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Abstract

The linear code based McEliece cryptosystem is potentially promising as a so-
called “post-quantum” public key cryptosystem because thus far it has resisted
quantum cryptanalysis, but to be considered secure, the cryptosystem must
resist other attacks as well. In 2011, Bernstein et al. introduced the “Ball Col-
lision Decoding” (BCD) attack on McEliece which is a significant improvement
in asymptotic complexity over the previous best known attack. We implement
this attack on GPUs, which offer a parallel architecture that is well-suited to
the matrix operations used in the attack and decrease the asymptotic run-time.
Our implementation executes the attack more than twice as fast as the refer-
ence implementation and could be used for a practical attack on the original
McEliece parameters.
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Chapter 1

Introduction

1.1 Project Motivation

The arrival of quantum computers in the near future would render all commonly
used public key cryptographic algorithms easily breakable. This is because num-
ber theory based cryptosystems such as RSA and Diffie-Hellman are vulnerable
to quantum cryptanalysis [6]. Shor’s algorithm for integer factorization breaks
the security assumptions of RSA, Diffie-Hellman, and related schemes such as
ElGamal, DSA, and ECC. To defend against quantum cryptanalysis using Shor’s
algorithm, it is necessary to identify public key cryptosystems that are not vul-
nerable.

There are other classes of systems such as hash based cryptography, code
based cryptography and lattice based cryptography which are believed to be
resistant to attacks by quantum computers. Such systems make promising can-
didates for post quantum cryptography, but are less researched than their num-
ber theory based cousins. The McEliece cryptosystem is such a public key
cryptosystem. McEliece is based on hidden-Goppa-code encryption which was
introduced almost forty years ago. The scheme has demonstrated impressive
resistance to quantum attacks [17] which makes it an attractive candidate as a
post-quantum public-key scheme.

Although the McEliece system is seemingly immune to attacks by quantum
computers, the key sizes that it uses for 128 bits of security are close to a million
bits which poses issues regarding its efficiency for practical usage. These large
key sizes are especially problematic when compared to the key sizes for more
commonly used algorithms, such as RSA (a few thousand bits), or ECC (less
than one thousand bits). To make matters worse, the cryptosystem parame-
ters proposed by McEliece in 1978 are no longer considered secure. In fact,
in 2008 Bernstein et al. successfully executed an attack on McEliece’s smaller
parameters (which were intended to provide 65 bits of security) in a matter of
days [8].

In 2011, Bernstein et al., introduced the “ball-collision decoding algorithm”
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CHAPTER 1. INTRODUCTION 3

[9] which has smaller decoding exponents compared to the previous best known
upper bound on these exponents. Recent attacks on the system only use about
2n/20 operations [3]. These attacks have increased the necessary secure key size
even more, further limiting the practicality of the McEliece scheme.

Cryptanalytic improvements are not the only threat to the security of
McEliece. The use of Graphical Proccessing Units in public key cryptography
has become more widespread and much better studied since 2008 [21]. With
the advent of general purpose GPU programming, a parallelized and distributed
implementation of attacks on on GPUs is likely to achieve a higher speed up
factor for attacks on McEliece at the same economic cost.

The purpose of this project is to, for the first time, create a practical im-
plementation of Bernstein et al.’s Ball-Collision Decoding attack on Graphical
Proccessing Units to demonstrate improvements in both hardware any crypt-
analysis. This implementation should show the benefits and limitations of GPUs
in attacking McEliece and demonstrate the effectiveness of modern McEliece key
sizes in resisting decoding attacks.

1.2 General-Purpose Computing on GPUs

Graphics processing units are chains of special-purpose hardware designed for
rapid memory manipulations. Their parallel throughput architecture empha-
sizes executing many concurrent threads slowly, which is more effective when
implement algorithms where processing large blocks of data can be done concur-
rently. GPUs were initially intended for use in accelerating memory-intensive
calculations related to three dimensional computer graphics such as texture
mapping, rendering polygons, and high-precision color spaces. However, with
the realization of the matrix and vector operations underlying the graphical com-
putations, the uses of GPUs now include non-graphical calculations especially
in engineering and science applications. This use of GPUs for non-graphical
applications is called general-purpose computing on graphics processing units
or ‘GPGPU’. Put differently, GPGPU is the utilization of a graphics processing
unit to perform traditional CPU computations. GPGPU has gained popular-
ity as a result of the addition of floating point support to graphics processors.
The increase in popularity is also a result of additional support for GPGPU
programming languages such as CUDA (which is discussed below).

GPU-accelerated applications are designed to run the sequential part of
their workload on the CPU – which is optimized for single-threaded perfor-
mance – while accelerating parallel processing on the GPU. OpenCL (Open
Computing Language) is one framework that makes it easier to reformulate
computations for parallel programming across different kinds of hardware (using
both CPU and GPU). NVIDIAs CUDA (Compute Unified Device Architecture)
is a parallel computing platform that allows programmers to ignore underlying
graphical concepts in favor of more common high-performance computing con-
cepts through extensions to industry-standard programming languages such as
C, C++, and CUDA accelerated libraries.
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The processing power of modern GPUs has been increasingly utilized among
different disciplines of academic research, including cryptography. In 2008, Szer-
winski and Güneysu [32] employed GPU acceleration to asymmetric cryptosys-
tems RSA, DSA and Elliptic Curve Cryptography (ECC). In 2009 Harrison and
Waldron [21] also presented performance improvements on GPU implementa-
tions of public key cryptography (specifically RSA) and the necessary criteria to
achieve those improvements. An IT security research group in RWTH Aachen
University Aachen, Germany has worked on accelerating block ciphers using the
CUDA framework in 2012 [20]. While the area of cryptography on GPUs has
experienced significant growth in the last decade, to our knowledge little work
has focused on code-based cryptography, and we do not know of any implemen-
tations of cryptanalytic attacks on code-based systems on GPUs.

1.3 Project Overview

The goal of this project is to expand on the work in [9] to create an efficient,
parallelized implementation of the ball collision decoding attack which could
be used against weak McEliece parameters. This project will not only use
the improvements in cryptanalysis since Bernstein et al.’s 2008 attack on the
original McEliece parameters was published, but will also take advantage of
improved computing hardware [8]. Unlike previous implementations of attacks
on McEliece, our implementation will take advantage of Graphical Processing
Units, which allow more parallel computation within iterations of the attack.
This will allow more iterations of the attack than a CPU-only implementation.

In this paper we present, for the first time, a parallel implementation of
Bernstein et al.’s ball collision decoding attack. Unlike previous work, we at-
tempt to parallelize computation within iterations of the attack to take full
advantage of the GPU architecture and decrease the cost of the attack. We at-
tempt to speed up the ball collision decoding attack by parallelizing the Gaussian
elimination and set matching operations of the algorithm. Using the results from
our implementation, we estimate the practical cost of an attack on the original
McEliece parameters would be $400 million using rented infrastructure. We
then discuss the practical implications of GPU implementations of information
set decoding attacks on the security of McEliece.

