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Abstract

The Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Ensemble Kalman Filter (EnKF)

are commonly implemented practical solutions for solving nonlinear state space estimation problems;

all based on the linear state space estimator, the Kalman Filter. Often, the UKF and EnKF are cited as a

superior methods to the EKF with respect to error-based performance criteria. The UKF in turn has the

advantage over the EnKF of smaller computational complexity.

In practice however the UKF often fails to live up to this expectation, with performance which does

not surpass the EKF and estimates which are not as robust as the EnKF. This work explores the geometry

of alternative sigma point sets, which form the basis of the UKF, contributing several new sets along with

novel methods used to generate them. In particular, completely novel systems of sigma points that pre-

serve higher order statistical moments are found and evaluated. Additionally a new method for scaling

and problem specific tuning of sigma point sets is introduced as well as a discussion of why this is neces-

sary, and a new way of thinking about UKF systems in relation to the other two Kalman Filter methods.

An Iterated UKF method is also introduced, similar to the smoothing iterates developed previously for

the EKF. The performance of all of these methods is demonstrated using problem exemplars with the

improvement of the contributed methods highlighted.
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Chapter 1

Introduction

They were two lovely choices. One of them meant giving up every chance of a decent life forever...and
the other one scared me out of my mind.

- Frederik Pohl, Gateway

As part of the introduction I would like to provide a brief synopsis of each chapter, both as a way of

quickly navigating the core movement of the work and as a way of anticipating some of the its subtleties.

Before we can begin this, per-chapter review, we should first elaborate on the topic of the work as so

many necessary words would not fit in the title. This work started in my study of iterative techniques for

improving the performance of the Extended Kalman Filter (EKF), described in [13, 14, 2], in challenging

problems which led me to the results presented in [10], wherein the Blind Tricyclist Problem is introduced

and the iterative Backwards Smoothing EKF (BSEKF) [9] is shown as one of the best of the cutting edge

methods as compared to the EKF, UKF, and even Partial Filtering. The failure of the Unscented Kalman

Filter (UKF) [4] to outperform the EKF, however, was so surprising to me as to warrant a more careful

study which has led to my contributions to this method. I will, through this work, present these new

methods and, more importantly, a better context to understand them within. All of the techniques shown

in this work are, by nature of their Kalman Filter base, linear estimators. This fact is both their strength

and weakness. On the one hand they are often sub-optimal for the nonlinear problems that they are

intended to solve but on the other hand their efficient computation makes them useful. In this area,

nonlinear tracking, the goal is often to find an efficient, simple solution which solves the problem well

enough even though not optimally and the EKF has proven itself capable in this regard, making it the

first estimator often tried on a new problem. There are, however, problems where the EKF does not quite

meet the desired level of performance and in these cases the UKF is thought to be the next natural step in
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the complexity/performance trade off. In this work we will be looking at how the UKF can better fill this

need. It should be noted that all of the estimators discussed in this work are, at their core, linear estimators

meaning that their performance is ultimately going to be limited and, as I shall show, the choices among

these several implementations necessarily represent a trade off between accuracy and robustness.

Chapter 2 The State/Dual Kalman Filter Representation Before we can begin this discussion I need

to introduce the core Kalman Filter (KF). The Kalman Filter is a well established estimator for the linear

state space tracking problem which is both, as a property of the problem, a Maximal Likelihood Estima-

tor (MLE) and a Minimal Mean Squared Error (MMSE) estimator. Its real strength, however, lies in its

recursive construction which makes it well suited for real world implementations, where its estimates

can easily be corrected as new data is collected without re-calculating all the previous data. This chapter

presents its derivation from the point of view of convex optimization. This nonstandard approach will

provide a refresher to the topic and show how the filter’s recursion is built out of an efficient blocking of

the original problem. I feel its great benefit is making a clear distinction between the track of recursive es-

timates of the system’s state and the final estimate of the system’s track. It also makes clear that, although

the problem is to estimate the entire track of states, the entire problem boils down to finding an optimal

estimate of the state for any one time instance. This is something we might expect from the fact that the

recursion exists, as it is only estimating the state at one point in time, but in this development this fact

is given full form. This form, the Hamiltonian/Symplectic matrix development, is often discussed in its

relationship to just the covariance matrix either in terms of steady state response as in [11] or for one step

covariance tracking as in [8]. In the development here, however, we explore its practical application as an

actual optimal solution propagator.

Chapter 3 Smoothing Solutions Here we are going to make the results of the last chapter concrete

by showing the KF in an implementation, breaking apart and showing the separate contributions of the

various factors. The main thrust of this chapter will be to provide another recursive estimator which

can construct the entire estimated track from an end state KF estimate. This reveals one of the main

differences between the theory and practical implementation. Although the original problem can be seen

as only needing to estimate the state optimally for one instance in time from which all intermediate state

solutions may then be derived, in an implementation this does not work because the sequence of states,

necessarily, become uncorrelated across time, causing numerical failure. Again, because of the alternative

formulation being presented of the original KF, this leads to some forms which are slightly different from

the standard works, and we explore some potentially computational cheaper methods of formulating a
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smoother, which can result in more efficient processing.

Chapter 4 Smoothed Solution Convergence in the Blind Tricyclist Problem Now that we have a strong

foundation in the linear theory of the KF we need to move on to the nonlinear theory of the EKF and other

generalizations including the Iterated Smoother (IS) and Backwards Smoothing Extended Kalman Filter

(BSEKF). We will do this by describing the extensions of the theory in parallel with demonstrating its

results on a synthetic nonlinear problem exemplar, The Blind Tricyclist Problem introduced in [10]. The

advantage of this problem is that, because it is entirely synthetic, it is accurately described in both its

noise and function models. We do not need to worry about noise processes which are difficult to describe

as Gaussian or propagation/observation functions which are incorrectly, or impossibly, defined. One of

the biggest differences in this treatment from others is the demonstration of filter performance in terms of

error quantiles instead of simply mean squared error. This difference will be important in contrasting the

methods introduced later.

Chapter 5 Sigma Point/Unscented Methods Geometry Given the failure of the standard linearization

techniques to achieve theoretically possible results we are going to examine one of the most common

alternatives to the simple EKF approach, the Unscented Kalman Filter (UKF) which is based on an es-

timation technique utilizing sigma points. The treatment of sigma points found here is substantially

different from the standard discussion in the literature and focuses on the geometry required to generate

new sets of sigma points and its relationship to their higher order moments. Previous work in this area,

[15], has demonstrated the ability of 1D sets, defined by a symmetric parameterization, to be constructed

to estimate higher order moments. Other works, such as [7] attempt to generate sets which take into ac-

count higher order moments, they do not however attempt to match the moments exactly and do not take

into account mixed moments. In this work however I remove the restriction to symmetric sets, advance

strategies for expanding sets generated to have higher order moments to higher dimensions, provide an

accompanying discussion of mixed moments and sets to meet them, and demonstrate their superior per-

formance. Additionally although in a previous work [3] a set which minimized 3rd order moment errors

has been discussed, due to a sampling distance issue, the authors later superseded it in [4] with a new

set whose points all lie on a sphere. In this work I present a parametrization of sets generated from an

optimality condition on 3rd order moments which contains the spherical set described in [4] with a new

set whose points all lie on a sphere. In this work I present a parametrization of sets generated from an

optimality condition on 3rd order moments which contains the spherical set described in [4].
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Chapter 6 Sigma Point/Unscented Smoothing Just as Chapter 3 built on Chapter 2 by confronting dif-

ficulties in the original theory, this chapter builds on the previous by looking at the limitations of the

last. The primary way I achieve this is by examining the difference between this new method of approx-

imating problems, the UKF, and the more standard EKF using the statistical analysis of the estimators’

errors. The results presented here are surprising, demonstrating the trade off I mentioned earlier, and I

believe will provide insight into the comparative strengths and weaknesses of the two methods. I will

also present a method for achieving results which are in the range between pure UKF and EKF the im-

portance of which is also demonstrated. Additionally I present a method for iterating the UKF, just as

was done for the EKF in Chapter 4, giving us a complete continuation of the EKF theory into the UKF.

There has been some, limited, exploration in the area of constructing iterative methods for the UKF by [6],

which considered only the observation step alone. The methods presented in this work advance this idea

by including smoothing, allowing iterations on an entire track, and consider re-sampling the transform

after each iteration.

Chapter 7 Sigma Point/Unscented Applications in the Blind Tricyclist Problem This chapter employs

The Blind Tricylist problem to demonstrate the gains achieved with the new methods introduced in the

previous chapters. First this demonstration re-affirms that the standard UKF fails to outperform the EKF, a

result I have motivated in the previous chapter. And secondly, by using a simple tuning strategy available

to our new methods I demonstrate their potential superior performance for this same problem. Addition-

ally I introduce and again demonstrate superior performance in an alternative problem scenario, arguing

for the general performance increase available to this new filter with the tuning strategies employed.
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Chapter 2

The State/Dual Kalman Filter

Representation

"Yet is common opinion the fool, not I," he said. "He that imagineth after his labours to attain unto
lasting joy, as well may he beat water in a mortar. Is there not in the wild benefit of nature instances
enow to laugh this folly out of fashion? A fable of great men that arise and conquer the nations: Day
goeth up against the tyrant night. How delicate a spirit is she, how like a fawn she footeth it upon the
mountains: pale pitiful light matched with the primeval dark. But every sweet hovers in her battalions;
and every heavenly influence: coolth of the wayward little winds of morning, flowers awakening, birds
a-carol, dews a-sparkle on the fine-drawn webs the tiny spinners hang from fern-frond to thorn, from
thorn to wet dainty leaf of the silver birch; the young day laughing in her strength, wild with her own
beauty; fire and life and every scent and colour born anew to triumph over chaos and slow darkness and
the kinless night.”

-E. R. Eddison, The Worm Ouroboros

This chapter will derive the Kalman Filter, a rather common ‘filter’, from a slightly different perspective

than most treatments. The goal here is to provide a slightly different perspective from which it will be

possible to gain new insight. The methods discussed result in a set of equations that are often called the

Symplectic Representation of the Kalman Filter.

2.1 Problem Statement

We can begin with a time evolving state space system defined in Equation 2.1.1.

xk = Fkxk−1 + uk + Lkwk for index k = 1..η (2.1.1)
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Where

xk is the state of a system with an initial condition determined by the random variable x0 ∼
N(x̂0, P0) where both x̂0 and P0 are known, P0 ∈ R`×`

Fk is the known state transition matrix, Fk ∈ R`×` and is invertible

uk is the forcing function and is known uk ∈ R`

wk is the process noise and is distributed as a zero mean normal random variable wk ∼ N(0, Qk)

where Qk ∈ Rmk×mk is known, symmetric, and invertible

Lk is the known process noise transform matrix, Lk ∈ R`×mk

There are other similar representations of this problem and I will briefly try to illuminate why I have

chosen this representation. First uk is sometimes represented as Gkuk, usually when the text in question is

exploring the problem from the point of view of controls because it allows a succinct way of representing

the limitations of a control input uk. Here, however, I will be only examining the estimation of such a

system and not its control, so this restriction is not useful, combined with the fact that many things not

typically considered ‘control’ inputs are also going to be lumped into this vector. The first of these useful

‘lumpings’ can be seen in our restriction on wk to be zero mean. This is no restriction at all when one

considers that any mean ŵk can simply be pulled out and made part of ũk = uk + Lkŵk. Additionally the

restriction that Qk be symmetric invertible instead of symmetric positive semi-definite is eased by the exis-

tence of Lk which allows the random variable Lkwk to be a normal random variable with only a positive

semi-definite covariance matrix. In fact we could make one random variable υ ∼ N(uk, LkQkLT
k) which

absorbs all of these variables. These notations are picked for their impact in the later, nonlinear system,

discussions giving room to distinguish effects according to root causes.

Our goal for this problem is to be able to estimate the state of the system at the various times k. To

this end we have one additional set of information. We make measurements of the state in the form of

Equation 2.1.2.

yk = Hkxk + Jkvk for index k = 1..η (2.1.2)

Where

yk is the observation, yk ∈ Rbk and is known

Hk is the observation transform matrix, Hk ∈ Rbk×` and is known
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Jk is the known observation noise transform, Jk ∈ Rbk×ak

vk is the observation noise and is distributed as a zero mean normal variable vk ∼ N (0, Rk) where

Rk ∈ Rak×ak is known, also JkRk JT
k is symmetric and invertible

It is uncommon to include the matrix J which appears wholly unnecessary though, again, its utility will

become more apparent later. The restrictions that vk be zero mean is not actually restrictive, as any mean,

v̂k, can simply be removed from the observation, ỹk = yk − Jkv̂k.

Between these two equations, 2.1.1 and 2.1.2 we have a set of constraints, and implicit is that we want

to estimate the quantities, xk. Our goal is to construct the Maximal Likelihood Estimator (MLE)1 for

(x, w, v).

Formally then, our problem is to find values of (x, w, v) which maximize the probability of the ob-

served events, that is to maximize

p (x0, w, v) =
e
−1
2 (x0−x̂0)

T P−1
0 (x0−x̂0)

√
2π

`√|P0|
·

η

∏
k=1

e
−1
2 wT

k Q−1
k wk

√
2π

mk√|Qk|
·

η

∏
k=1

e
−1
2 vT

k R−1
k vk

√
2π

dk√|Rk|
, (2.1.3)

while also meeting the constraints found in the previous two equations, 2.1.1 and 2.1.2.

2.2 Convex Optimization and the Dual State Solution

In order to solve this problem we will be applying techniques from Convex Optimization2. The first

step will be to simplify our probability function, shown in Equation 2.1.3, by taking its logarithm, where

‖z‖M is the Mahalanobis Distance of the random variable z ∼ N (ẑ, S) is ‖z‖2
M = (z− ẑ)T S−1 (z− ẑ).

ln (p) = − ln
(√

2π
`
√
|P0|

)
− 1

2
‖x0‖2

m
+

`

∑
k=1

(
− ln

(√
2π

mk
√
|Qk|

)
− 1

2
‖wk‖2

m

)

+
`

∑
k=1

(
− ln

(√
2π

dk
√
|Rk|

)
− 1

2
‖vk‖2

m

)
We can remove the constant terms to form the log likelihood and multiply by −1 to change it into a cost

function, which we need to minimize, as shown in Equation 2.2.1.

1The systems are all linear with Normal random variable inputs so for the problem as stated the MLE is also a Minimal Mean
Squared Error Estimate (MMSE), but as we move through the work we will be sacrificing this equivalence

2The forms and results of this section all derive from Section 28 of [12] except I have taken the liberty of applying a transpose.
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c (x0, n, w) = −1
2

(
‖x0‖2

M +
η

∑
k=1
‖wk‖2

M +
η

∑
k=1
‖nk‖2

M

)
(2.2.1)

The constraints, originally a set of independent equations from the propagation and observation equa-

tions 2.1.1, 2.1.2, can be reorganized to form a single, large, η`+ ∏ bk dimensional constraint function3.

Θ (x, w, n) =

Θ1,1 = −x1 + F1x0 + u1 + L1w1 = 0

Θ1,2 = −x2 + F2x1 + u2 + L2w2 = 0

...
...

...

Θ1,k = −xk + Fkxk−1 + uk + Lkwk = 0

Θ1,k+1 = −xk+1 + Fk+1xk + uk+1 + Lk+1wk+1 = 0

...
...

...

Θ1,η = −xη + Fηxη−1 + uη + Lηwη = 0

Θ2,1 = −y1 + H1x1 + J1v1 = 0

Θ2,k = −y2 + H2x2 + J2v2 = 0

...
...

...

Θ2,k = yk + Hkxk + Jkvk = 0

...
...

...

Θ2,η = yη + Hηxη + Jηvη = 0

(2.2.2)

Using Lagrangian Multipliers we know the solution must have the form,

∂cT + ∂ΘT · ν = 0.

where ν is the η` + ∏ bk dimensional vector of Lagrangian Multipliers. Taking the derivatives, first of

Equation 2.2.1, and second of Equation 2.2.2.

3This is going to be a linear constraint A

x
w
n

 = 0 where A is a huge but sparse matrix
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∂cT =



P−T
0 (x0 − x̂0)

0

0
...

0

0
...

0

0

−Q−T
1 w1

−Q−T
2 w2
...

−Q−T
k wk
...

−Q−T
η wη

−R−T
1 v1

−R−T
2 v2
...

−RT
k−1vk−1

−RT
k vk
...

R−T
η vη



(2.2.3)
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∂ΘT =



FT
1 0 0 · · · 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0

−I FT
2 0 0 0 0 HT

1 0 0 0 0 0

0 −I F3 0 0 0 0 HT
2 0 0 0 0

...
. . .

...
. . . . . .

...

0 0 0 FT
k 0 0 0 0 HT

k−1 0 0 0

0 0 0 −I
. . . 0 0 0 0 0 HT

k 0 0
...

. . .
...

. . .
...

0 0 0 0 −I FT
η 0 0 0 0 HT

η−1 0

0 0 0 · · · 0 · · · 0 −I 0 0 · · · 0 0 · · · 0 HT
η

LT
1 0 0 0 0 0 0 0 0 0 0 0

0 LT
2 0 0 0 0 0 0 0 0 0 0

...
. . .

...
...

0 0 0 LT
k 0 0 0 0 0 0 0 0

. . .
...

...

0 0 0 0 0 LT
η 0 0 0 0 0 0

0 0 0 · · · 0 · · · 0 0 JT
1 0 · · · 0 0 · · · 0 0

0 0 0 0 0 0 0 JT
2 0 0 0 0

...
. . .

...

0 0 0 0 0 0 0 0 JT
k−1 0 0 0

0 0 0 0 0 0 0 0 0 JT
k 0 0

...
. . .

...

0 0 0 0 0 0 0 0 0 0 JT
η−1 0

0 0 0 · · · 0 · · · 0 0 0 0 · · · 0 0 · · · 0 JT
η



. (2.2.4)

Examining Equations 2.2.3 and 2.2.4 we can see there are natural places to break the equations apart.

First we can break the Lagrangian Multiplier, ν, into two subparts. The first, ρ, is aligned with the first,

red, portion of ∂ΘT that is based on the state transition model, and the second, γ, is aligned with the

second portion, based on the observation model. Additionally we can further break these vectors apart

along the still preserved matrix dimensions so ρk is related to xk and γk to yk. The exact index ranges are
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shown below.

ν[1...`] = ρ1

ν[`+1...2`] = ρ2

ν[(k−1)`+1...k`] = ρk

ν[(η−1)`+1...η`] = ρη

ν[η`+1...η`+d1] = γ1

ν[η`+1+d1...η`+d1+d2] = γ2

ν[
η`+1+∑k−1

j=1 dj ...η`+∑k−1
j=1 dj+dk

] = γk

ν[
η`+1+∑

η−1
j=1 dj ...η`+∑

η−1
j=1 dj+dη

] = γη

Making this, the sub indexed vector ν, substitution into Equation 2.2.3, and noting that all the covari-

ance matrices are symmetric, we get the following system of equations.

−P−1
0 (x0 − x̂0) + FT

1 ρ1 = 0

−ρ1 + FT
2 ρ2 + HT

1 γ1 = 0

−ρk−1 + FT
k ρk + HT

k γk = 0

−ρη + HT
η γη = 0

−w1Q−1
1 + LT

1ρ1 = 0

−wkQ−1
k + LT

k ρk = 0

−wηQ−1
η + LT

ηρη = 0

−v1R−1
1 + JT

1 γ1 = 0

−vkR−1
k + JT

k γk = 0

−vη R−1
η + JT

η γη = 0

We can then simplify them into the following equations which include an initial condition, time evolv-

ing component, and end state for the dual state ρ.
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ρ1 = F−T
1 P−1

0 (x0 − x̂0)

ρk = F−T
k (ρk−1 − HT

k γk)

ρη = HT
η γη

wk = QkLT
k ρk

vk = Rk JT
k γk

(2.2.5)

Using the constraints from Equations 2.1.1 and 2.1.2, we can combine updates4.

ρ0 = P−1
0 (x̂0 − x0) Initial Condition

ρk = F−T
k

(
ρk−1 − HT

k−1γk−1
)

Dual State Update

xk = Fkxk−1 + uk + LkQkLT
k ρk System State Update

γk = (JkRk JT
k )
−1

(yk − Hkxk) Noise Dual Condition

ρη = HT
η γη End Condition

(2.2.6)

For simplicity we can introduce the following substitutions,

Qk = LkQkLT
k

Rk = JkRk JT
k

Hk = HT
k R−1

k Hk.

(2.2.7)

Equation 2.2.6, can be rewritten in the Symplectic Form asx

ρ


k

= Γk

x

ρ


k−1

+ Υk

Γk =

Fk +QkF−T
k Hk−1 QkF−T

k

F-T
k Hk−1 F−T

k


Υk =

uk −QkF−T
k HT

k−1R
−1
k−1yk−1

−F−T
k HT

k−1R
−1
k−1yk−1


(2.2.8)

We can define three additional matrices whose time evolving nature is an extension of the previous

Equation, 2.2.85.

4The introduction of the initial dual state of ρ0 completes the dual nature of the problem without introducing any real diffi-
culties, we simply define {z0, H0} to be empty.

