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Abstract

Frequency estimation plays an important role in many digital signal processing applications. Many

areas have benefited from the discovery of the Fast Fourier Transform (FFT) decades ago and from the

relatively recent advances in modern spectral estimation techniques within the last few decades. As

processor and programmable logic technologies advance, unconventional methods for rapid frequency

estimation in white Gaussian noise should be considered for real time applications. In this thesis,

a practical hardware implementation that combines two known frequency estimation techniques is

presented, implemented, and characterized. The combined implementation, using the well known

FFT and a less well known modern spectral analysis method known as the Direct State Space (DSS)

algorithm, is used to demonstrate and promote application of modern spectral methods in various real

time applications, including Electronic Counter Measure (ECM) techniques.
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Chapter 1

Introduction

Signal parameter estimation in the presence of noise has long been a focus area of research. Many

applications have benefited from advancements made in this field within the last two decades. This

thesis presents a novel approach suitable for implementation in a Field Programmable Gate Array

(FPGA) to achieve rapid frequency estimation. Several methods will be discussed followed by selection

of an approach, implementation details, and results.

1.1 Problem Statement

Electronic Counter Measure (ECM) techniques have long been employed in the battlefield to deceive

the enemy for a variety of reasons. As L. Neng-Jing and Z. Yi-Ting point out in [1], some of the

AN/ALQ ECM series played an important role in several military conflicts. Generally, the first steps

in ECM employment require detection, identification, and classification of the threat system being

countered [2]. The faster these steps occur, the more effective ECM techniques can become. One of

the first stages of ECM employment, signal parameter estimation, will be the focus of this thesis.

Field Programmable Gate Array (FPGA) architectures allow complex Digital Signal Processing

(DSP) algorithms to be implemented efficiently in a flexible programmable chip. Compared to conven-

tional sequential DSP processors, FPGA implementations of parallel designs can generally processes

digital data much faster, making FPGAs attractive for real time processing. As FPGA technology has

progressed and the gate density has increased, the capabilities to implement rapid frequency estimates

in the presence of white Gaussian noise have also progressed. This progression partially prompts the

contents of this thesis as it presents the theoretical performance of several common frequency estimators

and the results of a selected implementation. Simply stated, as the density and general capability of
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programmable logic continues to increase, it is important to consider unconventional hardware solutions

to rapid frequency estimation that are progressively being enabled.

Several well studied techniques for frequency estimation include the Discrete Fourier Transform

(DFT), classically implemented as the Fast Fourier Transform (FFT), some variation of Least Squares

(LS), and more recently, the class of Modern Spectral Analysis (MSA). The FFT presents itself as

an attractive solution for a FPGA implementation since it can be highly parallel and has acceptable

performance for many ECM applications. The Least Squares method shown is not often used for

rapid frequency estimation and is only presented for academic value in this context. As you will see,

the performance of a MSA technique makes it quite attractive in the field of spectral estimation, but

the computational intensity involved makes for a challenging practical real time solution for ECM. In

this thesis, we will show that the Direct State Space (DSS) solution, a type of MSA, has exceptional

performance and a difficult hardware implementation, but produces superior results.

1.2 Overview

In the second chapter, we present the relevant background for the frequency estimation problem.

This includes a few words on the requirements as well as a description of the performance statistics

associated with the frequency estimates, which will later be used to evaluate the performance of several

selected frequency estimation techniques. As is common, a discussion will be included regarding the

performance given by a derived Cramér-Rao Lower Bound (CRB), a maximum theoretical bound on

the variance of an unbiased estimator. A review of the Singular Value Decomposition (SVD), QR

Decomposition (QRD), and hardware CORDIC algorithm will conclude the second chapter.

The third chapter includes the estimation theory for each estimator: the DFT, LS, DSS, and the

FFT with DSS algorithm. Following the theory, simulations to evaluate the Mean Squared Error (MSE)

of the frequency estimates for each technique as a function of SNR will be discussed. The MSE will be

compared to the best possible variance as described by the Cramér-Rao Lower Bound.

The fourth chapter contains the implementation details for the selected frequency estimator, in-

cluding a simplified hardware implementation for the complex 2x2 SVD based DSS algorithm. A

comparison of the simulated performance, hardware implementation, and the CRB for the Fast Fourier

Transform (FFT) with Direct State Space (DSS) frequency estimation algorithm will follow. The

conclusion of chapter four discusses the expected performance of expanded FFT with DSS hardware

implementations and a few words of other implementations.
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The fifth chapter presents additional theoretical work that should be explored to further develop

practical rapid frequency estimation techniques. As will be presented, the intense computational re-

quirements of a large SVD for the DSS technique make a practical implementation difficult, but the

suggested hardware architecture adapts to the resources available to a certain degree. The conclusion

of chapter five presents the results of the simulated and synthesized hardware implementation for the

complex SVD.
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Chapter 2

Background

This background chapter includes a few words on the requirements as well as a description of the

performance statistics associated with spectral estimates. Also, a short treatment is provided to re-

view two common matrix computations, QR Decomposition (QRD) and Singular Value Decomposition

(SVD), along with details of a hardware CORDIC algorithm to be referenced later in this thesis.

2.1 Requirements

The requirements of an ECM system are generally vastly different for each case and system of

interest. The rapid frequency estimation problem can be categorized into two groups, each with an

emphasis on a particular parameter of interest. The first category would include all wideband systems

with relatively low achievable dynamic range. For implementations in this category, the fastest Analog

to Digital Converters (ADCs) are chosen, with less of an emphasis on the number of bits, that is, the

resolution of the ADC. The second category focuses on a narrowband solution where the accuracy of

the frequency estimate outweighs the need for a broad bandwidth, assuming better SNR is achievable.

Likewise, implementations in the second category require more resolved bits in the digital conversion,

with the impact of slower ADC sample rates. In an attempt to generalize this study, we will present

the applicable theory for both cases and then proceed to a wideband analysis and a narrowband

implementation.

The model for all frequency estimators of parameters in white Gaussian noise is fairly standard.

The objective is to extract the frequency components from a sum of complex sinusoids embedded in

white Gaussian noise. Each sinusoid must be able to have an arbitrary amplitude and phase offset.

Thus, the sampled model is created by taking M samples of a signal in white Gaussian noise over a
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sampling interval of MT , where T is the sampling period. In the following equation, with sk defined as

the discrete signal model and nk being sampled complex white Gaussian noise, the sampled waveform1

is expressed as

yk = sk(ωl, Al, φl) + nk (2.1)

where l = 1, 2, · · · , P indicates the number of sinusoids with associated amplitudes and phase offsets,

and k = 1, 2, · · · ,M is the sample index. Therefore, ωl,Al,and φl are parameters which could be

estimated from the signal model sk. For the remainder of this thesis, the noise free transmitted radar

waveform from which the frequency will be estimated is defined as

sk =
P∑

l=1

Ale
j(kTωl+φl) =

P∑

l=1

cle
j2πkTfl (2.2)

where k is the sample index, T is the sample period, cl = Ale
jφl is the complex amplitude, and fl

are the frequencies of interest. Initially it appears that this model assumes a Continuous Wave (CW)

radar, but in this thesis it is used to model a finite number of samples of a single pulse of a pulsed

radar.

Unfortunately, Giordano and Schonhoff [3] state, explicit expressions for many frequency estima-

tion techniques are analytically intractable. Primarily, for the purposes of this paper since the only

parameter of interest is the frequency component, fl, we can simply record the impulse response and

extract the poles of the transfer function

H(z) =
∑L

k=0 bkz
−k

1 +
∑R

k=1 akz−k

of the modeled system close to the unit circle in the Z-plane. This assumes that the system is excited

by an impulse response, exciting all frequencies in the system equally. Therefore, it is clear that the

angle of the poles can be used to find the frequencies of interest for our estimation problem.

2.2 Cramér-Rao Lower Bound

Cramér-Rao Lower Bound (CRB) defines the best performance (in the form of variance of the

estimated parameter) an unbiased estimator can achieve as a function of other parameters. In our

case, the CRB will define the variance of the frequency estimate as a function of Signal to Noise Ratio

(SNR), number of samples taken and the sample rate.
1Without continuous spectrum consideration
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To simplify the derivation, we will first consider a one dimensional single real sinusoid and then

make the necessary adjustment for a single complex sinusoid. Thus, we have 3 parameters to estimate

from the model defined in (2.1). Using (2.1) for this simple case, we have

yk = sk(α) + nk (2.3)

where α = (A, φ, f) are the parameters to estimate, k = 1, 2, · · · , M is the sample index, sk is the noise

free one dimensional signal and nk is white Gaussian noise with correlation E[nnH ] = Rn. Wright [4]

defines Rn = γCn where γ is the noise power and Cn is the normalized noise correlation. This leads to

the noise joint probability density function (PDF) [3] [4]

pn(n) =
1

det(πγCn)
exp

(
− 1

γ
nHR−1

n n
)

(2.4)

where H denotes a Hermitian. In order to evaluate the CRB for the frequency estimate, we must

evaluate

var[f̂ ] ≥ −1

E
[

∂2

∂f2 ln p(y|α)
] (2.5)

where p(y|α) is the conditional probability given the parameters. Continuing with the derivation, we

begin with

p(y|α) = pn(y− s) =
1

det(πγCn)
exp

(
− 1

γ
(y− s)HC−1

n (y− s)
)

(2.6)

and the natural log gives

ln p(y|α) = ln

(
1

det(πγCn)

)
− 1

γ
(y− s)HC−1

n (y− s) (2.7)

which can be further simplified realizing that the first term is free of the parameter of interest and will

fall out after the first derivative. Therefore, we substitute K for the first term and expand the second

term to get [4]

ln p(y|α) = K − 1
γ

(
yHC−1

n y − yHC−1
n s− sHC−1

n y + sHC−1
n s

)
(2.8)

where the terms of interest are the cross terms −yHC−1
n s − sHC−1

n = −2R
[
yHC−1

n s
]
2 and the signal

term sHC−1
n s, which will influence the result. The other terms are independent of f and will fall

out after the first derivative. Wright [4] has shown in detail that continuing this derivation for all

parameters it is possible to show that the elements of the Fisher matrix are defined by

Fij =
2
γ
R

[∂sH

∂αi
C−1

n

∂s

∂αj

]
(2.9)

2where R[·] is the real part
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which can be used to fill in a 3x3 Fisher matrix for the most simple single sinusoidal one dimensional

case [4]

F =
2
γ




N 0 0

0 A2N A2πN(N − 1)

0 A2πN(N − 1) 2
3A2π2N(2N − 1)(N − 1)


 (2.10)

which can be use to solve for the variances on the various parameters in α by taking F−1. Thus, we

conclude that

V ar[f̂ ] ≥ γ

A2(2π)2
6

N(N2 − 1)
(2.11)

defines the variance of any unbiased estimator for the single sinusoidal frequency estimate f̂ .

We can also expand on the work done by B. Lovell and R. Williamson [5], who have also derived the

best performance of a single real frequency estimator with a bandwidth limitation based on the sample

rate. Lovell and Williamson [5] assume a real signal exists with the form x(n) = accos(2πfon) + ε(n),

where ε is a zero-mean white Gaussian noise sequence with a variance of σ2
ε , ac is the amplitude, and fo

is the unknown frequency of interest. The Cramér-Rao Lower Bound defines the theoretical Signal to

Noise Ratio (SNR) that is required in order to achieve a desired variance on an unbiased estimator of

the frequency fo. Therefore, the best performance we expect of any unbiased estimator of the frequency

fo is defined by [5]:

var[f̂o] ≥ f2
s

(4π)2
6

sNi(N2
i − 1)

(2.12)

where fs is the sample frequency, f̂o is the frequency estimate, Ni = (M+1)
2 and M is the number of

samples in our window, and s is the signal to noise (SNR) ratio, given by s = a2
c

2σ2 . This implies that

in our derivation, the noise power is γ = 1
2f2

s σ2. Our collection vector can be defined as

~x = [x1, x2, · · · , xM ] (2.13)

which indicates M samples are taken of the form described in (2.2).

Since our frequency estimator was based on a complex sinusoidal model (2.2), we must modify the

Lovell and Williamson CRB to accommodate our model. Given our signal is of the form

yk =
P∑

l=1

Ale
j(kTωl+φl) + nk =

P∑

l=1

cle
jkTωl + nk (2.14)

where, as stated before, yk contains complex sinusoids with associated complex amplitudes embedded

in complex white Gaussian noise. Using yk as defined in (2.14) where P = 1, we can form a similar
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discrete model to fit the Lovell and Williamson CRB

xk = cle
jωlkT + nk

=
[
cl cos(ωlkT ) + n1

]
+ j

[
cl sin(ωlkT ) + n2

]
(2.15)

where cl = Aejφ is the complex amplitude, n1 is the real component of the noise, n2 is the imaginary

component, the sample period is T, and the sample index is k. Thus, by adding the real and imaginary

components, we can get a form that fits into the Lovell and Williamson CRB

xk = 2A cos(ωlkT + ψ) + ns (2.16)

ns = n1 + n2 (2.17)

where the sum of the real and imaginary noise components has a new variance of 2σ2 and the amplitude

is now 2A. Therefore, the only change required to allow complex sinusoids using the Lovell and

Williamson CRB derivation is to re-define the SNR as s = 4A2

2(2σ2)
= A2

σ2 = a2
c

σ2 . This conclusion is in

agreement with our derivation since for the single complex frequency estimation problem we would

define the noise power as γ = f2
s σ2, since a 3dB noise improvement is obtained by using quadrature

sampling [6].

2.3 QR Decomposition (QRD) and Singular Value Decomposition

(SVD)

The Singular Value Decomposition (SVD) and QR Decomposition (QRD) are important matrix

operations that will be used in the theory in Chapter 3 to estimate the poles of a system from a

digitized impulse response. A brief introduction to SVD and QRD are provided in this section, but we

refer the reader to [7] [8] [9] for additional details and implementations.

The objective of the QRD is to find the set of matrices

Q =
∏

Qi (2.18)

which, when left multiplied, produce an upper triangular matrix from a matrix A ∈ Rmxn as

A =




x x x x

x x x x

x x x x

x x x x




= Q




x x x x

0 x x x

0 0 x x

0 0 0 x




= QR
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where the diagonal matrix is defined as R. Several algorithms have been well documented to express A =

QR, but the most relevant to hardware implementations is using a Jacobi rotation matrix iteratively

to zero one element at a time. The real Jacobi rotation matrix is defined as [8]

Ji =




1 · · · 0 · · · 0 · · · 0
...

. . .

0 cos(θ) − sin(θ)
...

. . .
... sin(θ) cos(θ) 0

. . .
...

0 · · · 0 · · · 0 · · · 1




where θ is chosen3 so that

cos(θ) =
xi√

x2
i + x2

j

, sin(θ) =
−xj√
x2

i + x2
j

(2.19)

which will zero out xj . Left multiplying Qi repeatedly to A will produce a upper triangular matrix R.

Thus, Q is produced using (2.18) where Ji = Qi.

Similar to the QRD, the Singular Value Decomposition (SVD) requires Jacobi rotations to produce

a modified matrix. In the case of the SVD, the objective is to find the matrices U , S and V H such that

A = U




σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4




V H = U S V H (2.20)

where H indicates the Hermitian, UHU = I and V HV = I are unitary, and S is a diagonal matrix of

singular values, denoted by σn. In this case, we are left and right multiplying Jacobi rotation matrices

to produce a diagonal matrix. As you may have guessed based on the QRD discussion above, we are

determining the matrices

U =
n∏

i=1

Ji, V H =
n∏

i=1

JH
i (2.21)

where n is the number of iterations used to solve A. Other well documented methods exist for these

computations, but as we will discuss, Jacobi rotation angles can be computed using the CORDIC

algorithm, making this iterative method more attractive for hardware implementation.
3where sin(θ) is the j,ith element
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2.4 The CORDIC Algorithm

The COordinate Rotation Digital Computer (CORDIC) architecture has been well documented

in literature as a hardware friendly method to compute several complicated functions such as sin(θ),

cos(θ), tan−1(θ), and
√

x2 + y2 to name a few that are of interest in this thesis [10] [11] [12] [13].

The rapid convergence to the correct solution occurs for the selected complex function using only add,

subtract, and shift operations. Also, due to the iterative structure, it is straightforward to implement

a parallel CORDIC structure that provides a new function solution every clock cycle after an initial

propagation delay of a fixed number of cycles. In this section, we will present a brief overview of the

CORDIC algorithm, which will be used to solve the matrices of the complex 2x2 SVD to fit the required

structure for hardware implementation in a later section.

The iterative CORDIC converges on the correct vector solution in the complex plane by rotating

the estimated vector in smaller and smaller increments towards the correct solution. If we wish to

rotate the point [xn, yn]T counterclockwise by and angle αi, we must left multiply the point by a real

Jacobi [10] 
 x̃i+1

ỹi+1


 =


 cos(αi) sin(αi)

− sin(αi) cos(αi)





 x̃i

ỹi


 (2.22)

which can be written as

 x̃i+1 sec(αi)

ỹi+1 sec(αi)


 =


 1 tan(αi)

− tan(αi) 1





 x̃i

ỹi


 (2.23)

after multiplying both sides by sec(αi). Equation (2.23) can be used to produce an iterative algorithm

to solve for what Kota [10] refers to as circular4 mode functions. The three basis iterative functions

are

xi+1 = xi + δi yi tan(αi)

yi+1 = yi − δi xi tan(αi)

zi+1 = zi + δi αi (2.24)

where i = 0, 1, . . . , n is the current iteration step, δi = −1, 1 indicates the rotation direction, and zi

accumulates the angle being added. Thus, in this notation, after n + 1 iterations we have reached an

approximation for the function of interest by evaluating the current state of xn, yn, and zn. To simplify

the hardware arithmetic, we choose angles such that tan(αi) = 2−i and tan−1(2−i) = αi, so at each
4The CORDIC algorithm also has linear and hyperbolic modes that will not be discussed in this paper
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iteration step, we simply shift the current value to the right by one. The values tan−1(2−i) that are

accumulated in zi can be precomputed and hard coded into a Look Up Table (LUT) for each iteration.

The effect of choosing these angles is clear from (2.24), where we now either add or subtract a shifted

version of a value stored in an accumulation register.

Using (2.24) we can implement tan−1( y0

x0
) by forcing the yn accumulation register to zero. If we

initialize the input of the algorithm with [10]

x0 = x̃, y0 = ỹ, z0 = 0

and iterate using

xi+1 = xi + δi yi 2−i

yi+1 = yi − δi xi 2−i

zi+1 = zi + δi tan−1(2−i) (2.25)

where tan−1(2−i) are precomputed in a LUT, and

δi =





1 yi ≥ 0

−1 yi < 0

describes the rotation direction, we can converge to a solution after n + 1 iterations. In hardware, δi

can quickly be computed by XORing the MSBs of the current xi and yi registers. The accumulation

registers will converge to

xn =

√
x2

0 + y2
0

Kn

yn = 0

zn = tan−1
( y0

x0

)
(2.26)

where Kn is a precomputed scalar divider computed by

Ki+1 = Ki cos(αi) = Ki cos(tan−1(2−i)) (2.27)

where K0 = 1. Thus, from (2.26) it is clear that zi computes the inverse tangent of the two inputs and

xi computes a scaled magnitude. To convert the solution provided by zi into an angle computation, it

is simple enough to detect the quadrant of the input samples [x̃,ỹ] and pipeline the quadrant number to

apply the correct offset to the solution provided by zi using either ±π for the second or third quadrant

and zero for the first or fourth quadrant.
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Figure 2.1: CORDIC Inverse Tangent Convergence

Figure 2.1 demonstrates the CORDIC inverse tangent convergence after 21 iterations for the com-

plex number 1
2 + j 1

4 . The initial conditions are

x0 =
1
2
, y0 =

1
4
, z0 = 0

and after 21 iterations, the registers contain

x21 = 0.9206, y21 = −1.7115e− 006, z21 = 0.4636

where the precomputed adjustment is K21 ≈ 0.6073. Thus, the final solutions are tan−1( y0

x0
) = 0.4636

and
√

x2
0 + y2

0 = 0.9206K21 = 0.5590. As is expected, the iterations force yn to zero and xn and zn

contain the magnitude and phase information.

Similar to the inverse tangent iteration, we can compute a sin() and cos() using the CORDIC

algorithm. Instead of iterating yn to zero, we iterate zn to zero using [10]

xi+1 = xi + δi yi 2−i

yi+1 = yi − δi xi 2−i

zi+1 = zi − δi tan−1(2−i) (2.28)

with the initial conditions defined as

x0 = x0, y0 = y0, z0 = θ

where θ is the angle entered into the sin() and cos() functions and δi, the rotation direction, is chosen

so that

δi =





1 zi ≥ 0

−1 zi < 0
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In hardware, it is most simple to compute δi by evaluating the MSB of the signed register zi. As in

the inverse tangent iteration, tan−1(2−i) can be precomputed in a small LUT and i defines the current

iteration number. Upon the completion of n+1 iterations of (2.28), the accumulation registers contain

[10]

xn =
x0 cos(θ) + y0 cos(θ)

Kn

yn =
−x0 sin(θ) + y0 cos(θ)

Kn

zn = 0 (2.29)

where Kn is computed as in (2.27). To simplify the expression, the initial conditions are often chosen

as

x0 = 1, y0 = 0, z0 = θ

which allows the accumulation registers to be simplified to

xn =
cos(θ)
Kn

yn =
− sin(θ)

Kn

zn = 0 (2.30)

completing the algorithm. When an implementation is produced in hardware, care must be taken to

determine the quadrant of the input, θ, since this algorithm only correctly computes the solution in

the first and fourth quadrants.
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Figure 2.2: CORDIC sin() and cos() Convergence
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Figure 2.2 illustrates the convergence of the xi and yi as zi is driven to zero when the initial

conditions are

x0 = 1, y0 = 0, z0 = −π

3

and after 22 iterations are

xn = 0.8234, yn = 1.4261, zn = 2.1100e− 007

and the precomputed scalar adjustment is Kn ≈ 0.6072529. Therefore, the final solutions are cos(−π
3 ) =

Kn xn = Kn 0.8234 = 0.5000 and sin(−π
3 ) = −Kn yn = −Kn 1.4261 = −0.8660.



15

Chapter 3

Frequency Estimators

Many frequency estimators have been extensively studied throughout the last several decades. De-

pending on the requirements, certain estimators have advantages over others. This chapter introduces

several estimators of interest and then focuses on those most relevant to the rapid frequency estimation

problem.

3.1 Multiple Frequency Estimation

This section describes the theory of three multiple frequency estimators, where P ≥ 1 in (2.2): Dis-

crete Fourier Transform (DFT), Least Squares (LS), and Direct State Space (DSS). The DSS subsec-

tion, which describes the usual method of DSS computation based upon Singular Value Decomposition

(SVD), also contains a few words about the implications of substituting a QR Decomposition (QRD)

for an SVD. As will be shown, if the QRD is used in place of the SVD there is a loss of accuracy due

to the less accurate signal subspace estimation.

3.1.1 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT), most often implemented as a Fast Fourier Transform (FFT),

is a common rapid frequency estimation technique. The FFT examines the spectral content of the signal

in the sample window and produces a normalized frequency vs. magnitude and phase spectrum given

by sampling the signal on the unit circle in the Z-plane. The Z Transform is given as [14]

X(z) =
∞∑

n=−∞
x(n)z−n (3.1)
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for a complex z and discrete time sample x(n). If we sample the complex Z-plane, we can simplify the

equation to the Discrete Fourier Transform (DFT)

X(k) =
N−1∑

n=0

x(n)e−j2πkn/N (3.2)

where N is a fixed number of points conveniently chosen at equidistant points on the unit circle.

The Fast Fourier Transform (FFT) is simply an efficient computation of the DFT. There are several

properties of the DFT that allow optimizations to the algorithm that make it attractive for a parallel

implementation. A useful property for real valued signals is the symmetry property, where the samples

of the DFT in the normalized [0 π] region are related to the samples of the DFT in the normalized [−π

0] region. Also, since the DFT is periodic with a period of N, the entire spectrum can be represented

by repeating the [-π π] region properly.

Proakis and Manolakis derive several computation methods for computing the DFT [14]. For the

purposes of this thesis, we will concentrate on a popular one in practice, the Radix-2 FFT algorithm.

This algorithm takes advantage of both the periodicity and the symmetry of the DFT by computing

just the portion normalized from zero to π. Proakis and Manolakis [14] describe this process. Consider

a signal of length N = 2v, x(n), of which we wish to compute the FFT. First, the input is decimated

as follows

f1(n) = x(2n) (3.3)

f2(n) = x(2n + 1), n = 0, 1, ...,
N

2
− 1 (3.4)

into two sets of samples, the first set taking the even samples, the second taking the odd. Next, if we

take the DFT of x(n) in terms of f1 and f2 we have

X(k) =
N−1∑

n=0

x(n)W kn
N (3.5)

=
(N/2)−1∑

m=0

x(2m)W 2mk
N +

(N/2)−1∑

m=0

x(2m + 1)W k(2m+1)
N (3.6)

=
(N/2)−1∑

m=0

f1(m)Wmk
N/2 + W k

N

(N/2)−1∑

m=0

f2(m)W km
N/2 (3.7)

= F1(k) + W k
NF2(k) k = 0, 1, ..., N − 1 (3.8)

where WN = e−j2π/N is the twiddle factor. Since F1(k) and F2(k) are periodic, with a period of
N
2 we can say F1(k + N

2 ) = F1(k) and F2(k + N
2 ) = F2(k). Using this property, and realizing that
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W
k+N/2
N = −W k

N , we can express the rest of X(k)

X(k) = F1(k) + W k
NF2(k) k = 0, 1, ...,

N

2
− 1 (3.9)

X

(
k +

N

2

)
= F1(k)−W k

NF2(k) k = 0, 1, ...,
N

2
− 1 (3.10)

thus completing the DFT computation using the computation of two sequences of length N
2 . In general,

Proakis and Manolakis [14] give the number of complex multiplications as N
2 log2N for this technique vs

N2 for the direct computation approach. Clearly, as the number of points increases, the computational

improvement factor increases dramatically.

The Radix-4 FFT algorithm is similar to the Radix-2 algorithm except the number of points must

be N = 4v and the input data segment is separated into four decimated sets. Due to the parallelizable

nature of the resultant hardware architecture and by taking advantage of DFT properties, the Radix-N

algorithms are attractive in hardware implementations.

For our frequency estimation application, once the FFT is computed using a finite number of points,

the magnitude samples of the DFT that exceed a predetermined magnitude will be considered as the

normalized poles of the transfer function.

3.1.2 Least Squares

The Least Squares method is a method that minimizes a sum of squared errors between a given

signal and the signal produced by a parameterized transfer function under impulsive excitation. Using

the Least Squares method it is possible to estimate the transfer function of interest, which can be used

to estimate the transmitted frequencies. As with any standard system analysis problem, it is assumed

from a modeling perspective that the transfer function of the victim radar is excited by an impulse,

generating an impulse response that includes the victim radar and transfer medium. Our ECM system

would then record the impulse response of the unknown system and determine the frequency of the

transmitted waveform by examining the poles of the transfer function created using a LS method. Since

we are only interested in the poles of the transfer function we will use an all pole model:

H(z) =
b0

1 +
∑N

k=1 akz−k
(3.11)

and solve for the minimum squared errors with respect to the parameter ak.

J.G. Proakis and D.G. Manolakis [14] detail a solution starting on page 706. Suppose the unknown

system is cascaded with a reciprocal all zero system, named Hd(z) and HLS(z). If the cascaded system
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is excited by an impulse, the ideal output of the chain would also be an impulse. In reality, the output,

y(n), of the system is

y(n) =
1
b0

[
hd(n) +

N∑

k=1

akhd(n− k)

]
(3.12)

where hd(n) is the impulse response of the unknown system. The required condition y(0) = 1 is satisfied

if b0 = hd(0) and the remaining terms of y(n), n > 0 are required to be zero. Using the remaining

terms to minimize the sum of the squared error between the actual output of the cascaded transfer

functions and an impulse gives

ε =
∞∑

n=1

y2(n) (3.13)

=

∑∞
n=1 i

[
hd(n) +

∑N
k=1 akhd(n− k)

]2

h2
d(0)

(3.14)

where y(n) is the output sequence of our system, hd(n) is the recorded impulse response of the radar

system, and ak are the unknown parameters of the new system we wish to minimize. To minimize the

equation we set the derivative with respect to ak equal to zero and solve, giving us the set of linear

equations [14]:

N∑

k=1

akrhh(k, l) = −rhh(l, 0) l = 1, 2, ..., N (3.15)

where rhh is the correlation sequence defined as [14]:

rhh(k, l) =
∞∑

n=1

hd(n− k)hd(n− l) (3.16)

Using the set of linear equations defined by (3.15), we could solve for N unknown values for ak

using N equations and N unknowns. Our problem is to find the dominant frequencies that are being

transmitted by the victim radar, so we can instead solve for the gain factor and the P poles that most

likely fit the set of equations. Thus, we only have P+1 unknowns and N equations assuming a single

noise pole

P+1∑

k=1

akrhh(k, l) = −rhh(l, 0) l = 1, 2, ..., N (3.17)

where N is the number of samples in our sample window. With this technique, the number of frequencies

to solve for cannot be easily estimated from the derivation at this point. It is assumed that there is a
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priori knowledge of the number of signals or that the number of signals is estimated using a different

technique, perhaps one similar to that described in Section 3.1.1. Before we can solve for ak, we must

define a few matrices:

Rl =




rhh(1, 1) rhh(2, 1) · · · rhh(P + 1, 1)

rhh(1, 2) rhh(2, 2) · · · rhh(P + 1, 2)
...

...
. . .

...

rhh(1, N) rhh(2, N) · · · rhh(P + 1, N)




(3.18)

A =




a1

a2

...

aP+1




(3.19)

Rr =




−rhh(1, 0)

−rhh(2, 0)
...

