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1 Graphs

De�nitions of graphs are primarily from Bondy's 1976 introduction to graphs
[1], with some conventions added for ease of use. If no cite is applied, it is either
from there or my original work.

1.1 Graph De�nitions

De�nition 1. A graph, G, is an ordered triplet, G = (V (G), E(G), ψG) where
V (G) is a set of vertices or nodes (I will use these terms interchangeably),
E(G) is a set of edges, distinct from the nodes, ψG is a function from edges to
unordered pairs of (not necessarily distinct) nodes, called the Incidence Function
of G. If n ∈ ψG(e) then n is incident to e and e is incident to n.

Note, that two di�erent edges can have the same output from the incidence
function. I will also denote unordered pairs as 〈n1, n2〉, to note they may have
the same node twice, unlike a set, but are unordered. A graph can have an
empty set of edges, though it must have at least one node. While de�nitions
exist that allow completely empty graphs, these graphs are the exceptions to
many rules and are not useful.

De�nition 2. Two nodes, n1, n2 ∈ V (G) are adjacent to each other if there
exists e ∈ E(G) such that ψG(e) = 〈n1, n2〉.

Example 1. Let G be given by G = ({n1, n2, n3, n4, n5, n6, n7, n8},
{e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}, ψG), with ψG de�ned as the following map-
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ping:
ψG(e1) = 〈n1, n1〉
ψG(e2) = 〈n1, n2〉
ψG(e3) = 〈n2, n2〉
ψG(e4) = 〈n1, n6〉
ψG(e5) = 〈n1, n6〉
ψG(e6) = 〈n2, n7〉
ψG(e7) = 〈n4, n5〉
ψG(e8) = 〈n4, n5〉
ψG(e9) = 〈n4, n5〉
ψG(e10) = 〈n8, n8〉
ψG(e11) = 〈n8, n8〉

This graph will be commonly used in this section.

From this, a drawing can be made, by making labeled circles for each node,
and curves for each edge. The placement of nodes and edges is arbitrary, since
it is only a representation of the graph.

n1 n2

n3
n4

n5

n6 n7
n8

e1

e2
e3

e4

e5 e6

e7

e8

e9
e10 e11

Figure 1: An example drawing of the graph

However, the design of how to draw a graph is not unique and the di�erent
ways to draw graphs is an area of research. In this paper, graph drawings will
be used simply to aid comprehension and not discussed further.

A graph is �nite if both V (G) and E(G) are �nite. For ease of notation, if
there is only one graph under consideration, the G from the name of each set
can be dropped, so (V (G), E(G), ψG ) will be written (V,E, ψ).

De�nition 3. An edge, e, is a loop if ∃n ∈ V : ψ(e) = 〈n, n〉.

De�nition 4. A link is any edge that is not a loop ( 3). In other words, e is a
link if ∃n1, n2 ∈ V, n1 6= n2 : ψ(e) = 〈n1, n2〉.

Example 2. All edges in a graph are links or loops by de�nition. Loops often
need to be treated di�erently from other edges.
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Figure 2: Links are red, Loops are cyan

De�nition 5. Two edges, e1 and e2 6= e1, are a parallel edge pair if ψG(e1) =
ψG(e2).

De�nition 6. A set of edges, D ⊆ E is a parallel edge set if:

1. For every edge in D, it is a parallel edge pair ( 5) with another edge in D.

2. There is no edge not in D that makes a parallel edge pair with an edge in
D

Said symbolically, ∀e1, e2 ∈ D,ψ(e1) = ψ(e2) and ∀e1 ∈ E \ D,∀e2 ∈ D :
ψ(e1) 6= ψ(e2).

A set of parallel edges can also be de�ned by a pair of adjacent nodes ( 2),
and all edge between them.

Example 3. Parallel edges are mostly important for Trails ( 18) since usually
they can just be fused together.

Figure 3: Each set of parallel edges is given a di�erent color. Non-parallel edges
are left black.

De�nition 7. A simple graph is a graph ( 1) with no loops ( 3) or parallel edges
( 5).
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Example 4. Edges can be removed from a graph to make it a simple graph. So,
H = ({n1, n2, n3, n4, n5, n6, n7, n8}, {e2, e4, e6, e8}, ψH), with ψH de�ned as the
following mapping:

e2 → 〈n1, n2〉
e4 → 〈n1, n6〉
e6 → 〈n2, n7〉
e8 → 〈n4, n5〉

n1 n2

n3
n4

n5

n6 n7
n8

e2

e4

e6
e8

Figure 4: A labeled simple graph.

This is an example of a subgraph ( 10).

Diestel in his 2017 introduction to graphs [2] uses the de�nition of an edge as
a set of two nodes, because Diestel de�nes graphs as what I call simple graphs.
He instead uses "multi-graph" for those with loops and parallel edges. For
clarity, if a property only works for a simple graph, I will label it as one for
simple graphs. If I say a property is for all graphs, it is true for both simple
and multi-graphs.

De�nition 8. The complete graph with v nodes, Kv, is a simple graph ( 7 )
where every pair of nodes is adjacent.

Kv graph has
(
v
2

)
= v(v−1)

2 edges, the maximum for a simple graph with
that many nodes.

Example 5. A common representation of the complete graphs is to draw the
nodes as corners of a polygon, with all edges straight.

Figure 5: The complete graphs with one to �ve nodes.

K4 in particular has three common representations: The one shown above,
a tetrahedron, and a variation of the square based one without crossing edges.
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Figure 6: The Tetrahedron and planar graph square drawings of K4.

Two graphs, G and H, are equal, written as G = H if V (G) = V (H), E(G) =
E(H) and ∀e ∈ E(G), ψG(e) = ψH(e).

De�nition 9. Two graphs, G and H, are isomorphic, written as G ∼= H if ∃ ν :
V (G) → V (H), ε : E(G) → E(H) that are bijections (every input corresponds
to exactly one output, and every output corresponds to exactly one input), such
that, ∀ e ∈ E(G), ψG(e) = 〈n1, n2〉 then ψH(ε(e)) = 〈ν(n1), ν(n2)〉.

Example 6. Isomorphism can be seen graphically, as these drawings of graphs
G and H are isomorphic at a glance.

n1 n2

n3
n4

n5

n6 n7
n8

e1

e2
e3

e4

e5 e6

e7

e8

e9
e10 e11

(a) Graph G

v1

v2

v3

v4
v5 v6

v7 v8

d1
d2

d3

d4
d5

d6

d7

d8

d9

d10

d11

(b) Graph H

Figure 7: These drawings make it clear that G and H are isomorphic.

The bijective functions in this case are:

ν (nk) =



n1 : v5

n2 : v6

n3 : v1

n4 : v4

n5 : v3

n6 : v7

n7 : v8

n8 : v2

, ε (ek) =



e1 : d8

e2 : d6

e3 : d11

e4 : d2

e5 : d10

e6 : d7

e7 : d4

e8 : d1

e9 : d5

e10 : d9

e11 : d3
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However, graphs can be drawn in a way that makes them look like they're
not isomorphic when they are, and similar looking graphs can be not isomorphic.
In this paper though, the math does not rely on which isomorphism of a graph
is considered. Graphs will be drawn consistently to make comparisons easier.

De�nition 10. A subgraph H of G, written H ⊆ G, is a graph ( 1) where
V (H) ⊆ V (G), E(H) ⊆ E(G) and ∀ e ∈ E(H), ψH(e) = ψG(e)

This means that the edges in H can not join nodes not joined in G. ψH is
only de�ned on E(H), and can only output nodes found in V (H) Note that
every simple graph with v nodes is a subgraph of Kv.

De�nition 11. If H ⊆ G ( 10) and H 6= G, then H is a proper subgraph of G,
which is written H ⊂ G. Equivalently, G is a supergraph of H, and if H is a
proper subgraph of G, then G is a proper supergraph of H.

The notation is the same as it is for sets.
If H is a subgraph of G, H must be a graph ( 1) itself. This means that

all edges in H must be adjacent ( 2) to only nodes in H, and have the same
adjacency as they do in G.

Example 7. If H does not ful�ll the shared adjacency condition, then it is not
a subgraph.

n1 n2

n3
n4

n5

n6 n7
n8

e1

e2
e3

e4

e5 e6

e7

e8

e9
e10 e11

(a) A subgraph of G

n1 n2

n3
n4

n5

n6 n7
n8

e1

e2
e3

e4

e5 e6

e7

e8

e9
e10 e11

(b) Not all edges follow the adjacncey con-
dition.

Figure 8: A subgraph and not a subgraph of G. Grey edges and nodes are ones
not in H but are in G.

Note that edges 2, 6, and 8 in sub�gure b have one or both connections to
nodes not in H. This is not allowed in a subgraph.

If ψH does not match ψG for all edges in H, then H is not a subgraph.
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n1 n2

n3
n4

n5

n6 n7
n8

e1

e2
e3

e4

e5 e6

e7

e8

e9
e10 e11

Figure 9: Not a subgraph because of e7, the highlighted edge, doesn't connect
the same nodes as in G.

While the label of e7 is in both G and H, the label refers to e�ectively di�erent
edges entirely. Similarly, if the edges are relabeled, it is not a subgraph, though
this mostly is a technicality, given most graphs in this paper have edges unlabeled.

moved the kinds of subgraph to over�ow, as I don't think I need
them.

Lemma 1. If J ⊆ H ⊆ G where J , H, and G are all graphs, then J ⊆ G. ( 10)

Proof. By de�nition, V (R) ⊆ V (H) ⊆ V (G) =⇒ V (R) ⊆ V (G) and E(R) ⊆
E(H) ⊆ E(G) =⇒ E(R) ⊆ E(G).

By de�nition of a subgraph, ∀e ∈ E(R), ψR(e) = ψH(e) and ∀e ∈ E(H), ψH(e) =
ψG(e).

Because E(R) ⊆ E(H), ∀e ∈ E(R), ψR(e) = ψH(e) = ψG(e)

Given this, the subgraph of a subgraph is a subgraph of the original.

1.2 Weighted Graphs

De�nition 12. A weighted graph, G, is an ordered quartet, G = (V (G), E(G), ψG, wG),
which are the vertices, edges, incidence function ( 1), and the weight function,
wG : E(G)→ R.

Note that the weight of an edge is another property of the edge itself, and in
a subgraph ( 10), each edge must stay the same weight as it was in the original.
Otherwise, all graph properties apply on the "underlying" graph, which is simply
the graph without the weight function.

Example 8. A weighted graph is drawn very similarly to any other graph, but
each edge is labeled with the weight of that edge.
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9

e
-3.2

1/3

Figure 10: Note that a weight can be any number, even negative or irrational.

1.3 Walks, Trails, Paths, Cycles, Connection

I am citing Professor Ruj's 2014 notes for my de�nitions related to walks [3].
For this subsection, it is better to use a fully connected (as later explained

at 21) graph,

n1 n2

n3 n4

n5 n6

e2
e1 e3

e4 e5
e6

e7
e8

e9

e10

Figure 11: The common graph for this section, labeled

De�nition 13. A walk, W , is an alternating sequence of edges and nodes,
W = v0, e1, v1, . . . ek, vk, where ∀i ∈ {1 . . . k} , ψ(ei) = 〈vi−1, vi〉. A walk is from
v0 (the origin or initial node) to vk (The terminus or terminal vertex). The
length of the walk is k.

Example 9. v1, e1, v1, e2, v2, e8, v4, e8, v2, e10, v6 is a walk on the graph above
(Fig 11), that looks like
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2
1

3,4
5

Figure 12: Blue is start, yellow is end, intermediate nodes are green, edges not
used are gray, and each edge is labeled sequentially.

v1, e7, v4, e8, v2, e2, v1 is not a walk because e7 is not incident to v1

3

1
2

Figure 13: Same conventions, with the highlighted red edge being the error.

De�nition 14. A walk ( 13), W , has a reverse, W−1, from vk to v0, with all
the nodes and edges in the reverse order. Formally, W−1 = vk, ek, . . . e1, v0.

Example 10. v6, e10, v2, e8, v4, e8, v2, e2, v1, e1, v1 is the reverse of the walk in
the previous example (Ex 9)
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4
5

2,3
1

Figure 14: Compare with walk above.

De�nition 15. For walks ( 13),W = vW0 , eW1 , vW1 , . . . eWk , v
W
k and A = vA0 , e

A
1 , v

A
1 , . . . e

A
c , v

A
c ,

if vWk = vA0 , then the concatenation of the walks,W
_A = vW0 , eW1 , vW1 , . . . eWk , v

A
0 , e

A
1 , v

A
1 , . . . e

A
c , v

A
c .

Concatenation is written many ways, I decided on this one to make the
di�erence between a long name and concatenation clear.

Example 11. Let walks W = v1, e5, v5, e6, v3, A = v3, e7, v4, e9, v6, and L =
v2, e1, v1 be on Fig 11. Then, W_A = v1, e5, v5, e6, v3, e7, v4, e9, v6, but W

_L
is not valid since the origin of L is not the terminus of W .

1
2

3

4

(a) Two walks being joined together (blue
edges for W, green for A)

3

1
2

(b) Two walks that don't join together,
with the mismatched ends being red. (blue
edges for W, green for L)

De�nition 16. A section of a walk ( 13), vi, ei+1, vi+1, . . . ej , vj, is the (i, j)-
section of the walk W , or W [i, j].

Example 12. W = v1, e1, v1, e2, v2, e8, v4, e8, v2, e10, v6 is a walk on the stan-
dard graph (Fig 11), with the section W [3, 5] being v4, e8, v2, e10, v6
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2
1

3,4
5

(a) The base walk

4
5

(b) The section is labeled with the numbers
of the edges in the original walk

My source uses (vi, vj)-section instead of (i, j)-section, however if ∃va =
vi, vb = vj , a 6= i, b 6= j, a < b, then de�ning the section by node rather than
index is ambiguous.

De�nition 17. A walk ( 13) is closed if v0 = vk, or the initial and terminal
vertex are the same.

A walk that is not closed is open. All ot the examples I shown before were
open.

Example 13. W = v1, e1, v1, e2, v2, e8, v4, e8, v2, e10, v6 is an open walk on the
standard graph (Fig 11), and A = v2, e10, v6, e9, v4, e8, v2 is a closed walk on
the standard graph.