5Notice that the matrices defined here are based on derivatives not on covariances. The equivalence can be verified by
checking their update equations and initial conditions
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Ψk =
∂xk

∂x0

Ξk =
∂ρk

∂x0Ψ

Ξ


k

= Γk

Ψ

Ξ


k−1

Ck =
∂xk

∂ρk
= ΨkΞ−1

k = Pk|k−1

Ψ0 = I

Ξ0 = P−1
0

(2.2.9)

The dual state gives a condition on optimality, that the state and dual should initialize, propagate, and

terminate as in Equation 2.2.6. This is in contrast to the goal of minimizing the cost function, Equation

2.2.1. By itself this only gives us a test to verify that a solution could be optimal6 and does not actually give

us a way to generate a solution. To generate a solution the Kalman Filter uses a recursive solution to the

end state7 of this problem. As with any recursive technique, using the solution of the problem restricted to

time η− 1 we can generate a solution for time η by applying an additional correction. A common notation

is that the end state of a solution for time k− 1 using observations from time up to and including k− 1

is written as xk−1|k−1, this implies that ρk−1|k−1 = HT
k−1γk−1|k−1. The recursive algorithm of the Kalman

Filter is typically broken into two parts prediction and update. The first step, called the prediction step8 and

shown in Equation 2.2.10, and is used to propagate forward our previous optimal state, xk−1|k−1 → xk|k−1,

where xk|k−1 is the filter’s prediction of the state at time k given all previous information up to time k− 1.

ρk|k−1 = F−T
k

(
ρk−1|k−1 − HT

k−1γk−1|k−1
)
= 0

xk|k−1 = Fkxk−1|k−1 + uk +Qkρk|k−1 = Fkxk−1|k−1 + uk

(2.2.10)

In general this predicted value for the state and its dual will not meet the new end condition, ρk =

HT
k γk = HT

k R−1
k (yk − Hkxk), so we will need to update it to meet this new information. To do this we

introduce a correction to the state, ∆xk, making our new estimate xk|k = xk|k−1 + ∆xk, that will meet this

6The uniqueness of the solution can be inferred from the invertability of the system
7Often the end state is all you care about, where is the system right now given observations made in the past and then given

this estimate how to move forward gaining new information to form a new estimate.
8The fact that xk−1|k−1 was an optimal solution allowed us to simplify the expression

(
ρk−1|k−1 − HT

k−1γk−1|k−1

)
to 0 which,

in turn, simplifies ρk|k−1 to 0. This is not that surprising, given only information from the past we cannot make any inference on
the value of wk so any optimal solution for time k not given an observation at time k must use the a priori most likely value for
wk, 0. Given Eq. 2.2.5, wk = Qk LT

k ρk, this in turn implies that ρk under this condition, k|k− 1, must be 0.



14

new end condition. A difficulty arises because this correction changes both the state, xk|k, and its dual9,

ρk|k = ρk|k−1 + P−1
k ∆xk, meaning we have to plug these changes into both sides of the end condition to

solve for ∆xk.

ρk|k−1 + C−1
k ∆xk = HT

k R−1
k

(
yk − Hk

(
xk|k−1 + ∆xk

))(
C−1

k +Hk

)
∆xk = HT

k R−1
k

(
yk − Hkxk|k−1

)
∆xk =

(
C−1

k +Hk

)−1
HT

k R−1
k

(
yk − Hkxk|k−1

) (2.2.11)

This process, Equation 2.2.11, becomes the update step, shown in Equation 2.2.12 with its associated

Kalman Gain10, Kk.

xk|k = xk|k−1 + ∆xk = xk|k−1 + Kk
(
yk − Hkxk|k−1

)
Kk =

(
C−1

k + HkR
−1
k HT

k

)−1
HT

k R−1
k = Pk|k−1HT

k
(

HkPk|k−1HT
k +Rk

)−1
(2.2.12)

For this to work we need an established initial point for the recursion at k = 1 where we need a

solution for time k− 1 = 0, simply x0|0 = x̂0. This is the standard Kalman Filter, which other than some

notational changes, is the same as in other works. There are two steps, the prediction step and update

step. The prediction step which originates from Equation 2.2.8, and simplifies to its more common form,

Equation 2.2.10, when given the current state meets the optimal solution’s end condition. The update step

in Equation 2.2.12 corrects the predicted state to match the new end condition in Equation 2.2.6 by using

the Kalman Gain which is constructed from the twin notions of a covariance matrix and partial derivatives

of Equation 2.2.9.

Although we have defined and used the matrix Pk we have not defined the propagation of this matrix.

Equation 2.2.9 can be used to define this, the covariance/derivative update, which, after some manipula-

tion, can be expressed in the following form. This update, although a bit out of order, has the same two

parts, a prediction step, Equation 2.2.13, and an update step, Equation 2.2.1411.

9This change is because we cannot simply change the end state xk, we need to pick a new initial condition, x0, that will
propigate all the way through to result in the desired end state. We can propigate the changes in initial condition through Ψk
and Ξk so ∆xk = Ψk∆x0 and ∆ρk = Ξk∆x0, or alternatively ∆x0 = Ψ−1

k ∆xk and ∆ρk = ΞkΨ−1
k ∆xk, which is why we need

C−1
k = P−1

k|k−1 = ΞkΨ−1
k .

10The change in form here is enabled by the matrix inverse identity
(

A− BD−1C
)−1 BD−1 = A−1B

(
D− CA−1B

)−1

11This is the the Joseph Normal form and performs better numerically than the form directly above it, (I − Kk−1Hk−1) Pk−1
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Ψk =
(

Fk +QkF−T
k Hk−1

)
Ψk−1 +

(
QkF−T

k

)
Ξk−1

Ξk = (F-T
k Hk−1)Ψk−1 + F−T

k Ξk−1

Ck = ΨkΞ−1
k

=
((

Fk +QkF−T
k Hk−1

)
Ψk−1 +QkF−T

k Ξk−1
) (

F-T
k Hk−1Ψk−1 + F−T

k Ξk−1
)−1

=
(

FkΨk−1 +Qk
(

F−T
k Hk−1Ψk−1 + F−T

k Ξk−1
))

Ξ−1
k−1

(
F-T

k Hk−1Ψk−1Ξ−1
k−1 + F−T

k

)−1

=
(

FkPCk−1 +Qk
(

F−T
k Hk−1Ck−1 + F−T

k

)) (
F-T

k Hk−1Ψk−1Ξ−1
k−1 + F−T

k

)−1

= FkCk−1
(

F-T
k Hk−1Ck−1 + F−T

k

)−1
+Qk

= FkCk−1 (Hk−1Ck−1 + I)−1 FT
k +Qk

Pk|k−1 = Fk

(
Hk−1 + C−1

k−1

)−1
FT

k +Qk(
Hk + C−1

k

)−1
= Pk|k

Pk|k−1 = FkPk−1|k−1FT
k +Qk (2.2.13)

Pk|k =
(
Hk + C−1

k

)
= Ck − Ck HT

k (Rk + HkCk HT
k )
−1 HkCk

= (I − Kk HT
k ) Pk|k−1

Pk|k = (I − Kk HT
k ) Pk (I − Kk HT

k )
T
+ KkRkKT

k (2.2.14)

2.3 Properties of the Symplectic Update Γ

Before we continue it will be helpful to discuss some of the properties of the symplectic system con-

structed in Equation 2.2.8. The first property of interest is that the new state/dual propagation matrix Γ

is, as suggested symplectic, which is a matrix defined by the property given in 2.3.1.

M =

 0 I

−I 0


Γ−1 = MTΓT M (2.3.1)

This property gives us an easy way to construct the inverse of Γ which will be useful when we actually

need to implement the method. The most immediate consequence of this is that the determinant of Γ is 1.

Additionally we have the property given in Equation 2.3.2.

λ is eigenvalue of Γ =⇒ 1/λ is an eigenvalue of Γ (2.3.2)
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These facts will have implications as we look at how to propagate entire solution paths Chapter 3,

keeping in mind that the Kalman Filter only defined a recursive solution to the end state. As more of a

curiosity, note that scaling the update noise variance by a scale factor α, Q̃ = αQ, does not change any

eigenvalues if paired with the same scaling of the observation noise variance, R̃ = αR.

det (Γ− λI) = det
(

F−T − λI
)

det
(

F +QF−TH − λI −QF−T
(

F−1 − λI
)

F−TH
)

det
(
Γ̃− λI

)
= det

(
F−T − λI

)
det

(
F + Q̃F−TH̃ − λI − Q̃F−T

(
F−T − λI

)−1 F−TH̃
)

= det
(

F−T − λI
)

det
(

F + αQF−T 1
α
H − λI − αQF−T

(
F−T − λI

)−1 F−T 1
α
H

)
= det

(
F−T − λI

)
det

(
F +QF−TH − λI −QF−T

(
F−1 − λI

)
F−TH

)
det

(
Γ̃− λI

)
= det (Γ− λI)

A more practical implication is that the update matrix Γ preserves the identity defined in Equation

2.3.3.

ρk = C−1
k

(
xk − xk|k−1

)
(2.3.3)

To see this first note the ramification of the definition from Equation 2.2.10, which in this recursive

notation makes ρk|k−1 = 0. From the derivative in Equation 2.2.9 we have ρk = C−1
k

(
xk − xk|k−1

)
+ ρk|k−1

which simplifies to the above Equation 2.3.3. This condition, Equation 2.3.3, will be important later as a

way to correct numerical errors introduced machine computation with finite precision arithmetic.
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Chapter 3

Smoothing Solutions

Behind our efforts, let there be found our efforts

- Gene Wolfe, The Book of the New Sun

Now that we have a recursive solution to the end state of the state space estimation problem defined

in the previous chapter it would be helpful to be able to find the total solution path based on all the

information,
[

x1|η x2|η . . . xη|η

]
, also called the smoothed solution. This should be as easy as inverting

the state/dual propagation equation 2.2.8 which given the property of symplectic matrices, 2.3.1, should

be straightforward. Unfortunately it is a bit more complicated. To demonstrate why, let us consider the

following problem.

3.1 Weather-vane Problem

Problem Definition

We are given that a weather-vane’s angular motion can be modeled by the following continuous time

state-space model1

ẋ1

ẋ2

 =

 0 1

−ω2 −2ζω

x1

x2

+

 0

ω2

w, (3.1.1)

where x1 is the weather-vane’s angle, x2 its angular velocity, ζ is the amount of friction in the bearing, ω

is the strength of the wind, and w is the direction of the wind. The wind direction, w, is the angle that

1This example is a slight modification of the one introduced on page 333 and examined on 348 of [14]. The changes in the
noise variances of the problem are made for the benefit of the smoothing examples of the previous chapter.
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Figure 3.1.1: Phase Plane Plot of Weather-vane Problem

the weathervane will be forced to by the wind and its strength ω determines the velocity at which it will

move towards that equilibrium. This is a pretty generic oscillator problem, with forcing and damping but

linear in form. We can see the expected phase plane motion for different damping factors towards a fixed

equilibrium, wk = w, in Figure 3.1.1.

For our problem we will assume that ζ = 0.28, ω = 2π, and that for intervals of time, ∆t, of 0.1s the

wind direction is constant, the total time of the test will be 3s, η = 30. To discretize the problem we first

solve for the discrete state transition matrix, F, by finding the matrix exponential of the continuous time

state matrix2, which has eigenvalues λ =
{

ω
(
ζ2 − 1

)
−ωζ,−ω

(
ζ2 − 1

)
−ωζ

}
.

2This exponentiation is based on Putzer’s Algorithm.
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F = exp

 0 1

−ω2 −2ζω

∆t

 = r1 (∆t) S0 + r2 (∆t) S1

r1 (t) = exp (λ1t)

r2 (t) =
1

λ1 − λ2
(exp (λ1t)− exp (λ2t)) if λ1 6= λ2

r2 (t) = t exp (λ1t) if λ1 = λ2

S0 = I

S1 =

 0 1

−ω2 −2ζω

− λ1 I

F ≈

 0.829 0.079

−3.114 0.552


The propagation noise transformation matrix, L, is found through the following equation.

L = (F− I)

 0 1

−ω2 −2ζω

−1  0

ω2


L ≈

0.171

3.114


wk ∼ N (0, 1)

We assumed that the wind direction is constant for ∆t = 0.1 the direction will be Normally distributed,

wk ∼ N (0, 1).

At each step we measure both states of the system with varying observation noise.

zk = Hxk + vk

H = I

vk ∼ N

0

0

 ,

4 0

0 0.36


We initialize the system with x̂0 ∼ N

0

5

 ,

4 0

0 0.01

, so x0 ∼ N

x̂0,

4 0

0 0.01

 =

0

5
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Figure 3.1.2: Kalman Filter with only Initial Uncertainty

Kalman Filter Solution

From this we can implement a full Kalman Filter scenario, but before we do, consider some simplifi-

cations first.

Problem 1: Initial Uncertainty Consider first how the the problem would behave if we had initial un-

certainty but no propagation noise, that is w ∼ N (0, Q) , Q = 0. Here we would expect that the filter

would start with a lot of uncertainty and then eventually, through the observations, solve for the position

of the system. This is seen to be the case in Figure 3.1.2.
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Figure 3.1.3: Kalman Filter with No Initial Uncertainty

Problem 2: Just Propagation Noise

Consider second how the filter would behave with no initial uncertainty but with propagation noise,

that is P0 = 0 and w ∼ N (0, Q) , Q = 1. Here the filter starts with perfect knowledge of the location of the

weather-vane but then can only track it through observations. The filter starts with perfect knowledge of

the location and velocity of the weather vane but as time goes on this knowledge is eroded by the process

noise until it reaches a steady state between this loss of information at each step and the gain from the

observation. This result can be seen in Figure 3.1.3.

Problem 3: Full Kalman Filter Problem

We can compare these two sub problems against the full Kalman Filter problem with both initial

uncertainty and propagation noise. Here we expect to see the combination of the effects of each of the
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Figure 3.1.4: Full Kalman Filter Solution

previous examples, the solving of the large initial uncertainty and the eventual steady state between the

process noise/observations. The full result can be seen in Figure 3.1.4.

3.2 Reversing the Solution

When we look at the solution given in the three previous examples we see only how the estimate of

the current state evolves over time. This path, because it is a stitching together of many estimates, lacks

physicality, evident in Figure 3.1.2 where the solution makes an impossible movement from the initial

point 3. As outlined before we can reverse the state/dual propagation equation, 2.2.8. That is

3It is not physically possible for a weather vane starting in the initial state estimate to propagate forward to the next estimate.
Recall that there is no propagation noise, so the weather vane’s movements are completely determined. The large jump in
position is mostly explained by a change in the estimate of the state due to the change in the information about the state, not the
state itself.
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x

ρ


k

=

Fk +QkF−T
k Hk−1 QkF−T

k

F-T
k Hk−1 FT

k

x

ρ


k−1

+

uk −QkF−T
k HT

k−1R
−1
k−1yk−1

−F−T
k HT

k−1R
−1
k−1yk−1


x

ρ


k−1

= Γ−1
k

x

ρ


k

− Υk


becomesx

ρ


k−1

=

 F−1
k −F−1

k Q

−Hk−1F−1
k FT

k +Hk−1F−1
k Qk

x

ρ


k

+

 −F−1
k uk

Hk−1F−1
k uk + HT

k−1R
−1
k−1yk−1

 . (3.2.1)

As an aside, there is another way to look at Equation 3.2.1, with a simple flipping of x and ρ, the

equation becomes as follows.

ρ

x


k−1

=

FT +Hk−1F−1
k Qk −Hk−1F−1

k

−F−1
k Qk F−1

ρ

x


k

+

Hk−1F−1
k uk + HT

k−1R
−1
k−1yk−1

−F−1
k uk

 (3.2.2)

Compare this equation, 3.2.2, to the original one, 2.2.8, and we can see many parallels in the structure.

Where originally the state moved forward through the action of a state transition matrix F its dual moves

backwards with the action of the matrix FT; where there was a forcing function of u there is now HTR−1y,

and H and Q have switched places and acquired negative signs.

By estimating the entire problem using rational arithmetic4 we can reverse the full Kalman Filter solu-

tion, seen in Figure 3.1.4, to find the estimated path given all the data, shown in Figure 3.2.1. This process,

of finding the complete estimated path, is often referred to as smoothing and usually is expressed in a

different form which we will be exploring later, shown in Equation 3.4.1.

3.3 Numerical Issues

The smoothed results obtained for Figure 3.2.1 are only possible with perfect arithmetic, which was

possible by using rational arithmetic representations of the problem. This strategy will for significant

problems take to much time to compute, and as stated, there are some numerical issues we must deal

with. Using floating point computations just for the smoothing gives us the result shown in Figure 3.3.1.

Here in a matter of a few iterations the entire path has diverged from the perfect arithmetic solution, a

highly undesirable result.
4That is instead of solving the original problem, we solve one very similar to it that has a property that we want, mainly that

we can express it in rational numbers for exact computation.
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Figure 3.2.1: Reversed/Smoothed Solution Path
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Figure 3.3.1: Floating Point Smoothed Path
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Before we explore the problem with the reverse track iterations, first let’s explore a numerical issue

that we have already avoided. Recall that the propagation equations from 2.2.8,

x

ρ


k

= Γk

x

ρ


k−1

+ Υk,

work for any given point\dual and if they happen to result in the end condition from Equation 2.2.6,

ρη = HT
ηR−1 (yη − Hηxη

)
, then additionally it is the optimal solution. In our notation the initial conditionx

ρ


0|η

is the initial condition that will meet this end condition, in fact x0|η is the one variable we have

been searching for, as all other variables can be found from it as a result of both the original constraints in

Equation 2.2.2 and the new equations added with the dual state in Equation 2.2.5. We can ask what would

happen if we changed this initial state just a little, from x0|η to x̃0|η = x0|η + ε and ρ̃0|η = ρ0|η + P−1
0 ε. We

can calculate how this would impact the final state, x̃η|η , with the matrix from Equation 2.2.9, Ψη = ∂xn
∂x0

.

In our test however Ψ has grown very large over the interval, Ψ30 ≈

−7.54 480

−131 835

× 1045, making the

problem very sensitive to this kind of error. It is not specific to this problem either. We can show the

determinant of this matrix is guaranteed to grow relative to what we would expect from just the state

transition matrix5.

Ψk =
(

Fk +QkF−T
k Hk−1

)
Ψk−1 +

(
QkF−T

k

)
Ξk−1

=
(

Fk +QkF−T
k Hk−1

)
+
(
QkF−T

k

)
Ξk−1Ψ−1

k−1 |Ψk−1|

= Fk

(
I + F−1

k QkF−T
k

(
Hk−1 + C−1

k−1

))
Ψk−1∣∣∣I + F−1

k QkF−T
k

(
Hk−1 + C−1

k−1

)∣∣∣ = ∣∣Pk−1|k−1
∣∣ ∣∣∣P−1

k−1|k−1 + P−1
k−1|k−1F−1

k QkF−T
k P−1

k−1|k−1

∣∣∣
≥
∣∣Pk−1|k−1

∣∣ (∣∣∣P−1
k−1|k−1

∣∣∣+ ∣∣∣P−1
k−1|k−1F−1

k QkF−T
k P−1

k−1|k−1

∣∣∣)
≥ 1 +

∣∣Pk−1|k−1
∣∣ ∣∣∣P−1

k−1|k−1F−1
k QkF−T

k P−1
k−1|k−1

∣∣∣
≥ 1

|Ψk|
|Fk|
≥ |Ψk−1|

This fact also means that volumes are going to get larger than we would expect from just the appli-

cation of the state transition matrix, F. Imagine the volume surrounded by the 1σ radius ellipse at the

beginning, this volume ends up bigger when propagated through the state/dual system than if simply

5Recall the identity from Equation ,Pk|k =
(
Hk + C−1

k

)−1
. The inequality in step 5 is a result of the fact that the determinant

is concave for Hermitian non-negative matrices so we can apply Minkowski’s Inequality.
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propagated through the original system. This is an interesting and perhaps counter intuitive consequence,

and we can strengthen this idea, that the state/dual system pushes points farther apart than the original

system would. A change to the state, x̃k = xk + δ, would normally propagate to the next state and cause

a change Fkδ. Instead, in the state/dual system, this propagates through ΨkΨ−1
k−1. We will show that

this new vector ΨkΨ−1
k−1δ larger than or equal to the expected change, Fkδ, in the same direction6, that is(

δT FT
k

) (
ΨkΨ−1

k−1δ
)
≥
(
δT FT

k

)
(Fkδ) which we will show by demonstrating the matrix FT

k ΨkΨ−1
k−1 is positive

semidefinite.