−rhh(N, 0)




(3.20)

where rhh is the correlation sequence defined in (3.16). If P + 1 6= N , then Rl is not a square matrix

and we must solve for ak using the pseudo inverse:

A = R−1
l Rr (3.21)

Generalizing a single noise pole into M noise poles, using the coefficients in matrix A, and realizing

that they are the coefficients of HLS(z), we can build the transfer function of the unknown system

Hd(z) =
b0

1−∑P+M
k=1 a−k

k z−k
(3.22)

where P is the number of signal poles modeled and M is the number of noise poles. Using partial

fraction expansion, we always get the unknown gain factor along with the poles that best represents

the transmitted frequency

Hd(z) = G +
P∑

k=1

rk

1 + pkz−1
+

M∑

n=1

rn

1 + pnz−1
(3.23)

where G is the gain factor, rk are the residue of the poles, and pk are the poles of interest. The noise

poles, pn, are disregarded. In practice, the smallest residues and a pole near the unit circle generally
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imply that the corresponding pole is a signal pole rather than a noise pole. Other techniques for

separating the noise and signal partial fraction expansion terms will not be discussed.

As stated earlier, by examining the angle of the pole in the Z-plane, we can produce an estimate

for the transmitted frequency. Thus, we can convert this to an actual frequency based on our sample

rate

fk =
arg[pk]fs

2π
(3.24)

where fk is the transmitted frequency, fs is the ADC sample rate, and arg[p] is the angle of the pole.

Numerical instability arises in this LS algorithm as seen in the next section.

3.1.3 Direct State Space

Modern spectral analysis techniques have provided powerful signal analysis tools that have been

heavily studied in recent years. Direct State Space realizations for spectral analysis have emerged as

a powerful method for impulse response pole extraction. As before in the Least Squares section, we

assume that our system, Hunknown(z), is excited by an impulse. The response to the impulse is collected

by our ECM system and requires analysis for the most dominant poles. We can model this linear time

invariant (LTI) system by assuming the system produces an output y(t) based on an input u(t). State

space modeling suggests that this system can be modeled as follows [15]:

ẋ = Ax + Bu (3.25)

y = Cx + Du (3.26)

where ẋ describes the state evolution, A describes state transition, B is a matrix that influences the

next state based on the input (state controlling), C influences the output based on the current state

(state observing), and D is a feed forward matrix that effects the output directly. For the purpose

of this analysis, we can model the signals of interest in a state space model that will allow useful

factorization and ultimately parameter extraction. State space theory tells us that a representation of

the transfer function using the matrices A,B,C, and D is

Hunknown(z) = C(zI −A)−1B (3.27)

where the feed forward term, D, is assumed to be zero. If we assume that the unknown system transfer

function has been broken down by partial fraction expansion, it is clear that the poles of the system

fall on the diagonal of matrix A and some form of the residues fall in matrix C [15].
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To begin our discussion, we will assume the case where the input, u(t), is an impulse. An impulse

in time implies that the controlling matrix excites all states of the system with equal power. Next,

since our ECM system collects the impulse response of the system, we have knowledge of the output

of the system, y(t). Thus, our problem is to extract the poles of matrix A given the input and output

of the system. Mathematically, the matrices are given as [4]:

u(t) =





1 t = 0

0 t > 0
(3.28)

A = diag(z1, z2, ..., zP ) (3.29)

B = [1, 1, ..., 1]T (3.30)

C = [c1, c2, ..., cP ] (3.31)

D = 0 (3.32)

where zi = ej2πkTfi and ci are as defined in (2.2). Clearly, matrix A contains the parameters of interest,

matrix B excites all the states equally when t=0, matrix C contains the complex amplitudes, and matrix

D is not included in the model. The primary objective of this analysis is to extract the features of the

A matrix in order to identify fi, given some recorded data from the output of the system, yk.

To understand the evaluation and feature extraction of this state space model better we will intro-

duce the discrete state space model as follows [15]:

xk+1 = Axk + Buk (3.33)

yk = Cxk + Duk (3.34)

where A, B, C, and D matrices can be described the same as in (3.25). Using this discrete model, we

can simulate time moving forward from t = 0, the initial state,

x1 = Ax0 + Bu0 = B = [1, 1, ..., 1]T (3.35)

x2 = Ax1 + Bu1 = Ax1 = AB (3.36)

x3 = Ax2 = A2B (3.37)

xk = Axk−1 = Ak−1B (3.38)
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and similarly, the output can be described,

y1 = Cx1 = CB (3.39)

y2 = Cx2 = CAB (3.40)

y3 = Cx3 = CA2B (3.41)

yk = Cxk = CAk−1B (3.42)

allowing the generalization, 


y1

y2

...

yk




=




CB

CAB
...

CAk−1B




(3.43)

This generalization can aid in the factorization for A. First, generate a KxL Hankel matrix [4] [16].

X =




y1 y2 · · · yL−1

y2 y3 · · · yL

...
...

. . .
...

yK−1 yK · · · yM−1




=




CB CAB · · · CAL−1B

CAB CA2B · · · CALB
...

...
. . .

...

CAK−1B CAKB · · · CAM−1B




(3.44)

It is noteworthy to state that the finite size of the Hankel matrix, KxL, has an impact on the perfor-

mance of this frequency estimation method. The size of the Hankel matrix has long been a topic of

discussion in a variety of papers, including [4] [16]. Hua suggests [17] that the optimum choices for

L would either be M
3 or 2M

3 . Wright [4] provides a thorough explanation of the optimizations. To

proceed with our derivation, X can be factored into the observability and controllability matrices, O

and C respectively

X =




C

CA

CA2

...

CAK−1




[
B AB A2B · · · AL−1B

]
, OC (3.45)

Using the observability and controlability matrices derived from the state space model, we can solve

for A using the equation O−A = O+, where O− is O with the last row deleted and O+ is O with the

first row deleted. This gives the state transition matrix solution as

A = O−1
− O+ (3.46)
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where O−1
− is the pseudoinverse of O−. This formulation generally provides a solution to the state

transition matrix that is not diagonal as required by equation (3.29). Thus, a similarity transformation

to the state space model can be used

A = T−1AT = diag(z1, z2, . . . , zP )

B = T−1B

C = CT = [c1, c2, . . . , cP ]

to diagonalize matrix A and solve the complex amplitudes in C. Clearly, A now contains the eigenvalues

of the observability based solution from (3.46) and T contains the corresponding eigenvectors. Rather

than using a similarity transformation, a Schur decomposition can be used to find the eigenvalues of

A, from which a Least Squares problem can be implemented using the model to find better amplitude

estimates [18].

This method of pole extraction requires that the matrix X be noise free [4] [19], where in practice

we must estimate A from a noisy X. To address this issue, we introduce the procedure for DSS pole

extraction. First, generate a Hankel matrix with K finite rows and L finite columns as in (3.44). Next,

compute the Singular Value Decomposition (SVD) of the noise contaminated Hankel matrix. The

largest singular values define the dominant signal subspace, called the principle components [20]. If

it is known that there exist P signals in the subspace, it is expected that the noise free estimate of

matrix X, X̂, will have a rank1 of P. Thus, we can simply perform a rank truncation to produce X̂ by

evaluating the largest singular values of the noisy matrix X.

The procedure can be shown as follows: start with a noisy matrix X and it’s SVD

X =
[

Us Un

]

 Σs 0

0 Σn





 V H

s

V H
n


 (3.47)

where UsΣsV
H
s represents the true signal subspace and UnΣnV H

n represents the noise subspace. We

define our estimate of the signal subspace as

X̂ = ÛsΣ̂sV̂
H
s (3.48)

by rank truncation, estimating the rank of the signal subspace by the examining the most dominant

singular values. The SVD also performed a factorization required by (3.46) that does not affect the

performance of the DSS algorithm [4]. To build the observability matrix, O, in the factorization we
1Unless the poles are too close in proximity, which will not be considered in this paper
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can multiply a factored form of the rank truncated singular values by the resultant U matrix as

Ô = ÛsΣ̂1/2
s (3.49)

where Ûs and Σ̂s are the rank truncated estimates of the signal space and Σ̂1/2
s is defined as

Σ̂1/2
s = diag

(
σ

1/2
s1 , σ

1/2
s2 , · · · , σ

1/2

sP̂

)
(3.50)

where P̂ is the estimated number of signals in the signal subspace. After building Os+ and Os− by

eliminating the first row or last row respectively, the solution for A follows simply as

Â = Ô−1
s−Ôs+ (3.51)

where Ô−1
s− is the pseudo-inverse of Ôs−. Once the estimated A has been computed, the eigenvalues,

or the poles of the system, contain the desired fi of interest. As before, once the poles are extracted,

we can solve (3.24) for the transmitted frequencies.

Several optimizations are allowed by (3.49) which reduce the computational complexity necessary

to resolve the angle of the poles. Wright [4] indicates that if additional parameters are not needed from

B or C, the finite word length effects of the factorization are unimportant. Since this is the case for

our estimation problem, we can express the estimate of A as

Ô = Ûs (3.52)

Â = Ô−1
s−Ôs+ (3.53)

and disregard the added weight from the singular values to each column since we are only interested

in the angle of the poles, which are computed from the U matrix of the Hankel factorization.

A simple technique can be used to improve performance known as Forward-Backward Averaging

[21]. Start by organizing the samples in the initial rank revealing SVD as

X =
[

H Hf

]
(3.54)

where H is the original Hankel matrix and Hf is the Hankel flipped up-down and conjugate transposed.

In this case, the rest of the algorithm remains the same since the row deletes for Os+ and Os− are still

the first and last rows. If the modified Hankel was stacked vertically, the first and last respective rows

would have to be deleted of each Hankel in X.

An alternative method exists when one wishes to avoid the hardware complexity of an SVD. An

approximation of the signal subspace can be obtained by finding the collection of matrices that generate
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an ordered upper right triangular matrix from the Hankel matrix by

X =
[

Us Un

]

 Σs Υ

0 Σn


 (3.55)

where the elements of Υ are influenced by both the signal and noise subspaces. This operation is known

as QR Decomposition. By examination, an estimate of the unitary matrix Us can then be used to form

the estimate of Â as in (3.53) since this is also an acceptable factorization for the observability and

controllability matrices in equation (3.45). Also, since the components of the signal subspace still exist

in the elements of Υ, this method does not perform as well as an SVD. The next section describes this

performance in detail.

3.2 Frequency Estimator Performance

In this section, the performance of each frequency estimator is compared to the best theoretical

performance given by the Cramér-Rao Lower Bound for a single sinusoid in white Gaussian noise

with 20dB SNR. Each simple estimator is given the same parameters. The sample rate is 1500 Mega

Samples Per Second (MSPS) and the length of the recorded data is 500ns. This gives us a total of

500ns * 1.5GHz = 750 samples. The sample window is then divided into three sections of 250 samples

each. For the first segment, the transmitted frequency is 80 MHz, followed by 350 MHz, and then -220

MHz. Figure 3.1 shows the frequency time intensity plot for the transmitted waveform.
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Figure 3.1: Frequency Time Intensity plot with (left) 32 point FFT (right) 64 point FFT windows

The image in the left of Figure 3.1 was obtained using a 32 point FFT window that was slid sample

by sample over the 750 sample dataset and the image in the right was obtained by using a 64 point
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sliding FFT window. As expected, with more points in the FFT, the noise floor is integrated over

more bins, so it appears lower. Also, there are clearly transitional phenomena around the frequency

changing points since there are influences from both frequencies. The amount of overlap is determined

by the size of the sliding FFT window, which is clear by the length of the smear in Figure 3.1.

3.2.1 Discrete Fourier Transform (DFT)

As mentioned in the introduction of this chapter, the DFT computation was performed using a

32 point sliding window FFT over the entire 750 data samples. The frequency estimation algorithm

requires the frequency bin with the largest magnitude to be identified as the transmitted frequency

at each window of time. Figure 3.2 shows the extracted frequency estimate plotted in white over the

frequency time intensity sliding window FFT. As expected, the estimated frequency always takes on a

value that is in the center of a frequency bin.
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Figure 3.2: FFT extracted frequencies (left) all samples (right) zoomed on transition

The statistics for the extracted FFT frequencies were computed using estimates 20 samples beyond

the instantaneous frequency change. This allowed sufficient time for the sliding window FFT algorithm

to primarily detect the influence of the current transmitted frequency. Table 3.1 summarizes the

frequency estimation statistics for the FFT algorithm.

ftx (MHz) Mean (MHz) σ (MHz) Error (MHz)
80 93.75 0 13.75
350 328.125 0 -21.875
-220 -234.375 0 -14.375

Table 3.1: FFT algorithm statistics at 20 dB SNR
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With a bin size of bs = 1.5Ghz
32 = 46.875MHz, we expect that our error would never exceed ± bs

2 =

±23.4375MHz. If the input frequency was on the edge of a bin, it will fall into the closest bin. The

peak magnitude of the closest bin would estimate the frequency with a maximum absolute error of
bs
2 . As Table 3.1 shows, the error is indeed bounded by our expected maximum. Also, as Figure 3.2

shows, the estimated frequency remains constant throughout the duration of the statistical calculation,

corresponding to the standard deviation being zero throughout the entries in Table 3.1. This behavior is

an artifact of the coarseness introduced by simply reporting the center of the FFT bin as the estimated

frequency using just 32 samples.
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Figure 3.3: FFT performance vs CRB

Figure 3.3 shows the FFT performance of each extracted frequency against the theoretical boundary

set by the Cramér-Rao Lower Bound. We can see that the frequency estimation in poor SNR, roughly

below 0 dB, produces an inaccurate estimate. Once the SNR is increased, a peak magnitude can be

extracted from the sliding window FFT. The performance of the FFT algorithm doesn’t even get close

to the CRB since there is a discrete bin size and the true frequencies are sufficiently displaced from

the center of the frequency bins evaluated by the FFT. Thus, the (Mean Squared Error) MSE becomes

bounded as the SNR increases. What must be done to effect a better estimate is to decouple the

number of data samples in the window under consideration from the number of frequency samples at

which the Z-Transform is being evaluated, thus reducing the coarseness of the estimator.

A common approach for frequency estimation when such a small number of samples is taken is to
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Figure 3.4: Zero padded FFT using (top) 256 points (bottom) 1024 points

zero pad the time domain data and take a larger FFT. The finer granularity in the frequency samples

allows a more accurate frequency estimate. Figure 3.4 shows the zero padded FFT performance using a

256 point FFT and a 1024 point FFT using just 32 data samples as before. It is clear that there can be

a significant performance improvement by using a larger FFT. In the 256 point case, the MSE becomes

bounded much sooner as SNR increases than in the 1024 point case. Interestingly, one frequency in the

1024 point case performs better than the CRB around 25 dB SNR. This is likely due to the discrete

nature of the larger FFT where the frequency under analysis happens to fall near the center of a bin.
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The performance of this technique can be misleading since the largest error can still be roughly 732

kHz using a 1024 point FFT and the CRB is calculated using M = 32 in equation (2.12). If a longer

integration period was considered, where the number of samples collected was 1024 or larger, a 32x

increase in the number of points in the FFT becomes more difficult to practically implement in an

FPGA and more time consuming than perhaps other techniques.
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Figure 3.5: Zero padded FFT with center of mass refinement using (top) 256 points (bottom) 1024
points

In addition to performing the zero padding technique, an attempt to refine the frequency estimate

by performing a center of mass computation on the adjacent frequency bins was implemented. This
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seems particularly useful if the frequency happens to fall near the edge of the bin. Figure 3.5 shows

the performance of a zero padded FFT with either a 256 or 1024 point FFT followed by the center of

mass refinement, using just 32 time domain samples and ±25 frequency bins from the peak frequency

bin for the center of mass computation. The MSE appears to suffer a performance loss around 0 dB

SNR, particularly in the 256 point FFT case when compared to Figure 3.4. The performance, however,

remains unbounded out to a much higher SNR value as would be expected. Not much difference is

noticed in the 1024 point FFT case other than the smoothing of the MSE near the previous bounded

values in higher SNR.

3.2.2 Least Squares

To evaluate the performance of the Least Squares (LS) algorithm, the same test parameters were

employed. Using a 32 point sliding LS window over the 750 samples, frequency estimates were extracted

using (3.24). Figure 3.6 shows the estimated frequency points in white over the transmitted frequency

time intensity plot in roughly 20 db SNR.
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Figure 3.6: LS extracted frequencies (left) all samples (right) zoomed on transition

This method appears to work better than the FFT algorithm using the same number of points

since the LS algorithm does not have discrete bin sizes. Looking closely at Figure 3.6, it is clear that

the extracted frequency follows quite closely with the actual transmitted frequency rather than being

forced into a coarse discrete bin. Table 3.2 summarizes the frequency estimation statistics for the LS

algorithm.

As the statistics show, these estimated frequencies are better than the estimated frequencies of the

FFT algorithm using the same number of points. When, however, implementing the zero padding or
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ftx (MHz) Mean (MHz) σ (MHz) Error (MHz)
80 75.91 2.149 -4.09
350 349.63 1.525 -0.372
-220 -219.91 1.126 -0.0851

Table 3.2: LS algorithm statistics

zero padding with center of mass refinement technique, the FFT algorithm sees to perform better.

Two of the three transmitted frequencies have an error of less than ±1 MHz, indicating reasonable

performance over such a large bandwidth. The standard deviation is also small, indicating that most

estimates fall relatively close to the mean. The large error on the first frequency estimate was due to a

few incorrect pole extractions far away from the real frequency. The majority of the extracted points

for the first frequency follow the same statistics as the second and third frequencies.
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Figure 3.7: Least Squares performance vs CRB

Figure 3.7 shows the LS algorithm performance of each extracted frequency against the CRB. This

shows an improvement over the coarse FFT CRB shown in Figure 3.3, but not quite as well as the

zero padding techniques seen in Figure 3.4 and Figure 3.5. As with the FFT techniques, the MSE for

this implementation of a Least Squares eventually becomes bounded. The MSE of the estimate cannot

improve further even as the SNR increases due to numerical inaccuracies of the estimation algorithm.
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3.2.3 Direct State Space

The Direct State Space (DSS) algorithm performance was measured in the same way as the FFT and

LS algorithms were measured. Using a 32 point sliding DSS window over the 750 samples, frequency

estimates were extracted using the angle of the extracted poles of the estimated transfer function.

Using Singular Value Decomposition

Figure 3.8 shows the estimated frequency points in white over the transmitted frequency time

intensity plot in roughly 20 db SNR.
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Figure 3.8: DSS extracted frequencies (left) all samples (right) zoomed on transition

It appears that this method is superior to the last two methods based on the rapid transition

between frequency estimates and the unwavering estimates during constant transmission. Figure 3.8

clearly shows the extracted frequency following the transmitted frequency quite well, even through

the transitions. By analyzing the statistical performance of the DSS algorithm, we will see that it is

indeed equivalent or superior to the FFT or LS algorithms in most positive SNR. Table 3.3 shows the

frequency estimation statistics for the DSS algorithm.

ftx (MHz) Mean (MHz) σ (MHz) Error (MHz)
80 80.05 0.602 0.047
350 349.98 0.508 -0.022
-220 -219.99 0.525 0.088

Table 3.3: DSS algorithm statistics using SVD

As Table 3.3 indicates, the frequency estimates by the DSS algorithm are much better than the
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extracted frequencies of the FFT and LS algorithms. Each extracted frequency has errors that are

measured in the 10’s of kHz rather than in MHz. Also, the confidence factor, indicated by the standard

deviation, shows excellent performance with less than a MHz deviation for all cases. The extracted

mean shows quite an improvement from both previous algorithms. An analysis of the DSS algorithm

plotted against the CRB shows the superior performance of this algorithm.
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Figure 3.9: DSS Performance vs CRB using SVD

Figure 3.9 shows the DSS algorithm performance of each extracted frequency against the CRB. As

soon as sufficient signal energy is detected by the algorithm, it immediately jumps just about onto the

CR bound. Even as the SNR increases, the MSE of the estimate becomes more and more accurate,

never indicating a limit has been reached like the FFT and LS algorithms.

Using QR Decomposition

As mentioned in Section 3.1.3, an ordered QR Decomposition (QRD) can be used to estimate the

signal subspace. As in the SVD case, we can use the signal subspace estimate to directly solve for the

angle of the poles of the system, which are the estimated frequencies of interest. Figure 3.10 shows the

extracted frequencies using a QRD of a square Hankel matrix filled with 32 samples to estimate the

signal subspace.

The left of Figure 3.10 shows the extracted frequencies in white of the entire 500ns pulse over the

equivalent FFT generated frequency time intensity. If we zoom on the first transition as seen in the
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Figure 3.10: DSS extracted frequencies using QRD (left) all samples (right) zoomed on transition

right, we can observe the minor differences between the QRD estimation and the SVD estimation of

Figure 3.8. Clearly, there is a larger MSE on the QRD generated estimates and the transition point

contains several inaccurate transition estimates. Looking at the statistical elements in Table 3.4 we

can see that indeed there is a larger MSE associated with the QRD estimation method.

ftx (MHz) Mean (MHz) σ (MHz) Error (MHz)
80 80.09 2.2917 0.0859
350 349.82 2.3668 -0.1819
-220 -219.62 4.2817 0.3827

Table 3.4: DSS algorithm statistics using QRD

As Table 3.4 indicates, the extracted frequencies by the DSS algorithm are still much better than

the extracted frequencies of the FFT algorithm. The extracted mean shows quite a bit of degradation

over the SVD method, but still an improvement over the FFT method. This method can be compared

to the Least Squares statistical performance as the standard deviation and average error are similar.

In fact, several more robust Least Squares algorithms have evolved from QR Decomposition based

solutions of the normal equations [22].

Figure 3.11 illustrates the QRD signal subspace estimation method to extract the poles against the

CRB in various SNR using a square Hankel matrix filled with 32 samples. In this case, as the signal

begins to emerge from the noise around 0dB SNR, the MSE of the estimate appears to slowly rise to

some linear offset of the CRB. In this simulation, the offset is around 14 dB.

Comparing the low SNR cases of both the SVD and QRD methods, we can see in Figure 3.12 that

the SVD algorithm outperforms the QRD method. On the right, the SVD method quickly jumps to
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Figure 3.11: DSS Performance vs CRB using QRD

just next to the CRB at 2 dB SNR. On the left, the QRD method slowly converges to the 14 dB linear

offset from the CRB as SNR increases. Clearly, if practical, the SVD method is more desirable in an

implementation.

If we have a priori knowledge of the number of sinusoids in the band of interest, we can modify the

Hankel matrix to be non-square. As in the LS analysis, where we assume a single frequency pole and a

single noise pole, we can reduce the size of Υ from (3.55) to reduce the possibility of noise corrupting

the signal subspace estimate. Figure 3.13 shows the QRD based DSS algorithm when we solve for a

single signal pole using a 1x32 column vector as the Hankel matrix. This performance is similar to

the LS performance of Figure 3.7 where we estimated a single noise pole and a single signal pole using

autocorrelation, except this implementation uses a QRD that is numerically stable allowing the MSE of

the estimate to decrease as SNR increases. Clearly in SNR larger than about 35 dB, the QRD method

of Least Squares is superior to the Least Squares method presented in Section 3.2.2.

3.3 Combined Approach for Multiple Frequency Estimation

As seen in the previous sections, it is clear that the DSS performance is far superior to other

frequency estimators introduced. The computational burden of estimating the signal subspace using

a singular value decomposition (SVD) is on the order of O(n3) operations on a single processor. The
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Figure 3.12: DSS Performance Zooming in on low SNR using (top) QRD (bottom) SVD

SVD can be computed using a two step method, first bidiagonalizing the nxn matrix, followed by a fast

computation method for the U and S based on the bidiagonalized form. The Intel Math Kernal Library

(MLK) [23] for a single processor states that the number of floating point operations for this method is
32
3 n3 +n2 +12n3 = 68

3 n3 +n2. This is the majority of the computation time of the DSS algorithm, but

still does not include the eigenvalue decomposition and pseudoinverse of a smaller matrix when solving

for the poles of the system. As the number of samples increases, the DSS algorithm becomes impractical

for real time applications. The FFT, however, has only n
2 log2 n complex multiplications plus several
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Figure 3.13: DSS Performance vs CRB using a non-square Hankel matrix

addition computations and can be adapted to a parallel computing platform easily. Therefore, the FFT

is commonly used in real time applications, suffering the performance loss seen in the previous section.

This section proposes a FFT and DSS combined approach designed to allow longer integration periods

for the DSS algorithm in real time applications. The proposed implementation will gain many of the

estimation advantages of the DSS algorithm while providing a practical hardware solution.

3.3.1 Combined Approach Theory

Longer integration periods are crucial in many applications where thousands to hundreds of thou-

sands of samples are collected but cannot be processed rapidly using DSS due to the large size complex

SVDs required to estimate the signal subspace. A practical implementation is desired to reduce the

overall hardware complexity and design costs. This implementation, named FFT with DSS (FWD), will

be shown to have similar or better statistical performance than the DSS algorithm in practical SNRs

while significantly decreasing the computational burden. With few limitations when applied to the

ECM problem, this method is the most attractive of all the multiple frequency estimators considered.

Combined Approach using complex DSS

The FWD technique simply applies the FFT to a finite set of samples to produce a coarse estimate

of the frequency embedded in noise. Assuming constant (or at least near constant) frequency sinusoid
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or sinusoids in the set of samples, it is assumed that the magnitude of the bins with the signals will

exceed the magnitude of the bins with the noise at sufficient SNR. As described in Section 3.1.1, the

magnitude of the bins that exceed a predetermined threshold will be considered detected frequencies.

For each bin exceeding the threshold, a tuned, filtered, and decimated subset will be passed to the

DSS algorithm for analysis. Effectively, the FFT estimation will be used as a priori information for

the DSS estimation method.

Figure 3.14: FFT with DSS Block Diagram

Figure 3.14 shows the FWD block diagram. Immediately following the FFT, a shift is performed in

the frequency domain to shift the bin of interest to the center of the frequency domain at DC. A zero

phase low pass filter is then applied in order to preserve phase and to filter unwanted components outside

the region of interest. The preservation of the phase is required by the DSS algorithm, which includes

the phase relation of the samples when making an estimate. Filtering the unwanted components

achieves anti-alias filtering for the future decimation as well as improving the SNR in the region of

interest. To achieve the desired zero phase low pass filter in the frequency domain, a Hanning window

is used around the region of interest. We refer the reader to page 626 of Proakis and Manolakis [14] for

more information on several common window functions, including the Hanning window. The number

of points in the Hanning window must be precisely

wh =
⌈d1.6

D M − 1e
2

⌉
(3.56)

where M is the number of points in the FFT2 and D is the down sample factor to be used after the

IFFT. The same implementation may be reproduced in the time domain as long as care is taken to

implement a zero phase filter with similar characteristics. Upon completion of the tuning and filtering

operation, the signal of interest is then decimated. Decimation is a method of resampling the same

data set to decrease the number of samples and the bandwidth. To decimate by an integer factor D,

the discrete signal x(m) would produce a subset by y(m) = x(mD). For more information, see page

784 of [14]. If the frequency of interest is exactly in the center of the detection bin, then the frequency

component of the decimated sample set would be at DC. The DSS estimation algorithm is used to
2also assumed to be the number of samples collected
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determine the deviation from DC, which provides an accurate estimate of the error in the frequency

estimate generated by the FFT algorithm. As shown in Section 3.1.3, the complex SVD will be used

to estimate the signal subspace of the smaller number of samples. It will become clear in the next

section that the statistical performance of this technique can be better than the DSS technique alone

due to the zero phase filtering on the sinusoid frequency of interest. See the concluding subsection of

this Section for a simulated demonstration.

Combined Approach using real DSS

To further simplify the hardware complexity of the FFT with DSS technique discussed in Section

3.3, we could replace the complex SVD in the DSS algorithm with a real SVD. In this modification, the

FWD technique first applies the FFT to a finite set of samples to produce a coarse estimate. For each

bin that contains a magnitude that exceeds a predetermined threshold, a tuned, filtered, decimated,

and tuned real subset will be passed to the DSS algorithm for analysis.

Figure 3.15: Real FFT with DSS Block Diagram

Figure 3.15 shows the real FWD block diagram. Immediately following the FFT, a shift is performed

in the frequency domain to shift the bin of interest to the center at DC. A zero phase low pass filter

is then applied by using a Hanning window. The number of points in the window remain the same

as in equation (3.56). Upon completion of the tuning and filtering operation, the signal of interest is

then decimated. Assuming a single sinusoid is present in the decimated sample set, multiplication by

a complex exponential is used to tune or separate the tones as far as possible to produce the most

accurate estimation results with the real DSS algorithm. Prior to the final stage of execution, the

real and imaginary components are added to produce a real set of sinusoids at the decimated sample

rate divided by four for furthest separation. If more than one frequency was present in the decimated

sample set, a different sinusoid separation algorithm could be developed. See the next subsection for a

simulated demonstration.

Since the DSS algorithm is real, there will exist complex conjugate pairs of poles that are used to

solve for the frequency content of the system. Thus, the real DSS algorithm may require a larger SVD
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to estimate the signal subspace. Also, care must be taken when solving for the poles of the system from

the estimated signal subspace, which will require larger eigenvalue decompositions of some type since

there will always be more than one signal pole. Simulations have suggested that for a single complex

conjugate pole, it is sufficient to extract the single column of the U that corresponds to the largest

singular value for further processing.

Combined Approach Simulation

Figures 3.16, 3.17, and 3.18 show the frequency domain of a synthetic data set passing through the

FFT with DSS algorithm. Matching the numbers in parentheses that indicate the location in the block

diagram from Figure 3.15 to the following Figure titles, a two tone sinusoid is used to demonstrate the

FFT with DSS algorithm. The SNR for this demonstration is approximately 20 dB using 512 input

samples, which are processed and decimated down to 16 samples for the DSS algorithm. The spectrum

of the first two stages of the algorithm can be seen in Figure 3.16. The left of Figure 3.16 shows the

input frequency spectrum, which is used to identify the FFT bin with the largest magnitude. Using the

peak magnitude bin location, the frequency spectrum is shifted to DC as seen on the right of Figure

3.16.
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Figure 3.16: (left) FFT of test input signal (right) FFT tuned to DC

Upon tuning the most dominant frequency to DC, the spectrum is filtered to isolate the frequency

region of interest using a predetermined Hanning zero phase filter as described above. The frequency

spectrum after the zero phase filter can be seen in the left of Figure 3.17. The filtered samples are

then converted back into the time domain using an Inverse FFT (IFFT) and decimated to produce the
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Figure 3.17: (left) Tuned and Filtered input in frequency domain (right) Decimated data subset in
frequency domain

spectrum seen in the right of Figure 3.17. No anti-alias filtering is required prior to the decimation

since the zero phase low pass filter was used to isolate the frequency location of interest. At this point,

it is clear that the deviation from DC in the decimated sample set can be used to determine the error

in the FFT estimate. Since the DSS algorithm is reasonable in real time applications using a small

number of samples, it is used to estimate the error in the FFT estimate.
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Figure 3.18: (left) Decimated data subset in the time domain (right) Tone separated real decimated
data subset

The left of Figure 3.18 shows the decimated sample set in the time domain, indicating a clear error

(deviation from DC) exists in the estimate of the FFT. If a complex DSS algorithm is not available to
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estimate this error, the tones have to be separated as far as possible for optimal real DSS performance.

