Inducibility of Synthetic Genetic Circuits in Pseudomonas putida under Simulated Soil Conditions

A Major Qualifying Project
Submitted to the Faculty of
Worcester Polytechnic Institute in partial
fulfillment of the requirements for the Degree
of Bachelor of Science in
Biology and Biotechnology
by
Lauren Abraham
Date: April 25, 2024
Project Advisor:

Dr. Natalie Farny

This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on the web without editorial or peer review.

Abstract

This research tests the efficacy of an inducible system present in genetically engineered bacteria Pseudomonas putida (P. putida), a widespread soil bacterium. Inducible systems in bacteria are used for a variety of functions in biotechnology, including bioremediation and working as cell factories to produce natural products and small molecules. The inducible system used in this research responds to the addition of an anhydrotetracycline (aTc) with the synthesis of the far-red fluorescent protein mCardinal to report the presence of aTc. To further research and address how the biosensor would respond under real-world environmental conditions, this Major Qualifying Project expanded upon biosensor testing under simulated soil conditions using a liquid soil extract in the lab for testing. The goal of this research project was to observe the effects, if any, of addition of an aTc inducer to the inducible system in liquid soil extract. While we were able to confirm inducibility in laboratory growth conditions, we were unable to induce the circuit in liquid soil extract conditions. We believe that the promoters that drive the system may not be functional under soil-like conditions and will need to be further optimized in order to apply inducible genetic circuits within real-world environmental conditions. These discoveries motivate further research into the potential use of P. putida as a biosensor for antibiotics and other environmental contaminants in soil environments.

Acknowledgements

I would like to extend my sincere thanks and gratitude to the following individuals for their support, time, and effort for me on this project.

To my advisor, Professor Natalie Farny, thank you for your willingness to provide honest feedback and guidance throughout my research and writing work. Thank you for helping me navigate through challenging times when experiments yielded interesting and surprising results. Your advice and insights have been instrumental in guiding me through this project.

To Ally, Nicole, and Christine, thank you for your assistance with data analysis and for always giving me a smile at the lab as I ran my experiments.

To my family, thank you for all your love, encouragement, and unfailing good humor. I would not have been able to complete any of this research without your constant and unwavering support as I conducted experiment after experiment and worked through drafting my project paper.

To my friends, thank you for being there and cheering me on. You have each been a fantastic source of love and laughter.

Table of Contents

Abstract 1
Acknowledgements 2
Background 4
Materials and Methods 9
Bacterial Strains and Plasmids 9
Soil Collection 9
Soil-Extracted Solubilized Organic Matter (SESOM) Production 10
Growth and Induction of Bacterial Strains in Different Conditions 11- Creating undiluted SESOM cultures- Creating 1:10 dilutions of undiluted SESOM and LB cultures- Measuring Optical Density (OD) 1:10 dilutions of undiluted SESOM and LBcultures- Creating "+/-" aTc cultures with diluted SESOM and LB cultures- Creating Controls- Incubation and Induction- Testing of Bacterial Strains in Differential Conditions
Methods For Biosafety and Biocontainment 17
Data Processing and Statistical Analysis 18
Results 19
Discussion 29
References 33
Appendix 34
Appendix A: Raw Data from Experiments 34

Background

Genetically engineered microbes (GEMs) are being harnessed for use in detecting antibiotics, heavy metals, and other contaminants in soil environments. This detective work by a GEM can be effectively accomplished with the use of a biosensor in the form of an inducible genetic circuit within the GEM that senses the presence of these chemical materials or contaminants. An inducible gene is a gene that is expressed, or turned on, when a substance (an inducer) is introduced into the GEM environment. The inducer controls the expression of the gene. The microbial biosensor is a tool which integrates the microbe with a transducer in order to generate a measurable response output (e.g. fluorescence) from a certain input - the inducer (e.g. antibiotic, heavy metals) (Su et. al, 2011). Once the GEM senses one or more of these materials, it produces a signal to flag the presence of the contaminant.

