non-atomic result

production because tuple t2 is not significant when its join results are created. First,

tuple t2’s potential significance properties are set to null because operator op1 is

its designated operator. Next, tuple t2 is added to the state for news stream s2.

Then tuple t2 creates partial join results by scanning the stock stream state for join

partners within the query window (composed of 4 panes, i.e., panes 45, 46, 47, 48),

join criteria (i.e., company name = PepsiCo), and significance level = 1. Under pane

48, tuple t2 will create 3 results at significance level 1. Finally the tuple t2 is placed

in the inprocess queue for significance level 2.

Next, the significant tuple t1 is processed using atomic result production be-

cause tuple t1 is significant when its join results are created. First, tuple t1 is added

to the state for stock stream s1. Then tuple t1 scans the news stream state for

any join partners within the window (i.e., panes 45, 46, 47, 48) and join criteria (i.e.,

company name = PepsiCo). Join result (t2,t1) will be created.

Later on, after all join results at significance level 1 driven by processing of

other tuples have been created, PR-Join allocates resources next to produce join

results at significance level 2. PR-Join selects tuple t2 from the inprocess queue

for significance level 2, then tuple t2 resumes its processing. Now, tuple t2 creates

partial join results by scanning the stock stream state for join partners within the

query window (composed of 4 panes, i.e., panes 45, 46, 47, 48), join criteria (i.e.,

company name = PepsiCo), and significance level = 2. During this scan, join result

(t2,t1) will be created again because t1 is stored in the state within t2’s query window,

join criteria, and under significance level = 2. Thus, join result (t2,t1) could be

produced more than once (i.e, duplicated result).

The issue of duplicate results is neither unique nor new. Rather, it is also expe-
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rienced by adaptive query processing techniques (i.e., Eddies [AH00] and QMesh

[NRB09]) whenever the join operator subtasks are also not performed atomically.

In the case of Eddies [AH00] and QMesh [NRB09], all incoming tuples are stored

in the states before they are selectively routed to operators in different orders. That

is, the join operator Insert subtask (Sec. 7.3.2 subtask 3) is executed for possibly

several tuples before all join results for these tuples are created. In our case, a probe

tuple may not complete the Search (Sec. 7.3.2 subtask 4) and Join subtasks (Sec.

7.3.2 subtask 5) for all join results before another tuple is selected to be processed,

i.e., Select subtask (Sec. 7.3.2 subtask 1) is executed. These approaches solve this

issue by utilizing a last push method where the last arriving join partner (i.e., with

the latest time stamp) pushes the results out [AH00, NRB09]. That is, the arrival

time is the determining factor for join result production.

We propose to use a similar approach in PR-Join. Assume that tuples ti and

tj create a join result (ti,tj ). PR-Join only allows the tuple that is the last to begin

probing amongst tuples ti and tj to create the join result (ti,tj ). PR-Join assigns each

incoming tuple a start probing time, namely, the time PR-Join begins searching for

join partners, i.e., executes (Sec. 7.1.2 task 4). PR-Join only joins probe tuple ti

with stored join partners who began probing before probe tuple ti. This eliminates

two tuples from creating the same results regardless of their significance or the

order in which the tuples produce results.

Theorem 8 PR-Join creates no duplicate join results.

Proof Consider join result (ti, tj ) produced by a PR-Join operator. If tuple ti begins

probing before tuple tj , then only when tuple tj is probing will the join result (ti, tj )

be created. If tuple tj uses atomic result production to create join results, then
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the opposite state will only be scanned once by tuple tj and the join result (ti, tj )

will be produced once by the probing of tuple tj . If tuple tj uses non-atomic result

production to create join results, then the opposite state may be scanned more than

once by tuple tj . However, each scan will target join partners with a particular

significance level. Each tuple ti will be stored exactly once in the state according

to its significance level. The significance level of a stored tuple in the state will

never change. Thus, the PR-Join operator opo will produce join result (ti, tj ) exactly

once, namely, during the probing of tuple tj . Hence PR-Join will not produce any

duplicate results.

Theorem 9 PR-Join ensures the production of join results in significance order

based upon the estimated significance of each probe tuple’s join results.

Proof Consider join result (ti, tj ) that can be produced by a PR-Join operator. As-

sume that tuple tj will create join result (ti, tj ), namely, tuple ti begins probing before

tuple tj . There are only two possible types of significance properties that tuple tj

can have when join result (ti, tj ) is created, namely, either tuple tj is 1) significant

or 2) insignificant.