The right of Figure 3.18 shows the separation required to prepare the the samples for a real DSS

analysis. The frequency estimate would then be computed using the initial shifted amount, adjusted

by the high resolution error estimate provided by the DSS algorithm.

3.3.2 Combined Approach Results

Instead of using 32 samples as in the previous simulations, the FFT with DSS (FWD) algorithm

performance was tested using a 1024 point sliding window over 10240 samples at 1.5Ghz. The same

frequency segments were chosen at intervals of 1
3 of the total simulation size. First, a 1024 point FFT

is taken to detect the frequencies of interest. After tuning to DC, filtering, and decimating, the real

16x16 SVD based DSS algorithm is applied to observe the deviation from zero of the tuned signal. This

error estimate is applied as a correction factor to the initial shifted amount to estimate the transmitted

frequency.
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Figure 3.19: FWD using 1024 samples decimated to fit a real 16x16 Hankel matrix

Figure 3.19 shows the FWD performance using a 1024 point sliding window over the 10240 data

points at various SNRs. It is initially surprising that the performance is near efficient in a large

portion of the negative SNR range. To quantify the maximum improvement gain possible in the FWD

algorithm over the DSS algorithm, we solve for the improvement factor using a ratio of the number of

FFT samples to the number of DSS samples in the decimated subset. The improvement factor in dB
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can be expressed as

GdB = 10 log10

(PFFT

PDSS

)
(3.57)

where PFFT is the number of points in the FFT of the FWD and PDSS = 32 is fixed at the number of

samples in the DSS performance computations from the previous section.
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Figure 3.20: FWD performance improvement over DSS using 32 samples on (left) a linear scale and
(right) on a log scale

Figure 3.20 illustrates the improvement in dB as a function of the number of points in the FFT both

on a linear and log scale. Clearly, there is a linear improvement as the number of samples collected

for the FFT detection increases. If sufficient data points are collected, it is theoretically possible to

exceed a 40 dB improvement by collecting 512k samples and decimating to 32 prior to the DSS error

estimation. For the case in Figure 3.19 where 1024 samples are collected, and from (3.57), we can state

GdB = 10 log10
1024
32 ≈ 15dB. Looking back at Figures 3.19 and 3.9, there appears to be up to about

13-14 dB improvement in the threshold SNR at which the performance jumps to the CRB level.

It is also interesting to consider a simplified case wherein the input data stream is real rather than

complex. For the real input, as described in Section 3.3.1, a real FFT is computed and the rest of

the algorithm is identical. Figure 3.21 shows the performance of the FWD using a real and complex

input with a 32 sample DSS algorithm compared to the same CRB based on the SNR being calculated

as A2

σ2 (not A2

2σ2 for the real plot). The consistent difference of about 3-4 dB from the real case to the

complex case is due to the fact that the complex sampled input has twice as much bandwidth as the

real sampled input. Also, additional errors may be introduced for the real case since the complex DSS

algorithm does not require tuning to separate the frequency components.

We will now test the claim associated with equation (3.54) that better performance in low SNR

can be achieved using a Forward Backward Averaging based upon a horizontal Hankel stack. Figure
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Figure 3.21: FWD using (top) real input and (bottom) complex input compared to complex CRB

3.22 shows the FWD algorithm using the same 1024 point FFT/IFFT pair but modifying the DSS

algorithm to use either a complex 8x8 Hankel or a complex 8x16 horizontal Hankel stack. As can be

seen, there is a small difference in the two simulation results for most values of SNR. One frequency

segment shows a 2-3 dB gain, but other two segments show little change. In a practical system, the

computational burden of including the horizontal Hankel stack vs. the expected 3 dB gain would have

to be considered on a case by case basis. In our rapid hardware application, this small performance

improvement does not warrant using this method.
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Figure 3.22: FWD using (top) single 8x8 complex Hankel (bottom) horizontal Hankel stack for SNR
improvement
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Chapter 4

Hardware Implementation

Based on the performance analysis and complexity of several frequency estimators in the previous

chapter, it is evident that estimating the frequency of a sinusoid from a single radar pulse is quite

difficult, especially in real time. As the Cramér-Rao Bound implies in Section 2.2, with a small number

of samples collected, the variance of the frequency estimate will be larger than if many samples are

collected. Due to the short duration of a single radar pulse, there is a limited number of samples that can

be collected for frequency estimation. In many applications where thousands of samples are collected,

a large point FFT is generally an excellent solution due to the parallel nature of the algorithm and

the rapid solutions it is able to provide. When a small number of samples are collected, as is the case

for frequency estimation from a single radar pulse, a more statistically efficient algorithm is the Direct

State Space (DSS) algorithm using a Singular Value Decomposition (SVD). The estimate of the signal

subspace is used to solve directly for a frequency estimate. Since the complexity of SVD processing

of matrices in the DSS algorithm becomes impractical for a large number of samples, a practical

system will need to place restrictions on the number of samples that can be collected. Although QR

Decomposition is an easier and more rapid algorithm, such as in [24], we choose to pursue the most

efficient algorithm presented using an FFT and a complex SVD. This chapter provides the details of a

narrowband implementation of the FFT with DSS (FWD) algorithm using a novel method to solve a

2x2 complex SVD suitable for the DSS algorithm. To follow the work of Hemkumar [11] and others to

solve the complex SVD using a hardware CORDIC algorithm, refer to Section 5.1.
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4.1 Combined Approach Implementation

The objective of the Combined Approach implementation is to demonstrate the algorithm of Section

3.3.2 in a simple and practical design. Once the hardware is complete, statistics are gathered and

compared to the theoretical performance and expected results based on MATLAB simulations. The

implementation assumes 1024 samples are collected and processed to produce a modified 3 sample

subset that will fill a complex 2x2 matrix for the DSS algorithm.

The hardware selected for this implementation is the Altera Stratix II DSP evaluation kit contain-

ing two 12-bit 125 Mega Samples Per Second (MSPS) ADCs, two 14-bit 165 MSPS DACs, 3 8-bit

video DACs to drive an RGB monitor, 32 MB of SDRAM, 1MB of SRAM, a high density FPGA

(EP2S60F1020C4ES) and other unused extra peripherals.

The most complex and time consuming portion of the FFT with DSS algorithm is the complex SVD.

Many authors in open literature discuss Jacobi Rotation based implementations that require angular

computations, generally done by the CORDIC algorithm in hardware. We begin our implementation

by deriving the Jacobi Rotation based algorithm shown by Hemkumar [11] and then discuss novel

2x2 SVD optimizations for the DSS algorithm. The implementation block diagrams and the hardware

performance results compared to MATLAB simulations will conclude this chapter.

4.1.1 Complex 2x2 SVD using Jacobi Rotations

Following a method similar to that of Hemkumar [11], we can describe the two step transformation

required to compute a complex 2x2 SVD. The objective is to use complex Jacobi rotations to zero

out desired elements in the matrix. After sufficient rotations have been applied, the solution matrix S

becomes a real diagonal matrix containing the singular values. The left and right rotation matrices are

combined to produce the U and V H unitary matrices. In the two step method we are searching for a

solution to

M = USV H (4.1)

where U and V H are replaced by

M = UH
2 UH

1 SV H
1 V H

2 (4.2)

so that UH
1 and V H

1 are computed using a complex QR Decomposition (QRD) to produce an upper

right 2x2 matrix and then UH
2 and V H

2 are computed such that the solution matrix is a real diagonal

matrix.
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The complex Jacobi unitary matrix used to perform both transformations is of the form [11]

 cφejθα −sφejθβ

sφejθγ cφejθδ




where the rotation angles θα, θβ, θγ , θδ, and θφ are real numbers with θα − θβ − θγ + θδ = k where

k ∈ (0, 2π, · · · , 2nπ). The notation

cφ = cos(θφ), sφ = sin(θφ)

is used to simplify the expressions.

The first transformation can be computed using a complex Jacobi rotation on the left and a trans-

pose of the complex Jacobi on the right. We wish to solve for

 cφejθα −sφejθβ

sφejθα cφejθβ





 Aejθa Bejθb

Cejθc Dejθd





 cψejθγ sψejθγ

−sψejθδ cψejθδ


 =


 Wejθw Xejθx

0 Z




where the lower left element is zero and the lower right element is real valued. By evaluating (4.3) for

element [2,1] and [2,2], we can determine that

0 = cψsφAej(θα+θγ+θa) + cψcφCej(θγ+θβ+θc)

−sψsφBej(θα+θδ+θb) − sψcφDej(θδ+θβ+θd) (4.3)

Z = sψsφAej(θα+θγ+θa) + sψcφCej(θγ+θβ+θc)

+cψsφBej(θα+θδ+θb) − cψcφDej(θδ+θβ+θd) (4.4)

giving us four equations and four unknowns for the angles since the exponential terms are identical.

Now, we need to select left and right rotation angles that will satisfy

−θa = θα + θγ

−θc = θγ + θβ

−θb = θα + θδ

−θd = θδ + θβ

by requiring the angles from (4.3) and (4.4) to be zero. If we restrict our selection to angles such that

θα = θβ and θγ = −θδ, we can solve for the angles using two equations in two unknowns

−θc = θα + θγ

−θd = θα − θγ (4.5)
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and select

θα = θβ =
−θd − θc

2

θγ = −θδ =
θd − θc

2
(4.6)

to zero out the phase angle of both elements [2,1] and [2,2]. Likewise, we need to select a θφ and θψ

that will force the magnitude of the element in [2,1], to zero while allowing other elements to remain

non-zero. This can be done by selecting

θφ = 0 (4.7)

which simplifies (4.3) to

0 = cψcφC − sψcφD (4.8)

since the complex exponential angles were forced to zero. Solving for θψ, we get

sψ

cψ
=

C

D
(4.9)

and therefore we select

θψ = tan−1
(C

D

)
(4.10)

to force the magnitude of element [2,1] to zero and thus completing the first transformation.

In a fashion similar to the first transformation, we also apply a different variation of a second

complex Jacobi rotation to the left and a transposed Jacobi matrix to the right. We begin the second

transformation with

 cλejθε −sλejθη

sλejθε cλejθη





 Wejθw Xejθx

0 Z





 cρe

jθζ sρe
jθζ

−sρe
jθω cρe

jθω


 =


 P 0

0 Q




where we want to zero out the non-diagonal elements and generate real values for the diagonal elements.

As before, we begin by evaluating (4.11) for element [1,2] and [2,1], and get

0 = cλsρWej(θε+θζ+θw) + cλcρXej(θω+θε+θx)

−sλcρZej(θω+θη) (4.11)

0 = sλcρWej(θε+θζ+θw) − sλsρXej(θω+θε+θx)

−cλsρZej(θω+θη) (4.12)
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again giving us a matching set of exponential terms. Also, by restricting our selection to θε = θω, we

can similarly solve for the left and right rotation angles of (4.11) to force the angles of the non-diagonal

elements to zero. We start with the set of equations from (4.11)

−θw = θε + θζ (4.13)

−θx = θω + θε (4.14)

0 = θω + θη (4.15)

and then, using (4.14) and our assumption θε = θω, it is simple to show that

θε = −θx

2

and

θω = −θx

2

and with (4.15) and our solution for θω we can show that

θη = −θω =
θx

2

and finally, using (4.13) and substituting our known solution for θε we choose

θζ = −θw − θε = −θw +
θx

2

to zero out the angles of the elements of the real diagonal solution matrix. Similar to our approach for

the first transformation, we can also solve for the angles θλ and θρ that are required in order to zero

out the magnitude of the matrix elements [1,2] and [2,1]. Knowing that the angles are zero, we can

simplify (4.11) and (4.12) to

0 = cλsρW + cλcρX − sλcρZ (4.16)

and

0 = sλcρW − sλsρX − cλsρZ (4.17)

and solve to isolate the magnitudes on one side and the angles on the other. Performing the computa-

tion, a selection of

tan(θλ − θρ) = − X

Z + W
(4.18)
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and

tan(θλ + θρ) =
X

Z −W
(4.19)

are required in order to zero the magnitude of the non-diagonal elements of the 2x2 matrix, and thus

completing the SVD.

Therefore, we can define the product of the left rotation matrices as U and right rotation matrices

as V H , and the real diagonal solution matrix as the singular value matrix

U = U2U1 =


 cλejθε −sλejθη

sλejθε cλejθη





 cφejθα sφejθβ

−sφejθα cφejθβ


 (4.20)

S =


 P 0

0 Q


 (4.21)

V = V1V2 =


 cψejθγ sψejθγ

−sψejθδ cψejθδ





 cρe

jθζ −sρe
jθζ

sρe
jθω cρe

jθω


 (4.22)

where M can be formed as in (4.2).

4.1.2 Novel Complex 2x2 SVD for Combined Approach

Rather than using a completely CORDIC based method as shown by Hemkumar [11], we will

simplify the mathematical expressions to greatly minimize the angular computations. Additional sim-

plifications can be achieved by introducing assumptions about the input matrix. Given an arbitrary

complex matrix

M =


 A B

C D


 =


 Aejθa Bejθb

Cejθc Dejθd


 (4.23)

we wish to solve for the first transformation (4.3). As shown in Section 4.1.1, the desired angles can

be computed as

θα = θβ = −θd + θc

2

θγ = −θδ =
θd − θc

2

θψ = tan−1

(
C

D

)

θφ = 0
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which simplifies the first transformation to (see Appendix A for derivation)

(
CD

√
D2 + C2

)−1


 DA

√
DC

∗√
DC ∗ − CB

√
DC

∗√
CD ∗ CA

√
DC

∗√
DC ∗ + DB

√
DC

∗√
CD ∗

DC
√

DC
∗√

DC ∗ − CD
√

DC
∗√

CD ∗ CC
√

DC
∗√

DC ∗ + DD
√

DC
∗√

CD ∗




The square root elements are then transformed into the form

√
DC

∗√
DC ∗ = CDe

−j
�

θd+θc
2

�
e
j
�

θd−θc
2

�
= CDe−jθc = CD (C ∗/C) = DC ∗

√
DC

∗√
CD ∗ = CDe

−j
�

θd+θc
2

�
e
j
�−θd+θc

2

�
= CDe−jθd = CD (D ∗/D) = CD ∗

which, when a full computation is required, present an inconvenience due to the quadrant related

errors in the wrapping of the exponential terms. For example, suppose θd + θc > 2π, but the complex

representation would store the angle as (θd + θc)% 2π where % is the modulo operator. Since we are

only interested in the relation of the elements in U, we can disregard this inconvenience. Thus, the

first transformation can be written as

(
CD

√
D2 + C2

)−1


 D2A C∗ − C2B D∗ DCAC∗ + CDB D∗

D2C C∗ − C2D D∗ DCC C∗ + CDD D∗


 =


 Wejθw Xejθx

0 Z


 (4.24)

when ignoring the quadrant related errors.

Similarly, the second transformation can be evaluated and combined with the first to get the 2x2

complex solutions of U and S. Redefining the first transformation solution

 Wejθw Xejθx

0 Z


 =


 W X

0 Z


 (4.25)

and from the equation (4.11), with the given angle requirements

θε = θω = −θx

2

θη =
θx

2

θζ =
θx

2
− θw

tan
(
θρ + θλ

)
=

X

Z −W

tan
(
θρ − θλ

)
= − X

Z + W
=

X

−Z −W

we can form the solutions to the left and right rotation angles as

θλ =
1
2

tan−1

(
X

Z −W

)
− 1

2
tan−1

(
X

−Z −W

)

θρ =
1
2

tan−1

(
X

Z −W

)
+

1
2

tan−1

(
X

−Z −W

)
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Using the trigonometric half angle formulas and realizing the relation of the sum and difference, the

simplification defining cs = ‘cosine of the sum’, cd = ‘cosine of the difference’, ss, and sd of θλ and θρ

cd = −ss =
−Z −W√

(−Z −W )2 + X2
(4.26)

cs = sd =
Z −W√

(Z −W )2 + X2
(4.27)

can be used to provide the complete two transformation solution for

UH =
(√

CDX
)−1 (√

C D
)∗




√
X∗cλ −√Xsλ√
X∗sλ

√
Xcλ


 (4.28)

and, the two singular values

S[1, 1] =
1
2

(−Wcd −Wcs + Xss + Xsd − Zcd + Zcs)

S[2, 2] =
1
2

(−Wcd + Wcs −Xss + Xsd − Zcd − Zcs)

Since this implementation of the combined approach requires only the computation of a single 2x2

complex SVD to estimate a single signal pole and allow a single noise pole, we can place additional

assumptions on the above derivation to simplify the hardware requirements. First, the DSS algorithm

only requires the use of the U matrix since we are only interested in the poles and not the residues.

Thus, the singular values would only be used to determine the proper column of (4.28) to select for

further processing. By assuming that the input matrix is element normalized, we can factor a scalar

from the original matrix of equation (4.23), which will not affect the elements of U . Since the original

matrix is of the form

M =


 A B

C D


 =


 ejθa ejθb

ejθc ejθd


 (4.29)

it becomes clear that Z ≥ W ≥ 0 for all input matrices. Therefore, since cs > 0 and cd < 0, the [2,2]

singular value will always be larger than [1,1], indicating that we are only interested in two particular

elements of (4.28): [2,1] and [2,2]. By selecting elements [2,1] and [2,2] we are selecting the second

column of U1, which will always correspond to the largest singular value according to the assumptions.

Further implementing the DSS algorithm, we wish to solve (3.53) using the first and last row deleted

observability matrix, Ôs− and Ôs+. In this case, this solution requires a single element computation
1Note the Hermitian
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and no eigenvalue decomposition to find the pole of interest. By substituting (4.24) into (4.28) the

observability elements can be defined as

Ôs− = sλ

√
AC ∗ + BD ∗ ∗√CD

∗
= sλ

√
AC2D + BCD2

∗
(4.30)

Ôs+ = cλ

√
AC ∗ + BD ∗√CD

∗
= cλ

√
A(CCD) ∗ + B(CDD) ∗ (4.31)

and when solving for Ô−1
s− = 1/|Ôs−|ej arg[Ôs−] = e−j arg[Ôs−]/|Ôs−|, we only require the preservation of

the angle. This simplifies the inverse to a simple conjugate since, Ô ∗
s− = |Ôs−|e−j arg[Ôs−], leading to

Â = Ô−1
s−Ôs+ = Ô ∗

s−Ôs+ = sλcλ

√
AAC ∗C ∗ + 2ABC ∗D ∗ + BBD ∗D ∗ ∗ (4.32)

where sλcλ can be considered a scalar that will not effect the angle. If we assume that B = C due to

the Hankel structure, we can write

Â = sλcλ

√
AAC ∗C ∗ + 2AD ∗ + CCD ∗D ∗ ∗ (4.33)

as the final solution. The frequency estimate of the single sinusoid is then given by

f̂1 =
arg[Â]fdec

2π
(4.34)

where fdec = fs/256 = 390625 Hz is the decimated sample rate. To avoid the square root and conjugate

computation in hardware of equation (4.33), the operations can be moved into (4.34) after the angle

computation is complete. Since arg[
√· ∗] = −1

2 arg[·], a simple shift right by one and negate operator

can be used to compute the square root operator and conjugate. Thus, the final equation

f̂1 = arg[AAC ∗C ∗ + 2AD ∗ + CCD ∗D ∗]
−fdec

4π
(4.35)

describes the complete 2x2 complex SVD based DSS solution.

A hardware implementation of equation (4.34) was synthesized on a Altera DSP evaluation kit

with a EP2S60F1020C4ES high density FPGA. The fully parallel design requires three 36 bit complex

numbers representing the three matrix elements and provides a solution with a propagation delay of

36 clock cycles at 150 MHz. A 28 clock cycle fully parallel CORDIC is used for the angle computation

and 138 out of 288 DSP blocks are used for the complex multiplies and final scale operator. To increase

the accuracy of the angle computation, a fixed point autoscale block is used to optimize the bits used

for the angle computation. The block uses 138 out of 288 DSP blocks and 3625 out of 48352 (Adaptive

Look-Up Tables) ALUTs.
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4.1.3 Generating the Decimated Data Subset

As described in Section 3.3, generating the decimated data subset for the DSS algorithm requires

implementing the FFT, tuning, filtering, IFFT, and decimation blocks. Altera provides a complex FFT

IP Core that allows quick integration into the hardware design. Since 1024 samples are collected, we

choose a 1024 point FFT. Rather than implement an I/Q split filter to filter the positive frequencies,

the imaginary inputs are set to zero to perform a real streaming FFT on the incoming data samples.

Figure 4.1: Generating the decimated data for the FFT with DSS Algorithm

Figure 4.1 shows the block diagram for generating the decimated data subset for the DSS algorithm.

First, the ADC samples are counted and fed into the streaming FFT. The complex output is then stored

in a dual port RAM while the peak magnitude of the positive frequency spectra is found. Once the

entire FFT is stored in the dual port RAM, the location of the peak magnitude is used as the starting

point for the output stream. As the data is read from the output side of the dual port RAM, the

appropriate pre-calculated Hanning window weights are applied. The output of the multiplier block

now contains the tuned and filtered form of the input waveform in the frequency domain, which is

streamed into the IFFT block. While the output of the IFFT starts streaming, the sample number is

noted to extract the three complex samples that will be sent to the DSS algorithm.

4.1.4 Complete Implementation

The complete implementation on the Altera DSP evaluation kit contains the FFT with DSS algo-

rithm with several supporting elements of interest. The sinusoid used to test the algorithm is generated

by an Altera core based two frequency Numerically Controlled Oscillator (NCO). Each sinusoid is in-

dependently generated with an independent amplitude. Also, each independent NCO has the ability

to pulse modulate the output by turning on the sinusoid for a given number of clock cycles and then

turning off the sinusoid for a longer given number of clock cycles. This design mimics a simple pulsed

radar waveform.
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Figure 4.2: FFT with DSS Complete Hardware Implementation

Figure 4.2 shows the block diagram for the complete hardware implementation of the FFT with

DSS algorithm. The output of the pulse generating two sinusoid NCO drives the Digital to Analog

Converter (DAC), which is then used as the input to the Analog to Digital Converter (ADC). This

introduces realistic quantization, thermal, and environmental noise into the data path. The Low Pass

Filter (LPF) acts as an anti-aliasing filter and reduces the rise times of the sharp windowing of the pulse

generator, adding additional realism. Once digitized by the ADC, the noisy data set is processed by the

FFT with DSS algorithm as described in the above two sections and produces a result in approximately

4908 clock cycles at 100 MHz. The ADC and DAC clocks are 100 MHz, the core frequency estimator

clock is 100 MHz, and the NIOS embedded processor clock is 50 MHz. The maximum frequency of the

core clock in synthesis is 124 MHz.

If time t = 0 specifies the time when the streaming FFT begins, the pipelined implementation

generates a series of events at various stages in the algorithm before the frequency estimate is complete.

This evaluation allows a simple view into the complex pipelining structure of the implementation.

Table 4.1 shows the clock cycle and associated event as the frequency estimate is calculated. Also, this

implementation is able to sustain a throughput of 97656.25 solutions per second, or a new solution every

1024 clock cycles at 100 MHz. Optimizations to this implementation are obvious, such as computing a

512 point FFT rather than 1024 and identifying the peak of 512 samples since the input stream is real.
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Clock cycle, t Hardware Event
0 14-bit 1024 point streaming FFT begins

949 FFT output stream starts
965 Tuning block begins
1995 Zero phase filter starts
2000 18-bit 1024 point streaming IFFT starts
4101 IFFT output stream begins
4871 Complex 2x2 SVD based DSS begins
4908 Frequency estimate complete

Table 4.1: FFT with DSS hardware event table

A significant speed improvement to the implementation could be introduced by recognizing that only 3

samples are required for the complex 2x2 SVD based DSS block based on 7 filtered samples. Computing

a custom IFFT operator could potentially yield a replacement for the IFFT/decimate components with

a single component that requires no multiplies and roughly 15 clock cycles. See Appendix B for more

details. For this demonstration, we are only concerned with the statistics and will not discuss further

hardware optimizations.

An Altera NIOS embedded processor provides the control of the dual port RAM tap points, NCO,

and access by the user through the USB Blaster cable to the NIOS II Embedded Processor Integrated

Development Environment (IDE) on a laptop. The external RAM contains both instruction and data

memories as well as the video memory used to drive the VGA monitor. Since a simple example using

the VGA monitor was available with the evaluation kit, it was copied into this design for a real time

verification using the dual port RAM tap points and a custom character set to display the statistics.

Upon initialization, the NIOS processor initiates a hardware reset to the external logic, disables the

NCO and clears external memory. The next step is to enable the NCO for a small duration, toggle the

FFT with DSS algorithm and dual port RAMs, and evaluate the estimated frequency. The remaining

statistics, including expected value of the frequency estimate and the MSE, are computed in a similar

manner to evaluate the effectiveness of the hardware. The next Section discusses the MSE statistics of

the FFT with DSS hardware implementation.

The DSP evaluation kit contains an EP2S60F1020C4ES Stratix II FPGA, which in February 2006

cost roughly $1,100 dollars. Logic Cells (LC) in a Stratix II device contains both a register portion

and a combinational portion. An Adaptive Look Up Table (ALUT) consists of a flip flop (lc ff)

and a combinational (lc comb) section, which have the option of driving various innerconnects. The

EP2S60F1020C4ES has a total of 48,352 ALUTs (consisting of 52,506 registers), 2,544,192 memory
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Figure 4.3: Picture of hardware setup

bits, and 288 9-bit DSP multiply blocks.

LC Registers LC Combinationals Memory Bits DSP Elements
NIOS 3036 4521 63104 8
Multi Freq NCO 3941 2898 14336 4
14-bit Streaming FFT 4135 3020 165016 18
Shift and Filter Block 2901 1264 57456 8
18-bit Streaming IFFT 4985 3456 175256 36
2x2 Complex SVD Based DSS 2798 4705 0 144

Total resource usage including miscellaneous components
Registers ALUTs Memory Bits DSP Elements

Total Usage 22,525 (42%) 29,714 (61%) 503,840 (19%) 222 (77%)

Table 4.2: Stratix II FPGA hardware resource usage

Table 4.2 shows the hardware resource usage of the FFT with DSS implementation. The NIOS
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embedded processor is quite small and does not require much internal FPGA memory since a large

external SRAM and SDRAM are used for code, data, and video memory. The multi-frequency NCO,

implemented two independent Altera core CORDIC based oscillators, requires about the same number

of registers as the 1024 point streaming FFT and IFFT Altera cores. The main DSP block usage is

the fully parallel 2x2 complex SVD based DSS algorithm with a custom CORDIC block. The entire

design requires 61 percent ALUT usage, 19 percent internal memory usage, and 77 percent DSP block

usage.

4.2 Combined Approach Results

In order to complete a comparison of our hardware implementation with that of the theoretical

CRB, we must be able to estimate the current SNR based on the collected hardware FFT data in the

NIOS embedded processor. Toner [25] describes a method to approximate the SNR of a single real

sinusoid from an FFT as

SNR = 10 log10


 |X(j)|2

∑N−1
2

k=1,k 6=j |X(k)|2


 (4.36)

where X(j) is the N-point FFT as defined in (3.2) and j ∈ [0, N−1
2 ] defines the single bin that contains

majority of the signal power. Clearly, this formula describes the single frequency signal power over the

noise power where normalization factors have canceled. Also, if the frequency of interest deviates from

the center of the bin significantly, it introduces large unwanted errors in the estimate of the SNR.

The general single quantizer model would consist of a single signal with additive white Gaussian

noise that does not change as a function of amplitude. In our setup, for large signals, the non linearity

in noise introduced by quantization grows approximately as a δ2

12 additive noise on top of thermal and

environmental influences, where δ is the quantizer step size. The entire model of quantization, thermal,

and other noise inducing influences can be verified by measurement, which can provide a meaningful

solution in this context.

To reduce the risk of introducing large SNR errors into this evaluation, we estimate the SNR at

many different amplitude settings for a single center bin frequency generated by the NCO. Using these

data, it is possible to estimate a logarithmic function that best describes this curve. Therefore, when

future test sinusoids are not in the center of the bin, a reasonably accurate SNR estimate can be

computed. The NCO amplitude setting can then be evaluated using this derived function to compute

the estimated SNR. Figure 4.4 shows a 11th order log10 Least Squares fit to the set of data points. The
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Figure 4.4: NCO linear amplitude to SNR fit with 10th order log10

fit produces results that have errors no larger than about 1 dB, sufficient to proceed with the statistical

analysis.

The hardware MSE was computed by evaluating 64 frequency estimates at various NCO amplitude

settings. Each 64 point block of estimates along with the truth from the NCO setting were used to

compute the E[(f − f̂)2] (MSE), V ar[(f − f̂)], E[f̂ ], and V ar[f̂ ]. Each estimated SNR was rounded to

the nearest integer and each statistical computation was averaged for identical integer SNRs. Figure

4.5 shows the FFT with DSS hardware MSE computed on the NIOS embedded processor using double

precision floating point numbers compared to the simulated MSE for the hardware setup described in

this chapter. As shown, the results are in excellent agreement for input frequencies in the center and

near the center of the FFT bin. Zero point two times bsz off center of bin implies the frequency is

±0.2 bsz displaced from the center of the bin, where bsz = fs

M is the bin size in Hz, fs is the sample

rate, and M is the number of FFT points. In this implementation, the center of the bin describes a

NCO output frequency chosen by fout = bsz(bn + 1
2), where bn is the bin number.