(
δT FT

k

) (
ΨkΨ−1

k−1δ
)

= δT FT
k

(
Fk +QkF−T

k P−1
k−1|k−1

)
δ

= δT FT
k Fkδ + δT FT

k QkF−T
k P−1

k−1|k−1δ

Qk is Positive Semidefinite

FT
k QkF−T

k is Positive Semidefinite

Pk−1|k−1 = BBT Cholesky Decomposition

B−1FT
k QkF−T

k B−T is Positive Semidefinite

B
(

B−1FT
k QkF−T

k B−T
)

B−1 is Positive Semidefinite

= FT
k QkF−T

k P−1
k−1|k−1

�

As a special case consider the outcome given Q = 0, i.e. the case where there is no propagation noise,

as we did for Figure 3.1.2. Here Ψk = FkΨk−1 and equality holds. And if we had another time step,

η + 1, there would be another propagation and correction step which would adjust the state at time η,x

ρ


η|η+1

=

x

ρ


η|η

+ δ. In our special case, Q = 0, then Ψk+1 = Fk+1Ψk (by extension Ψη = ∏ Fk), this

adjustment to the state at time η has to back propagate in its entirety. Any time there is propagation noise,

Q 6= 0, the full impact of the change does not have to fully propagate back through Ψ−1
η . We can see this

in the case where we have only propagation uncertainty in Figure 3.1.3. When we make a correction to

the final state we do not expect that it will have much impact on the initial state of the system. That is we

expect that Ψ−1
η ≤ ∏ F−1

k which implies that Ψη ≥ ∏ Fk.

Contrary to what this would suggest, using typical Kalman Filter equations, we can easily run the

filter forward using floating point arithmetic without difficulty. Every time we make a correction to the

current state, as in the update step of Equation 2.2.12, we don’t bother to update all the reverse states,

the correction,∆xk, is propagated back to the original state through Ψ−1
k but then immediately back to

6The fact thatΨkΨ−1
k−1δ projected onto Fδ is greater than or equal to Fδ also implies that ΨkΨ−1

k−1δ is greater than or equal
overall. For this note that if A is positive semidefinite then xT Ax ≥ 0 and both BABT and BAB-1 are positive semidefinite
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the current state/dual with Ψk and Ξk, the fact that ΨkΨ−1
k = I and ΞkΨ−1

k = C−1
k = P−1

k|k−1 ensures that

this back and forth between the current state and the initial state does not have to utilize the numerically

unstable matricesΨ and Ξ.

From this it should be clear that running the state/dual forward to get an full solution path is not

going to be practical7. On the other hand this suggests that it should be very easy to run the system

backwards, even though it appears, as shown in Figure 3.3.1, not to be the case. All the previous examples

assume that the any error meets the condition ρk = P−1
k|k−1

(
xk − xk|k−1

)
, which, in general, they will not.

To examine how an error not meeting those requirements would impact things we need to look at the

symplectic state/dual transition matrix, Γ. Recall from Chapter 2 that Γ′s eigenvalues come in pairs,

λ =⇒ 1/λ, so, assuming that all the eigenvalues are not 1, we will have some eigenvalues less than 1 and

its inverse, Γ−1, will have some greater than 1. Additionally because Γ is constant these eigenvalues will

simply multiply together, λ is an eigenvalue of Γ =⇒ λn is an eigenvalue of ∏n
k=1 Γk, and any error in

the direction of an eigenvector with an eigenvalue greater that 1 will grow exponentially. In our example

the largest eigenvalue of Γ−1 is ≈ 40. We show the impact of a non-P-constraint error in Figure 3.3.2

where we can see the effect of running the system back, in exact arithmetic, after adding a small error,
˜x

ρ


η

=

x

ρ


η

+ ε, generated so that the error introduced to the state, x̃η = xη + εx, is scale very small,

‖εx‖ ≈ 1E − 14. If instead we introduce an error which is much larger, ‖εx‖ = 1, which meets the

constraint, ρη + εη = P−1
η|η−1

(
xη + εx

)
, as shown in Figure 3.3.3 the solution is adjusted but does not

explode.

3.4 Constraint Based Solution

At every step we introduce some new numerical error, so to ensure that we still meet the constraint

we can simply apply the constraint before going back another step. Recall the typical back iterate from

Equation 3.2.1,x

ρ


k−1

=

 F−1
k −F−1

k Q

−Hk−1F−1
k FT

k +Hk−1F−1
k Qk

x

ρ


k

+

 −F−1
k uk

Hk−1F−1
k uk + HT

k−1R
−1
k−1yk−1

 .

7If F has a small eigenvalue and there is very little propagation noise Q ≈ 0 then it might seem easier to run the solution
forward. This would be the case for the ONLY INITIAL UNCERTAINTY PROBLEM in Figure 3.1.2 where the damping has almost
completely reduced the state to 0. We have not really avoided the problem however because this implies that Ψ−1 � 1, which
would make it hard to track how corrections in later states need to be propagated back to the initial state. Additionally ρ
propagates through F−T.
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Figure 3.3.2: Random Error with Perfect Arithmetic
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Figure 3.3.3: Constrained Error with Perfect Arithmetic
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Given a solution at time k which is potentially distorted by error,

˜x

ρ


k|η

, we can simply delete the

ρ̃ entry and then re-solve for it using Equation 2.3.3, ρ̃k|η = P−1
k|k

(
x̃k|η − xk|k−1

)
, this new pair may have

error introduced but they should meet the constraint and should behave like Figure 3.3.3 instead of Figure

3.3.2. Substituting this into the back iterate equation, simplifying, and noting that we don’t need to solve

for ρk−1|η because we are going to throw it away at the next step anyway, we obtain,

xk−1|η =
[

F−1
k −F−1

k Qk

]  xk|η

P−1
k|k−1

(
xk|η − xk|k−1

)+
[
−F−1

k uk

]
= F−1

k xk|η − F−1
k QkP−1

k|k−1

(
xk|η − xk|k−1

)
− F−1

k uk

=
(

F−1
k − F−1

k QkP−1
k|k−1

) (
xk|η − xk|k−1

)
+ F−1

k xk|k−1 − F−1
k uk

=
(

F−1
k − F−1

k QkP−1
k|k−1

) (
xk|η − xk|k−1

)
+ F−1

k

(
xk|k−1 − uk

)
=
(

F−1
k − F−1

k QkP−1
k|k−1

) (
xk|η − xk|k−1

)
+ xk−1|k−1

=
(

F−1
k Pk|k−1 − F−1

k Qk

)
P−1

k|k−1

(
xk|η − xk|k−1

)
+ xk−1|k−1

=
(

F−1
k Pk|k−1F−T

k − F−1
k QkF−T

k−1

)
FT

k P−1
k|k

(
xk|η − xk|k−1

)
+ xk−1|k−1

=
(

F−1
k

(
Pk|k−1 −Qk

)
F−T

k

)
FT

k P−1
k|k−1

(
xk|η − xk|k−1

)
+ xk−1|k−1

= Pk−1|k−1FT
k P−1

k|k−1

(
xk|η − xk|k−1

)
+ xk−1|k−1

As we might expect from the discussion of Equation 3.2.2, the flipped reverse state/dual propagation,

is very similar to the Kalman Update, Equation 2.2.12, and we can express the back iterate with a similar

form8, shown in Equation 3.4.1.

xk−1|η = xk−1|k−1 + Dk

(
xk|η − xk|k−1

)
Dk = Pk−1|k−1FT

k P−1
k|k−1

(3.4.1)

Using this form instead of the one mentioned previously we can achieve near perfect results, as shown

in Figure 3.4.1.

When inverting Pk|k−1 is inconvenient, we do not need to make this correction at every step, only

when the error gets bad enough that it needs to be corrected. In this example we can safely use Γ−1 for

5 iterations back before the compounding of the largest eigenvalue, λ ≈ 40, gets too large. At this point

8This reverse iterate is shown in [2] where it is only used for a single step in the section on the Interval Smoother. The oversight
that it applies in general can be forgiven.
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Figure 3.4.1: Constraint Based Smooth
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we can apply the constraint as done before, clear the ρk|η state and reset it based on xk|η − xk|k−1. The

advantage is that to form Γ−1 we only need F−1, which we could easily find in this problem ahead of

time9, and only every five steps would we need to invert the covariance matrix Pk|k−1. However, knowing

that 5 iterations is an appropriate amount assumes a lot of knowledge about the problem, so instead we

could track an error covariance matrix, Sk, through the transform and wait to apply the constraint until a

diagonal entry gets larger than a threshold, ε, as shown in Equation 3.4.2. This process, with ε = 1E− 20

and thresh = 1E− 4 applies the constraint every 4 steps for the present problem.

Sη = εI

Sk−1 = Γ−1
k SkΓ−T

k

if max (diag (Sk)) ≥ threshold then ρk|η = P−1
k|k−1

(
xk|η − xk|k−1

)
and Sk = εI

(3.4.2)

Instead of applying the constraint by reseting the dual state we could treat it as an observation. We

know that the state and dual must meet the constraint P−1
k|k−1

(
xk|η − xk|k−1

)
= ρk|η or alternatively a state,

the vector/dual combination,
xk|η
ρk|η is observed P−1

k|k−1xk|k−1 = B
(

xk|η
ρk|η + ε

)
, where ε is some nondescript

Gaussian noise ε ∼ N (0, υI).

Bk =
[

P−1
k|k−1 −I

]
P−1

k|k−1xk|k−1 = Bk


x

ρ


k|η

+ ε


x

ρ


k|η

=

˜x

ρ


k|η

+ B†
k

P−1
k|k−1xk|k−1 − Bk

˜x

ρ


k|η


B†

k = BT
k (BkBT

k )
−1

(3.4.3)

We can use the error covariance we were back propagating in Equation 3.4.2 to construct an inverse

based on the principles of Chapter 2 to balance the strengths of both the state, x, and dual, ρ, instead of

simply relying on only the state, when we reset ρ based only on x and the constraint.

B†
k = SkBT

k (BkSkBT
k )
−1 (3.4.4)

This in turn gives a covariance update equation.

9In any case where F is created by integrating a continuous time matrix, as in this problem, we could easily substitute −∆t in
the integration to find F−1 with the same effort as finding F.
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Strategy Error in x0|η
Reset Dual at Every Step ≈ 0
Reset Dual Every 5 Steps 1.9E− 8

Reset Dual According to Eq. 3.4.2 ~ 4 steps 4.8E− 11
Pseudoinverse from Eq. 3.4.3 ~ 4 steps 2.1E− 10

Observation and Covariance Eq. 3.4.4 and 3.4.5 ~ 3− 4 steps 4.4E− 12

Table 3.1: Numerical Comparisons for the Weather-vane Problem

Sk =
(

I − B†
k Bk

)
Sk + εI (3.4.5)

In cases where computation time is not an issue, sticking to the simpler method of inverting Pk|k−1 and

resetting the dual, as in Equation 3.4.1, at every step is probably the best way to go. In problems where

we computational time is critical we have presented strategies to reduce the need to invert the matrix

Pk|k−1. If a lot is known about the problem it’s possible that the simple alternative of a fixed reset rate,

every 5 updates in this example, may be possible. When not enough is known or we want to automate

the process we can use the covariance method described in Equation 3.4.2. With regard to the numerical

performance we could any of the alternative strategies presented in Equations 3.4.3, 3.4.4, and 3.4.5 and

obtain similar outcomes. The comparison of these methods for this problem are shown in Table 3.1.
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Chapter 4

Smoothed Solution Convergence in the

Blind Tricyclist Problem

“The complexities of cause and effect defy analysis.”

- Douglas Adams, Dirk Gently’s Holistic Detective Agency

All of the methods discussed in the previous two chapters only apply to linear systems. Many systems

of interest fail to meet the linear criteria so from now on we will be exploring strategies to apply what

we know about linear theory to nonlinear systems. This is an idea we have, already implicitly put into

practice in Chapter 2. The equation for the motion of the weather-vane of the last chapter, 3.1.1, is likely

derived from the nonlinear damped pendulum equation,ẋ1

ẋ2

 =

 x2

−ω2 sin (x1 − w)− 2ζωx2

 .

This transformation equation is, perhaps, the most common example of the concept of linearization,

where we assume that the system is approximately linear about some point. Here we make the small angle

assumption, simply assume that x1 − w ≈ 0, and take the first two terms of the Taylor polynomial about

that point to form the linear equation used in the last chapter. In that example the linearization happens

to occur about a critical point, which is also an attractor with any nonzero damping factor making this

assumption eventually true1. For the following problem this simple idea will have to be expanded.

1For more discussion on this concept I recommend [16], Chapter 2 Section 9 which describes the Simple Pendulum of which
the weather-vane is an example.
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Figure 4.1.1: Merry-Go-Round State

4.1 The Blind Tricyclist Problem

To demonstrate various strategies of handling nonlinear problems we will be using the the following

exemplar from [10]. In this problem we are tasked with tracking the xy-position of a tricyclist in an

amusement park and as a nuisance we will also need to track the position of two people riding merry-

go-rounds and other states of the tricycle. With absolute certainty we know the center of each merry-go-

round and their unique radii. The merry-go-rounds rotate at a constant speed which is not known. The

location of each merry-go-round rider will be tracked as two values, their angular position on the merry-

go-round and its angular velocity, the speed of the merry-go-round, as shown in Figure 4.1.1. When

needed their 2D location can be constructed from this and the knowns. The location of the tricyclist is

tracked as (x, y) and the angle the tricycle is facing, as shown in Figure 4.1.2. The state vector for the

system is, s =
[

x y θ φ1 φ2 φ̇1 φ̇2

]
, where (x, y) is the location of the tricycle, θ is the facing angle

of the tricycle.

The propagation of the tricycle position is a source of the nonlinearity. The tricyclist turns the front

wheel to some angle, γ, relative to the direction the tricycle is facing and pedals forward with some

velocity, v. Without noise the movement mechanic is shown in Figure 4.1.3 and described as follows,

where cinc (x) = cos(x)−1
x and b is the wheel base length,
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Figure 4.1.2: Tricycle State

Figure 4.1.3: Tricycle Movement


x

y

θ


k+1

=


xk + v∆t

(
sin (θk) cinc

(
v∆t tan(γ)

b

)
+ cos (θk) sinc

(
v∆t tan(γ)

b

))
yk + v∆t

(
sin (θk) sinc

(
v∆t tan(γ)

b

)
− cos (θk) cinc

(
v∆t tan(γ)

b

))
θk +

v∆t tan(γ)
b

 .

In addition to these two known known components of the forcing function, ν and γ, there are 5 noise

variables, two noise states for the two controls, ṽ = v+w1 and γ̃ = γ+w2, and another 3 for the tricycle’s

state, x̃ = x + ∆tw3, ỹ = y + ∆tw4, and θ̃ = θ + ∆tw5. This gives us our total propagation function shown

in Equation 4.1.1. The final movement of the tricycle with a specific instance of propagation noise is

shown in Figure 4.1.5. The propagation noise and true initial condition will be fixed, thus this path will

be constant for all future simulations.
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x

y

θ

φ1

φ2

φ̇1

φ̇2


k+1

= f (sk, wk) =



xk + ṽk∆t (sin (θk) cinc (ak) + cos (θk) sinc (ak)) + ∆twk,3

yk + ṽk∆t (sin (θk) sinc (ak)− cos (θk) cinc (ak)) + ∆twk,4

θk + ak + ∆twk,5

φ1 + ∆tφ̇1

φ2 + ∆tφ̇2

φ̇1

φ̇2


ak =

ṽk∆t tan (γ̃k)

b

ṽk = vk + wk,1

γ̃k = γk + wk,2

sinc (x) =
sin (x)

x

cinc (x) =
1− cos (x)

x

(4.1.1)

The state of the system is observed by the tricycle rider who makes relative bearing measurements

to the merry-go-round riders, the angle between the direction the tricycle is facing and one of the two

riders of the merry-go-round, as shown in Figure 4.1.5 and in Equation4.1.2. Additionally this measure-

ment structure is periodic with the measurement made to each merry-go-round rider being made every

6 time increments, with the two measurements staggered, one measurement every 3 steps, alternating.

Summarizing the observation protocol,

y = hi (sk) + vi,k

= arctan
(
mi,y + ri sin (φi,k)− yk − d sin (θk) , mi,x + ri cos (φi,k)− xk − d cos (θk)

)
− θk + vi,k

m1 =
[
0 −15

]
is the center of merry-go-round 1

m2 =
[
2 15

]
is the center of merry-go-round 2

r1 = 7.5 is the radius of merry-go-round 1

r2 = 6.5 is the radius of merry-go-round 2

Periodic Measurments
[
− 1 − − 2 −

]
where −indicates no measurement, and 1 or 2 represents respective merry-go-round riders

(4.1.2)

All the mechanics have been defined so far leaving only statistical quantities which we have taken

from the large initial uncertainty case in [10] and shown in Equation 4.1.3. It is important to note that for all
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Figure 4.1.4: Tricycle’s Movement
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Figure 4.1.5: Tricycle Bearing Measurement

discussions only ŝ0 and v will be generated randomly for each run, as opposed to w, which was generated

once, and s0, which was fixed. This means the actual path of the tricycle is fixed and we can compare how

different realizations of the observations of this path, ŝ0 and v, compare.

s0 =
[
40.197 −30.097 π

2 5.1191 5.6913 0.1257 −0.0898
]

ŝ0 ∼ N
(

s0, Diag
[
(18.75)2 (18.75)2 ( 5

8 π
)2 ( 5

6 π
)2 ( 5

6 π
)2

(1.857e-2)2 (1.857e-2)2
])

w ∼ N
(

0, Diag
[
(0.238)2 (1.9363e-3)2 (7.94e-2)2 (7.94e-2)2 (1.701e-3)2

])
v ∼ N

(
0, Diag

[
(1.745e-2)2 (1.164e-2)2

])
(4.1.3)

Given the truth data we can linearize all the functions, f and h, in the problem about the truth to create

an estimate of the problem2.

2We have a solution, in the form of the KF, for linear problems but have not explored nonlinear ones. Instead of attempting to
solve the nonlinear one as state we will solve a linear problem which approximates the nonlinear one, namely some linearization
of the original. We know our solution is optimal for this approximate problem and we hope/assume that the two problems are
similar enough that the solutions are approximately the same.
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sk = fk (sk−1, wk)

≈ Fksk−1 + Lkwk + uk

Fk =
∂ fk(s, w)

∂s

∣∣∣∣
s=sk−1|truth,w=wk|truth

Lk =
∂ fk(s, w)

∂w

∣∣∣∣
s=sk−1|truth,w=wk|truth

uk = f
(
sk−1|truth, wk|truth

)
− Fksk−1|truth − Lkwk|truth

(4.1.4)

zk = hk (sk, vk)

yk ≈ Hksk + Jkvk

Hk =
∂hk(s, v)

∂s

∣∣∣∣
s=sk−1|truth,v=vk|truth

Vk =
∂hk(s, v)

∂v

∣∣∣∣
s=sk−1|truth,v=vk|truth

yk = zk −
(
h
(
sk|truth, vk|truth

)
− Hksk|truth − Jkvk|truth

)
(4.1.5)

Because this new problem is linear and now meets the form suggested in Chapter 2 we can use a simple

Kalman Filter solution derived there. Our scenario has only a linear dependence on v and all the other

variables are fixed, so one linearization will be valid for all our realizations of the problem. Additionally

the covariance terms are also independent of our specific realization, meaning we can calculate them

once we have the linearizations, and from this we can bound performance on Root Mean Squared Error

(RMSE) for this estimated problem3. Because we originally were interested in tracking only the tricycist’s

2D position, x, y, the RMSE 2D location error, xy error, is shown in Figure 4.1.6.

Creating a realization of the problem, that is generating the values v and ŝ0, we can see how the

Kalman Filter performs in Figure 4.1.7. Looking at this and 8 other realizations in Figure 4.1.8 we can

begin to form a picture of how the filter performs in general.

Instead of just looking at individual cases we can leverage the ability to create many realizations of

this set up and compare their errors statistically. We generate 100 runs to generate robust statistics and

we plot 4 important metrics, the MSE of the filter as a function of time because this is directly comparable

to the covariance generated statistic, the two quantiles 50% (median) and 75% because they give us an

idea how the majority of filters are performing, and the max error which gives us an idea how bad the

filter could be. For the Kalman Filter (given perfect linearizations) this is shown in Figure 4.1.9. Just as we

3Again this, linear, problem is not the one we started with so its bounds on performance are not necessarily the same. Just as
before we hope/assume that it well approximates the original.
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Figure 4.1.6: Expected Root Mean Squared Error in 2D Location

Figure 4.1.7: KF with Perfect Linearizations Example



43

Figure 4.1.8: Other Examples of KF with Perfect Linearizations
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Figure 4.1.9: Perfect Linearization KF’s Error

did in Chapter 3, we can smooth the KF’s solution to form a complete, smoothed, estimate of the tricycles

path4, shown in the previous Figures 4.1.7 and 4.1.8 with its error performance shown in Figure 4.1.9.

4.2 Batch Least Squares

Before we work with the various more complicated filters let’s start with a simple one that makes

some rather extreme simplifications to the problem. We will start by assuming that there is no initial

information, P0, or propagation noise, w, which simplifies the problem to on of finding an initial state, s0.

The minimization problem reduces to the form,

minimize

∥∥∥∥∥∥∥∥∥∥∥


h ( f (s0))

h ( f ( f ( f (s0))))

h ( f ( f ( f ( f ( f ( f (s0)))))))
...

− y

∥∥∥∥∥∥∥∥∥∥∥
.

We can attempt to solve this problem using Gauss-Newton iterations5 by linearizing the entire prob-

4Recall this path, the smoothed estimate, is an estimate of a track given all the data whereas the Kalman Filter’s estimate is a
track of estimates, a string of estimates each one an end point to the an estimated track given all the data up to that point in time.