For this Major Qualifying Project, extensive research was conducted to test the fluorescent protein production response of an inducible genetic circuit to the presence of an antibiotic inducer. We selected the soil bacteria Pseudomonas putida (P. putida) for testing. P. putida is a rod-shaped, flagellated, gram-negative bacterium that is found in most soil and water habitats where there is oxygen. It grows optimally at $25-30^{\circ} \mathrm{C}$. P. putida is amenable to genetic engineering and is frequently used in research and bioremediation work (Sayler \& Ripp, 2000). This is due to P. putida's flexible metabolism, ability to withstand physical and chemical stresses, and ability to thrive in diverse and difficult environments. P. putida is found in contaminated environments as seen in Figure 1 and has become a microbe of choice for bioremediation research (Weimer et. al, 2020).

Figure 1. Image Adapted from Weimer et. al, 2020. "Isolation, source, and distribution of P. putida strains with full genome sequence available. The P. putida strains have been isolated from soil, polluted soil, water, polluted water, and/or wastewater and other unspecified sources (Data from Pseudomonas Genome DB and NCBI BioSamples Database, accessed: 05/20/2020; see Tables S2 for further information.)"

This Major Qualifying Project expands upon the research conducted by Dr. Andres Felipe Carrillo Rincón. Dr. Carrillo Rincón created a plasmid containing a biosensor for use in Escherichia coli, Vibrio natriegens, and P. putida that produced mCardinal, a fluorescent protein, in response to the addition of an antibiotic inducer (Carrillo Rincón \& Farny, 2023). Dr. Carrillo Rincón's research results indicated that the biosensor was functional in Luria Broth (LB). The research conducted for this Major Qualifying Project looked to expand into other environmental conditions beyond LB to test if the biosensor would retain its functionality. These environmental conditions were multiple types of liquid soil extract, also known as solubilized extracted soil organic matter (SESOM). Liquid soil experiments can act as a precursor to solid soil experiments as soil synthetic biology can encounter challenges in the GEM's ability to
survive, persist, and maintain its function over a period of time within the soil environment. Validating P. putida as a model specimen in soil environments as well as understanding the strengths and limitations of P. putida was the overarching goal of our research work. It can be easier to grow bacteria and measure such growth by flow cytometry or plate reader assays when bacteria is grown in liquid media. Different genes are expressed when bacteria are on a solid matrix in a solid soil environment compared with when bacteria are floating in a planktonic state in a liquid soil media. There is precedent for bacterial growth differences in SESOM in comparison with solid soil models using SESOM agar for Bacillus species (Vilain et. al, 2006). No research has yet been conducted to understand the behavior and viability of P. putida in liquid versus solid soil conditions.

The biosensor mentioned above takes the form of an inducible genetic circuit made up of multiple genetic elements that work together to report the presence of the inducer. A visual representation of the architecture of the inducible circuit used in this research can be seen in Figure 2. The yellow circles represent the inducer, or "on" switch, used in each experiment. The inducer is the antibiotic anhydrotetracycline (aTc), a derivative of tetracycline. The purple ovals in Figure 2 represent the Tet repressor protein (TetR). In the "off" state, TetR proteins inhibit the tet promoter, and, therefore, also inhibit transcription of the mCardinal (a fluorescent protein) open reading frame, represented by the red arrow shape, by binding to the tet promoter. The tet promoter regulates the transcription of fluorescent mCardinal. The top section of Figure 2 illustrates the successful repression of the tet promoter because the mCardinal open reading frame (ORF) does not produce any fluorescent proteins. In the lower section of Figure 2, aTc is added. The aTc binds to the TetR proteins, which prevent the TetR proteins from binding to the tet promoter. With the addition of the inducer, the tet promoter is functional and transcribes the mCardinal ORF, leading to production of mCardinal fluorescent proteins and, therefore, quantifiable fluorescence.

The goal of this Major Qualifying Project was to conduct experiments and statistical analysis to determine if the inducible genetic circuit in bioengineered P. putida elicits a response output in both a nutrient-rich LB environment and a nutrient-poor liquid soil environment. If such a response output is generated in a nutrient-poor liquid soil environment, further experiments in solid soil environments could bring the biosensor closer to use in real world applications.

In this work, we show how the biosensor responds under simulated soil conditions. We found that while we were able to confirm inducibility in laboratory growth conditions, we were unable to induce the circuit in liquid soil extract conditions. These results did not support our

Inducibility of Synthetic Genetic Circuits in Pseudomonas putida under Simulated Soil Conditions
hypothesis that the inducible circuit was functional in liquid soil extract. We believe that the promoters that drive the system may not be functional under soil-like conditions and will need to be further optimized in order to apply inducible genetic circuits within real-world environmental conditions.

