
MQP 2A18

Internet of Things Spectrum Monitoring and

Localization

A Major Qualifying Project Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:

Lauren Getz

William Schwartz

Katherine Smith

Project Advisors:

__

Professor Stephen J. Bitar, Electrical & Computer Engineering- Advisor-of-Record

__

Professor Michael J. Ciaraldi, Computer Science -Co-Advisor

__

Professor Alexander M. Wyglinski, Electrical & Computer Engineering- Co-Advisor

i

Abstract

A system which localizes indoor sub-1GHz transmission signals provides a low cost and

effective alternative to traditional signal sensing and localization. The system uses a pre-existing

WiFi network, PlutoSDRs, and a web server to visualize the estimated location of the transmitted

signals. The system achieved 2.5-meter accuracy under ideal conditions satisfying the goal of 3-

meter accuracy set forth by the team.

ii

Acknowledgements

We would like to thank our advisors, Stephen Bitar, Michael Ciaraldi, and Alex Wyglinski for

their mentorship throughout the duration of this project.

iii

Executive Summary

Implementing localization with SDR devices is more cost effective and more accurate than

other spectrum sensing products currently on the market. With the development of Internet of

Things (IoT), many smart devices are increasingly using wireless communication, making

localization of these devices an important security measure. Using the PlutoSDR, signals were

effectively localized within 3-meter accuracy on the 900MHz band.

Problem Statement

IoT devices can pose a threat to a secure network. Since there are a lot of known IoT

vulnerabilities [1], many malicious actors will target them in order to gain access to an otherwise

secure network. Due to this, it is important to know when and where IoT devices reside on a

network. It is important to know when these devices are broadcasting information and where they

are broadcasting this information from to determine if traffic being generated is malicious or

benign.

Current State of the Art

Most competing solutions exist at 2.4 GHz and are used for navigation for devices to know

their own position in situations where GPS does not work, such as big cities. Currently top

companies in the technology market do not have consumer products available for indoor

localization, although Apple and Google have bought into the industry and are expected to release

applications in the near future [2].

There are very few devices which can both localize signals and sense the signals. Typically,

devices operate as spectrum analyzers which can determine which band a signal is coming from.

iv

One of these such devices is the 4.4Ghz Sound Hound device which retails for nearly $1000 and

does not possess localization capabilities [3].

Proposed Approach

 Create an easily deployable system to localize sub-1 GHz transmission. The goal for this

project is to create a system that can localize a transmitter continuously broadcasting a single tone

within 3 meters of accuracy in real-time.

The system is uses the PlutoSDR [4] which is an open source software defined radio created

by Analog Devices. It was developed to serve as an active learning module for students. This

platform was chosen because it is extremely capable for its price point. Similar functionality

typically costs at least $300 and cannot easily be programmed to run as a standalone system [5].

Using a minimum of 3 PlutoSDR modules configured as receivers in different known

locations to estimate the location of a single tone transmitter. To do this, the received signal

strength (RSS) collected by each of the plutos. Then, use the onboard processing power of the

PlutoSDRs to sample IQ values, compute a 2048-point FFT, and capture the bin containing the

maximum power measurement in real time.

These power measurements are then be sent to a central server over WiFi. With the known

location of the receivers, we can create a 90% confidence interval using Maximum Likelihood

Estimation (MLE) of the distance between the transmitter and the receiver. By collecting these

estimates from deployed PlutoSDRs we can use all of the 1-dimensional ranging estimates from

the MLE 90% confidence intervals and find the overlap of the regions of confidence to reasonably

estimate the location of the transmitter. These estimates are stored on the central server and

displayed through a hosted web-app in real time. All the measurements and estimates are also

stored to allow for further analysis.

v

Results

 This project successfully implemented the Maximum Likelihood Estimation localization

theorem using 3 PlutoSDRs and were able to create location estimates in real time. These estimates

were plotted on a 2D x-y plane and updated live.

Figure 1: Standard Deviation Contours and Preliminary Results

The tests yielded results with a maximum error of 2.5 meters. Figure 1 shows the standard

deviation contours plotted beneath the signal location estimates. The green X shows the actual

location of the transmitting signal and the red Xs show 244 estimated locations of the signal

produced by the system. The green X is within the contour representing 3.8 meters of standard

deviation, showing that all 244 estimates are within the expected standard deviation. With more

SDR devices collecting data, the accuracy will increase.

vi

Table of Contents

ABSTRACT ... I

ACKNOWLEDGEMENTS ... II

EXECUTIVE SUMMARY ... III

PROBLEM STATEMENT.. III
CURRENT STATE OF THE ART .. III
PROPOSED APPROACH .. IV
RESULTS .. V

TABLE OF CONTENTS ... VI

LIST OF FIGURES ... VIII

LIST OF TERMS AND ABBREVIATIONS ... IX

1. INTRODUCTION ... 1

1.1. MOTIVATION .. 1
1.2. CURRENT STATE OF THE ART ... 3

2. BACKGROUND RESEARCH AND DEVELOPMENT .. 4

2.1. RF SPECTRUM.. 4
2.2. PROPAGATION CHARACTERISTICS .. 5
2.3. FREQUENCY UTILIZATION.. 7
2.4. TIME AND FREQUENCY DOMAINS ... 8
2.5. IOT DEVICES .. 11
2.6. PROTOCOLS .. 13
2.7. SOFTWARE-DEFINED RADIO ... 14
2.8. RTL-SDR ... 15
2.9. ADALM-PLUTO ... 16
2.10. GNU RADIO AND MATLAB ... 18

2.10.1. MATLAB .. 19
2.11. LOCALIZATION ... 20

2.11.1. Weighted Centroid .. 22
2.11.2. Maximum Likelihood Estimate (MLE) .. 23

3. PROPOSED APPROACH .. 25

3.1. PROBLEM DEFINITION ... 25
3.2. SOLUTION ... 26
3.3. SYSTEM STRUCTURE ... 26

3.3.1. Hardware ... 27
3.3.2. Cost ... 28

4. IMPLEMENTATION .. 29

4.1. PLUTOSDR EMBEDDED SOFTWARE .. 29
4.2. SERVER.. 33
4.3. WEB CLIENT .. 34
4.4. TRANSMITTER ... 37
4.5. CHANNEL MODEL .. 39

5. TESTING ... 40

5.1. GOALS .. 46

vii

6. FUTURE WORK .. 47

7. BIBLIOGRAPHY ... 48

APPENDIX 1.1 BUILDING THE FIRMWARE .. 51

APPENDIX 1.2 EXPANDING PLUTO FREQUENCY RANGE .. 52

APPENDIX 1.3 INSTALLING GNURADIO .. 53

APPENDIX 1.4 INSTALLING MATLAB ... 57

APPENDIX 2.1 DEVICE SPECIFICATIONS .. 60

viii

List of Figures

Figure 1: Standard Deviation Contours and Preliminary Results ... v
Figure 2: Understanding the IoT Market [6]... 1
Figure 3: Size of IoT Market by Application [7] .. 2
Figure 4: Diagram of RF Spectrum [13] ... 4
Figure 6: Fresnel Zone [18] .. 6

Figure 7: USA Frequency Allocations .. 8
Figure 8: FFT Noise Floor .. 10
Figure 9: Data Types and Processing Reference .. 14
Figure 10: PlutoSDR Data Usage ... 17

Figure 11: GNURadio Block Diagram ... 18
Figure 12: Spectrum Sensing Using SDRAngel and PlutoSDR ... 20
Figure 13: MLE Visual Description [12] .. 24

Figure 14: MLE 2-Dimensional Diagram ... 24
Figure 15: System Block Diagram .. 27

Figure 16: Implementation of Code Block Diagram .. 32
Figure 17: Localization Implementation Block Diagram ... 34
Figure 18: Signal Localization Implementation ... 36

Figure 19: Localization Protocol .. 37
Figure 20: Full GNURadio Flow Graph ... 38

Figure 21: Preliminary Testing Set up .. 39
Figure 22: Channel Model .. 41

Figure 23: Average Samples ... 42
Figure 24: Distance Measurement Error ... 43

Figure 25: DME compared to CRLB .. 44
Figure 26: Location Estimations Plotted on top of Standard Deviation Contours 45

ix

List of Terms and Abbreviations
6LoWPAN: Pv6 over Low-Power Wireless Personal Area Networks

ADC: Analog-to-Digital Converter

DAC: Digital-to-Analog Converter

DFT: Discrete Fourier Transform

FCC: Federal Communications Commission

FFT: Fast Fourier Transform

FFTA: Fast Fourier Transform Algorithm

FPGA: Field Programmable Gate Array

IEEE: Institute of Electrical and Electronics Engineers

IFFT: Inverse Fast Fourier Transform

IoT: Internet of Things

ISM: Industrial, Scientific, and Medical

LAN: Local Area Network

LOS: Line of Sight

LSB: Least Significant Bit

ML: Maximum Likelihood

MLE: Maximum Likelihood Estimation

MSB: Most Significant Bit

PCB: Printed Circuit Board

RF: Radio Frequency

SDR: Software Defined Radio

SNR: Signal to Noise Ratio

TDoA: Time Difference of Arrival

ToA: Time of Arrival

MQP 2A18

1. Introduction

1.1. Motivation

In recent years, IoT has evolved considerably as technology becomes more ingrained in

everyday life. IoT devices are used to control and monitor things such as thermostats, lights,

vehicles, and more. Globally, IoT devices make up a large share of the technology market, with

the largest growth in the areas of smart cities and self-driving cars [6].