In either case, tuple tj is selected (subtask 1) when resources are being allo-

cated to producing join results at the significance level of input queue in which

tuple tj resides.

In case 1, join result (ti, tj ) will be at least as significant as the input queue in

which tuple tj resides (Thm. 6). Join result (ti, tj ) will be created immediately after

tuple tj is taken from the input queue (Thm. 6).

In case 2, join result (ti, tj ) will only be as significant as tuple tis significance

level (Thm. 7). Join result (ti, tj ) will be created when PR-Join is allocating re-
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sources to produce tuples at tuple tis significance level and tuple tj resides in the

inprocess queue of tuple tis significance level.

Hence join result (ti, tj ) will be produced when resources are being allocated

to produce results at the estimated significance of tuples ti and tj , i.e., PR-Join

produces results in significance order.

Purging Policies. Beyond limited CPU resources, PR must also determine which

tuples to store when limited memory resources do not allow all tuples to be stored.

To achieve this, PR-Join utilizes the pane structure and purging policies from Sec-

tion 5.4.4.

7.4 Experimental Evaluation of PR-Join

7.4.1 Experimental Set Up

Alternative Solutions. We compare PR using PR-Join (or PR-Join) to the state-

of-the-art PR join strategy (or PR) (Sec. 7.1.2) (Ch. 4 & 6). The key difference be-

tween these two solutions is that only PR-Join supports non-atomic result produc-

tion. That is, both pull the same significant tuples forward. However, only PR-Join

is join result significant aware. In essence, we evaluate if and when non-atomic re-

sult production (PR-Join) is better than atomic result production (PR) (Sec. 1.7.3).

We also study the differences between PR-Join and symmetric binary hash joins

implemented in the state-of-the-art resource allocation methodologies, namely, se-

mantic (or sem), and random (or rand) shedding. We analyze the state-of-the-art

resource allocation methodologies to demonstrate that a tuple significance-agnostic

technique will not resolve the problems addressed by PR-Join (Sec. 1.7.3). In ad-

dition, we compare PR-Join to symmetric binary hash joins implemented in a tra-
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ditional DSMS with no preferential resource allocation optimization (or trad). We

analyze trad to show that our experimental scenarios require a resource allocation

methodology (such as PR) to ensure the production of the most significant query

results.

Experimental Methodology. We first determine the key factors that most di-

rectly affect PR-Join. The quantity of significant tuples at different levels affects

the number of tuples in the workload that may benefit from non-atomic result pro-

duction. The window size affects the amount of work that is performed by a join

operator. The larger the window size the more tuples that each join operator will

need to probe to create results. Similarly, increasing the number of join operators

in a query increases the complexity of the pipeline. We aim to demonstrate that

PR-Join is effective in both simple (containing one join) and complex (containing

many joins) query pipelines. Increasing the window size and query complexity

variables puts more pressure upon the system by increasing the workload of signif-

icant tuples to process.

Given this analysis, we explore the following: 1) Is our proposed PR-Join join

strategy more effective at increasing the throughput of the most significant results

than the state-of-the-art solutions? 2) What effect does the number of significant

tuples have on the effectiveness of the PR-Join strategy? 3) How does the size

of the window or the number of join operators in a query affect the throughput

of the most significant results produced by non-atomic (PR-Join) vs atomic result

production (PR)? 4) What is PR-Join’s runtime CPU and memory overhead in the

worst case scenario?

Data Streams and Queries. Unless noted we utilize the Stock Market Join Query

in Section 1.3.2. Similar to the monitoring levels defined in Section 6.1.1, there are
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three monitoring levels that define which tuples in the stock stream are significant.

The stock market stream used is the same stock market stream generated in

Section 5.5.

News and blog data streams used is the same news and blog streams generated

in Section 5.5.

Hardware. All experiments are conducted on nodes in a cluster that consists of 20

processing nodes. Each host has two AMD 2.6GHz Dual Core Opteron CPUs and

1GB memory.

Metrics and Measurements. Our experiments measure throughput separately for

each monitoring level. All experiments were run 3 times for 10 minutes. The results

are averaged over these runs.

7.4.2 Experiments

Effectiveness at Increasing Throughput of Most Significant Results

First, we compare the throughput achieved by each of the alternative approaches

(Sec. 7.4.1) using Stock Market Join Query and Data Set 1 where the query lifespan

is 1,000,000 ns and the window size is 500 tuples. Figure 7.4 a shows the average

cumulative throughput for monitoring level 1 over a 10 minute run.