Using our parallel implementation we are able to perform individual iter-
ations of the ball collision decoding attack in less than half the time of the
reference implementation. This implementation would allow us to break the
original McEliece parameters. The format of this paper as follows: In this
chapter we introduce the project and its motivation. In Chapter 2 we pro-
vide background information about the McEliece cryptosystem, the Niederre-
iter cryptosystem, and techniques for accelerating applications using GPUs. In
Chapter 3 we summarize the cryptanlysis of the McEliece cryptosystem and
describe the Ball-Collsion decoding algorithm. In Chapter 4 we describe our
implementation of the Ball-Collsion decoding algorithm. In Chapter 5 we com-
pare the performance of our implementation to previous attacks on McEliece
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and propose new economic costs for breaking the McEliece cryptosystem. In
Chapter 6 we conclude the paper and discuss potential future work on attacking
the McEliece cryptosystem.



Chapter 2

Background Information

2.1 Linear Codes

Linear codes are error-correcting codes with the property that any linear com-
bination of codewords can serve as a codeword itself. Linear codes have more
structure added to the codespace compared to other codes. A linear code C
of length n and dimension k over the finite field F is a linear subspace of F .
Thus, C is an [n, k] linear code over F and the codewords of the codespace F
are vectors. Linear codes are can be chosen such that they are more efficient for
encoding and decoding algorithms than other types of codes. Hamming codes
are an example of linear codes that are commonly used for error-correction in
digital communications.

The problem of decoding a generic linear code (i.e. a code without a known
efficient decoding mechanism) is known to be NP-hard. Code-based public-
key cryptosystems such as McEliece base their security on the difficulty of this
problem by using a generic linear code as the public key and a more efficient
code as the private key. The difficulty of the generic linear decoding problem is
discussed in more detail in Chapter 3. As mentioned before, there are no known
quantum algorithms that solve the generic linear decoding problem.

2.2 The McEliece Cryptosystem

The McEliece Cryptosystem, hence McEliece, is a public key cryptosystem de-
signed and published by Robert J. McEliece in 1978 [27]. Unlike more popular
public key cryptosystems such as RSA and Diffie-Hellman, no known efficient
attacks are present for McEliece that make use of Shor’s algorithm for integer
factorization, or any other quantum algorithm.

The McEliece scheme makes use of a randomly selected code from a family
of codes which can be decoded efficiently, and sets the description of this code
as a private key [30]. The private key then undergoes secret transformations to
emerge as a general linear code in order to produce the public key. As previously

6
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mentioned, the problem of decoding these general linear codes is NP-hard. The
transformations are meant to hide any visible structure of the private key which
can be used to reveal the underlying code.

The McEliece public key is derived from the private key after a scrambling
transformation and a permutation. The McEliece system uses binary Goppa
codes as private key since they are known to be easy to decode. Other error-
correcting codes have been proposed as alternatives to binary Goppa codes, but
most of these variants have been broken [6].

One advantage to the McEliece scheme is that the encryption and decryp-
tion algorithms are not computationally expensive. In fact, they can actually
be substantially faster than RSA [7]. This performance, in addition to the
resistance to quantum cryptanalysis, makes the McEliece system a promising
candidate for post quantum public-key cryptography. However, a few drawbacks
have kept McEliece cryptosystem from being widely adopted to be in use today.
One major factor being the very large key size of several hundred thousand bits
(compared to ECC key sizes of less than a thousand bits) and the other being
that it is not semantically secure against adaptive chosen ciphertext attacks [30].

2.2.1 Key Generation

The first part of McEliece system is a probabilistic key generation algorithm
which produces a private and public key. Parameters of the underlying [n, k, d]
binary Goppa code (linear code) are defined by an irreducible polynomial of
degree t over GF (2m) called the Goppa polynomial and they act as common
system parameters for the McEliece system. A binary code of length n = (2m)
each corresponds to the former mentioned polynomial. The code is of dimension
k where k exceeds n-mt and has minimum distance d where d is one more
than twice the number of errors efficiently correctable by a decoding algorithm.
Note that the public parameters (which control the key size and security of the
scheme) for the cryptosystem are (n, k, t).

The steps of the key generation are as follows:

1. Select a binary (n, k, d)-linear Goppa code C capable of correcting t errors.
The code must possess an efficient decoding algorithm and generates a
k × n generator matrix G for the code C.

2. Select a random k × k invertible binary matrix S.

3. Select a random n× n permutation matrix P .

4. Compute the k × n matrix Ĝ = SGP .

5. The public key (which will be used in 2.2.2) is (Ĝ, t) and the private key
(which will be used in 2.2.3) is (S,G, P ) .

The first step of the Mceliece key generation algorithm is choosing a random
binary code C (as mentioned before). The private key is the generator matrix
G for C. Next, a random scrambling matrix of size k × k, which we call S, is
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selected and transformation of G takes place. The result gets sent into a G′

matrix obtained from SG. G′ becomes another generator matrix for the same
C since S is invertible. Then an n× n permutation matrix P is also randomly
selected for the purpose of reordering G′ columns and producing Ĝ, which is
SGP . Since P is a permutation, Ĝ is a generator matrix for a C equivalent
linear code, with the same rate and minimum distance but no existing efficient
decoding algorithm. Ĝ therefore serves as the public key [30].

2.2.2 Encryption

The encryption is carried out by multiplication of a k-bit message vector with
the generator matrix Ĝ, the public key of the message’s intended recipient.
This encoded message is then added to a random error vector with a Hamming
weight value no greater than t [30]. The time complexity of this encryption is
O(k/2n+ t) [18]. To send a message m to a person with public key (Ĝ, t):

1. Encode the message m as a binary string of length k.

2. Compute the vector c′ = mĜ.

3. Generate a random n-bit vector z containing exactly t ones (i.e. the vector
z has length n and weight t).

4. Compute the ciphertext as c = c′ + z.

2.2.3 Decryption

Knowledge of the P permutation is needed to decode a linear code Ĉ equivalent
to a binary Goppa code C. First, the permutation transformation needs to be
reversed then, the decoding algorithm for C is used to also decode the permuted
cipher text ĉ to a message equivalent to Sm. The original m can be retrieved
by reversing the scrambling transformation S, and using the inverse, S−1, from
the key generation step [30]. To recover the message m from the ciphertext c
using the private key:

1. Compute the inverse of P , P−1.

2. Compute ĉ = cP−1.

3. Use the decoding algorithm for the code C to decode ĉ to m̂.

4. Compute m = m̂S−1.

2.3 Niederreiter Cryptosystem

The Niederreiter Cryptosystem is a dual variant of the McEliece system pro-
posed by Harald Niederreiter in 1986 [28]. Like the original McEliece system,
the system is based on linear codes and relies on the same NP-hard problem for



CHAPTER 2. BACKGROUND INFORMATION 9

its security. Both systems undergo a scrambling transformation and a permu-
tation transformation to hide the underlying structure. However, Niederreiter
differs from McEliece in that the encryption scheme of Niederreiter describes
codes through parity-check matrices and uses a parity check matrix of length
n as its public key. The encryption algorithm takes as input words Wq,n,t of
weight t where t is the number of errors that can be decoded [4].

