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Abstract

Racism is embedded into the health industry in a subconscious

level, in�uencing people in a subconscious level and backed by in-

stitutional policies. We set out to develop a machine learning al-

gorithm to detect cancerous melanoma in a patient's skin, ensuring

that the results of this system remain fair and consistent regardless

of the patient's ethnicity or origin. While Convolutional Neural Net-

works (CNNs) yielded 79.8% accuracy, the highest of the algorithms we

tested, there's still room for improvement, and we believe that further

research in this subject should be done.
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1 Introduction

It is a fact that racism exists in the health industry and a�ects billions of
people around the world. It manifests as a systematic discrimination in
countless facets and aspects of the health industry to the point of being
supported through institutional policies. This means that it is not practiced
through the aberrant behavior of a handful of individuals, although this
remains possible, but through unintentional and unconscious bias based on
negative stereotypes, and is supported institutional policies. [23]

One noticeable example of this is the signi�cant di�erence in infant mor-
tality rates and pregnancy related deaths between various races. Between
1999-2013, infant mortality rates were highest among infants born to non-
Hispanic black women with 11.11 infant death for ever 1,000 live births.
Infants born to non-Hispanic Asian or Paci�c Islander mothers experienced
the lowest rates of 3.90. In 2014, non-Hispanic black mothers also had the
highest percentage of preterm births of the �ve racial and ethnic groups eval-
uated in said study (non-Hispanic blacks, non-Hispanic American Indians or
Alaska natives, Hispanic or Latina, non-Hispanic whites, and non-Hispanic
Asians or paci�c islanders) [2]. Black women were also found to be three to
four times more likely to die in pregnancy related births when compared to
white women. [3]

Another example lies in the distribution of primary care physicians by zip
code. Gaskins et al. found that the odds of a given zip code having a primary
care physician shortage were 67 percent higher for majority African American
zip codes but 27 percent lower for majority Hispanic zip codes. This number
varied with the amount of segregation in said area: as segregation increased,
so did the odds of having a shortage of primary care physicians. The inverse
was true for primarily Hispanic and Asian zip codes. [13]

One more example lies in the astonishing rate that minority medical pa-
tients are disbelieved or not taken seriously about their health. When polled
about perceived pain in white and black patients, a study found that a sub-
stantial number of white laypeople and medical students and residents held
false beliefs about biological di�erences between black and white patients.
This phenomenon is particularly dangerous because it can cloud a health
care provider's judgment and e�ect their treatment recommendations and
diagnosis accuracy. [15] In addition, Asian patients were found to be 1.21
times more likely than white patients to be admitted to the hospital following
an ED visit and Black patients were 7% less likely to receive an urgent ESI
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score than white patients to immediate or emergent ESI scores, as opposed to
semi- or non-urgent scores. Black patients were additionally 10% less likely
than white patients to be admitted to a hospital and were 1.26 times more
likely than white patients to die in the ED or hospital. [25] While many of
these studies were based in the United States, it is evident that this problem
is international because Public Health England found that People of Chi-
nese, Indian, Pakistani, Other Asian, Caribbean and Other Black ethnicity
had between 10 and 50% higher risk of death from the COVID-19 when com-
pared to White British, which mirrors a similar theme in the United States.
[12]

In addition to the statistics and examples listed here, one should wonder
what additional ways has racism a�ected people that have been covered up,
or simply not studied yet.

On a separate note, melanoma is a type of skin cancer that presents itself
initially as a marking or deformity on the skin. In the year 2020, invasive
melanoma is estimated to account for 1% of all skin cancer cases as well as
the vast majority of skin cancer deaths. It is also estimated to be one of the
most common cancer diagnoses for Americans aged 20-29 years old.[21]