2
1

3,4
5

(a) The open walk

3

2

1

(b) The closed walk

In a simple graph, the sequence of nodes uniquely de�ne the walk, so it can
be de�ned by this sequence only. However, in a multi-graph this is not always
the case. In the case of a multi-graph, a list of nodes where ∀i ∈ {1 . . . k} ∃e :
ψ(e) = 〈vi−1, vi〉, then the list de�nes a family of walks, only di�ering by the
edges used.

De�nition 18. If no edge is used twice in a walk ( 13), it is a trail. In a trail,
the size of the edge set is the length of the walk.

Note that in a multi-graph, some families of walks will have some but not
all walks in them be trails. This is because going between two nodes twice can
use di�erent edges or the same one.
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De�nition 19. A path is a trail ( 18) where every node appears at most once.

A path can also refer to a subgraph made by only including the edges and
nodes used in a path [1], I will call these "path subgraphs" for clarity. Unlike a
trail, either all of the walks in a family are paths, or none of them are.

Example 14. T = v1, e1, v1, e2, v2, e10, v6 is a trail, but not a path, and P =
v1, e2, v2, e10, v6 is both on the standard graph (Fig 11).

2
1

3

(a) A trail, note how all edges are used
once, even though the initial node is
visited twice

2

1

(b) A path between the same nodes.
The loop is removed so the initial node
is visited only once

De�nition 20. A cycle is a closed ( 17) trail ( 18) where all nodes except the
initial and terminal nodes appear at most once.

If a walk, W exists between two distinct nodes, s, t, then a path exists
between them. Here is a simple algorithm that will convert a walk from s to
t, W0 = v0,0, e1,0, v1,0, . . . ek0,0, vk0,0, into a path in �nite time. First, build the
set of pairs of indexes with end nodes, EN = {(i, j)|vi,0 = s, vj,0 = t}. Choose
(i, j) ∈ EN : ∀(a, b) ∈ EN , |i− j| ≤ |a− b|. If i < j, then de�ne

W1 = vi,0, ei+1,0, . . . ej,0, vj,0 = v0,1, e1,1, v1,1, . . . ej−i,1, vj−i,1

Otherwise, if i > j,

W1 = vi,0, ei−1,0, . . . ej,0, vj,0 = v0,1, e1,1, v1,1, . . . ei−j,1, vi−j,1

(See reverse walks ( 14) and walk segments ( 16) for more details.)
Now, take a look at your current walk, Wn, and let kn be the length of that

walk. (On your �rst time, n = 1). If Wn is a path, you're done.
If not, �nd two indexes, i < j, such that vi,n = vj,n, where the n is which

walk these nodes are on. Then, form Wn+1 by connecting the walk from v0,n

to vi,n with the walk from vj,n to vkn,n. This will reduce the length by j − i,
and remove at least one closed walk ( 17) from the walk from s to t. Since
the original walk is of �nite length, there can only be a �nite number of closed
subwalks, so the process is �nite.

De�nition 21. A graph, G, is connected if ∀v1, v2 ∈ V (G)∃P ⊆ G : v1, v2 ∈
V (P ) and P is a path subgraph [ 19], or G has one or fewer nodes.
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A graph that is not connected is disconnected.
If a graph is disconnected, it is made out of two or more "components".

De�nition 22. A component is subgraph ( 10) with three properties:

1. The subgraph is connected ( 21).

2. The subgraph is vertex-induced ( ??).

3. There does not exist a node that can be added to the subgraph without
disconnecting it (or there's no more nodes to add).

If a graph is connected, then it is the only component of itself.

Example 15. The two graphs I've used in this section have di�erent num-
bers of components. The �rst graph used (Ex 1) has four components and is
disconnected. The second (Fig 11) is connected and has one component.

n1 n2

n3
n4

n5

n6 n7
n8

e1

e2
e3

e4

e5 e6

e7

e8

e9
e10 e11

(a) This graph has four components, each
with a di�erent node color

n1 n2

n3 n4

n5 n6

e2
e1 e3

e4 e5
e6

e7
e8

e9

e10

(b) This graph has only one com-
ponent, so all nodes are colored
yellow

It is often useful to consider how "easy" it is to disconnect a connected graph
( 21). This can be quanti�ed by the vertex-connectivity ( 23) (sometimes called
just "connectivity") and edge-connectivity ( 25).

De�nition 23. The vertex-connectivity of a graph G, written κ(G), is the min-
imum number of nodes needed to be removed from a graph to disconnect ( 21)
it.

A set of κ(G) that when removed from the graph disconnects G is a minimal
cutset of G

De�nition 24. A graph, G, is k-vertex-connected if k ≤ κ(G) ( 23).

Any graph that has a spanning subgraph ( ??) that is the complete graph
( 8) has vertex-connectivity |V (G)| − 1 by de�nition. This is because there
is no way to disconnect the complete graph by deleting nodes, since a single
node is still connected, and vertex-connectivity must be less than the number
of nodes. Because vertex-connectivity must be less than the number of nodes,
a single node has vertex connectivity zero and is the only connected graph with
vertex-connectivity zero.
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Removing a node from a graph with positive vertex-connectivity is not guar-
anteed to reduce the connectivity, as the connectivity is the minimum number
needed.

De�nition 25. The edge-connectivity of a graph G, written λ(G), is the min-
imum number of edges needed to be removed from a graph to disconnect ( 21)
it.

De�nition 26. A graph, G, is k-edge-connected if k ≤ λ(G) ( 25).

A graph with one node is the only connected graph with edge-connectivity
zero.

2 Directed Graphs

new cite for this section: [4]

2.1 Digraph Notation

De�nition 27. A directed graph, or a digraph, D, is the same as a graph, except
instead of E(D) it has A(D) , or a set of arcs. The di�erence between arcs and
edges is that while edges are an unordered pair of nodes, an arc, a represents
an ordered pair, ψD(a) = (v1, v2), from the tail v1 (or initial vertex) to the
head v2 (or terminal vertex).

De�nition 28. A pair of arcs, a1 and a2 6= a1, is a parallel arc pair if ψD(a1) =
ψD(a2).

This is similar to a parallel edge pair ( 5) but for Digraphs. Note that two
arcs can go between the same two nodes and not be parallel if they have di�erent
directions.

De�nition 29. A digraph is strict if it has no pairs of parallel arcs ( 28), or
loops ( 3).

Note that loops are again de�ned as an arc connecting a node to itself, just
as in graphs, a loop is an edge that connects a node to itself.

Example 16. The �rst digraph has a parallel arc and the second is strict.

14



(a) Red highlights the paralell arcs.

(b) The reversal of one arc makes the di-
graph strict.

De�nition 30. The complete digraph with v nodes, κv, is a strict digraph ( 29)
with every possible arc.

In other words, ∀v1, v2 ∈ V (κv)∃a ∈ A(κv) : ψκv
= (v1, v2). This is not

the same thing as a "Tournament", which only has one arc per unordered
pair of nodes, while a complete digraph has one arc per ordered pair of nodes.
Tournaments are not a structure used in this paper, but do come up in others
as a kind of "complete digraph".

Example 17. The drawings of the complete digraphs shown are meant to re-
semble the ones for complete graphs ( 5).

Figure 21: The �rst 4 complete digraphs. The double arrow lines represent two
arcs going in opposite directions.

De�nition 31. A subdigraph, F , of digraph ( 27) D, written F ⊆ D, is a
digraph where V (F ) ⊆ V (D), A(F ) ⊆ A(D) and ∀a ∈ A(F ), ψF (a) = ψD(a)

This means that the arcs in F must be identical to arcs in D, including
ordering, similar to subgraphs ( 10). In the same way, ψF is only de�ned on
A(F ) and can only output nodes found in V (F ).
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The following functions were inspired by de�nitions from Ms. Fonoberova's
2012 handbook [5] and Mr. Schrijver's 1993 journal article [6], but adapted to
the notation of this paper.

De�nition 32. The tail function, A− : V → 2A, is
A−(v1) = {a|a ∈ A ∧ ∃v2 ∈ V : ψ(a) = (v1, v2)}, or the set of all arcs with

tail v1.

De�nition 33. The head function, A+ : V → 2A, is
A+(v1) = {a|a ∈ A ∧ ∃v2 ∈ V : ψ(a) = (v2, v1)}, or the set of all arcs with

head v1.

Example 18. Consider a node in a digraph, and the head and tail functions.
The sets of arcs returned can be shown visually with coloring.

Figure 22: For the green node, the arcs in red have tail at that node and the
ones in blue have head at that node.

2.2 Weighted Digraphs

De�nition 34. A weighted digraph, D, is an ordered quartet, D = (V (D), A(D), ψD, wD),
where the �rst three are the same as a digraph ( 27) and wD : A(D)→ R.

Example 19. A weighted digraph looks the same when drawn as a weighted
graph, but with arcs instead of edges. This means that the weight from v1 to v2

might be di�erent than v2 to v1

6 2

-1 1

e 3.3

7.5

12

1.5 0

Figure 23: Notice that the weight of the arcs between the two cyan nodes are
di�erent.
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De�nition 35. The underlying digraph ( 27) D of a weighted digraph ( 34) D′,
is: D = (V (D′), A(D′), ψD′)

The underlying digraph is the digraph without weights.
In this paper, it will be useful to consider transformations on a weighted

digraph that change the weights of the arcs but not the structure of the digraph.
These are scalar multiplication (or "scaling") and weighted digraph addition
(and conversely, subtraction).

De�nition 36. For a weighted digraph ( 34) D, and x ∈ R, x · D = D′ is a
weighted digraph where: V (D′) = V (D), A(D′) = A(D) and ∀a ∈ A(D′), wD′(a) =
x · wD(a)

De�nition 37. If weighted digraphs ( 34) D1, D2 have the same underlying
digraph ( 35 ), then D1 + D2 = DΣ is a weighted digraph where: V (DΣ) =
V (D1), A(DΣ) = A(D1) and ∀a ∈ A(DΣ), wDΣ

(a) = wD1
(a) + wD2

(a)

Example 20. Consider the following weighted digraph:

6 2

-1 1

0 3.5

7.5

6

1.5

Figure 24: A weighted digraph with positive, negative, and zero entries.

Then, multiply this weighted digraph by 2, which means multiplication of the
weight on each arc by two.

12 4

-2 2

0 7

15

12

3

Figure 25: A weighted digraph with positive, negative, and zero entries.

Example 21. Consider the following weighted digraph, call it A.
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6 2

-1 1

0 3.5

7.5

6

1.5

Figure 26: Weighted Digraph A.

Then consider trying to add either of the following digraphs.

4 -2

4 0

3 e

-2.5

4

2.5

(a) Weighted Digraph X

4 -2

4

3 e

-2.5

4

2.5

(b) Weighted Digraph Y

Figure 27: Notice that these are the same except for a zero arc.

It is important to note that only weighted digraph X can be added to the
weighted digraph from the previous example, as the underlying digraphs ( 35)
must be the same, since the addition must occur for all arcs.

6 2

-1 1

0 3.5

7.5

6

1.5

(a) Weighted Digraph A

4 -2

4 0

3 e

-2.5

4

2.5

(b) Plus Weighted Di-
graph X

10 0

3 1

3 3.5+e

5

10

4

(c) equals the sum.

Note that no arcs are added or removed in addition, only the weights of
the arcs change. You are not "adding" new arcs, instead adding the weight
functions.

2.3 Diwalks, Ditrails, Dipaths, Dicyles, Diconectivity

De�nition 38. A directed walk or diwalk, W , of length k, is an alternating se-
quence of arcs and nodes,W = v0, a1, v1, . . . ak, vk, where ∀n ∈ {1 . . . k} , ψ(an) =
(vn−1, vn).
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A directed trail or ditrail, a directed path or dipath, and a directed cycle
or dicycle all have equivalent de�nitions, but starting from diwalks, rather than
walks. I often will refer to dipaths as "paths" when dealing with directed graphs.

Example 22. For each one, note that the direction walked is always the direc-
tion of the arc. This also means the reverse is not de�ned.

1

2
3

4,8

5

6
7

(a) A diwalk, not a di-
trail as arc 4 and 8 are the
same

1

2
3

4

5

6
7

(b) A ditrail, not a dipath
as the ending node is vis-
ited twice

1

2
3

4

5

6

(c) A dipath

Figure 29: As a reminder, blue is the start of the walk, green are intermediate
nodes, and yellow is the end.

De�nition 39. If there exists a dipath ( 38) from v1 to v2, v2 is reachable from
v1 in D.

De�nition 40. For nodes v1 and v2 in D ( 27), a minimal cutset, c, is a set
of arcs where:

1. Removing all arcs in c from D makes v2 not reachable from v1 in D ( 39)

2. Removing all but one arc in c from D will still have v2 reachable from v1

in D.

In other words, a minimal cutset will make one not reachable from the other,
but anything less than that will not do the same.

Example 23. Consider the following digraph with v1 and v2 labeled. Here are
two minimal cutsets, that make v2 not reachable from v1.

1 2

(a) Minimal Cutset 1

1 2

(b) Minimal Cutset 2

Figure 30: Red highlights the members of the cutset. Note that while cutset 2
is larger, it is still minimal.
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It is easy to see there is no dipath ( 38) from v1 to v2 that does not use an
arc in both cutsets. However, there is still a dipath from v2 to v1, which is a
di�erent question.

Cutset 2 also shows that a minimal cutset does not have to be the smallest
cutset, only that removing an arc would make it not a cutset.

1 2

(a) One arc removed from set 2

1 2

(b) The other arc removed from set 2

Figure 31: Notice, removing either arc would make it not a cutset. Path labeled
with blue arcs.

The other way a set can be not a minimal cutset is if it has an arc that is
not needed.

1 2

Figure 32: The purple arc can be removed to get minimal cutset 1.

This is still "a cutset", but not a minimal one. Minimal cutsets are important
for later, so this distinction is important.

De�nition 41. If v1 is reachable ( 39) from v2 and v2 is reachable from v1,
then they are diconnected.

Two nodes are diconnected if there is a closed ditrail that contains both of
them.

Dicomponents and diconnected graphs can be de�ned in the same way as
components and connectivity, since diconnectivity is independent of order of
nodes, like connectivity (and unlike reachability).
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3 Networks

3.1 Networks and Loads

De�nition 42. A Network, N is a weighted directed graph ( 34), with non-
negative rational weights, called capacities.