Figure 4.6 compares the hardware computed MSE and the simulated MSE for an input frequency

that is 0.4 ∗ bsz off the center of the bin. While evaluating the hardware it became evident that

the current temperature condition of the ADC plays an important role in estimating the frequency

accurately. The top of Figure 4.6 shows the computed hardware MSE under cool conditions, or just

when starting the hardware. The bottom of Figure 4.6 shows the condition when the ADC is not fitted



61

−20 −10 0 10 20 30

−140

−120

−100

−80

−60

−40

SNR (dB)

10
 L

og
10

( 
1/

M
S

E
 )

CRB
Hardware MSE
Simulated MSE

−20 −10 0 10 20 30

−140

−120

−100

−80

−60

−40

SNR (dB)

10
 L

og
10

( 
1/

M
S

E
 )

CRB
Hardware MSE
Simulated MSE

Figure 4.5: Input frequency in (top) center of bin and (bottom) 0.2 ∗ bsz off center of bin

properly with heat dissipation devices for this application. Since the calculation method for the SNR

remains the same and the two computed MSEs are nearly identical except a constant MSE degradation,

it became clear that the noise floor of the ADC changes somewhat significantly as the device heats.

Since V ar[f − f̂ ] = MSE −E2[err] = E[(f − f̂)2]−E2[f − f̂ ] is close to the CRB, it is interesting

to notice that E[f − f̂ ] deviates from zero significantly under different conditions, leading to larger

MSE errors. Figure 4.7 shows a 64 sample average of the error in the frequency estimate for different

input frequencies and SNR. When the input frequency is close to the center of the bin, the average
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Figure 4.6: Point four times bsz off center of bin with (top) cool ADC (bottom) hot ADC

error is very close to zero. Frequencies that are closer to the edge of the bin result in larger average

error. Also, in the case where the input frequency is 0.4 ∗ bsz from the center of the bin, there is a bit

of an overshoot from zero in the higher SNRs, which causes the rapid separation from the CRB around

25 dB SNR as seen in Figure 4.6. Under hot ADC conditions, the average error is clearly larger and

takes slightly longer to correct as SNR increases.
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Figure 4.7: E[f − f̂ ] for different input frequencies vs SNR

4.3 Expanding the Combined Implementation

The hardware implementation described in this chapter requires 1024 real ADC samples, which are

filtered and decimated into just 3 samples needed to populate a 2x2 Hankel matrix. Optimizations

specific to this scenario were produced to significantly simplify the hardware design. Expansions to the

combined implementation using different sample rates and longer time integrations will not allow the

same assumptions that allowed the area optimizations for the unique 2x2 SVD case. If, however, the

different implementations were produced, the expected performance statistics can be generated.

Table 4.3 shows the statistics for the same implementation using different sample rates. The simula-

tions are similar to the those in Section 3.3.2, where the FFT with DSS (FWD) algorithm performance

was tested using a 1024 point sliding window over 10240 samples at various sample rates. The statistics

shown for the mean, standard deviation, and MSE were taken as the average of three input frequencies:

one in the center of the bin, one at 0.2 ∗ bsz from the center of the bin, and one 0.4 ∗ bsz from the

center of the bin2. Similar to the hardware and simulator MSE plots seen in Figure 4.5, there appears

to be a constant offset from the CRB of about 5-6 dB near 0 dB SNR for all cases as well as a point

in the larger SNRs where the MSE becomes bounded. Appendix C contains the expected performance

statistics in the form of tables similar to Table 4.3 for many possible combinations of several available
2bsz is the bin size.
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1024 real samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.87 -82.52 -155.25 -94.56
-10 -129.54 -77.52 -131.37 -89.56
-5 543 7939 -78.35 -72.52 3216 30038 -89.29 -84.56
0 634 4240 -72.57 -67.52 1241 17395 -84.99 -79.56
10 90 1383 -62.88 -57.52 647 5513 -74.91 -69.56
20 201 409 -54.06 -47.52 546 1552 -64.91 -59.56
30 142 141 -48.05 -37.52 546 547 -59.98 -49.56
40 136 46 -46.57 -27.52 529 164 -58.43 -39.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -167.51 -106.04 -169.45 -108.54
-10 -152.41 -101.04 -142.49 -103.54
-5 5616 116986 -101.50 -96.04 30789 164221 -104.69 -98.54
0 1430 64205 -96.26 -91.04 5657 88287 -98.85 -93.54
10 2569 20349 -86.24 -81.04 2421 28320 -89.08 -83.54
20 2036 6514 -77.12 -71.04 3104 8355 -79.65 -73.54
30 2068 2080 -71.41 -61.04 2635 2839 -73.72 -63.54
40 2049 642 -70.17 -51.04 2610 857 -72.50 -53.54

Table 4.3: 1024 real data samples decimated into a 2x2 complex rank revealing SVD

ADC sample rates, real or complex data, different SNRs, number of samples collected, and the size of

the complex SVD required.

4.4 Other Implementations

Based on the DFT derivation in Chapter 3, the Radix-2 FFT would be quite easy to implement in

a parallel form using either of the two common Radix-2 or Radix-4 algorithms. Each stage could be

pipelined to easily provide a streaming FFT on the order of several thousand points. Xilinx and Altera

both provide FFT cores that accomplish this task. The FFT algorithm provides an elegant solution to

the wideband frequency detection problem since a fast ADC sample stream could be polyphase filtered

and fed into a modified FFT algorithm. This could provide a rapid, coarse frequency solution for a

broad bandwith. The Least Squares solution shown in Section 3.1.2 requires autocorrelation, a pseudo

inverse using a NxP+1 SVD, then solving a system of equations for the ak parameters, and finally a
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partial fraction expansion formulation. The computational burden is quite large for this implementation

and as seen from its performance in Section 3.2, it doesn’t make sense to implement this method for

rapid frequency estimation.
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Chapter 5

Future Work

Additional work should be conducted to further explore and develop the area of rapid frequency

estimation. The FFT with DSS algorithm as implemented here can provide practical performance

improvements to many applications. As the density and complexity of FPGAs continue to increase, it

will be worthwhile to extend the simplified 2x2 complex SVD implementation to a larger matrix. This

would also allow multiple sinusoidal frequencies to be estimated in or around the single FFT bin of

interest. This section will describe a systolic hardware architecture developed at Rice University and

then extend it to a Compact Architecture that allows a complex SVD to be implemented using the

resources available.

5.1 Compact Architecture for a Complex SVD

The bulk of the computation time for the Direct State Space (DSS) algorithm is the computation of

the complex Singular Value Decomposition (SVD). There exists a vast repository of resources dedicated

to the computation of both real and complex SVDs. Since the selected method requires a complex

implementation, we will focus our attention first on the real systolic processor array structure introduced

by Brent, Luk and Van Loan [26] and expanded by Cavallaro and Luk [12], Yang and Bohme [27], and

Ahmedsaid, et al. [28]. This structure has been expanded to compute a complex SVD by Hsiao and

Delosme [13], Adams et. al [29], Hemkumar [30], and Kota [10] [31], and in some cases, the unitary U

and V matrices. A few additional resources which lead to this development include [32] [33] [34] [35]

[36] [37] [38] [39] [40] and [30]. Following the complex systolic SVD architecture, a adaptive hardware

architecture is introduced. This architecture is adaptive in the sense that several variations exist that

utilize the resources available, increasing throughput performance as more resources are used.



67

5.1.1 Solving a Complex SVD Using a Compact Architecture

Several methods for solving the Singular Value Decomposition (SVD) have been presented in litera-

ture. In Section 2.3 an introduction to a hardware friendly method for real matrices was provided using

Jacobi rotation matrices using equation (2.19). Brent, Luk, and Van Loan [26] have shown a parallel

algorithm to reduce the computation of a real SVD of a n× n matrix from O(n3) to O(n log n) using
(

n
2

)2 Processing Elements (PEs). Expanding on these implementations, many references cited in the

introduction have presented systolic architecture solutions for complex Singular Value Decompositions.

This section extends the derivation of the two step transformation to solve a 2x2 complex SVD in the

previous chapter, which is the basic building block of an nxn systolic complex SVD. The linear algebra is

then manipulated to fit a convenient form for the well developed CORDIC algorithm that is commonly

used for computing rotation based functions in dedicated hardware. Once the single Processing Element

(PE) structure is defined for both diagonal and off diagonal elements, a new architecture is presented

to compute large complex SVDs in a flexible structure using a Compact Systolic Architecture.

Solving the Complex SVD Rotations using the CORDIC Algorithm

The computation of the rotation angles are trivial using the CORDIC algorithm as described in

Section 2.4. It is necessary to compute the angles and magnitudes of selected matrix elements. In

this section, several parallel hardware structures are presented for the computation of the rotation

angles as well as the matrix elements for the left and right rotation matrices for the first and second

transformations. Parallel structures are implemented in order to allow the implementation of the

Compact Systolic Architecture for the complex SVD. The number above each block in the following

figures indicates the number of pipeline stages required to meet the 150 MHz minimum clock speed in

an Altera Stratix II FPGA.

Figure 5.1 illustrates a parallel hardware structure that uses the CORDIC algorithm to compute

the rotation angles for the first transformation following equations (4.6) and (4.10). The inputs to the

hardware block are the elements m2,1 = Cejθc and m2,2 = Dejθd , from which the magnitude and angle

are directly computed. Using the ratio of the magnitudes as derived for (4.10), the inverse tangent

is computed using another CORDIC block. The phases of the input elements are shifted, inverted,

subtracted, and pipelined as necessary to produce outputs that coincide with the parameter θψ.

Similar to the first transformation, the second transformation requires the computation of the

angle and magnitude. Figure 5.2 shows the block diagram for a parallel hardware structure needed to
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Figure 5.1: First transformation rotation angle computation structure

Figure 5.2: Second transformation rotation angle computation structure

compute the rotation angles of the second transformation following the equations just before (4.16),

equation (4.18), and (4.19). The angle and magnitude of the inputs, w1,1 = Wejθw , w1,2 = Xejθx , and

w2,2 = Z, are first determined. Arriving at the same clock cycle after the computation, the phases are

added, inverted, shifted, and pipelined as necessary to compute the exponential angles θζ and θω. The

magnitudes are added, subtracted, and processed by another inverse tangent parallel CORDIC block.

The solutions of the inverse tangent are used to solve the remaining left and right rotation angles. All

the outputs are pipelined accordingly to produce a rotation angle precisely on the same clock cycle for

all the inputs.

Once the rotation angles have been computed using the CORDIC algorithm, it is necessary to

compute the matrix elements of equations (4.3) and (4.11). In order to make use of this simple

iterative structure of the CORDIC, it is necessary to manipulate the complex 2x2 SVD arithmetic into
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a CORDIC form using sin(), cos(), tan−1(), and
√

x2 + y2. Starting with the first transformation in

equation (4.3), we can redefine the left rotation matrix as

R1l ,


 cφejθα −sφejθβ

sφejθα cφejθβ


 (5.1)

where the indices 1l define the left rotation matrix of the first transformation. Similarly, the right

rotation is redefined as

R1r ,


 cψejθγ sψejθγ

−sψejθδ cψejθδ


 (5.2)

where the indices 1r define the right rotation matrix of the first transformation. Using the condition

θψ = 0 and θα = θβ defined in the derivation (4.7), R1l can be simplified to

R1l =


 ejθα 0

0 ejθβ


 =


 cos(θα) + j sin(θα) 0

0 cos(θα) + j sin(θα)


 (5.3)

which can be implemented using a single CORDIC block after the angle α has been computed using

(4.6). Similarly, we can solve for R1r using the condition θδ = −θγ

R1r =


 cψejθγ sψejθγ

−sψejθδ cψejθδ


 =


 cψcγ + j cψsγ sψcγ + j sψsγ

−sψcγ + j sψsγ cψcγ − j cψsγ


 (5.4)

and using trigonometric identities

R1r =


 x1r + j y1r z1r + j w1r

−z1r + j w1r x1r − j y1r


 (5.5)

where the duplicated real and imaginary components are defined as

w1r =
1
2
cos(θγ − θψ)− 1

2
cos(θγ + θψ)

x1r =
1
2
cos(θγ + θψ) +

1
2
cos(θγ − θψ)

y1r =
1
2
sin(θγ + θψ) +

1
2
sin(θγ − θψ)

z1r =
1
2
sin(θγ + θψ)− 1

2
sin(θγ − θψ) (5.6)

which requires two CORDIC blocks to compute the sin() and cos() of θγ±θψ. Once the sin() and cos()

terms are computed, the computations of (5.6) clearly conform to an attractive hardware solution using

only a few extra shifts, additions, and subtractions. Thus, the implementation shown resolving R1l

and R1r can be completed using hardware shifts and additions, saving the limited dedicated multiplier

blocks for complex multiplication of the matrices.



70

Figure 5.3: First transformation matrix element computation structure

A hardware block diagram for the computation of the rotation matrix elements for the first trans-

formation is seen in Figure 5.3. Each of the previously computed rotation angles using the CORDIC

algorithm are passed as inputs. After adding and subtracting the rotation angles as described above,

they are passed to the sin() and cos() CORDIC blocks. The outputs of the CORDIC blocks are then

shifted and inverted as necessary to produce the matrix elements of (5.3) and (5.6). A hardware sim-

ulation of this block was implemented in a high density Altera Stratix II using a 36 bit fixed point

complex representation1. The fully parallel design synthesized with a maximum clock rate of about

170 MHz and has a propagation delay of 41 clock cycles.

A similar derivation can be used to define the simplified solutions to the second transformation.

Redefining the left rotation matrix from (4.11) as

R2l ,


 cλejθε −sλejθη

sλejθε cλejθη


 (5.7)

and the right rotation matrix as

R2r ,


 cρe

jθζ sρe
jθζ

−sρe
jθω cρe

jθω


 (5.8)

where the indices 2l and 2r indicate the left and right rotation matrix of the second transformation.

Using the same procedure as above for the first transformation, it is simple to show that since θη = −θε,

R2l =


 R2lx + j R2lz −R2ly + j R2lw

R2ly + j R2lw R2lx − j R2lz


 (5.9)

118 bits for the real and 18 bits for the imaginary
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where the real and imaginary components are defined as

R2lw =
1
2
cos(θλ − θε)− 1

2
cos(θλ + θε)

R2lx =
1
2
cos(θλ + θε) +

1
2
cos(θλ − θε)

R2ly =
1
2
sin(θλ + θε) +

1
2
sin(θλ − θε)

R2lz =
1
2
sin(θλ + θε)− 1

2
sin(θλ − θε) (5.10)

which are implemented with two CORDIC sin() and cos() blocks. Since there is no simple symmetry

in the right rotation matrix of the second transformation, it can be shown to be

R2r =


 R2rzx + j R2rzz R2rzy + j R2rzw

−R2rwy − j R2rww R2rwx + j R2rwz


 (5.11)

where the components are

R2rzw =
1
2
cos(θρ − θζ)− 1

2
cos(θρ + θζ)

R2rzx =
1
2
cos(θρ + θζ) +

1
2
cos(θρ − θζ)

R2rzy =
1
2
sin(θρ + θζ) +

1
2
sin(θρ − θζ)

R2rzz =
1
2
sin(θρ + θζ)− 1

2
sin(θρ − θζ) (5.12)

and

R2rww =
1
2
cos(θρ − θω)− 1

2
cos(θρ + θω)

R2rwx =
1
2
cos(θρ + θω) +

1
2
cos(θρ − θω)

R2rwy =
1
2
sin(θρ + θω) +

1
2
sin(θρ − θω)

R2rwz =
1
2
sin(θρ + θω)− 1

2
sin(θρ − θω) (5.13)

which can be expressed using four CORDIC sin() and cos() blocks. The expressions to compute the

real and imaginary components for both the left and right rotation matrices for the first and second

transformation can be computed using shifts and additions. This makes this implementation attractive

for a FPGA hardware implementation.

Figure 5.4 shows a hardware block diagram for the computation of the rotation matrix elements

for the second transformation. Each of the previously computed rotation angles for the second trans-

formation are applied as inputs. After adding and subtracting the rotation angles as described above,
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Figure 5.4: Second transformation matrix element computation structure

they are passed to the sin() and cos() CORDIC blocks. The outputs of the CORDIC blocks are then

shifted and inverted as necessary to produce the matrix elements of (5.10) to (5.13). It is noteworthy to

point out that each hardware structure presented is fully parallel. The hardware structures to compute

the rotation angles require nearly the same number of clock cycles while the number of clock cycles to

compute the matrix elements are exactly the same. It will become evident that the parallel structure

of these hardware components is required in the implementation of the Compact Systolic Architecture

for the complex SVD. This portion of the hardware synthesized with a maximum clock rate of 170

MHz and a 41 clock cycle propagation delay.

Completing the Complex 2x2 SVD using the CORDIC Algorithm

In the previous section, we described the necessary modifications to the left and right rotation

matrices to conform to the CORDIC Algorithm. To complete the 2x2 SVD, we must solve the matrices

of equation (4.3) and (4.11) for the singular values and accumulated left rotation matrices, U . Thus,

the solution to the first transformation can be computed using the notation of (5.6) as

w1,1 = (cα + j sα)
[
m1,1(x1r + j y1r) + m1,2(−z1r + j w1r)

]

w1,2 = (cα + j sα)
[
m1,1(z1r + j w1r) + m1,2(x1r − j y1r)

]

w2,1 = (cα + j sα)
[
m2,1(x1r + j y1r) + m2,2(−z1r + j w1r)

]

w2,2 = (cα + j sα)
[
m2,1(z1r + j w1r) + m2,2(x1r − j y1r)

]
(5.14)
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where m1,1 to m2,2 define the elements of the complex input matrix and w1,1 to w2,2 define the elements

of the solution. This structure can be used to compute both the left rotation matrix as well as aid in

the computation of the singular values. Section 5.1.1 describes the systolic architecture that enables

the dual use. When computing the singular values using the second transformation, as equation (4.11)

suggests, the form of the matrix will be

 w1,1 w1,2

w2,1 w2,2


 =


 Wejθw Xejθx

0 Z




where w2,1 = 0 and =[w2,2] = 02. As will be discussed in the following sections, when computing the

accumulation of the left rotation matrices, U, the elements w1,1 to w2,2 will generally be arbitrary and

complex.

The second transformation, using the notation of (5.10) to (5.13), can be described as

s1,1 = (R2rzx + j R2rzz)
[
w1,1(R2lx + j R2lz) + w2,1(−R2ly + j R2lw)

]

+ (−R2rwy − j R2rww)
[
w1,2(R2lx + j R2lz) + w2,2(−R2ly + j R2lw)

]

s1,2 = (R2rzy + j R2rzw)
[
w1,1(R2lx + j R2lz) + w2,1(−R2ly + j R2lw)

]

+ (R2rwx + j R2rwz)
[
w1,2(R2lx + j R2lz) + w2,2(−R2ly + j R2lw)

]

s2,1 = (R2rzx + j R2rzz)
[
w1,1(R2ly + j R2lw) + w2,1(R2lx − j R2lz)

]

+ (−R2rwy − j R2rww)
[
w1,2(R2ly + j R2lw) + w2,2(R2lx − j R2lz)

]

s2,2 = (R2rzy + j R2rzw)
[
w1,1(R2ly + j R2lw) + w2,1(R2lx − j R2lz)

]

+ (R2rwx + j R2rwz)
[
w1,2(R2ly + j R2lw) + w2,2(R2lx − j R2lz)

]
(5.15)

where w1,1 to w2,2 define the elements of the complex input matrix from the first transformation and

s1,1 to s2,2 define the elements of the solution. This structure is used only to compute the singular

values from the solution of the first transformation matrix. As the next section illustrates, the first

multiplier structure can be used to compute the left rotation matrix, U . When computing the singular

values, as equation (4.11) states, the form of the solution matrix will be

 s1,1 s1,2

s2,1 s2,2


 =


 P 0

0 Q




2=[·] is the imaginary component



74

where s1,2 and s2,1 are zero and the diagonal elements are real. This simplifies the hardware structure

of the equations in (5.15) since s1,2 and s2,1 are zero and need not be computed. Also, since this

structure is only required for the singular values, we can assume w2,1 is zero and w2,2 is real, further

simplifying the demanding multiplier structure.

Figure 5.5: Basic hardware multiply-add structure

For the general implementation, we generate a basic hardware multiply-add component seen in

Figure 5.5 where w, x, y, z, and a are complex. A single implementation of this structure is required

for each of the of the first transformation elements, w1,1 to w2,2. For the second transformation, we

only require portions of the basic multiply-add block. For the diagonal elements, s1,1 and s2,2, two

basic modified multiply-add blocks are required in addition to a complex adder. Some authors prefer

to implement the entire structure and allow the compiler to optimize away the unnecessary multipliers,

logic elements, and registers.

Systolic Architecture for a Complex SVD

A common approach to computing a large SVD from many small 2x2 SVDs is using a systolic array

of processors. Brent, Luk and Van Loan [26] introduced a systolic array method for real matrices,

which was extended to the complex case by several authors including Hemkumar [30].

In general, the systolic array architecture requires
(

n
2

)2 Processing Elements (PEs) to compute an

nxn complex SVD. Figure 5.6 shows a systolic architecture for computing a 8x8 complex SVD. Each

diagonal processing element computes the two transformation based 2x2 complex SVD described in

the previous section. The rotation angles are then passed along the horizontal and vertical connections

between PEs. Each non-diagonal processing element applies the rotation angles as they are received,
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Figure 5.6: Systolic architecture for a complex SVD

and then upon completion of a single sub-sweep, the elements among the processing elements are

swapped in a specific manner to make the diagonal element in the processor cluster converge to the

singular values. Once the systolic cluster completes n− 1 sub-sweeps and the same starting element is

swapped back to its original starting position, a whole sweep is complete.

Figure 5.7 shows the sweep pattern for the 8x8 complex systolic SVD structure, where Σ1 indicates

computing the first transformation and Σ2 indicates the processor is computing the second transfor-

mation. As mentioned above, the diagonal elements begin the first transformation, after which the

rotation parameters are passed to the horizontal and vertical neighbors. Similarly, the second trans-

formation immediately follows, along with the computation of the U matrix. It is left to the reader to

refer to the many references cited in Section 5.1 for further information on real and complex systolic

arrays for computing SVDs.

Conventional single processor algorithms require O(n3) operations to compute the SVD. The clear

advantage of this systolic architecture is that a real SVD in this type of parallel systolic architecture

requires roughly O(n log(n)) operations, where log(n) is the number of sweeps required. Based on

simulations by Hemkumar [30], the complex systolic architecture requires slightly more sweeps than

log(n).

Compact Architecture for a Complex SVD

Generally, in a systolic architecture, a parallel implementation of the rotation computation de-

scribed in the previous section is undesirable due to the extremely large FPGA area requirements.
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Figure 5.7: Systolic architecture processor activity

Serial architectures for computing CORDIC rotations at each individual Processing Element (PE) are

common. The Compact Architecture for a Complex SVD presented in this section takes advantage of

the fully parallel nature for computing the first and second transformations, singular values, and U

matrix; all desirable for the DSS algorithm implementation.

Figure 5.8 shows the overview of the compact SVD architecture. The complex valued samples

resulting from the I/Q split of ADC samples are first stored into a FIFO with independent clocks to

allow the clock rate change from 100 MHz to 150 MHz. Once sufficient samples are stored in the

FIFO, the load logic builds the matrix format desired into the four dual port RAMs, one RAM per

element of a 2x2 PE. This allows the contents of an entire PE to be retrieved or stored in a single clock

cycle. Once the master state machine determines that the matrix is full, the elements of the diagonal

PEs are streamed through the fully parallel first and second transformations, storing the required

rotation parameters into many smaller dual port RAMs. After the rotation parameters are stored, the

entire contents of the recently loaded RAM are fed through a massively parallel multiple 2x2 matrix

multiplication, applying the correct rotation parameters at the appropriate clock cycle. The results are
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Figure 5.8: Block diagram for Compact Architecture for Complex SVD

streamed into a second temporary dual port RAM, from which the elements can be swapped at a higher

clock rate into the first dual port RAM, completing a single sub-sweep of the systolic architecture. If

the matrix size is nxn, roughly n−1 sub sweep iterations are required in order to compute a full sweep.

Duplicates of the architecture block can be added as area allows to increase the throughput of the

complex SVD engine. Rather than swapping the data elements from the second solution dual port

RAM into the first dual port RAM initially loaded with complex ADC samples, the solutions can be

swapped after a fixed number of iterations into a duplicate architecture. As the next section iterates,

a few additional architecture blocks can improve performance significantly.

Figure 5.9 looks more closely at the parallel implementation of the first and second transformations

using the hardware blocks detailed in Section 5.1.1. As mentioned above, the first step is to compute the

rotation parameters using the elements of the diagonal PEs. The bottom elements of each PE are first

streamed into the QT1 rots block to compute the rotation parameters of the first transformation, which

are stored in small dual port RAMs for later use. Also, while loading the first rotation parameters, the

first transformation elements, complex X, complex Y, and real Z are computed nearly simultaneously.

The solutions are immediately used to compute and store the second rotation parameters in a similar

manner. This fully parallel implementation has roughly a 180 clock cycle propagation delay and can

run faster than 150 MHz, after which each clock cycle produces a new set of rotation parameters from

the diagonal PEs. Once the rotation parameters are stored, the entire matrix memory of the four dual
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Figure 5.9: Fully parallel first and second transformations

port RAMs are streamed for processing through the massive parallel complex multiply chain. The

Look Up Tables (LUTs) are loaded with the correct addresses and timed to allow the transformation

matrices to be computed and applied to the matrix elements on the appropriate clock cycle as they

stream through the multiply chain.

If the U and V matrices are desired, a duplicate set of four dual port RAMs are required for each

matrix and the master control state machine needs to be modified to accommodate the streaming of

additional data through the parallel multiply structure.

5.1.2 Compact Complex SVD Architecture Results

The compact complex SVD architecture implementation allows large size matrices to be processed

using nearly the same number of Altera Stratix II DSP elements and Logic Elements (LEs). The

main cause of area increase is the amount of memory required to store the current working matrix

that converges to the singular values, the U matrix, the swap logic tables, and the additional rotation

parameters.

The estimated speed of several hardware implementations are compared to a MATLAB complex

SVD computation using a 2 Ghz processor with 2G of RAM in Figure 5.10. For matrices smaller than

64x64, the compact complex SVD architecture is expected to be faster than a single high end processor

running MATLAB. If d architecture blocks are implemented in a chain as described in the previous
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Figure 5.10: Compact complex SVD estimated speed vs MATLAB on 2Ghz with 2G RAM

section and the computed matrix elements are passed down the chain after 1
d of the sub sweeps are

complete, the expected performance improvement is initially quite dramatic. With just two architecture

blocks, a significant improvement can be seen in the computation time (throughput, not propagation

delay) of larger matrices. Each subsequent duplicate architecture block speeds the throughput by an

increasingly smaller amount. In every case, the real SVD is just slightly faster than the complex SVD,

but the area requirements are significantly more expensive for the complex SVD.

Figure 5.11: Compact complex SVD estimated area usage on Altera Stratix II

Figure 5.11 shows the estimated area required to compute the singular values and the U matrix

in a high density Altera Stratix II FPGA. The blue line in the plots indicate the real SVD expected
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area usage and the black lines indicate the expected complex SVD area usage. The lines closest to

zero ALU usage mark the smallest expected area usage in either the complex or real case indicate a

single architecture block, the second lowest marks two architecture blocks, and so on. It is clear that

the DSP and ALU area usage remain relatively constant given a specific number of architecture blocks

and matrix size, while the amount of memory increases very rapidly as the matrix size increases. This

makes sense since there are a fixed number of multipliers regardless of the size of the matrix. The

elements are just streamed through the parallel transformations and multiplications.

One drawback to this architecture is that the convergence of the singular values in the working

matrix make for several increasingly larger values and several increasingly smaller values, especially

in high SNR signal subspace estimation, where a single or several dominant singular values are much

larger than the smallest few singular values. This makes for a difficult fixed point implementation

since the accuracy of the transformations rely on near full precision. For example, assume there are

18 bits used for the real and 18 bit for the imaginary portion of each matrix element. If a 12 bit ADC

is used, there are about 6 additional bits the singluar values can grow. As the sub sweeps continue,

suppose the largest singular value grows to 17 bits, but the smallest singular value has shrank to 3

bits. When the transformations compute angles based on the large and small magnitudes, the results

will become increasingly inaccurate as the sub sweeps continue. Modifications, such as a floating point

implementation, would have to be made to make this architecture useful in signal subspace estimation

for large matrices. If applications exist where the singular values are known to be similar, a fixed point

implementation may be practical.
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Chapter 6

Summary and Conclusions

Frequency estimation plays an important role in many digital signal processing applications. Many

applications have benefited from discoveries over the last few decades ranging from the Fast Fourier

Transform (FFT) decades ago to modern spectral techniques. In this thesis, a technique has been

presented and implemented to provide a transition for a modern spectral method to various real time

applications, including Electronic Counter Measure (ECM) techniques.

A common method of frequency estimation, the FFT, was shown to have reasonable performance for

frequency estimation. It is an attractive option for FPGAs since the algorithm can be parallelized and

provides a solution faster than any other algorithm considered in this thesis with the same hardware.

In some cases, further accuracy is required, that is, an estimate that is closer to the CRB than the

FFT can provide. The Least Squares (LS) technique, which involves matching the input data points to

an all pole frequency domain model, requires far too many operations, including a large pseudo-inverse

and a partial fraction expansion. The Direct State Space (DSS) solution, wherein the collected data

samples are used to build a state space model to extract the poles, is an attractive option due to

the exceptional accuracy it provides. The large size Singular Value Decomposition (SVD) required to

estimate the signal subspace, however, can become impractical in many real time applications. This

led to the development of the Combined Approach, using both an FFT and the DSS algorithms.