2.3.1 Key Generation

1. Choose (n, k, t) such that W2,n,k,t ≥ 2kd

2. Pick a random (n − k) × n parity-check matrix H0 of linear Goppa code
G

3. Select a random n× n permutation matrix P

4. Randomly select a (n− k)× (n− k) invertible matrix S

5. Calculate public key matrix H as H = SH0P

6. Public key output is (H, t) and private key is (S,H0, P, γ). γ is a t-bounded
decoding algorithm for the binary Goppa code G.

2.3.2 Encryption

1. Calculate for a given message m a binary string of length n and weight
wt(m) ≤ t

2. The ciphertext output c is calculated as c = H ×mT

2.3.3 Decryption

1. Compute S−1c = HPmT

2. Apply an efficient syndrome decoding algorithm for G and recover PmT .

3. Retrieve message m from mT = P−1PmT

2.3.4 Digital Signature Scheme

Before the emergence of the dual variant Niederreiter Cryptosystem, it was
thought that the McEliece system (and systems like it) could not be used for pro-
ducing digital signatures because the encryption scheme of the original McEliece
is not invertible. In 2011, Courtois, Finiasz, and Sendrier [19] introduced a
method to find parameters (n, k, t) that would allow the Niederreiter scheme
to be practically invertible. From this method they derive a digital signature
scheme, which is often referred to as the CFS signature scheme.
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2.4 GPU Acceleration

GPU-accelerated general purpose computing became popular around 2007 with
the introduction of NVIDIA’s CUDA programming language. Unlike the tradi-
tional approach of letting the CPU handle an application from the beginning to
completion, a GPGPU application uses a GPU alongside the CPU to speed up
computation intensive tasks. A visualization of the process of accelerating CPU
tasks is shown in Figure 2.1. The GPU architecture is massively parallel, with
thousands of cores that are designed to efficiently handle simultaneous tasks
while CPUs are more optimized for sequential processing and have relatively
few cores. In GPGPU programming, once the compute-heavy parts of an ap-
plication code have been identified, these portions are offloaded on to the GPU
for faster processing while the rest of the code continues on sequentially.

Figure 2.1: How GPU Acceleration works, figure adapted from [16]

NVIDIA’s Compute Unified Device Architecture, or CUDA, is a parallel
computing platform that makes GPU accelerated computing possible. CUDA
provides extensions to C and C++ and allows development of a parallelized
version of standard applications. CUDA also provides three key abstractions,
namely thread groups, shared memory and barrier synchronization to help
achieve fine-grained data parallelism [15]. Through CUDA, a problem can be
repeatedly partitioned into sub-problems that can be solved independently and
in parallel. Problems that are well suited to GPUs involve using the same pro-
cess repeatedly on different data. This paradigm is known as SIMD, or Single
Instruction Multiple Data.

2.4.1 Turing Cluster Architecture

Our version of the ball collision decoding algorithm is run on GPU compute
nodes on a high performance computing cluster at WPI called the Turing Clus-
ter. The Turing Cluster is a good example of what a GPU cluster designed to
break would look like.
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Figure 2.2: Turing Cluster Overall Architecture

Each of the 24 nodes of the cluster consists of 2 Intel(R) Xeon(R) CPU
E5-2680 v2 @ 2.80GHz,each with 10 CPU cores for a total of 20 cores and 2
NVIDIA K-20 modules [1]. It is equipped with 128 GB of RAM for the CPU.
However, the GPUs only have 5GB of memory each which is what will determine
the upper bound for the problem size that our implementation will be able to
solve. It uses Rocks, a Linux distribution designed for use with clusters. A
56GB/s FED Infiniband adapter serves the interconnect between the compute
nodes.

The nodes are managed by Sun Grid Engine. When the user logs in to
turing.wpi.edu through SSH, they get to the head node (front end node) which
manages the cluster and its resources. The head node sends job requests to Sun
Grid Engine which manages job execution on the nodes using a queuing system.
The qrsh command can be used to obtain an interactive compute session on
one of the 24 compute nodes. The executable file can be produced on the head
node using nvcc compilation commands and then through textttqrsh a compute
session should be activated in order for the code to execute on one of the GPU
compute nodes.

2.4.2 NVIDIA K20 Architecture

The NVDIA Tesla K20 module uses the GK110 Kepler architecture [13] which
is the newest, high performance computing architecture after Fermi. The Ke-
pler architecture uses compute capability 3.5 and features a new generation of
streaming multiprocessors known as ‘SMX’, which allows more space for pro-
cessing cores than control logic. Kepler’s new ISA encoding has also brought
the number of registers per thread up to 255. Some of the highlights of the new
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architecture include the following:

• Dynamic parallelism which allows the GPU to spawn new threads on its
own, and possess more control capabilities without involving the CPU.

• Hyper-Q simultaneously connects up to 32 CPU cores to the GPU for a
higher GPU utilization.

• Grid Management Unit enables dynamic parallelism.

• Shuffle instruction allows data to be shared among threads in the same
block/warp and reduces the demand for shared memory.

2.4.3 Inside the Tesla K-20 module

The K-20 has a transistor count of 7.1 billion, and is equipped with 13 functional
SMX units and a 5GB GDDR5 memory. Each SMX has 192 single precision
CUDA cores, 64 double precision units, 32 special function units and 32 load
store units, which makes up to 2496 CUDA cores in total. A visualization of the
GK1110 SMX is shown in Figure 2.3. Each SMX has 48KB of read-only data
cache accessible by a thread block and 256KB of register file space, 64KB of L1
cache, 48KB of uniform cache, and 1536KB of dedicated L2 cache memory. A
visualization of the memory hierarchy for a CUDA core is shown in Figure 2.4

Figure 2.4: Memory hierarchy inside the GPU, figure adapted from [13]

CUDA threads are grouped into instruction units called warps. Each warp
contains up to 32 threads. The Kepler quad warp scheduler selects four warps,



CHAPTER 2. BACKGROUND INFORMATION 13

and two independent instructions per warp can be dispatched each cycle. A
visualization of the Warp scheduler is shown in Figure 2.5.

Figure 2.5: Warp scheduling in the GPU, figure adapted from [13]

GPU activity is managed by a hardware unit called the CUDA Work Dis-
tributor (CWD). The CWD assigns work to the individual multiprocessors and
communication is done through the MPI (message passing interface). 32 simul-
taneous MPI tasks can be performed with Hyper-Q in Kepler.

2.4.4 CUDA Basics: Vector addition parallelized

The following is an example implementation of parallelized vector addition using
threads and blocks [35].

Algorithm 1 GPU Kernel for parallel vector addition: Part 1

global void add(int ∗ a, int ∗ b, int ∗ c)
int index = threadIdx.x+ blockIdx.x ∗ blockDim.x;
c[index] = a[index] + b[index];

The GPU kernel (function) that operates on the GPU to perform the addi-
tion of two vectors is shown in Algorithm 1. The keyword global is required
for all GPU functions that will be called by the CPU. This keyword separates
code that needs to be processed by the NVIDIA compiler nvcc from the rest
that can be processed by standard compilers. A block is a parallel invocations
of the kernel. These blocks can be defined for up to 3 dimensions (x,y,z) and
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can be accessed inside the kernel using blockIdx. A block can again be spilt
up into threads that run in parallel and those are accessed using threadIdx. A
built-in variable blockDim for referring to the number of threads per block is
also provided to allow indexing into parallel threads and parallel blocks. By in-
dexing into the integer arrays using the thread and block indexes threadIdx and
blockIdx, a specific number of concurrent additions of different values can take
place as the same time on different threads running on the GPU’s processing
cores.