Overall PR-Join compared to all alternatives consistently produces the largest

number of most significant results for monitoring level 1. As the overall cumulative

throughput in Figure 7.4 d shows, PR-Join produced substantially more of the most

significant results (i.e., level 1) than the other methods. PR-Join produced between

1.5 and 190 fold more of the most significant results than the other methods. Now

consider the second most significant results (i.e., level 2). PR-Join compared to
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Figure 7.4: Effectiveness at Increasing Throughput of Most Significant Results

PR achieves roughly the same number of results. While compared to sem, rand,

and trad, PR-Join produced significantly more results. Finally, consider the least

significant results, (i.e., level 3). PR-Join produced less results than PR, while

compared to sem, rand, and trad, PR-Join still continues to produce significantly

more results. This is exactly how PR-Join should perform. Namely, the goal of

PR-Join is to first dedicate the resources to producing the most significant results,

followed by the next most significant results, and so on until no resources remain.

We observe that compared to the state-of-the-art join operator using the same

PR system, PR-Join increases the throughput of the most significant query results.

This is due to the key feature of PR-Join, namely, non-atomic result production.

Recall that PR and PR-Join both use the same preferential resource allocation opti-

mization, i.e., PR. However, PR-Join supports non-atomic result production while
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PR only supports atomic result production. Our results support that non-atomic

result production (i.e., PR-Join) more effectively dedicates resources to producing

the most significant results than atomic result production (i.e., PR).
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Figure 7.5: Overall Throughput

At the other extreme, trad produced very few significant query results. In this

experiment, there are too many incoming tuples to process all of them within the

query lifespan limit. Trad does not select which tuples are processed using any

notion of significance. As resources are scarce, this leads to few significant results

being produced. This demonstrates that in this overloaded scenario a resource

allocation methodology is required.

Figure 7.4.2 shows the overall throughout of all query results (regardless of

significance) using the experimental set up outlined above. Overall compared to

the alternatives, PR-Join achieved the lowest overall throughput. PR-Join produced

1% less results than PRS. It produced 6% less results than the resource allocation

approaches (sem and rand). Compared to trad, it produced 12% less results. This

is by design. Both PR and PR-Join are designed for EMAs where they is a need to

ensure that at all costs certain tuples are processed. The overhead to support these
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approaches takes away resources from processing insignificant tuples.
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Figure 7.6: Varying the Number of Significant Tuple Join Partners at a Designator
Operator

Varying the Number of Significant Tuples Join Partners at a Designator Op-

erator

This experiment again uses Stock Market Join Query where the query lifespan =

1,000,000 ns and the window size = 500 tuples. However, we now use four distinct

Data Sets, namely, DS25, DS50, DS75, and DS100. In every Data Set, the news

and blog stream contains 2 sectors that have potential significance at level 1. These

promising tuples news and blog tuples may join with significant tuples stock tuples

at levels 1, 2, 3, and NA (or no significance). Each data set adjusts the number of
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join partners (i.e., stock tuples) for the incoming promising tuples (i.e., promising

tuples news and blog tuples) that are insignificant. Non-atomic result production

may skip (or delay) producing results from such insignificant join partners. In

DS25, of all possible join partners for the promising tuples, 25% are significant

tuples and 75% are insignificant tuples. That is, for each promising tuple 75% of

all possible join partners have no significance. The production of results from these

tuples may be skipped. Similarly, of all possible join partners for the promising

tuples in DS50, DS75, and DS100 respectively have 50%, 25%, and 0% have no

significance. That is, in DS100, all such join partners are significant.

Figures 7.6 a-d show the average cumulative throughput for monitoring levels

1 - 3 respectively after 10 minutes for DS25, DS50, DS75, and DS100. For DS25,

PR-Join produced the largest quantity of all significant results (i.e., levels 1, 2, 3).

While in the other data sets, PR-Join only produced the largest quantity of the most

significant results (i.e., level 1), up to 614 fold more results. PR-Join’s closest com-

petitor is PR. For DS50, DS75, and DS100, PR produced more significant results

at levels 2 and 3 than PR-Join. This is as expected. PR-Join achieves the most

gains when the non-atomic result production delays or halts the production of less

significant or insignificant results. DS25 offers the greatest opportunity for skip-

ping the production of such results. In contrast, DS100 has no such opportunity.