Bondy's chapter on networks in his 1976 book [7] says that all capacities must
be integers, but all other de�nitions I've found do not have that restriction.

However, there are some cases where this restriction can help, such as con-
verting to a network where all arcs have capacity 1. They also might naturally
be integers in discrete applications. In this paper, I will instead assume that all
capacities are rational numbers, as computationally, all numbers are rational.
Additionally, the network may be scaled ( 36) to one where all capacities are
integers.

For a network, the "capacity" of an arc is the same as its weight, and I will
use the terms interchangeably. This means that scaling ( 36), addition, and
subtraction ( 37) are all de�ned for networks, with the additional constraint
that the �nal result must also be a network. A network may only be scaled by
a non-negative rational number to remain a network. If the number is negative,
all weights would become non-positive, which is not allowed for any network
with non-zero weights. If the number is irrational, all non-zero entries would
become irrational, so this is not allowed if the network has non-zero weights.

Example 24. A network is a weighted digraph with two constraints: Non-
Negative arc weights and rational arc weights.

6 2

1 1

2 3.3

7.5

12

1.5

(a) A network

6 2

-1 1

e 3.3

7.5

12

1.5

(b) The red arc is negative and the grey
arc is irrational

Figure 33: A network and not a network.

De�nition 43. A load function, L, on a network N ( 42), is a function from
A(N) to Q where:

∀a ∈ A(N),

{
if w(a) = 0 : L(a) = 0
if w(a) > 0 : L(a) ≥ 0

Example 25. First, a load function. The capacity will be shown with black
numbers, and the load will be blue and in a box.
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6
2

1 1

2 3.3

0

12

1.5

7

0
1.9

0.93

0
5

5

5

Figure 34: An arbitrary load function. Note how it is rational and non-negative
everywhere.

However, not any such way of assigning numbers to arcs relates to a load
function. There are three pitfalls that can be run into.

6
2

1 1

2 3.3

0

12

1.5

e

0
1.9

0.93

0
5

5

5

(a) The load function
must be rational

6
2

1 1

2 3.3

0

12

1.5

7

2
1.9

0.93

0
5

5

5

(b) The load function
must be zero on a zero arc

6
2

1 1

2 3.3

0

12

1.5

7

0
-1

0.93

0
5

5

5

(c) The load function
can't be negative

Figure 35: The red number shows the incorrect value

Note that the "zero on a zero arc" is the only condition that depends on the
capacity of an arc.

De�nition 44. A load function ( 43) L on a network N ( 42) is feasible if
∀a ∈ A,L(a) ≤ w(a) .

The choice of the word "feasible" is a deliberate relation to the word being
used in multi-�ow contexts, where the condition has a similar meaning. I will
use "Feasible on" when there are multiple networks to be concerned about, and
just "feasible" if it is clear what network is being considered.

Example 26. A load being feasible is a way of seeing if it can "�t" into the
network or it is "too big".
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6
2

1 1

2 3.3

0

12

1.5

6

0
1.9

0.91

2
3

0

5

(a) All are less than the capacity

6
2

1 1

2 3.3

0

12

1.5

7

0
1.9

0.93

0
5

5

5

(b) Red numbers are too big

Figure 36: The second one is still a load function, it is just not feasible on this
network.

It is important to note that feasibility is an interaction between the network
and the load function. If the capacity of the network changes, the feasibility of
the load function changes as well for that network.

6

0
1.9

0.91

2
3

0

5

9
2

1 15

1 7.3

0

12

3.5

(a) The red number makes this load too
big now

9
2

1 15

1 7.3

0

12

3.5

7

0
1.9

0.93

0
5

5

5

(b) This network is big enough to hold this
load

Figure 37: On this changed network, the two loads changed feasibility.

This is an important point to remember, especially when multiple networks
with the same underlying digraph exist.

3.2 Utilization and Scaling

A load function, like a network, can be added, subtracted, or scaled, with the
same restrictions on scaling and subtraction as a network. Again, proof that
these restrictions must exist for the result to be a load function is left to the
reader.

De�nition 45. The utilization of a load function( 43) L on a network N ( 42),
is the smallest non-negative number, Ut(L,N), where L is feasible ( 44) on
Ut(L,N) ·N .

An alternate form of this is very useful in computation, which I will prove
below.
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Lemma 2. If N has at least one arc with positive capacity,

Ut(L,N) = max
a ∈ A(N) :
w(a) > 0

{
L(a)

w(a)

}

Proof. De�ne B = {a ∈ A(N)|cN (a) > 0} and U = Ut(L,N). Then, the
symbolic form to prove becomes:

U = max
a∈B

{
L(a)

w(a)

}
Because we know L is feasible on U ·N by de�nition, begin with the de�nition

of feasibility, restricted to the set B. We can do this restriction since ∀a /∈
B,w(a) = L(a) = 0 and these are always true for any U . This becomes:

∀a ∈ B,L(a) ≤ U · w(a)

Divide both sides by w(a) since by de�nition, it is never zero in B.

∀a ∈ B, L(a)
w(a)

≤ U

Since U is by de�nition the smallest such number with this property, it must be
the maximum of the left hand side, which is exactly the symbolic form.

There are numerous useful properties of this function in relation to feasibility,
scaling, and addition. These are all presented without proof (at the moment).
Let N be a network (with at least one positive arc), N ′ be an alternate weighting
of that network, Q+ = {x ∈ Q|x > 0}, L be all load functions on N , and F (L)
is 1 if L is feasible on N and 0 if it is not.

1. Triangle Inequality

∀L1, L2 ∈ L, Ut(L1, N) + Ut(L2, N) ≥ Ut(L1 + L2, N) ≥ Ut(L1, N)

2. Feasibility-Utilization Relation

∀L1, L2 ∈ L : F (L1) = 1 ∧ F (F2) = 0, Ut(L1, N) ≤ 1 < Ut(L2, N)

3. Scalar Multiplication (load)

∀L ∈ L∀x ∈ Q+, Ut(x · L,N) = x · Ut(L,N)

4. Zero Load Property
∀L ∈ L, Ut(0 · L,N) = 0

5. Scalar Multiplication (network)

∀L ∈ L∀x ∈ Q+, Ut(L, x ·N) =
Ut(L,N)

x
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6. Expanded Network Inequality

∀L ∈ L, Ut(L,N +N ′) ≤ Ut(L,N)

All of these properties are important to keep �led away, as they're important
for working with this function.

3.3 Flows, Normal and Unrestricted

De�nition 46. On a given network ( 42), N , a �ow (or Restricted Flow),
a �ow F is an ordered triple, (LF , s(F ), t(F )), where LF (a) is the �ow's load
function, s(F ) is the source node, and t(F ) is the terminal (or sink) node.

The load function of a �ow is subject to two additional conditions:

1.

∀n ∈ V (N) \ {s(F ), t(F )} →
∑

a∈A−(n)

LF (a)−
∑

a∈A+(n)

LF (a) = 0

2.
∀a ∈ A(N)→ 0 ≤ LF (a) ≤ w(a)

These are called the conservation constraint and the capacity condition.

In some sources, a �ow is restricted to integer values, which is useful if the
�ow comes in discrete units. In this paper, a �ow is a rational valued function.

Some de�nitions allow for multiple sources and sinks, but I go with [8] which
de�nes only one source and sink. Multiple sources can be converted into a single
source by adding a "supersource" [8], with an arc from the "supersource" to each
existing source with the capacity of the sum of the capacities of all arcs leaving
that source. Equivalently, multiple sinks can be converted to a single sink by
adding a "supersink", with an arc to the "supersink" from each existing sink,
with the capacity of the sum of the capacities of all arcs entering that sink.

A �ow F has a value, notated by 〈F 〉 , which is the amount of �ow entering
the network at the source, symbolically

〈F 〉 =
∑

a∈A−(s(F ))

LF (a)−
∑

a∈A+(s(F ))

LF (a)

Bondy [7] uses val F and Schrijver [6] uses value(F ), but I decided to use my
own, shorter notation, since the value of a �ow will come up often. The value of
a �ow can be zero or negative, but assume positive value �ows unless otherwise
stated.

Flows are a standard de�nition in network problems, however, in this paper
it's useful to think of them as a special case of a new object, the unrestricted
�ow.
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De�nition 47. An Unrestricted Flow or "u�ow", U , on network N ( 42) is
an ordered triple, U = (LU (a), s(U), t(U)), where LU (a) is the u�ow's load
function, s(U) is the source node, and t(U) is the terminal node.

The u�ow load function only needs to satisfy the conservation constraint,
which is:

∀n ∈ V (N) \ {s(U), t(U)} →
∑

a∈A−(n)

LU (a)−
∑

a∈A+(n)

LU (a) = 0

All �ows are also u�ows, because a u�ow's load function is less restricted
than a �ow's load function.

Example 27. The core of a �ow or u�ow is its load function. The Conservation
Constraint can be broken in two kinds of ways, which I call "internal" and
"external". An internal break of the Conservation Constraint is one where the
amount of �ow in and out of the network is still the same. An external break,
by contrast, makes the amount of �ow in not equal to the amount of �ow out.

The two diagrams below will show an internal and an external break of the
conservation constraint, with the violating nodes being marked with red. Like
with paths, the source will be blue and the sink will be yellow, and the load
function will be numbers inside rectangles.

1 2

1

3 1

2

2

1

2
3

2

212

1
1

(a) Note the error begins and ends inside

1 2

1

3 1

2

2

1

2
3

3

212

1
1

(b) Note that there's only one error node,
but the out is not the same as the in
(shown with a purple end node)

Figure 38: Both of these violate the Conservation Constraint at least once.

The Conservation Constraint is a very strict condition. It also depends en-
tirely on the source and sink, as those are the two nodes where the Conservation
Constraint must apply.

A �ow is subject to one more constraint than a u�ow, which is that a �ow
must be less than or equal to the capacity on all arcs. This is shown below
with the purple load number being the only one bigger than the capacity, hence
breaking the Capacity Condition.

26



1 2

1

3 1

2

2

1

1
2

2

112

1
0

(a) A �ow
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2
2
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1
1

(b) A u�ow that is not a �ow

Figure 39: Both of these satisfy the Conservation Constraint at all nodes.

If a function takes a load function ( 43) as an argument, it can also take a
�ow ( 46) or a u�ow ( 47), using their internal load function (either LU or LF ).

Lemma 3. If and only if a u�ow ( 47) U on a network N has the property
Ut(U,N) ≤ 1, then U is also a �ow ( 46).

Proof. Begin by noting that both u�ows and �ows both are ordered triples of
load function, source node, and terminal node. Additionally, both the load
function of a �ow and a u�ow must follow the conservation constraint, so the
only di�erence is the capacity condition.

If and only if Ut(U,N) ≤ 1 is LU feasible ( 44) then the capacity condition
is satis�ed.

If something is de�ned on �ows, it is also de�ned for u�ows equivalently and
vice versa if the capacity condition is satis�ed.

Proposition-De�nition 4. For a u�ow ( 47), U , ∀x ∈ Q+, x · U = U ′ =
(x · LU (a), s(U), t(U)) is a u�ow.

Proof. Since x ∈ Q+, x·LU is guaranteed to be a load function, all that's needed
is the conservation condition.

Let I = V (N) − {s(U), t(U)}, and replace LU (a) with x · LU (a) in the
conservation condition, to show that LU ′(a) is a u�ow's load function.

∀n ∈ I →
∑

a∈A−(n)

r · LU (a)−
∑

a∈A+(n)

r · LU (a) = 0

∀n ∈ I → r ·
∑

a∈A−(n)

LU (a)− r ·
∑

a∈A+(n)

LU (a) = 0

∀n ∈ I → r ·

 ∑
a∈A−(n)

LU (a)−
∑

a∈A+(n)

LU (a)

 = 0

∀n ∈ I → r · (0) = 0
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Proposition-De�nition 5. If two u�ows ( 47), U1 and U2 share the same
start and terminal nodes, s and t, then U1 + U2 = U ′ = (LU1(a) + LU2(a), s, t)
is a u�ow and 〈U ′〉 = 〈U1〉+ 〈U2〉.

Proof. Since LU1
and LU2

, are load functions, their sum is guaranteed to be a
load function, all that's needed is the conservation condition.

Let I = V (N) − {s, t}, and replace LU (a) with LU1(a) + LU2(a), to show
that LU ′(a) is a u�ow's load function.

∀n ∈ I →
∑

a∈A−(n)

LU1
(a) + LU2

(a)−
∑

a∈A+(n)

LU1
(a) + LU2

(a) = 0

∀n ∈ I →

 ∑
a∈A−(n)

LU1
(a)−

∑
a∈A+(n)

LU1
(a)

+

 ∑
a∈A−(n)

LU2
(a)−

∑
a∈A+(n)

LU2
(a)

 = 0

∀n ∈ I → (0) + (0) = 0

Notice that also, since the value of a u�ow is 〈U〉 =
∑
a∈A−(s(U)) LU (a) −∑

a∈A+(s(U)) LU (a), or just 〈U〉 =
∑
a∈A−(s(U)) LU (a) if no �ow enters the sink,

then, by commutativity of addition,
∑
a∈A−(s(U)) LU ′ (a) =

∑
a∈A−(s(U)) LU1

(a)+

LU2 (a) =
∑
a∈A−(s(U)) LU1 (a) +

∑
a∈A−(s(U)) LU2 (a) Finally, notice that the

same argument applies to the negative part, so 〈U ′〉 = 〈U1〉+ 〈U2〉�

Subtraction is only de�ned if the di�erence in the load functions is non
negative everywhere and the u�ows have the same source and sink.

De�nition 48. A path �ow (or path u�ow, if the capacity condition is not
satis�ed) is a �ow ( 46), F , on a network ( 42) N , where the set of arcs "used"
(where the load function is positive) makes a dipath ( 38) from source to sink.

It is easy to see that the conservation constraint requires all the positive arcs
to have the same load across them. It also is clear to see the only u�ows that
can be subtracted from a path u�ow are scaled versions of itself.

De�nition 49. A circulation is a �ow (or u�ow) ( 46), F for which 〈F 〉 = 0
and there's at least one arc, a such that LF (a) > 0.

Circulations, and u�ows that a circulation can be subtracted from, do not
follow all the same properties as ones a circulation can't be removed from. These
u�ows where a circulation can't be subtracted are called "circulation free" and
can be made by adding together path u�ows ( 48). This can be seen because
the only thing that can be subtracted from a path u�ow is a scaled version of
itself, and there's no way to sum path u�ows so that the value is zero.