Materials and Methods

A. Bacterial Strains and Plasmids

Pseudomonas putida belongs to the Gammaproteobacteria phylum and the Pseudomonadaceae family. The P. putida strain KT2440 and plasmids for gene expression and genomic integration were gifts from Dr. Adam Guss of Oak Ridge National Laboratory to the Farny Lab, Dr. Natalie Farny, Principal Investigator. Using the P. putida strain KT2440, plasmids for P. putida strains P52 and P38 were created by Dr. Carrillo Rincón of the Farny Lab at Worcester Polytechnic Institute for use in Escherichia coli. The plasmids were subsequently integrated into P. putida by Dr. Carrillo Rincón.

Three strains of P. putida were used in the experiments detailed in this report: a wild-type P. putida strain not impacted by the addition of an inducer, a P. putida strain with constitutive fluorescence response, and a P. putida strain with an inducible response. The full names of each plasmid found within each strain can be seen below in Table 1.

Table 1: Bacterial Strains and Plasmids

Code	Strain	Plasmid	Features	Selective Marker	Predicted Fluorescence
P38	P. putida AG4775	pJH0204 V2TC tetR-Cardinal	Integrated with pJH0204	Kanamycin	Inducible Response
P52	P. putida AG4775	pJH0204 V2TC Cardinal	Integrated with pJH0204	Kanamycin	Constitutively "on"
WT	P. putida AG4775	pJH0204	N/A	None	None

B. Soil Collection

Two types of soil-extracted solubilized organic matter (SESOM) were used for inducible circuit testing. The first type of SESOM, black bag ("BB") SESOM, was used in the preliminary testing of the inducible circuit. Soil for BB SESOM was purchased online: "Miracle-Gro

Performance Organics All Purpose Container Mix - Organic and Natural Plant Soil". After initial results indicated that the inducible genetic circuit was nonfunctional in BB SESOM due to low levels of bacterial growth, oak soil was collected with permission from (Lat. 42.491926, Lon. 71.247929) in Bedford, Massachusetts, beneath a Pin Oak, Quercus palustris. Tree genus was determined using iNaturalist. The temperature outside during soil collection was $55.4^{\circ} \mathrm{F}$. The soil was collected between 6 and 8 inches of depth, and contained a mixture of loam and yellow-gold clay. A visual representation of a leaf from the oak tree, soil collection method, and the color difference observed between BB and Oak SESOM can be seen in Figure 3. Examples of bacterial growth in Oak SESOM include Liebeke et. al, 2009 and Luo et. al, 2007.

Figure 3. Oak Soil Collection. Rightmost Image: Oak SESOM (left), BB SESOM (right).

C. Soil-Extracted Solubilized Organic Matter (SESOM) Production

One hundred grams of Miracle-Gro Performance Organics Potting Soil Mix (purchased online) or one hundred grams of oak soil (collection details for oak soil can be found in Materials and Methods Section B) were combined with 500 mL of phosphate buffered saline (PBS) in a 1L Erlenmeyer flask and the mouth of the flask was covered with tinfoil. The flask containing the soil-PBS mixture was placed into a shaking incubator at 220 rpm at $37^{\circ} \mathrm{C}$ for two hours. After the incubation period, the soil-PBS mixture was poured into a French Press and the large particulates of the soil were filtered out. Next, a Büchner funnel vacuum filtration system was set
up and lined with two pieces of Whatman filter paper. A grade one piece of Whatman paper was placed first into the Büchner funnel vacuum filtration system and a grade four piece of Whatman paper was placed on top. Both pieces of filter paper were wetted with PBS prior to addition of the filtered soil-PBS mixture. After filtration through the Büchner funnel vacuum filtration system, the soil extract was filtered through a 0.2 -micron sterilizing filter unit. The resulting sterile soil liquid extract was stored at $4^{\circ} \mathrm{C}$ until use in experiments. A visual representation of this process can be found in Figure 4.

Figure 4. Soil-Extracted Solubilized Organic Matter (SESOM) Production.