Figure 2: Understanding the IoT Market [6]

The IoT device market is expected to grow significantly over the next few years,

specifically with independent consumers. The graph below shows a summary of the expected

growth in each of the top markets.

2

Figure 3: Size of IoT Market by Application [7]

IoT devices create new opportunities for the use of networked technology, however they

also present security and congestion threats [1] [8]. Limited frequency bands are available for use

by IoT devices as determined by the FCC, which can cause channel congestion [8]. Interference

poses a problem for applications such as GPS radio astronomy, where the arriving signals are

extremely weak [9]. Smart transmitting devices can also present security issues. Many IoT devices

do not encrypt their communication [10] leaving them as easy targets for hackers to gain access to

your network. IoT devices can also unintentionally emit signals outside of its intended frequency

and interfere with other devices. Systems to monitor and localize sub-1 GHz transmissions do not

currently exist, but are an excellent way to enforce policy, and ensure security.

3

1.2. Current State of the Art

Most competing solutions exist at 2.4 GHz and are used for navigation for devices to know

their own position in situations where GPS does not work, such as big cities [11] [12]. Currently

top companies in the technology market do not have consumer products available for indoor

localization, although Apple and Google have bought into the industry and are expected to release

applications in the near future [2].

There are very few devices which can both localize signals and sense the signals. Typically,

devices operate as spectrum analyzers which can determine which band a signal is coming from.

One of these such devices is the 4.4Ghz Sound Hound device which retails for nearly $1000 and

does not possess localization capabilities [3].

4

2. Background Research and Development

In order to develop a system which could effectively integrate indoor localization with

signal sensing capabilities, a background in signal theory and wireless communication is needed.

Also discussed is the basics of localization development.

2.1. RF Spectrum

The Radio Frequency (RF) spectrum is a portion of the electromagnetic spectrum that

encompasses radio waves which are used for wireless communication.

Figure 4: Diagram of RF Spectrum [13]

5

The RF spectrum is comprised of the lower frequencies of the electromagnetic spectrum

from approximately 3 KHz to 300 GHz [14]. These waves are sinusoidal waves that travel at the

speed of light. The speed of light is constant, so waves with lower frequencies have much larger

wavelengths, while those with higher frequencies have much smaller wavelengths.

Radio waves are generated by applying an alternating current to an antenna which

generates a proportional alternating electromagnetic field. When this electromagnetic field passes

over the receiving antenna, a proportional but significantly smaller alternating current is induced

in the antenna. The propagation characteristics of radio waves through any medium are governed

by the Maxwell equations [15].

2.2. Propagation Characteristics

In free space, all electromagnetic waves conform to the inverse square law. The inverse

square law states that the power density (p) of an electromagnetic wave is proportional to the

inverse square of the distance (d) from the source, shown in Equation 1 below.

𝑝 ∼
1

𝑑2

Equation 1

 This means that as distance from the source of the transmission increases the power of the

signal will exponentially decrease as the distance increases. Radio waves are also affected by

reflections, refraction, diffraction, absorption, polarization, and scattering, which change the

manner in which they propagate [16].

Various propagation theorems are used in radio transmission systems. Line of Sight (LOS)

is when the radio waves travel in a straight line from the transmission source to the receiving

6

antenna. LOS is the only propagation method possible for microwave frequencies and above

because those waves are not capable of passing around obstacles such as mountains. However, the

low end of the microwave band is capable of traveling through building walls. When using a LOS

transmission model, it is important to pay attention to the Fresnel zone, which defined as an area

that is covered by an imaginary ellipse with the transmitting and receiving antenna as the foci of

the ellipse [17].

Figure 5: Fresnel Zone [18]

Any obstruction within the ellipse can degrade the signal. In LOS communication some

amount of radiation does not propagate directly to the receiving antenna. This stray radiation can

then reflect off of objects and radiate to the receiver with a phase delay, which may lead to

destructive interference.

At lower frequencies, due to diffraction, radio waves can bend around obstacles and travel

beyond the horizon, no longer requiring LOS propagation. Ground waves between 30 KHz and

3000 KHz can follow the contour of Earth. As a wave’s frequency increases, absorption by

molecular resonances causes significant power loss in radio propagation, particularly from water

7

(H2O) and oxygen (O2). This fault in higher frequencies makes lower frequencies a very valuable

resource.

2.3. Frequency Utilization

 As discussed previously, the RF spectrum is a finite portion of the electromagnetic

spectrum. As such, the utilization of the frequencies within the spectrum is limited because each

device that uses wireless technology requires an unobstructed transmission on the frequency. The

utilization is particularly limited in the lower frequency bands due to their higher quality

propagation characteristics [19]. The uses of the RF spectrum include mobile phones, television

broadcasting, and space research. In order for the RF spectrum to be used effectively, the U.S.

government allocates different bands of frequencies within the RF spectrum for different uses. All

governments have spectrum allocations practices; however, this project focuses only on the U.S.

standards. Occasionally, additional uses of frequency bands are authorized, but only if there is

significant need and national interest [20]. The most recent version of this allocation is from 2016,

and is shown below in Figure 7.

8

Figure 6: USA Frequency Allocations

 The types of frequency bands allocated can effectively be split into three categories:

unlicensed bands, licensed bands, and forbidden bands [21]. Unlicensed bands can be used by

anyone in compliance with the rules of the band, licensed bands can only be used by the owner of

the license, and forbidden bands cannot be used as they are reserved for use by groups such as the

military [21].

2.4. Time and Frequency Domains

In 1882, Joseph Fourier showed that time varying functions could be written as an infinite

sum of harmonics, which is known as the Fourier series. His discovery shows that the time and

frequency domains are alternate ways of representing the same signal and the Fourier transform is

the relationship between the two domains [22].

 The Fourier transform has four different forms, Fourier transforms, Fourier series, discrete

Fourier transform (DFT), and Fast Fourier transform (FFT). There is also the inverse FFT (IFFT)

9

which converts the frequency domain information to the time domain. The equation for the Fourier

transform shown in the following equation.

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

Equation 2 [23]

Where x(t) is the time domain signal, t is the time variable in seconds, and 𝜔 is the

frequency variable in radians per second. The DFT treats the time domain and frequency domain

signals as if they were periodic, and the sampled pattern is just one period of a signal that is

repeated indefinitely. One problem with the DFT is the time complexity of the algorithm is 𝑂(𝑛2),

which in the past made it difficult to compute the Fourier transform in real time. This changed

with the optimization of the FFT.

The FFT was popularized in 1966 in a publication by Cooley and Tukey [24]. The FFT

runs in 𝑂(𝑛𝑙𝑜𝑔𝑛), as this implementation of the discrete Fourier transform takes advantage of a

divide and conquer approach that recursively breaks down the DFT into 2 components of size N/2

at each recursive step, along with O(n) multiplications of complex roots. The output of the FFT of

the FFT is a series of M/2 points in the frequency domain, where M is the number of time-domain

samples (typically a power of 2). The total frequency range covered by the FFT is DC to Fs/2,

where fs is the sampling rate. The resolution, which is also known as the spacing between the

points of the FFT, is fs/M.

The theoretical noise floor of the FFT is the theoretical Signal to Noise Ratio (SNR) plus

the process gain of the FFT which is 10𝑙𝑜𝑔10(
𝑀

2
), so the more samples M, the lower the noise

floor. The benefits trail off exponentially, as we are taking the log. Figure 8 below is a diagram

illustrating the FFT noise floor:

10

Figure 7: FFT Noise Floor

Continuous-time analog signals must be sampled at a discrete rate with an analog to digital

converter (ADC) in order to be logically processed [25]. An example would be a program which

computes the FFT or any other application where a digital representation is required. There are a

few things to keep in mind to ensure an accurate representation of the analog waveform.

Analog to digital converters only have a finite number of bits, a 12-bit ADC can only

represent analog signals at 2^12 different levels. All values between each level will be rounded to

the least significant bit (LSB). The maximum error of an ideal ADC is ±
1

2
LSB. because any signal

value that ½ above the LSB will be rounded down, and any value below ½ LSB will be rounded

up. Ideally, more bits mean more precision and less quantization error, however that could come

at the expense of power, cost, and/or performance.

 This is one of the most important parts of sampling, if not the single most important. A

signal must be sampled at minimum the Nyquist rate [26], which is double the maximum frequency

11

of the signal. This is because in order to accurately represent the signal, it is required to have at

least two data points within the smallest period, or that frequency will be lost in the sampled signal.

Uniformly sampling a signal creates images of the sampled input signal that are periodic with the

sampling frequency fs. For this reason, it is important to filter the desired band before sampling,

as any frequency component that is outside the Nyquist bandwidth will be aliased back into the

first Nyquist zone.

2.5. IoT Devices

 An Internet of Things (IoT) device can be defined as anything connected to the internet.

However, in recent years, the idea of the IoT has evolved considerably as increasingly more

everyday devices are created to be networkable, where a physical object also has a virtual

existence. These objects include things such as thermostats, lights, vehicles, and more. It’s

estimated that by 2020 there will be 15 billion IoT devices, not including phones, PCs, or tablets

[27]. The idea of IoT devices in relation to privacy has become a larger discussion in recent years

with many voicing the concern that technology is functioning ahead of the policy. Brian Solis of

Altimeter Group who has conducted studies on IoT privacy implications has stated, “We are

looking at a future in which companies will indulge in digital Darwinism, using IoT, AI [Artificial

Intelligence] and machine learning to rapidly evolve in a way we’ve never seen before," [28] The

Institute of Electrical and Electronics Engineers (IEEE) has developed certain privacy policies in

relation to IoT devices, however these documents are still evolving with new developments [29]

Various standards and protocols related to IoT are discussed in this report.