Clearly, PR-Join is best suited in situations where there are opportunities to skip

or delay the production of certain results. These opportunities only occur when

promising tuples exist whose join partners at the designator operator come from a

range of significance levels.
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Varying the Size of the Workload

We now focus on the pros and cons of using non-atomic versus atomic result pro-

duction in the PR system. For the next two, we compare PR-Join to PR across

varying workloads

Increasing the workload does not guarantee an increase in the number of sig-

nificant query results. All experiments are allocated the same amount of CPU re-

sources. Each tuple processed is bound by the same query lifespan (i.e., 1,000,000

ns). There is a threshold that when too many significant join results are produced

by operator op1 then operator op2 may no longer be able to process all of them within

the query lifespan. Hence, there is no correlation between the query window size

or complexity and the cumulative throughput of significant query results.

Monitoring Levels

C
u

m
u

la
ti

ve
 T

h
ro

u
g

h
p

u
t 

(i
n

 t
u

p
le

s)

0

250,000

500,000

750,000

1,000,000

1,250,000

1 2 3

PRS
PR-Join

Monitoring Levels

C
u

m
u

la
ti

ve
T

h
ro

u
g

h
p

u
t 

(t
u

p
le

s)

0

500,000

1,000,000

1,500,000

2,000,000

1 2 3

PRS
PR-Join

a) Throughput when window size = 500 tuples b) Throughput when window size = 1000 tuples

Monitoring Levels

C
u

m
u

la
ti

ve
T

h
ro

u
g

h
p

u
t 

(t
u

p
le

s)

0

300,000

600,000

900,000

1,200,000

1,500,000

1 2 3

PRS
PR-Join

c) Throughput when window size = 2000 tuples
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Varying Query Window Sizes. This experiment uses the Stock Market Join Query

and Data Set 1 where the query lifespan = 1,000,000 ns. In this experiment we now

vary the window size from 500, 1,000, to 2,000 tuples. Figures 7.7 a-c show the av-

erage cumulative throughput produced for monitoring levels 1 - 3 respectively over

10 minutes. Increasing the window size in turn increases the number of significant

join results produced by operator op1 (Fig. 1.4).

This experiment assesses how PR-Join performs when the join probe workload

size varies due to having to scan longer and longer states. Clearly, the join opera-

tors have fewer incoming significant tuples to probe against for a 500 versus 2,000

query window. Our proposed PR-Join produced more of the most significant re-

sults (i.e., level 1) than PR. PR-Join still produced as many or more of the second

most significant results (i.e., level 2) than PR. In the 500 window size experiment,

PR-Join dedicates the resources to producing the significant results from the two

highest significance levels (i.e., levels 1 and 2). It thus outperforms PR. However,

there are inadequate resources for PR-Join to also produce more of the least sig-

nificant results (i.e., level 3 in this case) than PR. The number of most significant

results produced by PR-Join is not affected by the join probe workload size.

Varying the Query Complexity. This experiment uses Data Set 1 where the query

lifespan = 1,000,000 ns and the window size is 500. We now vary the number of

join operators in the query from 2, 4, to 8 join operators. More precisely, the 2 join

operator experiment uses the Stock Market Join Query. The 4 join query adds two

more joins to the Stock Market Join Query where each join combines the current

query result with a news stream. Similarly, the 8 join query adds six more joins

to the Stock Market Join Query. The join probe workload size varies when there

are 2, 4, and 8 join operators in the query. This experiment evaluates if non-atomic
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Figure 7.8: Varying the Query Complexity

result production continues to be effective in producing the most significant query

results first even for complex query pipelines.

Figures 7.8 a-c show the average cumulative throughput for monitoring levels 1

- 3 respectively produced over 10 minutes. Overall PR-Join consistently produced

many more significant results at level 1 than PR. For the second most significant

results (i.e., level 2), PR-Join produced slightly less results than PR. Finally, com-

pared to PR for the least significant results (i.e., level 3) PR-Join produced less

results. In summary, regardless of the query complexity (i.e, number of PR-Joins

in a query) PR-Join effectively produces the most significant join results first.

Overhead. These experiments use Stock Market Join Query and Data Set 1 where

the query lifespan =∞, and the window size = 250 tuples and the worst case for

PR-Join. The worst case arises when no monitoring levels are defined and no tuples
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Figure 7.9: Memory and Execution-Runtime CPU Overhead

expire (i.e., query lifespan =∞). As a consequence, no tuples are significant and

all tuples are ultimately processed in FIFO order by all methods. This is the worst

case for PR-Join as it still continues to carry the overhead of evaluating whether

or not to perform non-atomic result production. Yet, no non-atomic join result

production will occur. In addition, PR-Join also carries the statistics collection

overhead required by all the other resource allocation methodologies, namely, the

cost to gather and evaluate runtime statistics. The statistics collection overhead

takes both CPU and memory resources away from the processing of tuples. Even

though in these experiments the system is not overloaded, these methodologies
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would continue to evaluate how to best allocate resources.

