


Abstract

Unmanned aerial vehicles are a salient solution for rapid deployment in disas-
ter relief, search and rescue, and warfare operations. In these scenarios, the agility,
maneuverability and speed of the UAV are vital components towards saving human
lives, successfully completing a mission, or stopping dangerous threats. Hence, a
high speed, highly agile, and small footprint unmanned aerial vehicle capable of
carrying minimal payloads would be the best suited design for completing the de-
sired task. This thesis presents the design, analysis, and realization of a dual-nacelle
tiltrotor unmanned aerial vehicle. The design of the dual-nacelle tiltrotor aerial ve-
hicle utilizes two propellers for thrust with the ability to rotate the propellers about
the sagittal plane to provide thrust vectoring. The dual-nacelle thrust vectoring
of the aerial vehicle provides a slimmer profile, a smaller hover footprint, and al-
lows for rapid aggressive maneuvers while maintaining a desired speed to quickly
navigate through cluttered environments. The dynamic model of the dual-nacelle
tiltrotor design was derived using the Newton-Euler method and a nonlinear PD
controller was developed for spatial trajectory tracking. The dynamic model and
nonlinear PD controller were implemented in MATLAB R© Simulink using SimMe-
chanics. The simulation verified the ability of the controlled tiltrotor to track a
helical trajectory. To study the scalability of the design, two prototypes were devel-
oped: a micro scale tiltrotor prototype, 50mm wide and weighing 30g, and a large
scale tiltrotor prototype, 0.5m wide and weighing 2.8kg. The micro scale tiltrotor
has a 1.6:1 thrust to weight ratio with an estimated flight time of 6 mins in hover.
The large scale tiltrotor has a 2.3:1 thrust to weight ratio with an estimated flight
time of 4 mins in hover. A detailed realization of the tiltrotor prototypes is pro-
vided with discussions on mechanical design, fabrication, hardware selection, and
software implementation. Both tiltrotor prototypes successfully demonstrated hov-
ering, altitude, and yaw maneuvering while tethered and remotely controlled. The
developed prototypes provide a framework for further research and development of
control strategies for the aggressive maneuvering of underactuated tiltrotor aerial
vehicles.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have become more ubiquitous in research and

industry over the last decade due to the advancement of materials and energy stor-

age, and the miniaturization of computational, actuation, and sensing technology

[1]. UAVs are used in a wide array of applications including, but not limited to,

surveying mountain hazards [2], intelligence gathering, surveillance [3], search-and-

rescue [4], first response, urban warfare, and wireless sensor networks [5]. Based

on their requirements and performance specifications, UAVs vary in shape and size

ranging from large dirigibles [6] and drones [7] to micro multi-rotor vehicles [8],

helicopters [9], and ornithopters [10]. Figure 1.1 Under certain scenarios, such

as first response and urban warfare, the agility, maneuverability and speed of the

UAV are vital components towards the saving of human lives, successfully complet-

ing a mission, or stopping dangerous threats. Hence, slow yet efficient, dirigibles

would not be suitable for rapidly maneuvering through cluttered environments. Un-

der these circumstances, a high speed, highly agile, and small footprint unmanned

1http://www.blogcdn.com/www.engadget.com/media/2012/12/robots-ease-slider-01-04-12-
12-02.jpg

2http://www.avinc.com/
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(a) A commercially available research
quadrotor platform [8]

(b) Cyphyworks’ EASE aerial vehicle navi-
gating an urban setting. 1

(c) Autonomous hovering of a fixed-wing
micro aerial vehicle.[11]

(d) The AeroVironment flapping based
hummingbird. 2

Figure 1.1: Current research and consumer available UAV platforms
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aerial vehicle capable of carrying minimal payloads would be the best suited design

for completing the desired task. Although standard fixed wing aerial vehicles have

demonstrated rapid and efficient motion, they typically operate at high speeds, are

unable to hover in place, and have difficulty maneuvering through cluttered environ-

ments such as damaged buildings. Equipped with high static thrust propellers and

an appropriate controller, fixed wing UAVs, such as the aircraft shown in Figure

1.1c, have demonstrated hover capability with limited maneuverability [11]. Recent

research has focused on propeller driven aerial “wingeron” vehicles capable of actu-

ating entire wing surfaces to enhance system response [12]. These systems are highly

agile and are shown to execute knife edge maneuvers to quickly change orientation

while navigating through densely populated environments at high speeds. However,

the system is incapable of hover or slow motion movements which are necessary

for current mapping practices. Generally, these fixed wing systems are incapable of

vertical takeoff and landing (VTOL).

Ornithopters are bio-inspired aerial vehicles that mimic the motion of birds

and insects for flight. These systems have received increased attention in recent

years utilizing wing flapping and feathering techniques to produce unusually high

lift [10, 13] in micro aerial vehicles (MAV). They have shown promise with regards

to efficient long distance flight but only a few are capable of hover or VTOL. The

most notable and capable ornithopter is the hummingbird [14] developed in coopera-

tion with the United States Defense Advanced Research Projects Agency (DARPA)

as a surveillance platform that exhibits life like motion. Despite continued and

longstanding research, ornithopters are still limited in payload and speed.

For higher payload capability and faster flight in VTOL applications, aerial

vehicle research has turned to the development of quad-rotors and any variation

thereof typically referred to as N-rotors [8]. Similar research efforts to improve air-
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craft yaw control, agility and durability have developed tri-rotors [15], dual rotors,

and single rotor systems [16]. In general, these systems are under actuated and ex-

hibit complex dynamics requiring outside observation to provide adequate sensing

to control the system. Attempts have been made to provide full system controlla-

bility by adding additional DoF to quad-rotors [17, 18]. However, these mechanical

solutions increase the dimensionality of the state space and complicate the control

system. Quad-rotors also require a large hover footprint and the need for aggressive

maneuvers to pass through narrow vertical passage ways.

The concept of a tiltrotor aerial vehicles has been researched before in simula-

tion and realized physical systems. A. Sanchez et al. [19] were able to design and re-

alize a physical tiltrotor system capable of sustained hover using simplified dynamic

equations and decoupled control laws for maintaining lateral, longitudinal, and axial

dynamics. Following this investigation, Christos Papachristos et al. discussed the

development of tiltrotor aerial vehicles as a viable platform for autonomous search

and rescue operations [20]. The work presented a modular architecture for robotic

control specifically designed for unconventional unmanned vehicle systems. More

recent work into the development of a model predictive attitude control scheme [21]

and an open source research platform [22] suggest a continued interest in the use

of tiltrotors aerial vehicles to combine the maneuverability of helicopters with long

distance flight of fixed wing aircraft [23].

This thesis presents the design, analysis, and realization of a dual-nacelle

tiltrotor unmanned aerial vehicle shown in Figure 1.2. The proposed system utilizes

two nacelle units for thrust. The aircraft has the ability to rotate the thrust output

about the sagittal plane providing controllable system thrust vectoring. Hence, the

dual-nacelle tiltrotor provides a narrow hovering footprint with otherwise similar

characteristics to other available unmanned aerial vehicles. The thrust vectoring of

4



Figure 1.2: The proposed dual-nacelle tiltrotor concept aerial vehicle

the aerial vehicle allows for rapid aggressive maneuvers while maintaining a desired

speed to quickly navigate through cluttered environments. The platform is designed

to facilitate the benefits of both a fixed wing aircraft and that of a VTOL helicopter

platform. To do this, the platform exhibits the benefit of stable and efficient hover

with the ability to transition fluidly into a horizontal orientation for high speed

translations.

1.1 Thesis Contributions

The main objective of this thesis is the analysis and realization of two dual-nacelle

tiltrotors. These platforms are designed for future research on the development

of advanced controller strategies for aggressive maneuvers of underactuated aerial

vehicles. Presented are two realizations of the dual-nacelle tiltrotor design, a full

scale and micro scale variant. The micro scale design allows for in-door testing

5



with enhanced safety while the full scale design allows for out-door testing and

more aggressive flight maneuvers. In achieving the desired thesis objective, the

contributions of the thesis are as follows:

• A study on the feasibility of the control and realization of a dual-nacelle

tiltrotor aerial vehicle for aggressive maneuvering within cluttered and close-

quarters environments was completed. The study focused on the scalability of

the dual-nacelle tiltrotor design with regards to desired performance metrics

including, flight duration and thrust.

• A multi-body dynamic model of a dual-nacelle tiltrotor aerial vehicle was

derived based on the Newton-Euler method for use in control and simulation.