Racism can apply to the already deadly melanoma cancer in a number
of ways Despite the occurrence of melanoma in non-Hispanic Black people,
survival rates for them lag behind that if non-Hispanic White populations.
[10, 11] Skin cancers in people of color often present atypically or in advanced
stages when compared to Caucasian patients at the time of diagnosis, with
post-metastization diagnoses at rates of 15% of Hispanics, 13% of Asians, and
12% of Black patients, compared with six percent of non-Hispanic Whites for
men and seven percent of Hispanics, 21% of Asians, and 19% of Black patients
were diagnosed with late-stage melanoma compared with four percent of non-
Hispanic Whites. [14, 9] Out of patients who received surgical treatment
for melanoma-related complications. The 10-year melanoma-speci�c survival
was 73% lower in black patients than in white patients and other races who
had survival rates of 88% and 85% respectively. [8]

To solve the intersection of racism and its e�ects on melanoma patients,
we propose using Arti�cial Intelligence algorithms (AI) and machine learn-
ing as a tool for detecting melanoma in its early stages. They have become
increasingly more accessible due to recent advances in access to large data
sets, fast computing, and cheap data storage, which has encouraged the de-
velopment of machine learning algorithms with human-like intelligence in
dermatology. [7] However, to prevent hampering this tool's e�ectiveness and
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producing ill e�ects similar to that stated in previous �ndings, it is crucial
that these algorithms are built to be free from racial bias, especially since
melanoma presents on the skin. This can be done on training an AI based on
melanoma cases with a variety of skin tones, equalizing these skin tones, and
taking into account the relative sparsity of melanoma cases among minority
patients.
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2 Methodology

Below we outline the various pre-processing and classi�cation algorithms we
considered for building a model to detect melanoma in images.

2.1 Pre-Processing Algorithms

2.1.1 CLAHE

Contrast-limited adaptive histogram equalization (CLAHE) is the current
state-of-the-art method used for histogram equalization that addresses a lot
of the issues other algorithms struggle with [6]. Normal histogram equaliza-
tion involves distributing the contrast values of the entire image evenly across
the entire contrast spectrum. While this works for a uniform condensed dis-
tribution of contrast of the image, when there exists varying distributions of
contrast across di�erent sections of the image, normal histogram equalization
fails to su�ciently equalize all sections of the image. This is where the adap-
tive part of the CLAHE algorithm is important, where instead of balancing
color contrast based on the entire image, CLAHE breaks the image up into
tiles that are subsections of the image. These tiles are then used to perform
histogram equalizations on subsections of the image. Due to separating the
image into smaller regions however, adaptive histogram equalization (AHE)
algorithms su�er from a new problem of being more prone to noise in the
image [19]. This is where the contrast-limited portion of the CLAHE method
is useful. In order to limit the over-ampli�cation of contrast due to noise,
CLAHE de�nes a threshold value for which only the highest parts of the
histogram are clipped o� and then equalized [1].

The CLAHE algorithm requires 3 input parameters to operate on. The
�rst one being the input image. This is generally a black and white image,
however the CLAHE method can also be applied to colored images as well.
In the case of colored images, instead of equalizing each of the 3 red, green,
and blue spectrums, it is usually recommended to convert the image to the
HSV color space and only apply CLAHE to the luminance channel [24]. The
other two inputs that were described above are the clip limit value and the
grid size for the tiles. The CLAHE algorithm will then run the operations
outlined above on the imputed image and output an image with equalized
contrast.
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2.1.2 Histogram Equalization in MatLAB

There are a variety of methods to accomplish Histogram Equalization in
Matlab. The �rst of which includes the MatLAB Speci�c command, Histeq.
[18] This algorithm is particularly useful because it's easy to use and it works
with little to no modi�cations, allowing the algorithm to be rather short. The
command that this algorithm is based on is standard with Matlab's Image
Processing Toolbox, and even allows users to input a target histogram should
the user want to limit the number of �bins� produced. Despite these bene�ts,
there are a number of caveats to using this algorithm. It can only work with
one color channel at a time, so this algorithm would need be run on the
red, green, and blue color channels of an image, and then the resulting three
histograms could be composited into one equalized image. Unfortunately,
this algorithm is di�cult to adjust should the user want to alter the method
used. This can be solved by building a histogram equalization method from
scratch.[4] Dr. Agrawal's algorithm is especially useful because it doesn't
use the Matlab speci�c histogram equalization command, a user can adjust
the algorithm as much as is necessary to achieve the desired result. This,
of course, will require more expertise in histogram design and equalization
methods, but this is worthwhile for the bene�ts of this algorithm.

