

CS2303 AutoGrader

A Major Qualifying Project Report submitted to the faculty of

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the degree of Bachelor of Science

by:

Jonathan Morse (Computer Science)

February 27, 2018

Submitted to:

Professor Hugh C. Lauer, WPI Advisor

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of a

degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more

information about the projects program at WPI, please see http://www.wpi.edu/academics/ugradstudies/project-

learning.html

Version: 2/28/2018

i

Abstract

 The number of undergraduate computer science students at Worcester Polytechnic Institute

has increased in recent years. Due to the increase, strain has been put on teaching assistants for

grading programming assignments. In order to lessen this strain we developed a python-based

autograder for the programming assignments in CS2303. These auto graders semi-automate the

grading process which allows teaching assistants to spend more time helping students in office hours

and less time grading.

Version: 2/28/2018

ii

Version: 2/28/2018

iii

Table of Contents
1 Introduction ... 1

2 Initial Research .. 3

2.1 Autograders in General .. 3

2.2 Autograders at the University Level ... 4

2.3 AutoLab .. 5

2.3.1 Installation .. 6

2.3.2 Configuration ... 6

2.3.3 Concerns .. 8

3 Custom Built CS2303 AutoGrader .. 9

3.1 Overview .. 9

3.2 Getting Started ... 10

3.3 Programming Assignment One .. 10

3.4 User Interface .. 14

3.5 Programming Assignment Two .. 15

3.6 Programming Assignment Three .. 18

4 Description of Directories and Files .. 20

4.1 CS2303_AutoGrader .. 20

4.1.1 src .. 20

4.1.2 README.txt .. 24

5 Future Work .. 24

6 Conclusion ... 25

7 References .. 25

8 Appendices .. 29

A. autograder_core.py .. 29

B. CS2303_autograder.py .. 45

C. User Guide ... 46

D. Programming Assignment Output Specifications .. 48

Version: 2/28/2018

iv

Version: 2/28/2018

1

1 Introduction

 In recent years, the number of students in each new class of undergraduate students at WPI

is continuously setting the record for largest class in history. This increase in students is putting a

significant strain on the computer science department. With the influx of students, grading the

programming assignments of introductory computer science courses is becoming a time consuming

task. More teaching assistants than ever before are required, and even with that increase, less time is

actually being spent helping students learn. Teaching assistants grade quizzes, tests, and assignments

with professors to allow grades to be returned in a timely manner for large classes. They also host

office hours were a student can come and ask a teaching assistant any question about the course.

Recently, teaching assistants are spending significantly more hours grading work than hosting office

hours. Ideally, most of a teaching assistant’s time would be spent in office hours working with

students one on one, to ensure students grasp the concepts of the introductory courses. The goal of

this project is to research and develop a way to decrease the number of hours a teaching assistant

needs to spend grading in CS2303: Introduction to Systems Programming. This introductory class is

usually taken by a student during C-Term of freshman year. It is most likely taken after a student has

completed two previous programming classes. It introduces the C and C++ programming

languages, which are harder to understand than the languages used in previous classes.

 The best way we thought of accomplishing this goal was by automating as much grading of

programming assignments as possible. We had to research and develop an autograder, or a program

that grades another program. We researched autograders that were available and used in general and

at the university level. To find general purpose autograders we searched the internet, and to find

autograders used at other universities we emailed professors directly. We were hoping to find an

Version: 2/28/2018

2

autograder with three characteristics, namely to integrate well with existing programming

assignments, to be simple to maintain and, to work reliably.

 In response to professors we got valuable input from Professor Armando Fox [1] a

computer science professor at the University of California at Berkeley. He had previously created an

autograder from scratch for one of his classes, so he had experience. What he mentioned was, if we

were unable to find an existing autograder that fit our needs and had to make one from scratch, to

aim to autograde 80% of each assignment. In his experience it was much easier to make an

autograder that graded 80% of an assignment, than one that grades 100% of each assignment. Since

the autograders are going to be used by teaching assistants and they have the ability to grade

programming assignments along with the autograders, we thought 60% to 80% automation would

accomplish the goals of the project. We specifically focused on automating redundant task like

organizing files and compiling code, because those are tasks machines do more efficiently than

humans.

 After we conducted research, the best autograder we found to suite the goals of the project

was AutoLab [2]. AutoLab is under active developed by a team at Carnegie Mellon University led by

Professor David O’Hallaron [3]. It is a system that facilitates in autograding programming

assignments. After attempting to use AutoLab and working with it to create our autograders, we

determined it was not suited well to the goals of the project. The suite of features that AutoLab

provided were mostly unnecessary, for the scope of this project. Also, we believe that AutoLab

would not be simple and reliable when being used by the teaching assistants.

 We then transitioned to creating an autograder from scratch. This allowed us to create an

autograder that was specifically designed for CS2303’s assignments and to have a complete

understanding of how the system works. We were able to develop a series of programs written in the

Python programming language, to partially grade some of the programming assignments in CS2303.

Version: 2/28/2018

3

We first started by creating a basic user interface that was simple to use, then began developing

functions to unzip directories and compile student code. Lastly, we were able to create functions

that could test the output of student’s code for correctness.

2 Initial Research

 We divided the research portion of the project into two phases, first we conducted Internet

research to investigate autograder use in general. Then, we emailed college professors directly to

determine autograder use at the university level.

2.1 Autograders in General

 Our initial research started on the Internet, in our searches we were able to find two

particularly useful links. One was from researchgate.com [4] and the other was from

stackexchange.com [5]. Both links were from reputable websites, and the commenters seemed to be

either computer science students or computer science professors. Information in those links

introduced us to two useful topics related to autograders.