A simplified dynamic model of a dual-nacelle tiltrotor was also derived for the

aerial vehicle system utilizing a single body approach to simplify the control

implementation. A MATLAB R© Simulink block was implemented based on

the dynamic model of a dual-nacelle tiltrotor. The Simulink block was used to

simulate the dual-nacelle tiltrotor, verify control strategies, and tune control

parameters.

• A non-linear PD attitude and altitude controller was designed the dual-nacelle

tiltrotor based on the simplified derived dynamic model. The non-linear PD

controller was verified in simulation using the implemented MATLAB R© Simulink

block. The implemented MATLAB R© Simulink block was augmented to include

a realistic model of the tilting servo through the consideration of the control

dynamics of the internal servo P controller and a model of the the system

response delay due to the PWM output frequency of 50Hz using a zero-hold.

The simulation verified that the controlled dual-nacelle tiltrotor was able to

track a spacial helix trajectory. The simulation was used to tune the controller

6



parameters based on the realized system dynamics and physical properties.

• Two dual-nacelle tiltrotor prototypes were designed and realized. The proto-

types consisted of a 0.5m wide, 2.8kg full scale tiltrotor and a 50mm wide,

30g micro scale tiltrotor. An in-depth description of the realization process

is provided including component and material selection, and implementation

methods.

• An in-depth analysis of the propeller and ducted fan performance is completed.

The thrust curves and power curves for both systems were measured and cate-

gorized. The thrust versus PWM signal for the motor controller and propeller

combinations was generated along with the thrust versus PWM signal for the

ducted fans.

• Experimental demonstration of both tiltrotors in hover is presented. The

hovering capability of both tiltrotor prototypes was demonstrated through

tethered operation. The demonstration indicates that both prototypes are

capable of producing sufficient thrust to maintain hover and increase altitude.

• Discussion on the design and scalability considerations for dual-nacelle tiltrotor

aerial vehicles.

1.2 Thesis Layout

The remaining chapters of the thesis are outlined as follows. Chapter 2 presents a

model of the tiltrotor aerial vehicle where the parameters specific to the proposed

design are used to derive the equations of motion using Newton-Euler dynamics.

Chapter 3 outlines the creation and implementation of a non-linear PD controller for

7



the system. The system, controller, and environment are modeled in MATLAB R© us-

ing SimMechanics and Simulink. The simulation allows for initial coarse, and future

fine, tuning of the controller gains before implementation on real hardware. Chapter

4 presents an in-depth analysis of the design process, design parameters, component

selection, and manufacturing of the two realized systems. Chapter 5 describes the

system validation including the analysis of the system results. Chapter 6 Makes

recommendations to future work for the project, including the development of a

new micro tiltrotor. Conclusions are drawn at the end of Chapter 7.
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Chapter 2

Model of a Dual-Nacelle Tiltrotor

This chapter presents a description of the dual-nacelle tiltrotor followed by a deriva-

tion of the mathematical model for use in simulation and control. The dynamic

model of the aerial vehicle was generated using the Newton-Euler method. The

following sections discuss the approach to modeling of each sub-component of the

system and the equations of motion for the full system.

2.1 Description of the Dual-Nacelle Tiltrotor

The dual-nacelle tiltrotor aerial vehicle contains two thrust generating nacelles at-

tached to the main body via rotational joints. An example of a dual-nacelle tiltrotor

aerial vehicle is given in Figure 2.1. From 2.1, the system can be broken up into five

articulated bodies: the Main Body (MB), the Right Tilting Mechanism (RTM), the

Left Tilting Mechanism (LTM), the Right Proprotor (RP), and the Left Proprotor

(LP).
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Figure 2.1: The kinematic representation of a tiltrotor aircraft for parameter iden-
tification.

2.2 Dynamic Model of the Dual-Nacelle Tiltrotor

The simplified kinematic structure of the full system is depicted in Figure 2.2. The

notations used to derive the dynamic model of the system follow the format used

in [24], where: jxi represents the vector xi defined in coordinate system {j} and

j
iR is the rotation matrix that maps the coordinate system {i} to {j}. All of the

parameters used in the this section are introduced in Figure 2.1, Figure 2.2, and a

comprehensive list is outlined in the List of Notations.
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Figure 2.2: A simplified visual representation of the tiltrotor aerial vehicle

2.2.1 Proprotor Model

The free-body diagram of the RP is illustrated in Figure 2.3. The Newton-Euler

formulations for this section of the robot, in a body fixed coordinate frame {4} are

described in Equations (2.1) and (2.2).

(2.1)mPR
4V̇4 = −mPR

4Ω4 × 4V4 +mPRg(40R · ê3) +4 F 24 + fPR · ê3

(2.2)JPR
4Ω̇4 = −4Ω4×JPR4Ω4 + 4M24 + (τPR − τiR) · ê3 + wR × (4F 24 + fPR · ê3)

where mPR is the mass, fPR is the thrust produced by the prop, JPR is the inertia

matrix of the RP, τPR is the driving torque, τiR is the induced aerodynamic moment

of the RP wR is the distance from the C.G. of the system to the center of the RP,

and 4F 24 and 4M24 are the reaction (joint) forces and moments respectively, of the
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Figure 2.3: A simplified model of the thrust motor.

right joint connection point 2 (CR2) that are defined in coordinate system {4}. 4F 24

and 4M24 are defined by Equations (2.3) and (2.4), respectively:

(2.3)4F 24 = Fx24 · ê1 + Fy24 · ê2 + Fz24 · ê3

(2.4)4M24 = Mx24 · ê1 +My24 · ê2

(2.5)fPR = kf · w2

(2.6)τiR = kt · w
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2.2.2 Tilt-motor Model

The free-body diagram of the RTM is depicted in Figure 2.4. The corresponding

Newton-Euler formulations for this section of the system are described in Equations,

defined in the body fixed coordinate frame {2} (2.7) and (2.8).

Figure 2.4: A simplified model of the tilting mechanism.

(2.7)mtR
2V̇2 = −mtR

2Ω2 ×2 V2 +mtRg(20R · ê3) + 2F 12 − 2
4R

4F 24

(2.8)JtR
2Ω̇2 = −2Ω2×JtR2Ω2 − 2

4R(4M24 − τPR · ê3) + 2M12

+ τtR · ê2 + 2uR×2F 12 − 2vR×2
4R

4F 24

13



where mtR is the mass, JtR is the inertia matrix of the RTM, τtR, is the driving

torque of the RTM uR is the distance from the C.G. of the RTM to the CR1, and vR

is the distance from the C.G. of the RTM to the CR2. 2F 12 and 2M12 are defined

by Equations (2.9) and (2.10), respectively:

(2.9)2F 12 = Fx12 · ê1 + Fy12 · ê2 + Fz12 · ê3

(2.10)2M12 = Mx12 · ê1 +Mz12 · ê3

In a similar fashion, one can formulate the Newton-Euler equations for the LP and

LTM following the same convention. The corresponding Equations are derived in

(2.11) to (2.18).

(2.11)mPL
5V̇5 = −mPL

5Ω5 × 5V5 +mPLg(50R · ê3) +5 F 35 + fPL · ê3

(2.12)JPL
5Ω̇5 = −5Ω5×JPL5Ω5 + 5M35 + (τPL − τiL) · ê3 + wL×(5F 35 + fPL · ê3)

(2.13)mtL
3V̇3 = −mtL

3Ω3 ×3 V3 +mtLg(30R · ê3) + 3F 13 − 3
5R

5F 35

(2.14)JtL
3Ω̇3 = −3Ω3×JtL3Ω3 − 3

5R(5M35 − τPL · ê3) + 3M13

+ τtL · ê2 + 3uL×3F 12 − 3vL×3
5R

5F 35

(2.15)5F 35 = Fx35 · ê1 + Fy35 · ê2 + Fz35 · ê3

(2.16)5M35 = Mx35 · ê1 +My35 · ê2

(2.17)3F 13 = Fx13 · ê1 + Fy13 · ê2 + Fz13 · ê3

(2.18)3M13 = Mx13 · ê1 +Mz13 · ê3
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Figure 2.5: A simplified model of the main tiltrotor body.

