
Tool Overview and Functionality 

This project had three main deliverables: 

1. Nirs AutoML (NAML): Automated Classification Platform for fNIRS data  

2. Manual for setting up sktime (seen in Appendix A)  

3. Manual for setting up NAML(seen in Appendix B)  

This chapter will give an overview of the functionality of Nirs AutoML as well as provide a proof of 

concept of the tool with an fNIRS data set.  

Section 1:Nirs AutoML (NAML) Functionality  

NAML has four main functions: 1) to parse and reformat the data, 2) to classify the data, 3) 

to record the results of the classification, and 4) to assist users with getting started. There are two 

main scripts the tool consists of. The first program is ​naml.py​, the script that will parse, classify, 

and record the data. The second program is ​configuration_checker.py​. This program assists 

the user by checking their configuration file, and specified data file in order to save them time with 

errors.  

The picture below shows the generic workflow of naml.py. The user sets up a JSON 

configuration that specifies a file path for the comma-separated value (csv) file, the target column 

that the user would like to classify the data into, the percentage of training data they would like the 

train the model on, a list of specified classifiers, and the option to log the results.  

 

Figure 1: NAMLs workflow  



1.1 Configuration File Input  

In order to interact with NAML the user must create a JSON configuration formatted as shown 

below.  

  

Figure 2: Example JSON configuration file for NAML 

 

a) filePath​ , a string, defines the path to the location of the data file  you will be using. 

b) loggingEnabled,​ a true or false value, determines whether the output of the run 

will be logged onto a text file.  

c) targetCol,​ is a string that specifies which column the data will be classified into. 

For example, if there is  a column named “event” and there are two types of events, 

the data will be classified in one of the two events.  

d) percentTrain, ​a float value that determines the percentage of data that the 

models will be trained on. 

e) jobs,​ a list of jobs that will run. Within each job you must specify a classification 

method. Depending on the method there are different parameters that can be 

specified. Section 1.3 will overview the different classification methods and how to 

specify jobs per method within a configuration file.  

1.2 Data Manipulation 

Sktime requires data to be formatted in a certain way before it can be used with the toolbox. 

NAML’s data manipulation function is built to take in fNIRS data and reformat it accordingly. 

Consider the two images below. Figure 3 is the raw data outputted by the MATLAB graphical user 

interface. Several rows may represent the same event, but will contain the data collected from 

different sensors. Figure 4 is the output of passing this sensor data into the data manipulation 



function of NAML. As  you can see, the sensors’ data has now been reformatted into dimensions that 

contain the time series per label. Each channel data is now formatted into columns: A-DC1 

translates into dim_0 and A-DC2 translates into dim_0.  In Figures 3 and 4, the same instance of the 

manipulated data is highlighted.  

 

 

Figure 3: Data outputted from MATLAB GUI  

 

 

Figure 4: Data reformatted for sktime  

1.3  Classification Methods  

The tool currently supports four different classifiers over three different methods.  

Concatenation Method 

The concatenation method converts a multivariate time series into a univariate series by 

concatenating the series together. After this, a classifier built for univariate data, chosen by 



the user, is run. In this method, we support three distinct classifiers: Time Series Forest 

Classifier (TSF_CLF), KNeighbors Classifier, and Proximity Forest Classifier.  The following 

method shows three jobs each using the concatenation method.  

  

Figure 5: Example JSON for Concatenation Method  

 Multivariate Method  

The multivariate method currently supports one classifier that supports multivariate time 

series: the Shapelet Transform Classifier.  Here is an example of how to configure this 

method.  

 

Figure 6: Example JSON for Multivariate  Method  

 

 Column Ensemble Method  

The column ensemble method consists of specifying a classifier per column or dimension of 

the data. The user can choose as many dimensions of data as they would like to create the 

ensemble. For example, the following image shows that column zero and column one will be 

trained using the time series forest classifier. Any classifier mentioned under concatenation 

method section, is also available for the column ensemble method. 



 

Figure 7: Example JSON for Column Ensemble  Method  

 

Different methods can be called together in one configuration file, and a user may choose to specify 

as many jobs as they would like. Additionally, there is the option to parametrize the classifier based 

on the options provided by sktime API documentation.  This can be seen in Figure 7 above as well. 

For any method mentioned a list by the name of parameters must be specified in the order of 

parameter name, parameter value, parameter name, and so on as can be seen in the image below.  

 

 

Figure 8: Example parameter input  

1.4 Logging Output  

If chosen, the results of the classifier may be reported. The logging output will be saved under the 

format date:::time.txt. Within the text file we first list the json, the csv, and the job. We then record 

the accuracy and the time taken to run a single job. Accuracy is the percent classified correctly, and 

the time is the number of seconds it took to run the model.  The image below shows the time and 

accuracy  for two different jobs to run.  

 

Figure 9: Example output log file  



1.5 Configuration Checker  

configuration_checker.py is a file that will allow users to check if the format of the configuration file 

is correct, if any of data for a specific parameter in incorrect, and if the specified csv file has the 

correct format. The following is a list of checks covered by this program.  