Execution-Runtime CPU Overhead. This experiment evaluates the runtime over-

head by measuring the cumulative throughput using the worst case for PR-Join

outlined above. As shown by our results (Fig. 7.9 c), the overhead of the PR-

Join operator is comparable to the state-of-the-art resource allocation methodolo-

gies. Namely, the difference between the throughput of PR-Join and PR is only

1.3%. Similarly, PR-Join produced only slightly fewer results after 10 minutes than

sem and rand in this worst case, namely 1.8% and 1.3% respectively. Compared to

trad (which has the lowest overhead), PR-Join performed as well as the alterna-

tive methodologies. Trad produced roughly 6% - 9% more results than the other

approaches.

Of all these solutions, trad has the lowest execution run-time overhead due to

not gathering any statistics. Sem and rand have the next highest execution run-time

overhead. Their statistics gathering overhead is simpler than that of the PR system

(used by both experimental solutions PR-Join and PR). These approaches only

gather statistics on significant tuples. In contrast, the PR system gathers statistics

on both significant tuples and promising tuples. Thus, PR-Join and PR have the

highest execution run-time overhead.

Memory Overhead. This experiment also uses the worst case for PR-Join outlined

above. We now measure the memory overhead, namely, the average number of

tuples in the state and input queue of the last join operator (i.e., join operator op2 in

the Stock Market Join Query) (Fig. 7.9 a & b).

Trad has the fewest tuples in its queues. Trad has the lowest execution run-

time overhead and thus can devote more CPU cycles to processing tuples. Hence,

its queue is the smallest. Both sem and rand have the next largest number of tuples
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in their input queues. This is as expected. Sem and rand have the next highest

execution run-time overhead. Finally, both PR-Join and PR have the largest number

of tuples in their input queues. They have the highest execution run-time overhead.

Sem, rand, and trad systems store tuples in their join operators by their join

attribute. PR (Ch. 4 & 6) stores tuples in their join operators by their window

pane and join attribute, while PR-Join stores tuples by their window pane, join

attribute, and significance level (Sec. 7.3.1). The PR-Join design relies upon the

physical design to support non-atomic result production (Sec. 7.3.1). Thus, given

the physical designs, PR-Join takes longer to store tuples than PR. The amount

of tuples stored in a state is affected by the overhead to store tuples by the given

method. However, our results show that the cumulative number of most significant

results produced by PR-Join (Fig. 7.9 c) is not limited by its state sizes.

7.4.3 Summary of Experimental Findings

We now summarize our key findings:

1) When resources are scarce, PR-Join consistently increases the throughput of

the most significant query results compared to the alternative solutions.

2) Regardless of the join probe workload size, PR-Join is effective at increasing

the throughput of the most significant query results.

3) No matter what the complexity of the query is (number of joins in the query),

PR-Join increases the throughput of the most significant query results.

4) PR-Join is most beneficial when there are opportunities to skip or halt the

production of less significant join results. This occurs when there exists promis-

ing tuples whose join partners at the designator operator come from a range of

significance levels.
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5) The execution-runtime CPU overhead of the PR-Join operator is compara-

ble to that of the state-of-the-art resource allocation methodologies. The memory

overhead of PR-Join is within practical limits of these approaches as well.
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Chapter 8

Conclusions of This Dissertation

The goal of this dissertation is to introduce models and specialized operators to

support targeted prioritized processing data stream systems (TP). As illustrated

by real events [Pre10, Net12], EMAs may not be able to process all the incoming

data within the query lifespan. It is critical to ensure that the EMAs do not shut

down and that the monitoring of certain objects continues until additional resources

(if available) can be provided. TP supports these requirements. This dissertation

addresses the problems of designing TP models that support significance determi-

nation using dynamic and/or static criteria. We also proposed new query operator

designs to support the efficient production of the most significant correct results

generated from subsets of critical tuples.

The key contribution of this dissertation is to introduce a new data stream query

optimization approach that efficiently determines how best to allocate resources to

ensure the processing of certain subsets of tuples within the query pipeline. Our

execution infrastructures support the online adaption of how resources are allocated

without requiring any infrastructure changes. The operators we proposed produce
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accurate results while ensuring that resources are allocated to producing the most

significant results first. We introduce cost models that factor in the overhead of

precedence determination. Our systems support complex and costly precedence

determination.