2.2.3 Main Body Model

The free-body diagram of the MB is depicted in Figure 2.5. The Newton-Euler

formulations for the MB defined in the body fixed coordinate frame {1} given as

Equations (2.19) and (2.20):

(2.19)mb
1V̇1 = −mb

1Ω1 × 1V1 +mbg(10R · ê3)− 1
2R

2F 12 − 1
3R

3F 13

(2.20)Jb
1Ω̇1 = −1Ω1×Jb1Ω1 − 1

2R(2M12 + τtR · ê2)
− 1

3R(3M13 + τtL · ê2)− 1rR×1
2R

2F 12 − 1rL×1
3R

3F 13
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where mb is the mass of the main body, Jb is the inertia matrix of the body, and rR

is the distance from the C.G. to the main body of CR1.

2.2.4 Simplified Single Body Model

It is possible to further simplify the governing dynamic equations of the system

by approximating it with a single body. To do so, it is assumed that the center

of mass of the RTM, LTM, RP, and LP lay along the line of actuation of the

CR1 and CL1. Thus it is possible to write the forces and moments of the robot

about the center of mass of the whole system, since the values of θR and θL have

no affect on the position of the C.G. in either the RTM or the LTM. Assuming

that the propellers of both the LP and RP are rotating at relatively large angular

velocities, the corresponding gyroscopic effects should be considered. The Newton-

Euler equations for the simplified model of the robot, defined in the body fixed

coordinate frame {1} are described in Equations (2.21) and (2.22):

(2.21)M1V̇1 = −M1Ω1 × 1V1 +Mg(20R · ê3) + fPR(12R · ê3) + fPL(13R · ê3)

(2.22)
I1Ω̇1 = −1Ω1×I1Ω1 + fPR(1dR×1

2R · ê3) + fPL(1dL×1
3R · ê3)

+ (1Ω1 + θ̇R · ê2)×JPR(1Ω1 + θ̇R · ê2 + 1
2RωPRz · ê3)

+ (1Ω1 + θ̇L · ê2)×JPL(1Ω1 + θ̇L · ê2 + 1
3RωPLz · ê3)

(2.23)0
1Ṙ = 0

1R · Skew(1Ω1)

(2.24)0V1 = 0
1R

1V1

where M is the total mass of the robot, I is the total inertia matrix of the robot,

and ωPR and ωPL are the angular velocities of the left and right propeller with

respect to the left and right tilting mechanisms. The dynamic response of the
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tilting mechanism and thruster can be approximated by Equations (2.25), (2.26),

(2.27), and (2.28):
(2.25)JPRzz ω̇R = τPR − τiR

(2.26)JtRyy θ̈R = τtR + [(1Ω1 + θ̇R · ê2)×JPR(1Ω1 + θ̇R · ê2 + 1
2RωR · ê3)] · ê2

(2.27)JPLzz ω̇L = τPL − τiL

(2.28)JtLyy θ̈L = τtL + [(1Ω1 + θ̇L · ê2)×JPL(1Ω1 + θ̇L · ê2 + 1
3RωL · ê3)] · ê2

where the the system states x, and the system control inputs u are defined as:

x =

[
x y z ẋ ẏ ż θ φ ψ θ̇ φ̇ ψ̇ θR θL θ̇R θ̇L ωR ωL

]T
(2.29)

u =

[
τPR τPL τtR τtL

]T
(2.30)

Note that θ, φ, and ψ are not directly observable from the state equations.

2.2.5 Parameter Identification

Parameter Name Value Method of Identification
Mass 2.81kg Measured
Robot Width 0.58m Measured
Robot Height 0.30m Measured
Robot Depth 0.13m Measured
Nacelle Mass 0.53kg Measured
Maximum Nacelle fP 3.2kg Data Sheet
Maximum Nacelle ω 5.00Rad/sec Data Sheet
Control Loop Rate 50Hz Calculated

Table 2.1: Model Parameters. Parameters are either: measured directly, calculated
from the SolidWorks R© CAD model, or computed using known control laws.

Table 2.1 outlines the parameter values pertaining to the tiltrotor design

and the method used for their identification. Further information regarding the
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Figure 2.6: Simulink Model of the Simulation.

locations of the center of mass for the nacelle unit, the main body, as well as the

fully assembled robot were calculated using the CAD model. Information regarding

the moments of inertia of the aforementioned components were also calculated using

the same CAD model.

2.3 MATLAB R© SimMechanic Model

The complete simulation was constructed within Simulink as part of the MATLAB R© soft-

ware suite using multiple embedded levels to describe each of the simulation com-

ponents. Figure 2.6 presents a block diagram of the top view of the simulation. The

blocks represent the desired trajectory in world coordinates, the simplified PD robot

controller, and the robot system. The diagram also displays the use of Zero-Order

hold blocks which enable the delay of signals and state variables as to better model

the real world system calculation and sensor sample delay. It is important to note
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that the servos and the ESCs were purchased as off the shelf components and, as

is typical with these component designs, there is no access to the feedback control

for motor acceleration, motor torque, or motor velocity. However, these system

responses were modeled as individual blocks in the simulation where the speed of

the response best models the mechanical response of the electrical input. These

responses are achieved through the use of PID controllers for the servos, brushless

motor controllers a control loop time of 50Hz. These subsystem approximations are

shown in Figure 2.7.

Figure 2.7: MATLAB R© Simulink subsystem: tiltrotor subsystems model.
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2.4 Summary

In summary this chapter has provided a comprehensive description of the tiltrotor

design. The dynamic model of the dual-nacelle tiltrotor aerial vehicle was derived

using the Newton-Euler method. This was approached through the modeling of each

subsystem as an individual body, summing all the components together to arrive

at a full system model. A simplified model of the system was created by general-

izing the C.G. locations of the exterior components. An ideal tiltrotor simulation,

based on real-world design specifications and constraints, was created. This simu-

lation included approximated sensor, actuator, and control loop delay through the

simulation of the internal controller, as well as the servo motors and ESCs response.
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Chapter 3

Control of a Dual-Nacelle

Tiltrotor Aerial Vehicle

The control of the tiltrotor aerial vehicle across smooth trajectories is challenging

for several reasons [8]. First, the system is underactuated thus, the vehicle control

inputs produce strongly coupled motion. Second, the dynamic model derived prior is

an approximate and ideal representation of the aircraft. Finally, the system control

inputs are modeled as an ideal instant response to control signals, without motor

lag or propeller spin up delay.

3.1 Control Structure

Here a non-linear proportional controller, with derivative feedback, capable of sta-

ble flight in simulation is implemented. Figure 3.1 is a generalized block diagram

depicting the control flow for the simulated and realized aerial robot. The system

calculates a trajectory plan based on the desired relocation as measured in the world

coordinate frame. These updated desired positions are distributed to both the posi-
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Figure 3.1: Generalized controller of an aerial vehicle for trajectory tracking.

tion controller as well as the attitude planner. Current and desired state information

is passed to the attitude controller which generates a reference signal for the motor

controller. The position and attitude controller outputs are mapped to the motor

controllers resulting in a system response. The tiltrotor system observes the changes

in the current state including the motor velocity, nacelle orientation, body position,

and attitude in the world frame and redistributes the updated information to the

position and attitude controllers. A detailed view of the control scheme used for the

dual-nacelle tiltrotor is shown in Figure 3.2.

Figure 3.2: Detailed controller implementation for the dual-nacelle tiltrotor.
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3.2 Control Mapping

The system control inputs for the aerial vehicle are the propeller velocities and their

respective orientation to the body about the y-axis of the body fixed frame. Control

of the flight path of the aircraft is difficult to visualize. Hence, a mapping has been

derived from the simplified dynamics of the system, where, the desired forces and

moments are calculated based on the control inputs. To simplify the system control

equations the servo angular velocity θ̇, the servo angular acceleration θ̈, and the

propeller angular acceleration ω̇ are neglected. These assumptions are made due to

the fact that servo motors and ESCs do not allow direct torque control. Based on

the assumption, the new system states x, and the system control u become:

x =

[
x y z ẋ ẏ ż θ φ ψ θ̇ φ̇ ψ̇

]T
(3.1)

u =

[
θL θR fPR fPL

]T
(3.2)

The equations defining the motion of the aircraft are re-arranged to separate

the control inputs from the rest of the system dynamics. Based on the equations

outlined in Chapter 2, Equation (3.3) is derived by moving all of the system inputs

to the right-hand side.