A circulation is also the only kind of u�ow where the source and sink are
irrelevant, as 〈U〉 = 0 is equivalent to the Conservation Condition applying on
the source and sink.
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Example 28. First, begin with a circulation on its own.

1 2
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1 0

0 00

Figure 40: Notice how no �ow is entering or leaving, but it is not zero every-
where.

Then, look at the following �ow, and notice that the �ow's load function at
every arc is bigger than or equal to the circulation. This means that this �ow
"contains" a circulation.
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2

1

1
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0 00

Figure 41: While the �ow has value one, it has an arc with two �ow across it.

If you didn't already know that a u�ow had a circulation in it, how might
you �nd out? While in general this is hard, it is obvious if an arc has more in
it than the value of the u�ow.

3.4 Value and Utilization

In problems involving �ows, �nding ones with a particular value, or the max-
imum value, is always an important consideration. For this paper, seeing how
the value and utilization interact is a primary concern.

First, begin with our goal, of a function that gives the maximum value of
the �ow.

De�nition 50. The Meta Value function, V : N,V (N), V (N) → Q, takes a
network, a source, and a sink, and returns the maximum value of a �ow ( 46)
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from the source to sink. If the source and sink are clear from the problem, then
V(N) is acceptable.

This has a value if the maximum �ow on a network is a de�ned quantity,
which the Max Flow Min Cut theorem de�nes.

Theorem 6. The maximum value of a �ow ( 46) F , on network ( 42) N , with
source s and sink t, is determined by the minimum sum of the weight function
across a minimal cutset ( 40) from s to t.

The proof technique I will take to this well known result is, as far as I know,
original, if a bit indirect. However, it will motivate Dinic's Algorithm, which is
the maximal �ow �nding algorithm I will use in this paper.

It will be useful to have a function that returns the value of the minimal
cutset, while the Max Flow Min Cut theorem hasn't been proven.

De�nition 51. The Minimal Cutset Function, M : N,V (N), V (N)→ Q, takes
a network, a source, and a sink, and returns minc∈Ct{w(c)}, where Ct is the set
of all minimal cutsets ( 40) from s to t. If the source and sink are clear from
the problem, then M(N) is acceptable.

Note that by Max Flow Min Cut (Thm 6), this is the same as the Meta
Value Function ( 50), however when M(N) is used, it re�ects that this does not
rely on this fact.

Lemma 7 (Zero Case of Max Flow Min Cut). If for a network ( 42) N , source
s ∈ V (N), and sink t ∈ V (N), so that minc∈Ct{w(c)} = 0, where Ct is the set
of all minimal cutsets ( 40) from s to t, then the maximum value �ow from s
to t is zero.

In other words, if M(N, s, t) = 0 ( 51), then V(N, s, t) = 0 ( 50).

Proof. Suppose, for the sake of contradiction, there existed a �ow ( 46) F ,
from s to t with positive value. Without loss of generality, assume the �ow
is circulation ( 49) free (this can be done as a circulation does not add to the
value). This means that F must be the sum of at least one path �ow ( 48).

First, consider the case where F is a path �ow. This means there is a
dipath ( 38), P , on which LF () is non-zero. However, by de�nition of minimal
cutset ( 40), for every minimal cutset c, there exists exactly one arc, a, in
the path P , such that a ∈ c. Since the capacity of arcs in a network is non
negative, w(a) ≤ w(c). By the capacity condition, LF (a) ≤ w(a) ≤ w(c).
However, since minc∈Ct{w(c)} = 0, there exists at least one minimal cutset c
such that w(c) = 0. Therefore, there exists an arc a in the dipath P such that
LF (a) ≤ w(a) ≤ 0. However, by the conservation constraint on a path �ow, for
any arc a on P , LF (a) = 〈F 〉 > 0. Therefore, F can't exist.

Second, consider F as a sum of path �ows. However, since above proved a
path �ow can't exist, a sum of them can't exist, so F with positive value does
not exist, and V(N, s, t) = 0.
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To prove the Max Flow Min Cut theorem (Thm 6) when the predicted
maximum value is not zero, we will build up from path �ows ( 48). This is done
through the idea of a residual network, which is also quite useful for Dinic's
Algorithm

De�nition 52. For a network ( 42) N , and a �ow on that network ( 46) F ,
the residual network, N − F , is a network with the same underlying digraph as
N with the capacity function being w(a)− LF (a).

This leads to another useful theorem, the Residual Minimal Custet Theorem.

Theorem 8. Let N be a network ( 42) with a circulation-free ( 49) �ow ( 46), F ,
on it, with source s and terminus t. Then, if Nr = N−F , M(Nr) = M(N)−〈F 〉
( 51).

Note again that, by the Max Flow Min Cut theorem (Thm 6), the minimal
cutset function ( 51),M(N), and the meta value function ( 50), V(N), are the
same, it is just stated with Minimal Cutset as that's what the argument uses
and it is used to prove this equality.

Proof. Note that there are two ways a �ow can be circulation free: If it is a path
�ow ( 48) or it is the sum of path �ows. Consider �rst the case where F is a
path �ow. This means that the sum of the load function on any minimal cutset
c, LF (c) = 〈F 〉. Then, by de�nition of the Minimal Cutset Function ( 51) and
residual ( 52),

M(Nr) = min
c∈Ct
{w(c)− LF (c)} = min

c∈Ct
{w(c)} − 〈F 〉 = M(N)− 〈F 〉

For the case where F is the sum of path �ows, consider F1, F2, . . . , Fk, as
path �ows that sum together to give F . By the argument above, M(N − F1) =
M(N) − 〈F1〉. This motivates a sequence of residual networks, where N0 = N
and for i ∈ {1 . . . k}, Ni = Ni−1 − Fi. It is clear to see that Nk = Nr, and for
any i ∈ {1 . . . k}, M(Ni) = M(Ni−1)− 〈Fi〉. Since this is true for all Ni if i > 0,
this can be repeated until M(N0) is reached.

M(Nk) = M(N0)−
k∑
i=1

〈Fi〉 = M(N0)−

〈
k∑
i=1

Fi

〉
= M(N)− 〈F 〉

Note that if �ow F contains a circulation ( 49) equality is not preserved, so
in general, M(Nr) ≤M(N)−〈F 〉, with equality only when F is circulation free.

Finally, we can use this to prove Max Flow Min Cut (Thm 6), restated
below.

Theorem 9. The maximum value of a �ow ( 46) F , on network ( 42) N , with
source s and sink t, is the same as minc∈Ct{w(c)} = M(N, s, t).
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Proof. First, assume that M(N) > 0, as the Zero Case was covered in Lemma
7. This means that there is at least one path �ow ( 48), F , exists on N . Let
X be the largest rational number such that X · F is a �ow on N , which makes
it a "saturated" path �ow. This number exists because, by de�nition of a path
�ow, LF () is not zero everywhere and by de�nition of a network, all capacities
are �nite.

Now, consider the network Nr = N −X · F . Because F is circulation free,
M(Nr) = M(N) − 〈X · F 〉 by the Residual Minimal Custet Theorem (Thm
8). If M(Nr) = 0, then V(Nr) = 0 by Lemma 7. Suppose, for the sake of
contradiction, there exists a �ow, F2, with value greater than 〈X · F 〉. Then,
M(N − F2) = M(N) − 〈F2〉 < M(N) − 〈X · F 〉 = 0 by RMC (Thm 8), which
is a contradiction as M is the minimum of non negative quantities. Therefore,
if M(Nr) = 0, then V(N) = 〈X · F 〉 = M(N), as X · F is a �ow on N , and any
bigger �ow would lead to a contradiction.

In the case where M(Nr) > 0, notice that at least one more arc of Nr has
capacity zero than N . Since N only has �nitely many arcs to begin with and
a network with all zero arcs has M(N) = 0, this means the case where the
residual is positive cannot continue forever. Let N0 = N , F0 = X · F , and
N1 = N0 − F0. Then, for Ni until M(Ni) = 0, Fi be a saturated path �ow on
Ni, and Ni+1 = Ni − Fi. De�ne k to be the last index where M(Nk) > 0. By
RMC, (Thm 8), ∀i ∈ {0 . . . k},M(Ni+1) = M(Ni) − 〈Fi〉. Rearrange this to
〈Fi〉 = M(Ni)−M(Ni+1), then sum all of these equations from 0 to k.

k∑
i=0

〈Fi〉 =
k∑
i=0

[M(Ni)−M(Ni+1)] = M(N0)−M(Nk) = M(N)

Note that, by the properties of the value function,
∑k
i=0 〈Fi〉 =

〈∑k
i=0 Fi

〉
.

De�ne FΣ =
∑k
i=0 Fi for ease of notation, and use RMC (Thm 8) to get:

0 = M(Nk) = M(N)− 〈FΣ〉 →M(N) = 〈FΣ〉

Again, consider proof by contradiction. If there existed a �ow, Fbetter, such that
〈Fbetter〉 > 〈FΣ〉, then by RMC (Thm 8),

M(N − Fbetter) = M(N)− 〈Fbetter〉 <M(N)− 〈FΣ〉 = 0

So a better �ow than FΣ cannot exist on N , therefore it is a maximal �ow, so
V(N) = 〈FΣ〉 = M(N)

Example 29. For a simple network, the fact a circulation-free ( 49) �ow has
the same value across every minimal cutset ( 40) can be veri�ed directly. In the
diagram below, each di�erent color of oval marks inclusion in a minimal cutset.
Notice how many there are, even in this simple example. To reduce clutter, I
have only marked the value of the �ow, not the capacity of the network.
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1 1

2 2

3

Figure 42: The sum over each cutset is three.

It is important that a �ow contains a circulation may have cutsets with
di�erent values. Below, notice how the minimal cutset ( 40) marked with red
arcs has a value of two, despite the �ow only having a value of one. Since the
arcs leaving the source are a minimal cutset here, the two minimal cutsets have
di�erent values.

1 2

1

2 2

2

2

1

1

11

2 1

0 00

Figure 43: The red cutset is larger than the value.

3.4.1 Dinic's Algorithm

I cite [9] for the structure of how Dinic's Algorithm works.
Remember, that if a �ow has a value, there is a circulation-free ( 49) �ow

with that same value. Hence, if a �ow with maximum value (minc∈Ct{w(c)})
exists, there must be at least one max-value �ow that has no circulations. If a
�ow has no circulations, then it is the sum of some set of path �ows. Dinic's
Algorithm adds these path �ows together to reach a maximum �ow.

Example 30. Begin with the following simple network, with yellow source and
blue sink.
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Figure 44: Our original network.

We begin by making a level network, where we start at the source, which we
label with a zero, and then move along each arc, labeling the node we land on
with a 1. Then, for each of those nodes, we go across all of their arcs, and if
we encounter a new node, we label those nodes with a 2. If we reach a node
we've already labeled, we color that arc red, to mark that it won't be in the level
network. We continue like this until no node we've labeled can reach a node we
haven't labeled.

Now, why is the level network important? On the level network, every walk
( 38) from source to sink is also a path. This is because, from any number n,
the only arcs go to nodes labeled n+ 1. So, it is impossible to make a walk that
isn't a path. It will be important later that these are also all the same length
and the shortest path.

0

1

1 2

2

3

Figure 45: Our level network. Capacities are hidden for clarity.

In this example, only one arc is excluded. Next, �nd all the paths from source
to sink on the level network.
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Figure 46: Paths on the level network, coded by color.

The goal is to chose a path, put the maximum �ow you can over it, then pick
another path �ow to add until no more can be put on the level network This is
called a "blocking �ow", as it blocks the level network. It is important to note
that the value of this �ow does not need to be maximized. I pick the blue and
pink to saturate, leaving me with the following �ow after stage 1.

1 2

1

3 1

2

2

1

1
1

1

111

0
0

Figure 47: Note that we begin with the �ow as zero everywhere.

Then, we subtract this �ow from the network to get the residual ( 52) for the
next step.

0 1

1

2 0

1

1

1

Figure 48: The arcs with 0 capacity are dark red as no �ow can go across them.
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The important thing to note here, before moving on to the next level network
is that we treat any arc with capacity 0 as not existing.

2

1

0

3

3

4

Figure 49: Our second level network. Capacities are hidden for clarity.

Notice that the sink is now further away, after removing the zero arcs. Since
all of the non-zero arcs are in the level network, we can be sure there are no
longer paths we're missing. Again, �nd the paths.

1

1

2

1

1

1

Figure 50: Paths on the level network, coded by color.

It is important to note that, while I am labeling all paths for clarity, it is not
needed. All that is needed is to know when you have no more paths to �nd that
aren't already blocked. In this case, only one path needs to be saturated to �nish
the method, and I picked blue. Combining putting the maximum �ow (1) across
the blue path with the �ow from earlier results in the following �ow.
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Figure 51: The �nal �ow made up of paths.

We can check that this is really the last �ow by trying to create a level network
after removing that �ow, and �nding that we cannot reach the sink.

1

0

Figure 52: Notice how the sink is unlabeled, as there is no paths left.

In this case, I have constructed the example so it is easy enough to check
that 3 really is the maximum �ow by max �ow min cut.
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1

3 1

2

2

1

Figure 53: Blue arcs are in a cutset with total capacity 3.

Dinic's Algorithm: A Proof. First, note that there are only a �nite number of
paths from source to sink. This is because each path can visit each node at most
once. Since there are �nitely many paths, there are �nitely many path lengths.

37



For each level network, all paths from source to sink are the same length. In
fact, they must be the shortest paths on the residual network. This is because
all of the nodes labeled 1 are reached with one move from the source, all labeled
2 are an arc away from a node labeled one, and so on, and there is no way to
go backwards.

Once a blocking �ow is found, by nature of being a blocking �ow, there
cannot exist other paths of that length on the level network. This means that
the residual, after applying the blocking �ow, also cannot have paths of that
length. This is because any arc not included in the level network couldn't be
part of a path of that length, since going along those does not get you further
away from the source than you already were. Hence, the residual has (at least)
one fewer path length than the prior network. Since there only �nitely many
path lengths, the method will always terminate.

By the proof of the Max Flow Min Cut theorem ( 9), if a sum of �ows made
from paths reduces the capacity of the minimal cutset to zero, then it must be
a maximum value �ow.