 IoT devices are wireless technologies; they operate within the RF spectrum. These devices

are only capable of utilizing specific frequency bands that are available to them or allocated to

them. In this section we discuss a few key IoT frequency bands of interest.

12

 433 MHz is an unlicensed band which typically spans from 433.05 MHz to 434.79 MHz

and is shared by amateur radio, low-powered applications, and the radiolocation service. The

radiolocation service is the only primary service in this band [30]. For IoT devices using this

band, there are certain limitations due to FCC (Federal Communications Commission) regulations.

Regulation 10CFR47 Part 15.231 specifically regulates operation at the 433 MHz band. Polling

transmissions are allowed; however, they cannot exceed two seconds of transmission time per

hour, with a maximum rate of polling for 300 microseconds every 10 seconds. Additionally, the

transmit power is limited to approximately 10,000 microvolts per meter at 3 meters [31]. Due to

these limitations, some IoT devices use this band however many are unable to. One widely used

application of 433 MHz band is garage door openers.

 Also known as the ISM (Industrial, Scientific, and Medical) band at 915 MHz, which spans

from 902 MHz to 928 MHz, this has become popular for establishing wireless connections with

short-range wireless devices [32]. This band is also unlicensed which makes it popular for IoT

applications. IoT devices operating in this band fall under the regulation FCC Part 15, and an

overview of it states that, “Firstly, the device may not cause harmful interference, and secondly

the device must accept any interference received, including interference that may cause undesired

operation. Hence, there is no guaranteed quality of service when operating a Part 15 device” [33].

There are also additional FCC regulations for this band depending on the type of IoT device used.

 2.4 GHz is an additional unlicensed ISM band, which differs in its benefits and drawbacks.

A 915 MHz system will more easily broadcast through a multi floor house; 2.4 GHz systems will

ideally have a longer range. [34] The 2.4–2.4835 GHz band is regulated by FCC sections 15.247

and 15.249. The 915 MHz band and the 2.4 GHz band have similar regulations, with the same

power limitations for each. An advantage of the 2.4 GHz band is that it is unlicensed worldwide,

13

so a device may operate at that band regardless of its locations, and it has more channels available

than the 915 MHz band due to having a larger bandwidth. Disadvantages for this band include

“increased cost and current consumption of the active components, reduced propagation distance

for the same power, and increased band congestion due to such systems as Bluetooth and wireless

internet” [35].

 The 5 GHz frequency band is a super high frequency band used for things such as radars,

mobile phones, and commercial wireless LAN (Local Area Networks) [36]. The FCC has released

a “5G FAST Plan” which is said to be a “comprehensive strategy to Facilitate America's

Superiority in 5G Technology”. The main components of this plan are to push more spectrum into

the marketplace, update existing infrastructure policy, and to modernize outdated regulations. [37]

For IoT devices this band offers potentially higher speeds.

2.6. Protocols

The IEEE standard 802.15.4, “Standard for Low-Rate Wireless Networks”, defines the

protocol for devices using low-data-rate, low-power, and low-complexity short-range (10 meters

or less) radio frequency transmissions in a wireless personal area network. Devices in this network

can use either a 64-bit IEEE address or a 16-bit address assigned during association. Wireless links

under this standard are limited to operating in unlicensed ISM frequency bands, which includes

2.4 GHz and 915 MHz [38].

The pv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) standard,

defined in RFC 6282 by the Internet Engineering Task Force, specifies the operation of IPv6 over

the IEEE 802.15.4 standard [39]. It is based on the utilization of low powered IP-driven nodes and

a large mesh network [39] This makes 6LoWPAN a great option for IoT due to the optimization

14

of the IPv6 packets which can be carried efficiently within small link layer frames, such as those

defined by IEEE 802.15.4.

There are a few lightweight layer protocols that are fairly well known such as the Zigbee

protocol and Z-wave, but these are all built on top of 6LoWPAN. [40]

2.7. Software-Defined Radio

A Software-Defined Radio (SDR) is a radio in which some or all of the components are

implemented in software as opposed to with hardware [41]. While the functionality of SDRs,

transmitting and receiving data, is similar to their more traditional analog radio counterparts, they

perform multiple tasks digitally and simultaneously, using programmable devices such as FPGAs.

The advantages to this include that they are relatively inexpensive and are highly flexible due to

their configurability.

Figure 8: Data Types and Processing Reference[11]

15

For receiving data, an SDR must intercept an analog signal being transmitted, convert it

from an analog signal to a digital signal, determine its characteristics such as signal amplitude,

carrier frequency, or phase from other noise or distortion, and return the original signal back in a

binary representation. Conversely, to transmit a signal an SDR must digitize it to use the binary

representation if the signal is not already digital and convert that representation to an

electromagnetic sinusoidal waveform with the proper amplitude, carrier frequency, and phase

characteristics [42].

2.8. RTL-SDR

 The RTL-SDR is a low-cost, ~$25, USB dongle that is commonly used by SDR hobbyists

as well as professional engineers. Originally, the RTL-SDR was created when Antti Palosaari, Eric

Fry and Osmocom discovered that television tuners with the RTL2832U chip could be used to

acquire the raw I/Q data on the chipset. Since its conception the community-developed software

used for it to access the radio spectrum has been shared at no financial cost. [43]

Table 1 below shows the frequency ranges for each chipset. It should be noted that for each

chipset the reception range varies slightly.

Table 1: Chips and Frequency Ranges

Chip Frequency Range

R820T and R820T2 24 MHz to 1766 MHz

E4000 52 MHz to 2200 MHz, gap

between 1100 MHz to 1250 MHz

FC 0013 22 MHz to 949 MHz

16

FC 0012 22 MHz to 1100 MHz

Additionally, while the maximum sample rate of the device is 3.2 mega-samples per

second, that is an unstable rate for it to operate at and it may drop samples, so 2.4 mega-samples

per second is the highest recommended sampling rate. [44]

2.9. ADALM-PLUTO

The ADALM-PLUTO is an SDR device created by Analog Devices to be used as a low

cost education tool for students, hobbyists, and industry engineers alike. It can be used to explore

different electrical engineering fundamentals related to SDR and RF signal processing. [45]

The PlutoSDR is based on the Analog Devices chip AD9363 which has the main attributes

of an RF 2 × 2 transceiver with integrated 12-bit DACs and ADCs. It is tunable up to 20MHz and

has 325 MHz to 3.8 GHz of bandwidth [45].

 In addition to the AD9363, the PlutoSDR also has the Xilinx Zynq 7010 for an onboard

FPGA to handle processing of FFT’s and other necessary calculations. This small board was

chosen due to size and low number of pins for easy integration into the PCB, however Analog

Devices has stated this could be hacked and replaced with a larger (and most likely more

expensive) FPGA depending on the end user’s needs. [45]

 The following image shows typical utilization of the onboard FPGA:

17

Figure 9: PlutoSDR Data Usage

It is possible to expand the availability on the board based on the use desired. For example,

if the PlutoSDR is used only as a receiver, much of the DSP functions, which are by default used

for transmission, can be cleared to allocate additional space for onboard processing of received

signals.

 The PlutoSDR is able to interface with MATLAB, Simulink, GNU Radio or custom C,

C++, C#, or Python environment on a host (x86) Windows, Linux or Mac or embedded Linux

platform (Raspberry Pi, Beaglebone, 96boards.org, over USB. [4] On the onboard FPGA itself it

is programmable in Linux, although reprogramming the onboard device is slightly more

complicated than interfacing with the above-mentioned programs via USB. Depending on the

application, different software configurations can be adjusted.

18

2.10. GNU Radio and MATLAB

GNU Radio is a tool that provides signal processing blocks to interface with SDRs. The

use of the GNU Radio development toolkit is entirely free as well as open-source. By performing

the signal processing for an SDR, GNU Radio is able to receive and transmit data with the SDR

hardware. It’s an extremely powerful tool for hobbyists as well as professionals, as it has available

“channel codes, synchronization elements, equalizers, demodulators, vocoders, decoders, and

many other types of blocks which are typically found in signal processing systems” allowing for

the creation of real time SDR systems. [46]

An example of a GNU Radio flowchart implementing its signal processing blocks with the

PlutoSDR is shown below in Figure 11.

Figure 10: GNURadio Block Diagram

19

2.10.1. MATLAB

 MATLAB is an excellent tool used to interface with SDR devices. MathWorks, the maker

of MATLAB, has developed an entire communications toolbox dedicated to different software and

simulation support. MathWorks has developed a set of test programs and support packages for

both PlutoSDR and the RTL-SDR devices. The Communications Toolbox Support Package for

Analog Devices PlutoSDR Radio (PlutoSDR) enables users to implement MATLAB and Simulink

to prototype, verify, and test practical wireless systems. [47] These capabilities are also available

for use with the RTL-SDR, for example, it can be used to receive and process wireless signals such

as FM radio, airplane surveillance signals (ADS-B), and signals from smart meters (water or

energy metering devices). [48]

 The user-friendly examples make MATLAB a good starting point or method to verify

results, however it cannot run without an operating PC. Many examples using both the RTL-SDR

or PlutoSDR implement the devices’ receiving abilities as spectrum analyzers. This is shown here

using the PlutoSDR in Figure 11.