(3.3)

fPR · sin(θR) + fPL · sin(θL) = Fx

fPR · cos(θR) + fPL · cos(θL) = Fz

fPR · L · cos(θR) + fPL · L · cos(θL) = Mx

fPR · h · sin(θR) + fPL · h · sin(θL) = My

fPR · L · cos(θR) + fPL · L · cos(θL) = Mz

where Fi and Mi are the forces and moments, respectively, acting on the center of

mass of the aerial vehicle along the i direction due to the to fPR and fPL forces.
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Equation 3.3 does not contain the dynamic equation for the motion in the y-axis

since Fy does not correlate to any system input. The system control inputs, θL

and θR represent the angles describing the orientation of the LTM and RTM with

respect to the MB, and fPL and fPR represent the thrust of the LP and RP. From

Equation 3.3, the system has four control inputs and six degrees of freedom. Hence,

the system is underactuated and contains highly coupled dynamics. Thus, there is

no unique solution to map the desired forces and moments to the control inputs of

the system. Using algebraic and trigonometric manipulation, a non-linear mapping

of the desired body torques and forces to the system inputs can be derived as given

in Equation 3.4.

(3.4)

fPR = 0.5 ·

√(
Mz

L
+
My

h

)2

+

(
Fz −

Mx

L

)2

fPL = 0.5 ·

√(
My

h
− Mz

L

)2(
Fz +

Mx

L

)2

θR = atan2

(
Mz

L
+
My

h
, Fz −

Mx

L

)
θL = atan2

(
My

h
− Mz

L
, Fz +

Mx

L

)

3.3 Attitude and Altitude Control

A proportional controller with velocity feedback is utilized to control the roll, pitch,

and altitude of the aerial vehicle while the yaw control is achieved by a velocity

controller with acceleration feedback. The controller involves two constant param-

eters KP and KD, a proportional and derivative gain, to provide control action

based on the current and desired state of the system. The present state errors are

observed using an on-board inertial measurement unit (IMU), an altimeter, and

infrared range sensors for attitude, body accelerations, and altitude measurements

respectively. From these measurements, the current system Euler angles are calcu-

24



lated using a direction cosine matrix. Whereas the expected future errors are based

on the dynamic equations describing the system. The waited sum of these two ac-

tions are used to adjust the current input parameters in order to reduce the system

state error. Equation (3.5) presents the implemented control laws for the system.

(3.5)

U1 = Kp,θ(θd − θ)−Kd,θ(θ̇)

U2 = Kp,φ(φd − φ)−Kd,φ(φ̇)

U3 = Kp,ψ(ψd − ψ)−Kd,ψ(ψ̇)

U4 = Kp,z(zd − z)−Kd,z(ż) + Fhover

where U1, U2, U3, and U4 are the control outputs to the system, zd is the the desired

vertical position, and Fhover is the force required to maintain a steady altitude. The

proportional gain provides a steady increase in control variables to reduce error and

converge the current state towards the desired state while the derivative gain reduces

the degree to which the system will overshoot. Proper tuning of both parameters

will greatly affect the response of the system and the ability to approach a desired

state with a stable convergence. A third integral parameter is typically utilized in

the convergence of fully actuated mechanical systems however for our underdamped

and underactuated system the addition of an integral term would force the system

unstable.

3.4 Simulation

The controller was implemented in MATLAB R© Simulink to verify trajectory track-

ing and tune the controller gains. For this initial investigation the controller gains

were tuned manually until the system converged. The output of the system tracking

a helical trajectory is shown in Figure 3.3. The desired path of this trajectory is

defined by the state Equation (3.6) where x position and y position follow a set
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Figure 3.3: Graph of the Desired Trajectory and actual Trajectory of a Simulated
3D Point to Point Relocation.

radius and z position is a function of time. The implemented controller, utilized the

simplified dynamics described in Chapter 2

(3.6)x =


Vxcos(ψ(t))

Vysin(ψ(t))

0.05t

 ψ̇(t) = 1

whereas the simulation followed the full system dynamics and the characterized real

system responses. The system successfully follows a desired trajectory defined by

position and orientation with minimal error. It is important to note that system
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control error is defined as a function of velocity error as opposed to the more common

position error. As such the system initially tries to stabilize about hover, before

correcting for position error. This initial delay coupled with the control strategy

prevents the vehicle from minimizing system position error as is apparent with the

presented error in the path following.

3.5 Summary

This chapter presents a discussion of the design and implementation of a PD con-

troller for spatial translations. The PD controller was developed based on the pre-

viously defined dynamic model of the dual-axis tiltrotor. Use of the simulation

described in the previous chapter allowed for the implementation of the controller

on a simulated system in order to tune the proportional and derivative gains ap-

propriately. The simulated was used for multiple stages in controller testing and

development leading up the the successful track a helical trajectory.

27



Chapter 4

Realization

This chapter presents an in-depth discussion on the mechanical, electrical, and soft-

ware implementation of the tiltrotor aerial vehicles. The following sections describe

the design of the micro (uTRo) and full sized (TRo) aerial vehicles. Addressed in

detail are, the design of each prototype system, the system electronic structure, the

software program flow, and the implemented methods for calculating attitude and

heading of the system.

4.1 Full Scale Tiltrotor (TRo) Aerial Vehicle

The TRo aerial vehicle was designed to facilitate autonomous indoor and outdoor

flight, capable of high speed aggressive maneuvers. A CAD rendering of the fully

assembled vehicle is depicted in Figure 4.1 labeling all of the components used in

the construction of the aerial vehicle. An accompanying exploded view of the TRo

depicting all of the components used in the system is shown in Figure 4.2. The

aerial vehicle is constructed using a rigid body frame that connects two nacelle

units located symmetric about the sagittal plane of the body.
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Figure 4.1: A CAD rendering of the TRo aircraft.

Figure 4.2: Exploded CAD rendering of all components used in the TRo.

4.1.1 Hardware Selection

Each of the nacelle units is comprised of a Hitec digital servo, a 3D printed motor

mount, and an off-the-shelf five bladed high dynamic thrust ducted fan unit shown
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in Figure 4.3. The ducted fan unit is purchased fully assembled and comprises of

(a) Front view of the ducted fan unit. (b) Side view of the ducted fan unit.

Figure 4.3: Fully assembled ducted fan unit used in the TRo system

a 1900kv 80A brushless in-runner BLDC, an aluminum propeller mount, a fiber-

glass reinforced ABS plastic propeller, and a CNC machined aluminum housing. To

prevent system yaw rotation as a result of the thrust normal, counter rotating pro-

pellers are used on the two motors. A disassembled CAD rendering of the system

is shown in Figure 4.4. The following TRo frame components were manufactured

Figure 4.4: A CAD rendering of all components contained within the ducted fan
unit.

using a Stratasys Dimension 3D printer: the base support shown in Figure 4.5a,
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the sensor bracket shown in Figure 4.5b, the T frame shown in Figure 4.5c and the

motor mount support shown in Figure 4.5d.

The 3D printed parts provide an interconnection mechanism for the control

board, the proximity sensing components, the brushless motor drivers, the servos,

the motor mounts, the motors, and the battery. These components are connected

through a backbone comprised of a 0.5in pultruded carbon fiber tubing which is also

used as the angled legs to support the entire system. The air frame components were

designed to reduce overall system weight without severely impacting strength. This

was achieved through the use of a low plastic volume interior honey comb structure.

The system is symmetrically designed about the sagittal plane with the battery

affixed to the vertical z-axis of the MB. The system exhibits increased stability due

to the fact that the C.G. of the system is located below the center of rotation.

The on-board controller is an Ardupilot Mega 2.5 module shown in Figure

4.6. This board is powered by an Atmega 256 embedded microprocessor and is

supplemented with a 9 axis IMU, altimeter, and connection points for a wireless

telemetry and GPS system. The autopilot hardware is connected to 2 100A ESCs,

6 ultrasonic range sensors, 6 short range infrared sensors, 2 long range infrared

sensors, and a 5 cell 10Ah LiPo battery. The fully assembled aircraft weighs 2.8kg

while the two ducted fans are rated for a maximum thrust of 3.2kg at 22V and 80A

each. The system thrust to weight ratio at maximum power draw is 2.3:1, calculated

using Equation 4.1.

(4.1)Durationest =
PowerSupply
PowerDraw

The vehicle utilizes sensors for autonomous take off and landing, point to

point relocation, and obstacle avoidance. Once again the battery placement restricts

the center of gravity of the aerial vehicle below the rotational plane of the two nacelle

units and within the physical battery itself. Figure 4.7 presents the final realized
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(a) The TRo base support structure. (b) The TRo sensor bracket.

