Analysis of the Kekkon Family in Neuronal development

by
Edith Plada
A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Master of Science
in
Biology \& Biotechnology

August 2009

APPROVED by:

Dr. Joseph Duffy
Dr. Reeta Prusty Rao
Dr. Elizabeth Ryder

Major Advisor Committee member Committee member

I dedicate this work to the designer and creator of life. May the knowledge and understanding never diminish the awe.

TABLE OF CONTENTS

LIST OF FIGURES v
LIST OF TABLES VI
Acknowledgements VII
Abstract IX
INTRODUCTION 1
NeURAL CELL ADHESION MOLECULES 1
LIGs REPRESENT A NEW CLASS OF NEURAL MOLECULES 3
Embryogenesis 6
Neurogenesis 7

1. AQUISITION OF NEURAL IDENTITY 8
2. AXONAL GUIDANCE AND FASCICULATION 9
3. Synapse formation - NMJ as a Model 14
Structure of the NMJ 14
TARGET RECOGNITION AND SYNAPTOGENESIS 16
The Kekkon Family 21
RESULTS 24
Knockdown Strategy 24
RNAi Line Validation 28
Developmental Assessment of RNAi Knockdown Efficacy 32
Creating Combinatorial Knockdown Strains 35
Primary Screen for kek family function 37
Ubiquitous Knockdown 37
Neural Knockdown I 40
Neural Knockdown I: Addition of Dicer-2 43
Imaginal Discs Knockdown 46
NeURAL MISEXPRESSION 48
NMJ AnAlysis 49
DISCUSSION 55
Screen for Kek Family Function 56
Kek5 role in the NMJ 57
RNAI AS A Screening Tool 58
MATERIALS AND METHODS 60
Genetics 60
Assessment of Knockdown in Developing Nervous System 62
Immunohistochemistry - Embryos 63
IMMUNOHISTOCHEMISTRY - LARVA 64
BIBLIOGRAPHY 65
SUPPLEMENTAL MATERIAL 72
Appendix 1 73
ApPENDIX 2 77

LIST OF FIGURES

FIGURE 1 4
MEMBERS OF THE LIG SUPERFAMILY
FIGURE 2 7
SChematic illustration of embryonic staging and main events of embryonic DEVELOPMENT
FIGURE 3 10
ILLUSTRATION OF ROBO AND SLIT SIGNALING IN MIDLINE CROSSING
FIGURE 4 12
Molecules involved in selective fasciculation
FIGURE 5 13
AXONAL PATTERNS OF DROSOPHILA EMBRYO
FIGURE 6 14
MUSCLE AND MOTOR NEURON PATTERN
FIGURE 7 22
THE KEKKON FAMILY
FIGURE 8 25
The GAL4-UAS.RNAI SYSTEM
FIGURE 9 30
FUNCTIONAL VALIDATION OF KEK FAMILY LINES THROUGH KEK-GFP
FIGURE 10 31
FUNCTIONAL VALIDATION OF LINES THROUGH MISEXPRESSION PHENOTYPE SUPPRESION
FIGURE 11 34
AsSESSMENT OF RNAI KNOCKDOWN IN DEVELOPING NERVOUS SYSTEM
FIGURE 12 35
Phylogenetic analysis of The Kek family
FIGURE 13 36AnAlysis of the Kek family evolution
FIGURE 14 51Representative images of NMJ
FIGURE 15 53
Representation of bouton quantization

LIST OF TABLES

TABLE 1
RNAI Lines obtained from VDRC and validation data
TABLE 2 37
ReCombinant RNAI CREATED AND vaLidation data
TABLE 3 38
Screen of Tubulin driven RNAi knockdown
TABLE 4 38
Screen of Actin driven RNAi knockdown
TABLE 5 42
ViAbility data for Elav driven RNAi knockdown
TABLE 6 45
SCREEN OF NEURONAL RNAI KNOCKDOWN WITH DICER MISEXPRESSION
TABLE 7
Crossvein Screen using En driven RNAi knockdown
TABLE 8
ANALYSIS OF VARIANCE FOR BOUTON NUMBER
TABLE 8 52
ANALYSIS OF VARIANCE FOR BOUTON NUMBER PER MUSCLE SURFACE AREA
TABLE 8 53
ANALYSIS OF VARIANCE FOR BOUTON NUMBER PER MUSCLE LENTGH

ACKNOWLEDGEMENTS

A lot of people have helped and supported me in the process of this work, so I must offer my thanks and appreciation to some of them.