20

Figure 11: Spectrum Sensing Using SDRAngel and PlutoSDR

2.11. Localization

 There are two localization methods that are used in wireless localization, the first is time

of arrival (TOA). TOA is widely used in outdoor rural locations, and is the system used by the

United States Global Positioning System (GPS). The second method is to use received signal

strength (RSS). RSS has become more popular for dense urban environments where TOA suffers

from multipath [12].

Time of arrival is used when the transmission time is known. At the receiver when it

receives the signal it subtracts the time the signal was sent. This delta value becomes the time of

flight and is multiplied by the speed of an electromagnetic wave in free space, c = 2.99E10 meters

per second in order to determine the distance traveled. Given 𝑐, the speed of an electromagnetic

wave, 𝑡1 for the timestamp of when the signal was sent, 𝑡2 for the time the transmission was

21

received, and 𝑋𝑖, 𝑌𝑖for the known coordinates of the receiver, the coordinates of the transmitter can

be determined using equation 4:

𝑐(𝑡2−𝑡1) = √(𝑋𝑖 − 𝑥)2 + (𝑌𝑖 − 𝑦)2

Equation 3 [12]

By solving this system of equations using three or more receivers it is possible to determine the

origins of the transmitter. However, there are two problems which arise. First the transmission may

not have a timestamp. Second this system is highly dependent on the stability and precision of

timing. We are measuring the speed of light which travels about ⅓ of a meter every nanosecond.

So every nanosecond of inaccuracy translates to ⅓ of a meter in error.

Time Difference of Arrival takes care of one issue with ToA as the original transmission

no longer requires a timestamp. Instead this system uses a set of receivers, and measures the time

it takes for each of the receivers to receive the signal [12]. The time measurement at each of the

receiving sites is then subtracted from the first received signal. Provided an unknown source

location (x, y), the known receiver locations are (𝑋𝑛, 𝑌𝑛). All distances between the receivers are

known. The distance between the sources and the nth and (n+1)th receiver can be modeled as:

𝑑𝑛+1,𝑛 = 𝑐(𝑇𝑛+1 − 𝑇𝑛) = |𝑑𝑛+1 − 𝐷𝑛| = √(x − 𝑋𝑛+1)2 + (𝑦 − 𝑌𝑛+1)2 − √(x − 𝑋𝑛)2 + (𝑦 − 𝑌𝑛)2

Equation 4 [12]

This technique suffers the same crucial synchronization requirements as TOA.

Received signal strength (RSS) uses the measured signal power at each of the receivers.

The RSS path-loss model can be described as:

𝑃𝑖 = 𝑃0 − 10𝛼𝑙𝑜𝑔10(𝑑)

Equation 5 [12]

22

Where Pi is the averaged signal strength in dB received at the ith sensor, Ps is the transmitted signal

strength in dB, α is the path-loss factor, and di is the distance between the source and the ith sensor.

2.11.1. Weighted Centroid

 The basic weighted centroid algorithm always estimates the location of the target as the

middle of all references. Basic properties of the algorithm are simplicity and stability. In addition,

centroid algorithm works for any number of reference points and it does not rely on the accuracy

of measured RSS [12].

In a WPS weighted centroid algorithm, the RSS readings from M-Aps, with estimated

locations, (xi , yi); i = 1, 2 . . . , L, the locations of the device, (x, y), is estimated by:

𝑥 = ∑ 𝑝𝑖
𝑥 ∗ 𝑥𝑖

𝑀

𝑖=𝑖

Equation 6 [12]

�̂� = ∑ 𝑝𝑖
𝑦

∗ 𝑦𝑖

𝑀

𝑖=𝑖

Equation 7 [12]

Where 𝑝𝑘
𝑥 and 𝑝𝑘

𝑦
 are the weights of averaging along the X and Y axis for localization.

These are the probabilities of having the device in location of a specific AP. This probability is a

function of RSS reading from each measurement [12].

23

2.11.2. Maximum Likelihood Estimate (MLE)

 We use the path loss model 𝑃𝑟 = 𝑃0 − 10 ∗ 𝛼 ∗ 𝑙𝑜𝑔10(𝑟) + 𝑋(𝜎) to define a rim shaped

confidence region for RSS based ranging. For a given confidence 𝛾 (eg 90%), we first calculate

the fade margin, 𝐹𝜎, for variance of shadow fading, 𝜎, and the required confidence from:

𝐹𝜎 = √2𝜎 ∗ 𝑒𝑟𝑓𝑐−1(1 − 𝛾)

Equation 8 [12]

Then, we use the fade margin and the measured RSS, 𝑃𝑀, to calculate the radius of two

circle defining the inner and outer boundaries from:

𝑟1 = 10
𝑃0−𝐹𝜎−𝑃𝑀

10𝛼

Equation 9 [12]

𝑟1 = 10
𝑃0+𝐹𝜎−𝑃𝑀

10𝛼

Equation 10 [12]

The area between the two circle designates a region with the desired certainty. This single

receiver MLE method shown above is represented visually in the figure below:

24

Figure 12: MLE Visual Description [12]

By creating the confidence regions around the know location of the receivers we get

overlapping regions. As seen in the following figure:

Figure 13: MLE 2-Dimensional Diagram

meters

m
eters

25

 The area where all 3 MLE intervals overlap becomes the estimate of the area that we would

estimate the receiver is located. The red X is the location of the actual receiver in this example. It

is clearly seen that the red X is almost directly in the center of our overlapping estimate region.

 The way that a single point estimate is created is by finding the intersection points of all

the circles, then going through each intersection point and determining if that point is with in each

of the MLE regions. The resulting points that lie within all the receivers MLE regions (in the

example above the 3 intersections closest to the red x) are then averaged to get a final single point

estimate.

3. Proposed Approach

3.1. Problem Definition

 Industrial wireless applications often share communication channels with other wireless

technologies and communication protocols. This coexistence produces interferences and

transmissions which require appropriate mechanisms to manage retransmissions. Nevertheless,

these mechanisms increase the network latency and overhead due to retransmissions. The loss of

data and the measures to handle them produce an undesirable drop in the reliability and hinder the

overall robustness and timeliness of the network. Interference avoidance mechanisms, such as

frequency hopping techniques, reduce the need for retransmissions due to interferences but they

are often tailored to specific scenarios and are not easily adapted to other use cases. On the other

hand, the total absence of interference avoidance mechanisms introduces a security risk because

the communication channel may be intentionally attacked and interfered with to hinder or totally

block it.

26

 The IEEE standard 802.15.4 defines the protocol for devices using low-data-rate, low-

power, and low-complexity short-range radio frequency transmissions in a wireless personal area

network. Further, the 6LoWPAN standard specifies operation of IPv6 over the IEEE 802.15.4

standard.

3.2. Solution

Using low cost SDR devices to characterize and localize IoT band electrospace usage

below 1 GHz and store signal energies, specifically looking at the 908 MHz band. This will enable

an open source, low cost solution to emerging IoT signal sensing and localizing needs.

3.3. System Structure

This system will consist of four PlutoSDR devices, which are each receiving and measuring

signals. Each PlutoSDR is powered by a wall power adapter, and is connected to a USB WiFi

adaptor via a USB OTG cable. A 2.4 GHz WiFi router will provide a wireless network connecting

the PlutoSDR devices to a host machine.

27

3.3.1. Hardware

Figure 14: System Block Diagram

The PlutoSDR will serve as receiving device, scanning frequency bands, measuring

received signals, and communicating with a host machine. We plan to use a total of four PlutoSDRs

in our final design, however the design could be modified to operate with any number of PlutoSDR

devices.

The PlutoSDR is a portable, self-contained RF learning module which costs $99 for

students and $149 for other buyers. Specifications that are pertinent to our uses of the device are

listed in the Appendix.

From a hardware system standpoint, the PlutoSDR will be powered via a wall power

adaptor from the power-only USB port. We chose wall power as opposed to battery power so that

the device will be known to consistently have sufficient power, given normal circumstances,

without needing to rely on a variable battery. The device will additionally be connected to a USB

WiFi adaptor via a USB OTG cable.

28

As can be seen from these specifications, the PlutoSDR transceiver will fulfill our goal of

characterizing IoT band electro space usage below 1 GHz. The USB 2.0 capabilities will allow the

device to be wirelessly networked via a WiFi dongle. The onboard FPGA is accessible and

programmable, allowing for us to alter it for our purposes.

 For the USB WiFi adaptor that will be connected to the PlutoSDR via a USB OTG cable,

we will be using the TP-Link TL-WN725N N150, which costs $9.99. This WiFi adaptor gives

devices connected to it wireless networking capabilities. Specifications that are pertinent to our

uses of the device can be found in the appendix.

 Since this adaptor complies with IEEE 802.11n standards, the module will be supported by

the PlutoSDR. This module has also been tested with the PlutoSDR by previous developers. The

USB OTG adapter cable which will connect the TP-Link TL-WN725N N150 to the PlutoSDR, we

will be using a standard micro-USB plug type B to USB female type A adapter by SODIAL(R).

This adapter has a 15cm cable length and costs $1.71. The USB to wall power adaptor which will

assist in powering the PlutoSDR, we will be using a standard USB to wall power adapter, which

costs $6.99.

 For our project, we will not be specifying an exact host machine or 2.4GHz WiFi router to

be used. It is assumed in this configuration that our device will simply be connected to an existing

system. There are not specific requirements which vary significantly considering typical systems

which need to be considered for our device to be operable.