(c) The TRo T frame. (d) The TRo Motor mount.

Figure 4.5: CAD renderings of 3D printed TRo components.
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Figure 4.6: TRo main control board.

design of the full scale tiltrotor aerial vehicle.

Figure 4.7: The realized full scale tiltrotor.
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4.1.2 System Layout

Figure 4.8 is a block diagram of the the full scale tiltrotor electrical system. The

image is a comprehensive visualization of the components, the connections between

them, and their respective communication protocols. The main control board is

Figure 4.8: The electronics block diagram of the full scale tiltrotor.

the central information hub for the system. Information between the main control

board and the external PC is accomplished through the use of a wireless telemetry

kit. Similarly control signals from a human operator are sent to the main control

board through a wireless RC transceiver and receiver combo. Information about

the attitude of the system is continuously gathered from the IMU over an I2C

communication bus. Information pertaining to local obstacles is calculated through

the use of an analog to digital converter. Finally connections to the system actuators

are completed using a pulse width modulated signal ranging from 600 to 2400 µsec.
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4.1.3 Software

In choosing the APM 2.5 autopilot hardware, a large array of open source software

libraries were pre-written for the components on board. As such far fewer embedded

software libraries needed to be written. Figure 4.9 is a flowchart depicting the high

level software initialization and control sequence for the embedded microprocessor.

Upon start-up the system begins an initialization sequence to determine the orienta-

tion of the control board relative to the world coordinate frame. Once the attitude,

heading, and reference system (AHRS) has initialized the aerial vehicle transitions

to the main control loop, run on board the embedded microprocessor, and is armed

for flight. Run at 50Hz, the main control loop begins by sampling for RC trajectory

inputs either from a human pilot, or telemetry signals from a computer. The system

continues to cycle through the next 6 steps regardless of a trigger input. A request is

sent to the IMU for data to update the AHRS system. Once the AHRS) is updated

new control signals are calculated to maintain stable flight. The control signals

are converted to output PWM signals and sent to the respective motor controllers

to adjust propeller thrust or nacelle angle. Finally the system completes the loop

by sending a list of updated parameters including a heartbeat message to the PC

ground station for new way point calculations.

4.2 Micro Scale Tiltrotor (µTRo)

The micro scale tiltrotor, µTRo, was designed as a low cost, low power, easily

assembled, and robust test platform for indoor use. The system is smaller, requires

less power, produces less thrust, and is inherently more safe. The main consideration

for the design of the µTRo was weight. A CAD rendering of the µTRo is shown

in Figure 4.10 labeling all of the components used in the construction of the aerial

35



Figure 4.9: The full scale tiltrotor software flow chart.
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vehicle. A picture of the disassembled µTRodisplaying the individual components

Figure 4.10: A CAD rendering of the µTRo aircraft.

used in the construction of the aerial vehicle is shown in Figure 4.11.

4.2.1 Hardware Selection

Like the TRo, the µTRo is propelled using two symmetrical nacelle units. Each of

these units is comprised of a micro servo providing pitch rotation, a specialized servo

horn, a 7,000kv 3A brushless out-runner DC motor (BLDC), and a 3in propeller

with a 2in pitch. To reduce the weight of the system, the servo horn was used as a

mounting bracket for the BLDC and subsequent propeller unit. To prevent system

yaw rotation as a result of the thrust normal, counter rotating propellers are used on

the two motors. The vehicle body and specialized servo horns, shown in Figure 4.12,

are constructed using an additive fused deposition manufacturing process forming

single continuous structures.
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Figure 4.11: A disassembled view of all components used in the µTRo.
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(a) µTRo body frame. (b) µTRo servo horn.

Figure 4.12: CAD renderings of the 3D printed µTRo components

Two methods of printing were used in the construction of the µTRo: 3D

printed ABS plastic for the MB frame and PolyJet Digital material for the servo

horns. The air frame structure is optimized for reduced weight, incorporating fas-

tenerless rigid mounting locations for all on-board electronics, servos, and brushless

DC motors. The component locations were placed symmetrically about the sagittal

plane and the battery was placed along the z-axis of the craft. The design restricts

the C.G. of the craft to a location within the body, specifically, within the battery

itself. This calculated distribution of weight lowers the C.G. of the aircraft below

the center of rotation improving the stability of the system.

The µTRo is controlled with an Atmega 88p embedded microprocessor mounted

on top of a custom acid etched printed circuit board (PCB), shown in Figure

4.13. The circuit provides connections to the following peripherals: a Xbee wireless

transceiver, two micro servo motors, two 3A brushless DC motor drivers (ESC), a

9 axis IMU unit, and a single cell 270mAh LiPo battery. The completely assem-

bled system weighs 30g with each brushless DC motor producing a maximum of
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(a) CAD drawing of the Designed PCB. (b) Photograph of the etched PCB.

Figure 4.13: The designed and printed PCB board for the µTRo aerial vehicle.

26g of thrust at 4v. The summation of both maximum motor forces with respect

to the weight of the aircraft gives the system a thrust to weight ratio of 1.6:1.

To determine the maximum flight duration of the µTRo, the following assumptions

were made: negligible current draw due to communication, computation, and sensor

polling with an assumed ideal operation of the system. Based on the given assump-

tions, the maximum flight duration, calculated using Equation 4.1, is 2.7 minutes

at maximum thrust and 5.9 minuets at hover. The final realized system is shown in

Figure 4.14.

4.2.2 System Layout

Figure 4.15 is a block diagram of the micro scale tiltrotor electrical system. Similar

to the full scale tiltrotor electronics block diagram this image presents a visualiza-

tion of the micro scale electronics system. Once again the main control board is the

center of focus connecting all of the component peripherals together. Trajectory up-

dates exchanged between the external PC and the microprocessor is communicated
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Figure 4.14: The realized micro scale tiltrotor.

wirelessly through an Xbee communication module. Current attitude and heading

readings are continuously gathered from the IMU over an I2C communication bus.

Finally connections between the controller and actuatable peripherals are sent using

a pulse width modulated signal ranging from 600 to 2400 µsec.

4.2.3 Software

Figure 4.16 is the high-level software flowchart for the micro tiltrotor aerial vehicle.

The routine is responsible for initializing all of the global variables, the AHRS

system, the timers, interrupt service routines (ISRs), and begins a visual heartbeat

communication using an LED. The software instantiates multiple loops that define

actuator command messages, sensor sampling rates, and communication protocols.
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Figure 4.15: The electronics block diagram of the micro scale tiltrotor.

Once the control loop has finished initializing the timers it proceeds to establish the

USART protocol. Figure 4.17a presents the USART interrupt service routine for

the micro scale tiltrotor. The USART ISR is responsible for communication back

to the external PC. The routine initially checks for available data either returning

to the main program flow if there is nothing to be read, or gathering the data if

there is information in the buffer. Once the data is collected the information is

parsed as either as a command sequence or discarded as an incomplete command

flushing the buffer. After gathering the information the software progresses to the

high speed control loop. Figure 4.17b presents the 100Hz interrupt switching routine

for the control loop. The 100Hz ISR is comprised of an oscillating routine producing

two separate 50Hz loops. These loops are divided into a pulse position modulation

(PPM) command loop, and a system control loop. The system control loop parses
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Figure 4.16: The micro scale tiltrotor software flowchart.

the polled IMU data, updates the AHRS and utilizing the onboard control laws,

computes the next iteration of control outputs. Figure 4.18a depicts the embedded

controller flowchart for the micro tiltrotor. The output PWM values are determined

and passed into a buffer for the next 100Hz control iteration which are subsequently

passed to the PPM routine. Figure 4.18b presents the pulse position modulation

routine.

The PPM routine instantiates all PWM pins to a low value, assigns a count
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(a) USART ISR. (b) 100Hz ISR.

Figure 4.17: The micro scale tiltrotor ISR flowcharts.

and triggers the appropriate PWM output based on the duty width and output pin

for each of the 4 motors. Figure 4.19 is a visual representation of the modified PPM

software, implemented for the control of all 4 motors.

4.3 Attitude Heading and Reference System (AHRS)

Aerial vehicles are described using 6 DoF, therefore they require a minimum array

of sensors monitoring the body coordinate frame with respect to the world coordi-

nate frame, to correctly observe and define the current system state. As with any

autonomous system, sensory information gathered about the current state is used

by the system control equations to minimize error. The AHRS is a typical method

for measuring the three axes of rotation that provide the heading, attitude, and

yaw information of the aircraft, essential for autonomous localization, with respect

to the world coordinate frame. Typical methods utilize the sensor fusion of either
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(a) Micro scale tiltrotor con-
troller.