The FFT with DSS algorithm first uses the FFT to approximately locate the areas of spectral

interest. Once the bins of interest are decided, each bin gets shifted in the frequency domain to DC,

where a zero phase Hanning filter is applied. The resultant waveform is converted back into the time

domain and decimated to fit a small size SVD for signal subspace approximation and state space pole

finding. A dramatic improvement in the Mean Square Error (MSE) of the estimates shown against the
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Cramer Rao Bound (CRB) in negative Signal to Noise Ratios (SNRs) is possible due to the filtering

operation. Effectively, the error in the FFT based solution is estimated using the high accuracy of the

DSS algorithm.

A hardware implementation of the FFT with DSS algorithm was constructed on a Altera Stratix

II DSP evaluation kit. The hardware implementation contained a simple Numerically Controlled

Oscillator (NCO), which generated a radar type pulsed waveform and realized it with a Digital to

Analog Converter (DAC). The low pass filtered version of the analog waveform was digitized and

passed to a 1024 point real streaming FFT. The peak magnitude of the FFT in the positive frequency

space was determined and used to stream the tuned and filtered waveform into a streaming IFFT. Just

three samples of the IFFT output were used in a fully parallel optimized 2x2 DSS realization. The

propagation delay through the hardware FWD implementation1 is 49.08 µs with a throughput of 10.24

µs using a 100 Mhz internal clock. Remarkably, using a fixed point hardware implementation and a

double precision floating point embedded processor to compute the statistics, the MSE of the frequency

estimates were in excellent agreement with simulated double precision floating point arithmetic. The

MSE of the estimate in both the hardware and software simulations were about 5 to 6 dB from the

CRB using 1024 samples in the calculation. The Tables are available in Appendix C that estimate the

performance of various expanded forms of this hardware implementation using different sample rates,

real or imaginary input data, SVD sizes, SNRs and number of samples collected.

The FFT with DSS hardware structure now allows large time integration applications with high

sample rates that demand accuracy to be implemented in real time. In areas such as Electronic Counter

Measures, where time is of the essence, these techniques can play a crucial role in providing accurate

frequency estimates to threat identification and ECM employment systems, increasing overall system

effectiveness.

1Obvious optimizations could reduce the propagation delay to roughly 30 µs and throughput to roughly 5 µs by
adjusting the FFT implementation
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Appendix A

Complex 2x2 SVD Derivation

Given an arbitrary complex matrix

M =


 A B

C D


 =


 Aejθa Bejθb

Cejθc Dejθd




we wish to solve the first transformation

 cφejθα −sφejθβ

sφejθα cφejθβ





 Aejθa Bejθb

Cejθc Dejθd





 cψejθγ sψejθγ

−sψejθδ cψejθδ


 =


 Wejθw Xejθx

0 Z


 (A.1)

for the following angles

θα = θβ = −θd + θc

2

θγ = −θδ =
θd − θc

2

θψ = tan−1

(
C

D

)

θφ = 0

Since

ejθβ = ejθα = e
−j
�

θd+θc
2

�
=
√

ejθd ejθc
∗

=
√

(D/D)(C/C)
∗

=
√

(DC)−1
∗√

DC
∗

ejθγ = e
j
�

θd−θc
2

�
=

√
ejθd (ejθc) ∗ =

√
(D/D)(C/C) ∗ =

√
(DC)−1

∗√
DC ∗

ejθδ = e
j
�−θd+θc

2

�
=

√
ejθc (ejθd) ∗ =

√
(C/C)(D/D) ∗ =

√
(DC)−1

∗√
CD ∗

cψ =
D√

D2 + C2

sψ =
C√

D2 + C2
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we can simplify the first transformation from equation (A.1) as

(√
(CD)−1

)2



√

DC
∗ 0

0
√

DC
∗





 A B

C D







D
√

DC ∗
√

D2+C2

C
√

DC ∗
√

D2+C2

−C
√

CD ∗
√

D2+C2

D
√

CD ∗
√

D2+C2


 =


 Wejθw Xejθx

0 Z




(
CD

√
D2 + C2

)−1



√

DC
∗ 0

0
√

DC
∗





 A B

C D





 D

√
DC ∗ C

√
DC ∗

−C
√

CD ∗ D
√

CD ∗




(
CD

√
D2 + C2

)−1


 A

√
DC

∗
B
√

DC
∗

C
√

DC
∗

D
√

DC
∗





 D

√
DC ∗ C

√
DC ∗

−C
√

CD ∗ D
√

CD ∗




(
CD

√
D2 + C2

)−1


 DA

√
DC

∗√
DC ∗ − CB

√
DC

∗√
CD ∗ CA

√
DC

∗√
DC ∗ + DB

√
DC

∗√
CD ∗

DC
√

DC
∗√

DC ∗ − CD
√

DC
∗√

CD ∗ CC
√

DC
∗√

DC ∗ + DD
√

DC
∗√

CD ∗




where since

(√
CD

)−1 √
DC

∗
= e

−j
�

θd+θc
2

�
=⇒

√
DC

∗
=

(√
CD

)
e
−j
�

θd+θc
2

�
(√

CD
)−1 √

DC ∗ = e
j
�

θd−θc
2

�
=⇒

√
DC ∗ =

(√
CD

)
e
j
�

θd−θc
2

�
(√

CD
)−1 √

CD ∗ = e
j
�−θd+θc

2

�
=⇒

√
CD ∗ =

(√
CD

)
e
j
�−θd+θc

2

�
the common terms can be computed ignoring the quadrant related errors since we are only interested

in the relation of the elements in U

√
DC

∗√
DC ∗ = CDe

−j
�

θd+θc
2

�
e
j
�

θd−θc
2

�
= CDe−jθc = CD (C ∗/C) = DC ∗

√
DC

∗√
CD ∗ = CDe

−j
�

θd+θc
2

�
e
j
�−θd+θc

2

�
= CDe−jθd = CD (D ∗/D) = CD ∗

simplifies the first transformation to

(
CD

√
D2 + C2

)−1


 D2A C∗ − C2B D∗ DCA C∗ + CDB D∗

D2C C∗ − C2D D∗ DCC C∗ + CDD D∗


 =


 Wejθw Xejθx

0 Z


 =


 W X

0 Z




Similar to first transformation, we begin the second transformation with the known set of equations

 cλejθε −sλejθη

sλejθε cλejθη





 Wejθw Xejθx

0 Z





 cρe

jθζ sρe
jθζ

−sρe
jθω cρe

jθω


 =


 P 0

0 Q



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with

θε = θω = −θx

2

θη =
θx

2

θζ =
θx

2
− θw

tan
(
θρ + θλ

)
=

X

Z −W

tan
(
θρ − θλ

)
= − X

Z + W
=

X

−Z −W

From the system

 1 1

−1 1





 θλ

θρ


 =


 tan−1

(
X

Z−W

)

tan−1
(

X
−Z−W

)




it is clear that

θλ =
1
2

tan−1

(
X

Z −W

)
− 1

2
tan−1

(
X

−Z −W

)

θρ =
1
2

tan−1

(
X

Z −W

)
+

1
2

tan−1

(
X

−Z −W

)

which will be used later to form cλ, sλ, cρ, sρ. First, using cs = ’cosine of the sum’, cd = ’cosine of the

difference’, ss, and sd of θλ and θρ

cd =
−Z −W√

(−Z −W )2 + X2

cs =
Z −W√

(Z −W )2 + X2

sd =
X√

(−Z −W )2 + X2
= cs

ss =
X√

(Z −W )2 + X2
= −cd

we can simplify to when Z ≤ W (we never need to consider the case when −Z < W since W,Z ≥
0 ∀W,Z ∈ <)

F1 = sin
[1
2
tan−1

( X

Z −W

)]
= −

√
(1 + cs)/2

F2 = cos
[1
2
tan−1

( X

Z −W

)]
=

√
(1− cs)/2

F3 = sin
[1
2
tan−1

( X

−Z −W

)]
= −

√
(1 + cd)/2

F4 = cos
[1
2
tan−1

( X

−Z −W

)]
=

√
(1− cd)/2
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else (Z > W )

F1 = sin
[1
2
tan−1

( X

Z −W

)]
=

√
(1− cs)/2

F2 = cos
[1
2
tan−1

( X

Z −W

)]
=

√
(1 + cs)/2

F3 = sin
[1
2
tan−1

( X

−Z −W

)]
= −

√
(1 + cd)/2

F4 = cos
[1
2
tan−1

( X

−Z −W

)]
=

√
(1− cd)/2

from which we can form

cρ = F2F4 − F1F3

sρ = F1F4 + F2F3

cλ = F2F4 + F1F3

sλ = F1F4 − F2F3

providing the complete two transformation solution for

UH =
(√

CDX
)−1 (√

C D
)∗




√
X∗cλ −√Xsλ√
X∗sλ

√
Xcλ




and

S =


 Wcρcλ −Xsρcλ + Zsρsλ Wsρcλ + Xcρcλ − Zcρsλ

Wcρsλ −Xsρsλ − Zsρcλ Wsρsλ + Xcρsλ + Zcρcλ




where the elements [1,1] and [2,2] are the singular values. In hardware, we can simplify as follows if

Z ≤ W

cλcρ = −1
2
cd − 1

2
cs

sλsρ = −1
2
cd +

1
2
cs

sλcρ = −1
2
ss +

1
2
sd

cλsρ = −1
2
ss − 1

2
sd

else (Z > W )

cλcρ = −1
2
cd +

1
2
cs

sλsρ = −1
2
cd − 1

2
cs

sλcρ =
1
2
ss +

1
2
sd

cλsρ =
1
2
ss − 1

2
sd
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which simplifies the singular values to

S[1, 1] =
1
2

(−Wcd −Wcs + Xss + Xsd − Zcd + Zcs)

S[2, 2] =
1
2

(−Wcd + Wcs −Xss + Xsd − Zcd − Zcs)

regardless of the relation of Z to W. This expression could then be modified to fit the hardware as

desired.
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Appendix B

IFFT and Decimate Hardware

Optimizations

Starting with the scaled IDFT formula

hk =
1
M

M−1∑

m=0

Hmej2πkm/M (B.1)

we wish to solve for samples k = 255, 511, 767 for the DSS algorithm. Selecting k = 256, 512, 768 to

minimize the expression, we can write the simplified operation in matrix notation as

[
h256 h512 h768

]
=

1
1024

[
H0 H1 H2 H1020 H1021 H1022 H1023

]
W (B.2)

where W is the IDFT operator

W =




1 1 1

ej π
2 ejπ ej 3π

2

ej 2π
2 ej2π ej 6π

2

ej 1020π
2 ej1020π ej

3(1020)π
2

ej 1021π
2 ej1021π ej

3(1021)π
2

ej 1022π
2 ej1022π ej

3(1022)π
2

ej 1023π
2 ej1023π ej

3(1023)π
2




=




1 1 1

j −1 −j

−1 1 −1

1 1 1

j −1 −j

−1 1 −1

−j −1 j




and the scaler term 1
1024 is unnecessary since we are only interested in the angle of the samples.

Clearly, no multiplies are required in hardware for the IFFT and decimate blocks using this formulation.

Simulations suggest that by selecting the three samples offset by one sample, no difference is seen in

the MSE performance.
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Appendix C

Hardware Expansion Tables

This Appendix includes the MATLAB simulated hardware expansion tables that describe the ex-

pected performance under various implementation conditions: real or complex input data samples,

decimating into a 2x2, 4x4, 8x8, 16x16, 32x32, or 64x64 complex signal subspace estimating SVD,

taking 128, 256, 512, 1024, 2048, 4096, or 8192 data samples, using 100, 400, 1500, or 2000 Mhz ADC

sampling clock rate, and in various SNR conditions from -15, -10, -5, 0, 10, 20, 30, and 40 dB. The

tables are organized first into increasing rank reviling SVD size from 2x2 all the way to 64x64, then by

complex or real input data, and then by number of data samples processed. The input frequency was

the same for each statistic produced, which included the average mean, standard deviation, and MSE.

The calculation shown in these tables is based the average statistics of three frequencies: one in the

center of the bin, one 0.2 bsz offset from the center, and one 0.4 bsz offset from the center of the bin,

where bsz is the FFT bin size.
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128 complex samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -147.70 -106.61 -158.73 -118.65
-10 -141.18 -101.61 -151.96 -113.65
-5 25411 142699 -103.11 -96.61 161755 584809 -115.57 -108.65
0 16796 64526 -96.32 -91.61 106717 288073 -109.57 -103.65
10 7095 18720 -85.98 -81.61 30121 80617 -98.57 -93.65
20 3025 6686 -77.34 -71.61 8181 31281 -90.25 -83.65
30 971 2213 -68.14 -61.61 6315 7630 -81.23 -73.65
40 1358 753 -65.88 -51.61 5618 2487 -78.53 -63.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -168.98 -130.13 -172.82 -132.63
-10 -167.18 -125.13 -164.45 -127.63
-5 731707 2235163 -127.40 -120.13 365445 2330735 -127.34 -122.63
0 216676 1056050 -120.52 -115.13 441403 1324221 -122.67 -117.63
10 101293 310109 -110.25 -105.13 198027 349119 -111.93 -107.63
20 25487 92304 -99.67 -95.13 22667 143055 -102.99 -97.63
30 11531 32036 -91.33 -85.13 29456 48207 -95.52 -87.63
40 18300 7069 -88.74 -75.13 20341 14996 -90.38 -77.63

Table C.1: 128 complex data samples decimated into a 2x2 complex rank revealing SVD
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256 complex samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.62 -97.58 -155.99 -109.62
-10 -138.62 -92.58 -146.90 -104.62
-5 11807 42096 -92.90 -87.58 13587 184791 -104.76 -99.62
0 4931 26167 -88.82 -82.58 15663 96698 -99.92 -94.62
10 1452 7988 -78.40 -72.58 4459 32510 -90.01 -84.62
20 728 1843 -65.90 -62.58 2944 9052 -80.13 -74.62
30 522 682 -60.21 -52.58 2327 3096 -73.07 -64.62
40 560 251 -58.81 -42.58 2101 868 -70.68 -54.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.97 -121.10 -171.91 -123.60
-10 -159.47 -116.10 -164.58 -118.60
-5 139132 713893 -117.25 -111.10 176567 878634 -119.19 -113.60
0 26825 360919 -111.70 -106.10 40572 527123 -114.61 -108.60
10 25444 106611 -101.26 -96.10 9303 135181 -102.68 -98.60
20 12094 37159 -91.97 -86.10 14444 48506 -94.77 -88.60
30 8143 12844 -84.65 -76.10 12183 16311 -87.48 -78.60
40 8203 3820 -82.34 -66.10 11524 4803 -85.14 -68.60

Table C.2: 256 complex data samples decimated into a 2x2 complex rank revealing SVD
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512 complex samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -142.24 -88.55 -154.27 -100.59
-10 3127 27759 -88.94 -83.55 5826 120268 -102.48 -95.59
-5 587 14564 -82.50 -78.55 6711 64287 -96.50 -90.59
0 187 8986 -79.32 -73.55 1819 33159 -90.66 -85.59
10 79 2672 -68.59 -63.55 1271 10383 -79.76 -75.59
20 424 826 -60.12 -53.55 1167 3289 -71.60 -65.59
30 258 262 -53.37 -43.55 1147 1120 -66.10 -55.59
40 267 80 -52.50 -33.55 1089 350 -64.64 -45.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -167.00 -112.07 -169.13 -114.57
-10 -150.64 -107.07 -134.65 -109.57
-5 19048 234133 -107.31 -102.07 46973 335266 -110.58 -104.57
0 11962 123025 -101.82 -97.07 18791 159828 -104.47 -99.57
10 5956 42200 -92.51 -87.07 7759 56335 -95.03 -89.57
20 5873 12864 -83.69 -77.07 7281 15952 -85.32 -79.57
30 4630 4039 -77.72 -67.07 5821 5408 -80.33 -69.57
40 3962 1385 -75.90 -57.07 5383 1518 -78.55 -59.57

Table C.3: 512 complex data samples decimated into a 2x2 complex rank revealing SVD
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1024 complex samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -135.93 -79.52 -149.01 -91.56
-10 979 10679 -80.82 -74.52 1096 41195 -92.42 -86.56
-5 298 5429 -74.86 -69.52 955 22631 -87.31 -81.56
0 383 3360 -70.57 -64.52 954 11855 -81.46 -76.56
10 238 1037 -60.91 -54.52 518 3790 -71.80 -66.56
20 143 291 -51.20 -44.52 557 1184 -63.31 -56.56
30 145 98 -47.43 -34.52 512 388 -58.93 -46.56
40 135 29 -46.46 -24.52 537 119 -58.48 -36.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -160.01 -103.04 -161.49 -105.54
-10 22608 153210 -103.71 -98.04 24484 202814 -106.23 -100.54
-5 7326 76631 -97.74 -93.04 2089 115252 -101.12 -95.54
0 4529 46501 -93.27 -88.04 1147 62166 -95.72 -90.54
10 2859 14311 -83.32 -78.04 1821 20250 -86.30 -80.54
20 2407 4666 -75.28 -68.04 3013 5939 -77.55 -70.54
30 2039 1438 -70.54 -58.04 2866 1804 -73.30 -60.54
40 2027 467 -70.06 -48.04 2661 585 -72.58 -50.54

Table C.4: 1024 complex data samples decimated into a 2x2 complex rank revealing SVD
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2048 complex samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -121.44 -70.49 1441 25629 -88.38 -82.53
-10 280 3495 -70.79 -65.49 894 12609 -81.90 -77.53
-5 60 1953 -65.70 -60.49 510 7637 -77.68 -72.53
0 140 1091 -60.75 -55.49 345 4188 -72.45 -67.53
10 91 338 -51.05 -45.49 247 1396 -63.24 -57.53
20 67 108 -43.40 -35.49 265 434 -55.43 -47.53
30 68 34 -40.88 -25.49 269 137 -52.64 -37.53
40 70 10 -40.47 -15.49 279 44 -52.45 -27.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.22 -94.01 -138.88 -96.51
-10 898 51214 -94.27 -89.01 1034 68311 -96.75 -91.51
-5 1984 28316 -88.99 -84.01 3450 39529 -92.11 -86.51
0 2018 15808 -83.95 -79.01 1142 21963 -86.64 -81.51
10 1301 5040 -74.66 -69.01 1313 7041 -77.19 -71.51
20 1110 1622 -67.07 -59.01 1384 2140 -69.57 -61.51
30 1023 492 -64.19 -49.01 1435 699 -67.03 -51.51
40 1007 159 -63.93 -39.01 1563 212 -66.43 -41.51

Table C.5: 2048 complex data samples decimated into a 2x2 complex rank revealing SVD
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4096 complex samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 118 2194 -66.93 -61.46 109 8825 -78.98 -73.50
-10 43 1209 -61.65 -56.46 164 4906 -73.84 -68.50
-5 50 681 -56.67 -51.46 204 2803 -68.96 -63.50
0 36 388 -51.83 -46.46 145 1524 -63.62 -58.50
10 28 123 -42.38 -36.46 155 471 -54.35 -48.50
20 49 39 -36.28 -26.46 183 150 -48.05 -38.50
30 49 12 -34.52 -16.46 200 49 -46.71 -28.50
40 52 4 -34.38 -6.46 208 15 -46.43 -18.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 1514 33750 -90.57 -84.98 1962 44241 -92.97 -87.48
-10 399 18089 -85.25 -79.98 570 24515 -87.92 -82.48
-5 297 9963 -80.04 -74.98 1137 13795 -82.87 -77.48
0 362 5719 -75.26 -69.98 678 7850 -77.92 -72.48
10 479 1846 -66.10 -59.98 610 2465 -68.43 -62.48
20 625 567 -59.49 -49.98 885 760 -62.38 -52.48
30 769 181 -58.02 -39.98 869 234 -60.47 -42.48
40 798 56 -57.90 -29.98 831 76 -60.40 -32.48

Table C.6: 4096 complex data samples decimated into a 2x2 complex rank revealing SVD
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8192 complex samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 19 772 -57.81 -52.43 91 3100 -69.92 -64.47
-10 17 421 -52.50 -47.43 104 1704 -64.66 -59.47
-5 18 242 -47.77 -42.43 74 991 -59.89 -54.47
0 23 134 -42.80 -37.43 78 543 -54.99 -49.47
10 25 42 -33.74 -27.43 118 174 -46.15 -39.47
20 34 14 -29.48 -17.43 137 54 -41.36 -29.47
30 46 4 -28.49 -7.43 178 17 -40.43 -19.47
40 48 1 -28.36 2.57 193 5 -40.40 -9.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 355 11699 -81.39 -75.95 383 15738 -84.00 -78.45
-10 336 6389 -76.12 -70.95 411 8603 -78.74 -73.45
-5 205 3596 -71.19 -65.95 479 4850 -73.76 -68.45
0 427 2036 -66.21 -60.95 666 2662 -68.73 -63.45
10 875 637 -57.42 -50.95 1034 862 -59.92 -53.45
20 1040 201 -52.84 -40.95 1050 259 -55.30 -43.45
30 1184 65 -52.03 -30.95 1093 85 -54.55 -33.45
40 1203 20 -51.90 -20.95 1098 27 -54.37 -23.45

Table C.7: 8192 complex data samples decimated into a 2x2 complex rank revealing SVD
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128 real samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -147.03 -109.61 -157.56 -121.65
-10 -146.21 -104.61 -157.95 -116.65
-5 -137.31 -99.61 -151.93 -111.65
0 28843 95755 -99.91 -94.61 111655 369802 -111.59 -106.65
10 7120 27687 -89.15 -84.61 37294 111930 -101.55 -96.65
20 2101 9198 -79.24 -74.61 5839 34877 -90.75 -86.65
30 1385 3005 -70.76 -64.61 7759 10935 -82.99 -76.65
40 1401 1048 -67.26 -54.61 5694 4475 -79.52 -66.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -168.97 -133.13 -173.06 -135.63
-10 -167.72 -128.13 -171.08 -130.63
-5 -162.61 -123.13 -166.43 -125.63
0 317423 1530590 -123.65 -118.13 731819 1923525 -126.22 -120.63
10 32356 467561 -113.38 -108.13 274405 525609 -115.40 -110.63
20 26035 130931 -102.40 -98.13 40245 150554 -103.69 -100.63
30 20556 47695 -94.29 -88.13 34235 57265 -96.56 -90.63
40 15292 15262 -89.49 -78.13 20779 18823 -91.19 -80.63

Table C.8: 128 real data samples decimated into a 2x2 complex rank revealing SVD
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256 real samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -147.01 -100.58 -157.06 -112.62
-10 -142.58 -95.58 -155.76 -107.62
-5 -128.40 -90.58 66443 259862 -108.47 -102.62
0 9633 33824 -90.90 -85.58 19004 146060 -103.49 -97.62
10 1519 10918 -81.19 -75.58 4951 45269 -93.05 -87.62
20 565 3328 -70.86 -65.58 6279 13851 -84.24 -77.62
30 484 1164 -62.44 -55.58 1842 4799 -74.42 -67.62
40 596 372 -59.81 -45.58 2143 1353 -71.12 -57.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.43 -124.10 -172.26 -126.60
-10 -165.81 -119.10 -170.48 -121.60
-5 154962 1391004 -119.82 -114.10 -159.19 -116.60
0 64884 554777 -114.95 -109.10 103223 722311 -116.95 -111.60
10 54768 145745 -103.91 -99.10 27316 228803 -106.79 -101.60
20 13236 56397 -95.43 -89.10 5849 75059 -97.37 -91.60
30 8579 15440 -85.78 -79.10 12697 21955 -89.13 -81.60
40 8316 5280 -82.92 -69.10 10425 6369 -84.76 -71.60

Table C.9: 256 real data samples decimated into a 2x2 complex rank revealing SVD
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512 real samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.11 -91.55 -157.50 -103.59
-10 -138.77 -86.55 -152.66 -98.59
-5 1709 21697 -86.86 -81.55 7280 90296 -98.86 -93.59
0 3175 13433 -83.00 -76.55 7874 54003 -94.37 -88.59
10 292 3573 -70.93 -66.55 439 14480 -83.28 -78.59
20 332 1101 -61.32 -56.55 940 4807 -73.58 -68.59
30 294 377 -54.99 -46.55 1195 1468 -67.14 -58.59
40 271 126 -52.77 -36.55 1101 487 -64.77 -48.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -168.25 -115.07 -171.21 -117.57
-10 -159.73 -110.07 -165.95 -112.57
-5 84208 363270 -111.57 -105.07 21827 466224 -113.28 -107.57
0 16753 178191 -104.95 -100.07 35024 253364 -108.12 -102.57
10 5418 61441 -95.64 -90.07 6737 73077 -97.58 -92.57
20 4334 18666 -85.63 -80.07 5644 26321 -88.93 -82.57
30 4165 5607 -78.54 -70.07 6284 8355 -81.76 -72.57
40 4004 1659 -76.31 -60.07 5377 2400 -78.71 -62.57

Table C.10: 512 real data samples decimated into a 2x2 complex rank revealing SVD
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1024 real samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.87 -82.52 -155.25 -94.56
-10 -129.54 -77.52 -131.37 -89.56
-5 543 7939 -78.35 -72.52 3216 30038 -89.29 -84.56
0 634 4240 -72.57 -67.52 1241 17395 -84.99 -79.56
10 90 1383 -62.88 -57.52 647 5513 -74.91 -69.56
20 201 409 -54.06 -47.52 546 1552 -64.91 -59.56
30 142 141 -48.05 -37.52 546 547 -59.98 -49.56
40 136 46 -46.57 -27.52 529 164 -58.43 -39.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -167.51 -106.04 -169.45 -108.54
-10 -152.41 -101.04 -142.49 -103.54
-5 5616 116986 -101.50 -96.04 30789 164221 -104.69 -98.54
0 1430 64205 -96.26 -91.04 5657 88287 -98.85 -93.54
10 2569 20349 -86.24 -81.04 2421 28320 -89.08 -83.54
20 2036 6514 -77.12 -71.04 3104 8355 -79.65 -73.54
30 2068 2080 -71.41 -61.04 2635 2839 -73.72 -63.54
40 2049 642 -70.17 -51.04 2610 857 -72.50 -53.54

Table C.11: 1024 real data samples decimated into a 2x2 complex rank revealing SVD
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2048 real samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -136.31 -73.49 -150.33 -85.53
-10 238 5112 -74.40 -68.49 1633 20952 -86.55 -80.53
-5 189 2808 -68.95 -63.49 297 10923 -80.77 -75.53
0 111 1592 -64.12 -58.49 210 6204 -75.81 -70.53
10 58 460 -53.54 -48.49 269 1961 -66.22 -60.53
20 66 145 -45.09 -38.49 269 607 -57.32 -50.53
30 68 49 -41.50 -28.49 283 189 -53.62 -40.53
40 68 16 -40.38 -18.49 277 64 -52.53 -30.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -161.16 -97.01 -164.14 -99.51
-10 5920 77164 -97.99 -92.01 5601 102638 -100.27 -94.51
-5 2264 39544 -91.92 -87.01 4319 53252 -94.59 -89.51
0 1165 22978 -87.23 -82.01 801 31056 -89.93 -84.51
10 918 7448 -77.57 -72.01 1286 9586 -79.72 -74.51
20 1023 2348 -68.98 -62.01 1318 3047 -71.33 -64.51
30 1050 736 -64.81 -52.01 1361 938 -67.17 -54.51
40 1002 214 -63.99 -42.01 1531 291 -66.53 -44.51

Table C.12: 2048 real data samples decimated into a 2x2 complex rank revealing SVD
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4096 real samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -123.50 -64.46 -122.08 -76.50
-10 46 1734 -64.79 -59.46 307 6790 -76.60 -71.50
-5 20 1001 -60.05 -54.46 159 3863 -71.77 -66.50
0 51 543 -54.74 -49.46 210 2238 -67.11 -61.50
10 38 168 -45.01 -39.46 137 683 -57.02 -51.50
20 46 55 -37.90 -29.46 179 212 -49.22 -41.50
30 49 17 -34.72 -19.46 201 68 -46.88 -31.50
40 51 5 -34.39 -9.46 204 22 -46.48 -21.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.69 -87.98 -150.52 -90.48
-10 799 26386 -88.41 -82.98 736 34901 -90.96 -85.48
-5 198 14622 -83.25 -77.98 929 19685 -85.91 -80.48
0 544 7839 -77.99 -72.98 1104 10826 -80.73 -75.48
10 465 2577 -68.55 -62.98 690 3439 -71.16 -65.48
20 604 790 -61.24 -52.98 768 1075 -63.84 -55.48
30 724 251 -58.25 -42.98 879 341 -60.88 -45.48
40 801 82 -57.99 -32.98 842 106 -60.40 -35.48

Table C.13: 4096 real data samples decimated into a 2x2 complex rank revealing SVD
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8192 real samples → 2x2 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 7 1114 -60.91 -55.43 205 4468 -73.05 -67.47
-10 22 601 -55.60 -50.43 75 2390 -67.57 -62.47
-5 20 345 -50.79 -45.43 48 1371 -62.80 -57.47
0 19 192 -45.78 -40.43 73 774 -57.88 -52.47
10 31 60 -36.32 -30.43 112 241 -48.28 -42.47
20 32 19 -30.24 -20.43 130 77 -42.31 -32.47
30 42 6 -28.64 -10.43 176 24 -40.62 -22.47
40 48 2 -28.36 -0.43 193 8 -40.42 -12.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 640 16498 -84.26 -78.95 1216 22408 -87.03 -81.45
-10 203 9232 -79.28 -73.95 314 11977 -81.46 -76.45
-5 474 4979 -74.01 -68.95 447 6646 -76.44 -71.45
0 349 2852 -69.16 -63.95 410 3809 -71.62 -66.45
10 787 902 -59.89 -53.95 879 1213 -62.46 -56.45
20 1003 281 -53.70 -43.95 1045 381 -56.05 -46.45
30 1163 92 -52.07 -33.95 1082 119 -54.59 -36.45
40 1208 28 -51.89 -23.95 1098 38 -54.40 -26.45