D. Growth and Induction of Bacterial Strains in Differential Conditions

The growth and induction phases of experiments took place over two consecutive days. During Day 1, a freezer stock of kanamycin (KAN) antibiotic was thawed and mixed with LB at a final concentration of $50 \mathrm{ug} / \mathrm{mL}$. Three colonies each of P52 and P38 were picked from agar plates to be grown overnight in 5mL LB + KAN media. The P52 and P38 strains each contain a KAN resistance gene as a selectable marker. The inclusion of the selectable marker ensures that any P52 or P38 bacteria only survive if they contain the biosensor. If a bacteria within the P52 or P38 strain mutates and no longer contains the biosensor, the mutated bacteria would also no longer contain the KAN resistance gene and, therefore, be killed by the antibiotic. Three colonies were picked from an agar plate of the wild-type (WT) strain to be grown overnight in 5 mL LB media. The WT strain does not contain an antibiotic resistance selectable marker or biosensor
and, therefore, is not grown in media with antibiotics. Nine tubes total, three of each strain, were then incubated in a shaking incubator at $30^{\circ} \mathrm{C}$ overnight.

Day 2 of growth and induction was comprised of multiple stages: (a) creating undiluted SESOM cultures, (b) creating 1:10 dilutions of undiluted SESOM and LB cultures, (c) measuring optical density of 1:10 SESOM and LB cultures, (d) creating $+/-$ aTc cultures with diluted SESOM and LB cultures, (e) creating SESOM controls, and (f) incubation and induction.

a. Creating undiluted SESOM cultures

To create the undiluted SESOM cultures, 2 mL of each LB culture from Day 1 was pipetted into a 15 mL snap cap tube. Samples were centrifuged at 3900 rcf for 5 minutes. LB supernatant was decanted and 2 mL of SESOM was pipetted into each tube and the bacterial pellet was resuspended in the SESOM.

b. Creating 1:10 dilutions of undiluted SESOM and LB cultures

To make 1:10 dilutions of the undiluted LB cultures from Day 1 and the undiluted SESOM cultures created in section (a) above, 9 mL of media (SESOM or LB) was pipetted into 15 mL snap cap tubes. Using the newly created undiluted SESOM cultures and the undiluted LB cultures from Day $1,1 \mathrm{~mL}$ of each undiluted culture was pipetted into each tube with 9 mL of the appropriate media (LB, LB + KAN, SESOM, SESOM + KAN).

c. Measuring Optical Density (OD) of 1:10 dilutions of undiluted SESOM and LB cultures

A sample dilution equations template (seen below in Table 2) was used for each condition (e.g. LB and SESOM) to ensure that the final culture density across and within each culture were identical before the addition of the inducer to the designated cultures. The optical density (OD600) of each 1:10 diluted culture of P. putida was measured and recorded using the Eppendorf BioPhotometer Model \#6131 on the dilution equations template (see Table 2). Values associated with LB cultures were listed in columns labeled in red and values associated with SESOM cultures were listed in columns labeled in green.

The process of determining culture density was as follows: the spectrophotometer was first blanked with the appropriate media. The use of a "blank" calibrates the spectrophotometer to the optical density of the media in which the sample is located. For WT cultures, SESOM or LB without KAN added were used as the blank. For P52 and P38 cultures, SESOM or LB with KAN added were used as the blank. One milliliter of media was micropipetted into a cuvette before insertion into the spectrophotometer and the blank value was set for each media..

Next, 1mL of each biological replicate culture (e.g. WT-1, WT-2, WT-3) was micropipetted into a cuvette and OD600 values were collected in the second column. After the OD600 values for the LB and the SESOM cultures were collected, the OD600 was divided by 0.05. After multiple trials were conducted, visual observation of the SESOM cultures showed that the turbidity of the cultures grown in SESOM was low compared to the turbidity of the LB cultures. To account for this difference in growth, 0.2 divided by the OD600 was used in the third column of the SESOM cultures. The number in the third column is how much 1:10 diluted culture (in milliliters) would be needed to create a final culture with a volume of 1 mL . In the fourth column (labeled as " $1000-\mathrm{x}=\mathrm{y}$ "), the value from the third column is subtracted from 1000 to give the amount of media (in microliters) that would be needed to create a final culture with a volume of 1 mL . Because 1 mL would be too small a volume to use for testing, both numbers were multiplied by five before creation of the final cultures. The 5 x column shows how much 1:10 diluted culture would be added to each set of two tubes in microliters (one tube to be induced and one tube to remain without the inducer) before incubation and induction. The 5y column shows how much media in milliliters would be added to each set of empty tubes before incubation and induction.