5Notice that once linearized the problem is a simplified version of that suggested in Chapter 2, where Q = 0, P0 → ∞, and
R = I, and each Gauss-Newton iteration is, in essence, a Kalman Filter run followed by a smoothing run back to find the entire
solution.
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Figure 4.2.1: BLSF (Simple Implementation)

lem about expectations, as the Blind Tricyclist paper, [10], recommends. For a simple implementation of

this solution, as suggested, within two iterations the solution for most realizations have left the bounds

area completely. An example is shown in Figure 4.2.1 in which at step 2 the initial [x, y] value was esti-

mated to be [−16.35, 3405]. This is not that surprising given that there is a lot of error in the initial point

which throws off the entire original track, the ITER 0 result.

The fact that a basic implementation of Gauss-Newton iterations did not perform well on an estimate

of the actual problem is not that surprising. The most immediate fix would be to relax the iteration to be

of the form s0{i+1} = αH†
{i}y + (1− α) s0{i}. While this greatly helps, the method still does not perform

anywhere near as well as what we might expect getting caught in a local minima as shown in Figure 4.2.2.

This case is not unique in and 9 others are shown in Figure 4.2.3.

The results in [10] contradict this, reporting a RMSE, in situations very similar to ours, of 4.38. The

Least Squares problem has many alternative algorithms and I can only assume a very complicated one

was used, an idea that is backed up by the mean compute time reported in [10] of 197.94s, an astronomical

number. I do not claim to have applied all possible least squares solution methods, just that the simplest
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Figure 4.2.2: BLSF with Relax α = 0.15
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Figure 4.2.3: Other Examples of BLSF with Relax α = 0.15
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approach are unsuccessful.

4.3 Extended Kalman Filter and Smoothers

As we saw in the previous problem we can linearize the nonlinear problem about some point and

solve the resulting estimation/smoothing problem using linear theory. In this way the Extended Kalman

Filter (EKF) is an extension of the Kalman Filter to solve, approximately, the nonlinear problem. The

Kalman Filter is a much more general framework than the BLSF we saw before, allowing a much more

complete problem description, including process noise and initial estimate covariance. The second major

advantage is that because the Kalman Filter is solved sequentially we can wait to linearize parts of the

problem until we get to them, and at that time we can use the current estimate, xk|k, instead of the one

generated from the initial condition, xk|0, as we did in the previous example. This process is described by

Equations 4.3.1 and 4.3.2.

xk = fk (xk−1, wk)

≈ Fkxk−1 + Lkwk + uk

Fk =
∂ fk(x, w)

∂x

∣∣∣∣
x=xk−1|k−1,w=wk|k−1

Lk =
∂ fk(x, w)

∂w

∣∣∣∣
x=xk−1|k−1,w=wk|k−1

uk = f
(
xk−1|k−1, wk|k−1

)
− Fkxk−1|k−1 − Lkwk|k−1

(4.3.1)

zk = hk (xk, vk)

yk ≈ Hkxk + Jkvk

Hk =
∂hk(x, v)

∂x

∣∣∣∣
x=xk−1|k−1,v=vk|k−1

Vk =
∂hk(x, v)

∂v

∣∣∣∣
x=xk−1|k−1,v=vk|k−1

yk = zk −
(
h
(
xk|k−1, nk|k−1

)
− Hkxk|k−1 − Jkvk|k−1

)
(4.3.2)

The advantage of this is that as time goes on, and we hopefully get better and better estimates of the

state, as we will introduce less and less linearization error. This behavior can be seen in Figure 4.3.1 where

the EKF’s track converges towards the truth, this is also reflected in other examples as show in Figure 4.3.2

and in general as shown in Figure 4.3.3. These plots are shown with the accompanying smoothed solution
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Figure 4.3.1: Example EKF Track

generated from Equation 3.4.1 on page 31, xk−1|η = xk−1|k−1 + Pk−1|k−1FT
k P−1

k|k−1

(
xk|η − xk|k−1

)
, using the

EKF linearizations.
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Figure 4.3.2: Other Examples of EKF Performance
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Figure 4.3.3: EKF Error Compare
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4.3.1 Iterated Smoother

Concept

Recall from Equations 4.3.1 and 4.3.2 that when we ran the EKF we used the filter’s current estimate of

the state to linearize the problem. As we have seen these estimates have error and from the degradation

in performance from the Perfect Linearization Kalman Filter to the EKF, shown in Figure 4.3.3, we can

assume that these errors in linearization cause additional errors in the result. Notice that additionally the

final smoothed path has less error than the original EKF run. The idea of the Iterated Smoother is to use

this new, smoothed, result to relinearize the problem and hopefully get a still better result. To keep things

straight we’ll call the EKF’s smoothed path xk|η{0}, that is the state at time k given the data for all time, η,

iteration {0}. Equations 4.3.3 and 4.3.4 describe the new linearization equations.

xk = fk (xk−1, wk)

≈ Fk{1}xk−1 + Lk{1}wk + uk{1}

Fk{1} =
∂ fk(x, w)

∂x

∣∣∣∣
x=xk−1|η{0},w=wk|k−1

Lk{1} =
∂ fk(x, w)

∂w

∣∣∣∣
x=xk−1|η{0},w=wk|k−1

uk{1} = f
(

xk−1|η{0}, wk|k−1

)
− Fkxk−1|η{0} − Lkwk|k−1

(4.3.3)

zk = hk (xk, vk)

yk{1} ≈ Hk{1}xk + Jk{1}vk

Hk{1} =
∂hk(x, v)

∂x

∣∣∣∣
x=xk−1|η{0},v=vk|k−1

Vk{1} =
∂hk(x, v)

∂v

∣∣∣∣
x=xk−1|η{0},v=vk|k−1

yk{1} = zk −
(

h
(

xk|η{0}, nk|k−1

)
− Hkxk|η{0} − Jkvk|k−1

)
(4.3.4)

Using these new linearizations we can run another Kalman Filter on the problem and hopefully do

better than we did before. The new smoothed path may be a bit better but its hard to tell. Figure 4.3.5

gives a little more insight, some cases here really seem to be doing better which is confirmed in the error

plot6 of Figure 4.3.6, where although the end of the run is largely unchanged the majority of the run is

doing better.

6Only the smoothed path is compared for error because it would be misleading to talk about the error in the estimate at time
k given linearizations based on information for all time, η, but only using data up to time k.
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Figure 4.3.4: Iterated Smoother (1 Iterations)
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Figure 4.3.5: Iterated Smoother (1 Iterations) Other Examples
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Figure 4.3.6: Iterated Smoother (1 Iterations) Error

Additional Iterations

This process can be repeated, this time the IS smoothed result for iteration i, labeled xk|η{i}, is used to

linearize the problem for the next iteration. The new linearization equations are given in 4.3.5 and 4.3.6.

The result of this iterate is shown in Figure 4.3.7 where we can see the smoothed path for iterations 18 and

19 (20 total iterations counting the EKF as iteration 0). The improvement in this example is impressive,

appearing to reach near Perfect Kalman Filter of Figure 4.1.7 on page 42. This result however does not

appear in general as we can see in many of the examples in Figure 4.3.8 on page 57 and in the error plot,

Figure 4.3.9 on page 58.

xk = fk (xk−1, wk)

≈ Fk{i+1}xk−1 + Lk{i+1}wk + uk{i+1}

Fk{i+1} =
∂ fk(x, w)

∂x

∣∣∣∣
x=xk−1|η{i},w=wk|k−1

Lk{i+1} =
∂ fk(x, w)

∂w

∣∣∣∣
x=xk−1|η{i},w=wk|k−1

uk{i+1} = f
(

xk−1|η{i}, wk|k−1

)
− Fkxk−1|η{i} − Lkwk|k−1

(4.3.5)
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Figure 4.3.7: Iterated Smoother (18-19 Iterations)

zk = hk (xk, vk)

yk{i+1} ≈ Hk{i+1}xk + Jk{i+1}vk

Hk{i+1} =
∂hk(x, v)

∂x

∣∣∣∣
x=xk−1|η{i},v=vk|k−1

Vk{i+1} =
∂hk(x, v)

∂v

∣∣∣∣
x=xk−1|η{i},v=vk|k−1

yk{i+1} = zk −
(

h
(

xk|η{i}, nk|k−1

)
− Hkxk|η{i} − Jkvk|k−1

)
(4.3.6)

The immediate question is if this method is simply limited to some poor estimates just as the BLSF

was. To test this we can start with the perfect linearizations as iteration {0} and then continue iterating,

with each iteration potentially introducing additional linearization error. This process will settle to some

local minima which, other than being seeded by the truth, no longer utilizes the perfect linearizations. We

can see in Figure 4.3.10 indications that there is a minima close to the perfect filter. The poor performance

of the IS is simply the result of getting caught in a different, false, local minima not an inherent limitation.
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Figure 4.3.8: Iterated Smoother (18-19 Iterations) Other Examples
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Figure 4.3.9: Iterated Smoother (19 Iterations) Error

Figure 4.3.10: Iterated Perfect KF (19 Iterations) Error
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4.3.2 Other Smoothers

BSEKF

If you notice in our definition of the Iterated Smoother we only used the smoothed paths estimate for

xk|η{i} to relinearize the problem but there are two other quantities we could use, w and v. There is non-

linear dependence of v in this problem so we will start by analyzing what would happen if we included

estimates of w in our relinearization of the problem. This iterate is referred to as the Backward-Smoothing

Extended Kalman Filter (BSEKF)[9]. To find the values of w we can use the Dual State information from

Chapter 2, Equations 2.2.5 on page 12 and 2.3.3 on page 16, which simplifies into Equation 4.3.7.

wk|η{i} = QkLT
k{i}P

−1
k|k−1{i}

(
xk|η{i} − xk|k−1{i}

)
(4.3.7)

Just as the Iterated Smoother allowed us to use all of our information to correct linearizations based

on the state this should allow us to correct linearizations based on w and improve performance. There is

no improvement in performance for this example as shown in Figure 4.3.11, where the BSEKF performs

slightly worse in most statistics. The actual cause of this failure to improve performance is bipartite. The

first issue is that linearization of w has almost no impact on the performance of the filter which can be

seen in Figure 4.3.12 where we run a KF linearized with and without truth values for w. This indicates

that in this problem this strategy cannot have a very large impact.

Additionally and more fundamentally the estimates of w are almost always going to be useless. The

only reason we can get a good estimate of x is because it’s highly correlated over time, allowing us to

leverage large periods of data to solve for an almost static quantity7. The process noise, w, on the other

hand has little correlation across time. To know what w was at every step k we would need to have

measured the state of the system accurately at every8 time increment k. The inability to estimate w can be

seen in Figure 4.3.13 where we form the estimates of wk|η using the Perfectly Linearized Kalman Filter (a

best case scenario).

7The extreme version of this can be seen in the Batch Least Squares method where, ignoring w, we leverage all the data to
actually solve a static quantity

8To illustrate this conundrum consider the following thought experiment. The system has one state which is simply a random
walk xk = xk−1 + wk. Assume that P0 = 0 and we only measure the state at time k = 4 perfectly, v4 = 0. For simplicity assume
that x4 = x0 + a. What we know from this is that ∑4

1 wk = a, but nothing else. We can identify what the most likely values
are, wk = 1/a, which might be better for linearization reasons but in all likelihood the linearizations made at expected value
are going to be pretty similar. The expected value linearizations would be wrong if the values for w were something more like
[0.3a, 1.2a,−0.7a, 0.2a] which is a sequence that we will never guess.
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Figure 4.3.11: BSEKF (19 Iterations) Error

Figure 4.3.12: Perfect KF (with and without w) Error
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Figure 4.3.13: Estimates of w from the Perfect KF
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Figure 4.3.14: Estimates of v

Relinearizing v

The values of the observation noise, v, present another random variable we can relinearize with respect

to. This iterate, show in Equation 4.3.8, is formed from the two Equations 2.2.6 and 2.2.5 on page 12.

Unlike our estimate of w we have some hope of estimating v because its dimensionality is approximately

the same as the observation. We can see our ability to estimate v in Figure 4.3.14, and extrapolate that if it

had a nonlinear impact on the observation we could correct some of it using our estimate.

vk|η{i} = Rk JT
k{i}

(
Jk{i}Rk JT

k{i}

)−1 (
yk{i} − Hk{i}xk|η{i}

)
(4.3.8)

The EKF provides a first step to solving this problem but its results are less than extraordinary. Ap-

plying iterations based on estimates of the state and various noise sources, while theoretically gives us

the capability of achieving near best case results, the actual outcome still falls short in the majority of our

scenarios. To move forward we will have to look at some alternative methods.
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Chapter 5

Sigma Point / Unscented Methods Geometry

“Wonderful”, the Flatline said,”I never did like to do anything simple when I could do it ass-backwards.”

- William Gibson, Neuromancer

As we have seen in the previous chapter the EKF often does not perform as well as needed in some

situations such as with the case of the blind tricyclist. A commonly implemented alternative, which can

have superior performance, in nonlinear problems is the Unscented Kalman Filter (UKF). In the EKF we

attempted to approximate the transformations as linear about linearization points, an approach which we

have already shown to have limitations. Instead of approximating the transform by linearizing about a

point the Unscented Transform approximates the covariances in the problem through strategic sampling.

The following description of the method is taken, with a change in notation where appropriate, from [4].

5.1 The Unscented Transform

The goal of the unscented/σ-point transform is to estimate the result, z, of a nonlinear transformation,

f , of a Gaussian random variable, x ∈ Rn ∼ N (µ, P). To do this it estimate the random variable x as a

list of points, X referred to as σ-points, and a weight vector, w, which can reconstruct into the original

random variable’s statistics using the process described as follows.
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x ∼ N (µx, Pxx) x ∈ Rm The input RV

z = f (x) y ∈ Rn The transformed RV ( f is nonlinear)

x →
(
X =

[
X1, X2, X3, . . . , Xp

]
, w
)

Xi ∈ Rm, w ∈ Rp The σ-pointsof the RV x

µx ≈
p

∑
i=1

wiXi µx ∈ Rn The mean of x

Pxx ≈
p

∑
i=1

wi (Xi − µx) (Xi − µx)
T Pxx ∈ Rn×n The covariance of x

(5.1.1)

The σ-point transform assumes that by propagating the representative points through the nonlinear

transform we can use the same process to construct the resulting random variable’s statistics.

z = f (x) z ∈ Rn The transformed RV ( f is nonlinear)

Zi = f (Xi) Zi ∈ Rn The transformed σ-points

µz ≈
p

∑
i=1

wiZi µz ∈ Rn The approximate mean of z

Pzz ≈
p

∑
i=1

wi (Zi − µz) (Zi − µz)
T Pzz ∈ Rn×n The approximate covariance of z

Pxz ≈
p

∑
i=1

wi (Xi − µx) (Zi − µz) Pxz ∈ Rm×n The approximate cross covariance

S ( f , x) = (µz, Pzz, Pxz) The unscented transform

(5.1.2)

The advantage of this method is that it actively samples the nonlinear function with points chosen to

represent the original random variable. The σ-points are a middle ground between the brute force method

of simply statistically sampling the nonlinear function as employed in the Ensemble Kalman Filter and the

EKF’s assumption of linearity. It is often pointed out that the method does not require the first derivative,

i.e. the Jacobian, of the function1. To aid in generality we will construct a standard set of σ-points for

N (0, I) and include the affine transform which maps a standard normal to N (µ, P) as part of the function

f . If x ∼ N (0, I) then the constraints arise from Equation 5.1.1 given by

1The Jacobian is often vilified to be some difficult to compute notational nightmare. In the current age of computer algebra
systems where these systems can both, efficiently and without error, compute derivatives and generate code for them this should
not be a factor. Additionally it is true that the σ-point method is uncaring of the function’s possible lack of first derivative, but
in my opinion that does not mean the implementor should be. Poorly behaved functions need to be handled with great care and
as the σ-points are generated deterministically they lack the statistical convergence theorems that aid the brute force methods of
PF and Ensemble methods.
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p

∑
i=1

wi = 1

p

∑
i=1

wiXi = 0

p

∑
i=1

wiXiX
T

i = I.

(5.1.3)

5.2 Orthogonal Geometry of Sigma Point Sets

The conditions as stated in Equation 5.1.3 are helpful when thinking about how the σ-points can be

combined to form a sample mean and covariance but as we move forward and start discussing higher

order moments and examining the geometry of the points themselves I have found it conducive for visu-

alization to move to a second form. Consider instead the simplification of introducing the vectors2 of ith

components of the original σ-points, Yi, i = 1 . . . n, which we refer to as the σT-point.

Yi =
[
X1,i X2,i X3,i · · · Xp,i

]
Lemma. The σT-points lie in the hyperplane normal to the weight vector.

Proof. This should be clear by rewriting the condition ∑
p
i=1 wiXi = 0 as w ·Yk = 0

Lemma. The σT-points and weight vector form a basis for an n-dimensional space.

Proof. The covariance constraint can be rewritten as w ·
(
Yi ?Yj

)
= δi,j where ? is element-wise multi-

plication, the Hadamard product. By contradiction assume that Y , the set of σT-points, does not span a

n-dimensional space then there would exist at least one vector of it, Yq, which could be written as the sum

of the others.
2That is that Yi is the ith component of all Xk. If there are p σ-points, Xk, and each is an element of Rn then there are n

Y -vectors with each Yi is an element of Rp, Y = X T. The advantage here is than w is also an element of Rp, meaning Y and w
are in the same space and we can use geometry when working with the σT-point and the weight vector w.



66

Yq = ∑
i 6=q

aiYi

w ·
(
Yq ?Yr

)
= w ·

((
∑
i 6=q

aiYi

)
?Yr

)
= arw · (Yr ?Yr) + ∑

i 6=r,i 6=q
aiw ·

(
Yi ?Yj

)
= ar = 0 ∀r 6= q

Zq = 0

w ·
(
Yq ?Yq

)
= 0 6= 1 contradiction

These previous two statements have both exploited the geometric advantage of the σT-points over the

σ-points which results in the conditions in Equation 5.1.3 being rewritten as follows in Equation 5.2.1.

Between the two statements we have a minimum dimension of Y , i.e. given Y spans an n-D space and

w is orthogonal to it, all these σT-point vectors must have dimension p ≥ n + 1.

1 =
p

∑
i=1

wi

0 = w ·Yi

δi,j = w ·
(
Yi ?Yj

)
where ?is elementwise multiplication

(5.2.1)

Lemma. For every set of σ-points which is minimal for a dimension, p = n + 1, {w, Y1, Y2, . . . , Yn}, there is a

related, orthogonal, prototype matrix S =


√

w√
w?Y1

...√
w?Yp

 ∈ O (p, C), where
√

w is the element-wise square-root of w.

Proof. The key here is to recognize the orthogonality constraint as an alternative construction of our orig-
inal set in Equation 5.2.1.

SST =



√
w ·
√
w

√
w ·
(√

w ?Y1

)
· · ·

√
w ·
(√

w ?Yk

)
· · ·

√
w ·
(√

w ?Yp

)
(√

w ?Y1

)
·
√
w

(√
w ?Y1

)
·
(√

w ?Y1

) (√
w ?Y1

)
·
(√

w ?Yk

) (√
w ?Y1

)
·
(√

w ?Yp

)
...(√

w ?Yk

)
·
√
w

(√
w ?Yk

)
·
(√

w ?Y1

) (√
w ?Yk

)
·
(√

w ?Yk

) (√
w ?Yk

)
·
(√

w ?Yp

)
...(√

w ?Yp

)
·
√
w

(√
w ?Yp

)
·
(√

w ?Y1

) (√
w ?Yp

)
·
(√

w ?Yk

) (√
w ?Yp

)
·
(√

w ?Yp

)
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The elements of this matrix can be simplified greatly, recalling the properties, a · (b ? c) = b · (a ? c)

and (a ? b) · (c ? d) = (a ? d) · (c ? b). Restating the constraint on the sum of weights 1 = ∑
p
i=0 wi =

∑
p
i=0

√

wi

√

wi =

√

w ·
√

w. Restating the constraint on the mean 0 = w · Yi =

(√
w ?

√

w
)
· Yi =

√

w ·
(√

w ?Yi

)
.

Restating the constraint on covariance δi,j = w ·
(
Yi ?Yj

)
=

(√
w ?

√

w
)
·
(
Yi ?Yj

)
=

(√
w ?Yi

)(√
w ?Yj

)
, so

SST = I.

Theorem 1. For every set of σT-points, {w, Y1, Y2, . . . , Yn}, there is a related, orthogonal prototype matrix given in

Equation 5.2.2, where
√

w is the element-wise square-root of w and Yk for k > n are unused values. We call the values{
w, Y1, Y2, . . . , Yp

}
the complete set of σ-pointsT as opposed to the original, incomplete, set, {w, Y1, Y2, . . . , Yn}.

Proof. We have already shown that {w, Y1, Y2, . . . , Yn} span an (n + 1) dimensional space, by all the same

logic that demonstrated that we can show that
{√

w,
√

w ·Y1,
√

w ·Y2, . . . ,
√

w ·Yn

}
also spans a (n + 1) dimen-

sional space and we need only expand this basis, which is already orthonormal to a full set to form the

matrix S . However, only the σ-pointsT which are going to be used need to be real which frees the others

to be complex, also allowing negative weights, in the form of purely imaginary elements of
√

w. Not all

elements S ∈ O (p, C) have σ-point equivalents however as {w, Y1, Y2, . . . , Yn}must all be real.