The specific highlights of the four topics in this dissertation are:

First, Proactive Promotion (PP) takes an innovative approach towards address-

ing the problem of aligning resource allocation to the significance of tuples and the

current system load. Our key contribution is to show that PP is a viable approach

towards providing preferential resource allocation based upon user requirements

and the current system load. The rank classifier operators and our enhancements to

standard operators effectively pull more significant tuples ahead of less significant

ones. The PP Optimizer efficiently locates the optimal PP plan and triggers the

adaption of which and where precedence criteria are evaluated by sending notifi-

cations to operators. Using these notifications, the PP Executor adjusts resource

allocation online without requiring any expensive infrastructure changes. Our ex-

periments confirm that when priority resource allocation is needed, PP consistently

lowers latency and increases throughput for significant results compared to tradi-

tional DSMS and shedding approaches.

Second, the TP-Ag operator tackles the unsolved problem of generating reli-

able results from incomplete aggregation group populations created by TPs. Prior-

ity driven, TP-Ag produces non-skewed results by determining at run-time which

combination of subset(s) (if any) are used to generate results. To achieve this,

TP-Ag uses a carefully designed estimation model and application of Cochran’s

sample size methodology [Coc77] to measure the accuracy of sample populations

from which the results are carefully constructed. Our experimental study confirms



CHAPTER 8. CONCLUSIONS OF THIS DISSERTATION 212

that TP-Ag is effective at increasing the percentage of correct aggregate results

produced in TPs (TP-Ag produces up to 91% more correct aggregate results).

Third, PR-Prune, an innovative preferential resource allocation methodology,

makes the following important contributions. PR-Prune efficiently locates online

dynamic criteria that are critical for the production of significant query results.

Our PR infrastructure allows resources to be quickly shifted to pull critical tuples

forward. PR supports the adaption of which, where, and when critical tuples are

preferentially allocated resources in the pipeline. Our PR infrastructure supports

the online adaption of the rank of each tuple. Our experimental study confirms that

when priority resource allocation matters and promising tuples exist, PR-Prune

consistently increases the throughput for the most significant results (between 1.3

to 23 fold) compared to the state-of-the-art approaches.

Finally, the PR-Join operator is the first to support non-atomic join result pro-

duction. Namely, PR-Join discerningly interrupts and reinstates the probe opera-

tion of specific tuples to control the production of more significant and delay the

production of less significant join results. In addition, PR-Join selectively coordi-

nates which join results are produced to ensure that only correct and no duplicate

join results are produced. Our experimental study confirms that PR-Join is very

effective at increasing the throughput of the most significant results (up to 190 fold

more significant query results) in systems that experience resource duress and thus

require preferential resource allocation.

Our TP systems have achieved the ability to allow the user to control which

tuples are allocated resources throughout the query plan. This approach can be uti-

lized by any DSMS that must ensure that certain tuples are processed. It is helpful

to any DSMS where certain results are more important to produce and resources
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may be limited. Our TP systems and operator designs are well documented. This

makes it easy for other developers to implement. Our next critical step is to design

a TP system to support the needs of multiple P-CQL queries.
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Chapter 9

Ideas for Future Work

The concepts presented in this dissertation have opened possible directions for fu-

ture research.

9.1 Multi-Query TP Processing

Any stream source of value is likely going to have multiple consumers interested

in monitoring its data. Thus the processing of a workload composed of multiple

P-CQL queries (Sec. 4.1.1) must be tackled, namely, workloads with two layers

of priorities (query priority and a finer tuned tuple priority). In a nutshell, there

are three issues that must be investigated, namely, handling of multiple possibly

conflicting significance levels by different queries, sharing of processing segments

among queries, and the combination of the two.

Modeling of Priority of TP Query Workloads. First consider the simpler

case where the queries in the workload are not sharing any computations. In this

case, the TP resource allocator must still consider how the allocation of resources
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across queries is guided by the respective priority levels. This will require a cal-

ibration amongst the users and their specification models; for example, is a sig-

nificance level 1 specified by user U1 equal or more important than a significance

level 2 specified by user U2. For this, the multi-tiered TP model could be extended

to also include the importance of users relative to other users as well as the rel-

ative importance of queries by the same user. Once the TP model is extended to

support such significance modeling, the different scales of significance could be

normalized into one unified scale.

Handling Significance Differences Across Queries. Given such a uniform

scale, now consider three different cases. First, consider that one query Q1 is

strictly more significant than another query Q2, meaning all the priority subsets in

Q1 are more significant than any of the priority subsets in Q2. In this case, the re-

sources would be given first to promote tuples for Q1 before resources are allocated

to promoting tuples related to Q2. This may starve query Q2. Thus fairness of al-

location to assure some minimal level of activity for query Q2 must be addressed.