Strain	OD600 val	$0.05 / \mathrm{val}=\mathrm{x}$	$1000-\mathrm{x}=\mathrm{y}$	5 x	5 y
P52-1	0.274	0.182	818	0.910	4.090
P52-2	0.282	0.177	823	0.885	4.115
P52-3	0.414	0.120	880	0.600	4.400
P38-1	0.450	0.111	889	0.555	4.445
P38-2	0.295	0.169	831	0.845	4.155
P38-3	0.474	0.105	895	0.525	4.475
WT-1	0.466	0.107	893	0.535	4.465
WT-2	0.407	0.122	878	0.610	4.390
WT-3	0.353	0.141	859	0.705	4.295

Table 2a. LB Dilution Equations Template for creating properly diluted cultures.

Strain	OD600 val	$0.2 / \mathrm{val}=\mathrm{x}$	$1000-\mathrm{x}=\mathrm{y}$	5 x	5 y
P52-1	0.296	0.675	325	3.375	1.625
P52-2	0.306	0.653	347	3.265	1.735
P52-3	0.390	0.512	488	2.560	2.440
P38-1	0.377	0.530	470	2.650	2.350
P38-2	0.280	0.714	286	3.570	1.430
P38-3	0.404	0.495	505	2.475	2.525
WT-1	0.437	0.457	543	2.285	2.715
WT-2	0.424	0.471	529	2.355	2.645
WT-3	0.350	0.571	429	2.855	2.145

Table 2b. SESOM Dilution Equations Template for creating properly diluted cultures.

d. Creating "+/-" aTc cultures with diluted SESOM and LB cultures

After the dilution equation templates were filled out for LB and for SESOM, the final set of cultures were then created. The proper amount of 1:10 diluted culture and media were mixed in 2 tubes per sample, such that each colony isolated had a tube with aTc at a final concentration of $0.1 \mathrm{ug} / \mathrm{mL}$ (a 50 mL " + " tube marked with a red sticker) as well as a tube without aTc (a 50 mL "-" tube marked with a blue sticker). A 5 mL micropipette was used to pipette the proper amount of media into each set of tubes, A p1000 micropipette was used to pipette the proper amount of 1:10 diluted culture into each set of tubes. LB cultures are denoted by a yellow sticker on the cap and SESOM cultures are denoted by a green sticker on the cap. An image of what the final set of tubes might look like before incubation and induction can be seen in Figure 5.

e. Creating Controls

To create controls for the LB and SESOM set of tubes, four total 50 mL conical tubes were filled with 5 mL SESOM $+\mathrm{KAN}+\mathrm{aTc}$, 5 mL SESOM $+\mathrm{KAN}, 5 \mathrm{~mL} \mathrm{LB}+\mathrm{KAN}+\mathrm{aTc}$, and 5 mL LB + KAN, respectively, to determine if the LB or SESOM media was contaminated. These tubes did not have any bacteria added and functioned as a test to determine if the LB or SESOM media contained contaminating bacteria or fungi. Only the P. putida strains that were being tested should have experienced growth during the incubation period, not bacterial or fungal contaminants in tubes that contained only media. In the case of contamination, the control tubes would be visibly cloudy or contain spheres of fungi and the experiment results would be discarded due to the lack of a functional control.

f. Incubation and Induction

All cultures, LB controls, and SESOM controls were incubated at $30^{\circ} \mathrm{C}$ in a shaking incubator for four hours. After four hours, the " + " aTc cultures, tubes labeled with red stickers, were induced with 5 uL of aTc. All cultures and controls were then grown overnight to be measured the following day.

E. Testing of Bacterial Strains in Differential Conditions

On Day 3 of the experiment series, one hundred microliters of each sample were pipetted into a black-walled 96 well plate to capture fluorescence. One plate was made for the SESOM cultures and one plate was made for the LB cultures. The plate map in Figure 6 shows three biological replicates for each strain (three colonies of each strain) and four technical replicates per strain. Two sets of the three-day experiment series were conducted on two different plate readers. In the first set of experiments, the VICTOR Nivo Multimode Microplate Reader was utilized for measuring fluorescence of the cultures. It is worth noting that there was a filter error during these trials that stated that the filter was not optimal for $615 / 8 \mathrm{~nm}$, which is the excitation and emission range used for measuring mCardinal. In the second set of experiments, the Agilent BioTek Synergy H1 Microplate Reader H1M Unit 2 was used. No such filter error was reported when measuring mCardinal because this plate reader is customizable for specific excitation and
emission wavelengths. After all raw data was collected, the four technical replicates were averaged, and the resulting values were normalized by dividing the sample's RFUs by the RFU of the media control from that experiment (e.g. LB + KAN or SESOM + KAN).