● Parameters set in the JSON are valid parameters  as described in sections 1.1 and 1.3  

● fNIRS data file headers contains the following values: “name” “event”, “start time”, “end 

time”, “channel” 

  

Section 2: Proof of Concept 

Running sktime classification task on dual task driving study  

Data Overview  

The Dual Task Car Driving Study served as a test case to facilitate the development of the 

modular testing infrastructure.  This specific study aimed to determine if periods of high workload 

can be distinguished from periods of low workload, based on fNIRS data. In order to do this, thirty 

participants were put in a driving simulation while they had to perform an auditory vocal working 

memory tasks, specifically n-back tests, while driving in the simulator. These tasks required users 

to perform a blank-back, 0-back, 1-back, and 2-back test, each test requiring about 30 seconds to 

complete[5].  The researchers also collected a reference signal when the participant was 

performing no secondary task at all.  Each of these from baseline to the 2-back test, are increasing in 

difficulty, resulting in a higher cognitive workload.  

All in all, the study suggested that participants performed worse in the tasks as difficulty 

increased.  Additionally, preliminary results showed that the minimal value of  deoxygenated 

hemoglobin concentration over the task period, was a good indicator of task level with significant 

differences found in certain sensors[5]. 

The experimental fNIRS data from this study  is labeled for each participant. Within the data 

collected for each participant, there are makers for the time period in which the participant was 

performing a specific task (reference, blank-back, 0-back, 1-back,2-back). In total, there were 16 

fNIRS sensors placed on the participant. The sensor data is marked by the signal magnitude every 

millisecond.  



To extract this data we used a MATLAB GUI that visualizes and exports experiment data as 

seen below.  

 

 

Figure 10: Matlab Graphical User Interface for fNIRS data 

 In the user interface shown above in Figure X,  we can see data for participant “2013e_001” 

as selected under “PARTICIPANT.”  This data includes signals from three sensors, selected under 

the label “CHANNELS”. For the Dual Task Driving Data, there are sixteen channels to choose from. 

The green intervals on the GUI  indicate the time in which the participant was performing a given 

task. In this GUI, tasks are specified under “EVENTS”. As the user of this interface selects a task, the 

time period in which that task took place is highlighted. In addition to this, the MATLAB graphical 

user interface shown in Figure X allows us to pick and choose the participant whose data we would 

like to extract and also provides simple extraction for the required data in the form of a csv file. The 

first few rows of the csv file looks like the following.  

 

Figure 11: MATLAB GUI csv output  

Within this dataset we extracted all the data for two “events”, the 0-back and the 2-back. 

The 0-back task has been validated to provide a lower workload demand than the 2-back task. In 

the next section, we will run classification algorithms on the data to determine if they can properly 



classify the data into one of these two events, and demonstrate that we can distinguish between 

high and low workload, based only on fNIRS data.  

Setting  Parameters  

Once the fNIRS data file is generated as a csv, we can begin using NAML. The first step is to 

set up the configuration file. We will first specify the location of filePath to the location of the csv 

(line 1). Let’s say that we would like to run each classification method (line 5). We would like to 

train with 50% of the data (line 4), and want to record the output to the file (line 2). Lastly, we 

would like to classify the data into their distinct events (line 3). In this case, an event would be the 

n-back test (0-back or 2-back) the user was performing at the time the data was being collected. 

The following configuration file would meet these requirements.  

 

Figure 12: Sample JSON configuration file  

 

Reviewing Results  

The following is the output of the program. 

 



 

Figure 13: Sample log output 

 

As can be seen the accuracy of each of the models is approximately 50%,. This is essentially 

baseline accuracy as there are two different classes that we are classifying the data into. However, if 

we run the configuration file, we may notice that the shapelet transform method generally performs 

worse than the other two methods. In the next step of this experiment, we may choose different 

classifiers, classification methods, or adjust parameters for  the classification methods listed above. 

In order to determine the best way to move forward, one would have to be a subject matter expert 

on the data, as well as the experiment. It is also possible to use hyper parameter tuning to 

determine the best steps forward. In section x.x, I outline possibilities of moving forward and 

creating better models.  

Section 3: Feedback on NAML  

NAML was tested by asking members of the Brain Computer Interface Lab to download and 

run the tool on their local machine. Throughout the testing session the participants gave feedback 

on the current tool and possible future improvements.  

The users agreed that the tool is intuitive, well commented, and straightforward to use. 

However, certain users suggested that building a user interface for a tool would make it easier to 

use. Other users enjoyed the ability to view the implementation of the tool and to have the ability to 

modify the code as they see fit.  Most users did state that writing a configuration file in the form of a 

JSON can be tedious and suggested that automating the generation of these configuration files can 

ease the workflow.  

Other suggestions included the following:  

● Combining the troubleshooting script and the main script (naml.py) into one master 

script 



●  Storing all logged files in one local directory  

● Developing a flask API that can communicate with a web based front end  

● Cache the reformatted version of the data file locally to reduce the time it takes to 

run the program  

● Connect the tool with the fNIRS data database directly  

 