(b) Micro scale tiltrotor pulse posi-
tion modulation.

Figure 4.18: The micro scale tiltrotor software routine flowcharts.
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Figure 4.19: The micro scale tiltrotor PPM signal example.

solid state or microelectromechanical systems such as gyroscopes, accelerometers

and magnetometers on the three body axes to ascertain changes in system pose

and in some cases, interpolate system position. This information is most commonly

derived into Euler angles describing the system orientation with respect to the body

fixed frame. Multiple methods are used to filter and converge this information to

a body rotation giving the aerial vehicle a pose and heading with respect to the

world coordinate frame. In the case of this project two implementations were pur-

sued: Sebastian Madgwick’s gradient descent approach [25] and Robert Mahony’s

DCM Filter [26]. These methods are used to contribute roll pitch and yaw informa-

tion with respect to the world coordinate frame and along with GPS and altimeter

sensors, the system is fully observable. The two methods implemented were opti-

mized for the fastest convergence possible to reduce sensor noise and increase system

accuracy. Madgwick’s software approach utilizes an efficient orientation filter for in-

ertial and magnetic sensor arrays. The filter implements quaternion representation,
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removing Euler angle gimbal lock. However, the quaternion representation allows

for infinite solutions, thus accelerometer and magnetometer data is used in an an-

alytically derived gradient-descent algorithm to compute gyroscope measurement

error. Mahony’s DCM filter approaches the same AHRS problem as deterministic

observer kinematics posed on the special orthogonal group SO(3) driven through

reconstructed attitude and angular velocity measurements.

4.4 Discussion

Initial design constraints on the aircraft included a 15 minute flight time, the ability

to autonomously navigate both indoors and outdoors, vertical take off and landing,

and agile flight. Off-the-shelf components were chosen when available to reduce re-

dundant system design, increase manufacturability, and shorten the time to produce

a functional prototype. Ducted fans were chosen for the full scale tiltrotor vehicle

due to their inherent safety, high thrust at high motor speeds, and low propeller

inertia. The ducted fan shroud has multiple purposes in this design, not only does

it help produce increased thrust by accelerating airflow over the airfoil surface but

it also provides a rigid structure to protect both the motor and propeller from dam-

age in minor collisions. The ducted fans are known to produce higher thrust than

open air propellers of similar size because the outer housing helps prevent airflow

delamination at higher RPMs, causing cavitation and subsequently a loss of thrust.

Unfortunately at the design and realization of this project, high static thrust ducted

fans were unavailable for purchase in the desired size, however, it is a strong rec-

ommendation for future work, due to their higher thrust output at static airspeed

effectively promoting more efficient hover. Limited component availability was the

largest driving factor in the design of micro scale tiltrotor; most of the components
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used in the full scale tiltrotor are unavailable in a smaller form factor. As size de-

creases, typically, power density, power efficiency, and component quality decrease,

for a similar price point.

4.5 Summary

In summary two tiltrotor vehicles were realized. An in depth discussion of the

design process was outlined for the choice of hardware components, system electrical

layout, and software subsystems. The discussion and implementation of two different

methods for AHRS system convergence were presented. The choices in physical

components were evaluated by: availability, ease of integration, robustness, and

cost.
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Chapter 5

Analysis and Experimental

Results

This chapter presents the component analysis and experimental demonstrations con-

ducted on the µTRo and TRo aerial vehicles. The first section describes the ex-

perimental study on the performance of the µTRopropellers and the TRo ducted

fans. The second section describes the experimental study and analysis on the

IMU readings from both aerial vehicles. The final section presents the experimental

demonstration of both aerial vehicles in hovering, and altitude and yaw maneuvering

while tethered and remotely controlled.

5.1 Propeller and Ducted Fan Performance

For thrust generation, the µTRo utilizes counter rotating propellers while the TRo

utilizes high-speed ducted fans. To successfully control the system in flight, the

correlation between output thrust and the input signal (PWM width) must be cali-

brated. However, due to the variability in manufacturing and the necessary precision
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for controlled flight, the correlation between output thrust and input signal must

be determined experimentally under expected running conditions. The following

sections describe the experimental setup and results of the propeller and ducted fan

control calibration. During the experiment, the supply voltage and current draw

of the propellers and ducted fan units were also recorded to determine power con-

sumption at varying speeds.

5.1.1 Experimental Setup

Figure 5.1: The experimental test setup for evaluating the performance of the pro-
pellers and ducted fan units.

Figure 5.1 shows the experimental test setup for evaluating the performance

of the propellers and ducted fan units, and the consistency of the brushless motor

controllers. The experimental setup consisted of a L-angle rig with a propeller or

ducted fan rigidly attached to it, a scale to measure the thrust generated by the

propeller or ducted fan, a microcontroller to generate the desired PWM signal, a
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power supply with a voltage and current readout, an 18.4V 5S 50C 10Ah LiPo

battery and a computer connected to the microcontroller to set the desired PWM

output signal and to record the measured values.

The experiments were carried out by sweeping through the PWM pulse

width, starting at the minimum value that initiated turning of the propeller or

ducted fan, and increasing the PWM pulse width at increments of 50 microseconds

until either a negligible difference of thrust output was measured, or the maximum

permissible current draw was reached. At each PWM pulse width step, the thrust,

voltage, and current readings were recorded. The experiments were completed with

three ducted fans of the same type, two brushless motor controllers for the ducted

fans, and two types of propeller. Due to the L shape of the rig, the measured

thrust values had to be converted to actual thrust values based on the moments

about the hinge of the experimental setup. The measured to actual thrust ratio was

10.375:9.75 indicating that the actual thrust is approximate 94% of the measured

thrust.

5.1.2 Experimental Results

The following sections present the experimental results of the propeller, ducted fan,

and motor controller testing.

Propeller Performance

Figure 5.2 presents the thrust comparison between the two propellers tested for the

micro tiltrotor aerial vehicle. With the exception of one data point the gray pro-

peller outperformed the black propeller for the tested PWM signals with an average

increase in thrust of 1 gram. At max velocity the gray propeller outperformed the

black propeller by 1.4 grams of thrust. This difference in thrust results in a 6 %
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Figure 5.2: The micro tiltrotor propeller thrust data.

change in maximum thrust per motor and a 10 % change in thrust to weight for the

entire system.

Ducted Fan Performance

Four separate ducted fan units of the same type were tested: one counter rotating

(CCW) and three regular rotating fans (CW). The ducted fans were labeled as Z

(CCW), H (CW), P (CW), and A (CW).

Figure 5.3 shows the output thrust of the ducted fan units versus the input

PWM signal. All four ducted fans were tested at 18V (power supply) and 20.67V

(LiPo battery), and unit was tested at 22V (power supply). From 5.3, the thrust

output versus PWM signal demonstrate a linear relationship. As the voltage is

increased from 18V to 20.67V, the slope of the curve is increased. The maximum

attainable output at 18V, due to current limiting of the power supply, is approx-

imately 1kg at a 1450 microsecond PWM signal. The 20.67V output has a larger

range of operation due to the higher voltage and higher current supply available

from the LiPo battery. The maximum thrust output at 20.67V is approximately
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Figure 5.3: Ducted fan thrust characterization data.

2.25kg at a 1600 microsecond PWM pulse width. The ducted fan units showed

slightly more variation with the higher voltage. However, the variations are mainly

due to the thrust output measurement error, since the thrust reading was performed

visually and the readout on the scale would vary approximately 150g and a visual

average of the data was recorded. The 22V results do not indicate a significant

difference compared to the 20.67V results. Utilizing the thrust versus PWM results,

a curve fitting was completed to determine the necessary PWM signal for a desired

thrust output.

Figure 5.4 shows the thrust output of the H (CW) ducted fan at two different

voltages versus the input electrical power. As expected, Figure 5.4 indicates that
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Figure 5.4: Ducted fan thrust versus power input curve.

the motor has the same thrust versus power characteristics at different voltages and

that the power consumption increases as the motor velocity and thrust increase.

Consequently, Figure 5.4 also suggests that operating the motor at the rated 28.2V

results in greater resolution in motor speed through PWM as well as greater overall

thrust due to higher power and consequently motor speed at each PWM division.