Next queries may be impartially significant to each other, in that no query is strictly

more significant than any other queries in the set. Then the resources allocated will
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swap back and forth between the queries as dictated by the priority subsets. That is,

the query workload can be treated as one large query graph. The query optimizer

and resource adaptor would be applied at the overall multi-query plan level. Lastly,

there may be shared significance among the queries, i.e., a priority subset in Q1

may have the same significance as a priority subset in Q2. Then equal opportunity

is given for that particular significance level across the two queries. However, care

must be taken in the case of extremely sparse resource availability, so that both

queries at least succeed to produce some of their results at that significance level.

Customized scheduling methods of the global query plan will take such optimiza-

tion of tiered production into account. In summary, a mixed model which inte-

grates query priority and tuple priority must be considered. To make sense of this,

a model that determines the combined priority would be devised. Resource alloca-

tion would then proceed according to these global-priorities. Proactive Promotion

would be utilized as a solution framework there after to place rank classifiers and

pull significant tuples forward using the global-priorities (instead of the initial local

ones).

Sharing Among PP Queries. Lastly, if queries have common sub-expressions,

then the question of if explicit sharing at the physical query plan level is beneficial

or not must be addressed. The complication that arises here is that while some

subcomputations may be shared at the query specification level, the significance

level assigned to the particular sub-paths of the queries respectively may not be

matching, and possibly even in conflict. Consider the example in Figure 9.1. The

depicted workload consists of the two queries Q1 and Q2.

In this example, while both queries Q1 and Q2 share the same sub-path from

stream S1 via the operator PC1 to operator OP1 (marked via the gray shaded rect-
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angle in the figure), it may be that Q1 has specified completely different priority

criteria than Q2 for tuples on this stream S1. To handle this case, the query re-

source allocation optimizer needs to be refined to determine the shared placement

of all priority criteria relevant to that shared processing path. Furthermore, we need

strategies to assess if it is cost prohibitive to evaluate the criteria of all priority sub-

sets as is versus restricting and possibly integrating the predicates into a simpler

set by generalizing some of of predicates.

9.2 On-the-fly Preference Adaption

Another TP challenge is to develop a flexible architecture that allows the user to

adaptively and continuously change their resources allocation preferences of any

query online. This is a complicated issue. Once the user selects new resource al-

location preferences, the current inprocess query plan must be adapted. In such

instances, inprocess tuples that have been pulled forward may no longer be consid-

ered significant. Conversely, inprocess tuples that have been ignored may need to

be rapidly pulled forward. That is, inprocess tuples that were allocated resources

according to the old user preferences may need special considerations to ensure

that the new user preferences can rapidly be employed. In a nutshell, there are

two issues that must be investigated, namely, handling of inflight tuples, and the

adaption of the current query plan to the new one.

Handling Inflight Tuples Once a user selects a new resource allocation prefer-

ences, there are two possible cases of how inflight tuples in the current query plan

must be handled. First, tuples that were significant under the old resource allo-

cation preferences but are now insignificant under the new one must be identified.
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Second, tuple that are significant under the new one must be identified. This is com-

plicated. Identifying the new significance of all inflight tuples requires evaluating

all tuples throughout the pipeline. This may be prohibitively restrictive. It requires

a methodology that optimally determines where to re-evaluate the inflight tuples. In

addition, there may be overlapping resource allocation preferences between the old

and the new versions. In such a case, the optimizer should consider which inflight

significant tuples may not need to be re-evaluated. Lastly, customized scheduling

methods to allocate resources to inflight tuples in the current query plan must be

considered.

PP Plan Adaption Once a user selects new resource allocation preferences,

resources should be allocated to process new incoming tuples according to the new

preferences. First, a new query plan must be chosen. As preferences are adjusted

online, no run-time statistics may be available to determine which significant tuples

need to be pulled forward to ensure they are processed. An optimizer must be

developed that creates a new optimal query plan using the available statistics. The

Query Plan Executor must be modified to support both identifying the significance

of inflight tuples as well as identifying the significance of incoming tuples using

the new query plan. Lastly, the progression of inflight old tuples must be efficiently

monitored to allow the Query Plan Executor to know when to halt the identification

of the significance of inflight tuples.