Algorithm 2 GPU Kernel for parallel vector addition: Part 2

int ∗ a, ∗b, ∗c; // host copies of a, b, c
int ∗ da, ∗db, ∗dc; //device copies of a, b, c
int size = N ∗ sizeof(int);
// Alloc space for device copies of a, b, c
cudaMalloc((void ∗ ∗)&d a, size);
cudaMalloc((void ∗ ∗)&d b, size);
cudaMalloc((void ∗ ∗)&d c, size);
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);

In CUDA terminology, the CPU is referred to as the host, and the GPU
the device. For use on the GPU, separate device variables have to be declared
and then allocated using cudaMalloc as seen above. The default values from
the host are copied onto the device using a cuda built-in cudaMemcpy function.

Algorithm 3 GPU Kernel for parallel vector addition: Part 3

// Launch add() kernel on GPU
add <<< N/BLOCK SIZE,BLOCK SIZE >>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);

After the memory copy and the set up of variables, the kernel can be called
from main, using a special kernel launch format with triple angle brackets. The
first element inside the angle brackets refer to the number of blocks. The second
parameter for the kernel refer to the number of threads. At the end of the kernel
execution, results are fetched back again with cudaMemcpy.
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Figure 2.3: Streaming multiprocessor architecture of the gk110 GPU, figure
adapted from [13]



Chapter 3

Previous Cryptanalysis

3.1 Original Parameters

The security of the McEliece cryptosystem is based around the assumed diffi-
culty of the general decoding problem for nonlinear codes. This problem was
proven NP-complete in [5]. Because the assumption of difficulty of the gen-
eral decoding problem remains unchallenged, the scheme remains, in theory,
secure. However, the parameters proposed by McEliece in [27] fail to account
for improvements in the general decoding problem, as well as improvements in
computing hardware. Even without improvements to the complexity of the gen-
eral decoding problem, McEliece’s proposed “secure” work factor of 265 would
not be considered sufficient for long-term security today.

But even if 265 were enough to guarantee long term security, the formula
McEliece proposed for calculating the work factor no longer represents the best
known attack. In the original proposal of the cryptosystem McEliece proposed
the following formula for approximating the work factor:

k3
(

1− t

n

)−k
(3.1)

but improvements in general linear decoding algorithms have rendered this for-
mula obsolete.

3.2 Information Set Decoding

Although the general decoding problem is NP-complete, there are still prob-
abilistic algorithms that can improve the performance of special cases of the
problem, decreasing the security of cryptographic schemes based around the
problem [11]. The method for finding low-weight codewords described in [31]
and then applied to the McEliece cryptosystem in [11] is the first of the so called
“information set decoding” attacks.

16
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Like many cryptanalytic attacks, parts of Stern’s algorithm, and related
algorithms, are “embarassingly parallel”, that is, they can trivially be split
into multiple threads that are executed simultaneously. McEliece can be bro-
ken exponentially faster than McEliece’s original work factor expression shown
in Equation 3.1 by exploiting the embarrassingly parallel nature of Stern’s al-
gorithm. In 2008 Bernstein, Lange, and Peters [8] published the first major
breakthrough in over ten years. Their optimized implementation of an infor-
mation set decoding algorithm similar to Stern’s was able to break McEliece’s
original parameters in less than a week.

3.3 Ball-Collision Decoding

In 2011 Bernstein, Lange, and Peters [9] presented a new algorithm which im-
proves on the algorithm presented in [31]. They claim this algorithm allows
attackers to decode random linear codes in Õ(20.05558n).

Ball-collision decoding has its roots in information-set decoding, like previ-
ous attacks. But unlike those attacks, which select a random information set in
the parity-check matrix and then search for vectors having a particular pattern
of non-zero entries, Ball-collision decoding searches for a more complicated, and
more likely pattern [9]. This approach is what makes BCD more efficient that
previous attacks, and accounts for the slightly lower upper bound on asymptotic
complexity that of the BCD attack.

The steps of the BCD algorithm, taken from [9]:

1. Choose a uniform random information set Z. “FZ
2 ” will be used to denote

to the subspace of Fn
2 supported on Z.

2. Choose a uniform random partition of Z into part of sizes k1 and k2. The
subspaces formed by these partitions will be denoted as “F k1

2 ” and “F k2
2 ”.

3. Choose a uniform random partition of {1, 2, . . . , n} \Z into parts of sizes
l1, l2, and n− k − l1 − l2. The subspaces formed by these partitions will
be denoted as “F l1

2 ”, “F l2
2 ” and “Fn−k−l1−l2

2 ”.

4. Find an invertible matrix U such that U ∈ F (n−k)×(n−k)
2 and the columns

of UH indexed by {1, 2, . . . , n} \Z form the (n − k) × (n − k) identity
matrix In−k.

5. Write Us as
(
s1
s2

)
with s1 ∈ F l1+l2

2 ,and s2 ∈ Fn−k−l1−l2
2 .

6. Compute the set S consisting of all triples (A1x0 + x1, x0, x1) where x0 ∈
F k1
2 , wt(x0) = p1, x1 ∈ F l1

2 , and wt(x1) = q1.

7. Compute the set T consisting of all triples (A1y0 + y1 + s1, y0, y1) where
y0 ∈ F k2

2 , wt(y0) = p2, y1 ∈ F l2
2 , and wt(y1) = q2.

8. For each (v, x0, x1) ∈ S:
For each y0, y1 such that (v, y0, y1) ∈ T :
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If wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2:
Output x0 + y0 + x1 + y1 +A2(x0 + y0) + s2.

The new work factor, proposed in [9] is:

min

{(
n

w

)(
n− k
w − p

)−1(
k

p

)−1/2
: p ≥ 0

}
(3.2)

Additionally, that work factor can be split between as many processors as
an attacker can afford. Not only can many iterations of the algorithm detailed
above be executed in parallel, but different steps of the algorithm can also be
parallelized. In particular, both of the loops inside of step 8 can be unrolled
and evaulated simultaneously. The gaussian eliminaton from step 4 can also be
executed in parallel for a significant decrease in attack time. Our approach for
optimizing individual steps of the BCD algorithm can be found in Section 4.1.

3.4 Practical Attacks

Although significant improvements have been made to the cryptanalysis since
2008, none of these new attacks have been implemented for systems on the
scale necessary to break anything but toy parameters since [8]. The purpose of
this project is to show that not only has the hardware necessary for the attack
improved, but the cryptanalysis has also improved substantially since 2008, and
practical attacks on McEliece are even easier than those in [8]. In addition, the
ability to rent hardware in the cloud (so-called Infrastructure as a Service) has
made the capital investment necessary to perform an attack much lower because
attackers no longer need to build and maintain their own supercomputers.