F. Methods for Biosafety and Biocontainment

Soils used for the experiments and testing were from a commercial source (Black Bag SESOM) and from private property with permission (Oak SESOM). As engineered organisms, from one of the three strains of P. putida, were introduced to LB or SESOM, the resulting liquid cultures and media were bleached and disposed of. Personal protective equipment including gloves, safety goggles, and a lab coat were used during all experiments and creation of SESOM. Requirements of a BSL-2 workspace, as well as all Farny Lab lab protocols, were complied with during all testing and work in the lab environment in order to prevent unintentional exposure to
biohazardous materials or their accidental release. During the course of this MQP project, there were no issues or accidental releases of any engineered organisms. Once soil was brought into the lab environment, it was not placed back into the environment. Used soil was discarded in the general building waste stream if it did not come into contact with engineered organisms. If soil came into contact with the bacterial strains, it was disposed of in a biohazardous waste container.

G. Data Processing and Statistical Analysis

Data were processed via normalization of the media that they were grown in using values collected from plate reader experiments. All data points were recorded and normalized using Microsoft Excel and measured in relative fluorescence units (RFUs). Grouped bar graphs were used to visualize data points collected from multiple trials of plate reader experiments using GraphPad Prism. The graphs were generated for three strains of P. putida in varying media conditions including LB as a positive control, Black Bag (BB) SESOM, and Oak SESOM. Figures 7-15 were generated with data collected from the VICTOR Nivo Multimode Microplate Reader. Figures 16-18 were generated with data collected from the Agilent BioTek Synergy H1 Microplate Reader H1M Unit 2. One-way ANOVA was performed in GraphPad Prism.

Results

In order to confirm the prior results of Dr. Carrillo Rincón, I first sought to demonstrate the inducibility of the genetic circuit by aTc in LB growth conditions. The results depicted in Figure 7 below indicate that the inducible circuit is functional in LB. The bar graph for the wildtype shows a low level of likely background fluorescence as the wild-type bacteria does not possess the genetic circuitry needed to produce mCardinal. Both the uninduced and induced bars for P52, the constitutively "on" bacteria, are equally high and indicate functionality of the constitutive bacteria. The uninduced bar for P38, the bacteria that possesses the inducible genetic circuit, is lower than the induced bar for P38, indicating that when the inducer is present the genetic circuit turns on. These trials therefore successfully confirm the prior results of Dr. Carrillo Rincón and show that all bacteria are functioning as expected in LB growth conditions.

I further wanted to determine whether this same circuit would be inducible under SESOM growth conditions. Figure 8 shows only SESOM RFU values and indicates that high levels of background fluorescence innate to BB SESOM are being picked up by the plate reader. It is clear in Figure 8 that this is a level of background fluorescence because it is in the same high range regardless of the strain of bacteria or the status of inducibility. This makes it difficult to discern between fluorescence that is innately part of BB SESOM and fluorescence that is being
produced by the bacteria. During the collection of data during A term, visual observations showed that turbidity of the cultures grown in BB SESOM was very low compared to the turbidity of the LB cultures. There were no experiments conducted to measure this turbidity difference but the substantially less growth was visibly obvious. This observation led to the conclusion that the bacteria were not growing well in BB SESOM and therefore the plasmid was non-functional.

Figure 9 includes both LB and SESOM relative fluorescence unit (RFU) values on the same graph and shows the visible difference between fluorescence produced by the bacteria in LB conditions compared to the fluorescence of the SESOM media.

In an attempt to change the media type to determine if the bacteria might grow in an alternative soil environment, further testing was conducted using Oak SESOM instead of BB SESOM. Figure 10 below indicates, with less robust results (lower RFUs despite the same LB conditions), that the inducible circuit is functional in LB. The test results seen in Figures 10-12 show data from two trials referred to as the "no centrifugation" trials. We ran trials without centrifugation in order to test bacteria in the media in which the bacteria were grown. Figures 1012 are therefore referred to as the "no centrifugation" results. The no centrifugation trials showed similar background fluorescence in Oak SESOM at higher RFUs than seen in LB.