3.3.2. Cost

The cost per unit of each device will be less than $150. Compared to other SDR devices

on the market, this is very good for our proposed solution. It is assumed a server or laptop

configuration already exists to have the data transmitted to over WiFi.

29

Table 2: Cost Estimates

Device Cost Total Cost

per Unit

PlutoSDR $99

$117.69

WiFi dongle $9.99

Wall power adapter $6.99

USB OTG Cable $1.71

4. Implementation

 Our implementation consists of 4 separate components. The PlutoSDR embedded

software, the Python server, the web client, and the GNU Radio transmitter script. The

following sections will describe how each of these components work together.

4.1. PlutoSDR Embedded Software

 Instructions for installing all of the libraries and dependencies used to compile software to

run directly on the PlutoSDR itself can be found on gnuradion.org [49]. This presentation gives

detailed instructions on how to cross compile software to run on the embedded ARM A9 processor.

 Below are descriptions of notable libraries used in the Embedded code, that would not

typically be used in other applications:

30

Iio is a library written by Analog Devices to interface directly with hardware. Analog

Device’s has extensive documentation on how iio works [50]. Ad9361 is a libiio wrapper

specifically written for the AD9361 ultra-wide band RF chip designed by analog devices. This

chip as the exact same interface at the AD9393 chip which is installed on the PlutoSDR. This

library wrapper makes it easier to interface with the hardware, and adds some buffer utilities that

are commonly used in SDR applications. [50] FFTW is short for Fastest Fourier Transform in the

West. This library is portable and supports many different architectures. On platforms that support

it, it uses the neon instruction set. This library is standard for computing an FFT as fast as possible

on any piece of given hardware [51].

 The PlutoSDR embedded code is fairly straightforward in its objectives. The software

needs to sample signals in real time, and perform an FFT on a large number of samples in order to

get an accurate frequency representation. It will also requires being able to identify the power

estimate of the signal, and send the signal data to the server.

● Initialization: The Initialization phase is a function call to ‘initialization’, which sets the

sampling rate, the center frequency, and the bandwidth of the filters. It also processes all

the command line arguments . The most used command line argument is setting the device

identification, which is used by the host software to associate samples with the PlutoSDR

which they arrived from. Initialization is also where the iio.h and AD9361.h libraries are

used to initialize all of the hardware settings in each PlutoSDR. All command line

arguments can be found on GitHub at https://github.com/williambannas/MQP, they can

also be found by running the sampling script with the argument “- -help”.

https://github.com/williambannas/MQP

31

● Sampling thread: The sampling thread collects IQ samples from the PlutoSDR in real

time, and stores them in a circular buffer. This buffer is four times the size of each Fourier

transform.

● Grab Samples: This step of the code copies 2048 IQ samples from the circular buffer. The

copied samples are then removed from the buffer which ensures that the samples do not

get overwritten before being processed.

● Perform FFT: The FFT is performed on the copied samples by processing them using the

fftw3 library. This gives the cross correlation of every sample. A power measurement is

obtained by taking each bin of the FFT, squaring it, and taking the 10 log-base 10 of that

value, represented in the following equation:

10 ∗ 𝑙𝑜𝑔10(𝐹𝐹𝑇𝑖
2)

Equation 11

 Identify Max Bin: This is done by going through the power measurement of each bin of

the FFT, and finding the maximum. The reason that this is done is because we are only

localizing on a single tone, so we expect the power of the signal to be within a single bin.

 POST Request: In order to send the data from the PlutoSDR to the server a POST request

is used. The POST request is a JSON formatted request. The format of each request is:

{ “PlutoID”: 1,

 “RSS”: -40,

“AGC”: 70,

 “RSSI”: 140,

 “bin”: 16 }

32

Where the PlutoID is the ID assigned to each PlutoSDR, the RSS is the power recorded

from the max power bin, AGC is current gain setting for the auto gain control, RSSI is the power

of the entire band that is read off of the AD9363 chip using Libiio, and the bin is the frequency bin

that the RSS value corresponds to. This format allows the data to be readily usable by the host

machine.

Figure 15: Implementation of Code Block Diagram

33

4.2. Server

The server is implemented in python, and uses the Flask web framework to create a simple

web server. The first task that the server executes is the starting the PlutoSDRs. This is done

through a script that secure copies the compiled sampling program to each of the PlutoSDRs. Then

SSHs into each of the PlutoSDRs and starts the sampling scripts as a background process. All the

PlutoSDRs then start to stream samples over to the server which are stored in CSV files specific

to each device.

Once there are more than 10 samples from each of the devices 10 samples are averaged

together to help mitigate some of the noise, then the server preforms the MLE algorithm for each

of the receiving devices.

When a localization request is made to the server, the server responds with the

location estimates that were calculated from the MLE algorithm. One important note to make about

our implementation is that we subtract the amplifier gain value from our recorded power

measurement, to get the power measurement that we use in our implementation.

When the server gets a request receivers call, the server responds with the known

location of the receiving pluto devices. This process is explained visually in the following diagram:

34

Figure 16: Localization Implementation Block Diagram

4.3. Web Client

To visualize the localized signal transmissions, we are plotting them overtop a floor plan

of the area being considered. As opposed to only plotting the exact point of our estimated location

for each signal, we are plotting it as a heat map with varying colors to demonstrate the potential

distance that the actual position could deviate from our estimated position. Additionally, shown in

the plot are the PlutoSDR device locations. An example of this visualization with one signal

localized and plotted is shown below.

35

As signals are localized within the main host software written in Python, the program send

the position data to the server through POST requests. Parallel to this we have JavaScript software

that fetches the signal position data from the server and creates the visualizations as described. The

heat map is created utilizing an existing, open source, data visualization library ‘heatmap.js’. This

visualization is then posted to the web server for viewing. The visualization updates automatically

every second to add any new data coming in to the existing plot.

36

Figure 17: Signal Localization Implementation

37

This image shows the location of each PlutoSDR as each blue dot. The predicted location of the

incoming signal is shown by the orange dots, which fade as time goes by.

Figure 18: Localization Protocol

This diagram shows the protocols the host server follows. These commands are based off the data

received in by the PlutoSDRs.

4.4. Transmitter

Below is a GNU radio flow graph that was used to turn one of the PlutoSDR’s into a simple

tone generator that we could localize on. Instructions on how to set up the Pluto with GNU radio

can be found at the Analog Devices website. [52]

38

 This flowchart has two main data streams, the first uses PlutoSDR source. This uses the

transmitter on the PlutoSDR. The second data stream using the PlutoSDR as a sink, this uses the

PlutoSDR transmitter. For this we passed in a 70 KHz sine wave into the PlutoSDR transmitter,

this sine wave gets mixed up from base band with the 908 MHz local oscillator.

Figure 19: Full GNURadio Flow Graph

39

4.5. Channel Model

 In order to have a standardized test procedure, we made sure to document the steps

required. We started by sending a sine wave from one PlutoSDR to be received by a secondary

PlutoSDR. The transmitting PlutoSDR represented the fake IoT signal we would be using for our

test purposes. The receiving PlutoSDR acted as the agent which will be a part of our full system

including the WiFi dongle and power supply.

 Once we had both PlutoSDRs appropriately set up to be transmitting and receiving

respectively, we set a tape measure on the floor of a long hallway. We began by measuring the

noise floor of the room, by collecting samples without the transmitter on.

 We then turned the transmitter on and again walked down the hall to get an intuition of the

maximum distance that we would be able to measure with our set up. We found that at 36 meters

we could not discriminate our signal from the noise floor.

Figure 20: Preliminary Testing Set up

40

This is a picture showing the procedure of walking down the hallway with the PlutoSDR

to collect measurements.

Then we took 500 samples at incremental measurements of signal power by 2-meter

intervals starting at 1 meter to 35 meters in order to create a path loss model with parameters

specific to the hall way we were attempting to measure.

The pathloss model we obtained was as follow:

𝑃𝑟 = 𝑃0 − 10 ∗ 𝛼 ∗ 𝑙𝑜𝑔10(𝑟) + 𝑋(𝜎)

Equation 12

 𝑃𝑟 : is the power received

𝑃0 : -87 dBm is the received signal strength at 1 meter

𝛼 : 2.61 is the exponential decay

𝜎 : 6.43 is the standard deviation of shadow fading

For the equations used to create this channel model please refer to chapter 2.11. More

information about the channel model can be found in the chapter 5.

5. Testing

 In order to test if transmissions from these bands are being received, localized accurately,

and stored, we will be testing with a PlutoSDR transmitting a single tone using GNU Radio. By

controlling the signals being transmitted we will be able to accurately evaluate the device’s

capabilities.

41

The RSS of the transmitter was captured at 1 meter and 2 to 36 meters in 2-meter

increments. The transmitter was placed at the end of the hall as the position of the receiver

varied. Attenuation of the signal ranged from -87dB at 1 m to -128dB at 36 m. The RSS values

were plotted against distance. Distance ranged from 1 meter to 36 meters. Figure 26 shows the

plot of RSS (dBm) vs 10*log10(d)[dB].

Figure 21: Channel Model

 Figure 26 shows the linear regressive best fit line used to create a channel model where

all samples are weighted evenly. You can get a sense of the variance of the data, from this plot

and clearly see how the variance of the measurement starts out quite small, then increases, and

then drops down again.

