
INTERACTIVE CINEMA

A Major Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In Partial Fulfillment

of the Requirements for the Degree of

BACHELOR OF SCIENCE

Ben Korza

PRELIMINARY REPORT

December 17, 2015

Professor Brian J. Moriarty, Advisor

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. For more information about the projects program at WPI, please see

http://www.wpi.edu/academics/ugradstudies/project-learning.html

1

https://exchange.wpi.edu/owa/redir.aspx?C=JDryqcO3z0aXjuMphyWU07wD2eEiU9IItVKHE1RwAVcQ2nWUD8cDQp7dgdJWZ_kniB-45fus8KM.&URL=http%3a%2f%2fwww.wpi.edu%2facademics%2fugradstudies%2fproject-learning.html

2 BACKGROUND

2.1 The Pied Piper

(Begin this section with a part on the Piper’s art direction)

2.1.2 Piper Movement

The Piper travels along a spline. In order to allow the Piper to stop and conduct other

actions, special volumes exist that delay the Piper when he enters them. These delays end when

either a set amount of time expires or a Boolean is flipped. The delay volumes are used at

several set piece locations, such as when the Piper raises the bridge. The Piper also needs to

teleport to another location at one point. This issue is circumvented by creating a second

instance of the Piper at the target location. The combination of these techniques results in the

Piper’s movement system.

2.2 Constraining the Player to a Linear Path

Since the experience outlined in this project is almost strictly linear, it was necessary to

have a way to limit the player’s movement to a specified path. To accomplish this, the project

employs several tricks that not only constrain the player, but also give them an illusion of

freedom in order to enhance the project’s experience goal. One trick was to use walls that would

spring up out of the ground whenever the player went down an alleyway straying from the

Piper’s path. These would naturally block the player’s movement and force them to turn around.

To prevent this mechanic from becoming stale, each pop-up wall was outfitted with a different

texture and special effect. These pop-up walls were placed at most of the locations where the

player could get off track in the city. (Include a paragraph on Will’s spatial trick and any other

relevant tricks after this).

2

2.3 Flocking

 One of the biggest requirements for this project was to have a crowd of children travel

along with the player as they follow the Piper. The effect would require children to keep away

from other nearby children, and do so without having a significant impact on the application’s

frame rate. In order to accomplish this an AI technique called flocking was introduced.

At its basic level, flocking works through the usage three simple steering behaviors:

separation, alignment, and cohesion. Cohesion is the behavior that causes flockers to move

toward the average position of their local flockmates. Alignment is the behavior that causes

flockers to steer towards their local flockmates’ heading. Separation is the behavior that causes

flockers to avoid each other (Reynolds, n.d.). Combined, these behaviors form the basis of a

general flocking technique.

In contrast to most flocking simulations, the children in this project move along a spline.

This has some implications on the way their flocking can be conducted. Since the children’s

cohesion to the spline is the most crucial attribute of their movement, cohesive forces between

children are out prioritized and therefore unnecessary. There is also no need for an alignment

parameter since a child’s alignment should match the direction of its velocity vector. The only

behavior needed is separation. Therefore, the children are programmed to flock away from each

other by first calculating vectors of separating forces. These vectors are then applied in two

different ways. The first pushes children that are too close away from one another. The second

involves offsetting their spline path using the forces calculated in flocking. The final behavior is

a result of these two sub-behaviors combined. This resultant behavior is demonstrated in Figure

1, where all of the children maintain a distance of roughly several yards from each other.

3

Fig 1: Flocking in Action

In terms of performance, flocking can be a computationally expensive task. The

technique requires each child to do checks against all their nearby children to determine how to

apply forces. As such, the algorithm employs a number of adjustable parameters in order to

improve performance. For instance, the maximum number of children that the flocking

algorithm will consider and the rate at which the flocking algorithm updates can be modified.

By changing these parameters, the algorithm’s performance can be improved, but usually at the

expense of accuracy. The correct balance between performance and accuracy is necessary to

generate a convincing crowd of children.

2.4 Shaders

 In order to achieve the project’s experience goal, the player has to be enticed to follow

the Piper. One way of doing this is by dissuading the player from straying too far from the Piper

by desaturating the world. Implementing such an effect requires a shader, or a method of

producing special effects via post-processing. Two different shader techniques were investigated

4

in order to determine how to best accomplish this effect. The first involves calculating the

player’s angle to the Piper and applying a screen space desaturation shader whenever the player

is looking away from the Piper. This has the effect shown in Figure 2. It has the limitation that

it can only be cast over the entire screen, and cannot be applied on a per-texture basis. However,

the technique is easy to implement in Unreal and is not very expensive computationally.

Fig 2: Screen Space Shader Technique

The second technique uses node-based shaders attached to the material components of

objects and is outlined in Reference 1. As seen in Figure 3, this technique has the advantage of

being able to apply the desaturation effect both to objects individually and at different locations

on their texture; however, it has the disadvantage of being computationally more expensive than

the former solution. It also requires more work to integrate it into all of the materials using the

effect.

5

Fig 3: Node Based Material Shader Technique

In the end the first solution was used because it was easier to implement, the effect was

more desirable, and it was less computationally expensive than the second solution.