Figure 11 shows similarly high bars with only Oak SESOM values, indicating that Oak SESOM exhibits a high level of background fluorescence similar to BB SESOM.

Figure 12 shows the stark contrast between low levels of bacterially produced fluorescence and high levels of SESOM background fluorescence.

I observed that there was a significant fluorescent signal from SESOM alone in prior experiments (shown in Figures 8 and 11). Therefore, I next attempted to isolate the bacteria from the soil extract by centrifugation prior to plate reader measurement, to eliminate the background fluorescence caused by the SESOM. Thus, one trial, shown in Figures 13-15, was completed where the cultures were centrifuged in an attempt to concentrate the bacteria that were in the sample. In this trial, the cultures were centrifuged and resuspended in phosphate buffered saline (PBS) before measuring on the plate reader. This experiment was conducted to evaluate if there would no longer be any background fluorescence if the SESOM was removed from the tube containing the bacteria. By pelleting the bacteria, resuspending the pellet in PBS, centrifuging the bacteria, and then resuspending the pellet again, the fluorescent SESOM would be removed and only the fluorescence of the bacterial pellet would be measured by a plate reader. Unfortunately, after centrifugation, no bacterial pellets were visible from the centrifuged SESOM cultures and therefore the data collected only measured the low fluorescence of PBS during the centrifugation trial. With this testing approach, we were unable to draw any conclusions regarding the efficacy of the biosensor or level of bacterial growth in SESOM due to the lack of a bacterial pellet.

After multiple unsuccessful trials with the VICTOR Nivo Multimode Microplate Reader due to high levels of background fluorescence, two trials were run on the Agilent BioTek Synergy H1 Microplate Reader H1M Unit 2 ("Agilent"). The Agilent plate reader was able to successfully eliminate background fluorescence from the Oak SESOM. Data collected on the Agilent plate reader can be seen in Figures 16-18. Figure 16 shows the clearest display of functionality from the LB biosensor. Visible fluorescence can be seen from the constitutive and inducible bacteria when it was switched "on" (P52 and P38 columns respectively).

Figure 17 shows the results from Oak SESOM, with one version matching the Y-axis of Figure 16, and one version with a Y-axis that shows off the RFU differences between each P. putida strain. The version of Figure 17 that is Y -axis corrected to match Figure 16 shows consistently low RFU values regardless of the P. putida strain. The low RFU values indicate that P. putida is not living in Oak SESOM and, therefore, the biosensor is non-functional in a liquid soil environment.

Figure 18 shows the combination of the results from Figure 16 and Figure 17. The visual difference between genuine fluorescence production and the lack of background fluorescence from the Oak SESOM clearly shows that the biosensor works well in LB and that no fluorescent proteins are being produced in Oak SESOM.

Discussion

The goal of this research was to test a previously constructed aTc biosensor in P. putida in liquid soil conditions. As the test results above show, the biosensor in its current state of genetic architecture is not functional in BB or Oak SESOM. Despite the number of replicates, no inducibility was observed in BB or Oak SESOM growth conditions.

Analysis of the test results leads to the conclusion that the underlying causes of the lack of inducibility in BB and Oak SESOM could be attributed to one of two factors: (1) Repression of tet is being relieved when aTc is added, but the promoter that drives mCardinal is not active under these conditions and/or (2) Under these conditions, aTc is not binding to TetR and so repression of tet is not being relieved.

In the first scenario, where lack of inducibility is due to an inactive promoter, bacterial growth and production of fluorescence would be limited. Since the results indicate low levels of both bacterial growth and production of fluorescence in SESOM, it is possible that the proper sigma factor needed for bacterial growth is not present in BB or Oak SESOM conditions. A visual representation of this idea can be seen in Figure 19. We infer that the sigma factors that are most dominant in liquid soil conditions are not the sigma factors being used by the tet promoter. A sigma factor is a protein involved in the recognition of promoters and RNA synthesis (Paget 2015). It is probable that even when TetR is not bound to tet, there is still no transcription from the promoter due to the lack of the proper sigma factors in SESOM. In the event that the proper sigma factor is not present, bacterial growth is limited or prevented and this would thus limit the ability to test the biosensor.