 First was MOOCs, which stands for Massive Open Online Courses. MOOCs are taken by

thousands or millions of people online, and those students are taught through recorded

presentations, interactive labs and programming assignments. Due to the size of these courses,

feedback for labs and assignments needs to be provided without human intervention. Therefore,

they make extensive use of autograders.

One website that offers MOOCs is Stepik.com [6]. Stepik provides premade course but also

allows users to develop their own courses that can be public or private. Most of the teaching is done

by explaining a topic in a few paragraphs of text, then having a student develop one or two lines of

code at a time, this step-by-step process slowly turns those chunks of code into a program. The

programming assignments for CS2303 are open-ended. Students produce entire programs from

Version: 2/28/2018

4

scratch before submitting for grading. For this reason, research or websites that focus on MOOCs

were avoided for the remainder of the project.

 Second, we learned about four autograders from our internet searches. Those were Junit [7],

Web-Cat [8], Mooshak [9] and AutoGradr [10].

• Junit is a framework for testing functions written in the Java programming language. It was

originally developed by researchers out of the University of Calgary. Junit is very popular

and is one of the most widely used external libraries in Java [11].

• Web-Cat is a system that determines grades based on the test cases the students make, not

those made by the professor or teaching assistant. According to web-cat.org, it is a web

application with a plug-in-style architecture.

• Mooshak is a code testing system originally used for keeping score of programming

competitions. Due to its popularity it was then turned into a product for classroom use. The

main developer is Professor José Paulo Leal out of the University of Porto [9].

• AutoGradr is a website were users can create courses, consisting of labs and projects. Once a

course is created, AutoGradr provides tools to autograde the labs and projects within a web

browser. According to AutoGradr.com, it “handles collecting student code, compiling and

running them against test cases, providing instant feedback to students”.

The only product that we determined could be used for this project was AutoGradr. All the other

products either did not support C and C++ or were old and not under active development.

2.2 Autograders at the University Level

 To get information on autograders used at other universities we emailed the computer

science department heads of twenty-five of the highest ranking undergraduate computer science

programs in the nation. Of the twenty-five schools, we got no response from sixteen. Four out of

Version: 2/28/2018

5

the remaining nine schools either made their own autograder or did not use one. Of the remaining

five schools, the recommended autograders were ZyBooks [12], EdX [13], GradeScope [14] and

AutoLab [2].

• ZyBooks is a learning platform for programming languages that are accessible via a web

browser.

• EdX is a collaboration between many high ranking universities including MIT and Harvard

to create a collection of free, college-level MOOCs in many subjects.

• GradeScope is a web site used to speed up the grading of exams and quizzes that have

repeatable answers, which also has an autograding tool for programming assignments.

GradeScope was initially developed by Professor Peter Abbeel [15] of the University of

California at Berkeley.

• AutoLab is an open source application that is being developed by a team at Carnegie Mellon

University led by Professor David O’Hallaron. It provides a web interface to submit work,

and view grades, which compliments a back-end auto grader written in Python, it also has a

supplemental website that provides information on how to interact with the application.

AutoLab and GradeScope appeared to suit our needs so we investigated them further online. Grade

Scope unfortunately charges a fee to use the website and is not open source. We wanted something

that was free and open source to avoid having to secure funds for this project and so that we could

make changes to the product if it was in our own best interest. AutoLab appeared to be similar to

GradeScope but was free and open source, so we decided to give it a try.

2.3 AutoLab

 AutoLab is being actively developed by a team of undergraduate and graduate students at

Carnegie Mellon University. Currently, a local version of AutoLab can be downloaded from

autolabproject.com, this local version is used at CMU by over twelve hundred students each

Version: 2/28/2018

6

semester. However, the AutoLab team is working on a cloud-based system that would allow

anybody in the world to use AutoLab via the web.

2.3.1 Installation

 We installed the local version of AutoLab. The AutoLab website provides installation

instructions and what the website calls the “one-click install” option. This option only worked on

the Ubuntu operating system [16] so we created an Ubuntu virtual machine using VirtualBox [17].

This option makes use of GitHub.com [18], a website that allows users to host source code that uses

the Git [19] version control system to manage and to track the changes made to files. All we had to

do was clone the required files from GitHub and run a shell script within the Ubuntu virtual

machine. This simple installation process is possible because the shell script installs containers [20].

 Containers allow a software application to be installed with all files and other dependencies it

needs to run correctly, with no work from the end user. The developers at CMU used Docker [21]

to create these containers, Docker is an application that provides an API to create and work with

containers. The shell script installed three separate containers. The first container contained all the

code needed to run the web interface, the second was a SQL database that stored all the information

and data being shown on the web interface, lastly, the third container was called Tango and contains

all the code that allows the system to autograde files. Even though the installation of AutoLab is

supposed to be simple, we did receive errors during installation and had to reinstall multiple times.

2.3.2 Configuration

 We were able to create a course and an assignment within AutoLab once we got it running.

We initially used the sample assignment that the AutoLab developers created called Hello Lab. We

downloaded the hello.tar file from AutoLab’s GitHub [22] page and were able to install that file into

AutoLab using the web interface. The way the web interface works is, each student, teaching

assistant, and professor has an account for AutoLab, which provides different levels of access and

Version: 2/28/2018

7

responsibility. A student for example can login in, select a specific course and submit a file to a

specific assignment within the course, submitting files is the only action student accounts are

allowed to do. This file would be saved by AutoLab into a specific folder and could be downloaded

by the teaching assistant or professor. Unfortunately, the first time we attempted to submit a file to

the Hello Lab assignment we got an error message. The error message was vague, all it stated was

that the autograder was unable to grade the file, with no mention as two why. This was unusual

because we made no changes to AutoLab and the lab that was used was made by the developers.