This gives us a way of parameterizing the space of possible p σ-points for an n-dimensional state

space. We can start with the parameterization of the space O (p, C), which we can define as the product of
(p−1)(p−2)/2 Givens rotation matrices, and then transform the orthogonal matrix into a σ-point set via the

inverse of Equation 5.2.2. The previous definition does not guarantee that all orthogonal matrices have

related σ-point sets and so the parameterization will yield impossible sets when, for example, there is an

element of
√

w which is zero or geometrically unsuitable sets, when the used (the first n), vectors of Y have

elements which are not real.

S =



√

w
√

w ?Y1
...

√

w ?Yn
...

√

w ?Yp


∈ O (p, C) (5.2.2)
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5.3 Lie Algebra of Higher Order Sigma Point Moments

The conditions of 5.1.3 guarantee that our original, untransformed, estimates of the first and second

moments are correct but in nonlinear problems it is be helpful to correctly estimate other higher order

moments, for an example of the benefits of considering higher order moments see Section 5.5. We can

define the higher order moments of a set of σ-points the same way that we define the lower order ones,

in terms of their weighted sample sums.

E
(
xq1 xq2 ...xqk

)
≈

p

∑
i=1

wiXi,q1Xi,q2 . . . Xi,qk = w ·
(
Yq1 ?Yq2 ? · · · ?Yqk

)
(5.3.1)

By our earlier definitions we know that the first and second order moments are correct so let us begin

by considering the 3rd order moments of the σ-points. The equation for these moments is Ej,k,m = w ·(
Yj ?Yk ?Ym

)
. Just as we were able to split the matrix of second order moments, the covariance, into

an orthogonal matrix we can factor matrices of 3rd order moments by the same orthogonal matrix. The

process is as follows,

w ·
(
Yj ?Yk ?Ym

)
=

(√
w ?

√

w
)
·
(
Yj ?Yk ?Ym

)
=

(√
w ?Yj

)
·
(

Yk ?

√

w ?Ym

)
=

(√
w ?Yj

)
· DYk ·

(√
w ?Ym

)
Dx is the matrix with diagonal elements from x

Which gives us the definition in Equation 5.3.2.

Ak = SDYkS
T (5.3.2)

Lemma. The third order moments with a given index j, Em,j,n, are all elements of the matrix Aj

Proof. The element (m, n), zero indexed, of the matrix Aj, Aj,m,n is

SmDYjS
T
n =



(√
w
)
·
(

Yj ?

√

w
)
= 0 if m = 0, n = 0

√

w ·
(

Yj ?

(√
w ?Yn

))
= δj,n if m = 0, n > 0(√

w ?Ym

)
·
(

Yj ?

√

w
)
= δj,m if n = 0, m > 0(√

w ?Ym

)
·
(

Yj ?

(√
w ?Yn

))
= Em,j,n if m > 0, n > 0
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Aj =



0 0 0 1 0

0 E1,j,1 E1,j,2 · · · E1,j,j · · · E1,j,p−1

0 E2,j,1 E2,j,2 E2,j,j E2,j,p−1
...

...
...

1 Ej,j,1 Ej,j,2 Ej,j,j · · · Ej,j,p−1
...

...
...

0 Ep−1,j,1 Ep−1,j,2 Ep−1,j,j Ep−1,j,p−1



Remark. The matrices
{

Aj
}

are simultaneously diagonalizable by definition and therefore pairwise com-

mute, Aj Ak = Ak Aj.

Additionally the values from the mean can be found in the first element of these matrices (Ak)0,0 = uk,

the covariance matrix can be found in the first row/column, Pj,k = (Ak)0,j = (Ak)j,0.

Theorem 2. Just as the third order moments with a given index j, Em,j,n, are the elements of Aj, the fourth order

moments of a given pair (j, k), are the elements of Aj Ak.

Proof. Aj Ak = SDYjSTSDYkS = SDYj?YkST and as before we can select an element (m, n), zero indexed

of this product,

(
Aj Ak

)
m,n = SmDYj?YkS

T
n =



(√
w
)
·
((

Yj ?Yk
)
?

(√
w
))

= Ej,k = δj,k if m = 0, n = 0
√

w ·
((

Yj ?Yk
)
?

(√
w ?Yn

))
= Ej,k,n if m = 0, n > 0(√

w ?Ym

)
·
((

Yj ?Yk
)
?

√

w
)
= Em,j,k if n = 0, m > 0(√

w ?Ym

)
·
((

Yj ?Yk
)
?

(√
w ?Yn

))
= Em,j,k,n if m > 0, n > 0

Remark. It should be clear from this trend, that nth order moments can be found in products of (n− 1)

elements of
{

Aj
}

, should be clear by extension

As before elements of two moments down can be found in the 0, 0 elements of all products, and

elements of moments one level down are the first row/column.

Theorem 3. The set
{

I, A1, A2, . . . , Ap−1
}

forms a basis for the Lie algebra of matrices which are simultaneously

diagonalizable by S . Additionally if an element B is an element of this algebra then its first row, B0, comprises the

coefficients of the basis, B = B0,0 I + B0,1A1 + · · ·+ B0,p−1Ap−1.
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Set Name Moments Number of Points (general) 4D 10D
Simp Min 2norm error of 3rd order d + 1 5 11

O5 Order 5 for any 1 Dimension 2d + 1 9 21
O7 Order 7 for any 1 Dimension 4d + 1 17 41
O5f Order 5 Full Match 4(d

2) + 4d + 1 41 221

Table 5.1: Sigma Point Set Properties

Proof. Let B be diagonalizable by S , B = SDbST. Then b ∈ Cp and
{

w, Y1, . . . , Yp−1
}

is a basis of Cp,

so
{
SDwST,SDY1ST, . . . ,SDYp−1ST

}
is a basis and we just substitute the vector of all ones, 1, in for w,

as it contains an element in the direction of w, 1 · w = 1, and the rest of the basis Y does not. D1 = I,

S IST = I so the new basis becomes
{

I, A1, . . . , Ap−1
}

. The second part is clear from the first rows of the

basis which each have only one, non-overlapping, nonzero element.

5.4 Derived Sigma Point Sets

We can use these these geometric results to find qualified σ-point sets which have different properties.

The two important properties of σ-point sets we will be examining are the number of points needed

(which determines the numerical complexity of using the set) and the higher order moments (See next

section for benefits). Table 5.1 lists these properties for the sets of interest we will construct.

5.4.1 Simplex Set (Simp)

Consider first the question of finding a “good” minimal set of σ-points for a given dimension, d. To

define the quality of a minimal set I suggest that we first try and minimize the error in the third order

moments. For a standard Gaussian all the third order moments, Ei,j,k, should be zero. For a set of σ-points

all these values, the third order moments Ei,j,k, can be found in the matrices Ak, i.e. Ei,j,k ∈ Ak∀i, j. Using

a minimal set of points it will not be possible to meet these, 3rd order, constraints, Ei,j,k = 0, so instead

consider minimizing the error in these matrices via the sum Frobenious norm, ∑ ‖Ak‖F. This norm will

count certain entries3 multiple times and include an offset but algebraically has many advantages. To

minimize the error we might consider the derivative in error function in terms of changes in prototype

matrix S . The prototype matrix, S , is orthogonal and any transformation of it can be expressed as another

rotation matrix R. We will define the result of this transformation with the acute diacritical mark, ·́, for all
3Both E1,1,2 and E2,1,1 appear in A1 but are the same value and they again appear in A2 as E1,2,1 leading to it being triple

counted, where as E1,1,1 only appears once in A1
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other dependent quantities (e.g. Ý is the transformed σT-point).

Ś = RS

The full impact of this transformation on the 3rd order moment matrices, Ák = ŚDÝk
ŚT, is difficult

to find because we need to find the new element Ýk. Ignoring this one difficulty the rest of the transform

takes an easily recognized similarity transform structure, Ák = RSDÝk
STRT which gives us the following

form.

Âk = RAkRT

This new matrix is formed directly from the previous one and because it is diagonalized by RS = Ś it

is a member of the Lie algebra discussed in Theorem 3. By the other properties of that Theorem we know

that it can be written as a linear combination of the matrices
{

I, Á1, . . . , Áp
}

.

Âk = RAkRT

= IMk,0 + Á1Mk,1 + · · ·+ Áp Mk,p

Mk,j = Ak,(0,j)

The next step is recognizing that the form Âk = RAkRT can be written using a Kronecker product

V
(

Âk
)
= R⊗ RV (Ak) where ⊗ is the Kronecker product and V (·) is the row vectorization operation,

taking a matrix and flattening it into a vector by stacking its rows.

V
(

Âk
)
= (R⊗ R)V (Ak)

= V (I) Mk,0 + V
(

Á1
)

Mk,1 + · · ·+ V
(

Áp
)

Mk,p

It is apparent from the right side of this equation that the matrixA =
[
V (I) V (A1) . . . V

(
Ap
)]T

and its transformed version, Á, are going to be helpful. This matrix has another form which is obvious

when examining the actual elements.
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A =
[
V (I) V (A1) V (A2) . . . V

(
Ap
)]T

=



1 0 0 · · · 0

0 1 0 0

0 0 1 0
...

...

0 0 0 . . . 1

0 1 0 · · · 0

1 E1,1,1 E1,1,2 E1,1,p

0 E1,2,1 E1,2,2 E1,2,p
...

...

0 E1,p,1 E1,p,2 . . . E1,p,p
...

...



=



I

A1

A2
...

Ap


Additionally the matrix M can be written as a projection of the related matrix Â.

M =
[

I 0 0 . . . 0
]
Â

=
[

I 0 0 . . . 0
]
(R⊗ R)A

= (R1 ⊗ R)A

This gives us the following form,

(R⊗ R)A = Á (R1 ⊗ R)A,

which greatly simplifies if we restrict R to the subset of matrices of the form
[

1 0
0 R
]
∈ O (p− 1, C).

Lemma. The 2-norm error of the 3rd order matrices, Ak, is only dependent on the weight vector w ∈ Sp−1

Proof. As we have shown transforms of the form
[

1 0
0 R
]

change the 3rd order error matrices through the

following form
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Á =

1 0

0 R

A
1 0

0 R

⊗
1 0

0 R

A = Á

[1 0 . . .
]
⊗

1 0

0 R

A
= Á

1 0

0 R


Á =

1 0

0 R

⊗
1 0

0 R

A
1 0

0 R

T

V
(
Á
)
=

1 0

0 R

⊗
1 0

0 R

⊗
1 0

0 R

V (A)

=

1 0

0 R

⊗3

V (A)

(5.4.1)

The matrix
[

1 0
0 R
]

is orthogonal so its 3rd Kronecker power
[

1 0
0 R
]⊗3 is as well. Orthogonal matrices

preserve 2-norms on vector spaces so that
∥∥V (

Á
)∥∥

2 = ‖V (A)‖2. The decomposition of a general pro-

totype matrix, S , into the two parts S =
[

1 0
0 R
]
W , where we define W in Equation 5.4.2 using Givens

angles, φ1 . . . φk, makes the 2-norm only dependent onW .

W
(

φ1 , φ2 , . . . , φp−1

)
=



∏
p−1
k=1 cos (φk) sin

(
φp−1

)
∏

p−2
k=1 cos (φk) · · · sin (φ3) cos (φ1) cos (φ2) sin (φ2) cos (φ1) sin (φ1)

− sin
(

φp−1

)
cos

(
φp−1

)
· · · 0 0 0

− cos
(

φp−1

)
sin
(

φp−2

)
− sin

(
φp−1

)
sin
(

φp−2

)
· · · 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

−
(

∏
p−1
k=3 cos (φk)

)
sin (φ2) − sin

(
φp−1

) (
∏

p−2
k=3 cos (φk)

)
sin (φ2) · · · − sin (φ3) sin (φ2) cos (φ2) 0

−
(

∏
p−1
k=2 cos (φk)

)
sin (φ1) − sin

(
φp−1

) (
∏

p−2
k=2 cos (φk)

)
sin (φ1) · · · − sin (φ3) cos (φ2) sin (φ1) − sin (φ2) sin (φ1) cos (φ1)


(5.4.2)

The next step is to solve the optimization problem of minimizing the 2-norm error in terms of the pa-

rameters ofW . Minimizing the sum of the Frobenius norms of the matrices Ak is the same as minimizing

the squared sum of their eigenvalues, which for these4 Ak are simply the σ-pointT, Yk.

Conjecture. The minimal set of σ-points which minimizes the Frobenius norm error of 3rd order moments are

those which arise from equal weights.

Proof. We have shown this to be the case analytically for small n, n ≤ 6.

4If the values of Ak were allowed to be complex this may not be the case as the decomposition SDY ST is no longer the
eigenvalue decomposition but because we have the minimal number of σ-points we can guarantee that they all must be real.
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5.4.2 One Dimensional Sets

The next types of sets to consider are those which meet some higher order moments exactly by using

more σ-points than the minimal set, p > d+ 1. In general it is very difficult to find such sets because of the

number of variables which need to be considered. A typical example might be to find a set of points which

meets all 3rd order constraints for a state space of 5 variables using 10 σ-points. The parameterization

based on the Orthogonal space representation would have 28 angles to search and thus becomes very

difficult very fast. Instead let us consider a different strategy. Imagine we had a set of σ-points, {w, Y1},
which met some set of conditions for a 1D system. We can scale it up to two dimensions by creating a

stacked version,

ẃ =
[
−1 w w

]
Ý1 =

[
0 Y1 0

]
Ý2 =

[
0 0 Y1

] .

This combination still meets all the original conditions (Equation 5.1.3), the addition of a 0 point with a

negative weight maintains the ∑ ẃ = 1 without needing to scale w and because Ý1 and Ý2 are mutually

exclusive all products Ý1 ? Ý2 = 0 maintaining cross covariance terms, otherwise the vector Y1 and its

weight are unchanged, so all moments involving only one index are the same, É1 = E1 = É2, É1,1 = E1,1 =

É2,2, et cetera. So this set will preserve all the same 1D moments and have 0 for all cross moments (which

is not correct, for Gaussians E1,1,2,2 = E (X1X1X2X2) = 1). Using this strategy we can construct a set

with these 1D properties for an arbitrary dimensional state space. The naming convection for the sets will

be determined by the depth of 1D moments they satisfy so the following Order 3 (O3) set meets all 1D

moments up to and including the 3rd, Order 7 (O7) goes up to and including 7th order moments, these

sets will all have 0 mixed moments, which is correct only for the odd orders.

Order 3 (O3)

The first problem we will look at is to find how many moments can be met with only 2 points. To

solve this problem I suggest that we look at the matrix A1 because it contains all the information needed

to compute all the 1D moments of the set, E1,1,1 ∈ A1, E1,1,1,1 ∈ A1A1 et cetera.

A1 =

0 1

1 E1,1,1
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If we set E1,1,1 = 0, the correct 3rd order moment we have the matrix
[

0 1
1 0

]
. With no more free vari-

ables we are done and can diagonalize this matrix to find the prototype which gives us the σT-point set

w = [ 1/2 1/2 ] , Y1 = [ 1 −1 ]. This form when stacked to obtain structures supporting d > 1, beyond a 1

dimensional system, will need p = 2d + 1 points. This set fits the more typical σ-points setup[4] with the

parameter λ = 1− d.

Order 5 (O5)

We can increase the number of σ-points to 3 and check again to see how many values we can match,

again by looking at powers of A1.

A1 =


0 1 0

1 E1,1,1 E1,1,2

0 E1,1,2 E1,2,2


E1,1,1 = 0

A1A1 =


1 0 E1,1,2

0 E2
1,1,2 + 1 E1,1,2E1,2,2

0 E1,1,2E1,2,2 E2
1,1,2 + E2

1,2,2


E1,1,1,1 = 3 = E2

1,1,2 + 1

E1,1,2 =
√

2

A3
1 =


0 3

√
2E1,2,2

3 2E1,2,2
√

2E2
1,2,2 + 3

√
2

√
2E1,2,2

√
2E2

1,2,2 E3
1,2,2 + 4E1,2,2


E1,1,1,1,1 = 0 = 2E1,2,2

E1,2,2 = 0

A1 =


0 1 0

1 0
√

2

0
√

2 0


Diagonalizing gives us the 5rd Order 1D σT-point set defined in Equation 5.4.3.

w =
[

2
3

1
6

1
6

]
Y1 =

[
0
√

3 −
√

3
] (5.4.3)
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Normally we would expect this set to require 3d+ 1 points, but because contains a 0 vector these along

with the weight balancing 0 vector can be combined, giving us a set using 2d + 1 points which is popular

in the literature[4] as the set with the parameter λ = 3− d

Order 7 (O7)

Increasing the number of points again, we can find a set of points which will meet up to 7th order

constraints. The sequence of equations are generated the same way as before except they cannot be solved

independently. The software tool Axiom[1] was used to solve the resulting system of polynomials and

the tool Macaulay2[5] to show that 8th order constraints are impossible with 4 σ-points. The resulting 7th

Order 1D σT-points are shown in Equation 5.4.4 and require 4d + 1 σ-points for the d dimensional case.

w =

[
1

4(3+
√

6)
1

4(3+
√

6)
1

4(3−
√

6)
1

4(3−
√

6)

]
Y1 =

[√
3 +
√

6 −
√

3 +
√

6
√

3−
√

6 −
√

3−
√

6
] (5.4.4)

Order 9 (O9)

We can continue the process once more to find a set which meets up to 8th order constraints. This

set, like the 5th order set, includes a 0 vector and so requires less points than we might expect, requiring

4d+ 1 instead of 5d+ 1. The 1D set itself is presented in [15] without the geometric results presented here.

w =

[
8
15

3
20(7+2

√
2
√

5)
3

20(7+2
√

2
√

5)
3

20(7−2
√

2
√

5)
3

20(7−2
√

2
√

5)

]
Y1 =

[
0
√

5 +
√

5
√

2 −
√

5 +
√

5
√

2
√

5−
√

5
√

2 −
√

5−
√

5
√

2
] (5.4.5)

5.4.3 Mixed Moment Sets

Sets which meet all moments, including the mixed moments, will be marked with the letter f, for full

set. Because only even orders have nonzero mixed moments we will focus this section on assigning 4th

order mixed moments, because the 1D sets already have correct, 0, 3rd and 5th order mixed moments5

because there is no overlap in stacked points all the products Yj ? Yk = 0, j 6= k. For a set which meets

all 4th order moments we will need to modify our strategy. Just as before we will consider a strategy of

extending a lower dimensional set to higher dimension by stacking. This time, however, the base system

will need two points to meet the moment constraint, E1,1,2,2 = 1. The basic idea will be to take this basic

5Recall that for a Gaussian random variable X ∼ N (0, I) that the 4th order moment E (X1X1X2X2) = 1 = E1,1,2,2. Also recall
that these elements can be found in the product of 3rd order matrices Ak, Ej,k,`,m ∈ A`Am.
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set of σ-pointsT and create a new higher dimensional system out of them by creating a new ‘stack’ for

each possible pairing. Given the two dimensional set of points, Y1, Y2, we can create a 3D system which

will have moments, E1,1,2,2, E1,1,3,3, E2,2,3,3, by stacking the points as follows.


Y1 Y1 0

Y2 0 Y1

0 Y2 Y1


Method 1 (O4f)

There is an additional complexity however, given a set of σT-points w, Y1, Y2 which have the moments

Ei,j,k = 0, E1,1,1,1 = 3 = E2,2,2,2, E1,1,2,2 = 1, and Ei,j,k,` = 0 otherwise. We could patch these points together

as follows to form a combined set.


−2 w w w

0 Y1 Y1 0

0 Y2 0 Y1

0 0 Y2 Y2


Although his new set will have the correct moments, E1,1,2,2 = E1,1,3,3 = E2,2,3,3 = 1, because the system

contains two copies of Y1 in its new Ý1, the 1D contributions will be double counted which will void the

original covariance constraint,

É1,1 = ẃ
(
Ý1 ? Ý1

)
= ẃ

(
Y1
Y1
0
?

Y1
Y1
0

)
= 2E1,1.

We can fix this by scaling the weight vector w by the number of duplicates (which is also the dimension

of the final space d− 1), ẃ = w/(d−1), giving us the stacked system,


−1/2 w/2 w/2 w/2

0 Y1 Y1 0

0 Y2 0 Y1

0 0 Y2 Y2


This has the unfortunate side effect of scaling all moments back by 1/(d−1) so our new system will

have the cross term moment É1,1,2,2 = 1/(d−1)E1,1,2,2 meaning that for every system dimension d we

will need a unique set of σ-pointsTwhich meet the conditions Ei,j,k = 0, E1,1,1,1 = 3 = E2,2,2,2, E1,1,2,2 =

(d− 1) , and Ei,j,k,` = 0 otherwise. I do not know a good way of creating this set of points, using the ge-

ometry of the moment matrices, Ak. It can be shown that we will need at least 6 σ-points to meet these
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conditions, and with 6 points it is not possible to match 5th order moments. Using the Givens rotations

parameterization and trimming the angles which do not impact the first 2 σT-points gives us 12 param-

eters to search. Using simple optimization with random starting points I’ve been able to find sets for up

to dimension 11, noting that after dimension 4 (where d − 1 = 3 so E1,1,1,1 = E1,1,2,2) we need to allow

for a negative weight. In general however the difficulty of finding a valid set using this strategy seems to

increases with dimension. The number of points required is also large, 6(d
2) + 1 so for a 10 dimensional

system we will need 271 points, making it somewhat unwieldy.