In Chapter 4, we will describe an implementation of the ball-collision de-
coding algorithm on massively parallel graphical processing units. Then, in
Section 5.3 we will propose new estimates for the economic cost of practical at-
tacks on McEliece’s original parameters as well as the more secure parameters
proposed in [9].



Chapter 4

Ball Collision Decoding on
GPUs

4.1 Analyzing the Ball Collision Decoding Al-
gorithm

4.1.1 Introduction

In 2011 Bernstein, Lange, and Peters published a new attack on McEliece that
they called Ball Collision Decoding. They claim that this algorithm can decode
random linear codes in Õ(20.05558n) [9] (the algorithm is discussed in further
depth in 3.3). Provided with the paper is a reference implementation of Ball
Collision decoding which counts the number of bit operations it performs to
confirm the predictions of the paper. Unlike in their previous work in [8], the
reference code for Ball Collision Decoding is almost entirely unoptimized.

4.1.2 Profiling the Reference Implementation

By far the most common operation used in bcd.cpp is a bit addition the +
operator for the bit class). This operation is actually a bitwise XOR (on a
single bit). The fact that the majority of execution time is spent performing bit
operations implies that the task is compute-intensive and could be sped up if
executed in parallel.

For attacks on McEliece’s original parameters, most of these bit operations
happen during the Gaussian elimination that occurs during step 4 of the al-
gorithm. The Gaussian elimination step is a good target for parallelization
because of the large number of bit operations involved and because many of
these operations can be done in parallel.

19
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Table 4.1: Cryptosystem Parameters

Parameters n k w Security (bits)
Original 1024 524 50 49.69
Improved [9] 3178 2384 68 128
Set 1 30 11 8 negligible
Set 2 768 300 30 21

4.1.3 Attacking Cryptosystem Parameters

The reference implementation is provided with hardcoded cryptosystem param-
eters (Set 1 Table:4.1) to allow the program to run to completion fully as a
fast check on the results of [9]. These toy parameters are also good as an illus-
tration of the operation of the algorithm, and as a fast check that it has been
implemented correctly. Because of the iterative nature of the algorithm, there
is not much use for an intermediate key size (i.e. a key size between the toy
parameters and the original proposed parameters) because the complexity of
the total attack can be verified on the toy parameters and the complexity of a
single iteration of the attack is relatively trivial even for the largest proposed
key sizes. Even with a faster algorithm and improved hardware, we would not
expect to be able to break any of the parameters proposed in [8].

Using the work factor equation 3.2 proposed in [9], we chose another set
of toy parameters (Set 2 Table 4.1) which are slightly larger than the reference
implementation’s toy parameters and provide up to 21 bits security.

Without any significant breakthroughs in cryptanalysis, the upper bound
of a realistic attack on commonly used McEliece parameters using university re-
sources is still the original proposed parameters, (n, k, w) = (1024, 524, 50) [27].
Although we do not expect to be able to break much larger parameters than [8],
we do expect to be able to implement a practical attack with better asymptotic
bounds.

Though a successful attack on both the 128-bit and 256-bit equivalent
parameters is impossible, testing attacks on (n, k, w) = (3178, 2384, 67) and
(n, k, w) = (6944, 5208, 136) should provide useful information on the memory
requirements of performing attacks similar to ball collision decoding on GPUs.
If the memory resources required to perform such an attack are realistic, then
it is possible an improvement to the cryptanalysis could make such an attack
feasible.

4.2 CUDA tools for optimization

The GK110 graphical processing unit that lies inside our NVIDIA K20 modules
has the compute capability of 3.5, which is the most recent version for devices
based on Kepler architecture. Thus, it offers the highest instruction through-
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put among different CUDA-capable devices. We follow the CUDA performance
guidelines to achieve maximum instruction throughput. Our optimized algo-
rithm mainly makes use of the bitwise integer operations such as AND, OR and
XOR, which can perform up to 160 operations per clock cycle per multiproces-
sor. Another optimization strategy we follow is maximization of utilization of
the hardware at all three levels :

• Application level

• Device level

• Multiprocessor level

We intend to employ as much parallelism as possible and efficiently map
this parallelism to various components of the system so that we can keep it
busy most of the time. We maximize utilization with different mechanisms such
as scheduling concurrent kernels, or parallel threads and choosing the optimal
block and grid sizes for kernel execution.

4.3 Finding an Information Set in Parallel

Step 4 of the algorithm requires finding an invertible matrix U such that U ∈
F

(n−k)×(n−k)
2 and the columns of UH indexed by {1, 2, . . . , n} \Z form the (n−
k)×(n−k) identity matrix In−k. This is achieved through Gaussian Elimination
of the matrix UH. The algorithm for this step was first presented by Stern
in [31].

Implementation of this step in parallel has implications for the performance
of other information set decoding attacks, not just ball collision decoding [3,8,9,
26,31]. A practical implementation of an attack on the McEliece cryptosystem
must include an efficient Gaussian elimination.

4.3.1 GF(2) Gaussian Elimination on GPUs

Gaussian elimination on GPUs is a relatively obvious and well studied problem.
Efficient implementations of Gaussian Elimination for solving linear systems
have been proposed in [33]. However, these implementations are typically fo-
cused on scientific computing, and are therefore designed to be efficient for
matrices of floating point numbers. Efficient algorithms for operations on ma-
trices in finite fields can differ significantly from those for floating point matri-
ces [25,29].

The implementation of GF (2) Gaussian Elimination that we use is a mod-
ified version of the parallel algorithm presented in [25]. The modifications stem
from the fact that our implementation is targeted at GPUs, whereas the al-
gorithm proposed in [25] is for purpose-built linear algebra parallel processors.
Because the architectures of these processors are very similar, few changes were
needed to make the algorithm efficient on GPUs.
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4.3.2 Parallelized Generation of Information Set

Using a parallelized modification of the algorithm presented in [31] we have
implemented step 4 of the ball-collsion decoding algorithm on GPUs.

As previously mentioned, the information set Z is found using a Gaus-
sian elimination operation on the matrix H until the columns of H indexed by
{1, 2, · · · , n} \Z are linearly independent. Fruitless Gaussian elimination steps
are omitted using the optimization described in [31].

Using the GPU we are able to process the matrix operations in parallel.
For each of the n − k linearly independent row of the matrix we perform the
following operations:

1. Find an element j in the information set Z corresponding to a nonzero
(and unreduced) column of the row.

2. Swap rows such that the reduced matrix will form an (n − k) × (n − k)
identity matrix.

3. Add the current row to all rows that are nonzero in the jth column.

In our parallel implementation we use up to n − k threads to construct a
sparse representation of the current row (using indexes into Z) and randomly
select an element of Z from the sparse representation as our value of j. This
approach is equally efficient for dense and sparse rows, which allows its per-
formance to stay constant as the rows become progressively more and more
reduced.