 Next we attempted to create our own assignment and not use the hello.tar file assuming that

was causing the problem. The web interface of AutoLab is nicely organized and visually appealing,

we used the web interface to create our custom assignment, which was a simple process. However,

we also had to write code that could interact with the web interface to autograde student

submissions, AutoLab does this using JSON objects [23]. JSON stands for JavaScript Object

Notation, and it allows for easy translation of data between a software application and a web server.

 We were able to create a very simple program that returned JSON objects, but ran into

serious difficulty integrating the program with AutoLab. This process involves creating a series of

directories and makefiles and installing them within AutoLab. Specifics about all the makefiles and

directories can be found at https://autolab.github.io/docs/lab/. Even though the website provides

detailed information on what needs to be in the makefiles and directories, when we attempted to this

it did not work properly. It was difficult to figure out what exactly was going wrong, and what we

needed to fix. AutoLab provided no error or warnings messages that could give us hints into the

cause of our problems.

 We also struggled with Tango, another part of AutoLab. Tango is the application that

interacts with user created programs using JSON objects. We developed our program based on

information from the AutoLab website, and ensured that our program properly returned JSON

Version: 2/28/2018

8

object. However, we still could not get AutoLab to grade any file we submitted. Unfortunately, the

information about Tango on the AutoLab website is only useful if Tango is installed as a standalone

application. When using the one click install, Tango should work without any setup. So, when we

had trouble with Tango we were unsure what we had to do correct things, and what we were doing

wrong.

2.3.3 Concerns

The main issue we had with AutoLab was determining the reason AutoLab would not grade

a file we submitted. We could not determine if the problems were stemming from a

misconfiguration of Tango, improper use of JSON objects in our program, or missing directories

and makefiles. This did not allow us to properly investigate AutoLab, and determine its effectiveness

at accomplishing the goals of the project.

 Another problem with AutoLab is it requires a web server and user accounts. When we were

testing out AutoLab we installed the “local” version. This version provides a dummy account and is

used to just learn how works. If we wanted to deploy AutoLab for class room use we would need to

install the “deployment” version. This version needs the ability to be accessed via a web address,

which would require us to create and maintain a web server. Also the deployment version of

AutoLab requires an email server. The email server is used to create and maintain user accounts. If

students ever had difficultly accessing their account or resetting a password, it would cost teaching

assistants a few hours of work each term. Due to one of our design goals being simplicity, the need

for all these additional systems was a major negative. Although, we learned many valuable things

from this experience we decided to no longer use AutoLab due to the many problems described

above we decided no longer use AutoLab. The point of this project was to decrease time the

teaching assistants have to spend on grading. The best way we believe that could be accomplished is

by creating a simple to use autograder that is reliable. AutoLab is a complex piece of software that

Version: 2/28/2018

9

has many points of failure and involves many systems working together correctly. We decided to

develop our own autograder with a focus on simplicity. We wanted a solution that did not require

user accounts, web servers, or emails.

3 Custom Built CS2303 AutoGrader

 The point of this project was to decrease time the teaching assistants have to spend on

grading. The best way we believe that could be accomplished is by creating a simple to use

autograder that is reliable. AutoLab is a complex piece of software that has many points of failure

and involves many systems working together correctly. We decided to develop our own autograder

so we could have understanding of how the entire system works and to make the focus on

simplicity,

3.1 Overview

(See Appendix C for information on downloading and using CS2303_Autograder)

 Our autograder is a command-line application written in Python and is invoked using the

operating system’s shell. Below is a high-level step-by-step process of how the system works:

Step 1: User inserts zip file into Insert_Zip_File_Here directory (see section 4.1.1.1 for more

information)

o This zip file should contain individual student projects, which should also be zip

files.

Step 2: User invokes CS2303 Autograder from command line

Step 3: User answers the questions that the autograder asks which include first name, last name

and the programming assignment user would like graded

Version: 2/28/2018

10

Step 4: Autograder unzips zip file and creates a list of each student who’s project is in the zip

file, then unzips each individual student’s zip file

Step 5: Autograder moves a student’s folder into the specified programming assignment folder

Step 6: Autograder invokes specified programming assignment’s grading file, that file grades

project, outputs a rubric and then deletes the project from the directory

Step 7: Steps 5 and 6 are repeated until each student’s project is graded

3.2 Getting Started

 Before we started to build our autograder we wanted to understand what needs to be graded,

to do this we completed the first programming assignment for CS2303. The first assignment is to

design a program that accepts specific year as input and outputs the twelve month calendar of that

year. The main difficulty of the program is accounting for leap years. A leap year occurs every four

years, except every one-hundred years, except every four-hundred years. So the year 2000 was a leap

year but the 1900 was not, for example. After finishing the first assignment we believed that an

autograder would need to do many string manipulations and interact with the shell a large amount.

We had experience coding in the Python programming language, and believe Python has functions

that allow easy interaction with the shell and simple string manipulation. Python is also a readable

language, which would be beneficial if the autograder needs to be changed or built upon in the

future.

3.3 Programming Assignment One

 Our first iteration of the autograder for Programming Assignment One was monolithic, the

only custom made function was the main function and was hard to follow. It was obvious to us that

changes needed to be made. The aspects of the program that would most likely be reused when

writing the autograder for the other assignments were compiling the code and printing a rubric. That

is when we created autograder_core.py, this file was meant to contain all custom-built functions for

Version: 2/28/2018

11

all grader files so that each individual file could pull from the core file and use the same function.