If one network is larger than another where a �ow is known, it will be useful
to consider the new �ow as "expanding" on the old one.

Theorem 10 (Expanded Network Theorem). Consider a pair of networks, N1

and N2 with the same underlying digraph, and ∀a ∈ A,w2(a) ≥ w1(a). This
means that N2 is an "expansion" of N1.

If there is a �ow, F1, on network N1, that is circulation-free ( 49), with
source s and sink t, then there exists F2 on network N2 such that:

1. ∀a ∈ A,LF2(a) ≥ LF1(a)

2. 〈F2〉 = V(N2)

3. F2 has source s and sink t

4. F2 is circulation free.

Proof. Since ∀a ∈ A,w2(a) ≥ w1(a) ≥ LF1
(a), F1 is a �ow on N2. Because of

this, the residual ( 52), N3 = N2 − F1 is de�ned.
Let F3 be a circulation free �ow on N3 with source s, sink t, and maximum

value. By the Residual Minimal Custet Theorem (Thm 8), 〈F3〉 = V(N2)−〈F1〉.
Then, by addition of �ows ( 5), 〈F1 + F3〉 = V(N2). Since both F1 and F3 have
source s and sink t, and are circulation free, their sum must be as well. Finally,
since LF3

is never negative, the sum LF1
+LF3

is at least as big as LF1
, therefore

F1 + F3 = F2.

3.4.2 Max Flow/Value and Min Utilization Equivalence

To prove the connection between value and utilization, I'll introduce e�ciency,
a concept that links them together.
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De�nition 53. The e�ciency of a u�ow ( 47) U on a network ( 42), given

that Ut(U,N) > 0 ( 45), is E(U,N) = 〈U〉
Ut(U,N)

It is trivial to see that if 〈U〉 > 0, then Ut(U,N) > 0, so for all positive value
u�ows, it is de�ned and greater than zero. If a �ow has value zero, it is de�ned
to have e�ciency zero, instead of doing the division.

Lemma 11. E�ciency ( 53) is invariant to scaling of the u�ow. Symbolically,
∀x ∈ Q+, E(U,N) = E(x · U,N).

Proof. Begin by expressing the value of 〈x · U〉 symbolically.

〈x · U〉 =
∑

a∈A−(s(U))

x · LU (a)−
∑

a∈A+(s(U))

x · LU (a)

Factor out an x from the right hand side.

〈x · U〉 = x

 ∑
a∈A−(s(U))

LU (a)−
∑

a∈A+(s(U))

LU (a)


〈x · U〉 = x 〈U〉

Notice that by utilization property 3 ( 45),

Ut(x · U,N) = x · Ut(U,N)

Combining these together completes the proof.

E(x · U,N) =
〈x · U〉

Ut(x · U,N)
=

x 〈U〉
x · Ut(U,N)

=
〈U〉

Ut(U,N)
= E(U,N)

Theorem 12. The �ow ( 46) with the maximum value with source node S and
terminal node T , on a network N ( 42), is a scaling of the u�ow ( 47) with
minimum utilization that has value one and the same source and sink and is on
the same network.

If there is no such u�ow, then the maximum value is zero.

Proof. For the �rst case, assume that the set of u�ows with source s, sink s,
and value 1, called P , is not empty. Let m = minU∈P {Ut(U,N)} and U ∈ P :
Ut(U,N) = m. Then, since 〈U〉 = 1, the e�ciency ( 53) of U is 1

m .
Because e�ciency is invariant to the scaling of the u�ow (by Lemma 11)

and a u�ow with utilization of 1 or less is a �ow (by Lemma 3) 1
m ·U = F is a

�ow with utilization of one and the same e�ciency. This means 〈F 〉 = 1
m .

Assume for the sake of contradiction, there exists a �ow F ′ : 〈F ′〉 > 〈F 〉
between the same endpoints on N . Then, the e�ciency of F ′, E(F ′, N) =
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〈F ′〉
Ut(F ′,N) ≥ 〈F

′〉 > 1
m . By Lemma 11, U ′ = 1

E(F ′,N) ·F
′ has the same e�ciency

and value 1. However, this contradicts that m = minU∈P {Ut(U,N)}.

E(U ′, N) =
1

Ut(U ′, N)
=

〈F ′〉
Ut(F ′, N)

≥ 〈F ′〉 > 1

m

1

Ut(U ′, N)
>

1

m

Ut(U ′, N) < m

Therefore, F must be the �ow with the maximum value.
In case two, assume for the sake of contradiction there exists a �ow F between

s and t where 〈F 〉 > 0, and P (as de�ned before) is empty. This means that
E(F ′, N) ≥ 〈F 〉 > 0. By Lemma 11, U = 1

E(F,N) · F has the same e�ciency,
and value of one. This contradicts that P is empty. Therefore, the maximum
�ow must be zero.

This establishes a new way to think of "�ow maximization" problems, and
a re-contextualization of utilization minimization.

4 Obstructed Network Problem

While traditionally, the maximum �ow is the goal for a single �ow on a network,
which is equivalent to a minimum utilization for a given value. However, one
may encounter a situation where the network is obstructed in some way, perhaps
by other �ows. Then, �nding a �ow with minimum utilization given the existing
obstruction can di�er depending on the requested value.

De�nition 54. An obstructed network problem contains a network ( 42) N
(which everything is on), an obstruction load function ( 43) LO, a source s,
sink t, and a goal value G for a �ow between them.

The objective is to �nd a u�ow ( 47) U , 〈U〉 = G, s(U) = s, and t(U) = t,
that minimizes Ut(LO + U,N), letting U represent its load function.

4.1 Conversion to A�ne Form

It turns out to be more convenient to work with a sum of networks for this kind
of problem rather than its existing form. This is called "a�ne form" as the
capacity of each arc on an "a�ne network" is an a�ne function of a "scaling
variable". It will become clear later why this transformation is useful.

First, note that by de�nition of utilization ( 45), if T = Ut(LO + U,N) for
some load function ( 43) LO and u�ow ( 47) U , then Ut(LO + U, TN) = 1.
This is then starting to look like a max �ow problem, but that LO being added
makes it not quite the same. It would be nice if we could modify the problem
to get U on its own.
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De�nition 55. An a�ne network problem consists of two networks ( 42),
Nb, Ns (the base network and scaled network), with the same underlying digraph,
a source s, sink t, and a goal value G.

The objective is to �nd the smallest X ≥ 0, such that there exists a �ow
( 46) F , from s to t, on the network X · Ns + Nb, with value G. Since each
weight in X ·Ns+Nb is an a�ne function of X, the scaling variable, it is called
an a�ne network problem.

It might be unclear how this kind of problem relates to the obstructed net-
work problem we've been looking at in this subsection, but it turns out that
every obstructed network problem has an equivalent a�ne network problem.

Theorem 13. Any obstructed network problem ( 54) can be converted to an
a�ne network problem ( 55), and the resulting X and F can be converted to
the minimum utilization and u�ow that gives that minimum utilization of the
original problem.

Proof. First, assume that N has no zero arcs (this can be done without loss of
generality, since zero arcs can't have �ow or load). Let K = Ut(LO, N). This
means that, ∀a ∈ A, LO(a)

w(a) ≤ K. Multiply both sides by w(a), LB(a) ≤ K ·w(a),
then subtract LO(a), to get 0 ≤ K · w(a) − LO(a). Since the right hand side
is never negative, it can be a capacity function of a network with the same
underlying digraph as N . Hence, de�ne wb(a) = K · w(a) − LO(a) as the
capacity function for a network Nb.

Next, consider the goal of the problem, which is to �nd a u�ow U , with
source s and sink t, such that 〈U〉 = G, and T = Ut(LO +LU , N) is as small as
possible. Use the de�nition of utilization to turn this into:

∀a ∈ A, LO(a) + LU (a)

wN (a)
≤ T

De�ne X = T −K, to replace T with X +K, and multiply both sides by w(a).

∀a ∈ A,LO(a) + LU (a) ≤ X · w(a) +K · w(a)

Subtract LO(a) from both sides, and note that K · w(a)− LO(a) = wb(a).

∀a ∈ A,LU (a) ≤ X · w(a) + wb(a)

Finally, notice that this means that U is a �ow on X · N + Nb, with source s,
sink t and value G. Since T = X +K, �nding minimal X is the same as �nding
minimal T , and hence the problems are the same (after renaming N to Ns).

Note that for an a�ne network problem, if 6 ∃a ∈ A : ws(a) = 0, which is the
case for an a�ne network problem from an obstructed network problem, then
∀ε > 0, a ∈ A,X ≥ 0, (X + ε)ws(a) + wb(a) > X · ws(a) + wb(a). This means
that the value of a maximum �ow on (X + ε)Ns + Nb is larger than the value
of a maximum �ow on X ·Ns +Nb.
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De�nition 56. V (X), for an a�ne network problem ( 55), is a function of
a non-negative scaling parameter X, to the value on the maximum �own on
X ·Ns +Nb.

This can be de�ned also with the Meta Value Function ( 50) as

V (X) = V(X ·Ns +Nb, s, t)

The goal is to �ndX such that V (X) = G (if it is not the case that V (0) ≥ G,
as will be assumed going forward). The Max Flow Min Cut theorem (Thm 6)
says that V (X) = minc∈Ct

{∑
a∈c [X · ws (a) + wb (a)]

}
, where Ct is the set

of all minimal arc cutsets that separate s from t. This can be combined with
V (X) = G to obtain:

∀c ∈ Ct,
∑
a∈c

[X · ws (a) + wb (a)] ≥ G

∀c ∈ Ct,X
∑
a∈c

[ws (a)] ≥ G−
∑
a∈c

[wb (a)]

Assuming that ws is zero nowhere, as can be assumed if the a�ne problem
comes from an obstructed network problem:

∀c ∈ Ct,X ≥
G−

∑
a∈c [wb (a)]∑

a∈c [ws (a)]

X = max
c∈Ct

{
G−

∑
a∈c [wb (a)]∑

a∈c [ws (a)]

}
This leads to an exact solution, but is very ine�cient, as Ct is huge for all but
the most trivial graphs.

4.2 The Derivative of the Value Function

In this paper, I will be using the right side derivative as the derivative, as it has
some useful properties when working with �ows. This means that the derivative
of the value function ( 56), V ′(X) is de�ned as:

V ′(X) = lim
ε→0+

(
V (X + ε)− V (X)

ε

)
However, while this does have a value by the prior de�nition, a graph theoretic
way of computation is not obvious.

To help with this, it is useful to de�ne a function, f(X), which takes in
the scaling variable X and outputs a maximal, circulation free ( 49) �ow on
X ·Ns +Nb with source s and sink t. Notice that, ∀Y > X ≥ 0, Y ·Ns +Nb is
an "expanded network" compared to X ·Ns +Nb. By the Expanded Network
Theorem (Thm 10), if FX was a max �ow on X · Ns + Nb, then there would
exist FY that follows all the conditions set by that theorem.
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De�nition 57. For an a�ne network problem ( 55), the �ow meta function,
f(X) is de�ned such that:

1. ∀X ≥ 0, f(X) is a max �ow on X ·Ns +Nb (with source s and sink t).

2. ∀Y > X ≥ 0,∀a ∈ A,Lf(Y )(a) ≥ Lf(X)(a)

Example 31. First, consider the following a�ne network problem, looking at it
as X ·Ns+Nb. This way, you can more easily see how the network will change
as X increases.

3 1+X

2
3X 1+2X

3

X

1

Figure 54: The sum of the networks for generic X, with yellow source and blue
sink.

Note that the only value of X where the second condition of the �ow meta
function does not apply is at X = 0. So, any maximum �ow on Nb is a valid
f(0). Here are two.
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1
1 1
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(a) fA(0)
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3

0

1

1
0 1

01
0

1 1

(b) fB(0)

Figure 55: Both of these are valid beginnings to their own �ow meta functions.

While fA(0) is the one you would �nd by Dinic's Algorithm (Ex 30), both
of them are completely valid maximal �ows. Consider then, what happens where
X = 1 next. There's nothing inherently special about X = 1, we could pick any
rational bigger than zero.
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(b) fB(1)

Figure 56: While fA(1) is a valid successor to fA(0), fB(1) is not and vice versa.

Take a look at how every arc in fA(1) has the same load or more than it had
in fA(0), and the same for fB(1) and fB(0). But, importantly, there are arcs of
fA(0) which are bigger than fB(1), and the same is true for fB(0) and fA(1).

To be sure we're computing valid successors, we can use a key step in the
Expanded Network Theorem (Thm 10), and look at the residuals of X · Ns +
Nb− fA(0) and X ·Ns+Nb− fB(0). Then, realize that any �ow on those, plus
the corresponding f(0) would be a valid f(x).

2 x

2
3x 1+2x

2

x

1

(a) X ·Ns +Nb − fA(0)

2 x

1
3x 2x

3

x

0

(b) X ·Ns +Nb − fB(0)

Figure 57: While both of these residuals have the same max �ow for every X,
their �ows are di�erent.

These are useful if you have an f(0) already, and wish to �nd a later entry.
But, sometimes, you might not be interested in the �ow meta function below
a particular non-zero value. While these aren't truly "�ow meta functions", it
may be easier in some cases to not compute f(0) �rst. As an example, consider
fC(1) below.
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Figure 58: Note that the fuchsia load number is impossible if it is built o� a
max �ow on Nb, as all �ows on Nb that have non-zero value must use that arc.

Despite the fact this wouldn't be valid for a "true" �ow meta function, if
X ≥ 1, it can act like one. This can be called a "partial" �ow meta function,
where the lowest valid X is greater than zero. Usually, these aren't needed, as
techniques that use �ow meta functions tend to start with X = 0.

The residuals for the f(0) case are useful, but plugging that technique in di-
rectly for anything higher could lead to parts where the residual of Nb is negative.
To correct this, let y = X − 1, and only consider y ≥ 0. In general, the residual
after f(T ) is (y + T )Ns +Nb − f(T ), where X = y + T . With this in mind, we
can compute the following residuals:

1 y

2
2+3y 2+2y

1

y

1

(a) (y+1)Ns+Nb−fA(1)

2 y

0
1+3y 2y

3

y

0

(b) (y+1)Ns+Nb−fB(1)

3 y

0
3y 2y

3

y

1

(c) (y+1)Ns+Nb−fC(1)

Figure 59: These are valid, as the constant part is never negative.