Method 2 (O5f)

The previous method meets all of the moment constraints in one set and then stacks it simply to get

a finished set. Instead I suggest that we find the smallest set which will give us a desired cross moments

Ei,j,k,`, i 6= ` and then fix any 1D moments that are incorrect with 1D sets. This should lead to fewer

points for larger dimensional problems, if we need p1 points for the pairwise product the final system

will need p1(
d
2) points and if we need an additional p2 points to correct the 1D moments the final system

will only need an additional p2d points as compared to a system which requires p1 + p3 points with no 1D

corrections, requiring p1(
d
2) + p3(

d
2) total points. The other benefits of this method are happy side effects

but include a closed form set of points which will also meet some 5th order moments. To be considered

as a possible cross term set we must have a set of points which have zero cross term moments where we

need E1,1,2 = E1,2,2 = E1,1,1,2 = E1,2,2,2 = 0 because none of our 1D ‘corrections’ will allow us to correct

these errors. Additionally the set should have a 1D symmetry so we do not need to keep track of 1D

errors separately, E1,1,1 = E2,2,2, E1,1,1,1 = E2,2,2,2. Under these conditions it is not possible to create a set

using only 3 points. Starting with only these constraints we use Macaulay2[5] to find a Grobner Basis for

the system of polynomials from moment parameterization, Ak.


E1,1,1 − E2,2,2 E1,2,2 E1,3,3 − E2,3,3 E1,1,2 E2,3,3E1,1,3

E1,2,3E1,1,3 E2
2,3,3 − E2,3,3E1,1,1 E1,2,3E2,3,3 − E1,2,3E1,1,1 E2,2,3E2,3,3 E2

1,2,3 − E2,2,3E1,1,3 − 1

E2,2,3E1,2,3 E2
2,2,3 − E2

1,1,3 E2
1,1,3 + E2,2,3 E2,2,3E2

1,1,3 + E1,1,3 E2,2,3E1,1,1E1,1,3 − E2,3,3 + E1,1,1


Within this basis, relevant entries highlighted in red, we find that E1,1,2 = E1,2,2 = 0, giving us an

element (A1A1)[2,2] = E1,1,2,2 = E1,2,3 which we want to be nonzero which, in turn implies6 E1,1,3 = 0.

Simplifying the ideal with this new identity gives us E1,2,3 = 1

6This was relatively easy to identify but in general I believe the correct method for this is to saturate the ideal with E1,2,3
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A1 =


0 1 0 0

1 E1,1,1 0 0

0 0 0 1

0 0 1 E1,3,3



A1A1A1 =


E1,1,1 E2

1,1,1 + 1 0 0

E2
1,1,1

(
E2

1,1,1 + 1
)

E1,1,1 + E1,1,1 0 0

0 0 E1,3,3 E2
1,3,3 + 1

0 0 E2
1,3,3 + 1

(
E2

1,3,3 + 1
)

E1,3,3 + E1,3,3


We can be greedy here and meet our constraints and both 3rd and 5th order moments by setting

E1,1,1 = E1,1,3 = 0. Plugging in all these values and decomposing A1 will give us a prototype matrix for

the actual σ-points which can be used to generate these sets.

A1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 =


1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1√
2

1√
2

0 0 − 1√
2

1√
2




−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 ST

At first blush it would appear that this set of σ-points is not usable because it has weights of 0 but we

can mix eigenvectors with the same eigenvalue together with the mixing matrix7 T.

7Any mix can be used but we desire the symmetry given by the chosen T
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T =


1√
2

0 1√
2

0
1√
2

0 − 1√
2

0

0 − 1√
2

0 − 1√
2

0 1√
2

0 − 1√
2



S =


1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
1
2 − 1

2

− 1
2

1
2

1
2 − 1

2


w =

[
1
4

,
1
4

,
1
4

,
1
4

]
Y1 = [1, 1,−1,−1]

Y2 = [1,−1, 1,−1]

This set does not have any flexibility in the E1,1,2,2 moment so we will need to correct the stacking

issue, that the 1D moments are adding for each stack, in a different way. To fix this we introduce a 1D set

which mirrors this set in 1D moments and invert the weight vector. The inversion of the weight vector

makes this mirror set undo all 1D contributions, including covariance E1,1. This leaves the combined set

with a clean set E1,1,2,2 = 1, Ei,j = Ei,j,k = Ei,j,k,` = 0. We happen to have already found a canceling set,

which has E1,1,1 = 0, E1,1,1,1 = 1, E1,1,1,1,1 = 0, when we found the 1D set for 2 points, the Order 3 set.

w =

[
1
2

,
1
2

]
Y1 = [1,−1]

Lastly we need to reintroduce all the correct 1D moments, which is easily done by stacking in a copy

of the Order 5 set.

w =

[
2
3

,
1
6

,
1
6

]
Y1 =

[
0,
√

3,−
√

3
]

All in all the composite set is shown in Equation 5.4.6 with each of the different components, 0 point

correction term, mixed moment (black), 1D cancellation (red), and 1D correction (blue) subsets horizon-

tally concatenated, requiring 4(d
2) + 4d + 1 points.



81



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− (d
2) + d (d− 1) + d2/3− d

0

0

.

.

.

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/4 1/4 1/4 1/4

1 1 −1 −1

1 −1 1 −1

.

.

.
.
.
.

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/4 1/4 1/4 1/4

1 1 −1 −1

0 0 0 0

.

.

.
.
.
.

1 −1 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/4 1/4 1/4 1/4

0 0 0 0

1 1 −1 −1

.

.

.
.
.
.

1 −1 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d−1/2 d−1/2

1 −1

0 0

.

.

.
.
.
.

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d−1/2 d−1/2

0 0

0 0

.

.

.
.
.
.

1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/6 1/6
√

3 −
√

3

0 0

.

.

.
.
.
.

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/6 1/6

0 0

0 0

.

.

.
.
.
.

√
3 −

√
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


(5.4.6)

5.5 Results of Using Different Sets

The implicit assumption of this method is that given a Gaussian random variable x ∼ N the trans-

formed random variable, y = f (x), will be well approximated with the Gaussian density inferred from

the transformed σ-points, or well enough for our purposes. The fact is that when a Gaussian random vari-

able is passed through a nonlinear function it is almost never the case that the resulting random variable

is Gaussian. If we consider the random variable y = x2, x ∼ N (0, 1),the result y ∼ χ2 is not Gaussian. For

the EKF of the previous chapters we assume that the transform is approximately linear about the expected

value and use this to predict the the resulting Gaussian. Given the benefit of a small offset, x̄ = 1/10, so the

covariance doesn’t collapse the linearized model predicts the result will be y = x2 ≈ x̄x ∼ N
(

0, (1/10)2
)

.

While it is true that the result is non Gaussian we can approximate it as the Gaussian which shares the first

2 moments, N (1, 2). The actual probability density functions for these random variables can see in Figure

5.5.1. We will examine ability of the different generated σ-points to correctly estimate the resulting first

and second order moments of densities generated by different polynomial functions and the performance

benefit of these estimates in a pair of exemplars.

5.5.1 Example of Polynomial Functions

We will start by restricting the nonlinear functions to polynomials because the result’s true mean

and covariance are easily analytically calculated. To demonstrate the different sets and their varying

capabilities to model polynomial functions we can set up a base random variable,

x =

x0

x1

 ∼ N

1

1

 ,

1 0

0 1

 .

We transform this random variable by a one dimensional polynomial function f (x) and compute the

covariance of
[

x0
x1

f (x0,x1)

]
, which demonstrates both the set’s ability to estimate both the variable y ∼ f (x)

and the correlation between this random variable and the the original states (which would be important

for observation functions). It should be clear that the order of the polynomial determines the order of
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Figure 5.5.1: Probability Density Function for χ2 and N (1, 2)

the set needed to estimate the mean and its square for the covariance8. For example, f (x) = x2
0 is a

second order polynomial so to correctly estimate the mean, E ( f (x)) = E
(
x2

0
)
= E0,0, we will need to

match moments of the second order (covariance) and to estimate covariance, E
(
( f (x)− E ( f (x)))2

)
=

E
((

x2
0 − E0,0

)2
)
= E0,0,0,0 − E0,0, we will need to match up to 4th order moments. We can see the result

of the different estimation techniques summarized in Table 5.2 where we can see all the sets correctly

estimate the mean but only the higher order sets correctly estimate the covariance. Likewise Table 5.3

demonstrates increase in difficulty of the function x4
0 which will require 4rd order moments for mean and

8th for covariance estimates. Finally we have an example with the function f (x) = x0x1, here the mean

again only requires the 2nd order moments but the covariance will require a non 1D 4th order moment,

specifically the cross moment E1,1,2,2 which only the full 5th order set, O5f, meets provides the necessary

capabilities as shown in Table 5.4 where only this set correctly estimates the covariance.

8Given the polynomial P = ∑k akxk
0 its expected value, E (P), is the given by ∑k akE0⊕k , where 0⊕k is the k dimensional index

with all zeros, 0⊕4 = (0, 0, 0, 0) so is dependent on kth order moments. The variance E
(
(P − E (P))2

)
can be expanded and has

a highest order term E
(

akxk
0akxk

0

)
= E0⊕2k . This becomes more complicated when P is a multivariate polynomial but the same

properties hold.
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Function
[
x0, x2

0
]

Method Mean Covariance

Truth [1, 2]
(

1 2
2 6

)
10000 Sample Point [0.989, 2.00]

(
1.02 2.01
2.01 6.03

)
Linear (EKF) [1.0, 1.0]

(
1.0 4.0
4.0 16.0

)
UKF (Sim) [1.0, 2.0]

(
1.0 2.0
2.0 4.5

)
UKF (O5) [1.0, 2.0]

(
1.0 2.0
2.0 6.0

)
UKF (O9) [1.0, 2.0]

(
1.0 2.0
2.0 6.0

)
UKF (O5f) [1.0, 2.0]

(
1.0 2.0
2.0 6.0

)

Table 5.2: Results for x2
0

Function
[
x0, x4

0
]

Method Mean Covariance

Truth [1, 10]
(

1 16
16 664

)
10000 Sample Point [0.989, 10.0]

(
1.02 15.9
15.9 628.0

)
Linear (EKF) [1.0, 1.0]

(
1.0 32.0

32.0 1020.0

)
UKF (Simp) [1.0, 8.5]

(
1.0 10.0
10.0 128.0

)
UKF (O5) [1.0, 10.0]

(
1.0 16.0
16.0 418.0

)
UKF (O9) [1.0, 10.0]

(
1.0 16.0
16.0 664.0

)
UKF (O5f) [1.0, 10.0]

(
1.0 15.1
15.1 418.0

)

Table 5.3: Results for x4
0
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Function [x0, x1, x0x1]
Method Mean Covariance

Truth [1, 1, 1]

1 0 1
0 1 1
1 1 3


10000 Sample Point [0.989, 0.986, 0.971]

 1.02 −0.004 1.02
−0.004 0.993 0.992

1.02 0.992 3.07


Linear (EKF) [1.0, 1.0, 1.0]

1.0 0.0 2.0
0.0 1.0 2.0
2.0 2.0 8.0


UKF (Simp) [1.0, 1.0, 1.0]

 1.0 0.0 1.71
0.0 1.0 1.0
1.71 1.0 3.91


UKF (O5) [1.0, 1.0, 1.0]

1.0 0.0 1.0
0.0 1.0 1.0
1.0 1.0 2.0


UKF (O9) [1.0, 1.0, 1.0]

1.0 0.0 1.0
0.0 1.0 1.0
1.0 1.0 2.0


UKF (O5f) [1.0, 1.0, 1.0]

1.0 0.0 1.0
0.0 1.0 1.0
1.0 1.0 3.0


Table 5.4: Results for x0x1

5.5.2 Fading Channel Example

To see the impact this might have on a realistic example consider the following problem based on

Rayleigh fading. We have a signal level of x0 which we observe through three separate channels with

responses, x1, x2, x3 and noise v1, v2, v3.

h (x, v) =


x1x0 + v0

x2x0 + v1

x3x0 + v2


The signal level is static and the channel gains fade to zero and but are driven by process noise v1,v2, v3.

f (x, w) =


x0

x1
2 + w0
x2
2 + w1
x3
2 + w2


The random variables are defined as
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Figure 5.5.2: Fading Example Median and 75% x0 Error Plots

x[0] ∼ N




0

0.0964

0.131

−0.171

 ,


4 0 0 0

0 0.04 0 0

0 0 0.04 0

0 0 0 0.04





w ∼ N




0

0

0

 ,


0.04 0 0

0 0.04 0

0 0 0.04




v ∼ N




0

0

0

 ,


0.0025 0 0

0 0.0025 0

0 0 0.0025




This problem setup has a linear update step with a nonlinear observation which has a multivariate

term. We have already shown the advantage of higher order sets in correctly estimating the moments after

transforms but ultimately we are concerned with filter state estimation performance, not their theoretic

correctness. To this end, we can examine the different filters median and 75% performance on this problem

in Figure 5.5.2. Aligning with our intuition, because the observation function includes as multivariate

polynomial the O5f set performs better than the other 1D sets. Ultimately it still makes an incorrect

Gaussian assumption which is why a perfectly linearized model still out performs it. The UKF (Simp)

filter diverges to failure in some runs causing its exclusion from the graph.

For Rayleigh fading the sign of the channel factor x1 should be stripped as negative channel responses
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Figure 5.5.3: Fading Example (with abs) Median and 75% x0 Error Plots

don’t have physical meaning in the classical model.

h (x, v) =


|x1| x0 + v0

|x2| x0 + v1

|x3| x0 + v2


This new observation function is no longer a simple polynomial so it is no longer easy to predict the

effectiveness of the different σ-point sets but the error plots in Figure 5.5.3 tell a very similar story, with

the main difference being that the perfectly linearized KF performs markedly worse.
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5.5.3 Angle Tracking Example

Another example originates from tracking angles. Consider tracking an angel, θ, through the pair of

trigonometric functions cos (θ) , sin (θ).

x =


cos (θ [k])

sin (θ [k])

θ̇ [k]

 =


x0

x1

x2



x [k + 1] =


cos

(
θ [k] + ∆tθ̇

)
sin
(
θ [k] + ∆tθ̇

)
θ̇ [k] + w [k]



=


cos(θ [k]) cos

(
∆tθ̇ [k]

)
− sin (θ [k]) sin

(
∆tθ̇ [k]

)
cos (θ [k]) sin

(
∆tθ̇
)
+ sin (θ) cos

(
∆tθ̇
)

θ̇ [k] + w [k]

 =


x0 cos (∆tx2)− x1 sin (∆tx2)

x0 sin (∆tx2) + x1 sin (∆tx2)

x2


This setup is a bit contrived for a single angle but when tracking a multidimensional rotation some-

thing like this becomes necessary. The system is observed by a simple linear observation on the x1 state,

sin (θ), and has the following initial conditions.

x [0] ∼ N




1.0

0.0

0.0

 ,


0.0 0.0 0.0

0.0 0.3 0.0

0.0 0.0 0.3




w ∼ N (0, 0.16)

y [k] =
[
0 1 0

]
x [k] + v [k]

v ∼ N (0, 0.25)

Although this problem is set up like a rotation tracking problem we will, at first, be tacking it based

purely on the nonlinear setup shown, i.e. we do not require that the states x0 and x1 maintain the trigono-

metric identity cos2 (θ) + sin2 (θ) = 1. The performance of the different σ-point sets is shown in Figure

5.5.4, showing 3 plots with the 50% 75% and 90% errors. We can see there is an improvement in 75% and

90% performance for the O5f set but otherwise all the σ-point sets perform similarly.

Additionally we can construct the transform which takes into account a normalization step, in order

to maintain the trigonometric identity. The propagation function becomes,
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Figure 5.5.4: Filter Performance on Example Related to Rotation Tracking
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Figure 5.5.5: Filter Performance on Example Related to Rotation Tracking

x [k + 1] =


x0 cos(∆tx2)−x1 sin(∆tx2)√

x2
0+x2

1
x0 sin(∆tx2)+x1 sin(∆tx2)√

x2
0+x2

1

x2

 .

The results for this setup can be seen in Figure 5.5.5, where we can see that the most of the sets are

struggling to out perform the simple EKF’s linear model. This is counterintuitive given that we have

constructed this method with the intent of improving performance in nonlinear cases. This is an effect

that we will be looking into in the next section.
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Chapter 6

Sigma Point / Unscented Smoothing

“...it is easy not to believe in monsters, considerably more difficult to escape their dread and loathsome
clutches.”

- Stanisław Lem, The Cyberiad

As well as σ-point methods perform with respect to estimating the densities that result from a Gaussian

process passing through a polynomial transforms, not all problems are as simple. In this chapter we will

be exploring problems which, although they seem simple, will challenge the UKF. We will then explore

the cause of the problems and some ways of adapting the Unscented/σ-point transforms to improve

outcomes.

6.1 Sigma Point Scaling

6.1.1 Wrapped Measurement Model

Let us start by reexamining the weather-vane problem from Chapter 3 where we have an object oscil-

lating back to a forced, randomly moving equilibrium. We introduce one key difference in the observation

function. Instead of the simply measuring the rotation of the weather-vane we will only observe the angle

it makes relative to zero. This subtle difference makes all values z + 2π result in the same observation.

The system is described in Equation 6.1.1, where the propagation step is linear and the observation func-

tion ho is the re-centering of the measurement function, h, about the measurement, z. The re-centering

pushes the discontinuities as far away from the measurement as possible.
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x =

θ

θ̇


∼ N

0

0

 ,

(2π)2 0

0
(

π
2

)2


F =

 0.809 0.0935

−3.69 0.808


L =

0.191

3.69


Q =

[
0.0001

]
h (x, v) = (θ + v mod 2π)− π

ho (x, v, z) = (θ + v− z mod 2π)− π + z

R =
[(

π
4

)2
]

(6.1.1)

We can examine an instance of this problem with ten steps of propagation and a measurement. Just as

in Chapter 4 we include a perfectly linearized filter as a baseline. We can see the results of the EKF and

various UKFs in Figure 6.1.1, noting that the EKF achieves an identical result to the perfectly linearized

KF, an indication that it is performing nearly optimally, and the UKFs do not, which is not a good sign.

To explore why the UKF filters seem to be having trouble we only need to look at the first measurement

made. Shown in Figure 6.1.2 is a view into the mechanics of the different filters. The observed value

ho (θ, v0, z0) is plotted against the true state value θ. The measurement is shown as a purple dot, at θ =

−1.77 and measured value z = 0.93, and acts as the center of the modular calculation of the observation

function. Given our estimate of the state and measurement noise we generate many random samples

and observe them all through h0 to estimate the transform’s ensemble statistics. These points are shown

in gray and their ensemble mean is a gray ’x’ and covariance is shown as a dark gray ellipse. From

these, random samples, we can see that both the assumption of normality is breached and the actual

measurement is not expected to correlate well with the actual value of θ. The EKF, which linearizes about

the assumption that both θ and v are zero, on the other hand predicts a very strong correlation, indicated

in the tighter red ellipse. We have been extremely lucky1 and this assumed covariance is correct allowing

1I have chosen the random seed maliciously to create the effect. There is no way for the actual filter to know that the mea-
surement was in this particular alias cell, the true state θ could have just as easily have been 1.77 + 2π and the EKF’s correction
would have been in the completely wrong direction. In other cases, as we shall see later, this sort of thing can cause to the EKF
to work very well sometimes and poorly at others.
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Figure 6.1.1: Filter Comparison on Periodic Measurements
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the EKF to extract the maximum amount of information from the measurement as possible. For each of

the UKFs we can see the various evaluated σ-points and the resulting mean and covariance. For these

filters the wrapping causes somewhat less apt estimates.

There are two things happening which cause the UKF to appear, in this case, to be performing poorly.

The first is that the nonlinearity introduced by the discontinuities is not well approximated by a poly-

nomial of small enough order for any of the σ-points sets to accurately model. We can see this in the

difference between the mean and covariance estimates from the ensemble and the σ-point estimates. The

second issue is that the actual covariance between the measurement and state value is very small, as can

be seen in the ensemble covariance. The EKF on the other hand is predicting a strong covariance and

seems to be do, paradoxically, very well. The EKF’s assumption, that there is no wrapping function, leads

to near perfect results when the truth value is within the same aliasing cell, but disastrous when it is not.

This is the inherent trouble with this problem, at its core there is no linear update which will correctly

take into account both the probable 1 to 1 correlation of the measurement, when it lies within the same

wrapping cell, and the possible reverse if it does not.