This made the grader files look significantly neater and made it is easier to make changes to the

code. With this system, if we wanted to make a change, we could change the function in the core file

and it would change it for every grader file. We found that debugging the code and understanding

the entire scope of the autograder was much simpler with this system.

 We first built functions for compiling code and creating a rubric, we then took what we did

in the grader file for the first assignment and turned those actions into a series of functions. The first

grader was broken up into four functions, were one function built off the previous function. We

believed this would make it easier to reuse functions later.

 We realized when developing the first grader that it was easiest to grade the output of a

program. For the first three programming assignments no function names are mandatory, and no

function stubs or pre-written program shells are given to students. The student starts with a blank

file and must create the entire program from scratch. The professor that teaches this class believes

this is the most effective way for students to learn how to code in C, so we believed it was best to

work around this design constraint. So what we thought we would do is standardize the output (see

Appendix D for details on the standardized outputs of the first three programming assignments).

 We also attempted to create autograders that allowed teaching assistants to never have the

need to compile and run the program. We believed that computers more efficiently compile, run and

test code than humans can. However, teaching assistants can do a far superior job when it comes to

checking a programs style and checking aspects of a program that cannot be tested based on the

output. We did not attempt to autograde any style aspect of a program but did try to ensure that

everything that involved compiling or running a student’s program was autograded.

 Every programming assignment has a certain number of tasks that a student must

accomplish to earn full points on the assignment. These tasks are how the professor and teaching

Version: 2/28/2018

12

assistants can measure how well a student implemented the design goals of a programming

assignment. For the first programming assignment there are seven tasks, the autograder is able to

grade the first four tasks

• Task 1: Correct compilation without warnings

o This task is autograded using the compile_test function (see Appendix A.2).

This function is able to run the command used to compile the project. It checks if

the compile was successful then returns the points the student earned and the reason

the student earned that score.

• Task 2: Correct execution with graders’ test cases

o This task is autograded using the check_year function (see Appendix A.8). This

function compares the output of the student’s code for a specific year to a pre-

written project that to our knowledge is always correct. It then returns 0 if the

outputs were different or 1 if outputs were the same. The result of the function is

then used to determine the students score and reason for score.

• Task 3: Correct usage of scanf() to get inputs from user

o This task is autograded using the search_words function (see Appendix A.6).

This function ensures that the first month of the year and the inputted year is printed

in the output in the correct spot. This shows that scanf() was implemented correctly

because year that was inputted by the user was printed out in the output, showing

the program successfully accepts user input.

• Task 4: Correct usage of print() to print the various lines of the calendar

o This task is autograded using the check_month function (see Appendix A.7). This

function ensures that the student properly lined up the dates in a certain month with

the days of the week, with correct formatting.

Version: 2/28/2018

13

• Task 5: Correct usage of conditional and loop statements

o This task is autograded using the check_year function again (see Appendix A.8).

It checks to ensure the year 2000 prints out correctly. We used this year because it

requires that all the leap year calculations are correct, making it one of the hardest

years to correctly print out.

 The remaining tasks we were not able to autograde. They involve manual inspection, and the

correctness cannot be determined by the output of the student’s code. To combat this problem we

expanded on the task descriptions within the programming assignment description to give teaching

assistants a better understanding of what to look for. We believe this will reduce the time it takes to

grade these tasks significantly. Two aspects of grading that take time is for a teaching assistant to

determine what exact to look for in students code, and to answer students emails or questions asking

why she received a certain score on a task. With specific instructions on what to look for, teaching

assistants will not need to think as much when grading, and will be able to be transparent as well as

direct with students, which will reduce follow up questions and in person meetings. The remaining

three tasks should be graded as follows.

• Task 6: Satisfactory README file – 2 Points

o Explanation of how a student’s program works - .5 Points

o Explanation of how to run program - .5 Points

o Includes information about use of outside sources – 1 Point

 If a student did use an outside source, source must be cited with at least a

one sentence explanation per source.

• Task 7: Loop invariant for each loop in comments in the code and also in the README

document

Version: 2/28/2018

14

o One or two sentences explaining each loop invariant in the comments of the source

code. – 2 Points

o One or two sentences explaining each loop invariant in the README document – 2

Points

o First line of each loop invariant explanation in README document includes the line

in source code document related to the specific loop invariant – 1 Point

3.4 User Interface

 Next, while running the first autograder many times, we realized it would be annoying for a

teaching assistant to have to find the specific grader file she wants to use. To combat this problem

we created a file called CS2303_autograder.py (see Appendix B), which when ran displays a

simple to use menu within the command linel. Then the program asks for the teaching assistants

first and last name, as well as the programming assignment she would like graded. Figure One below

shows what the autograder interface displays.

 This interface allows the teaching assistant to see visually that the autograder is running and

to use the same command to grade any assignment.

 Once we finished the interface we were worried about how the teaching assistant would give

the autograder the file or folder she needs graded. Our solution was to create a simple to understand

Figure One: Autograder interface

Version: 2/28/2018

15

structure so everything was organized and have a folder that was called “Insert_Zip_File_Here” (see

section 4.1.1.1), within that structure. A teaching assistant would insert the zip file that contained all

of the student’s code into that folder. Then we created a function called unzip_organize (see

section A.1) that is used within CS2303_Autograder.py, this function that’s unzips each zip file and

the records the WPI username of the student based on the file name. Then CS2303_Autograder.py

moves student folders one at a time into whatever programming assignment directory the teaching

assistant chose (see section 4 for information on files and directories)

 Upon further testing, another problem occurred when student’s code did not properly

compile. When that occurred, it would cause the autograder to return an error because no file was

available. Also in the program description it states that students lose points if their code does not

properly compile. So we created a function called compile_test (see Appendix A.2) that would

produce a list of student names whose code did not compile. This list allows the program to

continue running and grade other student’s code as well as gives the teaching assistants a list of

students with incorrect code, so they simply can email the students, inform them of the points lost

and ask them to resubmit the project.