The row swapping operation is executed in a single thread on the GPU
because it is simply a swap of two elements of Z. This single threaded operation
would, of course, be faster on the CPU, but that would require keeping CPU
and GPU copies of Z in sync during the Gaussian elimination, which would
cancel out any performance gain from performing it on the CPU.

The row additions are executed in parallel, with a separate block of threads
for each row (n−k total blocks) and a separate thread in each block for each row
((n− k)× (n− k) total threads). The row operations are entirely independent
of each other once j has been found, thus, we should experience a speedup
by a factor of up to n− k. This approach lets us utilize as many simultaneous
threads of execution as possible on the CPU and it ensures that because threads
within the same block will be accessing the same row of memory. When the
operations are done with one row per block, we can take full advantage of the
GPU’s memory pipeline and achieve a high level of performance.

4.4 Parallelized Generation of Output

Step 8 of the algorithm serves as a good example of different types of parallelism
in our implementation. The step 8 in the reference implementation involves
many levels of nested for loops which results in the high operation counts as
observed in the cost comparison table (Table 5.2). Our implementation of step
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8 breaks the loops into parallel threads and blocks of sizes as big as the sizes of
the output matrices.

We make use of different variable qualifiers to define the scope of GPU only
variables such as device whose scope is within a grid, shared for variables ac-
cessible within a block and local for a thread. The blockIdx and threadIdx

are three dimensional variables which are used to index into each parallel invo-
cation of the device kernel being executed. The nested for loops are replaced
with such threads and blocks by setting the loop variables to the thread and
block indices to maximize the computation speed.

The device function sycnthreads() is used to make sure that all the threads
finish their work before proceeding to the next portion of the code which will
likely require the values produced in the preceding lines. The 2-dimensional
arrays or matrices are allocated using cudaMallocpitch() function in cuda
which is optimized for 2-D arrays and make use of the pitch of the array for
indexing. cudaMallocpitch() allocates 2-D arrays with a memory pitch that
is optimized for better caching for row access.

4.4.1 Step 8 Setup

Before actually generating possible outputs of the algorithm, we must first de-
termine which elements of S and T should actually be compared. To do this,
we have a lightweight kernel (shown in Algorithm 4) that runs a thread for each
combination of two elements of S and T . Using the data structure provided by
the reference implementation, we determine if the two elements corresponding
to the thread satisfy the equation A1x0 + x1 = A1y0 + y1 + s1 (from Section 5
of [9]). This kernel yields a list of structs with pointers to pairs elements of S
and T that constitute matches.

This step does not result in a significant speedup because there are a lot of
threads with not very much to do, but it does ensure that memory accesses are
mostly adjacent, which significantly increases the cache hit rate in the step 8
kernel (described in Section 4.4.2).

Algorithm 4 GPU Kernel for Step 8 setup

if thread ≥ T len then
return

end if
this match.t = &T [thread]
for (inti = head[this match.t− > sum.gpu index()]; i >= 0; i = S[i].next)
do

this match.s = &S[i]
intmatch idx = atomicInc(&g match len, 0)
matches[match idx] = this match

end for
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4.4.2 Step 8 GPU Kernel

The step 8 kernel runs on the matches generated by the step 8 setup kernel
(described in Section 4.4.1). The algorithm for generating output from elements
of S and T is described in Section 3.3. We parallelize it to create a new thread for
every match, which allows for many operations to be executed simultaneously.
In addition, the structure of the kernel allows all of the loops to be fully unrolled,
which allows each thread to take advantage of the pipelined architecture of the
streaming processor. Finally, the order in which the list of matches is generated
ensures that accesses to the set T will be local (and near sequential), which
allows the GPU to take advantage of its cache, and better utilize its instruction-
level parallelism.

The result of these optimizations is > 90% thread occupancy on the GPU,
with a per-thread IPC of ≈ 2.5. The main bottleneck of this kernel is probably
cache misses from accesses to the set S, which are unpredictable. Pre-sorting S
in the setup step could increase the cache hit rate, but would incur significant
additional overhead, which would likely offset any perfomance increase from the
better cache hit-rate.

4.5 Algorithm Memory Requirements

The memory requirements for most cryptosystem parameters scale either lin-
early or quatdratically with the cryptosystem parameters. The major exception
to this rule are the sets S and T, whose size are the product of two binomials.
Note however, that the attacker can optimize their attack for the amount of
memory they have by scaling the attack parameters p, q, and l to adjust the
size of S and T. Note also that the size of head scales exponentially with l1 and
l2. While this seems like it could also be a limiting factor, in reality the value of
l1+ l2 is always less than 30, which keeps the size of head relatively manageable.
The choice of attack parameters allows the attacker to make a time/memory
tradeoff that matches the resources they have available.

On a GPU the size of S and T is the most significant consideration in the
allocation of global memory. The NVIDIA Tesla K20 has 5GB of memory, which
is easily enough for iterations of an attack on the original McEliece parameters,
and possibly even the 128-bit eqivalent parameters proposed in [9]. The 256-bit
equivalent parameters cause S and T to be incredibly large, making the attack
unfeasible before even considering the enormous computational requirements.

It is important to note that because step 8 of the ball collision decoding
algorithm (described in section 3.3) must be run for every possible pairing of S
and T, it is nontrivial to distribute both S and T over nodes in a cluster. Ideally,
at least one of the sets should fit in the memory of a single node – or better yet,
a single GPU – so that one of the sets can be partitioned across nodes (and/or
GPUs) and matched against the set that fits in memory. For cryptosystem
parameters that approach the limits of what can practically fit in memory it
may be possible to choose the values of k1 and k2 such that one of the sets fits in



CHAPTER 4. BALL COLLISION DECODING ON GPUS 25

Table 4.2: Memory Allocation Requirements for Named Variables

Name Type Size (bytes) Dimension
Set 1 Set 2

head int 8 4 2l1+l2

H bit 2280 1437696 (n− k)× n
target bit 120 3072 n
roworder int 76 1872 n− k
U bit 1444 876096 (n− k)× (n− k)
s bit 76 1872 (n− k)
UH bit 2280 1437696 (n− k)× n
Us bit 76 1872 (n− k)
Z int 120 3072 n
rowcol int 76 1872 (n− k)
Fk1 int 24 600 k1
Fk2 int 20 600 k2
Fl1 int 16 32 l1
Fl2 int 20 32 l2
Fnkl1l2 int 40 1808 (n− k − l1 − l2)
lprep bit 36 64 l1 + l2
A1 lbits 44 600 k
A2 bit 440 542400 k × (n− k − l1 − l2)
s1 lbits 4 4 1
s2 bit 40 1808 n− k − l1 − l2
S custom struct 960 1430400

(
k1

p1

)(
l1
q1

)
T custom struct 12 1072800

(
k2

p2

)(
l2
q2

)
A2x0y0 bit 40 1808 n− k − l1 − l2
output bit 120 3072 n
soutput bit 76 1872 n− k

memory and the other does not. When possible however, the parameters should
be roughly equivalent to decrease the computational complexity of the attack.