OR

In the end the second solution was used because it provided more control and flexibility

over the desaturation effect than the first solution. This second solution was also used to

implement several other effects in the application, like a rainbow bridge that materializes from

thin air. (Complete once we know all circumstances where we use node based shaders).

6

2.5 Stat Tracking

 Player metrics are both a valuable tool in the debugging process and a good way to

determine faults that undermine the project’s experience goal. In order to gather data on a

player’s run, the application records various statistics and outputs them to a log file. These

statistics can then be viewed by opening the log file in a text editor. The statistics recorded in

this log file are listed below:

· Playtime
· Time matching Piper direction
· Time looking at Piper
· Time standing still
· Number of popups triggered
· Number of hallway teleports
· Average frames per second

The log file also records a history of data collected in real-time. This real-time data

includes the time and positions of the player when certain events occur, like the player stopping

or triggering pop-ups. This real-time data in combination with the recorded statistics provides a

fine granularity of data to identify bugs and assess how closely the player’s experience matches

the projects experience goal.

2.6 Wwise Integration

The project needed a flexible and optimized audio pipeline. To resolve this concern,

Wwise was integrated into Unreal. Wwise is an interactive sound engine for games

(“https://www.audiokinetic.com/products/wwise/,” n.d.). Although Unreal Engine also has

functions that handle audio, these do not allow for the same level of control as software

dedicated to integrating audio like Wwise. The expense of using Wwise is the time it takes to

integrate it into the engine. The software requires building a custom version of Unreal Engine

from the source code found on their GitHub page

7

(“https://github.com/audiokinetic/WwiseUE4Integration,” n.d.). This is a considerable time sink,

but it only lasts as long as the custom engine’s build time. Once the build is complete, all the

functionality of Wwise is easily accessible from within Unreal.

 (Jake should pad out this section with more details on Wwise)

REFERENCES

1. H, O. (n.d.). 3D Modeling & Texturing. Retrieved December 6, 2015,

 from http://oliverm-h.blogspot.com/2014/08/ue4-localized-post-process-effects.html

2. (n.d.). Retrieved December 9, 2015, from

 https://github.com/audiokinetic/WwiseUE4Integration

3. Reynolds, C. (n.d.). Boids (Flocks, Herds, and Schools: A Distributed Behavioral Model).

 Retrieved December 9, 2015, from http://www.red3d.com/cwr/boids/

4. Wwise. (n.d.). Retrieved December 9, 2015, from

 https://www.audiokinetic.com/products/wwise/

8

	2 BACKGROUND
	2.1 The Pied Piper
	(Begin this section with a part on the Piper’s art direction)
	2.1.2 Piper Movement
	The Piper travels along a spline. In order to allow the Piper to stop and conduct other actions, special volumes exist that delay the Piper when he enters them. These delays end when either a set amount of time expires or a Boolean is flipped. The ...

	2.2 Constraining the Player to a Linear Path
	Since the experience outlined in this project is almost strictly linear, it was necessary to have a way to limit the player’s movement to a specified path. To accomplish this, the project employs several tricks that not only constrain the player, but ...

	2.3 Flocking
	One of the biggest requirements for this project was to have a crowd of children travel along with the player as they follow the Piper. The effect would require children to keep away from other nearby children, and do so without having a significant...
	At its basic level, flocking works through the usage three simple steering behaviors: separation, alignment, and cohesion. Cohesion is the behavior that causes flockers to move toward the average position of their local flockmates. Alignment is the ...
	In contrast to most flocking simulations, the children in this project move along a spline. This has some implications on the way their flocking can be conducted. Since the children’s cohesion to the spline is the most crucial attribute of their mov...
	In terms of performance, flocking can be a computationally expensive task. The technique requires each child to do checks against all their nearby children to determine how to apply forces. As such, the algorithm employs a number of adjustable param...

	2.4 Shaders
	In order to achieve the project’s experience goal, the player has to be enticed to follow the Piper. One way of doing this is by dissuading the player from straying too far from the Piper by desaturating the world. Implementing such an effect requi...
	The second technique uses node-based shaders attached to the material components of objects and is outlined in Reference 1. As seen in Figure 3, this technique has the advantage of being able to apply the desaturation effect both to objects individua...

	2.5 Stat Tracking
	Player metrics are both a valuable tool in the debugging process and a good way to determine faults that undermine the project’s experience goal. In order to gather data on a player’s run, the application records various statistics and outputs them ...
	 Playtime
	 Time matching Piper direction
	 Time looking at Piper
	 Time standing still
	 Number of popups triggered
	 Number of hallway teleports
	 Average frames per second
	The log file also records a history of data collected in real-time. This real-time data includes the time and positions of the player when certain events occur, like the player stopping or triggering pop-ups. This real-time data in combination with ...

	2.6 Wwise Integration
	The project needed a flexible and optimized audio pipeline. To resolve this concern, Wwise was integrated into Unreal. Wwise is an interactive sound engine for games (“https://www.audiokinetic.com/products/wwise/,” n.d.). Although Unreal Engine als...
	(Jake should pad out this section with more details on Wwise)
	REFERENCES