 The following figure shows the model that we used to get our 𝛼 value for our path loss

model:

42

Figure 22: Average Samples

Figure 23 shows the averages of all the samples at each location to a single point, and

preformed the same linear regressive best fit. The x axis is 10𝑙𝑜𝑔10(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) in meters. With

the averaged data we can see two large outliers. The first outlier is at 4 meters. It still cannot be

explained what causes this, but at 4 meters it is recorded the same RSS as is done at 1 meter, but

at 2 meters, and 3 meters the RSS continues to decrease as expected. This same phenomenon

happened in every testing environment, so it is something intrinsic to the implementation, or the

frequency band being examined, as the effects are independent of the space. The second outlier

that we see is at 26 meters. Though it is not confirmed, it is believed this drop-in signal power to

be from shadowing and interference in the first fresnel zone. At 26 meters there is a trash bin and

a recycling bin that partially obstruct the hall leading to this large deviation from the model.

43

This deviation at 26 meters is more clearly seen in the following diagram of the distance

measurement error for 1-dimentional ranging.

Figure 23: Distance Measurement Error

 Figure 24 shows the distance measurement error. To create this graph, rearrange the

pathloss model to solve for distance, and find the difference between the actual distance and

distance the path loss model predicted. This graph further exaggerates the error seen at 26 meters

do to the obstruction to direct line of sight between the transmitter and receiver. The data

represented in this graph was also use calculate our value for shadow fading. Calculating the

standard deviation of the distance measurement error to find the 𝜎 value for the channel model.

 In order to really gauge the performance of our system, we must compare it to the Cramer

Rao lower bound (CRLB). The CRLB gives a lower bound on the variance of the data. By

44

comparing the variance in DME to the CRLB we are able to measure how close our

implementation is to the theoretical best it can be. The CRLB was calculated using:

𝐶𝑅𝐿𝐵 =
ln (10)2

100

𝜎2

𝛼2
𝑟2

Equation 13

The 𝜎 and 𝛼 values are the parameters in channel model, and r is the ranging distance [12].

Figure 24: DME compared to CRLB

This comparison of our variance in DME to the theoretical CRLB, shows that our

solution could use some improvement. In a perfect world we would want our DME to vary

closely follow the CRLB. This lack of a tight curve might be attributed to the fact that left Auto

Gain Control within the PlutoSDR’s on while sampling, and attempted to compensate for the

RSS by subtracting the current gain for each power measurement in decibels.

With a good understanding of the system performing 1-dimentional ranging estimations,

we can now move on and show how our system performs in 2 dimensions in figure 26.

45

Figure 25: Location Estimations Plotted on top of Standard Deviation Contours

The standard deviation of position error is higher along the edges of the area. In the

central areas, there are lower errors. In general, the positioning error is on the order of the

ranging error. However, the distribution of errors in the area is different and fluctuate around the

values of the ranging error from different APs. When in the central area, the results get equally

accurate ranges from all RPs, which gives a better estimate of location shown in figure 26.

 The green X is the actual location of the transmitter, and the red Xs are 244 estimates

collected and calculated using the localization system described in this report under ideal

conditions. Ideal condition meaning direct line of sight, and no one walking through the

experiment. This test yields a maximum error of 2.5 meters.

46

5.1. Goals

Our goal set fourth for the success of this project are listed in table 3.

Table 3: Testing Objectives

Objective Goal Testing

Receive known

transmissions

Receive a minimum

of 80%

Evaluate ratio of known transmissions

to received transmissions

Localize source of

signals

Localize to 3m

accuracy (1m

stretch goal)

Evaluate known distance to

transmission source to predicted

localized distance

Store signal

energies

Store 100% of

received signals

Evaluate the ratio of known received

transmissions to transmissions

successfully stored

All of the goals were achieved. With our mock IoT transmitter we were able to receiver 100% of

all of the transmissions, as a single consistent tone is very easy to detect with enough resolution in

the Fourier Transform. Our maximum localization error for ours tests was 2.5 meters, which is

within our 3-meter accuracy goal.

Our server was able to handle all the network traffic from all of the PlutoSDRs without any

dropped packets, so we are able to successfully store 100% of all the received signals.

47

6. Future Work

 We decided to use a few IoT devices to simulate the signals we would be receiving and

localizing in order to better test our set up. We started by purchasing the z-stick and a smart light

bulb. We were able to set these devices up properly, however we found due to the duration of the

signal being transmitted (a few nanoseconds) we were worried about dropping samples during

testing. This made implementation with devices using different transmitting protocols a good

option for further work.

The z-stick works by creating a mesh network with all smart devices connected to it. We

connected the z-stick to the smart light bulb following the given instructions with the z-stick, and

connected the z-stick to an operating computer. Typically, the z-stick is used by consumers to

create a cheap smart home network using a raspberry pi, but for our project sticking to computer

for testing purposes is fine. The z-stick talks to the light bulb through the computer input and sends

out 3 signals: send, data, and acknowledge. We were able to pick up these signals using the

PlutoSDR and begin testing distances and signal strength.

This system will continue to be developed to eventually scan multiple bands and localize

binary frequency shift keying (BFSK) modulated transmissions.

48

7. Bibliography

[1] C. Folk, D. C. Hurley, W. K. Kaplow and J. F. X. Payne, "THE SECURITY IMPLICATIONS OF

THE INTERNET OF THINGS," AFCEA, 2015.

[2] "technavio," [Online]. Available: https://blog.technavio.com/blog/top-33-indoor-location-based-

services-lbs-companies-in-the-us. [Accessed 22 April 2019].

[3] "signal hound," [Online]. Available: https://signalhound.com/products/usb-sa44b/. [Accessed 22 April

2019].

[4] "analog," [Online]. Available: https://www.analog.com/en/design-center/evaluation-hardware-and-

software/evaluation-boards-kits/adalm-pluto.html. [Accessed 22 April 2019].

[5] "Hacker Warehouse," [Online]. Available: https://hackerwarehouse.com/product/hackrf-one-kit/.

[Accessed 22 April 2019].

[6] "iot-analystics," [Online]. Available: https://iot-analytics.com/top-10-iot-segments-2018-real-iot-

projects/. [Accessed 22 April 2019].

[7] "statista," [Online]. Available: https://www.statista.com/statistics/688762/north-america-iot-market-

by-application/. [Accessed 22 April 2019].

[8] B. Krishanamachari, D. Estrin and S. Wicker, "The Impact of Data Aggregation in Wireless Sensor

Networks," 2002. [Online]. Available: http://ieeexplore.ieee.org.ezproxy.wpi.edu/document/1030829/.

[9] "nrao," [Online]. Available: https://public.nrao.edu/telescopes/radio-frequency-interference/.

[Accessed 22 April 2019].

[10] T. Brewster, "A Basic Z-Wave Hack Exposes Up To 100 Million Smart Home Devices," Forbes, 24

May 2018. [Online]. Available: https://www.forbes.com/sites/thomasbrewster/2018/05/24/z-wave-

hack-threatens-to-expose-100-million-smart-homes/.

[11] C. Cheng, Lamarca and Krumm, "Accuracy characterization for metropolitan-scale Wi-Fi

localization".

[12] K. Pahlavan, INDOOR GEOLOCATION SCIENCE AND TECHNOLOGY, Denmark: River

Publishers, 2019.

[13] "ecnmag," [Online]. Available: https://www.ecnmag.com/blog/2017/06/understanding-rf-spectrum.

[Accessed 22 April 2019].

[14] "wikimeadia," 2016. [Online]. Available:

https://upload.wikimedia.org/wikipedia/commons/c/c7/United_States_Frequency_Allocations_Chart_

2016_-_The_Radio_Spectrum.pdf. [Accessed 22 April 2019].

[15] "mtu," [Online]. Available: http://pages.mtu.edu/~scarn/teaching/GE4250/EM_theory_lecture.pdf.

[Accessed 22 April 2019].

[16] [Online]. Available:

https://books.google.com/books?hl=en&lr=&id=4LtmjGNwOPIC&oi=fnd&pg=PR7&dq=rf+reflectio

n+refraction+diffraction+multipath&ots=06iwpx5S3k&sig=ktrkqAfqNQSavG13mwEEmLCbZls#v=o

nepage&q=rf%20reflection%20refraction%20diffraction%20multipath&f=false. [Accessed 22 April

2019].

49

[17] . R. Mishra, "3.3.6 Radius of Fresnel Zone," in Fundamentals of Cellular Network Planning and

Optimisation: 2G/2.5G/3G... Evolution to 4G, United Kingdom, Wiley, 2004, p. 62.

[18] [Online]. Available: https://dot11ap.wordpress.com/cwna/radio-frequency-rf-technologies/line-of-

sight-and-fresnel-zone-issues. [Accessed 22 April 2019].

[19] "wpi," [Online]. Available:

https://wpi.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma9936740871804746&context=

L&vid=01WPI_INST:Default&lang=en&search_scope=MyInst_and_CI&adaptor=Local%20Search%

20Engine&tab=Everything&query=any,contains,frequency%20unlicensed%20bands&sortb.

[Accessed 22 Apri; 2019].

[20] "ntia," [Online]. Available: https://www.ntia.doc.gov/page/2011/manual-regulations-and-procedures-

federal-radio-frequency-management-redbook. [Accessed 22 April 2019].

[21] [Online]. Available:

https://wpi.primo.exlibrisgroup.com/discovery/search?query=any,contains,radio%20frequency%20all

ocations&tab=Everything&search_scope=MyInst_and_CI&sortby=rank&vid=01WPI_INST:Default&

lang=en&mode=basic. [Accessed 22 April 2019].