Different types of memory spaces exist on the device such as register, local,
global, shared, constant and texture. Only the register and shared memory
spaces are actually located on the GPU chip and the rest are located off-chip,
although local, constant and texture memory are cached. Global and constant
variables are accessible from both device and host while variables in shared
and local memory are only visible to the device. Any global variable to be
processed on the device requires to be allocated separately on the device through
cudaMalloc and the data from host space is copied on to the device using
cudaMemcpy. Also after the kernel has been executed, another cudaMemcpy call
is required to transfer data back from device to host memory space.
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Our GPU kernels mainly make use of global, local and shared memory.
Most of the matrices in the algorithm are declared as global variables since they
require both GPU and CPU processing. The overhead of data transfer back
and forth between the host and the device for these global values only takes
up about less than 1% of the total execution time as seen in the performance
analysis table in the results section. The memory allocation of device variables
also takes up a negligible constant overhead. Shared memory space is where
most of the action takes place with every thread in a block having access to the
variables in this space. Our implementation makes use of this memory space
for variables that are to be updated by every thread. A synchronization point
is also required after writing to a shared memory space if the next operations
are dependent on the shared memory. We utilize a syncthreads() function to
achieve this synchronization.

The CUDA library contains a function that allows host memory to be
pinned for use with the device called cudaMallocHost. The function allows
the allocated data to be directly accessible from the device thus allowing a
higher bandwidth with read/write operations. It also provides a speed-up
when used along side cudaMemcpy operations. In our implementation, instead
of calling a cudaMemcpy for each value, integer variables are allocated using
cudaMallocHost() which speeds up the total execution time by approximately
15% compared to using normal cudaMemcpy.



Chapter 5

Results

5.1 Experimental Methodology

The reference implementation has a cost variable which updates every time an
arithmetic operation is performed on one of its defined data classes. This ‘cost’
variable tracks the total number of operations at each point of the algorithm.
After analyzing the reference implementation, and identifying parts of the al-
gorithm which have heavy costs, we started by moving those certain parts onto
the GPU. We then proceeded with the parallelization by defining an optimal
number of grid and block sizes which execute our GPU kernels concurrently
on the device. With each new kernel implemented, we keep frequent timing
measurements. We use the Linux ‘time’ command which outputs a number of
timing statistics such as elapsed real time read from the wall clock, user CPU
time for the process and CPU time used by the system. We also make use of
the GNU profiler ‘gprof’ and the NVIDIA profiler ‘nvprof’ for our performance
analysis. The profilers can produce several different styles of outputs including

• Flat Profile, which shows the total amount of time the program spent to
execute each function.

• The call graph, which shows function calls and time spent in each subrou-
tines.

• The line-by-line option to profile each line of code.

• The annotated source option to produce profiled information along with
respective source code from the program.

5.2 Measured Perfomance Comparison

The following tables summarize timing and speed-wise comparison of how our
version of the algorithm performs alongside the reference implementation from
2011 with the toy parameter sets defined in Table 4.1.

27
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Table 5.1: Results with toy parameters

GPU Reference
Parameter Set 1 Set 2 Set 1 Set 2
Avg. iterations to target 43.27 11128 43.2722 11128
Gauss cost /iteration 5269.84 8.40e07 5269.84 8.40e07
S cost/iteration 195 268200 195 268200
T cost/iteration 115 270584 115 270584
Match cost/iteration 103.56 2.44e07 103.56 2.44e07

In 2008, Bernstein implemented a successful attack on the original McEliece
parameters. Their attack recovers the plaintext from a chosen ciphertext by
decoding 50 errors. The attack takes about 1400 days or 258 CPU cycles when
run on a single computer with a 2.4GHz Intel Core 2 Quad CPU, which results
in about a speed up factor of 150 after taking out the hardware improvement
contributions. One attack iteration takes 6.3 million CPU cycles on a Core 2
Quad.

The graph below summarizes of our results from the practical attack.

Figure 5.1: Execution Time Comparison between CPU and GPU
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5.2.1 Performance Analysis of the GPU implementation
of Ball Collision Decoding

Table 5.2: Performance Analysis

Kernel Name Total Time Avg. Time/Call # of calls % Time
Step8 129.82s 129.82 ms 1000 49.11
row elim 78.46s 156.92 µs 500000 29.68
findj 47.77s 95.53 µs 500000 18.07
memcpy HtoD 2.55s 170.18 µs 15000 0.97
PreStep8 2.03s 2.03 ms 1000 0.77
Step4 Gen A1 A2 1.80s 1.80 ms 1000 0.68
update cols 1.76s 3.52 µs 500000 0.67
memcpy DtoH 164.38ms 32.88 µs 5000 0.06

Table 5.2.1 summarizes the profiling results of the GPU implementation of
Ball Collision Decoding for 1000 iterations of an attack on the original McEliece
parameters. The first column shows a list of all GPU calls in the algorithm
including the memory copy operations to and from the device to the host. The
GPU device functions (kernels) are named according to both their functions and
the corresponding steps in the original BCD algorithm.

These results are consistent with the expected costs of different parts of
the algorithm. The most significant conclusion we draw from them is that the
memory bandwidth of the GPU is not a limiting factor on our implementation,
because the percentage of GPU execution time spent copying memory between
GPU and CPU memory is negligible. This means that further optimization of
GPU kernels, especially the Step8 kernel, would significantly improve perfor-
mance.

5.3 Economic Cost Analysis

The cost analysis in [8] assumes a 2.4GHz Intel Core 2 Quad Q6600 CPU, which
was the state of the at the time.

Since 2008, not only has hardware improved substantially due to Moore’s
law, but GPGPU has exploded, making massively parallel GPUs much cheaper.
In the 7 years since [8] was pubished, hardware that is cheaper, faster, more
parallel, and less power-hungry has become available.

For embarassingly parallel problems such as the generic decoding attack,
GPUs can offer impressive speedups over CPUs for a fraction of the cost due
to the parallelism of their architecture. The NVIDIA Tesla K20s used in the
Turing cluster cost $3,018.99 each. They have a 706MHz core clock and 2496
streaming processors. They also have 5120 MB of total memory. The Tesla K20
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can compute up to 3520 GLOPS, two orders of magnitude more than the 38.40
GFLOPS for the Q6600 CPU.

But GPUs aren’t the only hardware improvements that have been made in
the last 7 years. The technology in CPUs has also made impressive improve-
ments over the state of the art in 2008. The CPUs in the Turing cluster are
2.80GHz Intel Xeon E5-2680 v2. They cost $2,091.12 each. They have 10 cores.
The Xeon E5-2680 v2 can compute up to 199.43 GFLOPS, over 5 times more
than the processor from 2008. There are two per node in the cluster. For the
$200000 cost in [8] we could buy 40 pairs of CPUs and GPUs, which would be
a substantial improvement over the 2008 hardware.

The cost of hardware isn’t the only cost associated with running a high per-
formance computer. In terms of hardware utilized for this project, the NVIDIA
k2 GPU uses about 225 Watts of board power and 25 Watts when idle [14].
The Intel Xeon E5-2680 v2 dissipates about 115 Watts of power with all cores
active [12].