To examine each filter’s statistical performance in this scenario we can examine their errors in estimat-

ing the θ state across 200 different runs, as shown in Figure 6.1.3 where both the 50th and 75th quantile

are plotted. For most cases we might expect that the wrapping discontinuity will not come into effect,

which is shown in the 50th Quantile plot, where the EKF does very well. Even on the 75 Quantile plot the

EKF seems to be doing the best of the non perfect filters. The Ensemble filter, because it is always taking

into account the possibility that the state is in one of the wrapped cells seems to be paralyzed by this for

the majority of cases, making almost no corrections based on the measurements, a strategy which does

not seem to be paying off until we look at the 90th Quantile plot in Figure 6.1.4. The σ-point filters land

somewhere in the middle of the two extremes, trading off some of the 90% robustness of the Ensemble

for improved performance in the majority of scenarios. in many applications we can accept the potential

for error as long as the filter performs well most of the time. The next question is whether we can adapt

the σ-point method to perform more like the EKF when that is desired.
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Figure 6.1.2: Periodic Measurement with Filters’ Estimated Mean and Covariance
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Figure 6.1.3: 50th and 75th Quantile Plots of State Errors for Wrapping Example

Figure 6.1.4: 90th Quantile Plot of State Error for Wrapping Example
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Figure 6.1.5: Performance of Filters with Negative Weights

Negative Weights

Before we move on we need to address the results from the O5f set. The performance in the face of

wrapping for σ-point methods is dramatically worse for this set as shown in the 50 and 75 percentile

plots of Figure 6.1.5. Examining a similar multivariate moment set, O4f, which was generated using a

slightly different strategy, we can see that this not an issue introduced by the inclusion the E1122 moment.

One of the major differences between these two sets, O5f and O4f, is the inclusion of non zero σ-points

with negative weights. At 3 dimensions the O4f set, and in fact all the other sets, have only used a

negative weight for the 0 point, O5f, on the other hand, has many points from the canceling mirror set[
−d−1/2 −d−1/2

1 −1

]
. The fact that the O4f set does not have any negative nonzero σ-points only holds for

relatively small dimension sizes, d < 5, at dimension 5 it starts to require a nonzero point with negative

weight and when using an O4f designed for a 5D space we can see the inferior performance return.

The problem, as we have alluded to, appears to be related to the nonzero negatively weighted σ-points.

The σ-points after mapping are shown in Figure 6.1.6 where we have differentiated those with a negative

weight with a star marker. The covariance ellipses associated with the σ-point estimates have been re-

moved because for some of the sets they do not exist. The problem of σ-point estimation when wrapping

is present is magnified because when a point we would expect to be in the top right gets wrapped to the

bottom left instead of pulling the average down, as it would with a positive weight it instead pushes it

up. This gives us means outside the region supported and leads to nonphysical means and covariances.

When we use negatively weighted points we are relying on symmetry to balance them with the positive

ones. The 0 vector causes us less issue because it is balanced by all the positive points and is centrally
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located making it less likely to be skewed.

The accuracy of σ-point methods in estimating nonlinear transforms is theoretically sound only for

appropriately low order polynomials, as we saw in the last chapter. For higher order polynomials the in-

correct higher order moments will cause errors in the approximation. This way of thinking about σ-point

failure does not lead to any intuition about the how they fail. I suggest we examine how negative weights

lead to two unintuitive results to form some intuition. The two results of negative weights is the non-

convex averaging of points to a mean and the non positive-definiteness of the covariance matrix. First

we can examine the non-convexity of the mean. If all the weights are positive then the mean is a convex

combination of all the sampled σ-points and lies somewhere in their convex hull. Conversely when we

introduce a negative weight this no longer remains the case, i.e. the ’mean’ of the σ-points can lie some-

where outside their convex hull. As a consequence of this consider a 1 dimensional observation function

which maps all the σ-points into the range of values [−1, 1]. With positive weights we know the esti-

mated mean will be somewhere in this range. With negative weights, however, the estimated mean could

be outside this range, 3 for example, which seems counterintuitive. The negative weights arose as part of

the flexible σ-point construction method we introduced in the last chapter. Consider the O3 sets estima-

tion of the function f (x) = x2
0 − 1 for a standard Gaussian x ∼ N (0, I). If the dimension of x is d = 1,

then we have two points

[
±1
0
...

]
which both map to 0 giving us a mean of 0 which is both intuitive and

correct. Now instead allow the dimension of the state space to grow d > 1 creating a multitude of points

of the form


...
0
±1
0
...

, all with the same weight as the original two and all of which map to −1. These new

points pull the average down to some negative value so we need to introduce the negatively weighted 0

point, which also maps to −1, to push the average back up to the correct mean value, 0. The example is

much more complicated for the sets constructed to have correct mixed moments but the result is the same,

that negative weights are needed to cancel out the multitude of points from other dimensions which are

effectively 0 for functions on some subset of the state vector. The other aspect of this problem is the in-

troduction of non positive-definite components to the covariance matrix. All of the components of the

covariance matrix are outer products of the mean subtracted mapped σ-points which with only positive

weights guarantees the covariance to be positive-definite. Negative weights introduce negatively-definite

components leading to the possibility of non positive-definite covariance estimate. So negative weights

are a requirement of the construction methods we have discussed and act as cancellation factors but in

non low order polynomial functions they may not properly cancel the terms they were meant to and in-

stead lead to nonphysical estimates. As an alternative construction technique consider some large set of
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Figure 6.1.6: Periodic Measurement with Filters’ Estimated Mean and Covariance
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ensemble points all with equal weights. Let these be approximately σ-points which have positive weights

and approximate higher order moments dependent on the number of points used. A set of points like this

is designed for nothing in particular, which gives it the robustness we expect from the Ensemble method,

it does, however, require many more points than the σ-point sets we have been discussing for problems

which the σ-points are designed to solve.
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Figure 6.1.7: Quantile Error Plot for σ = 0.5

6.1.2 Statistical Regions of Approximation and Scaling

As we have seen in the previous section the EKF’s linearizion assumption can produce a very good

result in problems when the majority of cases lie in the region around the linearization point where the

assumption is approximately correct. Let us now consider a case where the statistical distribution of x

influences what order of polynomial is needed to well approximate the majority of the distribution.

Consider the single state estimation problem with a single observation.

x ∼ N
(
0, σ2)

h (x, v) =
4

∑
k=1

(
− x

k

)k
+ v

v ∼ N (0, 0.001)

Although the observation function is a high dimensional polynomial, it is by construction well ap-

proximated by lower dimensional polynomials within regions about zero. For example within the bound

|x| < 0.575 the observation function will be well approximated by a linear function. This is the 75%

bound for the state distributed with σ = 0.5 allowing even the EKF to perform well under this scenario.

This can be seen in Figure 6.1.7, where we show the distribution of the estimate errors in 5 quartiles

0.1, 0.25, 0.5, 0.75, 0.9 (a line between the first two, dot for 50th, and a second line between the last two) the

NOTHING case refers to the error in state estimate without performing any observation, doing nothing.

If we increase the standard deviation to σ = 2, the linear model starts to struggle to approximate the

function h for the vast majority of the distribution (90% and below). These errors are shown in Figure 6.1.8

where we can start to see the difference between the σ-point methods and the EKF. The EKF’s linearization

strategy is still working better for the more than 50% of the time compared to the σ-point sets, who’s

performance is not superior until we get to about the 75% level and above.

As we move to larger variances, σ = 8, the nonlinearities start becoming more evident even for the
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Figure 6.1.8: Quantile Error Plot for σ = 2

Figure 6.1.9: Quantile Error Plot for σ = 8

lower quantiles of data as can be seen in Figure 6.1.9. We can see at this point the EKF is doing worse than

the no estimator case for the majority of cases but for the 10th and 25th quartiles it is still doing better

than the UKFs (other that the Simp/O3 set) which are only outperforming the EKF at the higher quan-

tiles. The complete failure of the UKF using the Simp/O3 points is important because even though it is,

arguably, a better estimator (by taking into account up to 3rd order moments) neither the EKF or UKF O3

is capable of correctly estimating the function. But by only considering an infinitely small interval about

the expectation, however, the EKF still succeeds for some of the cases whereas the UKF with Simp/O3

set, in its attempt to model a much larger interval of data, simply ends up doing everything poorly.

Clearly in some scenarios it might be better to have a filter which replicates the EKF’s local emphasis,

either because we want to improve the performance in the lower quartiles at the expense of the higher

ones or to accept our inability to model the function for the vast majority of the distribution but still

succeed for some of them. In [4] the authors suggest introducing a scaling parameter α to the nonlinear

function f to reduce the impact of higher order terms which have gone un-modeled, shown in Equation

6.1.2. For our purposes we would like this parameter to gracefully adapt the UKF between a behavior

similar to an Ensemble filter to one of an EKF. In Figure 6.1.10 we can see the quantile performance plot

for a UKF as we vary α from 0.1, where performance would be expected to be more like a EKF, to 1, where

we expect Ensemble like performance.
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Figure 6.1.10: Quantile Error Plot for σ = 8 as α Scaling Factor (Indicated in parenthetic values on vertical
axis)

f (x) ∼ f (α (x− x̄) + x̄)− f (x̄)
α2 + f (x̄) (6.1.2)

Scaling Method

This scaling method does not produce the response we are looking for so I suggest a different one.

First let us consider fitting the UKF estimation technique to what we might expect from a linear model.

In a linear model we expect that a normal random variable, x, is transformed as follows.

x ∼ N (x̄, Pxx)

w ∼ N (0, Pww)

y = Fx + Lw + u

y ∼ N
(
ȳ, Pyy

)
ȳ = Fx̄ + u

Pyy = FPxxFT + LPwwLT

Pxy = PxxFT

Pwy = PwwLT

Using a UKF we estimate the same final parameters, ȳ, Pyy, Pxy, Pwy, but without the linear matrices

F, L. Consider going back and solving for F, L from our covariance matrices.
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F̃ =
(

P−1
xx Pxy

)T

L̃ =
(

P−1
wwPwy

)T

Covariance matrices are positive definite so the matrix inverses will exist and be well defined. The only

problem with these estimates is that there is no reason to believe that if we reconstructed P̃yy from them it

would match the original UKF estimate, Pyy. We know Pyy is symmetric by construction so the difference

Pyy − P̃yy is also symmetric. I suggest we interpret this matrix as a third noise vector’s contribution to

the transformation, n ∼ N (0, Pnn), which represents the nonlinear noise as estimated by the the UKF. It

should be noted that although Pnn is symmetric it is not necessarily positive definite. This gives us the

relationship between the two given in Equation 6.1.3.

F̃ =
(

P−1
xx Pxy

)T

L̃ =
(

P−1
wwPwy

)T

Pnn = Pyy −
(

F̃Pxx F̃T + L̃Pww L̃T
)

u = ȳ− F̃x̄

y = F̃x + L̃w + u + n

(6.1.3)

I should point out that this is simply an interpretation of the UKF’s estimates and has not changed

any of the actual computations. This does, however, allow us to build a model of the function using a

“σ-point” method and then apply that model to a different random variable. Just as we can linearize a

function about a different point than the expected one we can now “σ-point” a function about a different

random variable than the one we started with. For example we can now scale the input covariance of

the UKF by some parameter α, so Ṕxx = α2Pxx, use this new covariance to estimate F̃, L̃, Pnn and then use

these to estimate how this function would interact with the original, unscaled, random variable.
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S
(

f , N
(
x̄, α2Pxx

)
, N
(
0, α2Pww

))
→
(

´̄y, Ṕyy, Ṕxy, ´Pwy
)

F̃ =
((

α2Pxx
)−1

Ṕxy

)T

L̃ =
((

α2Pww
)−1

Ṕwy

)T

Pnn =
1
α2 Ṕyy −

(
F̃Pxx F̃T + L̃Pww L̃T

)
or

Pnn = Ṕyy − α2 (F̃Pxx F̃T + L̃Pww L̃T
)

u = ´̄y− F̃x̄

ȳ = F̃x + u

Pyy = F̃Pxx F̃T + L̃Pww L̃T + Pnn

Pxy = Pxx F̃T

Pwy = Pww L̃T

Using this method for scaling σ-points we get the desired transition between Ensemble and EKF like

results as shown in Figure 6.1.11, where we can even see some improvements over the EKF for the value

α = 0.1. Additionally the scaling has allowed the Simp/O3 set to succeed for quartiles that it can model

successfully which can be seen in Figure 6.1.12. Depending on what you are trying to accomplish you

may want to use either of the two forms for Pnn, the first attempts to scale Pnn up for the entire interval

and might be a good idea if you are trying to avoid some property of the nonlinear function but still want

to model the entire interval. The second attempts to only model the scaled random variables and might

be better if you are looking for purely improve lower quartile performance. Both methods approach a

simple linearization assumption in the limit of small α for any function where a derivative exists and in

this example both are very similar.
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Figure 6.1.11: Quantile Error Plot for σ = 8 as alternative α varies for O5 set

Figure 6.1.12: Quantile Error Plot for σ = 8 as alternative α varies for O3/Simp set
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Sigma Point Set Largest Point Distance % of Distribution closer to 0
UKF Simp 1.73 91%

UKF O3 1.00 68%
UKF O5 1.73 91%
UKF O7 2.33 98%
UKF O9 2.86 99.6%

Table 6.1: Sigma Point Sets’ Sampling Distance

6.1.3 Wrapping Example with Scaling

We can now go back and reexamine the Wrapping Example of the first section, where we can mimic

and even out perform the EKF by decreasing the distance between the σ-points by applying our scaling

factor α. Because we are trying to avoid interaction with the discontinuity when it is unlikely I suggest we

examine the sampling distances of the different sets. Shown in Table 6.1 is each σ-point method’s largest

sample point’s distance from the mean and the equivalent confidence interval of the input distribution, x,

they encompass. In order to improve performance in the majority of cases we could scale these points back

so they will not sample farther away than 50%, or 0.67 in standard deviations, so they do not interact, and

therefore model, any parts of the function which are outside this region, the wrapping discontinuity in

this example. We can see the results of applying this scaling in Figures 6.1.13 and 6.1.14. The improvement

of performance over the EKF can be explained by an inbuilt data editing of this new method. When the

measurement and expected value, agree the σ-point methods do not interact with the discontinuity and

make EKF like corrections. When the measurement and expected value disagree, however, the σ-points

begin to interact with the discontinuity and the filter makes less confident corrections as is appropriate

because interaction with the wrapping discontinuity is more likely. Notice the improvement in the 50%

and 75% error plots for the σ-point methods as compared to their previous, unscaled versions, which has

come at the cost of 90% performance.

6.2 Smoothing Equations

The earlier re-interpreting of the σ-point estimates from Equation 6.1.3 also allow us to use a com-

pletely different random variable to perform a σ-point method estimate than the one that we are actually

propagating in the UKF. This is similar to when we linearize a function about a different point than

the mean of the random variable we are propagating, which allowed us to create an iterate, using the

smoothed solution, on the EKF. Just as we have done with the EKF we can now use smoothed estimates
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Figure 6.1.13: 50th and 75th Quantile Plots of State Errors for Wrapping Example with Scaling

Figure 6.1.14: 90th Quantile Plot of State Error for Wrapping Example with Scaling
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Figure 6.2.1: Quantile Error Plot for σ = 8 of Iterated EKF

of past random variables to re-”σ-point” past transforms. We can demonstrate this idea on the previous

nonlinear observation example, h (x, v) = ∑4
k=1
(
− x

k

)k
+ v. This function is smooth and with little uncer-

tainty in v we should expect very little error in the estimate of x (if v = 0 there would be no uncertainty in

x given the measurement as compared to the wrapping example where, due to the wrapping, there would

still be ambiguity). The problem is difficult because the filters we are working with, at the core, make a

linear assumption of some kind to solve it. When making linear assumptions in nonlinear problems we

expect errors but by introducing an iterate, using the post correction estimates of the random variable x to

re-estimate the transform, we can expect these errors to reduce and the eventually obtain convergence of

estimates. This is straight forward for the EKF, where we form a new estimate of the transform, H{k}, y{k},

based on linearizing about the new estimate of random variable x{k} = x̄ + K{k−1}
(
y{k−1} − H{k−1} x̄

)
.

This process forms the Iterative Smoothed previously discussed and the improvement as a function of

iteration is shown in Figure 6.2.1.

To form the iterate for the UKF filters we introduce the following form, which is simplified to take into

account the linear nature of the introduced noise term, the AGWN v.
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Figure 6.2.2: Quantile Error Plot for σ = 8 of Iterated UKF

x{0} = x̄ = 0

P{0} = P = σ2

S
(
h(x, 0), N

(
x{i}, P{i}

))
→
(

ý{i}, Ṕyy{i}, Ṕxy{i}

)
H̃k{i} =

(
P−1
{i} Ṕx,y

)T

Pnn{i} = Ṕyy{i} −
(

H̃{i}P{i}H̃
T
{i}

)
K{i} = PH̃T

{i}

(
H̃{i}PH̃T

{i} + R + Pvv{i}

)−1

x{i+1} = x + K
(
y−

(
ý{i} + H̃{i}

(
x− x{i}

)))
P{i+1} =

(
I − K{i}H̃

T
{i}

)
P
(

I − K{i}H̃
T
{i}

)T
+ K{i}

(
R + Pvv{i}

)
KT
{i}

This allows the UKF to have the an iterative performance improvement similar to what was achieved

with the EKF, as shown in Figure 6.2.2 where its 90% performance is much better the iterated EKF. Addi-

tionally by iterating the scaled UKF we have a filter which has superior performance in all quantiles and

faster convergence than the EKF as shown in Figure 6.2.3.

6.2.1 The Iterative UKF Smoother

We defined the σ-point propagation of random variables, N (x̄, P) , N (w̄, Q) through a function y =

f (x, w) as S ( f , N (x̄, P) , N (w̄, Q))→
(
ȳ, Py,y, Px,y, Pw,y

)
according to Equation 5.1.22. We here define the

scaled σ-point function estimator P (α, f , N (x, P) , N (w, Q))→ (u, F, L, U ) in Equation

2The necessary abstraction here is that although f is a function of two variables x, w it can be thought of as a function of a

single random variable x́ = [ x
w ] ∼ N

(
[ x̄

w̄ ] ,
[

P 0
0 Q

])
, with Px,y, Pw,y being submatricies of Px́,y.
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Figure 6.2.3: Quantile Error Plot for σ = 8 of Iterated UKF with Scaling

S
(

f , N
(

x, α2P
)

, N
(
w, α2Q

))
→
(
y, Py,y, Px,y, Pw,y

)
F =

((
α2P

)−1
Px,y

)T

L =
((

α2Q
)−1

Pw,y

)T

u = y− Fx− Lw

N =
1
α2 Py,y − (FPFT + LQLT)

or

N = Py,y − α2 (FPFT + LQLT)

P ( f , N (x, P) , N (w, Q))→ (u, F, L, N )

Although we have formulated this with the notation from the propagation it works equally well for

observation P (h, N (x, P) , N (v, R)) → (z, H, J, V ). We can now simply substitute the σ-point function

estimator in for the linearization process in the EKF to form the UKF. The propagation step becomes,

P
(

fk, N
(
xk|k, Pk|k

)
, N (0, Qk)

)
→ (uk, Fk, Lk, Wk)

xk+1|k = Fkxk|k + Lkwk + uk

Pk+1|k = FkPk|kFT
k + LkQkLT

k +Wk

and update step,
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P
(

hk, N
(

xk|k−1, Pk|k−1

)
, N (0, Rk)

)
→ (nk, Hk, Jk, Vk1)

Zk =
(

HkPk|k−1HT
k + JkRk JT

k + Vk

)
Kk = Pk|k−1HT

k Z −1
k

xk|k = xk|k + Kk

(
yk −

(
nk + Hkxk|k−1

))
Pk|k = (I − Kk Hk) Pk|k−1.

To form an iterative smoother based on this process we only need to substitute in our smoothed ver-

sions of variables. This makes the propagation step,

P
(

fk, N
(

xk|η{i}, Pk|η{i}

)
, N
(

wk|η{i}, Qk|η{i}

))
→
(
uk{i}, Fk{i}, Lk{i}, Wk{i}

)
xk+1|k{i} = Fk{i}xk|k{i} + Lk{i}wk + uk{i}

Pk+1|k{i} = Fk{i}Pk|k{i}F
T
k{i} + Lk{i}QkLT

k{i} +Wk{i}

and the update step,

P
(

hk, N
(

xk|η{i}, Pk|η{i}

)
, N
(

vk|η{i}, Rk|η{i}

))
→
(

nk{i}, Hk{i}, Jk{i}, Vk{i}
)

Zk{i} =
(

Hk{i}Pk|k−1{i}HT
k{i} + Jk{i}Rk{i} JT

k{i} + Vk{i}
)

Kk{i} = Pk|k−1{i}HT
k Z −1

k

xk|k{i} = xk|k{i} + Kk{i}
(

yk −
(

nk{i} + Hk{i}xk|k{i}

))
Pk|k{i} =

(
I − Kk{i}Hk{i}

)
Pk|k−1.