Table C.14: 8192 real data samples decimated into a 2x2 complex rank revealing SVD
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128 complex samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -144.15 -106.61 -157.75 -118.65
-10 -142.72 -101.61 -156.08 -113.65
-5 -134.56 -96.61 -127.11 -108.65
0 5019 50790 -93.93 -91.61 49015 184243 -105.33 -103.65
10 4095 15359 -83.86 -81.61 8539 55789 -94.95 -93.65
20 3060 4985 -75.15 -71.61 6594 17864 -86.06 -83.65
30 535 1394 -63.70 -61.61 3309 5956 -77.05 -73.65
40 526 568 -58.12 -51.61 1847 1662 -69.47 -63.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.60 -130.13 -172.36 -132.63
-10 -166.36 -125.13 -169.57 -127.63
-5 381703 1463708 -123.37 -120.13 221728 1776595 -124.92 -122.63
0 183944 664332 -116.48 -115.13 154555 901651 -119.34 -117.63
10 44019 206224 -106.60 -105.13 52757 315297 -109.85 -107.63
20 9035 78700 -97.81 -95.13 35099 88724 -99.37 -97.63
30 4473 23894 -87.53 -85.13 13227 36260 -91.85 -87.63
40 8123 8287 -81.97 -75.13 8389 7410 -81.81 -77.63

Table C.15: 128 complex data samples decimated into a 4x4 complex rank revealing SVD
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256 complex samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.73 -97.58 -156.12 -109.62
-10 -138.78 -92.58 -152.01 -104.62
-5 3987 32197 -90.07 -87.58 45867 130079 -102.83 -99.62
0 4093 16038 -84.79 -82.58 4708 61460 -96.09 -94.62
10 721 4929 -73.40 -72.58 1737 21966 -86.91 -84.62
20 277 1595 -63.89 -62.58 1734 7589 -78.06 -74.62
30 247 515 -55.39 -52.58 865 2313 -68.03 -64.62
40 182 173 -49.27 -42.58 927 717 -62.66 -54.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.80 -121.10 -171.12 -123.60
-10 -163.51 -116.10 -164.51 -118.60
-5 50029 466557 -113.30 -111.10 164433 592664 -115.62 -113.60
0 46390 237376 -106.92 -106.10 54383 362064 -110.84 -108.60
10 8751 75729 -97.43 -96.10 18700 108333 -100.88 -98.60
20 3346 26340 -88.48 -86.10 5919 32589 -90.40 -88.60
30 3806 8341 -78.71 -76.10 4857 11270 -81.48 -78.60
40 3492 2572 -73.92 -66.10 4084 3932 -76.50 -68.60

Table C.16: 256 complex data samples decimated into a 4x4 complex rank revealing SVD
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512 complex samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.44 -88.55 -153.91 -100.59
-10 1825 21848 -87.02 -83.55 -140.15 -95.59
-5 595 10212 -79.80 -78.55 4544 42175 -92.13 -90.59
0 625 5323 -74.87 -73.55 1747 24573 -87.71 -85.59
10 70 1722 -64.63 -63.55 674 7229 -77.27 -75.59
20 170 635 -56.37 -53.55 560 2293 -67.59 -65.59
30 129 191 -47.80 -43.55 488 814 -59.85 -55.59
40 108 60 -43.63 -33.55 423 247 -55.66 -45.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -167.50 -112.07 -169.86 -114.57
-10 10871 279675 -109.02 -107.07 -156.68 -109.57
-5 23018 166076 -104.38 -102.07 11817 229084 -107.21 -104.57
0 11166 101789 -100.58 -97.07 5400 113509 -101.21 -99.57
10 3220 27234 -88.94 -87.07 5104 40293 -92.28 -89.57
20 1871 8471 -78.87 -77.07 3773 11865 -81.89 -79.57
30 1654 2610 -70.33 -67.07 2296 3845 -73.12 -69.57
40 1578 886 -67.04 -57.07 2257 1197 -69.76 -59.57

Table C.17: 512 complex data samples decimated into a 4x4 complex rank revealing SVD
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1024 complex samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -137.22 -79.52 -147.52 -91.56
-10 1313 6879 -76.90 -74.52 2971 27006 -88.71 -86.56
-5 476 3846 -71.77 -69.52 825 15321 -83.79 -81.56
0 169 2110 -66.49 -64.52 1156 8923 -79.10 -76.56
10 63 669 -56.82 -54.52 343 2705 -68.68 -66.56
20 65 225 -47.46 -44.52 299 857 -59.42 -56.56
30 58 68 -40.14 -34.52 229 251 -51.78 -46.56
40 54 22 -37.34 -24.52 224 83 -49.66 -36.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -160.15 -103.04 -161.91 -105.54
-10 3484 103455 -100.35 -98.04 15790 132328 -102.56 -100.54
-5 2491 61941 -95.69 -93.04 8857 78042 -97.90 -95.54
0 2701 32395 -90.10 -88.04 3252 40146 -92.26 -90.54
10 1511 9909 -80.26 -78.04 945 13957 -82.67 -80.54
20 824 3470 -71.11 -68.04 1040 3955 -72.31 -70.54
30 803 1043 -63.26 -58.04 1250 1365 -66.20 -60.54
40 855 315 -61.21 -48.04 1093 418 -63.65 -50.54

Table C.18: 1024 complex data samples decimated into a 4x4 complex rank revealing SVD
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2048 complex samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -123.58 -70.49 -133.74 -82.53
-10 81 2440 -67.81 -65.49 997 9249 -79.22 -77.53
-5 187 1381 -62.80 -60.49 229 5625 -75.00 -72.53
0 27 766 -57.66 -55.49 142 2947 -69.47 -67.53
10 25 240 -47.50 -45.49 67 970 -59.73 -57.53
20 30 79 -38.91 -35.49 135 305 -50.87 -47.53
30 27 24 -32.80 -25.49 97 94 -44.29 -37.53
40 31 8 -31.49 -15.49 117 30 -43.40 -27.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -151.49 -94.01 1253 88570 -98.82 -96.51
-10 2315 33423 -90.33 -89.01 3342 47278 -93.73 -91.51
-5 629 20683 -86.24 -84.01 1329 26471 -88.36 -86.51
0 684 11218 -81.06 -79.01 1283 14491 -83.28 -81.51
10 382 3641 -71.31 -69.01 683 4851 -73.95 -71.51
20 355 1165 -62.05 -59.01 520 1513 -64.49 -61.51
30 410 359 -56.19 -49.01 662 476 -58.93 -51.51
40 362 118 -54.90 -39.01 737 157 -57.51 -41.51

Table C.19: 2048 complex data samples decimated into a 4x4 complex rank revealing SVD
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4096 complex samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 104 1519 -63.64 -61.46 194 6266 -76.01 -73.50
-10 31 880 -58.88 -56.46 81 3489 -70.84 -68.50
-5 23 471 -53.24 -51.46 89 1944 -65.67 -63.50
0 13 263 -48.60 -46.46 85 1070 -60.49 -58.50
10 19 86 -38.91 -36.46 46 340 -50.68 -48.50
20 36 27 -30.36 -26.46 132 108 -42.20 -38.50
30 40 9 -26.15 -16.46 166 33 -37.98 -28.50
40 43 3 -25.31 -6.46 171 11 -37.32 -18.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 1366 23811 -87.47 -84.98 1460 31111 -89.86 -87.48
-10 302 13045 -82.35 -79.98 449 17519 -84.76 -82.48
-5 223 7042 -76.91 -74.98 262 9695 -79.78 -77.48
0 90 4098 -72.25 -69.98 220 5429 -74.65 -72.48
10 210 1264 -62.30 -59.98 262 1769 -65.08 -62.48
20 273 410 -53.63 -49.98 367 553 -56.19 -52.48
30 310 126 -49.60 -39.98 389 173 -52.14 -42.48
40 318 39 -48.80 -29.98 442 55 -51.30 -32.48

Table C.20: 4096 complex data samples decimated into a 4x4 complex rank revealing SVD
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8192 complex samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 32 532 -54.59 -52.43 66 2181 -66.74 -64.47
-10 12 304 -49.59 -47.43 45 1214 -61.68 -59.47
-5 6 170 -44.67 -42.43 38 675 -56.62 -54.47
0 17 97 -39.80 -37.43 67 377 -51.58 -49.47
10 24 31 -30.16 -27.43 101 121 -42.00 -39.47
20 36 10 -22.45 -17.43 137 38 -34.50 -29.47
30 49 3 -19.59 -7.43 197 12 -31.66 -19.47
40 50 1 -19.26 2.57 199 4 -31.29 -9.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 391 8192 -78.23 -75.95 827 10934 -80.86 -78.45
-10 75 4585 -73.31 -70.95 179 6047 -75.61 -73.45
-5 112 2537 -68.13 -65.95 213 3309 -70.49 -68.45
0 491 1430 -63.23 -60.95 427 1877 -65.55 -63.45
10 616 450 -53.46 -50.95 902 597 -55.86 -53.45
20 710 142 -46.03 -40.95 917 192 -48.49 -43.45
30 900 46 -43.17 -30.95 938 59 -45.61 -33.45
40 868 15 -42.76 -20.95 949 20 -45.25 -23.45

Table C.21: 8192 complex data samples decimated into a 4x4 complex rank revealing SVD
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128 real samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -147.30 -109.61 -158.92 -121.65
-10 -144.66 -104.61 -156.70 -116.65
-5 -142.90 -99.61 -152.69 -111.65
0 23294 68141 -96.99 -94.61 81504 267625 -108.83 -106.65
10 4577 18782 -85.62 -84.61 39248 90423 -99.72 -96.65
20 2033 7406 -77.61 -74.61 2661 31777 -89.92 -86.65
30 553 2017 -66.43 -64.61 3666 9390 -80.11 -76.65
40 624 738 -60.93 -54.61 2188 3100 -73.17 -66.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -171.49 -133.13 -171.87 -135.63
-10 -169.11 -128.13 -172.20 -130.63
-5 -163.92 -123.13 -162.63 -125.63
0 93691 1125287 -120.96 -118.13 523835 1288594 -123.14 -120.63
10 73963 310185 -109.98 -108.13 84411 457693 -113.10 -110.63
20 15692 104223 -100.38 -98.13 32139 114692 -101.35 -100.63
30 15700 30223 -90.55 -88.13 8795 37852 -91.59 -90.63
40 8235 10634 -84.26 -78.13 10325 14121 -85.79 -80.63

Table C.22: 128 real data samples decimated into a 4x4 complex rank revealing SVD
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256 real samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.82 -100.58 -158.03 -112.62
-10 -142.45 -95.58 -155.92 -107.62
-5 9077 51870 -94.09 -90.58 30869 148812 -103.49 -102.62
0 5397 23798 -87.62 -85.58 31896 93000 -99.63 -97.62
10 908 8822 -78.82 -75.58 7401 31458 -90.23 -87.62
20 567 2537 -68.05 -65.58 1045 9783 -80.06 -77.62
30 255 849 -59.58 -55.58 1201 3130 -70.76 -67.62
40 211 254 -51.59 -45.58 767 917 -62.57 -57.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -168.88 -124.10 -173.28 -126.60
-10 -166.65 -119.10 -169.79 -121.60
-5 -158.56 -114.10 -149.79 -116.60
0 63358 390365 -111.99 -109.10 102188 475606 -112.97 -111.60
10 10153 122054 -101.67 -99.10 41700 155922 -104.31 -101.60
20 2066 36423 -91.22 -89.10 8665 48417 -93.87 -91.60
30 1518 11371 -81.02 -79.10 5663 16848 -85.01 -81.60
40 3570 3522 -75.44 -69.10 4623 4285 -77.94 -71.60

Table C.23: 256 real data samples decimated into a 4x4 complex rank revealing SVD
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512 real samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.54 -91.55 -157.20 -103.59
-10 -139.32 -86.55 -151.17 -98.59
-5 2259 13653 -82.69 -81.55 5543 62986 -95.81 -93.59
0 1045 9309 -79.66 -76.55 3844 38204 -92.14 -88.59
10 348 2601 -68.24 -66.55 880 10447 -80.16 -78.59
20 130 891 -59.16 -56.55 251 3218 -70.43 -68.59
30 108 253 -49.07 -46.55 411 1089 -61.72 -58.59
40 118 85 -44.99 -36.55 465 337 -56.96 -48.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -168.74 -115.07 -172.14 -117.57
-10 -161.58 -110.07 -165.76 -112.57
-5 36809 248299 -107.97 -105.07 54595 310626 -110.03 -107.57
0 11532 126769 -101.91 -100.07 21432 169314 -104.65 -102.57
10 6687 38674 -91.84 -90.07 4117 50322 -93.98 -92.57
20 2468 12380 -82.52 -80.07 4364 18444 -85.76 -82.57
30 1495 3851 -72.73 -70.07 3885 5271 -77.04 -72.57
40 1565 1167 -67.17 -60.07 2220 1701 -70.81 -62.57

Table C.24: 512 real data samples decimated into a 4x4 complex rank revealing SVD
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1024 real samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.83 -82.52 -155.42 -94.56
-10 -126.30 -77.52 -139.65 -89.56
-5 527 5292 -74.16 -72.52 499 20738 -86.09 -84.56
0 137 3077 -69.65 -67.52 263 11994 -81.53 -79.56
10 176 967 -60.06 -57.52 510 3648 -71.53 -69.56
20 75 293 -49.91 -47.52 220 1208 -61.76 -59.56
30 49 91 -40.95 -37.52 200 391 -53.56 -49.56
40 54 31 -37.81 -27.52 227 126 -50.15 -39.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -166.48 -106.04 -169.73 -108.54
-10 -148.99 -101.04 -117.25 -103.54
-5 11476 80031 -98.06 -96.04 7262 104655 -100.45 -98.54
0 4498 46057 -93.40 -91.04 3627 58429 -95.40 -93.54
10 1206 14373 -83.23 -81.04 2939 19440 -85.48 -83.54
20 806 4408 -73.06 -71.04 613 6364 -76.07 -73.54
30 699 1495 -64.71 -61.04 1120 2017 -67.73 -63.54
40 817 483 -61.50 -51.04 1090 597 -63.80 -53.54

Table C.25: 1024 real data samples decimated into a 4x4 complex rank revealing SVD
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2048 real samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -137.05 -73.49 -149.44 -85.53
-10 272 3698 -71.54 -68.49 1318 14187 -83.05 -80.53
-5 57 2104 -66.30 -63.49 434 7800 -77.78 -75.53
0 20 1087 -60.96 -58.49 168 4163 -72.49 -70.53
10 18 333 -50.42 -48.49 199 1366 -62.63 -60.53
20 30 110 -41.22 -38.49 125 427 -53.16 -50.53
30 29 34 -34.27 -28.49 97 139 -45.75 -40.53
40 29 11 -31.64 -18.49 116 41 -43.57 -30.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -160.19 -97.01 -163.98 -99.51
-10 4681 51254 -94.15 -92.01 7288 72223 -97.25 -94.51
-5 1184 28673 -89.36 -87.01 2181 38868 -91.77 -89.51
0 244 15941 -83.80 -82.01 491 21917 -86.87 -84.51
10 779 5086 -74.19 -72.01 476 6997 -76.93 -74.51
20 371 1651 -64.73 -62.01 605 2144 -67.17 -64.51
30 434 524 -57.78 -52.01 593 672 -59.54 -54.51
40 381 155 -55.06 -42.01 705 220 -57.42 -44.51

Table C.26: 2048 real data samples decimated into a 4x4 complex rank revealing SVD
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4096 real samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -122.39 -64.46 -120.52 -76.50
-10 55 1220 -61.85 -59.46 114 4931 -73.91 -71.50
-5 15 659 -56.35 -54.46 61 2659 -68.48 -66.50
0 15 379 -51.60 -49.46 32 1518 -63.67 -61.50
10 17 119 -41.67 -39.46 58 493 -54.05 -51.50
20 32 38 -32.47 -29.46 130 152 -44.64 -41.50
30 40 12 -26.60 -19.46 160 49 -39.00 -31.50
40 43 4 -25.37 -9.46 171 16 -37.37 -21.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -147.16 -87.98 -152.09 -90.48
-10 802 18580 -85.38 -82.98 1369 23781 -87.47 -85.48
-5 152 10185 -80.17 -77.98 794 13617 -82.66 -80.48
0 46 5637 -75.08 -72.98 231 7638 -77.74 -75.48
10 218 1783 -65.17 -62.98 283 2454 -67.86 -65.48
20 273 584 -56.21 -52.98 330 746 -58.55 -55.48
30 308 180 -50.42 -42.98 415 239 -52.93 -45.48
40 313 56 -48.87 -32.98 431 80 -51.30 -35.48

Table C.27: 4096 real data samples decimated into a 4x4 complex rank revealing SVD



117

8192 real samples → 4x4 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 29 791 -57.99 -55.43 133 3060 -69.73 -67.47
-10 13 431 -52.61 -50.43 58 1728 -64.76 -62.47
-5 5 235 -47.37 -45.43 21 989 -59.84 -57.47
0 13 132 -42.45 -40.43 40 539 -54.61 -52.47
10 20 43 -32.81 -30.43 81 166 -44.69 -42.47
20 31 14 -24.15 -20.43 118 53 -36.10 -32.47
30 46 4 -19.99 -10.43 189 17 -32.03 -22.47
40 50 1 -19.23 -0.43 199 6 -31.32 -12.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 1030 11327 -81.13 -78.95 1339 15579 -83.86 -81.45
-10 88 6325 -76.05 -73.95 346 8557 -78.63 -76.45
-5 70 3657 -71.24 -68.95 198 4797 -73.59 -71.45
0 275 2012 -66.12 -63.95 426 2704 -68.71 -66.45
10 597 616 -56.00 -53.95 854 862 -58.79 -56.45
20 681 205 -47.86 -43.95 906 269 -50.32 -46.45
30 862 65 -43.58 -33.95 933 83 -46.08 -36.45
40 902 20 -42.78 -23.95 943 27 -45.25 -26.45

Table C.28: 8192 real data samples decimated into a 4x4 complex rank revealing SVD



118

128 complex samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -147.19 -106.61 -157.75 -118.65
-10 -143.25 -101.61 -154.24 -113.65
-5 20017 78242 -98.15 -96.61 90719 462280 -113.20 -108.65
0 11134 48416 -93.71 -91.61 33897 181185 -105.10 -103.65
10 6018 9567 -81.28 -81.61 14735 63139 -96.17 -93.65
20 826 4683 -73.69 -71.61 7380 20047 -86.38 -83.65
30 548 1875 -65.63 -61.61 737 5275 -74.37 -73.65
40 226 400 -53.14 -51.61 851 1985 -66.57 -63.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -170.84 -130.13 -172.97 -132.63
-10 -166.41 -125.13 -168.49 -127.63
-5 -139.12 -120.13 -163.69 -122.63
0 96588 656935 -116.29 -115.13 221952 783129 -118.51 -117.63
10 17735 204176 -105.99 -105.13 54213 281862 -108.95 -107.63
20 13343 47800 -93.88 -95.13 21099 93499 -99.41 -97.63
30 4707 23248 -87.42 -85.13 11483 29000 -89.96 -87.63
40 3561 6103 -77.22 -75.13 4747 9277 -80.13 -77.63

Table C.29: 128 complex data samples decimated into a 8x8 complex rank revealing SVD
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256 complex samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.88 -97.58 -155.23 -109.62
-10 -138.58 -92.58 -147.67 -104.62
-5 2721 31621 -90.03 -87.58 12048 132178 -102.58 -99.62
0 2078 17696 -85.36 -82.58 8093 67807 -96.02 -94.62
10 944 5249 -74.63 -72.58 3367 21536 -86.12 -84.62
20 158 1562 -63.83 -62.58 446 6170 -75.78 -74.62
30 118 438 -53.45 -52.58 270 2141 -66.78 -64.62
40 68 161 -45.11 -42.58 239 726 -57.64 -54.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -168.46 -121.10 -171.18 -123.60
-10 -161.48 -116.10 -164.63 -118.60
-5 155008 436308 -113.10 -111.10 40583 593046 -115.15 -113.60
0 46598 233038 -107.54 -106.10 42935 325391 -110.32 -108.60
10 7287 84190 -98.76 -96.10 20193 101482 -100.23 -98.60
20 4923 22761 -87.67 -86.10 6796 31298 -90.08 -88.60
30 1060 8447 -78.35 -76.10 1183 10153 -79.98 -78.60
40 610 2548 -68.17 -66.10 799 3407 -70.84 -68.60

Table C.30: 256 complex data samples decimated into a 8x8 complex rank revealing SVD



120

512 complex samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -142.81 -88.55 -155.36 -100.59
-10 -120.83 -83.55 -136.19 -95.59
-5 2157 9664 -79.84 -78.55 5393 39691 -92.62 -90.59
0 618 5751 -75.24 -73.55 2742 22495 -87.22 -85.59
10 280 1853 -65.40 -63.55 210 7791 -77.91 -75.59
20 65 592 -55.45 -53.55 341 2441 -68.20 -65.59
30 40 181 -45.36 -43.55 116 665 -56.72 -55.59
40 34 60 -37.34 -33.55 131 223 -48.32 -45.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -166.20 -112.07 -167.19 -114.57
-10 -152.29 -107.07 -145.35 -109.57
-5 6220 145164 -103.32 -102.07 5881 219757 -106.48 -104.57
0 9981 77375 -98.03 -97.07 24232 129213 -102.51 -99.57
10 1703 25739 -88.39 -87.07 7199 39029 -92.09 -89.57
20 981 8779 -79.13 -77.07 637 11569 -81.56 -79.57
30 990 2537 -68.82 -67.07 812 3430 -71.07 -69.57
40 481 854 -60.21 -57.07 648 1144 -62.94 -59.57

Table C.31: 512 complex data samples decimated into a 8x8 complex rank revealing SVD
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1024 complex samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -137.41 -79.52 -148.41 -91.56
-10 758 6872 -76.77 -74.52 487 26258 -88.20 -86.56
-5 401 3656 -71.16 -69.52 618 14712 -83.31 -81.56
0 268 2062 -66.18 -64.52 353 7928 -77.82 -76.56
10 67 646 -56.01 -54.52 94 2632 -68.37 -66.56
20 24 213 -46.60 -44.52 44 728 -57.29 -56.56
30 18 65 -36.89 -34.52 74 249 -48.66 -46.56
40 17 21 -29.69 -24.52 71 79 -41.50 -36.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -156.37 -103.04 -163.41 -105.54
-10 13563 96807 -99.79 -98.04 34521 135934 -102.74 -100.54
-5 4316 52747 -94.44 -93.04 7396 76859 -97.51 -95.54
0 3268 29790 -89.32 -88.04 3577 38966 -91.79 -90.54
10 512 10079 -80.19 -78.04 811 12376 -81.64 -80.54
20 457 3170 -70.06 -68.04 619 4169 -72.49 -70.54
30 217 965 -59.80 -58.04 413 1264 -62.57 -60.54
40 272 327 -53.07 -48.04 320 400 -54.98 -50.54

Table C.32: 1024 complex data samples decimated into a 8x8 complex rank revealing SVD
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2048 complex samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 418 4316 -72.72 -70.49 -113.79 -82.53
-10 201 2339 -67.29 -65.49 586 9578 -79.72 -77.53
-5 21 1274 -62.03 -60.49 220 5291 -74.37 -72.53
0 22 726 -57.30 -55.49 207 2757 -68.98 -67.53
10 6 226 -47.11 -45.49 40 867 -58.97 -57.53
20 8 76 -37.78 -35.49 51 289 -49.31 -47.53
30 11 23 -27.94 -25.49 37 95 -40.28 -37.53
40 16 7 -21.85 -15.49 59 30 -33.99 -27.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -142.98 -94.01 -151.64 -96.51
-10 3331 34652 -90.92 -89.01 2929 46018 -93.25 -91.51
-5 538 18975 -85.71 -84.01 1846 24640 -87.87 -86.51
0 504 10536 -80.35 -79.01 261 13757 -82.82 -81.51
10 116 3484 -70.74 -69.01 227 4452 -73.03 -71.51
20 143 1072 -60.54 -59.01 187 1383 -62.82 -61.51
30 131 342 -51.28 -49.01 235 451 -53.99 -51.51
40 222 107 -45.76 -39.01 326 151 -48.31 -41.51

Table C.33: 2048 complex data samples decimated into a 8x8 complex rank revealing SVD
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4096 complex samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 92 1429 -63.17 -61.46 577 5931 -75.60 -73.50
-10 42 816 -58.23 -56.46 98 3284 -70.28 -68.50
-5 13 443 -52.89 -51.46 91 1825 -65.15 -63.50
0 5 253 -48.08 -46.46 48 993 -59.99 -58.50
10 6 79 -37.91 -36.46 52 325 -50.28 -48.50
20 27 26 -28.41 -26.46 104 102 -40.33 -38.50
30 31 8 -19.62 -16.46 127 31 -31.54 -28.50
40 30 2 -15.19 -6.46 126 10 -27.25 -18.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 591 22667 -87.13 -84.98 1343 29686 -89.38 -87.48
-10 431 12212 -81.94 -79.98 290 16011 -84.04 -82.48
-5 332 6582 -76.43 -74.98 123 9049 -79.09 -77.48
0 74 3774 -71.45 -69.98 258 5012 -74.05 -72.48
10 167 1227 -61.86 -59.98 74 1589 -64.06 -62.48
20 254 373 -51.81 -49.98 362 492 -54.13 -52.48
30 276 119 -43.09 -39.98 362 160 -45.51 -42.48
40 289 39 -38.99 -29.98 373 51 -41.31 -32.48

Table C.34: 4096 complex data samples decimated into a 8x8 complex rank revealing SVD
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8192 complex samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 10 515 -54.32 -52.43 46 2043 -66.12 -64.47
-10 15 288 -49.13 -47.43 16 1151 -61.26 -59.47
-5 11 159 -44.02 -42.43 52 632 -56.06 -54.47
0 15 89 -39.04 -37.43 65 363 -51.21 -49.47
10 28 29 -29.13 -27.43 113 112 -41.14 -39.47
20 39 9 -19.19 -17.43 154 36 -31.60 -29.47
30 51 3 -11.77 -7.43 203 11 -23.69 -19.47
40 50 1 -8.69 2.57 201 4 -20.82 -9.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 227 7576 -77.61 -75.95 267 10373 -80.28 -78.45
-10 136 4313 -72.71 -70.95 251 5610 -75.02 -73.45
-5 114 2445 -67.76 -65.95 234 3175 -70.03 -68.45
0 456 1349 -62.60 -60.95 560 1783 -65.02 -63.45
10 670 419 -52.49 -50.95 1003 560 -55.03 -53.45
20 969 133 -42.70 -40.95 907 178 -45.32 -43.45
30 1084 43 -35.31 -30.95 917 56 -37.46 -33.45
40 1132 14 -32.33 -20.95 917 19 -34.83 -23.45

Table C.35: 8192 complex data samples decimated into a 8x8 complex rank revealing SVD
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128 real samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -147.42 -109.61 -158.85 -121.65
-10 -145.89 -104.61 -156.42 -116.65
-5 -140.99 -99.61 -151.86 -111.65
0 29292 54007 -95.62 -94.61 73209 263688 -108.73 -106.65
10 7319 19820 -86.67 -84.61 27297 70806 -97.81 -96.65
20 1277 5544 -75.11 -74.61 10001 21556 -87.90 -86.65
30 387 2010 -65.93 -64.61 2148 7474 -78.12 -76.65
40 187 711 -57.47 -54.61 435 2665 -68.50 -66.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -170.81 -133.13 -172.40 -135.63
-10 -169.69 -128.13 -171.57 -130.63
-5 -162.33 -123.13 -166.21 -125.63
0 214793 846857 -118.56 -118.13 653120 1636056 -124.99 -120.63
10 75949 327421 -110.49 -108.13 66576 312715 -109.90 -110.63
20 32884 106714 -100.95 -98.13 32752 147141 -103.31 -100.63
30 4657 33755 -90.50 -88.13 7600 41407 -92.43 -90.63
40 3525 9794 -80.58 -78.13 4773 15168 -84.15 -80.63

Table C.36: 128 real data samples decimated into a 8x8 complex rank revealing SVD
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256 real samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.96 -100.58 -158.48 -112.62
-10 -142.79 -95.58 -155.96 -107.62
-5 11118 42939 -93.14 -90.58 56131 211439 -106.91 -102.62
0 1202 20572 -86.11 -85.58 17887 97813 -100.20 -97.62
10 1726 7993 -78.12 -75.58 2877 29161 -89.10 -87.62
20 222 2186 -66.99 -65.58 1573 7607 -78.15 -77.62
30 62 786 -57.70 -55.58 275 2642 -68.23 -67.62
40 26 195 -45.93 -45.58 237 897 -59.51 -57.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.71 -124.10 -172.20 -126.60
-10 -167.28 -119.10 -168.36 -121.60
-5 -154.68 -114.10 -155.35 -116.60
0 61468 341171 -110.66 -109.10 139580 436188 -113.04 -111.60
10 16226 100649 -100.22 -99.10 9353 160129 -104.04 -101.60
20 6427 34227 -90.76 -89.10 11444 42064 -93.09 -91.60
30 1044 12644 -82.08 -79.10 3751 16763 -84.95 -81.60
40 1163 3745 -72.47 -69.10 1129 4817 -73.87 -71.60

Table C.37: 256 real data samples decimated into a 8x8 complex rank revealing SVD
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512 real samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.32 -91.55 -157.47 -103.59
-10 -139.41 -86.55 -149.57 -98.59
-5 1438 14424 -83.54 -81.55 12700 59765 -95.49 -93.59
0 240 8097 -78.10 -76.55 2459 33489 -90.44 -88.59
10 382 2480 -67.84 -66.55 1131 10899 -80.83 -78.59
20 78 809 -58.17 -56.55 369 2939 -69.67 -68.59
30 31 267 -48.67 -46.55 103 1043 -60.51 -58.59
40 23 81 -38.40 -36.55 81 323 -50.56 -48.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.39 -115.07 -170.39 -117.57
-10 -161.78 -110.07 -163.34 -112.57
-5 12060 243748 -107.60 -105.07 23039 289174 -109.21 -107.57
0 19599 118138 -101.85 -100.07 5052 174095 -104.91 -102.57
10 2519 40083 -91.82 -90.07 8323 51788 -94.41 -92.57
20 1165 10386 -80.38 -80.07 1763 16068 -84.01 -82.57
30 541 4039 -72.14 -70.07 892 5096 -74.42 -72.57
40 397 1252 -62.41 -60.07 381 1479 -63.76 -62.57