3.5 Programming Assignment Two

 We believed we had worked out the initial problems with the first autograder enough to

begin completing the next assignment. The major difference between this assignment and the first

assignment from our perspective was the use of the “make” command and student submissions

containing multiple files. We combatted these problems by developing a function that tested if a

student has a functioning makefile, and if a student’s program properly compiles using the “make”

command. Also, we created a function that ensured that a student ran the “make clean” function

before submitting the project, which was something that needed to be done according to the

program assignment description.

Version: 2/28/2018

16

 In Programming Assignment Two a student must create a program that implements the

Game of Life. The Game of Life was created in the early 1970s by John Conway, a detailed

description of the game can be found at http://web.stanford.edu/~cdebs/GameOfLife/. This

assignment has ten tasks, each worth four points for a total of forty points. The autograder we

developed was able to grade eight out of the ten tasks.

• Task 1: Correct makefile to build program and individual components and to clean up

o We created a function called make_all_files_test (see Appendix A.9) that is

able create a list of all the “.c” files a student created then attempt to compile each of

those individual files, once it does that it attempts to compile the entire project and

then clean the entire project. Using the results of the function we were able to assign

a student a score and a reason for that score.

• Task 2: Correct compilation without warnings (using –Wall)

o We used the compile_test (see Appendix A.2) function again to grade this task.

It runs the “make” command then returns a score and a reason for that score.

• Task 3: Correctly reading the initial configuration and centering it in the array

o We created a function called array_compare (see Appendix A.11) that allowed

us to compare a correct output of the Game of Life to the students output. We were

able to test if a student correctly centered and configured the array using this

function.

• Task 4: Correct allocation of arrays at run time – 4 Points

o We used the array_compare (see Appendix A.11) function to test for this task.

We ensured that the students code could produce arrays of different sizes, which

ensures that arrays are created at run time

• Task 5: Correct use of two-dimensional arrays – 4 Points

Version: 2/28/2018

17

o We also used the array_compare (see Appendix A.11) function for this task. If

the students code was able to create multiple arrays that ensures that the student

used the correct technique in creating two-dimensional arrays.

• Task 6: Correct implementation of game function

o Using the array_compare (see Appendix A.11) function again, we were able to

check if a student properly determined if an occupied cell survived or died and if an

unoccupied cell gave birth.

• Task 7: Correct test for termination

o We created a function called termination_condition (see Appendix A.12)

that was able to ensure that a student properly ended the game when one of the four

termination conditions were met.

• Task 9: Correct execution with graders’ test cases

o Using array_compare (see Appendix A.11) we checked if the output from

student’s code was correct based on our test cases.

 The remaining tasks we were not able to autograde and just like the first assignment, we

expanded on the task descriptions within the programming assignment description to give teaching

assistants a better understanding of what to look for. The remaining two tasks should be graded as

follows:

• Task 8: Satisfactory test cases – 4 Points

o Output of each test case is contained within submission – 1 Point

o Explanation of each test case is in README document – 1 Point

o Test case(s) are non-trivial and show that the student’s program properly

implemented the Game of Life – 2 Points

• Task 10: Satisfactory README file, including loop invariants – 4 Points

Version: 2/28/2018

18

o Explanation of how a student’s program works - .5 Points

o Explanation of how to run program and any problems student had - .5 Points

o Includes information about use of outside sources – 1 Point

 If a student did use an outside source, source must be cited with at least a

one sentence explanation per source.

o One or two sentences explaining each loop invariant – 1 Point

o First line of each loop invariant explanation includes the file name and line number

related to the specific loop invariant – 1 Point

3.6 Programming Assignment Three

 For the third assignment students must create a program that scans one or more input text

files. Then use a binary tree to record all of the words in the file, then output a text file, that lists all

the unique words and the number of times they occurred. The assignment is graded based on eight

tasks that are all worth five points each, and has a ten point extra credit task. The autograder we

developed was able to grade six out of the eight tasks.

• Task 1: Correctly build from the makefile without warnings (with –Wall switch)

o We used the compile_test (see Appendix A.2) function again to grade this task.

It runs the “make” command then returns a score and a reason for that score.

• Task 2: Organization of program into at least three modules

o We created a function called counting_modules (see Appendix A.13) that

ensures that the students program is made up of at least three or more “.c” files, then

returns the score and the reason for the score.

• Task 3: Correct construction of binary tree and insertion of nodes

Version: 2/28/2018

19

o We created a function called total_word_scan (see Appendix A.15) that

ensures the output file properly lists the number of unique words and the total

number of words.

• Task 4: Correct traversal of binary tree and output of information according to specified

format

o We created a function called individual_word_scan (see Appendix A.16)

that ensures that the format of the output file is correct, contains the proper number

of words, and proper count of those words.

• Task 5: Correct use of malloc() and correctly freeing all malloc’ed data – 5 Points

o We used the function individual_word_scan (see Appendix A.16) to ensure

that the code did not produce a segmentation fault, to ensure malloc() was used

correctly.

• Task 7: Correct execution with graders’ test cases

o We combined total_word_scan (see Appendix A.15) and

individual_word_scan (see Appendix A.16) to ensure the output file is

correct for our test cases.