Ducted Fan Brushless Motor Controller Consistency

To guarantee output thrust was consistent for both ESC brushless motor controllers,

each circuit was connected to the same ducted fan and the thrust versus input signal

was measured along with the voltage and current. Figure 5.5 show the output
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Figure 5.5: The measured output thrust for each 80A ESC using the same ducted
fan.

of both ESC brushless motor controllers. From Figure 5.5, the brushless motor

controllers exhibit consistent output thrust for a given input signal. Hence, no

specific calibration for each individual motor controller is necessary.

5.1.3 Discussion

Since all of the the ducted fan units exhibited consistent results, there was no need for

generating individual calibration equations. Using the gathered data, a power curve

was fitted to the thrust versus PWM results to obtain a function for determining

the required PWM signal for a desired thrust output. The power input versus
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thrust output of the ducted fan units followed the expected curve and indicated an

advantage on extended PWM range and higher thrust resolution at higher input

voltages. The ESC brushless motor drivers showed no variation regarding output

thrust to input signal. Hence, no individual calibration for each ESC was required.

5.2 IMU Performance

The accuracy of the real-time measured tiltrotor orientation and heading is highly

dependent on the quality of the acquired IMU data and how it is processed by the

AHRS. The IMU output is expected to be noisy due to the rotation of the propellers

and ducted fans along with the structure vibration modes. The following sections

describe the experimental setup and results of measuring IMU data on the µTRo and

TRo with the propellers or ducted fans turned on and at high speed compared to a

control value, with no motor disturbance.

5.2.1 Experimental Setup

The experimental setup included the tiltrotor prototype and a computer. For the

general case, a program was written and compiled for each tiltrotor controller that

sampled IMU data at 50Hz and sent the data to the computer over serial. The

computer collected 20 seconds of IMU data using a MATLAB R© script.

5.2.2 Experimental Results

The following sections present the IMU data acquired over during each test, with

and without the propellers or ducted fans rotating at high speed.
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Table 5.1: The RMS of the µTRoIMU measurements with the propellers at full
rotational speed.

ax ay az mx my mz gx gy gz
Speed

[
m
s2

]
[Gauss]

[
rad
s

]
off 0.005 0.006 0.004 0.028 0.055 0.028 0.002 0.002 0.002
full 0.507 0.560 0.321 0.365 2.530 1.072 0.004 0.004 0.004

µTRo IMU data

Figures 5.6a and 5.6b show plots of the accelerometer data acquired at 50Hz with

the propellers of the µTRo at zero and full rotational speed, respectively. With

the propellers off, the root mean square (RMS) of the acceleration data for the x-,

y-, and z-axis are 0.005, 0.006, and 0.004, respectively. The RMS values of the

measured IMU data are listed in Table 5.1. From Figure 5.6b, the noise due to the

rotational speed of the propellers completely overwhelms the signal. The measured

acceleration with the propellers on, has a maximum 2g swing which completely

nullifies any attempts at attitude determination.

TRo IMU data

Figures 5.7a, 5.7b, 5.7c, and 5.7d show plots of the accelerometer data acquired at

50Hz with the ducted fans of the TRo at zero, idle, hover, and full rotational speed,

respectively. The RMS of the acceleration is listed in Table 5.2.

From Figure 5.7, the amount of noise due to the ducted fans increases pro-

portionally to the speed of the ducted fans. The signal-to-noise ratio of the TRo

is substantially larger compared to the µTRo. The high signal-to-noise ratio is

due to the increased stiffness of the TRo compared to the µTRo. Figures 5.8 and

5.9 indicate an increase in Magnetometer and Gyroscope noise proportional to the

rotational speed of the ducted fans.
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(a) Acceleration data with fans off. (b) Acceleration data with fans on full.

(c) Gyroscope data with fans off. (d) Gyroscope data with fans on full.

(e) Magnetometer data with fans off (f) Magnetometer data with fans on full.

Figure 5.6: Plots of the µTRo IMU data.
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Table 5.2: The RMS of the TRo IMU measurements at multiple rotational speed of
the ducted fans.

ax ay az mx my mz gx gy gz
Speed

[
m
s2

]
[Gauss]

[
rad
s

]
zero 0.011 0.011 0.015 1.087 1.069 0.852 0.001 0.001 0.001
idle 0.200 0.184 0.238 3.694 3.958 3.005 0.009 0.010 0.006

hover 0.266 0.301 0.377 7.270 9.643 2.759 0.007 0.005 0.009
full 0.504 0.331 0.776 10.351 11.870 3.473 0.024 0.017 0.010

(a) Acceleration data with fans off (b) Acceleration data with fans at idle

(c) Acceleration data with fans at hover (d) Acceleration data with fans at full

Figure 5.7: Plots of the TRo acceleration data.
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(a) Magnetometer data with fans off (b) Magnetometer data with fans at idle

(c) Magnetometer data with fans at hover (d) Magnetometer data with fans at full

Figure 5.8: Plots of the TRo magnetometer data.

60



(a) Gyroscope data with fans off (b) Gyroscope data with fans at idle

(c) Gyroscope data with fans at hover (d) Gyroscope data with fans at full

Figure 5.9: Plots of the TRo gyroscope data.
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5.2.3 Discussion

The completed IMU data analysis indicates that IMU noise can be rather substan-

tial and correlates proportionally to the vibrations induced by the rotation of the

propellers and ducted fans. The µTRodata shows an increased vibration along the

y-axis, consistent with the frame crossbeam for both the accelerometer as well as

gyroscope data suggesting that the noise is mechanical. The magnetometer data

gathered from the µTRowas found to be inconclusive due to a damaged sensor.

This directional noise suggests either improperly balanced propellers or inconsistent

motor velocities. The noise is more significant in the µTRo and detrimental to at-

titude determination. Hence, the current configuration and design of the µTRo is

inadequate for autonomous flight using on-board sensors. It is possible to utilize

an external 3D pose tracking system with a high update rate to provide orienta-

tion feedback of the system for controlled motion. The RMS for the acceleration

measurements with the TRo running at full speed is 0.776m
s2

.

5.3 Remotely Controlled Altitude and Yaw

An experimental demonstration of the µTRo and TRo hovering with remotely con-

trolled altitude and heading was completed while the systems were tethered. Figures

5.10 and 5.11 show a snapshot of both prototypes hovering. The µTRo was con-

strained using fishing line. The fishing line was passed through two circular openings

vertically aligned along the main structure. The constraint prevented the µTRo from

pitching or rolling and allowed the system to yaw and translate vertically. More sig-

nificant considerations were used when testing the TRo. The TRo was constrained

using a steel rod and linear bearings. As with the µTRo, the TRo was constrained

against pitching and rolling but allowed yaw rotation and vertical translation.
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Figure 5.10: µTRo hovering with remotely controlled altitude and yaw control.

For both prototypes, the on-board controller ran the developed control al-

gorithm. The feedback error was directly replaced with reference signal provided

by the human controller over wireless communication. The altitude command ref-

erence was scaled and the control signal was saturated to a maximum value of 1200

microseconds, above the hover control output value. For the µTRo, a computer

program was created to read USB joystick information and send the joystick refer-

ence command to the µTRo at 50Hz. For the TRo, a RC transmitter and receiver

were used. The RC receiver output was connected to the APM RC inputs. The RC

inputs were read at each controller update cycle and used as the reference command.

5.4 Summary

This chapter measured the performance of the propellers and ducted fans, analyzed

the IMU data, and presented the experimental demonstration of the tiltrotor pro-
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Figure 5.11: TRo hovering with remotely controlled altitude and yaw control.

totypes in hover with remotely controlled altitude and yaw control.

64



Chapter 6

Discussion and Future Work

6.1 Discussion

The following sections discuss the project successes, difficulties, and limitations in

the modeling and production of a realized tiltrotor system. Discussed in detail, is the

component selection, manufacturing processes and techniques, control algorithms,

design trade-offs, and system scalability. Avenues for future work are suggested

including, the recommendation of future flight testing, suggestions towards the use

of control strategies for aggressive maneuvers, vibration analysis and reduction, and

finally recommendations specific to future design iterations.

6.1.1 Component Selection

The micro scale tiltrotor platform is designed to be a complete robotic solution

intended for indoor proof of concept testing that is cost effective, power efficient,

and fully autonomous. The realization of this system is further constrained by the

desire to produce the vehicle on the micro scale. The full scale tiltrotor, however,

is designed to operate both indoors and outdoors, again fully autonomously, but
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capable of aggressive flight maneuvers and overall high performance. As such many

difficulties were encountered during the realization of either system. As is true with

the design of any system, the process is both cyclical and iterative. For this project

the driving forces for both systems were flight duration and overall thrust power.