[22] "Jean Baptiste Joseph Fourier," [Online]. Available:

https://www2.stetson.edu/~efriedma/periodictable/html/Fe.html.

[23] E. W. Weisstein, "Fourier Transform," MathWorld--A Wolfram Web Resource, [Online]. Available:

http://mathworld.wolfram.com/FourierTransform.html.

[24] "ams," [Online]. Available: http://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-

0178586-1/. [Accessed 22 April 2019].

[25] "purdue," [Online]. Available: https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf.

[Accessed 22 April 2019].

[26] E. W. Weisstein, "Nyquist Frequency," MathWorld--A Wolfram Web Resource, [Online]. Available:

http://mathworld.wolfram.com/NyquistFrequency.html.

[27] [Online]. Available: https://machinaresearch.com/news/press-release-advancing-lte-migration-heralds-

massive-change-in-global-m2m-modules-markets/. [Accessed 22 April 2019].

[28] "wired," [Online]. Available: https://www.wired.co.uk/article/internet-of-things-what-is-explained-iot.

[Accessed 22 April 2019].

[29] "ieee," [Online]. Available: https://standards.ieee.org/initiatives/iot/stds.html. [Accessed 22 April

2019].

[30] "amca," [Online]. Available: https://www.acma.gov.au/theACMA/spectrum-at-434-mhz-for-low-

powered-devices. [Accessed 22 April 2019].

[31] "efcr," [Online]. Available: https://www.ecfr.gov/cgi-bin/text-

idx?SID=57e3d98742373709e9f8f17ed3759834&node=47:1.0.1.1.16.3.236.21&rgn=div8. [Accessed

22 April 2019].

[32] "eetimes," [Online]. Available: https://www.eetimes.com/document.asp?doc_id=1273378. [Accessed

22 April 2019].

[33] "semtech," [Online]. Available:

https://www.semtech.com/uploads/documents/fcc_part15_regulations_semtech.pdf. [Accessed 22

April 2019].

[34] "wired," [Online]. Available: https://www.wired.com/2010/09/wireless-explainer/. [Accessed 22 April

2019].

50

[35] "ti," [Online]. Available: http://www.ti.com/lit/an/swra048/swra048.pdf. [Accessed 22 April 2019].

[36] "fccid," [Online]. Available: https://fccid.io/frequency-explorer.php?lower=5000&upper=5000.

[Accessed 22 April 2019].

[37] "fcc," [Online]. Available: https://www.fcc.gov/5G. [Accessed 22 April 2019].

[38] "ieee," [Online]. Available: https://ieeexplore-ieee-org.ezproxy.wpi.edu/document/7460875.

[Accessed 22 April 2019].

[39] "ti," [Online]. Available: http://www.ti.com/lit/wp/swry013/swry013.pdf. [Accessed 22 April 2019].

[40] "electronic design," [Online]. Available: https://www.electronicdesign.com/what-s-difference-

between/what-s-difference-between-ieee-802154-and-zigbee-wireless. [Accessed 22 April 2019].

[41] "ieee," [Online]. Available: https://standards.ieee.org/project/1900_1.html. [Accessed 22 April 2019].

[42] "analog," [Online]. Available: https://www.analog.com/media/en/training-seminars/design-

handbooks/Software-Defined-Radio-for-Engineers-2018/SDR4Engineers.pdf. [Accessed 22 April

2019].

[43] "rtl-sdr," [Online]. Available: https://www.rtl-sdr.com/about-rtl-sdr/. [Accessed 22 April 2019].

[44] "amazon," [Online]. Available:

https://www.amazon.com/gp/product/B00KCDF1QI/ref=as_li_tl?ie=UTF8&camp=1789&creative=39

0957&creativeASIN=B00KCDF1QI&linkCode=as2&tag=book0674-

20&linkId=XHRIQAZC3JVLUJWM. [Accessed 22 April 2019].

[45] "analog," [Online]. Available: https://wiki.analog.com/university/tools/pluto. [Accessed 22 April

2019].

[46] "gnuradio," [Online]. Available: https://www.gnuradio.org/about/. [Accessed 22 April 2019].

[47] "Mathworks," [Online]. Available: https://www.mathworks.com/hardware-support/adalm-pluto-

radio.html. [Accessed 22 April 2019].

[48] "mathworks," [Online]. Available: https://www.mathworks.com/hardware-support/rtl-sdr.html.

[Accessed 22 April 2019].

[49] "gnuradio," [Online]. Available: https://www.gnuradio.org/grcon/grcon18/presentations/plutosdr/.

[Accessed 22 April 2019].

[50] "analog," [Online]. Available: https://wiki.analog.com/software/linux/docs/iio/iio. [Accessed 22 April

2019].

[51] "fftw," [Online]. Available: http://www.fftw.org. [Accessed 22 April 2019].

[52] "analog," [Online]. Available: https://wiki.analog.com/resources/tools-software/linux-

software/gnuradio. [Accessed 22 April 2019].

[53] "pentestpartners," [Online]. Available: https://www.pentestpartners.com/security-blog/hijacking-

philips-hue/. [Accessed 22 April 2019].

[54] "arxiv," [Online]. Available: https://arxiv.org/pdf/1709.01015.pdf. [Accessed 22 April 2019].

[55] S. M. I. A. G. S. M. I. K. K. L. F. I. Faheem Zafari, "A Survey of Indoor Localization Systems and

Technologies," arxiv.

51

Appendix 1.1 Building the Firmware

INSTALL:

1) PREREQUISITES

a) Make sure you have at least 50 GB of storage

b) 2 CPU cores

c) 4 GB ram

2) UBUNTU 16.04

https://drive.google.com/file/d/13BN4VjMsQL-VFKCNr83i3VSXkjBfUhJ9/view?usp=sharing

3) XILINX WEB INSTALL 17.02

a) Download web installer .bin from website

b) In terminal chmod +x *.bin

c) ./*.bin to run the installer

d) install should be around 32GB, when installing make sure that all boxes are checked,

especially the Zynq 7000’s

e) MAKE SURE THE SDK IS ALSO INSTALLED

f) Add source /opt/Xilinx/Vivado/2017.2/settings64.sh to ~/.bashrc

4) Install all necessary packages

a) Sudo dpkg --add-architecture i386

b) Sudo apt-get update

c) Sudo apt-get upgrade

d) sudo apt-get install libc6:i386 libstdc++6:i386

e) sudo apt-get install git build-essential ccache device-tree-compiler dfu-util fakeroot help2man

libncurses5-dev libssl-dev mtools rsync u-boot-tools

https://wiki.analog.com/university/tools/PlutoSDR/building_the_image

https://drive.google.com/file/d/13BN4VjMsQL-VFKCNr83i3VSXkjBfUhJ9/view?usp=sharing
https://wiki.analog.com/university/tools/PlutoSDR/building_the_image

52

Appendix 1.2 Expanding Pluto Frequency Range

https://wiki.analog.com/university/tools/PlutoSDR/users/customizing

https://unix.stackexchange.com/questions/144029/command-to-determine-ports-of-a-device-like-dev-

ttyusb0

1 sudo apt install screen

2 Bash script to look for USB serial devices

#!/bin/bash

for sysdevpath in $(find /sys/bus/usb/devices/usb*/ -name dev); do

 (

 syspath="${sysdevpath%/dev}"

 devname="$(udevadm info -q name -p $syspath)"

 [["$devname" == "bus/"*]] && continue

 eval "$(udevadm info -q property --export -p $syspath)"

 [[-z "$ID_SERIAL"]] && continue

 echo "/dev/$devname - $ID_SERIAL"

)

Done

Sudo screen /dev/tty(the port you found from the previous script)

username : root

Password: analog

fw_printenv attr_name

Error: "attr_name" not defined

fw_printenv attr_val

Error: "attr_val" not defined

fw_setenv attr_name compatible

fw_setenv attr_val ad9364

reboot

https://wiki.analog.com/university/tools/pluto/users/customizing
https://unix.stackexchange.com/questions/144029/command-to-determine-ports-of-a-device-like-dev-ttyusb0
https://unix.stackexchange.com/questions/144029/command-to-determine-ports-of-a-device-like-dev-ttyusb0

53

Appendix 1.3 Installing GnuRadio

Link used:

https://kb.ettus.com/Building_and_Installing_the_USRP_Open-

Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux

 sudo apt-get -y install git swig cmake doxygen build-essential libboost-all-dev libtool libusb-1.0-0 libusb-1.0-

0-dev libudev-dev libncurses5-dev libfftw3-bin libfftw3-dev libfftw3-doc libcppunit-1.13-0 libcppunit-dev

libcppunit-doc ncurses-bin cpufrequtils python-numpy python-numpy-doc python-numpy-dbg python-scipy

python-docutils qt4-bin-dbg qt4-default qt4-doc libqt4-dev libqt4-dev-bin python-qt4 python-qt4-dbg python-

qt4-dev python-qt4-doc python-qt4-doc libfftw3-bin libfftw3-dev libfftw3-doc ncurses-bin libncurses5

libncurses5-dev libncurses5-dbg libfontconfig1-dev libxrender-dev libpulse-dev swig g++ automake autoconf

libtool python-dev libfftw3-dev libcppunit-dev libboost-all-dev libusb-dev libusb-1.0-0-dev fort77 libsdl1.2-dev

python-wxgtk2.8 git-core libqt4-dev python-numpy ccache python-opengl libgsl0-dev python-cheetah python-

mako python-lxml doxygen qt4-default qt4-dev-tools libusb-1.0-0-dev libqwt5-qt4-dev libqwtplot3d-qt4-dev

pyqt4-dev-tools python-qwt5-qt4 cmake git-core wget libxi-dev gtk2-engines-pixbuf r-base-dev python-tk

liborc-0.4-0 liborc-0.4-dev libasound2-dev python-gtk2 libzmq1 libzmq-dev python-requests python-sphinx

libcomedi-dev

cd $HOME

 mkdir workarea-gnuradio

 cd workarea-gnuradio

Next, clone the repository.