We have already seen equations which provide reverse iterates for the various state and noise vec-

tors. To find the related covariances we simply infer the covariance from the linear transform nature of

Gaussian random variables. In the Iterative UKF Smoother we can use the original, un-smoothed, vari-

ables for any of the components to avoid the complexity of solving for their smoothed equivalents. This

simplification may not drastically change the performance of the filter, as discussed in Chapter 4 where

smoothed versions of the propagation noise did little to improve the EKF’s IS results, allowing us to use

the original N (0, Qk) instead of N
(

wk|η{i}, Qk|η{i}

)
. In cases where the noise is additive, and therefore

there is no nonlinear factor to be re-estimated, as is the case in the observation noise, there is no benefit to

solving for the smoothed versions. The state reverse equation with covariance becomes,

Sk−1 = Pk−1|k−1{i}F
T
k{i}P

−1
k|k−1{i}

xk−1|η{i} = xk−1|k−1{i} + Sk−1

(
xk|η{i} − xk|k−1{i}

)
Pk−1|η{i} = Pk−1|k−1{i} + Sk−1

(
Pk|η{i} − Pk|k−1{i}

)
ST

k−1

the propagation noise,
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Tk = QkLT
k{i}P

−1
k|k−1{i}

wk|η{i} = QkLT
k{i}P

−1
k|k−1{i}

(
xk|η{i} − xk|k−1{i}

)
Qk|η{i} = Qk + Tk

(
Pk|η{i} − Pk|k−1{i}

)
TT

k

and observation noise,

Dk = Rk JT
k{i}

(
Jk{i}Rk JT

k{i} + Vk{i}

)−1

vk|η{i} = Dk

(
yk −

(
nk{i} + Hk{i}xk|η{i}

))
Rk|η{i} =

(
I − Dk Jk{i}

)
Rk
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Chapter 7

Sigma Point/UKF Application to the Blind

Tricyclist Problem

Now Jurgen recognized the feeling perfectly. He had often had it in his sleep, in dreams wherein he
would bend his legs at the knees so that his feet came up behind him, and he would pass through the air
without any effort. Then it seemed ridiculously simple, and he would wonder why he never thought of it
before. And then he would reflect: "This is an excellent way of getting around. I will come to breakfast
this way in the morning, and show Lisa how simple it is. How it will astonish her, to be sure, and how
clever she will think me!" And then Jurgen would wake up, and find that somehow he had forgotten the
trick of it.

- James Branch Cabell, Jurgen

With the theory developed in the previous two chapters we now have a suitable alternative to the the EKF

for attempting to solve the Blind Tricyclist Problem with improved performance. If we simply apply a

UKF with a standard set of σ-points, without taking into account the additional developments introduced

in Chapter 6, we do not see the dramatic improvement expected as shown in Figure 7.0.1. As evident from

this figure the simple application of the UKF does not yield performance even as good as the EKF in many

scenarios. This is proven out in the analysis of error statistics, shown in Figure 7.0.2. As we can see in

these figures, the performance is inferior to the EKF of Chapter 4, so we will need to start examining the

problem using the advanced techniques we have developed.

7.1 Scaling in the Blind Tricyclist Problem

The observation function in the Blind Tricyclist Problem, because of the inclusion of the arctangent

function, has a wrapping property similar to the one we have already examined. This along with other
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Figure 7.0.1: UKF with O5 Example Tracks (Truth in black, UKF in dark green, Smoothed UKF green
dashed)
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Figure 7.0.2: UKF O5 Error Compare

factors in the problem will require us to apply the scaling method discussed in Chapter 6 to improve

performance. The appropriate scaling parameter, however, is somewhat problem specific as we have

seen so we will need to tune it. So that we do not over specialize our filter to this specific dataset, we will

determine the scaling parameter by examining its impact on similar, simpler, scenarios. We will examine

simple scenarios with 3 different starting points with 2 different movement sets. The six scenarios to

be considered are shown in Figure 7.1.1. I have constructed the scenarios to represent movements and

positions we might expect from the tricyclist to allow us to find a tuning which takes into account the

specifics of the problem. Each of these scenarios includes only 10 time increments and the measurement

sequence has been sped up to one measurement every other step,
[
− 1 − 2

]
, from one every 3 in the

original scenario.

On each of these scenarios we can compare the end state position error of the different σ-point sets

with a course sampling of scaling parameters. The results are shown in Figures 7.1.2, 7.1.3, 7.1.4, 7.1.5,

7.1.6, 7.1.7. Each of these scenarios behaves differently under each of the σ-point sets and scaling param-

eters and when comparing them to chose a σ-point set we are fortunate that there is no set which works

markedly better in some but worse in others. When comparing the sets I would suggest avoiding those

that require smaller scaling factors, their EKF behavior is something we are trying to avoid, which elim-

inates O5f1. Additionally I suggest we avoid sets which appear sensitive to the scaling parameter as we

1Doubly so because the arctangent wrapping problem is especially bad with this set
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Figure 7.1.1: Simple Scenarios for Parameter Tuning
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Figure 7.1.2: End State Error for Scenario 1 (Point 1 Straight Movement)

Figure 7.1.3: End State Error for Scenario 2 (Point 1 Curved Movement)

will not be able to find a robust method necessarily applicable to more general conditions that might arise

in the full problem. With this in mind, I suggest we work with the O7 set as it performs the best in most

scenarios and close to best in the rest.

Now that we have a candidate set we can take a closer look at the scaling parameter. We have increased

the resolution for Scenario 1 and 5 and shown the results in Figures 7.1.8 and 7.1.9 respectively. These

scenarios both have different responses to the scaling parameter, α, the first improving with larger α and

the second with smaller. They, visually, have a cross over point in performance at α = 0.4 so this, O7 with

a scaling factor of 0.4, is the set I would recommend.
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Figure 7.1.4: End State Error for Scenario 3 (Point 2 Straight Movement)

Figure 7.1.5: End State Error for Scenario 4 (Point 2 Curved Movement)
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Figure 7.1.6: End State Error for Scenario 5 (Point 3 Straight Movement)

Figure 7.1.7: End State Error for Scenario 6 (Point 3 Curved Movement)

Figure 7.1.8: End State Error for Scenario 1 (Point 1 Straight Movement)
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Figure 7.1.9: End State Error for Scenario 5 (Point 3 Straight Movement)
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7.2 New Results in the Blind Tricyclist Problem

Now that we have picked a σ-point set and scaling factor we can start to analyze its performance on

the original Blind Tricyclist scenario. In Figure 7.2.1 we have shown a couple of example runs for this

filter. The error statistics for the filter are shown in Figure 7.2.2 where it can be seen to be performing

better than any of the previous filters.

We can apply the smoothing operation described in the previous chapter to this problem in an attempt

to improve performance. As described in Chapter 4 there is not much point to using new information on

the propagation noise, w, because there is not much information to be gained. Additionally because there

is no nonlinear effect from the observation noise, v, there is nothing to be gained by using smoothed

estimates for this variable. Using a UKF smoother with 20 passes gives us a dramatic improvement over

what we have seen before, as is shown in Figure 7.2.3.
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Figure 7.2.1: UKF with O7 (0.4 scaling) Example Tracks
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Figure 7.2.2: UKF O7 (0.4 Scaling) Error Compare

Figure 7.2.3: UKF O7 (0.4 Scaling) with Smoothing Error Compare
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Figure 7.3.1: Alternate Scenario EKF Example

7.3 Alternate Scenario

As a final examination of this problem we can create an alternate movement set. Shown in Figure 7.3.1

is the movement and EKF performance on this new data set. This scenario is similar to the first in length

but its movement should be different enough to strengthen the generality of the results produced.

Again in this example the EKF, even with an iterative smoother, fails to perform at the levels we might

expect, its statistical errors are shown in Figure 7.3.2. By applying the tuned UKF with smoothing we can

again achieve results similar to the perfectly linearized case, shown in Figure 7.3.2 in the majority of cases.

7.4 Conclusions on the Blind Tricyclist Problem

We have seen, through the examination of 2 different possible movements each under many differ-

ent observation scenarios, that between the EKF, which provides a common baseline for performance

in nonlinear problems like this, and a perfectly linearized KF, which gives us an approximate best case

performance, there is a lot of room for improvement. By utilizing the combination of smoothers, which
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Figure 7.3.2: EKF Error Statistics for Alternate Scenario

Figure 7.3.3: UKF Error Statistics for Alternate Scenario
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re-approximate the problem using complete solutions, and the UKF, which approximates the problem us-

ing statistically strategic sampling, we have found a method that improves performance in the majority

of cases. This method does require an element of problem specific tuning but we have shown that this is

possible to find by considering similar, simpler, cases.
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Chapter 8

Conclusions

Steel screams when it’s forged, it gasps when it’s quenched. It creaks when it goes under load. I think
even steel is scared, son.

- Walter M. Miller, Jr., A Canticle For Leibowitz

Just as the introduction chapter provides a synopsis of what each chapter would be tackling this chapter

will be exploring some of broader results of each chapter.

Chapter 2 The State/Dual Kalman Filter Represent and Chapter 3 Smoothing Solutions Both of these

chapters are about the Symplectic Kalman Filter so their results will be discussed together. The use of

the Symplectic form allows the construction of a smoother without the need to preserve and use the

covariance matrices from each time step, which is a new result of this work. Although its usefulness is

compromised by the numerical issues discussed, the methods contributed in this work can reduce the

computational complexity by potentially trimming the the number of matrix inversions necessary.

Chapter 4 Smoothed Solution Convergence in the Blind Tricyclist Problem This chapter reviews the

Blind Tricyclist Problem, which is presented as an example of a challenging nonlinear tracking problem.

When approaching a problem like this in practice there is often a performance goal, for example, to reach

below 1 m error by the end of the track. All estimators have a probability of failure but as we make the

performance goal tighter or introduce assumptions necessary for constructing simplified or computation-

ally frugal implementations the chance may increase dramatically. In this study, rather than introduce a

fixed performance target, I have described the error in quantiles. From these quantiles we can estimate

how certain filters would perform with different error targets. Beyond the limitations on performance dic-

tated by the noise itself the other main contributor to errors for the filters in this work is the linearization
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process itself. This process is suboptimal even when given correct linearization points but even worse

when given incorrect ones, resulting in increased error and, in turn, increased probability of failure. If

the performance requirement is easy enough, such as below 5 m of error 50% of the time, the simple EKF

may be enough to obtain the desired result. But assuming that we want to achieve a result closer to the

approximate performance bound of the perfectly linearized Kalman Filter, we will need to introduce var-

ious iterative smoothing techniques. One of the take aways from this chapter is that when considering

what variables (state, process noise, observation noise) to include in the linearization iterate we need to

consider both their potential impact and our ability to estimate them. In this example, and in most, we

have very little ability to estimate the process noise w, which coupled with its negligible impact on the

problem (as seen by comparing the performance of filters linearizing about its truth versus its expected

value), gives it very little value as a relinearization parameter1. The performance of the IS therefore is

primarily limited by false minima, which is evident in the performance of an IS initialized with the truth

value as its linearization points.

One of the things not discussed in this chapter is the notion of breaking the data into smaller intervals

to be processed rather than considering the entire batch as a whole. In the original work [10] as each new

data point is added the entire iterated smoothing process is performed for a smaller interval at the cost

of ~1000 times the computation time of the single EKF pass. This gives us the greatest chance of avoid-

ing being caught in a local minima, and is, I believe, the main contributor in the performance increase

demonstrated in the original reference, as opposed to the inclusion of process noise in the relinearization.

Within any given sub interval, all of the discussion of this work is relevant and considering results across

a range of interval sizes would introduce an entire new set of parameters and add a lot of clutter into an

already complicated chapter. For that reason, sub-interval smoothing was not explored in this work.

Chapter 5 Sigma Point/Unscented Methods Geometry There are a couple of things I feel need to be

pointed out. First, all the sets, other than the simplex set, are constructed using the given strategy but

are not necessarily the minimal set for the properties desired. Although I present a parameterization

for the σ-point’s space, it turns out to be incredibly difficult to actually search it. I had hoped, from all

the progress in the development of a new descriptive geometry, I would have found a more robust way

of generating point sets than the ones initially implemented. As an example of a partial result in this

direction; to meet 3rd order constraints for n variables it appears that you need 2n σ-points. Examining

their any 3rd order moment matrix A1 as defined in 5.3.2 on page 68 reveals a block form, A1 =
[ B C

CT D

]
,

1The observation noise on the other hand is something we can estimate but in this example, because it is simple Gaussian
noise introduced linearly, the non-linear extensions have no potential impact.
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where the upper diagonal block is the, known to be zero, matrix of 3rd order constraints, B ∈ R(n+1)×(n+1),

the lower diagonal block is set to zero D = 0 and C is left free. Diagonalizing A1 matrices of this form

generates sets of σ-points which have correct, 0, 3rd order moments and require one less point than the

O3 set, found in 5.4.2 on page 74 which meets the same constraints.

Additionally the 1D sets may not behave quite as expected because all the sets are generated for noise

statistics of the standard Gaussian, N (0, I), and are transformed into N (µ, P) via χ́ =
√

Pχ + µ, where
√

P is the matrix square root of P. The 1D sets do not initially contain cross moments, but it should be

clear that after mixing with
√

P it is likely that there is some cross state moments and some error in the

1D state moments. As an example of this consider the case where µ = 0 and P = I except that we pick

an orthogonal matrix P to be the
√

P. The points, after the affine transform, should still be valid σ-points

for the random variable N (0, I) and they have the same weights as the original set meaning its prototype

form is related by some orthogonal transform
[

1 0
0 R
]

causing its moments to be changed through the tensor

equation discussed in the simplex set derivation, Equation 5.4.1 on page 73. This partially explains the

lack of performance increase for the O5f set for problems in the Angle Tracking example. Thus, while we

have made significant advances to the theory of σ-points sets, with regard to both of minimal size and

higher order moment preserving properties, there is more work left to be done in future investigations.

Chapter 6 Sigma Point/Unscented Smoothing The most important take away from this chapter is that

all of the linearized Kalman Filters, EKF, UKF, and EnKF, represent different points on the spectrum

between correction strength (very accurate results sometimes) and robustness (less accurate results most

of the time). On the two extremes there is the the EKF, which represents a very aggressive strategy, trying

to extract the most information in a local sense, and the Ensemble KF, which is more passive, working

on the entire statistical region. Neither of these are strictly better, they are simply different strategies, it’s

possible that a EKF approach is more appropriate for a given problem if an occasional good result is more

valuable than consistently mediocre ones. The contribution of the new scaling method gives us a fine

control between these two extremes, and would be applicable to the ensemble method.

The other major contribution is the Iterative UKF. This iterate is powerful because although the UKF

starts by making corrections taking into account the necessary amount of nonlinearity for the original,

pre-smoothing, random variables, both state and appropriate noise, as the estimate of these variables

improves, through observations, the filter re-estimates the amount of nonlinearity noise using the post-

smoothing covariances, resulting in less nonlinear noise.

Consider the following 1D example with no propagation but one observation. The state and observa-

tion noise are Gaussian random variables, x ∼ N (0, 0.49) , v ∼ N (0, 0.0025), and the observation function
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is given by 1/2
(

x3 + 3/2x2 − 1/4x− 1/8
)
+ v. First imagine a realization where the truth state and noise are

given by x = −1, v = 0.02, giving us an observed value of y = −0.92. When the UKF first estimates the

function h its σ-points extends into and includes the region x ≈ (−0.5, 2) where the observation func-

tion is highly nonlinear. Recognizing this the σ-point process initially estimates the nonlinear noise as

N (0, 0.38) with a covariance ellipse shown in Figure 8.0.1 in crimson centered on the crimson ’x’. The

correction, because of this large nonlinear noise, is relatively weak moving the mean and shrinking the

state’s variance very little. After this correction however we can re-estimate the transform, h, using this

update mean and covariance. This new estimate, shown in green, interacts with the nonlinear region less

and in turn estimates less nonlinear noise allowing the filter to use a stronger correction. As this pro-

cess continues the filter’s estimate of the state becomes more and more confident until, at iteration 5, it

estimates the nonlinear noise at N
(
0, 8.4× 10−6) allowing a practically linear observation giving us an

excellent final state estimate of x ∼ N (−1, 0.00032). This all was done without any new observations

and is similar to how an IS would iterate to the solution without the inclusion of the covariances. This

process, the Iterative UKF, differs vastly from the IS when we consider a different problem realization,

x = 1, v = 0.02 giving us an observed value of y = −0.17. The iterative process for this shown in Figure

8.0.2. This case, just as the first, initially estimates the transform, h, with a nonlinear noise of N (0, 0.38).

However, as it iterates it cannot avoid the strongly nonlinear region and so even by iteration 5 its estimate

of the state is poor and includes a lot of variance, x ∼ N (−0.094, 0.31); the transform still being estimated

as still having significant nonlinear noise component, N (0, 0.19). This demonstrates the method’s ability

to iterate to very confident solutions when possible and to maintain a strong level of uncertainty when it

is not. An Iterated EKF would have found one of the measurement’s crossing points with the function and

estimated its covariance with a linearization about that point, failing to maintain the covariance necessary

to include the other possibilities.

Chapter 7 Sigma Point/UKF Application to the Blind Tricyclist Problem The results of this chapter

speak for themselves for the most part, but I want to mention that I tried to construct the tuning as fairly

as possible, trying to mimic what I might have known going into the problem, before the tricyclist actually

pedaled the path. It seems likely that someone approaching the problem would have known about the

approximate area the tricyclist would be in and been able to pick out a couple of possible points within

that area. They also would have known the approximate speed of the tricyclist and its capability to turn.

The tuning goal process is intended to get the filter to work as well in the general type of scenario it will be

facing by considering the specifics of a given problem, the approximate region traversed by the tricyclist

and approximate speed in this example, without over specializing it, by considering only straight moving
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Figure 8.0.1: Iterative UKF Example Realization 1
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Figure 8.0.2: Iterative UKF Example Realization 2
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trajectories close to the merry-go-rounds. The inclusion of the alternative track is a demonstration that

this tuning works well on other, similar, scenarios.

Final Remarks This work has brought to light many of the inherent difficulties of solving nonlinear

problems with practical solutions based on the Kalman Filter. Its main contributions are in the area of

Unscented Kalman Filtering, where it has introduced an entire new way of thinking about the σ-points,

which make up the core of the filter, creating sets designed for p-order moments and expanding them to

nD; a new way of computing estimates which have a nature and properties between the UKF and the EKF

(the benefits of such a scaling are also demonstrated in this work); and by formulating an iterate for the

UKF which preserves its benefits. The results of these contributions is remarkable, significantly improv-

ing performance in a problem which has challenged other cutting edge methods. The new geometrically

derived way of representing and generating σ-points introduced here is certainly an area which requires

more examination; the geometries introduced are compelling if not difficult to work with. Also the scaling

method introduced requires an element of problem specific tuning which has only been naively consid-

ered in the past. This work introduces strategy and new ways to achieve a trade off between accuracy

and robustness with the parametric scaling. I consider this still preliminary and suggest tuning, and

automatic-tuning are rich areas for further research. These contributions expand the capability of UKF

methods to solve more challenging problems, opening up entirely new applications.
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Appendix A

Additional SP Lemma

Lemma. If a set of p σ-points for an n-dimensional system, {w, Y1, Y2, . . . , Yn}, has b negative weights then

p ≥ n + b + 1

Proof. To demonstrate this let us consider counting the number of positive entries of w, which will be easi-

est if we consider counting the number of positive eigenvalues of the diagonal matrix constructed from the

entries of w, Dw. Keeping in mind that the transformation BDwBT maintains the sign of the eigenvalues of

original matrix A we construct a basis including {w, Y1, Y2, . . . , Yn}, B =
[
w, Y1, Y2, . . . , Yn, β1, . . . , βp−n−1

]
.

This transformation contains many known elements,

BDw BT =



w · (w ? w) w · (w ?Y2) w · (w ?Y2) w · (w ?Yn) w · (w ? β1) w ·
(

w ? βp−n−1

)
w · (w ?Y1) w · (Y1 ?Y1) w · (Y1 ?Y2) · · · w · (Y1 ?Yn) w · (Y1 ? β1) · · · w ·

(
Y1 ? βp−n−1

)
w · (w ?Y2) w · (Y1 ?Y2) w · (Y2 ?Y2) w · (Y2 ?Yn) w · (Y2 ? β1) w ·

(
Y2 ? βp−n−1

)
.
.
.

w · (w ?Yn) w · (Y1 ?Yn) w · (Y2 ?Yn) w · (Y2 ?Yn) w · (Yn ? β1) w ·
(
Yn ? βp−n−1

)
w · (w ? β1) w · (Y1 ?Yn) w · (Y2 ? β1) w · (Y2 ? β1) w · (β1 ? β1) w ·

(
β1 ? βp−n−1

)
.
.
.

w ·
(

w ? βp−n−1

)
w · (Y1 ?Yn) w ·

(
Y2 ? βp−n−1

)
w ·
(
Y2 ? βp−n−1

)
w ·
(

β1 ? βp−n−1

)
w ·
(

βp−n−1 ? βp−n−1

)



Most of the elements in the top left block are known from the identity w ·
(
Yi ?Yj

)
= δi,j reducing it to

nearly an identity block. If we knew this block was invertible and had all positive eigenvalues we could

use a block LDLT decomposition to show that the matrix Dw has at least n+ 1 positive eigenvalues, which

paired with its b negative ones means would have at least b+ n+ 1 values. To this end consider the substi-

tution of the vector of all ones, 1, for w in B. This substitution will not change the structure of B as w was

originally orthogonal to the other required elements Y and1 · w = ∑ w = 1, meaning {w, Y1, Y2, . . . , Yn}
and {1, Y1, Y2, . . . , Yn} span the same space. The new upper block is an identity matrix.
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w · (1 ? 1) w · (1 ?Y1) w · (1 ?Y2) w · (1 ?Yn)

w · (1 ?Y1) 1 0 0

w · (1 ?Y2) 0 1 · · · 0
...

w · (1 ?Yn) 0 0 1


= I
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