 The remaining tasks we were not able to autograde, we expanded on the task descriptions

within the programming assignment description to give teaching assistants a better understanding of

what to look for. The remaining two tasks should be graded as follows:

• Task 6: Proper destruction of tree and all of its objects before exiting – 5 Points

o Using the free() command to deconstruct each object – 2.5 Points

o Using the free() command to deconstruct tree – 2.5 Points

• Task 8: Satisfactory README file, including output of two non-trivial test cases – 5 Points

Version: 2/28/2018

20

o Explanation of how a student’s program works - .5 Points

o Explanation of how to run program and any problems student had - .5 Points

o Includes information about use of outside sources – 1 Point

 If a student did use an outside source, source must be cited with at least a

one sentence explanation per source.

o One or two sentences explaining each loop invariant with first line of each loop

invariant explanation including the file name and line number related to the specific

loop invariant – 1 Point

o At least two test cases, with the output in the submission and an explanation of each

test case in the README document – 2 Points

4 Description of Directories and Files

 For the below subsections, all files or directories that are within the same section level (ex.

Section 4.1 and Section 4.2 are on the same level) are within the same directory level. With each

subsection is one level lower than its parent section in the directory structure.

4.1 CS2303_AutoGrader

4.1.1 src

4.1.1.1 Insert_Zip_File_Here

 This directory is where the user will input the zip file that contains each individual

 student’s project, each student project should also be a zip file.

4.1.1.2 Output_Files

4.1.1.2.1 Rubrics

 This directory is where the rubrics for each student will be after the

 autograder is run.

Version: 2/28/2018

21

4.1.1.2.2 not_clean.txt

 This file will contain the name of any student who did not run the “make

 clean” command before submitting the project. The students who are on this list will

 lose points on the project. This file is deleted when running the autograder for

 programming assignment one because it is not needed.

4.1.1.2.3 did_not_compile.txt

 This file will contain the name of any student whose code failed to compile.

 This list can be used by the teaching assistants to email those specific students to

 resubmit working code.

4.1.1.3 PA1

4.1.1.3.1 PA1_autograder.py

 This file uses functions from autograder_core.py and calls to the shell to

 compile, grade and create a rubric for the first programming assignment.

4.1.1.3.2 PA1_Test.c

 This file is a correctly implemented program for the first assignment. This

 file is used in the check_year function found in autograder_core.py. It is used to test

 the output of a student's program to the correct output. In our testing we have

 found no problems in this file.

4.1.1.4 PA2

4.1.1.4.1 PA2_autograder.py

 This file uses functions from autograder_core.py and calls to the shell to

 compile, grade and create a rubric for the second programming assignment.

Version: 2/28/2018

22

4.1.1.4.2 task_*_test_*_answer.txt

 These files are used in the array_compare and termination_condition

 functions found in autograder_core.py. These functions compare this text file to the

 output of a student's program.

4.1.1.4.3 task_*_test_*_input.txt

 These files are used in the array_compare and termination_condition

 functions found in autograder_core.py. These text files are needed to run

 programming assignment two.

4.1.1.5 PA3

4.1.1.5.1 PA3_autograder.py

 This file uses functions from autograder_core.py and calls to the shell to

 compile, grade and create a rubric for the third programming assignment.

4.1.1.5.2 individual_word_test_answer.txt

 Used as one of the arguments in individual_word_scan function in

 PA3_autograder.py. Contains all the individual words that should be found in the

 input files.

4.1.1.5.3 program_test_input_one.txt

 Used as one of the arguments in both the individual_word_scan and

 total_word_scan functions in PA3_autograder.py. It is a text file of the Martin

 Luther King Jr. speech.

4.1.1.5.4 program_test_input_two.txt

 Used as one of the arguments in both the individual_word_scan and

 total_word_scan functions in PA3_autograder.py. It is a text file of a Roosevelt

 speech.

Version: 2/28/2018

23

4.1.1.5.5 total_word_test_answer.txt

 Used as one of the arguments in total_word_scan function in

 PA3_autograder.py. Contains information about total number of words.

4.1.1.6 PA4

4.1.1.6.1 PA4_autograder.py

 This file is a template for the programming assignment four autograder. It

 uses functions from autograder_core.py to print the rubric for programming

 assignment four.

4.1.1.7 PA5

4.1.1.7.1 PA5_autograder.py

 This file is a template for the programming assignment five autograder. It

 uses functions from autograder_core.py to print the rubric for programming

 assignment five.

4.1.1.8 PA6

4.1.1.8.1 PA6_autograder.py

 This file is a template for the programming assignment four autograder. It

 uses functions from autograder_core.py to print the rubric for programming

 assignment four.

4.1.1.9 autograder_core.py

 This file contains all custom made functions used to unzip files, compile code, grade

 projects and create rubrics.

Version: 2/28/2018

24

4.1.1.10 CS2303_autograder.py

 This file provides an interface for the user, then unzips student projects using the

 unzip_organize function in autograder_core.py. Then it moves student projects to the

 specified autograder and invokes the autograder.

4.1.2 README.txt

 This file provides information about the autograder. It contains general information,

instructions on how to run the autograder, a description of files and directories and information

about each argument for each custom made function in autograder_core.py.

5 Future Work

 Currently, we believe that our system makes it unnecessary for teaching assistants to compile

and run student code for the first three programming assignments. In our opinion, two more crucial

steps are needed to make our system complete.

 First, an autograder needs to be developed for the last three programming assignments. We

believe that custom functions should be developed to grade these assignments, because we have not

found any autograders that would be as effective as custom built function. The most efficient way of

accomplishing this, in our opinion, is to start with the stub files we have created for the last three

programming assignment. Then combine custom built functions with our compile_test,

compile_check and clean_check functions. That should be enough to grade 60% to 80% of

all three assignments. Second, the autograders need to be tested in the real world. This could be

completed the next time CS2303 is offered, by possible having half the teaching assistants use

CS2303 autograder and half perform manual grading. Using surveys, observation and interviews

gather data on the time requirement, reliability and simplicity of CS2303 autograders compared to

manual grading to determine the usefulness of the system.