2.1.3 LB-CLAHE

LB-CLASH is a machine learning based version of CLASH, it seems to have
slightly better results than the standard version of CLASH, but there is cur-
rently only one article about the topic (1). Machine learning was used in the
artial to control and optimize the hyperparameters for CLASH histogram
equalization. The Authors found that LB-CLASH was able to quickly sug-
gest the hyper parameters for a CLASH based histogram equalization that
provide better image results. Machine learning does not do the histogram
equalization; it just suggests parameters. The article asserts that this method
of selecting the hyper parameters is more e�ective than the other options.
They do provide the source code for this project (2), along with the datasets
that they used. This method may be usable for our purposes but it will
increase the time to compute because before CLASH can be run it must �rst
have its hyper parameters have been determined by LB-CLASH.
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2.2 Classi�cation Algorithms

2.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are used to classify data based on
their internal knowledge base acquired from training on past data. CNNs
as a whole is a large topic, so this writeup will mainly focus on the aspects
that are relevant to image classi�cation. Functionally, a CNN is a structure
of nodes similar to Arti�cial Neural Networks (ANNs), so it is important
to understand how ANNs work before diving into CNNs. ANNs have 3
layers of nodes, the �rst being the input layer where each predictor for the
classi�cation is inputted into the system. ANNs then have an output layer
and some number of hidden layers containing perceptrons. Each of these
perceptrons have an activation function where, depending on the input values
and their corresponding weights, the perceptron outputs a corresponding
classi�cation. These perceptrons together as a network output an overall
classi�cation for the data from the output layer. The reason why training
data is required for neural networks is because initially the weights for how
much each predictor or input value should be considered is unknown. So by
showing the model a large sample size of pre-classi�ed training data allows it
to determine the optimal weights for each predictor or input value in order
to achieve the correct classi�cations.

CNNs depend on this fundamental network of perceptrons, however they
take it a step further with convolutional layers. While ANNs can technically
be trained to perform image processing and classi�cation problems, it would
require an unwieldy amount of weights and layers as every pixel in the image
would have to be an input. With convolutional layers however, the amount
of required parameters is signi�cantly reduced as the image is split up into
tiles. The size of the tile is de�ned by the model's batch size [16].

In summary, the notable hyperparameters for initializing a CNN model
include: number of convolutional layers, initial weights, type of activation
function, number of epochs (number of iterations the model trains on the
data), and batch size [20]. Once the model has been de�ned, it is then
trained and tested on a pre-classi�ed database until a su�cient success rate
is achieved. Finally once the model is trained, the only step required to use
it is to input a given image, the CNN model will process the image, and then
the model will output a corresponding classi�cation with a given degree of
certainty.
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2.2.2 Edge Detection

MatLAB o�ers a selection of edge detection algorithms, which may be useful
in detecting the boundaries of an instance of Melanoma.[17] t relies on dis-
continuities in brightness to detect an �edge�. There are several algorithms
that can be used to detect these edges. The examples given use both the
Sobel and Canny methods This algorithm has demonstrated promising re-
sults on very clearly de�ned melanoma occurrences. Further testing of this
algorithm is required for further con�rmation on this. However, this algo-
rithm has demonstrated weaknesses when used on images with textured skin.
Applying a blurring �lter to an image can improve on this weakness, but a
better system to remove skin texture is necessary for this algorithm to im-
prove. Further investigation into which edge detection algorithms work best
for certain instances of melanoma certainly deserve further investigation.

2.2.3 Haar Cascade

Haar Cascade is a machine learning object detection algorithm conceptual-
ized by Paul Viola and Michael Jones in 2001 The algorithm is used to iden-
tify objects, speci�cally faces and body parts, however it can be implemented
to identify many other objects, including melanoma in skin cancer patients.
There are four stages to the algorithm: Haar Feature Selection, Creating
Integral Images, Adaboost Training, and Cascading Classi�ers. Step one in
the algorithm is to collect the haar features, which are adjacent rectangular
regions at a speci�c location in a detection window, using Integral Images
makes feature collection fast and easy. The next step is to implement the
Adaptive Boosting meta algorithm to make sure that the classi�ers select the
best features available. Finally, in the Cascading Classi�ers, each stage con-
sists of decision dumps that decide whether or not there is an object within
the window that they're analysing. If there is an object then the detector
will mark it as a positive detection, if there is no object then the detector will
mark it as negative. Sometimes a detector will incorrectly detect a positive
or negative object. In order to combat this multiple stages are implemented
to properly �lter out false positives and negatives.