From that, we can �nd fA(2),fB(2), and fC(2). Notice how the change in
value between this and f(1) is less than the change between f(1) and f(0). This
re�ects that the �ow has become more constrained by Nb now.
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(c) fC(2)

Figure 60: Each is a valid successor to their own line, but not to any of the
others.
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Finally, remember that it is de�ned over all the positive rationals (or all
rationals greater than or equal to 1 in fC 's case), not just the integers shown
here.

With this, comes an alternate de�nition of the value function ( 56) as V (X) =

〈f(X)〉. From this we get V ′(X) = limε→0+

(
〈f(X+ε)〉−〈f(X)〉

ε

)
which at �rst

doesn't look much better until one realizes that, by property 2 of the Flow Meta
Function ( 57) and the Expanded Network Theorem (Thm 10), one can de�ne
f(X+ε) as f(X)+εF (X, ε), where εF (X, ε) is a max �ow on (X+ε)Ns+Nb−
f(X) and hence, F (X, ε) is a max �ow on Ns+Nb−f(X)

ε + Ns This means that

V ′(X) = limε→0+

(
〈εF (X,ε)〉

ε

)
, which simpli�es down to limε→0+(〈F (X, ε)〉).

This is why I had the ε in the �rst place. This is only possible with the right
side derivative, because the converse of the expanded network theorem is not
true.

To prove this limit exist and then compute it, begin with de�ning a set of
arcs, B which includes all arcs a for which X · ws(a) + wb(a) − Lf(X)(a) > 0.
Note that, since f(X) is a max �ow on XNs + Nb, there exists at least one
minimal cutset c, for which B ∩ c = ∅. Let Nu, where u stands for "unit", be
a network with the same underlying digraph as Ns with the weight/capacity

function, wu(a) =

{
1 if a ∈ B
0 if a 6∈ B . Let wq(a) = X · ws(a) + wb(a) − Lf(X)(a)

for notation ease.
Since the set of arcs in B is �nite, one can pick 0 < KL ≤ KH (K low and

high) such that, ∀a ∈ B,KL ≤ wq(a) ≤ KH . So, for any ε > 0, KH

ε Nu+Ns is a

bigger network than Nq

ε +Ns, and
Nq

ε +Ns is a bigger network than
KL

ε Nu+Ns.
Therefore,

lim
K→∞

(V(KNu +Ns)) = lim
ε→0+

(
V
(
Nq
ε

+Ns

))
if the �rst limit exists and is �nite by the squeeze theorem and the Expanded
Network Theorem (Thm 10).

To prove the �rst limit is �nite, �rst note that by the Expanded Network
Theorem (Thm 10), if K2 > K1 then V(K2Nu +Ns) ≥ V(K1Nu +Ns). Then,
by Max Flow Min Cut (Thm 6) and that there exists at least one minimal cutset
c′, where wu(c′) = 0, it must be true that ∀K > 0,V(KNu +Ns) ≤ ws(c′).

Consider letting K = ws(c
′). Then, V(KNu+Ns) = minc∈Ct{ws(c′)wu(c)+

ws(c)}. Since wu(c) by de�nition can only be a non-negative integer for any set
of arcs, ws(c′)wu(c) + ws(c) ≥ ws(c

′) unless wu(c) = 0. Therefore, any cutset
with an element of B in it can be ignored, as they are at least as large as ws(c′).
Finally, note that this argument works for any K > ws(c

′) as well, so after
ws(c

′), the limit is constant on a �nite value.
Imagine then, solving the max �ow problem on the "network" ∞Nu + Ns.

Since the value of the �ow is �nite, the load on every arc is �nite, so there exists
a �nite K such that the �ow you found is a �ow on KNu+Ns. Then, there is a
ε > 0 such that Nq

ε +Ns is a bigger network than KNu +Ns, so it is the limit,
and hence f ′(X).
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Example 32. To compute the derivative of a �ow meta function, we need both
an a�ne network problem and a de�ned f(X) for the derivative we want to
compute.

3 1+X

2
3X 1+2X

3

X

1

(a) The a�ne network

3
1

2
0 1

3

0

1

1
1 1

00
0

0 0

(b) f(0)

Figure 61: What we need to compute an f ′(0).

Note that there can be more than one f ′(X) for any X. These all will
have the same value though, so for now, it does not matter which we compute.
Next, look at the residual, highlight the elements of B (the arcs where wb(a) −
Lf(0)(a) > 0 ), and "make" ∞Nu +Ns.

2 x

2
3x 1+2x

2

x

1

(a) Blue arcs are in B

∞ 1

3 1

∞

∞

∞

∞

(b) The limit of KNu +Ns as K →∞

Figure 62: The second "network" does not truly exist, but is useful for compu-
tation.

Throwing caution to the wind, press on with Dinic's algorithm, to get the
following level network and blocking �ows.
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(a) Our level network, red arcs are ex-
cluded, capacities hidden for clarity

∞ 1
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∞

∞

(b) Each path has its own color

Figure 63: Remember that the maximum �ow is 2, because of the cutset around
the sink.

Since 1 across both of those paths is enough to block it, we're done immedi-
ately and our f ′(0) is:

∞ 1

3 1

∞

∞

∞

∞

1
1

1

111

0 0

Figure 64: Shown on the in�nite "network".

Again, realize that one could �nd other maximum �ows on this in�nite net-
work, but all of them will have value 2.

Since the value function, V (X) is non-decreasing and has non-increasing
slope, since the minimum of a�ne functions must be convex, ∀Y > X, V (Y ) ≤
V (X) + (Y −X)V ′(X). Then by the de�nition of f ′(X), V ′(X) = 〈f ′(X)〉. So
the value of f(X) + εf ′(X) is V (X) + εV ′(X). So, if f(X) + εf ′(X) is a �ow
on (X + ε)Ns +Nb, then it must be a max value �ow.

4.3 The Derivative Methods

With this derivative, the knowledge that V (X) is made of a minimum of increas-
ing a�ne terms, and a goal value, we can use this to �nd a way of getting to the
answer or close to the answer faster than the cutset based "direct method". All
of these methods are guaranteed to converge in �nite time, but each has their
own strengths and weaknesses.
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4.3.1 Modi�ed Bisection Method

Because V (X) is non-decreasing (and in all cases from Obstructed Network
Problems, increasing), the Bisection Method will work, but, as is common with
the bisection method, there is no guarantee the exact answer will be reached.
This can be shown by trying to �nd the inverse of 1

3 with the function f(x) = x
on the range [0, 1]. Every guess by the bisection method must have a denomi-
nator that is a power of 2, and there is no fraction with a denominator that is
a power of 2 that equals 1

3 .
With this in mind, how can one improve this searching method, with the

properties of V (X)? A �rst thing to note is that, since the function is convex,∀z ∈
[X,Y ], V (z) ≥ V (Y )−V (X)

Y−X (z−X) + V (X), with equality when the slope is con-
stant over the range. Since the slope of V (X) is non-increasing, then ∀z ≥
X,V (z) ≤ V ′(X)(z − X) + V (X), with equality if V ′(z) = V ′(X). So, from
this, we can �nd a "low" and "high" estimate, xL and xH , where V (xL) ≤ G
and V (xH) ≥ G. Notice, that if the two estimates are the same, the slope over
the range is constant, and hence, the solution is xL = xH . This means that if
our range is narrowed down to two points with the same slope, the very next
step will be the solution.

These two observations are key to the improvement to the generic Bisection
Method that can be used in this case.

Suppose that we know V (L) < G < V (H). Then, by the the properties of the
value function before, V (XL) ≤ G = V ′(L)(XL−L)+V (L) ∴ XL = G−V (L)

V ′(L) +L

and then V (XH) ≥ G = V (H)−V (L)
H−L (XH −L)+V (L) ∴ XH = (G−V (L))(H−L)

V (H)−V (L) +

L. Note that since the function is increasing, and V (XL) ≤ G ≤ V (XH),
the answer must be at the endpoints or in the middle. Average them to get,

XM = XL+XH

2 = G−V (L)
2

(
1

V ′(L) +
H−L

V (H)−V (L)

)
+ L, which cuts the range in

half. Check V (XM ). If it is less than G, then check V (XH). If that is greater
than G, now you can have XM , XH as a new range to check. Likewise, if
V (XM ) > G, then check V (XL). If that is less than G, your range is now
XL, XM . If you �nd that one of them equals G, you are done.

Now, notice that if V (XL) < G at any step, then
∫XL

L
V ′ (t) d t < G−V (L).

Dividing both sides by XL − L to get the average slope over the region results
in the right hand side of the equation being G−V (L)

XL−L , which given that XL =
G−V (L)
V ′(L) +L, means this simpli�es to V ′(L). But since the average must be less

than V ′(L), and can never increase, at some point P ∈ [L,XL], V ′(P ) < V ′(L),
so V ′(XL) < V ′(L). Finally, note that since the number of cutsets is �nite, the
number of possible slopes for the value function is �nite, so the method must
terminate.

However, it might not terminate quickly, so it's also useful to see how much
smaller the range for the next step would be compared to the �rst step.

XH −XL

H − L
=
G− V (L)

H − L

(
H − L

V (H)− V (L)
− 1

V ′(L)

)
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=
G− V (L)

V (H)− V (L)

(
1− V (H)− V (L)

V ′(L) (H − L)

)
<

G− V (L)

V (H)− V (L)
< 1

Finally, note that since XM is halfway between these, so the next steps range is
half this value. So the range is improving more rapidly than with pure bisection.

The one loose end to tie up is how to �nd the initial L and H. Set L = 0.
If V (0) ≥ G, then that's the answer as the scaling constant can't be negative.
Otherwise, continue. Note that ∀X > 0,V(XNs) + V (0) ≤ V (X), because
XNs + Nb − f(0) is an expansion of network XNS , so by the expanded net-
work theorem, the max �ow on the bigger network can't be smaller. So, since
V(XNs) = XV(Ns) for any positive X, let H = G−V (0)

V(Ns) , and this ensures that
V (H) ≥ G. Then, proceed on with �nding XL, XH and XM like any other step,
or take XH = H. Computing XH in the �rst step does involve an additional
�ow calculation, but it narrows the search range more than letting it equal H.
I do not know which is faster in general.

If Fs is a max �ow on Ns, then V (X) = X 〈Fs〉 + V (0) + V(X(Ns − Fs) +
Nb − f(0)). While this may look more complicated, the network X(Ns − Fs) +
Nb−f(0) may have more zero arcs on it, making the max �ow calculation faster.
In the example below, I will not use this as it makes the computation less clear,
but for implementation, there's very little reason not to go for it.

Example 33. First, examine our networks together, as in the prior example,
combined together. The goal is to �nd the smallest X where a �ow with value
20 exists on XNs +Nb between the yellow source and blue sink.

2X+1

2X 3X

X+3

X+2 X

2X+4

X+2

Figure 65: XNs +Nb

I designed this example so that the answer is X = 5. If you want, compute
the network where X = 5, and the maximum �ow on it, to see that equals 20.

Since it is the �rst step, our L = 0. The �rst objective is to test the �ow
there. If it is 20 or above, the answer is X = 0.
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Figure 66: The maximum �ow on Nb is 1.

Since this is less than 20, we continue by �nding the maximum �ow on Ns
to allow us to compute our H.

2

2 3

1

1 1

2

1

1
1

1

1

2

22

0

Figure 67: The maximum �ow on Ns is 3.

Now, to get H, remember that V (X) ≥ V (0)+XV(Ns). So, in this case, H
must be such that 1+3H = 20 ≤ V (H). This means H = 19

3 . For this example,
let XH = H in the �rst step. This way, we have one fewer �ow to compute.

To get XL, we must �nd V
′(0). We can compute this by �nding the maximum

�ow on an in�nite "network", like in Ex 32.

2

2 3

1

2
2

0

2

2

22
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∞

∞

∞

∞

Figure 68: The maximum �ow on this "in�nite network" 4.
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Notice that, despite all the in�nite values, the smallest cutset, the one by
the source, has the same sum as our value, so this is a max �ow. Now, because
V (X) is convex, V (X) ≤ V (0)+XV ′(0) so XL must be 1+4XL = 20 ≤ V (XL)
so XL = 19

4 .

Next, compute XM . XM = XL+XH

2 = 19
2 ( 1

4 + 1
3 ) = 5 + 13

24 . Notice how this
is just a bit bigger than 5. And, if we didn't take the XH = H shortcut, our high
would be lower, so XM might be even closer. Try now to compute the maximum
�ow at 5 13

24 (all capacities and �ow amounts are shown as mixed numbers).

12 1
12

8 13
24

15 1
12

7 13
24

11 1
12

7 13
24

5 13
24

10 13
24

8 13
24

16 5
8

14 1
12

2

13 1
12

11 1
12

5 13
24

7 13
24

Figure 69: Since the value of 21 5
8 is larger than the goal, XM is our new H.

Now we are in the second stage, where our bounds are L = XL = 4 3
4 and

H = XM = 513
24 . First compute f(L), then f ′(L), to get our V (L) and V ′(L)

respectively.

14 1
4

10 1
2

7 3
4

9 1
2

6 3
4

13 1
2

6 3
4

4 3
4

9 3
4

7 3
4

12 1
2

4 3
4

9 1
2

11 1
4

6 3
4

2

Figure 70: The value is 19 1
4 , so the answer is greater than L.
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Figure 71: The slope of V (X) has dropped to 3, the lowest possible slope.

We know that 3 is the lowest possible as the derivative network is an expanded
network of Ns, so by the Expanded Network Theorem (Thm 10), the maximum
�ow on the derivative network is not less than the maximum �ow on Ns.

Now, we can compute our new XL and XH .

XL =
G− V (L)

V ′(L)
+ L =

20− 19 1
4

3
+ 4

3

4
=

3

4 · 3
+ 4

3

4
= 5

We know that X = 5 is the actual answer, but let's continue with computing
XH as we would if we didn't know.

XH =
(G− V (L))(H − L)

V (H)− V (L)
+ L =

(20− 19 1
4 )(5

13
24 − 4 3

4 )

21 5
8 − 19 1

4

+ 4
3

4

Multiply the top and bottom of the left hand fraction by 8.