Table C.38: 512 real data samples decimated into a 8x8 complex rank revealing SVD
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1024 real samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.24 -82.52 -154.97 -94.56
-10 -129.60 -77.52 -117.35 -89.56
-5 391 5108 -74.17 -72.52 425 21086 -86.60 -84.56
0 124 3018 -69.53 -67.52 923 11710 -81.30 -79.56
10 67 980 -59.83 -57.52 121 3289 -70.27 -69.56
20 36 292 -49.23 -47.52 109 1197 -61.81 -59.56
30 9 85 -38.56 -37.52 76 369 -51.47 -49.56
40 12 29 -30.09 -27.52 63 113 -42.37 -39.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -167.14 -106.04 -169.59 -108.54
-10 -150.38 -101.04 -153.31 -103.54
-5 7871 74608 -97.40 -96.04 7405 101246 -100.28 -98.54
0 4568 41827 -92.23 -91.04 6441 55098 -95.02 -93.54
10 1027 14220 -83.09 -81.04 1511 18101 -85.15 -83.54
20 304 4405 -72.84 -71.04 272 5401 -74.83 -73.54
30 161 1477 -63.28 -61.04 357 1817 -65.05 -63.54
40 222 422 -53.78 -51.04 301 578 -56.70 -53.54

Table C.39: 1024 real data samples decimated into a 8x8 complex rank revealing SVD
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2048 real samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -138.55 -73.49 -150.04 -85.53
-10 135 3232 -70.20 -68.49 469 13221 -82.28 -80.53
-5 261 1867 -65.66 -63.49 635 7413 -77.50 -75.53
0 53 977 -59.53 -58.49 297 4202 -72.36 -70.53
10 19 316 -50.14 -48.49 85 1257 -62.31 -60.53
20 9 103 -40.35 -38.49 34 407 -52.06 -50.53
30 10 32 -30.31 -28.49 37 125 -42.30 -40.53
40 14 10 -22.97 -18.49 47 41 -34.78 -30.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -161.40 -97.01 -163.70 -99.51
-10 3521 48813 -93.90 -92.01 8248 70664 -97.06 -94.51
-5 1542 27900 -88.90 -87.01 1862 36672 -91.39 -89.51
0 1547 15372 -83.91 -82.01 616 20440 -86.22 -84.51
10 397 4877 -73.59 -72.01 268 6501 -76.18 -74.51
20 143 1568 -64.00 -62.01 172 1946 -65.83 -64.51
30 98 477 -53.72 -52.01 203 648 -56.60 -54.51
40 209 155 -46.60 -42.01 315 198 -48.45 -44.51

Table C.40: 2048 real data samples decimated into a 8x8 complex rank revealing SVD
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4096 real samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -125.90 -64.46 -123.73 -76.50
-10 39 1145 -61.14 -59.46 205 4545 -73.18 -71.50
-5 22 646 -56.15 -54.46 54 2606 -68.30 -66.50
0 18 357 -51.08 -49.46 63 1481 -63.32 -61.50
10 4 113 -41.18 -39.46 24 452 -53.05 -51.50
20 24 36 -31.16 -29.46 90 136 -42.81 -41.50
30 31 11 -21.70 -19.46 122 46 -33.99 -31.50
40 31 4 -15.62 -9.46 123 14 -27.72 -21.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.61 -87.98 -149.62 -90.48
-10 1590 17856 -85.18 -82.98 1012 22750 -87.10 -85.48
-5 412 9377 -79.38 -77.98 491 12444 -81.87 -80.48
0 105 5453 -74.80 -72.98 203 7187 -77.15 -75.48
10 66 1691 -64.66 -62.98 71 2253 -67.05 -65.48
20 233 524 -54.44 -52.98 298 720 -57.22 -55.48
30 268 172 -45.28 -42.98 357 216 -47.47 -45.48
40 297 55 -39.37 -32.98 373 71 -41.17 -35.48

Table C.41: 4096 real data samples decimated into a 8x8 complex rank revealing SVD
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8192 real samples → 8x8 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 22 739 -57.44 -55.43 93 2908 -69.28 -67.47
-10 18 414 -52.39 -50.43 34 1619 -64.09 -62.47
-5 6 221 -46.92 -45.43 58 908 -59.14 -57.47
0 12 130 -42.21 -40.43 45 504 -54.02 -52.47
10 26 41 -32.15 -30.43 108 163 -44.23 -42.47
20 35 13 -22.34 -20.43 128 51 -34.15 -32.47
30 49 4 -13.63 -10.43 199 16 -25.66 -22.47
40 50 1 -9.02 -0.43 201 5 -21.10 -12.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 600 11306 -81.07 -78.95 533 14862 -83.46 -81.45
-10 139 6041 -75.63 -73.95 275 8060 -78.05 -76.45
-5 32 3402 -70.73 -68.95 70 4605 -73.28 -71.45
0 267 1865 -65.40 -63.95 347 2546 -68.06 -66.45
10 630 601 -55.53 -53.95 1019 811 -58.18 -56.45
20 849 188 -45.71 -43.95 944 256 -48.28 -46.45
30 1049 60 -37.08 -33.95 911 79 -39.47 -36.45
40 1132 19 -32.43 -23.95 917 25 -35.22 -26.45

Table C.42: 8192 real data samples decimated into a 8x8 complex rank revealing SVD
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128 complex samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.04 -106.61 -157.81 -118.65
-10 -142.65 -101.61 -153.67 -113.65
-5 15733 106009 -100.64 -96.61 93053 397274 -111.97 -108.65
0 10135 43663 -92.76 -91.61 27269 192713 -105.50 -103.65
10 4551 16153 -84.40 -81.61 10569 47531 -93.68 -93.65
20 558 4475 -72.92 -71.61 3573 17113 -84.68 -83.65
30 887 1264 -64.23 -61.61 4257 5021 -77.04 -73.65
40 944 386 -62.17 -51.61 3593 1463 -73.50 -63.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.84 -130.13 -171.78 -132.63
-10 -166.80 -125.13 -169.94 -127.63
-5 -158.99 -120.13 289216 1923939 -125.91 -122.63
0 111121 544727 -114.77 -115.13 140155 945528 -119.62 -117.63
10 52379 245858 -107.82 -105.13 66731 310661 -109.98 -107.63
20 14939 72150 -97.44 -95.13 27301 78117 -98.55 -97.63
30 12920 21453 -89.58 -85.13 17595 24551 -90.42 -87.63
40 15067 6379 -85.98 -75.13 20784 10086 -88.99 -77.63

Table C.43: 128 complex data samples decimated into a 16x16 complex rank revealing SVD



133

256 complex samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.48 -97.58 -157.72 -109.62
-10 -116.37 -92.58 -149.62 -104.62
-5 3015 30356 -89.08 -87.58 18944 110277 -100.92 -99.62
0 2405 16772 -84.79 -82.58 7768 62511 -95.27 -94.62
10 756 5329 -74.60 -72.58 4493 18658 -85.82 -84.62
20 282 1363 -63.20 -62.58 1125 6172 -76.38 -74.62
30 89 525 -54.64 -52.58 124 2096 -66.29 -64.62
40 31 141 -42.93 -42.58 180 740 -57.70 -54.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.15 -121.10 -171.29 -123.60
-10 -151.89 -116.10 -163.17 -118.60
-5 67430 515331 -114.20 -111.10 71327 571744 -115.31 -113.60
0 37842 253534 -107.69 -106.10 111319 301069 -110.21 -108.60
10 9844 94049 -99.56 -96.10 10783 102699 -99.74 -98.60
20 6383 21765 -87.39 -86.10 9687 31018 -90.28 -88.60
30 676 8121 -78.32 -76.10 2196 9875 -80.02 -78.60
40 532 2496 -67.52 -66.10 252 3018 -69.19 -68.60

Table C.44: 256 complex data samples decimated into a 16x16 complex rank revealing SVD
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512 complex samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.37 -88.55 -155.98 -100.59
-10 -128.66 -83.55 8245 88644 -99.55 -95.59
-5 1411 9834 -79.73 -78.55 5558 37448 -91.56 -90.59
0 395 5901 -75.51 -73.55 3910 21041 -86.70 -85.59
10 128 1842 -65.45 -63.55 341 7064 -76.81 -75.59
20 52 535 -54.45 -53.55 72 2123 -66.51 -65.59
30 23 177 -45.18 -43.55 100 719 -56.79 -55.59
40 8 55 -35.18 -33.55 18 211 -46.78 -45.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -165.76 -112.07 -169.01 -114.57
-10 33340 318956 -110.23 -107.07 24656 382333 -111.64 -109.57
-5 21940 165371 -104.40 -102.07 5840 198534 -106.24 -104.57
0 10450 86762 -99.05 -97.07 17703 116030 -101.51 -99.57
10 2720 23816 -87.58 -87.07 713 34298 -90.72 -89.57
20 609 8039 -77.93 -77.07 1412 11418 -81.11 -79.57
30 444 2342 -67.38 -67.07 277 3477 -70.85 -69.57
40 107 841 -58.32 -57.07 87 1144 -61.26 -59.57

Table C.45: 512 complex data samples decimated into a 16x16 complex rank revealing SVD
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1024 complex samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -133.50 -79.52 -148.47 -91.56
-10 694 6426 -76.20 -74.52 770 26718 -88.52 -86.56
-5 213 3723 -71.30 -69.52 875 14591 -83.12 -81.56
0 127 2076 -66.49 -64.52 679 7682 -77.79 -76.56
10 33 636 -56.09 -54.52 243 2575 -68.26 -66.56
20 23 212 -46.64 -44.52 50 764 -57.63 -56.56
30 11 61 -35.76 -34.52 44 252 -48.23 -46.56
40 3 20 -26.33 -24.52 11 73 -37.22 -36.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -159.51 -103.04 -163.47 -105.54
-10 9484 98591 -99.90 -98.04 12243 133220 -102.47 -100.54
-5 6707 52840 -94.63 -93.04 3372 71568 -97.17 -95.54
0 1252 28964 -88.95 -88.04 3241 38397 -91.82 -90.54
10 260 9117 -79.18 -78.04 1242 12212 -81.55 -80.54
20 379 2879 -69.04 -68.04 187 3723 -71.18 -70.54
30 60 960 -59.52 -58.04 157 1270 -62.16 -60.54
40 84 321 -50.33 -48.04 98 382 -52.09 -50.54

Table C.46: 1024 complex data samples decimated into a 16x16 complex rank revealing SVD
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2048 complex samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -124.00 -70.49 -123.95 -82.53
-10 56 2333 -67.20 -65.49 1242 8697 -78.88 -77.53
-5 40 1209 -61.79 -60.49 226 5129 -74.12 -72.53
0 18 722 -57.09 -55.49 68 2929 -69.15 -67.53
10 9 220 -46.68 -45.49 70 847 -58.64 -57.53
20 3 74 -37.42 -35.49 4 276 -48.84 -47.53
30 6 23 -26.93 -25.49 19 86 -38.87 -37.53
40 13 7 -17.00 -15.49 48 28 -29.14 -27.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 4849 70447 -96.99 -94.01 8446 84712 -98.65 -96.51
-10 2320 33952 -90.59 -89.01 2042 44157 -92.85 -91.51
-5 1600 18269 -85.27 -84.01 940 24998 -88.05 -86.51
0 404 10731 -80.57 -79.01 872 13731 -82.67 -81.51
10 39 3255 -70.23 -69.01 118 4166 -72.34 -71.51
20 57 1063 -60.53 -59.01 67 1417 -63.27 -61.51
30 105 324 -50.19 -49.01 155 423 -52.63 -51.51
40 145 107 -40.92 -39.01 262 141 -43.41 -41.51

Table C.47: 2048 complex data samples decimated into a 16x16 complex rank revealing SVD
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4096 complex samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 13 1428 -63.16 -61.46 373 5773 -75.26 -73.50
-10 11 795 -57.97 -56.46 128 3168 -70.07 -68.50
-5 20 440 -52.87 -51.46 76 1787 -65.04 -63.50
0 12 248 -47.92 -46.46 22 994 -60.06 -58.50
10 4 80 -38.18 -36.46 18 326 -50.38 -48.50
20 23 25 -28.09 -26.46 102 97 -39.60 -38.50
30 29 8 -17.93 -16.46 108 32 -30.28 -28.50
40 25 3 -8.52 -6.46 100 10 -20.46 -18.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 985 21094 -86.51 -84.98 885 29489 -89.32 -87.48
-10 341 11960 -81.50 -79.98 463 15506 -83.93 -82.48
-5 230 6607 -76.38 -74.98 500 8842 -78.92 -77.48
0 55 3649 -71.27 -69.98 118 4900 -73.67 -72.48
10 52 1168 -61.35 -59.98 154 1575 -63.98 -62.48
20 236 372 -51.42 -49.98 341 504 -53.90 -52.48
30 292 122 -41.79 -39.98 372 153 -43.73 -42.48
40 311 37 -32.12 -29.98 377 50 -34.71 -32.48

Table C.48: 4096 complex data samples decimated into a 16x16 complex rank revealing SVD
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8192 complex samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 18 511 -54.15 -52.43 67 1994 -66.03 -64.47
-10 16 272 -48.66 -47.43 11 1118 -61.04 -59.47
-5 7 157 -43.89 -42.43 25 617 -55.80 -54.47
0 17 87 -38.78 -37.43 61 351 -50.86 -49.47
10 28 27 -28.82 -27.43 128 111 -40.82 -39.47
20 40 9 -18.97 -17.43 161 36 -31.22 -29.47
30 53 3 -8.89 -7.43 209 11 -21.05 -19.47
40 51 1 -0.31 2.57 203 4 -12.30 -9.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 184 7525 -77.49 -75.95 282 9997 -79.89 -78.45
-10 50 4221 -72.48 -70.95 192 5618 -74.96 -73.45
-5 118 2348 -67.43 -65.95 207 3046 -69.63 -68.45
0 433 1332 -62.50 -60.95 571 1781 -64.92 -63.45
10 660 417 -52.41 -50.95 1067 553 -54.86 -53.45
20 980 133 -42.52 -40.95 928 171 -44.63 -43.45
30 1124 42 -32.51 -30.95 922 56 -35.13 -33.45
40 1137 13 -23.78 -20.95 917 18 -26.20 -23.45

Table C.49: 8192 complex data samples decimated into a 16x16 complex rank revealing SVD
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128 real samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.99 -109.61 -160.14 -121.65
-10 -145.86 -104.61 -157.20 -116.65
-5 -136.45 -99.61 -152.93 -111.65
0 19617 61762 -96.32 -94.61 21189 330905 -110.14 -106.65
10 6983 17372 -85.40 -84.61 16465 80872 -98.28 -96.65
20 2070 6911 -77.00 -74.61 10070 20957 -87.30 -86.65
30 1676 1622 -68.57 -64.61 5128 8263 -81.19 -76.65
40 1263 641 -66.40 -54.61 5668 2041 -78.88 -66.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -170.06 -133.13 -172.06 -135.63
-10 -166.92 -128.13 -172.12 -130.63
-5 -162.34 -123.13 -162.25 -125.63
0 233563 961441 -119.67 -118.13 284805 1431054 -123.20 -120.63
10 93169 305002 -109.91 -108.13 63659 399641 -112.03 -110.63
20 31203 79423 -98.77 -98.13 18736 125826 -101.86 -100.63
30 25312 28747 -93.13 -88.13 31275 38873 -94.64 -90.63
40 21701 9888 -90.20 -78.13 28480 13629 -93.00 -80.63

Table C.50: 128 real data samples decimated into a 16x16 complex rank revealing SVD
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256 real samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.65 -100.58 -158.96 -112.62
-10 -144.03 -95.58 -156.38 -107.62
-5 -135.17 -90.58 -143.47 -102.62
0 3763 23539 -87.69 -85.58 12701 88474 -99.48 -97.62
10 1648 7870 -77.98 -75.58 4005 30424 -89.63 -87.62
20 493 2499 -67.86 -65.58 432 8318 -78.68 -77.62
30 99 639 -56.33 -55.58 453 2788 -68.76 -67.62
40 88 226 -48.05 -45.58 457 904 -60.17 -57.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -170.37 -124.10 -172.16 -126.60
-10 -169.02 -119.10 -166.68 -121.60
-5 117536 748564 -117.44 -114.10 -152.73 -116.60
0 35561 348388 -110.44 -109.10 103892 459048 -113.63 -111.60
10 29516 89796 -99.78 -99.10 17228 128655 -101.55 -101.60
20 3152 32299 -89.71 -89.10 10791 45119 -93.61 -91.60
30 1973 11734 -81.55 -79.10 2036 12082 -82.03 -81.60
40 1106 3197 -71.30 -69.10 1607 4709 -74.24 -71.60

Table C.51: 256 real data samples decimated into a 16x16 complex rank revealing SVD
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512 real samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.98 -91.55 -157.88 -103.59
-10 -139.20 -86.55 -151.21 -98.59
-5 3665 16061 -83.96 -81.55 10765 65370 -96.81 -93.59
0 681 8535 -79.03 -76.55 4781 31364 -90.25 -88.59
10 417 2454 -68.07 -66.55 1061 9148 -79.43 -78.59
20 71 792 -58.22 -56.55 235 3136 -69.98 -68.59
30 31 241 -47.81 -46.55 165 935 -60.05 -58.59
40 17 78 -38.20 -36.55 52 306 -50.01 -48.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.22 -115.07 -171.69 -117.57
-10 -162.29 -110.07 -165.44 -112.57
-5 23694 232808 -107.40 -105.07 55723 307507 -110.01 -107.57
0 8650 124250 -101.63 -100.07 20196 162959 -104.26 -102.57
10 1914 39037 -91.79 -90.07 6912 53032 -94.59 -92.57
20 1770 11456 -81.03 -80.07 892 14707 -83.26 -82.57
30 796 3700 -71.99 -70.07 704 4700 -73.49 -72.57
40 445 1260 -62.47 -60.07 656 1605 -64.95 -62.57

Table C.52: 512 real data samples decimated into a 16x16 complex rank revealing SVD
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1024 real samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.63 -82.52 -155.28 -94.56
-10 -119.93 -77.52 -137.03 -89.56
-5 457 5350 -74.57 -72.52 1059 20761 -86.22 -84.56
0 175 3027 -69.44 -67.52 1373 10419 -80.35 -79.56
10 57 863 -58.63 -57.52 162 3502 -70.83 -69.56
20 13 262 -48.40 -47.52 107 1127 -61.24 -59.56
30 6 87 -39.01 -37.52 31 343 -50.54 -49.56
40 6 27 -28.73 -27.52 5 123 -41.74 -39.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -166.79 -106.04 -169.79 -108.54
-10 -135.75 -101.04 -153.69 -103.54
-5 8593 78482 -97.81 -96.04 8875 107148 -100.44 -98.54
0 4125 42261 -92.39 -91.04 2831 58483 -95.38 -93.54
10 620 13465 -82.57 -81.04 2601 17774 -85.16 -83.54
20 465 4271 -72.55 -71.04 249 5366 -74.59 -73.54
30 109 1288 -62.22 -61.04 206 1822 -65.21 -63.54
40 82 436 -52.76 -51.04 143 602 -55.66 -53.54

Table C.53: 1024 real data samples decimated into a 16x16 complex rank revealing SVD
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2048 real samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -137.69 -73.49 -149.24 -85.53
-10 194 3363 -70.66 -68.49 630 13182 -82.44 -80.53
-5 133 1788 -65.02 -63.49 440 7190 -77.08 -75.53
0 53 1022 -60.22 -58.49 232 3927 -71.83 -70.53
10 17 309 -49.79 -48.49 70 1246 -61.96 -60.53
20 7 96 -39.67 -38.49 38 384 -51.78 -50.53
30 4 30 -29.72 -28.49 10 131 -42.37 -40.53
40 11 10 -19.96 -18.49 47 38 -31.89 -30.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -160.52 -97.01 -164.03 -99.51
-10 4743 49938 -94.03 -92.01 11288 69692 -96.95 -94.51
-5 1561 25934 -88.32 -87.01 1912 35652 -91.12 -89.51
0 915 14632 -83.27 -82.01 2014 20247 -86.18 -84.51
10 40 4904 -73.81 -72.01 577 6112 -75.72 -74.51
20 84 1502 -63.63 -62.01 173 1993 -65.97 -64.51
30 57 485 -53.71 -52.01 107 626 -55.86 -54.51
40 152 145 -43.40 -42.01 241 194 -46.10 -44.51

Table C.54: 2048 real data samples decimated into a 16x16 complex rank revealing SVD
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4096 real samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -126.95 -64.46 -134.31 -76.50
-10 76 1170 -61.44 -59.46 47 4660 -73.33 -71.50
-5 27 621 -55.90 -54.46 67 2455 -67.89 -66.50
0 18 350 -51.02 -49.46 43 1423 -63.02 -61.50
10 4 113 -40.85 -39.46 12 437 -52.86 -51.50
20 18 35 -30.74 -29.46 71 144 -43.15 -41.50
30 27 11 -21.21 -19.46 108 45 -33.04 -31.50
40 26 4 -11.21 -9.46 105 14 -23.14 -21.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.65 -87.98 -150.61 -90.48
-10 389 17092 -84.62 -82.98 1268 22747 -87.07 -85.48
-5 368 9129 -79.23 -77.98 282 12653 -82.03 -80.48
0 207 5324 -74.43 -72.98 192 6892 -76.64 -75.48
10 62 1651 -64.39 -62.98 122 2291 -67.36 -65.48
20 236 534 -54.60 -52.98 277 710 -57.12 -55.48
30 268 166 -44.50 -42.98 361 226 -47.13 -45.48
40 292 52 -34.58 -32.98 372 69 -36.94 -35.48

Table C.55: 4096 real data samples decimated into a 16x16 complex rank revealing SVD
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8192 real samples → 16x16 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 25 719 -57.10 -55.43 77 2953 -69.48 -67.47
-10 9 400 -52.07 -50.43 65 1588 -64.08 -62.47
-5 9 220 -46.77 -45.43 31 870 -58.86 -57.47
0 10 125 -41.95 -40.43 52 495 -53.88 -52.47
10 25 39 -31.75 -30.43 99 160 -44.11 -42.47
20 36 13 -21.91 -20.43 139 51 -34.03 -32.47
30 53 4 -11.92 -10.43 209 16 -23.97 -22.47
40 51 1 -2.31 -0.43 203 5 -14.21 -12.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 303 10777 -80.59 -78.95 754 14598 -83.31 -81.45
-10 268 6053 -75.68 -73.95 384 8112 -78.28 -76.45
-5 62 3303 -70.38 -68.95 166 4468 -73.01 -71.45
0 293 1888 -65.48 -63.95 378 2541 -68.17 -66.45
10 662 595 -55.51 -53.95 1056 776 -57.86 -56.45
20 892 188 -45.45 -43.95 955 248 -47.92 -46.45
30 1105 60 -35.78 -33.95 922 78 -37.86 -36.45
40 1137 19 -25.90 -23.95 917 25 -28.53 -26.45

Table C.56: 8192 real data samples decimated into a 16x16 complex rank revealing SVD



146

128 complex samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.63 -106.61 -157.75 -118.65
-10 -143.33 -101.61 -155.97 -113.65
-5 -115.70 -96.61 -145.96 -108.65
0 10196 52196 -94.27 -91.61 27871 173186 -104.65 -103.65
10 4039 11969 -82.00 -81.61 8516 52255 -94.35 -93.65
20 1110 4475 -73.02 -71.61 10286 16706 -86.04 -83.65
30 1802 1546 -68.11 -61.61 6699 5167 -78.85 -73.65
40 1593 544 -66.25 -51.61 6523 2180 -78.41 -63.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.12 -130.13 -172.30 -132.63
-10 -166.75 -125.13 -166.69 -127.63
-5 320427 1259844 -122.23 -120.13 195765 2019379 -125.98 -122.63
0 249683 652951 -116.80 -115.13 317323 906866 -119.83 -117.63
10 45429 185166 -105.47 -105.13 22048 277532 -108.68 -107.63
20 24984 80766 -98.89 -95.13 27552 75752 -98.22 -97.63
30 25004 24639 -91.80 -85.13 36933 20856 -93.52 -87.63
40 25828 6264 -90.07 -75.13 34091 8470 -92.70 -77.63

Table C.57: 128 complex data samples decimated into a 32x32 complex rank revealing SVD



147

256 complex samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.72 -97.58 -157.27 -109.62
-10 -133.43 -92.58 -149.21 -104.62
-5 3430 31402 -90.22 -87.58 11283 125392 -101.75 -99.62
0 2644 16021 -84.09 -82.58 15071 57363 -95.36 -94.62
10 1361 5076 -74.83 -72.58 4961 20787 -86.39 -84.62
20 263 1590 -64.27 -62.58 2912 6408 -77.14 -74.62
30 365 482 -56.27 -52.58 1042 2004 -67.53 -64.62
40 335 159 -52.70 -42.58 1397 669 -65.41 -54.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -167.87 -121.10 -172.73 -123.60
-10 -159.93 -116.10 -154.78 -118.60
-5 101442 436286 -113.13 -111.10 110356 658611 -116.34 -113.60
0 41557 207675 -106.79 -106.10 43836 351090 -110.94 -108.60
10 9752 75558 -97.70 -96.10 17252 95334 -100.00 -98.60
20 7129 20336 -86.20 -86.10 4151 31877 -89.92 -88.60
30 5357 6944 -79.25 -76.10 8551 10124 -83.49 -78.60
40 4801 2245 -76.39 -66.10 7079 2972 -79.48 -68.60

Table C.58: 256 complex data samples decimated into a 32x32 complex rank revealing SVD
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512 complex samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -144.29 -88.55 -154.87 -100.59
-10 959 21756 -86.22 -83.55 14846 85704 -98.55 -95.59
-5 1354 10154 -80.13 -78.55 4980 43325 -92.66 -90.59
0 895 5636 -75.42 -73.55 1786 22419 -86.90 -85.59
10 147 1661 -64.36 -63.55 681 7125 -76.93 -75.59
20 74 550 -55.10 -53.55 279 2303 -67.17 -65.59
30 56 173 -45.62 -43.55 153 702 -57.20 -55.59
40 47 54 -38.13 -33.55 189 215 -49.99 -45.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -165.58 -112.07 -168.89 -114.57
-10 -146.71 -107.07 -157.35 -109.57
-5 7076 157861 -103.83 -102.07 25709 199089 -106.00 -104.57
0 6566 82475 -98.47 -97.07 15028 112373 -101.12 -99.57
10 1142 26450 -88.28 -87.07 3224 37204 -91.17 -89.57
20 1378 8163 -78.41 -77.07 2164 10531 -80.68 -79.57
30 1007 2630 -69.15 -67.07 761 3790 -72.05 -69.57
40 778 876 -62.13 -57.07 1001 1166 -64.56 -59.57

Table C.59: 512 complex data samples decimated into a 32x32 complex rank revealing SVD
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1024 complex samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -136.69 -79.52 -149.86 -91.56
-10 651 6571 -76.52 -74.52 1168 26634 -88.40 -86.56
-5 506 3443 -70.83 -69.52 1205 13925 -82.90 -81.56
0 170 1954 -65.70 -64.52 758 8033 -77.91 -76.56
10 79 598 -55.67 -54.52 46 2456 -67.66 -66.56
20 44 199 -46.05 -44.52 124 749 -57.72 -56.56
30 15 61 -35.89 -34.52 94 247 -48.57 -46.56
40 20 19 -30.09 -24.52 90 81 -42.73 -36.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -158.66 -103.04 -159.59 -105.54
-10 9630 107032 -100.64 -98.04 7882 132016 -102.46 -100.54
-5 5666 51135 -94.18 -93.04 8560 66404 -96.61 -95.54
0 1087 30751 -89.62 -88.04 2623 40835 -92.33 -90.54
10 421 9744 -79.63 -78.04 411 12856 -82.24 -80.54
20 357 2943 -69.32 -68.04 448 3956 -72.10 -70.54
30 313 916 -60.10 -58.04 464 1227 -62.74 -60.54
40 329 297 -53.81 -48.04 419 396 -56.36 -50.54

Table C.60: 1024 complex data samples decimated into a 32x32 complex rank revealing SVD
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2048 complex samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -116.77 -70.49 -129.46 -82.53
-10 183 2260 -67.24 -65.49 167 9184 -79.28 -77.53
-5 35 1287 -62.06 -60.49 171 4801 -73.47 -72.53
0 33 670 -56.46 -55.49 234 2912 -69.30 -67.53
10 24 212 -46.64 -45.49 74 883 -58.82 -57.53
20 7 69 -36.68 -35.49 42 280 -49.13 -47.53
30 8 22 -28.00 -25.49 40 84 -40.06 -37.53
40 13 7 -23.10 -15.49 55 28 -35.01 -27.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 4273 75186 -97.78 -94.01 6826 87837 -98.60 -96.51
-10 3126 34850 -90.86 -89.01 2234 45315 -92.98 -91.51
-5 623 17812 -84.91 -84.01 1974 24923 -87.82 -86.51
0 462 9890 -79.87 -79.01 1227 14069 -82.95 -81.51
10 267 3435 -70.76 -69.01 186 4239 -72.54 -71.51
20 184 1066 -60.68 -59.01 325 1354 -62.81 -61.51
30 245 322 -51.75 -49.01 200 453 -54.64 -51.51
40 320 103 -47.10 -39.01 243 140 -49.28 -41.51

Table C.61: 2048 complex data samples decimated into a 32x32 complex rank revealing SVD
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4096 complex samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 28 1440 -63.05 -61.46 185 5750 -75.26 -73.50
-10 14 784 -57.78 -56.46 57 3076 -69.68 -68.50
-5 10 433 -52.74 -51.46 73 1766 -64.96 -63.50
0 5 253 -48.14 -46.46 13 993 -59.90 -58.50
10 7 80 -38.08 -36.46 17 312 -49.94 -48.50
20 20 25 -28.11 -26.46 73 101 -40.31 -38.50
30 19 8 -20.16 -16.46 80 31 -32.38 -28.50
40 24 2 -16.72 -6.46 93 10 -28.98 -18.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 769 21602 -86.83 -84.98 848 28915 -89.22 -87.48
-10 620 11806 -81.42 -79.98 491 15309 -83.69 -82.48
-5 109 6514 -76.24 -74.98 112 8675 -78.81 -77.48
0 55 3792 -71.67 -69.98 100 4887 -73.79 -72.48
10 116 1168 -61.36 -59.98 244 1557 -63.95 -62.48
20 290 364 -51.47 -49.98 404 499 -54.19 -52.48
30 314 115 -43.80 -39.98 415 157 -46.09 -42.48
40 346 37 -40.31 -29.98 404 51 -42.79 -32.48