Component selection for both the micro and full scale robot were limited to parts

sourced from hobby supply outlets. Although diverse in the range of components

offered, often the desired components, were either difficult to source within the

allotted time frame, were presented as having significantly higher performance than

testing and implementation would suggest, or were simply unavailable for purchase.

The major trade-off with regards to the dual-nacelle tiltrotor aerial vehicle is

the duration of flight versus weight and payload capacity. This constraint drove the

motor selection for both robots, requiring careful consideration of thrust to weight

ratio and mounting constraints. Without sufficient information documenting motor

and propeller performance for the micro scale system, empirical based testing was

conducted on multiple motor and propeller combinations. This testing was used

to converge on a solution that produced the highest sum of thrust to power and

thrust to weight ratio for the desired voltage. The full scale tiltrotor platform design

utilized ducted fans units for the following reasons: they maintain high thrust output

at high motor speeds, have low propeller inertia due to their shortened airfoil length

and thickness, have a higher efficiency than similar sized proprotors, and include

an inherent safety mechanism due to the propeller housing. The decision to utilize

ducted fan units restricted the number of available solutions for the full size system.

At the time of this system design and development, very few high static thrust

ducted fans were available, with even fewer options available for counter rotational

propellers, despite being the obvious choice for this application.

The design goals outlined a 15 minute flight duration, but with limited space
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and weight for carrying a battery, it was soon determined unobtainable. Increasing

the flight duration generally requires larger batteries which in turn increases weight

and necessary structural support. Batteries are available in a wide range of config-

urations, weights, and power densities, among the most readily available and power

dense are the Lithium Polymer (LiPo) batteries. These batteries are very common

among hobby aircraft and ground vehicles for their fast charge, and discharge rates,

as well as their compact size. The battery voltage is defined by the number of

cells contained within the pack. Consequently most hobby components are designed

with these voltages in mind and as such they were the most obvious choice for both

platforms.

For this project two different embedded microcontrollers were used. In the

first prototype an off the shelf autopilot was chosen to reduce the amount of re-

dundant embedded software that was to be written and to increase the speed of

the project realization. The controller was available with open source libraries for

interfacing with the multitude of components offered both on-board and as plug in

solutions. The second microcontroller used was the Atmega 88p. It was determined

during the initial test phases that this microcontroller was a substantial limiting

factor to prototype functionality. The processor offered a maximum of 8KB of flash

memory, of which the initial implementation of the on board attitude controller,

PPM signal generator, and I2C command bus alone exceeded 6KB. The on board

8Mhz oscillator was determined to be performance limiting for sensor data acqui-

sition, control algorithm processing, and control variable outputs. A temporary

solution was to bypass the embedded 8Mhz oscillator with the use of an external

20Mhz oscillator, the maximum rated option, allowing for faster processing.

Communication between the platform and an external computer provided

yet another challenge for both the micro and full scale robot. Wireless telemetry
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was prone to delays, unevenly prioritized bidirectional communication, and lost or

corrupt signals packets

6.2 Future Work

With the success of both prototypes demonstrated in tethered hover mode and the

development of a MATLAB R© Simulink block for simulation and control verification,

multiple future areas of research may be explored. The following sections describe

possible continued work on the dual-nacelle tiltrotor aerial vehicle.

6.2.1 Flight Testing

Our preliminary work on the full system testing in Chapter 2 has proven the concept

aerial vehicle controllable even when computationally under powered. Further work,

in testing both the µTRo and TRo realized systems, has shown that both systems

are viable for flight in the real world with the addition of more accurate system

attitude measurements. It is recommended that further analysis be completed on

both the constrained flight of the system and further increasing the active state

space of the system to the full 6 DoF with the use of a safety line to prevent crashes.

6.2.2 Control Strategies for Aggressive Maneuvers

Although the dual-nacelle tiltrotor prototypes are capable of more aggressive ma-

neuvers, the presented PD control strategy is rather limited. Currently the system

is capable of stable hover and four dimensional pose-to-pose with yaw rotation, con-

trol of the aerial vehicle. A controller capable of aggressive maneuvers is desirable

especially when attempting to quickly navigate cluttered and close-quarter envi-

ronments. Future work would be based in the discovery of state space trajectory
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controllers with varying optimization functions that consider the dynamics and en-

ergy of the system while attempting to minimize maneuver time. These controllers

could be implemented using discreet methods including A*, D* or Rapid-Exploring

Random Trees (RRT). More challenging would be the implementation of the search

algorithms on a resource constrained system such as the micro scale dual-nacelle

tiltrotor prototype.

6.2.3 Vibration Analysis and Damping µTRo

The micro scale dual-nacelle tiltrotor experienced sever acceleration noise due pro-

peller noise during operation. This noise greatly affected the attitude and heading

reference system. Future research on the system would include a numerical 3D

modal-analysis of the current design with validation through structural vibration

experiments. The vibrations could be caused by a few factors including vortex

shedding from the propellers, improper balancing of the propeller blades, imbal-

anced installation of the propellers, uneven motor speeds, and general oscillations of

the propellers passing through the natural frequency of the structure. The results

of the modal analysis would then be used to optimize the design for a light weight,

stiffer structure. Additional damping methods could be implemented including the

installation of rubber internal to the structural tubing or damping isolation of the

IMU. The use of composite materials could also be studied and their affect on the

structural vibrational modes could be analyzed. Additional work could focus on of

inclusion of low pass filters to supplement the mechanical damping. These filters

would remove some of the more aggressive sensor measurements from the data sam-

pling, allowing for a smoother approximation of the current system state within the

self contained autonomous controller.
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6.2.4 Redesign of the Full Scale Dual-Nacelle Tiltrotor

The current design of the full scale dual-nacelle tiltrotor was based on the availability

of the 3D printer which lead to a light weight but structurally weak design. Flight

testing completed with the current design resulted in structural failures due to large

centripetal accelerations and high velocity landings. Future work focused on the

redesign of the full scale dual-nacelle tiltrotor would include thrust bearings on the

shafts connecting the nacelles and the use stronger materials such as metal or carbon

fiber.
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Chapter 7

Conclusions

This thesis has presented the study on the feasibility of the control and realization

of a dual-nacelle tiltrotor aerial vehicle designed for aggressive flight maneuvering

within cluttered and restrictive environments. A multi-body dynamic model of a

dual-nacelle tiltrotor aerial vehicle was derived based on the Newton-Euler method.

A simplified dynamic model of a dual-nacelle tiltrotor was also derived for the aerial

vehicle utilizing a single body approach to simplify the control implementation. A

MATLAB R© Simulink block was implemented based on the full dynamic model of

the tiltrotor. The Simulink block was used to simulate the dual-nacelle tiltrotor,

verify control strategies, and tune control parameters.

A non-linear PD attitude and altitude controller was designed for the dual-

nacelle tiltrotor based on the simplified derived dynamic model. The non-linear PD

controller was verified in simulation using the implemented MATLAB R© Simulink

block. The implemented MATLAB R© Simulink block was augmented to include a

realistic model of the tilting servo by considering the control dynamics of the internal

servo controller and a model of the system response delay due to the PWM output

frequency of 50Hz by using a zero order hold. The simulation was used to tune
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the controller parameters based on the system dynamics and physical properties.

The controller was verified able to do point-to-point relocation and track a spacial

trajectories.

Two dual-nacelle tiltrotor prototypes were designed and realized. The pro-

totypes consisted of a 0.5m wide, 2.8kg tiltrotor and a 50mm wide, 30g tiltrotor.

An in-depth description of the realization process is provided including compo-

nent selection, structural design, body manufacturing, and software implementation

methods. The experimental setup and data analysis of prototype components was

presented. The hovering capability of both tiltrotor prototypes was demonstrated

through tethered operation. Discussion on the design and scalability considerations

for dual-nacelle tiltrotor aerial vehicles was addressed. Empirical data on the ef-

ficiency of individual components for a tiltrotor aerial vehicle were presented and

discussed. Future work for the development of scaled tiltrotor designs is suggested.

The dual-nacelle tiltrotor prototypes presented herein provide a platform for future

research on the control strategies for aggressive maneuvers of underactuated aerial

vehicles.
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