To test the algorithm the user must give the program a large quantity of
positive and negative objects, which would be images of patients with and
without melanoma in order to �train� the algorithm to know what to look
for when analyzing images. This algorithm may have a hard time properly
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detecting melanoma in skin cancer patients because it can look very di�erent
from patient to patient, however, if enough images are given this algorithm
could be very promising in its ability to �learn� how to detect a given object.
If it is given enough images of positive and negative images, like images of
moles and malignant tumors and other growths, this algorithm would have
no trouble properly detecting melanoma in skin cancer patients.

2.2.4 Histogram of Oriented Gradients

Histogram of Oriented Gradients(HOG) is an algorithm founded by Robert K
McConnell in 1986 but was popularized by French researchers Navneet Dalal
and Bill Triggs. The algorithm is designed to take an image, �lter it, and
categorize it by its distribution of directions of gradients. In order to do this,
HOG �rst reshapes all the images to be the same dimensions and normalizes
them to get rid of any possible illumination e�ects. Next the gradient images
are calculated by �nding the magnitude and direction of each gradient, using
g=gx2+gy2and=arctan(gy gx), respectively. The next step is to calculate
the histogram of the gradients using 8x8 cells. Afterwards is the 16 x 16
block normalization which is done by concatenating 4 8x8 cells into a 36 x 1
vector and dividing each element in the vector by its length. The length of a
vector is calculated by squaring each element in the vector and adding them
together and then �nding the square root of that sum. Finally, the HOG
feature vector is calculated by concatenating 105 positions of 36x1 vectors
together to get a 3780 dimensional vector.

In order to run the algorithm, an image must be given. Based on the im-
ages given the code will resize the image to be 32x32 if it isn't already, puts
it in greyscale, then a histogram is calculated and a 4x4 matrix is designed
for each cell. This algorithm could be useful towards accurately pointing out
what patient has melanoma and what patient does not. Since melanoma has
distinguished features they could be picked up by the algorithm and accu-
rately categorized in a bin. This algorithm can also be �trained� on �nding
speci�c features so if enough images are put into the algorithm they could
be accurately categorized based on if they meet the criteria for melanoma.

2.2.5 Support Vector Machine

Support Vector Machine (SVM) is a supervised statistical learning algorithm
that is used in classi�cation in machine learning. The main component of
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an SVM is the hyperplane, a line that serves as a decision boundary for
the n number of features in each data set. The goal of SVMs is to widen
the decision boundary such that future datapoints can nearly be categorized
in a chosen class. The boundary can be transformed by manipulating the
hyperparameters of the algorithm, such as: C (the distance of the decision
boundary), gamma (the separateness of the features), the kernel (form of the
decision boundary), etc. This is an exploration on using SVMs to predict
whether an image has melanoma based on this paper from the Journal of
Clinical Oncology. This section will detail the methodology used to imple-
ment this algorithm and the results of running the SVM on the data set.
The C value had to be �ne-tuned and the overall grid had to be optimized to
increase the accuracy rate. The gamma and the kernel were left unchanged.
The SVM was tested to use three di�erent arrays of C values: 1) 0.1 � 1000,
2) 0.5 � 5000, and 3) 1 � 10000. Once the best SVM C values was found, the
code was re-run to get baseline accuracy scores. Afterwards, the grid-search
was optimized speci�cally to improve accuracy scores.
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3 Dataset