Attackers don’t need to build their own GPU cluster to perform this attack.
In fact, the attack could be performed entirely in the cloud using rented infras-
tructure. The idea of evaluating cryptograpic key strengths based on the cost
to break them has been explored before [24]. But previous work on breaking
cryptographic keys does not address McEliece. In addition, since 2012 the cost
of infrastructure as a service (IaaS) has decreased significantly (with the cost of
hardware).

An Amazon EC2 g2.2xlarge instatnce has 8 CPU cores, 15 GiB of RAM,
and a ”High-performance NVIDIA GPU with 1,536 CUDA cores and 4GB of
video memory” [22]. These instances can be rented hourly for $0.650 per Hour,
for an entire year for $3478, or for three years for $7410 [23]. So-called ”spot”
instances can also be rented at prices that are tied to market demand, but
predicting the market value of GPU instances is outside the scope of this paper.

Based on our results on the turing cluster we expect that a single g2.2xlarge
instance would be capable of performing at least 1000 iterations per hour on
the original McEliece parameters. This means to execute an attack on the
cryptosystem parameters from [8] would require roughly $400 Million using
infrastructure rented by the hour using the attack parameters from our tests. It
is likely that more optimized attack parameters exist that would bring this cost
down in terms of both time and money. Note that this attack is more expensive
than Bernstein et al.’s 2008 attack. Although BCD’s asymptotic complexity is
much better than that of the 2008 attack, the iterations are much more complex,
which makes the attack less efficient for smaller parameters.
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Conclusions

6.1 Summary

The McEliece system is not only promising for post-quantum cryptography
with its immunity to Shor’s algorithm but also a highly secure system with
the security growing along with the key size. The original system using Goppa
codes is still resistant to cryptanalysis.

Information set decoding attack and its variants are the most effective at-
tacks against the system. In 2008, Bernstein et.al [8], introduced a practical
attack on original parameters with a series of improvements to the 1989 Stern’s
algorithm [31]. In 2011, Bernstein et.al [9] came up with ball-collision decod-
ing which reduces the upper bound of the decoding exponent and provides a
speedup exponential in n to [31]. This attack is parallel in nature with most
matrix operations carried out in iterations and thus is a suitable candidate for
GPU acceleration.

Compared to clusters with 10 cores per CPU, a single NVIDIA K20 GPU
contains about 2500 processing cores, on which threads can run concurrently
thus decreasing the asymptotic runtime of the attack.

After analysis of the reference implementation of ball-collision decoding,
the Gaussian elimination steps (Step 1+4) and the final join operation step
between S and T (Step 8) are identified to involve compute-heavy operations
and possible non-sequential processing. These two steps are the main targets of
the GPU acceleration and respective GPU kernels were implemented to allow
for parallel processing of these steps while the rest of the implementation mainly
runs sequentially on the GPU.

CUDA profiling tools for GPU are utilized to analyze the performance of the
kernels and look for possible improvements and further optimizations. With the
help of the profiler, certain points in the algorithm that were slowing things down
were easily identified and improved upon. The proper and effective allocation
of block and grid sizes for the kernels also play a big role in ensuring that the
implementation make use of all available resources and provides the highest
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parallel throughput the device can achieve.
We have succeeded in speeding up the Ball-Collsion decoding algorithm

by implementing it on GPUs. Our implementation is two times faster than
the reference implementation provided by Bernstein et al. Although our im-
plementation does not improve cost of the attack against the orginal McEliece
parameters from [8] it does show that Ball-collsion decoding can be used in
practical attacks.

We have also shown that the matrix operations associated with information-
set decoding attacks are well-suited to the parallel architecture of GPUs. Unlike
previous attacks, we focus on parallelizing within iterations of the attack to de-
crease the cost of individual iterations. In particular, we show that the algorithm
presented in [31] is particularly well suited to GPU hardware and a parallel im-
plementation can easily outperfom a single-threaded implementation by at least
a factor of two.

While our work represents a significant optimization of existing cryptanal-
ysis, it does not change the asymptotic bounds of attacks on McEliece. The use
of GPU hardware can make difficult attacks more feasible, but these attacks
will only be possible on cryptosystem parameters that were already considered
insecure. The McEliece cryptosystem is far from broken; it is still a strong
candidate for post-quantum public key cryptography. But future users of the
cryptosystem will need to ensure that secure key sizes, such as those proposed
in [9], are used.

6.2 Future Work

While the work that we present represents a significant increase in the perfor-
mance of BCD attacks, we believe that there is still much potential for future
work on practical attacks on McEliece. We believe that future work could ex-
plore the use of distributed computation to scale attacks better. We also believe
that the BCD attack can be further optimized to perform even better on GPU
and CPU hardware. In addition, we believe that future work could parallelize
the algorithm even further, allowing for better utilization of GPU resources.
Finally, we recognize that newer cryptanalysis could provide even better results
for attacks on McEliece and could also be targeted for GPU implementations.

6.2.1 Distributed Computation

Although we used a computational cluster for testing our implementation, we
did not attempt to distribute iterations between nodes of the cluster. In addi-
tion, we did not attempt to divide work between available resources on the same
node. Future work could divide iterations of the BCD attack between different
nodes of a cluster, distributing the work across many compute nodes to allow
for even greater parallelism in the attack.
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6.2.2 Further Optimization

Although we have achieved a significant speedup over the reference implemen-
tation by moving computation to GPUs, we do not believe that our work rep-
resents the best possible implementation of BCD. The number of load, store,
add, and multiply operations performed on individual bits could be reduced sig-
nificantly if bits were packed into integers rather than stored individually. The
advantages to this approach would be more efficient storage (an improvement
by a factor of 32) of matrices and vectors as well as reduced cost of addition
and multiplication of vectors (again, by a factor of 32). The main disadvantage
would be additional cost to index into a vector because of the need for additional
operations to extract a particular bit.

This technique would likely be necessary to mount an attack against pa-
rameters significantly larger than the original McEliece parameters because of
the limited memory and threads available on a single GPU.

We chose not to attempt this optimization because we believed it would
make the code error-prone and difficult to understand. In the best case, it could
provide a decrease in time and memory requirements by a constant factor of 32.

6.2.3 Parallel Set Generation

In our analysis of the BCD algorithm we determined that the generation of
the sets S and T was the most difficult part of the algorithm to parallelize.
Unfortunately, if the sets are generated in a single thread we must choose attack
parameters that keep the complexity of these operations comparable to the
Gaussian elimination and matching steps. This means that to take advantage
of the GPU we must choose attack parameters that require a very large number
of iterations to solve.

If the set generation were paralleled, better attack parameters could be used,
and the number of iterations required for a successful attack would drop signif-
icantly. This would likely decrease the overall cost of the attack significantly
and make the attack more practical.

6.2.4 Further Cryptanalysis

The most recently published cryptanalysis by May, Meurer, and Thomae [26]
claims the ability to decode random linear codes in Õ(20.05363n). Unlike the
papers published by Bernstein et. al. [8, 9], May, and Thomae did not make
an effort to optimize their code, although they did make an implementation of
their algorithm available. Because their attack is also related to information set
decoding, much of the work presented in this paper should be applicable to a
GPU implementation of the attack.
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