=
(3)(11 1

12 − 9 1
2 )

19
+ 4

3

4
=

3(24− 5)

19 · 12
+ 4

3

4
= 5

Since both estimates are the same, our solution is X = 5.

4.3.2 Derivative Marching

While modi�ed bisection is very useful for �nding a particular X for a given
goal G, it does not help if the goal changes but the networks do not. It also does
not take advantage of the fact �nding V ′(X) gives information about V (X + ε)
for ε su�ciently small. One way to map out the whole f(X) metafunction is by
"marching" along each f ′(X) found.

Start with f(0), then �nd a f ′(0). It turns out that the f ′(0) we �nd may
not be unique, as there can be several �ows with the same value. Find the
maximum value of ε1 for which f(0) + ε1f

′(0) is a �ow on εNs + Nb. Let
X1 = ε1 + 0, as ε1 is the amount we can move forward from our starting
point of X = 0. Because the slope does not change on the range X ∈ [0, X1],
then V (X) = 〈f(0)〉 + X 〈f ′(0)〉. If G−V (0)

V ′(0) ∈ [0, X1], then x = G−V (0)
V ′(0) is the
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solution, and the �ow is f(0) + xf ′(0). Otherwise, continue to the next step,
with N1 = f(X1) = f(0) +X1f

′(0).
At step n, f(Xn) is known, and it has value Nn. Find f ′(Xn), and �nd

εn+1, the largest number such that for which f(Xn) + (εn+1)f
′(Xn) is a �ow

on (Xn + εn+1)Ns + Nb. Call Xn + εn+1 = Xn+1 Then, ∀X ∈ [Xn, Xn+1],
V (X) = Nn+(X−Xn)V

′(Xn). If x = G−V (Xn)
V ′(Xn) +Xn is on the range [Xn, Xn+1],

this x is the solution. Otherwise, continue with the n+ 1 step.
If at any point, a f ′(Xn) is a �ow on Ns, then the Xn+1 is e�ectively in�nite,

and the method terminates. This is because for such a f ′(Xn), ∀X > 0, a ∈
A,XLf ′(Xn)(a) ≤ Xws(a). Add Lf(Xn) ≤ Xnws(a) + wb(a) to both sides to
get XLf ′(Xn)(a) +Lf(Xn) ≤ (X +Xn)ws(a) +wb(a) for all positive X. Letting
Xn+1 = X +Xn, we get (Xn+1)Lf ′(Xn)(a) + Lf(Xn) ≤ Xn+1ws(a) + wb(a) but
this it true for any Xn+1, so for all X > Xn, f(X) = f(Xn) + (X −Xn)f

′(Xn)
and hence the whole f(x) function, and hence the whole V (x) function, is known.

There are a few obvious weaknesses to this approach, such as that if G
is large, this method will spend a lot of time marching through areas that are
irrelevant for the purpose of �nding G. This method also does not give an upper
bound on X, only a lower bound. This means that early termination (that is,
before the exact X is found) will not give good guesses. You can convert from
a �ow with value approximately equal to G to a u�ow with value G for the
original problem, but it will not be the most optimal. However, in cases where
time is limited, re-scaling a �ow with value almost equal to G is much better
than returning nothing.

However, one less obvious weakness of this method is that it is possible for
the bound on number of steps to reach the size of Ct, rather than the (potentially
smaller) size of the number of slopes of V (X). Note the use of the phrase "it is
possible". This is because the particular f ′(Xn) can matter.

Example 34. While all maximum �ows on a network have the same value (by
de�nition), this does not mean that marching using each of them is the same.
Below, is the network we will consider. As always, yellow is the source, blue is
the sink, and XNs +Nb is shown.

3XX+1

3X X+3

Figure 72: This is a very simple network to clarify visualization.

Notice, �rst of all, that the maximum �ow when X = 0 has value zero, so
f(0) is zero on every arc. Then, consider the three following f ′(0). All of them
are valid, as they block any more �ow, but do so in di�erent ways.
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would �nd
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(c) This �ow seems to be
found arbitrarily

Figure 73: All three of these are maximum �ows, and can be considered f ′(0).

Now, applying the "marching" step, the �rst one can go to X = 1
2 , the second

to X = 3
2 , and the last works until X = 4. For each �ow, notice that they are

a maximum �ow, of the form Xf ′(0), for their own X value.
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(c) Value: 12

Figure 74: Each of these �ows are shown at largest scaling where they are a
�ow.

Next, why are these the largest they can go? Consider (X + ε)f ′(0) on the
network Nb + (X + ε)Ns. Note that there's now too much �ow on the red arcs.

1.5+3ε 1.5+ε

1.5+3ε 

3.5+ε 
0

0

1.5+3ε 1.5+3ε

(a) Note how the red arc
needs to be 2ε bigger.

2.5+ε

4.5+3ε
4.5+ε

0

4.5+3ε

4.5+3ε

4.5+3ε

4.5+3ε

(b) Note how the red arc
needs to be 2ε bigger.

5+4ε

12+12ε

7+4ε

5+5ε 12+12ε

7+7ε

12+12ε

7+7ε
ε mulitplied by 4 to 
clear the fractions.

(c) Epsilon has been mul-
tiplied by 4 to clear the
fractions

Figure 75: Each of these are no longer a �ow.

This proves that each of them can only go so far before a new derivative is
calculated.

Then, the question is, how would you �nd these best derivative �ows in
general? Unfortunately, I do not know of a good method. I computed the third
example by seeing what combination of the two paths was best, but this is relies
on already knowing the optimal solution.
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However, note that the bad f ′ still saturated a cutset of XNs + Nb for its
maximum X, and this is guaranteed for any f ′. This guarantee is because if it
didn't, it wouldn't be at the maximum X for it. So, there can't be more steps
than minimal cutsets.

4.3.3 Marched Search

While Derivative Marching is not an ideal method for many cases, it does have
some computational advantages, such as how each step only involves solving
one �ow problem, while the Modi�ed Bisection Method requires three (value at
L or H (depending on which is known), slope at L, value at XM ) per step. It
would be nice if you could know which one was best for the problem ahead of
calculation.

Begin with a state with known L and H, where V (L) < G < V (H), like in a
middle step of the MBM. Calculate XL, XH , XM like normal, but also calculate
Xs, the "step X", which is the maximum value for which f(L) + (Xs −L)f ′(L)
is a �ow on XsNs + Nb. If Xs ≥ XL, then XL is the answer, as the slope is
constant on the range [L,Xs]. Otherwise, test V (XM ). If this value is less than
or equal to G, then proceed as normal, either terminating or setting the new
range to XM , XH . However, if V (XM ) > G, then make the test range Xs, XM .
While this is a larger range, it has the advantage that f(Xs) is already known,
so the next step only requires two �ow problems to be solved: �nding f ′(Xs)
and V (X ′M ) where X ′M is the XM of the next step.

This marching can even be used to improve the bounds on the �rst step,
since ∀X ≥ Xs, V (X) ≥ V (Xs) + (X −Xs)V(Ns), which is a bigger value than
V (0)+XV(Ns) as XsV(Ns)+V (0) < V (Xs). So the initial XH = G−V (Xs)

V(Ns) +Xs

is smaller than G−V (0)
V(Ns) which is used in MBM.

Of course, it might be also useful to sometimes make a "judgment call" on
if Xs or XL would be more e�cient for a lower bound, but that is something I
have not tested, and will leave up to the reader if there is a way to "tell" which
one is more e�cient in a particular step. Since computing Xs is only O(A) in
complexity, and can potentially avoid computing a �ow or potentially solving
the problem a step early (if Xs ≥ XL), which are on the order of O(V 2A), it is
worth considering.

5 Multi-Flow Problems

All �ow problems up to this point have involved a single pair of source and sink.
These are called single �ow problems, and are much easier than the topic the
paper has been leading up to, a particular multi-�ow problem.

In a multi-�ow problem, there is more than one pair of source and sink, and
the sum of the load functions for each �ow must be kept below the capacity of
the arcs of the network. If one �ow is maximized, another may be blocked, which
leads to signi�cantly more complexity. This kind of "blocking" should remind
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you of the Obstructed Network Problem, but in this case, the obstructions are
other �ows.

5.1 Topic of Paper

The primary question of this paper, sometimes referred to as "Load Balancing",
has k �ows to balance.

Given, on a network N , sequences of k sources (s1, s2, . . . , sk), k sinks
(t1, t2, . . . , tk), and k goal values (G1, G2, . . . , Gk), �nd a sequence of k u�ows,
U1, U2, . . . , Uk, where Ui has source si, sink ti, and value Gi, such that the
utilization of their sum is as small as possible.

A physical interpretation of this kind of optimization can be taken by con-
sidering a factory, where di�erent components need to reach di�erent parts of
the factory in a particular ratio. Minimizing the utilization then, is ensuring
that one unit can be made as quickly as possible.

5.1.1 K=1

First, let's consider the case where there is only one request. Let N be a network
( 42), s be the source node, t be the sink node, and G > 0 be the goal value.
Notice that if G = 1, by Thm 12, this is equivalent to �nding a maximum �ow
on N , then scaling the u�ow to have value 1.

If G 6= 1, then consider the network N ′ = 1
G · N . On this network, �nd a

maximum �ow (call it F ′), and use Thm 12 to convert it to the u�ow with
minimum utilization and value 1. Call this u�ow U ′. Then, set U = G ·U ′. It is
true that Ut(U,N) = Ut(U ′, N ′), 〈U〉 = G, and U ′ is the u�ow with minimum
utilization on N ′ with value 1. Hence, there doesn't exist a u�ow with value G
on N with a lower utilization.

Finally, note that since F ′ is a �ow on N ′, then F = G · F ′ is a �ow on
N . Since F ′ is a maximal �ow on N ′, 6 ∃f ′ : 〈f ′〉 > 〈F ′〉 (with f ′ on N ′, and
between the same endpoints). Imagine, for sake of contradiction, that f is a
�ow on N , where 〈f〉 > 〈F 〉. Scale the �ow f and network N by 1

G , and this
statement leads to a contradiction that F ′ is a maximal �ow on N ′. Therefore,
F is a maximal �ow on N , and hence U = G

〈F 〉 · F is the solution.

5.1.2 K=2

So, how much harder is having two �ows than one? Well, it can be... Quite a
bit harder. A simple, four node network will show how hard it is.

Example 35. Let's try to solve a general form for a particular network
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s1 t1

s2

t2

Figure 76: The Network I'll call N. The arcs can be described by the nodes they
connect, as it is strict ( 29).

Now, consider all the dipaths from s1 to t1. All circulation free �ows ( 49)
are the sum of the �ows across dipaths.

s1 t1 s1 t1

α1

s1 t1 s1 t1 s1 t1

α2 α3 α4 α5

Figure 77: The Five paths from s1 to t1. We'll use those constants as the value
on each path.

Given that de�nition of the αi values, 〈U1〉 =
∑5
i=1 αi. Next, do the same

for s2 and t2

s2

t2

β1 β2 β3 β4 β5

s2

t2

s2

t2

s2

t2

s2

t2

Figure 78: The Five paths from s2 to t2. We'll use those constants as the value
on each path.

Again, by de�nition, 〈U2〉 =
∑5
i=1 βi.
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Next, let's �nd the limits placed by the utilization:

α1 + β4 ≤ c (s1, t1) · Ut
β5 ≤ c (t1, s1) · Ut

α4 + β1 ≤ c (s2, t2) · Ut
α5 ≤ c (t2, s2) · Ut

α2 + α4 ≤ c (s1, s2) · Ut
β2 + β4 ≤ c (s2, s1) · Ut
β3 + β4 ≤ c (t1, t2) · Ut
α3 + α4 ≤ c (t2, t1) · Ut

α3 + α5 + β2 + β5 ≤ c (s1, t2) · Ut
α2 + α5 + β3 + β5 ≤ c (s2, t1) · Ut

This can be simpli�ed to the following linear equation, letting ⇀ K be some
vector with entries between 0 and 1 inclusive and diag() creating a matrix with
the vector as the diagonal.

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 1
0 1 0 0 1 0 0 1 0 1



[
~α
~β

]
= Ut · diag( ~K)



c (s1, t1)
c (t1, s1)
c (s2, t2)
c (t2, s2)
c (s1, s2)
c (s2, s1)
c (t1, t2)
c (t2, t1)
c (s1, t2)
c (s2, t1)


For ease of notation, this can be represented as M

[
~α
~β

]
= Ut

(
diag( ~K)~C

)
.

IfM was non-singular, we could reverse the equation to get the allowed alpha
and beta vectors by trying di�erent values for ~K. This would look like:[

~α
~β

]
= Ut

(
M−1

(
diag( ~K)~C

))
However, M is a singular matrix, so this inversion is impossible.

SinceM is singular, there exists a non zero vector (and scalar multiplications
of it) ~z, such thatM~z = ~0. This ~z =

[
1 −1 −1 1 0 −1 1 1 −1 0

]ᵀ
Hence, M

([
~α
~β

])
=M

([
~α
~β

]
− α1~z

)
. Note that the vector multiplying the

matrix, ~v, has a zero �rst row, so as long as some matrix M ′ has all but the
�rst column the same, M~v = M ′~v. We can then pick an M ′ such that it is
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invertable. My choice for this M ′ is:

M ′ =



0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 1 1 0
−1 0 1 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 1
−1 1 0 0 1 0 0 1 0 1


Using the inverse of this matrix results in:

~v =
Ut

3



0 0 0 0 1 −1 1 −1 1 −1
3 −3 0 −3 1 −1 −2 −1 1 2
3 −3 0 −3 −1 −2 −1 1 2 1
−3 3 0 3 1 2 1 2 −2 −1
0 0 0 3 0 0 0 0 0 0
3 −3 3 −3 −1 −2 −1 −2 2 1
−3 0 0 0 0 3 0 0 0 0
−3 0 0 0 −1 1 2 1 −1 1
3 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0


( ~K ⊗ ~C)

Then, this can be simpli�ed given that the top row must be zero, giving:

~v = Ut



0 0 0 0 1 −1 1 −1 1 −1
1 −1 0 −1 0 0 −1 0 0 1
1 −1 0 −1 0 −1 0 0 1 0
−1 1 0 1 0 1 0 1 −1 0
0 0 0 1 0 0 0 0 0 0
1 −1 1 −1 0 −1 0 −1 1 0
−1 0 0 0 0 1 0 0 0 0
−1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0


( ~K ⊗ ~C)

Next, use T for that matrix, and turn ~v back into

[
~α
~β

]
.