Table C.62: 4096 complex data samples decimated into a 32x32 complex rank revealing SVD
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8192 complex samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 8 496 -53.97 -52.43 51 1996 -66.06 -64.47
-10 7 273 -48.67 -47.43 27 1105 -60.82 -59.47
-5 6 149 -43.43 -42.43 66 614 -55.81 -54.47
0 23 87 -38.81 -37.43 72 346 -50.83 -49.47
10 30 28 -29.02 -27.43 125 110 -41.08 -39.47
20 45 9 -19.32 -17.43 176 35 -31.38 -29.47
30 64 3 -12.64 -7.43 256 11 -24.67 -19.47
40 69 1 -10.49 2.57 278 4 -22.60 -9.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 91 7419 -77.37 -75.95 235 10073 -80.11 -78.45
-10 104 4232 -72.54 -70.95 262 5509 -74.88 -73.45
-5 188 2300 -67.17 -65.95 358 3107 -69.82 -68.45
0 521 1295 -62.29 -60.95 726 1698 -64.56 -63.45
10 761 418 -52.44 -50.95 1131 555 -54.95 -53.45
20 1068 129 -42.80 -40.95 992 172 -45.28 -43.45
30 1137 41 -36.01 -30.95 934 55 -38.41 -33.45
40 1140 13 -34.07 -20.95 928 18 -36.47 -23.45

Table C.63: 8192 complex data samples decimated into a 32x32 complex rank revealing SVD
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128 real samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.86 -109.61 -158.84 -121.65
-10 -144.81 -104.61 -157.44 -116.65
-5 -132.74 -99.61 -140.68 -111.65
0 12735 57811 -95.30 -94.61 80062 263819 -108.96 -106.65
10 3584 18489 -85.26 -84.61 12681 68889 -96.85 -96.65
20 2724 6614 -77.21 -74.61 12194 27522 -90.20 -86.65
30 2943 2125 -73.16 -64.61 11813 7876 -84.93 -76.65
40 2489 549 -71.26 -54.61 9435 2625 -83.09 -66.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.25 -133.13 -173.15 -135.63
-10 -170.58 -128.13 -172.10 -130.63
-5 -161.37 -123.13 -166.49 -125.63
0 355880 967933 -120.15 -118.13 379728 1370284 -123.06 -120.63
10 64229 295689 -109.81 -108.13 77920 329819 -110.73 -110.63
20 51180 109357 -102.10 -98.13 47061 106255 -101.83 -100.63
30 34023 31227 -95.61 -88.13 49989 39014 -98.17 -90.63
40 35773 8456 -94.36 -78.13 50747 12270 -97.44 -80.63

Table C.64: 128 real data samples decimated into a 32x32 complex rank revealing SVD
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256 real samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.93 -100.58 -157.46 -112.62
-10 -142.80 -95.58 -156.24 -107.62
-5 221808 1011860 -95.07 -90.58 -136.80 -102.62
0 3949 21571 -86.40 -85.58 9747 92488 -99.07 -97.62
10 433 6503 -76.36 -75.58 5024 32773 -90.59 -87.62
20 834 1885 -66.34 -65.58 3559 8885 -79.99 -77.62
30 507 658 -59.32 -55.58 2067 2944 -72.12 -67.62
40 453 234 -56.54 -45.58 1973 898 -69.61 -57.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -170.99 -124.10 -173.02 -126.60
-10 -168.24 -119.10 -169.65 -121.60
-5 -157.24 -114.10 -157.93 -116.60
0 56513 337379 -111.24 -109.10 74780 396337 -111.83 -111.60
10 19152 103069 -100.22 -99.10 32089 147134 -103.67 -101.60
20 11969 30673 -90.38 -89.10 10009 46856 -93.60 -91.60
30 7704 10416 -83.63 -79.10 7820 12977 -84.45 -81.60
40 7722 3197 -81.19 -69.10 9345 4005 -83.03 -71.60

Table C.65: 256 real data samples decimated into a 32x32 complex rank revealing SVD
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512 real samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.61 -91.55 -157.52 -103.59
-10 -137.81 -86.55 -149.74 -98.59
-5 1341 17863 -84.79 -81.55 7425 60590 -95.61 -93.59
0 1076 7920 -78.05 -76.55 2877 31757 -89.87 -88.59
10 323 2661 -68.38 -66.55 978 10314 -80.37 -78.59
20 101 823 -58.16 -56.55 245 3147 -70.24 -68.59
30 49 260 -48.50 -46.55 427 955 -60.86 -58.59
40 62 76 -41.19 -36.55 287 326 -53.58 -48.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.26 -115.07 -172.53 -117.57
-10 -160.87 -110.07 -164.80 -112.57
-5 26156 230122 -106.94 -105.07 20196 293309 -109.50 -107.57
0 24737 130725 -102.19 -100.07 18872 156729 -103.68 -102.57
10 3491 37988 -91.56 -90.07 6607 48353 -93.76 -92.57
20 2630 11569 -81.52 -80.07 1533 16660 -84.37 -82.57
30 1057 3684 -71.60 -70.07 1603 4793 -74.14 -72.57
40 1011 1111 -64.87 -60.07 1128 1518 -66.74 -62.57

Table C.66: 512 real data samples decimated into a 32x32 complex rank revealing SVD
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1024 real samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.56 -82.52 -154.93 -94.56
-10 -126.47 -77.52 -144.17 -89.56
-5 406 5347 -74.71 -72.52 2838 21210 -86.97 -84.56
0 75 2847 -69.07 -67.52 1314 11846 -81.51 -79.56
10 79 939 -59.53 -57.52 287 3434 -70.76 -69.56
20 45 276 -49.19 -47.52 128 1096 -60.70 -59.56
30 23 87 -39.30 -37.52 137 331 -51.51 -49.56
40 30 29 -33.53 -27.52 105 110 -44.71 -39.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -167.21 -106.04 -169.02 -108.54
-10 14698 159441 -104.27 -101.04 -149.44 -103.54
-5 4735 75644 -97.80 -96.04 4719 100159 -100.05 -98.54
0 1226 38926 -91.72 -91.04 5590 59018 -95.34 -93.54
10 1825 13131 -82.45 -81.04 1519 17687 -84.89 -83.54
20 412 4434 -72.94 -71.04 798 5665 -75.24 -73.54
30 399 1355 -63.14 -61.04 517 1738 -65.32 -63.54
40 405 411 -56.17 -51.04 507 554 -58.57 -53.54

Table C.67: 1024 real data samples decimated into a 32x32 complex rank revealing SVD
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2048 real samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -137.90 -73.49 -151.15 -85.53
-10 73 3285 -70.50 -68.49 454 13106 -82.40 -80.53
-5 36 1761 -65.02 -63.49 639 6947 -76.80 -75.53
0 66 1008 -60.03 -58.49 94 3846 -71.68 -70.53
10 20 319 -50.03 -48.49 66 1236 -61.93 -60.53
20 15 98 -39.98 -38.49 52 391 -51.84 -50.53
30 10 31 -30.77 -28.49 53 123 -42.89 -40.53
40 13 10 -24.85 -18.49 52 37 -36.56 -30.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -161.48 -97.01 -163.98 -99.51
-10 4202 47574 -93.57 -92.01 4496 66317 -96.48 -94.51
-5 475 25480 -88.12 -87.01 2654 35071 -91.00 -89.51
0 781 15332 -83.86 -82.01 1598 19027 -85.53 -84.51
10 208 4624 -73.29 -72.01 259 6179 -75.86 -74.51
20 173 1536 -63.59 -62.01 309 1972 -66.17 -64.51
30 242 446 -54.30 -52.01 179 603 -56.21 -54.51
40 306 152 -48.49 -42.01 232 195 -50.70 -44.51

Table C.68: 2048 real data samples decimated into a 32x32 complex rank revealing SVD
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4096 real samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -124.14 -64.46 -134.74 -76.50
-10 79 1167 -61.24 -59.46 201 4463 -73.06 -71.50
-5 30 606 -55.68 -54.46 46 2484 -67.99 -66.50
0 16 356 -50.92 -49.46 64 1329 -62.44 -61.50
10 8 108 -40.85 -39.46 25 445 -53.04 -51.50
20 17 35 -31.00 -29.46 63 138 -42.94 -41.50
30 18 11 -22.35 -19.46 76 44 -34.24 -31.50
40 21 3 -17.73 -9.46 84 14 -29.83 -21.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.38 -87.98 -144.04 -90.48
-10 342 17246 -84.78 -82.98 868 22493 -87.14 -85.48
-5 332 9387 -79.53 -77.98 405 12254 -81.87 -80.48
0 109 5467 -74.75 -72.98 308 6870 -76.74 -75.48
10 92 1662 -64.38 -62.98 201 2177 -66.87 -65.48
20 274 518 -54.45 -52.98 367 695 -57.02 -55.48
30 306 162 -45.57 -42.98 420 223 -48.35 -45.48
40 335 53 -41.43 -32.98 409 73 -43.97 -35.48

Table C.69: 4096 real data samples decimated into a 32x32 complex rank revealing SVD
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8192 real samples → 32x32 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 38 709 -57.00 -55.43 161 2882 -69.21 -67.47
-10 12 393 -51.88 -50.43 44 1563 -63.95 -62.47
-5 9 218 -46.60 -45.43 41 855 -58.73 -57.47
0 11 121 -41.65 -40.43 52 484 -53.74 -52.47
10 26 39 -31.70 -30.43 119 154 -43.73 -42.47
20 40 12 -22.00 -20.43 161 48 -33.94 -32.47
30 61 4 -14.24 -10.43 241 16 -26.36 -22.47
40 67 1 -10.98 -0.43 268 5 -23.10 -12.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 471 10904 -80.71 -78.95 261 14383 -83.25 -81.45
-10 151 5896 -75.45 -73.95 171 7943 -78.04 -76.45
-5 110 3400 -70.65 -68.95 198 4308 -72.72 -71.45
0 329 1854 -65.40 -63.95 486 2458 -67.80 -66.45
10 668 582 -55.33 -53.95 1099 762 -57.66 -56.45
20 961 186 -45.67 -43.95 1046 247 -48.06 -46.45
30 1134 58 -37.53 -33.95 939 78 -40.33 -36.45
40 1137 19 -34.54 -23.95 928 25 -37.09 -26.45

Table C.70: 8192 real data samples decimated into a 32x32 complex rank revealing SVD
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128 complex samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.74 -106.61 -158.46 -118.65
-10 -142.63 -101.61 -156.49 -113.65
-5 20877 81396 -98.56 -96.61 -135.38 -108.65
0 13189 40939 -92.64 -91.61 32655 166010 -104.35 -103.65
10 1605 12329 -81.68 -81.61 8927 53490 -94.41 -93.65
20 2100 4937 -74.53 -71.61 7661 14878 -84.81 -83.65
30 1695 1165 -67.44 -61.61 6199 5938 -79.44 -73.65
40 1468 468 -65.30 -51.61 6103 1551 -77.61 -63.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.87 -130.13 -173.12 -132.63
-10 -165.91 -125.13 -167.69 -127.63
-5 -133.38 -120.13 592341 2264367 -127.35 -122.63
0 187225 567728 -115.35 -115.13 266331 989883 -120.12 -117.63
10 50879 193139 -105.99 -105.13 68400 329098 -110.30 -107.63
20 34952 68247 -97.66 -95.13 51739 84937 -100.23 -97.63
30 24163 20168 -90.90 -85.13 36256 34161 -94.66 -87.63
40 22868 6572 -89.01 -75.13 29749 7432 -91.20 -77.63

Table C.71: 128 complex data samples decimated into a 64x64 complex rank revealing SVD
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256 complex samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.35 -97.58 -158.09 -109.62
-10 -135.67 -92.58 -150.77 -104.62
-5 9726 29955 -90.14 -87.58 24329 115967 -101.94 -99.62
0 4462 15953 -84.51 -82.58 8325 53451 -94.39 -94.62
10 869 4525 -73.39 -72.58 4990 20060 -86.43 -84.62
20 438 1548 -64.09 -62.58 1161 6090 -75.69 -74.62
30 430 445 -56.46 -52.58 1395 1676 -67.34 -64.62
40 390 149 -54.15 -42.58 1597 636 -66.28 -54.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -167.29 -121.10 -171.84 -123.60
-10 -154.68 -116.10 -161.97 -118.60
-5 56743 511377 -113.39 -111.10 67724 521037 -114.07 -113.60
0 63610 238785 -107.60 -106.10 25727 293938 -109.34 -108.60
10 12126 72483 -97.71 -96.10 29289 100720 -101.16 -98.60
20 7682 21756 -87.48 -86.10 5313 25939 -88.57 -88.60
30 7710 7102 -80.95 -76.10 8540 8816 -82.19 -78.60
40 6037 2278 -77.94 -66.10 7793 3446 -80.35 -68.60

Table C.72: 256 complex data samples decimated into a 64x64 complex rank revealing SVD
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512 complex samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -142.88 -88.55 -155.32 -100.59
-10 1902 20503 -86.42 -83.55 -114.70 -95.59
-5 996 10807 -80.44 -78.55 2505 36068 -90.83 -90.59
0 453 5069 -73.65 -73.55 3080 23503 -87.34 -85.59
10 153 1542 -63.66 -63.55 287 7218 -77.02 -75.59
20 77 574 -54.96 -53.55 170 2138 -66.73 -65.59
30 22 179 -44.93 -43.55 126 686 -56.79 -55.59
40 58 53 -38.80 -33.55 193 214 -49.55 -45.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -165.74 -112.07 -168.72 -114.57
-10 49895 309416 -110.48 -107.07 52040 469950 -113.67 -109.57
-5 11834 151361 -103.30 -102.07 13505 214781 -106.65 -104.57
0 14262 82071 -98.55 -97.07 11492 121313 -101.63 -99.57
10 3175 25488 -88.29 -87.07 4288 32818 -90.30 -89.57
20 943 7564 -77.24 -77.07 2253 10627 -81.02 -79.57
30 1143 2692 -69.38 -67.07 824 3978 -72.49 -69.57
40 796 795 -61.67 -57.07 963 1084 -64.12 -59.57

Table C.73: 512 complex data samples decimated into a 64x64 complex rank revealing SVD
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1024 complex samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -136.94 -79.52 -147.85 -91.56
-10 413 6118 -75.71 -74.52 732 26256 -88.31 -86.56
-5 254 3699 -71.31 -69.52 1065 13835 -82.88 -81.56
0 225 2084 -66.33 -64.52 840 7935 -78.14 -76.56
10 54 592 -55.68 -54.52 143 2289 -67.32 -66.56
20 5 202 -46.12 -44.52 27 816 -58.35 -56.56
30 4 60 -35.42 -34.52 13 254 -48.08 -46.56
40 3 20 -26.13 -24.52 15 77 -37.94 -36.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -160.12 -103.04 -161.76 -105.54
-10 3548 100103 -100.16 -98.04 5051 133397 -102.38 -100.54
-5 4320 51540 -94.12 -93.04 7211 70730 -96.96 -95.54
0 3468 28529 -89.36 -88.04 1440 40702 -92.36 -90.54
10 927 8992 -79.19 -78.04 710 12487 -81.94 -80.54
20 144 2987 -69.47 -68.04 201 3926 -71.88 -70.54
30 78 893 -59.05 -58.04 146 1202 -61.60 -60.54
40 53 303 -49.86 -48.04 55 364 -51.74 -50.54

Table C.74: 1024 complex data samples decimated into a 64x64 complex rank revealing SVD
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2048 complex samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -125.62 -70.49 -137.25 -82.53
-10 111 2207 -66.77 -65.49 195 9477 -79.52 -77.53
-5 69 1210 -61.54 -60.49 151 5066 -74.18 -72.53
0 23 700 -57.02 -55.49 98 2842 -68.96 -67.53
10 18 213 -46.70 -45.49 70 934 -59.58 -57.53
20 5 69 -36.89 -35.49 20 273 -48.79 -47.53
30 5 22 -26.86 -25.49 25 90 -39.30 -37.53
40 11 7 -17.60 -15.49 41 28 -29.71 -27.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -148.16 -94.01 -138.94 -96.51
-10 2874 32161 -90.00 -89.01 3455 44831 -93.11 -91.51
-5 943 19397 -85.78 -84.01 776 25760 -88.13 -86.51
0 573 10064 -80.09 -79.01 495 14550 -83.22 -81.51
10 146 3511 -70.87 -69.01 379 4413 -73.13 -71.51
20 43 1035 -60.39 -59.01 120 1400 -62.82 -61.51
30 137 312 -49.93 -49.01 118 429 -52.74 -51.51
40 195 104 -41.25 -39.01 262 140 -43.98 -41.51

Table C.75: 2048 complex data samples decimated into a 64x64 complex rank revealing SVD
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4096 complex samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 47 1494 -63.38 -61.46 295 5702 -75.12 -73.50
-10 18 779 -57.88 -56.46 59 3150 -70.03 -68.50
-5 10 431 -52.61 -51.46 35 1719 -64.66 -63.50
0 7 254 -48.10 -46.46 31 1003 -60.15 -58.50
10 4 78 -37.81 -36.46 31 310 -49.85 -48.50
20 25 25 -27.92 -26.46 100 98 -39.88 -38.50
30 28 8 -18.23 -16.46 110 31 -30.15 -28.50
40 25 2 -9.36 -6.46 104 10 -21.23 -18.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 1092 22633 -87.19 -84.98 1695 28321 -89.04 -87.48
-10 205 11941 -81.67 -79.98 530 15705 -83.84 -82.48
-5 348 6428 -76.13 -74.98 336 8524 -78.53 -77.48
0 180 3714 -71.33 -69.98 229 5018 -73.95 -72.48
10 34 1161 -61.12 -59.98 127 1521 -63.62 -62.48
20 242 368 -51.37 -49.98 335 501 -54.17 -52.48
30 274 120 -41.75 -39.98 378 157 -44.13 -42.48
40 319 36 -32.69 -29.98 377 49 -35.29 -32.48

Table C.76: 4096 complex data samples decimated into a 64x64 complex rank revealing SVD
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8192 complex samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 6 500 -53.98 -52.43 66 1964 -65.77 -64.47
-10 9 279 -48.90 -47.43 45 1107 -60.85 -59.47
-5 9 153 -43.65 -42.43 41 612 -55.78 -54.47
0 21 86 -38.73 -37.43 81 340 -50.68 -49.47
10 28 27 -28.66 -27.43 109 109 -40.72 -39.47
20 44 9 -19.02 -17.43 163 35 -30.90 -29.47
30 53 3 -9.03 -7.43 212 11 -21.17 -19.47
40 51 1 -1.45 2.57 203 3 -13.45 -9.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 158 7197 -77.12 -75.95 231 9925 -79.95 -78.45
-10 157 4101 -72.30 -70.95 106 5501 -74.80 -73.45
-5 201 2268 -67.20 -65.95 363 3120 -69.86 -68.45
0 469 1287 -62.25 -60.95 667 1721 -64.67 -63.45
10 668 408 -52.30 -50.95 1067 562 -54.97 -53.45
20 993 130 -42.40 -40.95 934 170 -44.62 -43.45
30 1129 41 -32.65 -30.95 922 55 -35.28 -33.45
40 1137 13 -25.13 -20.95 917 18 -27.67 -23.45

Table C.77: 8192 complex data samples decimated into a 64x64 complex rank revealing SVD
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128 real samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 1.280 µs pulse width 400 (Mhz), 0.320 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.48 -109.61 -157.41 -121.65
-10 -145.15 -104.61 -157.53 -116.65
-5 -136.34 -99.61 -121.42 -111.65
0 2223 64944 -95.94 -94.61 95188 313664 -110.51 -106.65
10 6116 17590 -85.41 -84.61 12335 73825 -97.63 -96.65
20 3654 5223 -77.37 -74.61 10967 22201 -88.54 -86.65
30 2801 2032 -72.76 -64.61 9614 6777 -84.75 -76.65
40 2613 514 -72.00 -54.61 10213 2731 -84.17 -66.65

Sample Rate
SNR 1500 (Mhz), 0.085 µs pulse width 2000 (Mhz), 0.064 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -170.26 -133.13 -172.13 -135.63
-10 -168.82 -128.13 -171.69 -130.63
-5 -161.30 -123.13 -161.65 -125.63
0 174204 1023392 -120.30 -118.13 332960 1570520 -123.89 -120.63
10 23189 277966 -108.65 -108.13 127499 356374 -111.54 -110.63
20 28111 90114 -99.55 -98.13 61733 124554 -103.36 -100.63
30 37029 32007 -96.08 -88.13 56384 42240 -99.79 -90.63
40 38591 10262 -95.61 -78.13 53957 14048 -98.26 -80.63

Table C.78: 128 real data samples decimated into a 64x64 complex rank revealing SVD
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256 real samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 2.560 µs pulse width 400 (Mhz), 0.640 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -146.82 -100.58 -158.58 -112.62
-10 -142.74 -95.58 -153.82 -107.62
-5 -104.44 -90.58 -145.09 -102.62
0 4709 24042 -86.69 -85.58 14088 94199 -100.09 -97.62
10 1300 6452 -76.12 -75.58 3490 28786 -88.98 -87.62
20 623 2142 -67.13 -65.58 2951 8862 -79.88 -77.62
30 543 710 -60.48 -55.58 3097 3100 -74.43 -67.62
40 647 234 -60.15 -45.58 2527 862 -71.42 -57.62

Sample Rate
SNR 1500 (Mhz), 0.171 µs pulse width 2000 (Mhz), 0.128 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -170.04 -124.10 -171.48 -126.60
-10 -168.20 -119.10 -170.46 -121.60
-5 186890 703875 -117.68 -114.10 7756964 46927100 -119.58 -116.60
0 14254 344740 -110.71 -109.10 55055 504241 -114.28 -111.60
10 12175 122105 -101.49 -99.10 38100 143378 -103.45 -101.60
20 12962 30715 -90.60 -89.10 11863 44103 -93.59 -91.60
30 9718 9214 -83.93 -79.10 9964 11469 -85.71 -81.60
40 8974 3066 -82.91 -69.10 12535 4036 -85.51 -71.60

Table C.79: 256 real data samples decimated into a 64x64 complex rank revealing SVD
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512 real samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 5.120 µs pulse width 400 (Mhz), 1.280 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -145.69 -91.55 -157.97 -103.59
-10 -138.03 -86.55 -150.23 -98.59
-5 412 14727 -83.66 -81.55 3354 63109 -95.96 -93.59
0 825 7301 -77.25 -76.55 3240 28715 -89.01 -88.59
10 180 2357 -67.81 -66.55 803 9064 -79.04 -78.59
20 85 754 -57.13 -56.55 813 3000 -69.98 -68.59
30 110 266 -49.81 -46.55 399 905 -60.72 -58.59
40 81 84 -43.31 -36.55 319 302 -54.95 -48.59

Sample Rate
SNR 1500 (Mhz), 0.341 µs pulse width 2000 (Mhz), 0.256 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -169.31 -115.07 -171.56 -117.57
-10 -158.16 -110.07 -163.90 -112.57
-5 24113 237183 -106.98 -105.07 50108 330922 -110.80 -107.57
0 10364 122866 -101.60 -100.07 11228 162374 -103.85 -102.57
10 2470 38042 -91.54 -90.07 3273 47740 -93.42 -92.57
20 2523 12769 -82.50 -80.07 3953 16689 -84.26 -82.57
30 894 4338 -72.89 -70.07 1892 5041 -75.06 -72.57
40 1319 1190 -67.17 -60.07 1545 1470 -68.83 -62.57

Table C.80: 512 real data samples decimated into a 64x64 complex rank revealing SVD
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1024 real samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 10.240 µs pulse width 400 (Mhz), 2.560 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -143.77 -82.52 -156.11 -94.56
-10 -126.56 -77.52 -141.49 -89.56
-5 466 5387 -74.51 -72.52 2675 18349 -85.30 -84.56
0 357 2894 -69.26 -67.52 1305 11321 -80.99 -79.56
10 71 849 -58.44 -57.52 235 3424 -70.73 -69.56
20 28 296 -49.39 -47.52 83 1135 -61.05 -59.56
30 3 85 -38.44 -37.52 43 330 -50.34 -49.56
40 4 28 -28.84 -27.52 18 116 -41.45 -39.56

Sample Rate
SNR 1500 (Mhz), 0.683 µs pulse width 2000 (Mhz), 0.512 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -166.98 -106.04 -170.27 -108.54
-10 -148.48 -101.04 -137.64 -103.54
-5 8579 74806 -97.80 -96.04 4285 102865 -100.20 -98.54
0 1499 40491 -92.06 -91.04 3787 55850 -94.90 -93.54
10 609 12813 -81.93 -81.04 1769 16675 -84.41 -83.54
20 340 3957 -71.75 -71.04 343 5445 -74.65 -73.54
30 91 1290 -62.05 -61.04 167 1720 -64.68 -63.54
40 22 405 -52.02 -51.04 101 578 -55.65 -53.54

Table C.81: 1024 real data samples decimated into a 64x64 complex rank revealing SVD
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2048 real samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 20.480 µs pulse width 400 (Mhz), 5.120 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -137.53 -73.49 -150.32 -85.53
-10 64 3417 -70.69 -68.49 1439 13348 -82.64 -80.53
-5 85 1763 -64.82 -63.49 380 7261 -77.27 -75.53
0 24 969 -59.73 -58.49 157 3962 -71.94 -70.53
10 14 292 -49.30 -48.49 75 1266 -62.13 -60.53
20 4 96 -39.75 -38.49 19 368 -51.24 -50.53
30 4 30 -29.43 -28.49 9 120 -41.65 -40.53
40 10 10 -19.95 -18.49 40 38 -31.81 -30.53

Sample Rate
SNR 1500 (Mhz), 1.365 µs pulse width 2000 (Mhz), 1.024 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -160.91 -97.01 -163.30 -99.51
-10 2045 50941 -94.13 -92.01 5140 67819 -96.72 -94.51
-5 817 26896 -88.36 -87.01 1384 34281 -90.81 -89.51
0 1150 14639 -83.21 -82.01 907 20109 -86.04 -84.51
10 94 4676 -73.42 -72.01 196 5878 -75.48 -74.51
20 61 1461 -63.25 -62.01 88 1926 -65.81 -64.51
30 78 491 -53.92 -52.01 129 600 -55.59 -54.51
40 144 150 -43.48 -42.01 230 189 -45.85 -44.51

Table C.82: 2048 real data samples decimated into a 64x64 complex rank revealing SVD
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4096 real samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 40.960 µs pulse width 400 (Mhz), 10.240 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -128.41 -64.46 -138.34 -76.50
-10 40 1118 -60.86 -59.46 136 4530 -73.24 -71.50
-5 21 625 -55.91 -54.46 97 2443 -67.70 -66.50
0 8 336 -50.55 -49.46 67 1376 -62.82 -61.50
10 2 108 -40.59 -39.46 13 422 -52.44 -51.50
20 20 34 -30.65 -29.46 78 135 -42.65 -41.50
30 27 11 -21.18 -19.46 109 44 -32.89 -31.50
40 27 3 -11.29 -9.46 104 14 -23.24 -21.50

Sample Rate
SNR 1500 (Mhz), 2.731 µs pulse width 2000 (Mhz), 2.048 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 -149.91 -87.98 -149.17 -90.48
-10 569 16871 -84.61 -82.98 875 22229 -87.00 -85.48
-5 288 8887 -78.89 -77.98 241 12271 -81.80 -80.48
0 66 5209 -74.39 -72.98 191 6828 -76.73 -75.48
10 53 1621 -64.21 -62.98 118 2135 -66.58 -65.48
20 222 514 -54.20 -52.98 287 680 -56.65 -55.48
30 276 159 -44.09 -42.98 373 220 -46.93 -45.48
40 311 51 -34.51 -32.98 377 69 -37.09 -35.48

Table C.83: 4096 real data samples decimated into a 64x64 complex rank revealing SVD
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8192 real samples → 64x64 complex SVD
Sample Rate

SNR 100 (Mhz), 81.920 µs pulse width 400 (Mhz), 20.480 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 29 720 -57.17 -55.43 109 2893 -69.20 -67.47
-10 9 395 -51.92 -50.43 21 1585 -64.02 -62.47
-5 7 221 -46.88 -45.43 17 880 -58.85 -57.47
0 16 123 -41.82 -40.43 35 493 -53.87 -52.47
10 27 38 -31.68 -30.43 103 153 -43.73 -42.47
20 32 12 -21.86 -20.43 148 49 -33.71 -32.47
30 53 4 -11.83 -10.43 207 15 -23.83 -22.47
40 51 1 -2.82 -0.43 203 5 -14.87 -12.47

Sample Rate
SNR 1500 (Mhz), 5.461 µs pulse width 2000 (Mhz), 4.096 µs pulse width

(dB) E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB E[f̂ ]
√

V [f̂ ] 10 log10
1

MSE CRB
-15 355 10862 -80.81 -78.95 218 14593 -83.20 -81.45
-10 160 5805 -75.29 -73.95 298 7866 -77.90 -76.45
-5 117 3188 -70.06 -68.95 155 4337 -72.75 -71.45
0 273 1834 -65.28 -63.95 415 2470 -67.84 -66.45
10 665 574 -55.15 -53.95 1030 761 -57.60 -56.45
20 924 186 -45.46 -43.95 960 243 -47.71 -46.45
30 1100 57 -35.18 -33.95 917 77 -37.72 -36.45
40 1137 19 -26.55 -23.95 917 26 -29.14 -26.45

Table C.84: 8192 real data samples decimated into a 64x64 complex rank revealing SVD
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