We had an initial melanoma dataset provided to us for training and test-
ing our models, however we eventually realized we needed a much larger
dataset to su�ciently train our classi�cation algorithms. Ideally, we wanted
a dataset that both contained an even distribution of labeled melanoma and
non-melanoma images as well as an even distribution of labeled varying skin
tones in the images. This would allow us to not only determine our model's
overall accuracy at detecting if melanoma was present in an image, it would
also allow us to determine how fair our model predicted across various skin
tones. Unfortunately, we were unable to �nd a dataset with the latter labels
of skin tones. We did, however, found a relatively large dataset, �Human
Against Machine with 10000 training images� (HAM10000) [22] containing
labeled data of a variety of di�erent pigmented lesions. From this dataset,
we extracted all of the melanoma labeled images as well as an equal number
of randomly selected non-melanoma images. This gave us a total of 1192
images, which we then shu�ed and randomly split into roughly 80% training
and 20% testing data.
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4 Implementation and Results

For testing all of our preprocessing and classi�cation algorithms, we designed
an all-in-one framework that allowed us to dynamically run any classi�cation
algorithm with a given set up hyper-parameters to optimize over, and a given
set of pre-processing algorithms to run on the input data beforehand. As a
result, we were able to both easily run or swap out di�erent classi�cation or
pre-processing algorithms to compare di�erent combinations. We also built
this framework in Google Collab, allowing our entire team to easily share,
edit, and run each other's code on Google Collab's fast GPU. Note: Not
all algorithms from the Methodologies were implemented due to knowledge
and time constraints, however in future works these could be areas to further
explore.

4.1 CNN Classi�cation with Global HE and CLAHE

When designing a Convolutional Neural Network (CNN) for classifying our
melanoma dataset, we decided to replicate the general structure of other
popular and proven successful CNN architectures. Speci�cally, the model
consisted of 5 convolutional layers which is the standard for extracting key
spatial features in the image, as well as 2 fully connected layers used for
determining relationships between the found features and the target classi�-
cations. This setup is similar to that of CNN models VGG16 and AlexNet,
which are ILSVRC challenge winners in 2014 and 2015 respectively. [5]

Getting more in depth with the individual layers, the input shape of the
�rst convolution layer was set as a standard 224x224x3 colored image. As a
result, we had to reshape all the data to this size by bilinearly resizing the
images in order to best preserve the same image structure. For each convo-
lutional layer we used 64 �lters of 3x3 kernels and a stride of 1. After each
convolutional layer we added 2x2 max pooling layers which helps the model
generalize the features and as a result decreases over�tting on the training
data. For the fully connected layers, the �rst layer had 4096 nodes and the
second layer had 2048 nodes, with both using relu activation functions. After
each dense layer we added dropout layers which randomly drop nodes during
each batch in order to ensure all nodes are being trained, giving the model
more expressive capabilities with more in�uential nodes. Finally, the output
layer consists of 2 nodes, corresponding to the two classi�cations of melanoma
or not melanoma, as well as a softmax activation to select the higher of the
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two classi�cations. For the model's hyperparameters, after optimizing the
model over a gridsearch of parameters, we obtained our best model with a
batch size of 16, epochs of 50, loss function of categorical cross entropy, and
an Adam optimizer.

Another important aspect of our initial research was trying to �nd pre-
processing algorithms that would improve our classi�cation algorithm's re-
sults. We decided that the global histogram equalization as well as the local
histogram equalization, speci�cally CLAHE, methods would be applicable
to input data of our CNN. Predictably, applying CLAHE to the input data
achieved better results than applying global histogram equalization, with
CLAHE yielding a 72.7% accuracy and global HE yielding only a 62.6% ac-
curacy. Surprisingly however, without any pre-processing our CNN achieved
the highest total test accuracy of 79.8%. We had initially theorized that ap-
plying a histogram equalization method would help decrease the di�erences
in skin tones in order to increase the fairness of the model's accuracy between
races, which in turn would increase the model's overall accuracy. While we
didn't have access to labeled skin tones for our data to determine whether
this preprocessing evened the model's accuracy across races, we can deter-
mine that overall, this preprocessing had additional side e�ects that lowered
the overall accuracy of the model.