[
~α
~β

]
= Ut (T ) ( ~K ⊗ ~C) + α1~z

Next, set the goal for �ow 1 to 1, and the goal of �ow 2 to g ∈ (0, 1]. This makes
the problem into �nding ~K and α1 ≥ 0 such that Ut is as small as possible,
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given that:[
1
g

]
=

[
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

](
Ut (T ) ( ~K ⊗ ~C) + α1~z

)
and

(
Ut (T ) ( ~K ⊗ ~C) + α1~z

)
is negative nowhere and the top row of T ( ~K ⊗ ~C)

is zero.

5.2 When is this easy?

despite the complete change over, I still feel like this is a distraction,
but I'm giving it my best shot in this draft

Fortunately, there are times that some paths for a �ow are "free", that is,
they can be taken without obstructing any other �ow. Likewise, there are pairs
of paths which are "semi-free", where each path goes between a di�erent pair
of sources and sinks, and are the only overlap. For a semi-free pair, if one �ow
needs more than the other, it can take it, knowing it will only impact one other
path.

With this in mind, it is clear that the example above has no free paths or
semi-free pairs of paths, instead all being overlapped on top of each other. This
makes it so taking any source to sink path impacts the other �ow.

5.3 Bounds

Finally, before tackling my method for K > 1, starting with some easy bounds
is a way to see what to expect.

Theorem 14. An optimal solution for a list of sources (s1, s2, . . . , sk), sinks
(t1, t2, . . . , tk) and goal values (N1, N2, . . . , Nk), on a network N , cannot have a

higher utilization than Ut(
∑K
i=1 Ui, N), where Ui is a maximum e�ciency u�ow

from si to ti with value Ni.

Proof. Note that the optimal solution is the one with the lowest Ut(
∑K
i=1 Ui, N)

for some sequence of Ui. Hence, if the Ui as I de�ned it is a solution, an optimal
solution is the same or better. Finally, note that 〈Ui〉 = Gi, s(Ui) = si and
t(Ui) = ti for all i ∈ {1 . . .K}. This means it is a solution and by de�nition of
optimal, the optimal solution must be the same or better.

Theorem 15. An optimal solution for a list of sources (s1, s2, . . . , sk), sinks
(t1, t2, . . . , tk) and goal values (G1, G2, . . . , Gk), on a network N , cannot have
a lower utilization than maxi∈{1...K}{Ut(Ui, N)}, where Ui is a maximum e�-
ciency u�ow from si to ti with value Ni.

Proof. This will be a proof by contradiction. Let T = maxi∈{1...K}{Ut(Ui, N)},
with Ui de�ned as the theorem states.
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Assume, for sake of contradiction, there exists a sequence U ′i , where Ut(
∑K
i=1 U

′
i , N) <

T. By the Triangle Inequality for the utilization function (property 1),

max
i∈{1...K}

{Ut(U ′i , N)} ≤ Ut(
K∑
i=1

U ′i , N) < T

This means,

∀i ∈ {1 . . .K}, Ut(U ′i , N) < T = max
i∈{1...K}

{Ut(Ui, N)}

Choose i such that Ut(Ui, N) = T. Then, Ut(U ′i , N) < Ut(Ui, N). But this
contradicts that Ui is a maximum e�ciency u�ow with that source, sink, and
value. So, the sequence U ′i cannot exist.

Example 36. Consider the following network, where each source has a light
color (and is numbered with which �ow it belongs to) and each sink has a dark
color (again, with numbers). The goal value for each �ow is 6.

1 1

2

2

2

4

4
3

6

Figure 79: Notice that there are only two paths for each �ow from source to
sink.

Begin with the naive approach used with the upper bound, and �nd the max-
imum value for each �ow.
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2

4

4
3

6

3 3

6

(a) Since the value is 9, this �ow is scaled
by 2

3

2

4

4
3

6 2

4

4

(b) This �ow has value 6, so it is un-
changed

Figure 80: The maximum �ow for each pair of source and sink.

Then, add these �ows together, scaling the �rst �ow down to have a value of
6 instead of 9.

1 1

2

2

2

4

4
3

6

4

2

4

2

6

Figure 81: The dark red number is over capacity, making this solution have a
utilization of 1.5.

However, taking the �rst �ow and making it go only along the direct route
improves the utilization to 1, as seen below.
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1 1

2

2

2

4

4
3

6

4

6

2

4

Figure 82: Now that the second �ow only uses the direct path, the utilization
is 1.

This cannot be improved further, by the proof of the lower bound (Thm 15).

There are also cases where the upper bound is the best possible. The most
trivial version of this is a network where each pair is in a di�erent component
( 22), as in the �gure below.

1 1

2 2

1

1

Figure 83: Whatever goals are demanded, both bounds will be 1
max{G1,G2} .

However, the upper bound can be the best possible in situations where the
lower bound is smaller.

Example 37. Consider the following network, with the same conventions as
Ex 36. Again, the goal for each �ow is 6.
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1 1

2
2

12

8

6

4 6

12

12

Figure 84: Notice the single arc that connects the left and right sides together.

Begin with �nding the maximum value for each �ow.

8
12

12

8

6

4 6

12

12
12

4

4

(a) Since the value is 12, this �ow is scaled
by 1

2

6

12
12

8

6

4 6

12

12

6
12

6

(b) Since the value is 12, this �ow is scaled
by 1

2

Figure 85: The maximum �ow for each pair of source and sink.

Then, add these �ows together, and scale down by half so they have a value
of 6 instead of 12.

1 1

2
2

12

8

6

4 6

12

12
12

6

6

2

5

7

3

Figure 86: Notice that the arc connecting the two halves is fully saturated.

Because the middle arc is the only way to reach the sink from the source,
there is no way to avoid having 12 �ow across it. Therefore, the best possible
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utilization is 1.

5.4 Amulo's Flow-wise Fair Progressive Approximation

Algorithm

The Algorithm I've devised for the Load Balancing problem, AFFPAA, ap-
proximates an optimal solution by progressing one �ow at each step to lower
the utilization. The algorithm is "fair" as at each step, each u�ow has the re-
quested value, no more, no less. This means at any "stage" (discussed later), it
can be stopped to give an approximate answer, which is a clear advantage over
a linear programming based approach, where stopping the algorithm early may
result in load functions that are not u�ows.

AFFPAA begins with computing the maximum value �ow between each
source and sink, then scaling them to a u�ow with the goal value. These are
labeled U (0)

1 , U
(0)
2 , . . . , U

(0)
k , where U (0)

i is the u�ow from si to ti with value Gi
and minimum Ut(Ui, N). The upper index in parenthesis is the "stage" along
in the algorithm, and at the start of each stage is a solution to the problem, and
has a lower total utilization than the start of the previous stage. De�ne T(m)

to be the total utilization at the start of a stage, which is Ut(
∑k
i=1 U

(m)
i , N)

Advancing a stage begins by conducting "trials". For each trial, pick i ∈
{1 . . . k}. I will discuss di�erent ways of picking this i later, just know that
each i will be picked at most once. With the i picked, compute the sum of the
load functions of every other u�ow, LO =

∑k
j=1,j 6=i LU(m)

j
where m is the stage

number. This is the "obstruction" for an obstructed network problem ( 54).
Notice that the goal of an obstructed network problem, minimizing Ut(LO +
UO, N) (using UO instead of U to designate it's the obstruction problem version),
is the same as minimizing the total utilization, if UO has source si, sink ti, and
goal value Gi. This means that UO can "replace" U (m)

i in the next stage (if
chosen).

The optimal UO can be computed using any of the tools I discussed for
solving the obstructed network problem in that section of the paper. De�ne the
"trial utilization", T(m)

i , to be Ut(LO + UO, N). Notice that T(m)
i ≤ T(m), as

for UO = U
(m)
i , Ut(LO + UO, N) = T(m), so the best UO can't be worse. If

T(m)
i = T(m), we consider the trial to be a failure, as replacing U (m)

i with UO
will not improve the total utilization. Otherwise, the trial is a success, and we
"save" the UO from this trial as U ′(m)

i , for later consideration.
If all possible trials end in failure, the algorithm terminates, as it cannot

�nd a better solution from its current stage. Otherwise, trials will be conducted
until at least one success has been found. Depending on the variation of the
algorithm, it may begin this step as soon as the �rst success has been found, do
all possible trials, or something in between. Whichever case it is, let T(m)

i be
the lowest or tied for the lowest trial utilization. Then, the next stage, m + 1,
begins, with ∀j 6= i, U

(m+1)
j = U

(m)
j and U (m+1)

i = U ′
(m)
i .

Notice that T(m+1) = T(m)
i , which is the largest improvement found. This
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does mean that AFFPAA is greedy, taking the largest improvement it �nds for
each stage, that can be reached by improving one �ow at a time. It will also
never try an action that does not improve the existing state, and will try to
shape each �ow to the existing state as much as possible. While this is good
for initial improvements, it remains to be seen if there are situations where this
leads to �nding a local minimum.

Another note is that, if i was the improvement taken for stage m > 0, then
T(m+1)
i = T(m+1), so it is always a failure. This comes from the fact LO for i

did not change from last stage.

5.4.1 Choice of Trials

AFFPAA, as stated above, does leave two key steps open: Choosing trials, and
deciding to move to the next stage. This is because there are several ways to
go about these steps, where which one is best may be situational.

The �rst approach is the slowest, but will always �nd the largest improve-
ment: Try every i ∈ {1 . . . k}. This means the number of trials per stage is O(k)
(k in stage 0, k − 1 in each subsequent stage). There can be a large bene�t
of picking the best success instead of a sub-optimal one. Additionally, this ap-
proach can use multi-threading very e�ciently, as each trial can be performed
simultaneously.

The second approach is the fastest, but has the highest risk of missing a
useful move: conduct trials in an arbitrary order until a success is found. This
can be modi�ed for large k by waiting until a constant number of successes
are found, or no more trials can be done. With a "�rst success" method, the
average number of trials is O(1) with respect to the number of �ows, instead
being roughly 1

P where P is the probability of a success. Obviously though, the
�rst success may not be the best, and the risk of that increases with larger k.

The �nal approach partially tries each �ow, then uses that initial result to
decide on an order to conduct the trials. This approach is a middle of the
road between the �rst two, being faster than approach one, and less risky than
approach two. For each i ∈ {1 . . . k}, let the potential, Pi, be

Pi =
V
(
T(m)N −

∑k
j=1,j 6=i LU(m)

j

)
Gi

Note that the potential must be greater than or equal to one, as T(m) =

Ut(
∑k
i=1 U

(m)
i , N), and hence Ui is a �ow on T(m)N −

∑k
j=1,j 6=i LU(m)

j
.

Notice that if the potential is 1, the trial will fail. So, if the potential is near
1, it's reasonable to assume any improvement would be slight, so conducting
trials from highest potential to lowest is a sensible ordering. However, I cannot
prove a direct relationship between potential and improvement size at this time,
so it is possible it will not be the best. Which means that it may be good to
sample the �rst few with the highest potential, and pick the best.

making an example of this is really hard, and it's not showing what
I want it to, so it is blank for now.
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5.4.2 Additional Tweaking

A major advantage of AFFPAA over linear programming for solving this kind of
problem is that at each stage, the state of the system is a valid solution, better
than what it started with. With a linear programming method, intermediate
states have no guarantee to be solutions.

To increase the speed of trials, at the cost of potentially not �nding the best
improvement for that trial, one can partially complete the obstructed network
problem. This is especially useful with the Modi�ed Bisection method, as scaling
up the �ow for the lower bound, or scaling down the �ow for the upper bound,
will result in a �ow with the goal value, but not optimal utilization. Since scaling
a �ow and checking utilization is O(A), checking both bounds is reasonable, to
be sure the best approximation is found. Due note though, if this shortcut is
taken, the rule about the same �ow not being an improvement twice in a row
is no longer true, so it must be checked again.

On the other end, to be slower but more thorough, one can "branch" and try
the second best option as well as the best, for two di�erent next stages. Then,
after some number of active stages are reached, the worst ones can be "pruned".
There is a chance this may avoid local minimums, but as I have not proven one
exists as of yet, this may be irrelevant.

The �nal thing to note is how k should impact how you use this algorithm.
For large k, the potential stage to stage improvement tends to be lower, as each
�ow contributes less to the total load on the network. Meanwhile, if k is small,
searching for a larger improvement is more worthwhile, as each �ow has a huge
part to play in the total load.

5.5 Questions remaining

There, unfortunately, were many things I was unable to accomplish or prove
during my time with this problem. Each one of these things are open for more
people to try and work on for the future.

1. Does AFFPAA always terminate?

Since AFFPAA always improves each step, any situation where it does not
terminate must be such that it makes smaller and smaller improvements
forever. Currently, I do not have any idea what could possibly result in
such a situation, but I cannot say one does not exist.

2. If AFFPAA terminates, did it �nd the lowest utilization?

Again, I know that if it did �nd the lowest utilization, it would terminate.
However, it is possible that there could be "local minimums", where one
�ow alone cannot be improved, but a combination changing at once would
improve the utilization. Does always conducting every trial avoid local
minimums? Are there situations where partial completion of a trial is
preferable? Is the initial position of the maximum e�ciency for each u�ow
a particularly good or bad state for avoiding local minimums? As should
be clear, this is a very hard question to examine.
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3. Is there an e�cient "smooth" approximation for the A�ne Net-
work problem?

One of the challenges with the A�ne Network problem is that V (X) is
naturally "jagged", being made out of the minimum of a�ne functions.
The methods I have found for this paper take advantage of computing
points and �rst derivatives using existing max-�ow calculation methods.
However, I am left wondering if there's a way to e�ciently compute a
smooth approximation of V (X). If there was, then higher level derivatives
could be used on the smooth version, to earn more information about the
structure as a whole.

4. "Native" multi-�ow techniques.

Algorithms for single �ows on a network are well understood, but for multi-
�ow problems, the best methods seem to be getting rid of the "intuition"
by converting everything into linear equations or working with one �ow at
a time to use single �ow algorithms. A technique made for two or more
�ows " natively ", without using single-�ows and then trying to make them
work together, would be very helpful not just for this problem, but other
multi-�ow problems. However, I did not �nd much work in this area.
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