With the second alternative reasoning for lack of inducibility, we surmise that even when aTc is added, TetR does not bind to aTc and tet is not relieved of repression. In this event, that TetR is able to bind to tet, we anticipate that TetR is not responsive to the presence of aTc and that repression of tet remains constant and unchanged and, therefore, repression cannot be relieved. A visual representation of this hypothesis can be seen in Figure 20. It is also possible that aTc is destroyed or bound by an unknown molecule and thus does not bind to TetR in SESOM.

The two differing ideas presented above on possible causes for lack of inducibility indicate that the inactivation of the biosensor merits further investigation to figure out if such inactivation is caused by nonfunctional tet or a lack of aTc binding to TetR.

The experiment that could be conducted in order to determine which idea may be correct would be chromatin immunoprecipitation combined with high throughput sequencing, or ChIPSeq. ChIP-Seq "identifies the locations in the genome bound by proteins" (Statquest with Josh Starmer, 2018). This process is completed by gluing the proteins that are bound to the DNA to the DNA strand, cutting the DNA up into fragments, adding antibodies, isolating the proteins bound to those antibodies, and isolating the DNA attached to the isolated proteins (Statquest with Josh Starmer, 2018). In the context of this research, the added antibodies would bind to TetR.

If TetR does not bind to tet regardless of the presence of aTc , and the promoter is nonfunctional like in the first scenario presented above, a weak signal from ChIP-Seq would be produced. If TetR is found to bind to tet regardless of the presence of aTc as seen in the second
scenario presented above, the result of ChIP-Seq would be a strong signal. This strong signal would be produced in both conditions where aTc is absent and where aTc is present.

A visual representation of a hypothetical antibody bound to TetR as well as a potential predicted result of ChIP-Seq can be seen in Figure 21.

Thus, we anticipate that continued research could provide a deeper understanding of the status of tet which will bring the synthetic biology and environmental remediation fields one step closer to a functional biosensor in P. putida.

References

Carrillo Rincón, \& Farny, N. G. (2023). Unlocking the strength of inducible promoters in Gram-negative bacteria. Microbial Biotechnology, 16(5), 961-976. https://doi.org/10.1111/1751-7915.14219

Liebeke, Brözel, V. S., Hecker, M., \& Lalk, M. (2009). Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Applied Microbiology and Biotechnology, 83(1), 161-173. https://doi.org/10.1007/s00253-009-1965-0

Luo, Y., Vilain, S., Voigt, B., Albrecht, D., Hecker, M., \& Brözel, V. S. (2007). Proteomic analysis of Bacillus cereus growing in liquid soil organic matter. FEMS Microbiology Letters, 271(1), 40-47. https://doi.org/10.1111/j.1574-6968.2007.00692.x

Paget, M. S. (2015). Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution. Biomolecules, 5(3), 1245-1265. https://doi.org/10.3390/biom5031245

Sayler, G. S., \& Ripp, S. (2000). Field applications of genetically engineered microorganisms for bioremediation processes. Current Opinion in Biotechnology, 11(3), 286-289. https://doi.org/10.1016/s0958-1669(00)00097-5

Statquest with Josh Starmer (2018, April 16). StatQuest: A gentle introduction to ChIPSeq [Video]. YouTube, URL
https://www.youtube.com/watch?v=nkWGmaYRues\&list=PLTWTsilyLeRrJynGk38Vfx dbpa0HkQgM3\&index $=4$

Su, L., Jia, W., Hou, C., \& Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics, 26(5), 1788-1799. https://doi.org/10.1016/j.bios.2010.09.005

Vilain, S., Luo, Y., Hildreth, M. B., \& Brözel, V. S. (2006). Analysis of the Life Cycle of the Soil Saprophyte Bacillus cereus in Liquid Soil Extract and in Soil. Applied and Environmental Microbiology, 72(7), 4970-4977. https://doi.org/10.1128/AEM.03076-05

Weimer, A., Kohlstedt, M., Volke, D. C., Nikel, P. I., \& Wittmann, C. (2020). Industrial biotechnology of Pseudomonas putida: Advances and prospects. Applied Microbiology and Biotechnology, 104(18), 7745-7766. https://doi.org/10.1007/s00253-020-10811-9

Inducibility of Synthetic Genetic Circuits in Pseudomonas putida under Simulated Soil Conditions

Appendix

Appendix A: Raw Data from Experiments