Figure 1: CNN Confusion Matrix with No Preprocessing
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Figure 2: CNN Confusion Matrix with CLAHE Preprocessing

Figure 3: CNN Confusion Matrix with Global Histogram Equalization Pre-
processing
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4.2 Histogram of Oriented Gradients (HoG)

Histogram of Oriented Gradients (HOG), focuses on the structure of objects.
It extracts information about edges including their magnitude and orienta-
tion. This alone is not an image classi�er, it is more of a pre-pressing. By
hooking the features or gradients extracted by HOG into a machine learning
framework we can then use those features to attempt image classi�cation.

To extract the HOG features from each image the python library skimage
was used. Each image was processed with 16x16 Pixel cells and 1 cell per
block. Those features were then passed into a fully connected neural network
created using the tensor�ow python library. The was created with two relu
layers and one softmax regression layer. The machine was then trained and
the results are shown below.

Figure 4: HoG Confusion Matrix

With the best test accuracy of 53% being very little better than just guess-
ing, it can be inferred that using HOG as an approach to classify melanoma
is not possible. This may be due to the method's shortcomings in identifying
�ne details. HOG is a method that Eccles with edge detection tasks and
general shapes, so something, as �nessed as melanoma, is di�cult for this
type of classi�cation.
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There is other possibilities, the training and testing data sets were not
great and could have lead to the failure of the algorithm. Although if a better
dataset was used the results would likely not change much, due to the fact
that HOG is not good at classifying things other than images.

4.3 Haar Cascade

To create a Haar Cascade classi�er for identifying cancerous melanoma we
had to prepare a number of samples, which would then be used to train
the algorithm provided by the OpenCV python library. First a batch of
negative samples was collected from our dataset, which would be used to
identify background noise we were not interested in. Then a batch of positive
samples containing cancerous melanoma was selected. However, the setup for
the algorithm also required annotations for the positive samples, which we
created using a tool provided by OpenCV. These annotations must indicate
how many instances of the object we're interested in appear in the image,
where they're located and their size.

We were able to prepare 100 negative samples and 60 positive samples.
The model was also set to have 15 stages, each one being more precise but
also more time-consuming, causing only promising candidates to be closely
inspected and obvious false cases to be quickly discarded. Once the model
was trained, we moved on to test the accuracy of its predictions.

Figure 5: Haar Cascade Confusion Matrix

The �nished model had an accuracy rate of 55.5%. These results are
not very promising, with the model being only slightly better than random
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guesses. One reason why the model may have underperformed is the lack of
samples. Since each positive sample must be annotated by hand, this presents
a major limitation on how many images can be used for training and testing.
Time constraints and lack of manpower meant that, even though we had
collected many samples, we were only able to use a small subset of them to
train our haar cascade classi�er.

However, we believe this algorithm is not the right tool for this particular
kind of job. Haar cascades algorithms are generally used to quickly detect
whether an object of interest is present in an image, but not to detect subtle
di�erences between two similar kinds of object. Time is not a critical factor,
so the ability of the haar cascade classi�er to quickly work through images
is wasted. Furthermore, the annotation tool allows for multiple instances of
an object to be detected by the classi�er, but this is never taken advantage
of since each of our samples contains one skin pattern each. Because of this,
we don't believe the haar cascade classi�er will provide reliable results, even
if more samples were collected.

4.4 Support Vector Machine

The results of the SVM is that it achieved 71% accuracy in di�erentiating
between melanoma and otherwise. In a testing sample of 7, it was able to
properly predict 5 of 7 images correctly.
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Figure 6: Support Vector Machine Matrix
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5 Conclusion

Surprisingly, our CNN algorithm on its own performed best, even when unas-
sisted by CLAHE and HE. While, a 79.8% accuracy rate is a promising start,
there is room for improvement. Due to the limited number of algorithms that
we were able to research and test, it is very likely that more extensive research
will yield more convincing results and �nd tools better suited to the �nding
of cancerous melanoma. It's possible that some of the algorithms employed
were not the best tool for detecting melanoma, or that their training process
can be re�ned to yield better results, even with no other signi�cant changes.
Regardless, we believe this venture is worth investigating further.

Table 1: Table showing accuracy of each algorithm.
Algorithm Accuracy
CNN 79.8%

CNN & CLAHE 72.7%
CNN & HE 62.6%

HoG 53.5%
Haar 55.5%
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