 git clone --recursive https://github.com/gnuradio/gnuradio

Next, go into the repository and check out the desired GNU Radio version.

 cd gnuradio

 git checkout v3.7.12.4 // or whatever the newest version is in the git repo

https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://github.com/gnuradio/gnuradio
https://github.com/gnuradio/gnuradio

54

 git submodule update --init --recursive

Next, create a build folder within the repository.

 mkdir build

 cd build

Next, invoke CMake to create the Makefiles.

 cmake ../

Next, run Make to build GNU Radio.

 make

Next, you can optionally run some basic tests to verify that the build process completed properly.

 make test

Next, install GNU Radio, using the default install prefix, which will install GNU Radio under the

/usr/local/lib folder. You need to run this as root due to the permissions on that folder.

 sudo make install

Finally, update the system's shared library cache.

 sudo ldconfig

At this point, GNU Radio should be installed and ready to use. You can quickly test this, with no

USRP device attached, by running the following quick tests.

 gnuradio-config-info --version

 gnuradio-config-info --prefix

 gnuradio-config-info --enabled-components

There is a simple flowgraph that you can run that does not require any USRP hardware. It's

called the dialtone test, and it produces a PSTN dial tone on the computer's speakers. Running it

verifies that all the libraries can be found, and that the GNU Radio run-time is working.

 python $HOME/workarea-gnuradio/gnuradio/gr-audio/examples/python/dial_tone.py

You can try launching the GNU Radio Companion (GRC) tool, a visual tool for building and

running GNU Radio flowgraphs.

 gnuradio-companion

If "gnuradio-companion" does not start and complains about the PYTHONPATH environment

variable, then you may have to set this in your $HOME/.bashrc file, as shown below.

 export PYTHONPATH=/usr/local/lib/python2.7/dist-packages

On Fedora 21/22/23/24, the PYTHONPATH environment variable will need to be set to:

 export PYTHONPATH=/usr/lib/python2.7/site-packages:/usr/local/lib64/python2.7/site-

packages/

55

Drivers for the PlutoSDR

https://wiki.analog.com/resources/tools-software/linux-software/gnuradio

Install GNU Radio and other dependencies
apt-get -y installlibxml2 libxml2-dev bison flex cmake git libaio-dev libboost-all-dev swig

Download and build libiio
git clone https://github.com/analogdevicesinc/libiio.git

cd libiio

cmake .

make

sudo make install

cd ..

Download and build libad9361-iio
git clone https://github.com/analogdevicesinc/libad9361-iio.git

cd libad9361-iio

cmake .

make

sudo make install

cd ..

Download and build gr-iio
git clone https://github.com/analogdevicesinc/gr-iio.git

cd gr-iio

cmake .

make

sudo make install

cd ..

sudo ldconfig

GNURadio will recommend you include
/usr/local/lib${type}/python${PYVER}/site-packages/gnuradio

or
/usr/local/lib${type}/python${PYVER}/dist-packages/gnuradio

in your PYTHONPATH during installation. If this is not the case you will need to modify the

cmake command for the gr-iio configuration above with:
cmake -DCMAKE_INSTALL_PREFIX=/usr .

https://wiki.analog.com/resources/tools-software/linux-software/gnuradio

56

Getting example running:

Finally, launch GNU Radio Companion from Ubuntu with command

gnuradio-companion

IIO Examples

Several sample flow graphs that use the FMCOMMS-2/3/4 IIO blocks are provided in our GNU Radio

repository. They can be found in the “iio-example” folder.

Create this flowchart inside gnuradio-companion

57

Appendix 1.4 Installing Matlab

This example assumes a working version of Matlab 2017 or later is available a person’s machine.

Also required is the Communications toolbox which can be found here:

https://www.mathworks.com/help/comm/

Communications Toolbox™ Support Package for Analog Devices® ADALM-Pluto Radio which can be

found here:

https://www.mathworks.com/help/supportpkg/PlutoSDRradio/ug/install-support-package-for-PlutoSDR-

radio.html

OR

https://www.mathworks.com/help/supportpkg/PlutoSDRradio/installation-and-setup.html

A full list of documented examples and support for the Pluto using Matlab can be found here:

https://www.mathworks.com/help/supportpkg/PlutoSDRradio/index.html

https://www.mathworks.com/help/comm/
https://www.mathworks.com/help/supportpkg/plutoradio/ug/install-support-package-for-pluto-radio.html
https://www.mathworks.com/help/supportpkg/plutoradio/ug/install-support-package-for-pluto-radio.html
https://www.mathworks.com/help/supportpkg/plutoradio/installation-and-setup.html
https://www.mathworks.com/help/supportpkg/plutoradio/index.html

58

Follow the tutorial as shown in the installer to connect your PlutoSDR and test the transmit and receive

functions. Once it is properly installed you can follow several matlab tutorials outlining different SDR uses

and test programs, including turning the Pluto into a spectrum analyzer.

Spectrem analyzer example:

https://www.mathworks.com/help/supportpkg/PlutoSDRradio/examples/spectral-analysis-with-adalm-

PlutoSDR-radio.html

https://www.mathworks.com/help/supportpkg/plutoradio/examples/spectral-analysis-with-adalm-pluto-radio.html
https://www.mathworks.com/help/supportpkg/plutoradio/examples/spectral-analysis-with-adalm-pluto-radio.html

59

This example is done through simulink which provided a very user friendly compatibility.

There are also other “fun” examples such as plane tracking found here:

https://www.mathworks.com/examples/communications/mw/plutoradio_product-

plutoradioADSBExample-airplane-tracking-using-ads-b-signals-and-adalm-pluto-radio

Many other functional matlab tutorials exist such as frequency offset and and more specific

transmitting/receiving which can be found here:

https://www.mathworks.com/examples/search?q=PlutoSDR

We cross checked the results of the Matlab spectrum analyzer and the gnu radio spectrum analyzer and

found very similar results.

https://www.mathworks.com/examples/communications/mw/plutoradio_product-plutoradioADSBExample-airplane-tracking-using-ads-b-signals-and-adalm-pluto-radio
https://www.mathworks.com/examples/communications/mw/plutoradio_product-plutoradioADSBExample-airplane-tracking-using-ads-b-signals-and-adalm-pluto-radio
https://www.mathworks.com/examples/search?q=pluto

60

Appendix 2.1 Device Specifications

PlutoSDR Specifications

● RF Performance: ADI AD9363, RF Agile Transceiver

○ Tuning range: 325 MHz - 3.8 GHz

○ Tunable channel bandwidth: 200 kHz - 20 MHz

○ Integrated 12-bit DACs (Tx) and ADCs (Rx)

○ Variable output data rates: 61.44 MSPS - 65.1 kSPS

○ Modulation Accuracy (EVM): -34 dB (2%)

○ No RF Shielding

● Programmable Chip: Xilinx Zynq XC7Z010-1CLG225C

○ FPGA

■ Logic Cells: 28k

■ Block RAM: 2.1Mb

■ DSP Slices 80

○ ARM Processing System

■ Single-core ARM® Cortex™-A9 MPCore™

■ 667 MHz

○ USB 2.0 (included in the Zynq)

■ Streams up to 4MSPS with no dropped samples

● Memory: Micron DDR3L MT41K256M16, Micron QSPI Flash MT25QU256ABA

○ DDR3L

■ 1066 Mbps (16-bit interface)

■ 512 Mb

http://www.analog.com/AD9363
http://www.xilinx.com/Xilinx%20Zynq
http://www.xilinx.com/support/documentation/data_sheets/ds187-XC7Z010-XC7Z020-Data-Sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds187-XC7Z010-XC7Z020-Data-Sheet.pdf
https://www.micron.com/parts/dram/ddr3-sdram/mt41k256m16tw-107
https://www.micron.com/parts/dram/ddr3-sdram/mt41k256m16tw-107

61

○ QSPI Flash

■ 32 Mb

■ Quad I/O provides throughput up to 54 Mbps

● Power

○ 5V DC input via USB connection

● Physical

○ Dimensions: 117 mm × 79 mm × 24 mm

○ Weight: 114 g

○ Temperature: 10oC to 40oC

Wifi Dongle Specfications

● Hardware

○ USB 2.0 Interface

○ Green status LED

○ Dimensions: 18.6mm x 15mm x 7.1mm

○ Weight: 2.1g

○ Temperature: 0oC to 40oC

● Wireless Features

○ Standards: IEEE 802.11b, IEEE 802.11g, IEEE 802.11n

○ Frequency: 2.400-2.4835GHz

○ Signal Rate: Up to 150Mbps (dynamic)

■ Automatically adjusts to lower speeds due to distance or other

operating limitations

https://www.micron.com/parts/nor-flash/serial-nor-flash/n25q256a11e1240f
https://www.micron.com/parts/nor-flash/serial-nor-flash/n25q256a11e1240f

62

○ Transmit Power: <20dBm