Version: 2/28/2018

25

6 Conclusion

 CS2303 AutoGrader provides teaching assistants with a simple, and reliable way of

automatically grading most aspects of the first three programming assignments in CS2303. This

allows teaching assistants to grade programming assignments much faster than can be accomplished

through manual grading, creating more opportunity for teaching assistants to host office hours and

help students learn.

7 References

1. A. Fox, “Armando Fox’s Personal Homepage” armandofox.com [Online]. Available:

http://www.armandofox.com/.

2. D. O'Hallaron, “David O'Hallaron’s CMU Homepage.” cs.cmu.edu [Online]. Available:

http://www.cs.cmu.edu/~droh/.

3. AutoLab Team, “AutoLab Docs” autolabproject.com [Online]. Available:

http://www.autolabproject.com/.

4. L. Selavo, “What tools do you use for automated grading of assignments that involve

programming?” researchgate.net. [Online]. Available:

https://www.researchgate.net/post/What_tools_do_you_use_for_automated_grading_of_a

ssignments_that_involve_programming.

5. Tusharsoni, “How can I automate the grading of programming

assignments?” cseducators.stackexchange.com. [Online]. Available:

https://cseducators.stackexchange.com/questions/1205/how-can-i-automate-the-grading-

of-programming-assignments.

6. Stepik Team, “Smart Teaching Solutions” stepik.org. [Online]. Available:

https://welcome.stepik.org/en.

Version: 2/28/2018

26

7. JUnit Team, “JUnit 5 User Guide” junit.org. [Online]. Available:

https://junit.org/junit5/docs/current/user-guide/.

8. Web-CAT Community, “What is Web-CAT?” web-cat.org. [Online]. Available:

http://wiki.web-cat.org/group/web-cat.

9. J. P. Leal, J. C. Paiva, and H. Correia, “About Mooshak 2.0.” mooshak2.dcc.fc.up.pt. [Online].

Available: https://mooshak2.dcc.fc.up.pt/.

10. AutoGradr Team, “AutoGradr Help” autogradr.com. [Online]. Available:

https://help.autogradr.com/.

11. T. Weiss, “We Analyzed 30,000 GitHub Projects - Here Are The Top 100 Libraries in Java,

JS and Ruby” takipi.com, 30-Nov-2013. [Online]. Available: https://blog.takipi.com/we-

analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/.

12. zyBooks Team, “Why zyBooks?” zybooks.com. [Online]. Available:

http://www.zybooks.com/why-zybooks/.

13. edX Team, “Quality education for everyone, everywhere” edx.org. [Online]. Available:

https://www.edx.org/about-us.

14. Singh et al, “About Us - GradeScope” gradescope.com. [Online]. Available:

https://gradescope.com/about.

15. P. Abbeel, “Pieter Abbeel's UC Berkley Homepage” people.eecs.berkeley.edu. [Online]. Available:

http://people.eecs.berkeley.edu/~pabbeel/.

16. Ubuntu Team, “Ubuntu for desktops” www.ubuntu.com. [Online]. Available:

https://www.ubuntu.com/desktop.

17. VirtualBox Team, “VirtualBox User Manual” virtualbox.org. [Online]. Available:

https://www.virtualbox.org/manual/ch01.html.

Version: 2/28/2018

27

18. GitHub Team, “How developers work” github.com. [Online]. Available:

https://github.com/features.

19. Git Team, “About - Git” git-scm.com. [Online]. Available: https://git-scm.com/about.

20. Docker Team, “What is Docker” docker.com. [Online]. Available:

https://www.docker.com/what-docker.

21. Docker Team, “What is Containers” docker.com. [Online]. Available:

https://www.docker.com/what-container

22. AutoLab Community, “Course management service that enables auto-graded programming

assignments” github.com [Online]. Available: https://github.com/autolab/Autolab.

23. JSON team, “Introducing JSON” json.org. [Online]. Available: https://www.json.org/.

Version: 2/28/2018

28

Version: 2/28/2018

29

8 Appendices

A. autograder_core.py

 We divided up the file into subsections by function, each subsection contains a screenshot of

the source code of the function and a description of each of the arguments of the function.

A.1 unzip_organize:

Version: 2/28/2018

30

A.2 compile_test:

command: a string, the command used to compile the project (ex. "make")

grade_possible: an int, the number of possible points that could be earned for the task

Version: 2/28/2018

31

A.3 compile_check:

grade_earned: an int, compile_check should be run after compile_test, and this argument should

be set to the grade_earned that was returned in compile_test

grade_possible: an int, the number of possible points that could be earned for the task

student_name: a string, the name of the student who's code is being graded.

A.4 clean_check:

student_name: a string, the name of the student who's code is being graded.

Version: 2/28/2018

32

A.5 test_case:

command: a string, should be the command used to run the program

program_input: an int, the number that is entered into the program while it is running. This

function was designed specifically for programming assignment one.

A.6 search_word:

Version: 2/28/2018

33

command: a string, should be the command used to run the program

program_input: an int, the number that is entered into the program while it is running. This

function was designed specifically for programming assignment one.

word_one: a string, should be a month of the year (ex. "June")

word_two: a string, should be the string form of program_input. (ex. if program_input = 20, then

word_two = "20")

grade_possible: an int, the number of possible points that could be earned for the task

A.7 check_month:

Version: 2/28/2018

34

command: a string, should be the command used to run the program

program_input: an int, the number that is entered into the program while it is running. This

function was designed specifically for programming assignment one.

char_one: a char, should be the last letter of one of abbreviated days of the week. (ex. The

abbreviation for Wednesday is Wed so char_one should equal 'd')

char_two: a char, should be a number anywhere from 1 to 7 in string form. (ex. '4')

month: a string, should be the name of a month (ex. "June")

grade_possible: an int, the number of possible points that could be earned for the task

A.8 check_year:

Version: 2/28/2018

35

command: a string, should be the command used to run the program
program_input: an int, the number that is entered into the program while it is running. This
function was designed specifically for programming assignment one.