9.3 Other Challenges

Another TP challenge is to develop an optimization approach that would consider

both the amount of CPU resources available to each operator as well as the schedul-
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ing of operators. This is also a complicated issue. The amount of CPU resources

available to each operator as well as the scheduling of operators are strongly de-

pendent on each other. A change in one may cause a modification in the other,

subsequently affecting the cost of the overall throughput of significant results. This

raises the proverbial chicken and the egg question. Should the scheduling approach

be chosen first, and then the the amount of CPU resources available to each oper-

ator? Or should it be the other way around? Or is there some hybrid approach

of selecting the scheduling and CPU resource allocation for portions of the query

pipeline? These issues should be explored.

A final TP challenge is to develop a flexible architecture that allows the system

to adaptively and continuously change their resources allocation preferences to

ensure that tuples from each object within a given promotable subset is monitored

within a given set time period. Currently, TPs allocate resources to all tuples in

a promotable subset until the query plan changes. We wish to explore developing

systems that allocate resources to tuples from only certain objects in a promotable

subset for a period of time. Later on, the system would allocate resources to tuples

from other objects in a set of promotable tuples. The goal would be to ensure that

each tuple in a promotable subset is processed at least once within a given time

range. This is a complicated issue. How can we efficiently track and ensure that

each object in a promotable subset is monitored within a the time range? How do

we select which tuples to monitor at any given moment?

These and other challenges will be the focus of our continued work in this

area.



220

Bibliography

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continu-
ous query language: semantic foundations and query execution. The
International Journal on Very Large Data Bases, pages 121–142,
2006.

[ACc+03a] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack,
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Christian Convey, C. Erwin, Eduardo F. Galvez, M. Hatoun, Anurag
Maskey, Alex Rasin, A. Singer, Michael Stonebraker, Nesime Tatbul,
Ying Xing, R. Yan, and Stanley B. Zdonik. Aurora: a data stream
management system. In ACM Special Interest Group on Manage-
ment of Data Conference, pages 666–666, 2003.

[AH00] Ron Avnur and Joseph M Hellerstein. Eddies: continuously adaptive
query processing. ACM Special Interest Group on Management of
Data Record, pages 261–272, 2000.

[ALN08] Mohamed Ashour and Tho Le-Ngoc. Priority queuing of long-range
dependent traffic. Computer Communications, pages 3954–3963,
2008.

[ANWS06] Ahmed Ayad, Jeffrey Naughton, Stephen Wright, and Utkarsh Sri-
vastava. Approximating streaming window joins under cpu limita-
tions. In IEEE International Conference on Data Engineering, pages
142–154, 2006.



BIBLIOGRAPHY 221

[ASL04] Tarek F Abdelzaher, Vivek Sharma, and Chenyang Lu. A utiliza-
tion bound for aperiodic tasks and priority driven scheduling. IEEE
Transactions on Computers, pages 334–350, 2004.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and issues in data streams. In ACM Sym-
posium on Principles of Database Systems, pages 1–16, 2002.

[BBD+04] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Dilys Thomas. Operator scheduling in data stream systems. The
International Journal on Very Large Data Bases, pages 333–353,
2004.

[BBDW05] Pedro Bizarro, Shivnath Babu, David DeWitt, and Jennifer Widom.
Content-based routing: different plans for different data. In Interna-
tional Conference on Very Large Data Bases, pages 757–768, 2005.

[BBMD03] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar.
Chain: operator scheduling for memory minimization in data stream
systems. In ACM Special Interest Group on Management of Data
Conference, pages 253–264, 2003.

[BC05] Brian Babcock and Surajit Chaudhuri. Towards a robust query opti-
mizer: a principled and practical approach. In ACM Special Interest
Group on Management of Data Conference, pages 119–130, 2005.

[BCM+99] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagara-
jarao, Robert E Strom, and Daniel C Sturman. An efficient multi-
cast protocol for content-based publish-subscribe systems. In IEEE
International Conference on Distributed Computing Systems, pages
262–272, 1999.

[BDM04] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding
for aggregation queries over data streams. In International Confer-
ence on Data Engineering, pages 350–361, 2004.

[BKZS12] Can Basaran, Kyoung-Don Kang, Yan Zhou, and Mehmet H Suzer.
Adaptive load shedding via fuzzy control in data stream management
systems. In IEEE International Conference on Service-Oriented
Computing and Applications, pages 1–8, 2012.

[BMM+04] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru
Nishizawa, and Jennifer Widom. Adaptive ordering of pipelined



BIBLIOGRAPHY 222

stream filters. In ACM Special Interest Group on Management of
Data Conference, pages 407–418, 2004.

[BTO13] Cagri Balkesen, Nesime Tatbul, and M. Tamer Özsu. Adaptive input
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