Version: 2/28/2018

36

A.9 make_all_files_test:

Version: 2/28/2018

37

grade_possible: an int, the number of possible points that could be earned for the task

student_name: a string, the name of the student who's code is being graded.

Version: 2/28/2018

38

A.10 test_case_two:

command: a string, should be the command used to run the program

A.11 array_compare:

Version: 2/28/2018

39

command: a string, should be the command used to run the program

answer_output: a string, this should be the name of the file that contains the array that should be

produced.

num_of_lines: an int, the number of lines that should be recorded of the student program's output

so that only the array will be recorded.

A.12 termination_condition:

command: a string, should be the command used to run the program

answer_output: a string, this should be the name of the file that contains the array that should be

produced.

num_of_lines: an int, the number of lines that should be recorded of the student program's output

so that only the array will be recorded.

condition: a string, the reason why the students program is being terminated

A.13 counting_modules:

Version: 2/28/2018

40

grade_possible: an int, the number of possible points that could be earned for the task

student_name: a string, the name of the student who's code is being graded.

A.14 word_scan:

Version: 2/28/2018

41

command: a string, should be the command used to run the program

output_name: a string, the name of the file that the students program outputs.

A.15 total_word_scan:

command: a string, should be the command used to run the program

output_name: a string, the name of the file that the students program outputs.

test_name: a string, the name of the file that contains the output that will be compared to the

students output (ex. "task_four_test_answer.txt")

grade_possible: an int, the number of possible points that could be earned for the task

comment: a string, used to set the reason_for_score variable.

Version: 2/28/2018

42

A.16 individual_word_scan:

command: a string, should be the command used to run the program

output_name: a string, the name of the file that the students program outputs.

test_name: a string, the name of the file that contains the output that will be compared to the

students output (ex. "task_four_test_answer.txt")

grade_possible: an int, the number of possible points that could be earned for the task

comment: a string, used to set the reason_for_score variable.

Version: 2/28/2018

43

A.17 header:

assignment_number: an string, a string form of a number in all caps. (ex. "TWO")

student_name: a string, the name of the student who's code is being graded.

grader_first_name: a string, first name of the grader (ex. "Jonathan")

grader_last_name: a string, last name of the grader (ex. "Morse")

point_total: an int, total number of points for the assignment, (ex. "Forty points(40)")

Version: 2/28/2018

44

A.18 task_create:

task_number: a string, a number in string form (ex. "one")

task_description: a string, a sentence describing what the task is testing for

points_possible: an int, the possible amount of points that could be earned for the task

points_earned: an int, the amount of points a student earned on the task

reason_for_score: a string, the reason a student earned a particular grade on the task

Version: 2/28/2018

45

B. CS2303_autograder.py

Version: 2/28/2018

46

C. User Guide

 We developed the CS2303_AutoGrader in an Ubuntu 16.02 virtual machine, and we

recommend you use CS2303_Autograder with Ubuntu 16+. We have not tried using Windows or

MacOS. We also used the “root” user account within Ubuntu when using CS2303_AutoGrader, so

we cannot guarantee the system works using a standard user account.

To download application:

Version: 2/28/2018

47

 Go to https://web.wpi.edu/E-project-db/E-project-search/search and toggle to “Author”

under the “Fields” column and type “Jonathan Morse” under the “Fields” column in the same row.

Then click on the project titled “CS2303_AutoGrader” and download the zip file called

“CS2303_Autograder.zip”.

To use:

Step 1: Unzip and open “CS2303_Autograder.zip”

Step 2: Type “cd src; cd Insert_Zip_Files_Here”

Step 3: Insert zip file of student’s projects into this directory

Step 4: Type “cd ..; python3 CS2303_autograder.py”

Step 5: Fill in first name, last name and what programming assignment needs to be graded

Step 6: Once autograder finishes, type “cd Output_Files; cd Rubrics” to see student’s text file

rubrics.

Version: 2/28/2018

48

D. Programming Assignment Output Specifications

 As we mentioned previously, we designed the functions in this autograder to manipulate the

output of student’s programming assignments. In order to do that effectively the output of the

programming assignments have to be standardized.

For Programming Assignment One:

Example Output:

Notes:

- Exactly one blank line is needed before and after the “<month> <year>” line, as seen in the

example above

- Every line that has the month on it must also have the year on it (ex. “March 2018”

Version: 2/28/2018

49

- No blank lines between “Sun Mon Tue Wed Thu Fri Sat” and “ 1 2 3 4 5 6”

lines

For Programming Assignment Two:

Example Output:

Notes:

- The first array must start on the first line of the output, as seen above.

- There should be exactly one blank line in between arrays

- The last line of the output must describe why the game ended. It must contain one of four

possible phrases. Those phrases are “predefined”, “dead”, “steady state”, and “oscillating”.

Version: 2/28/2018

50

For Programming Assignment Three:

Example Output:

Notes:

- First individual letter output must start on the first line of the file

- There must be at least three dashes (“---“) separating the individual word counts and the

total word counts

- There must be a tab in-between the number of occurrences and the words or sentences

- The field width of the number of occurrences of each word or total words should be at least

six decimal digits