To Joseph Duffy, my professor and advisor, my deepest gratitude. Thank you for all the encouragement to try new things, the patience and the trust in my work and my person. I appreciate all your guidance, all the lessons taught, and all the support provided both in this project and otherwise.

To Liz Ryder. Thanks for showing me how interesting and exciting is genetic research in the nervous system. You taught me the basics of what became my chosen areas: genetics and neurobiology. I can't help thinking your teaching may have something to do with it. In fact, if it wasn't for you, I wouldn't have considered WPI. To you I'm particularly grateful.

To Reeta Prusty Rao, thank you for jumping in my committee, providing great suggestions and guidance.

To JoAnn Whitesmith, thank you for you support, encouragement and technical assistance on this project. It was a pleasure to be your TA - a very challenging and demanding one, but nevertheless a pleasure.

To Sam Politz, my appreciation for the guidance and questions answered in the process of selecting WPI for my master studies. Also thanks for the opportunity to rotate in your lab, and teaching me the basics of C. elegans work.

To Ally Hunter, Mike Buckholt and Jills Rulfs, thank you for the TA opportunity, instruction and guidance.

To Carol Butler, Eileen Dagostino and the administrative staff of the Biology and biotechnology department, thanks for making this possible, without you this department would crumble.

To the remaining faculty and staff, thanks for enriching this experience.

To Tzumin Lee, thanks for the feedback, opinions and heads up on this project. Your input significantly shaped this work.

To Alex Koon and James Ashley from Vivian Budnik lab at Umass, thanks for all the instruction, the protocols and tips of how to dissect $3^{\text {rd }}$ instar larva.

To all my lab mates in Duffy's lab, thank you for making these last 2 years so enjoyable. Thanks for listening to me when I needed to vent, and for chatting when my brain was overheating. I already miss our lunch hours. Special thanks to Prachi Gupta, thanks for your friendship and suggesting I should seek out Duff for a rotation. I would have never joined his lab if it weren't for you.

To Gleifer Coghetto, my best friend, my lover, my husband. I love you for all the support you gave me. If you were less understanding or less encouraging I would have crumbled a long time ago. Unfortunately I can't list all the things I'm thankful for; it would make the acknowledgements longer than the thesis itself.

And to my parents, for believing in me so much, for encouraging my dreams and for understanding my busyness.

Abstract

Adhesion Molecules have been associated with a number of neurological and psychological disorders (humans), and implicated in various developmental processes (animals). Better understanding the development of the nervous system and the roles of adhesion molecules in it may be crucial to better understanding these disorders. LIGs, Leucine Rich Repeat and ImmunoGlobulin containing transmembrane proteins, represent a novel class of such adhesion molecules and have been implicated in various neuronal processes, including neurite outgrowth, axonal pathfinding, neuronal regeneration and survival. Two such LIGs are Kek1 and Kek2, members of a Drosophila LIG family, which have been reported to function in axonal pathfinding and synaptic plasticity, respectively. It is unclear what their roles in these processes are, as well as if other members of the Drosophila LIG family have similar roles. Current studies aim to survey the Kekkon family function in the nervous system, looking to identify new phenotypes and/or to elucidate the mechanisms underlying previously identified phenotypes.

To achieve this goal, tissue specific inducible RNAi technique was employed. Validating of a number of transgenic RNAi stocks obtained was necessary and showed that all stocks obtained promoted specific and efficient knock down of target gene. Next an assessment of RNAi knockdown efficacy in developing nervous system was carried out and knockdown was

shown to be weak if not in the presence of Dicer-2 co-misexpression. A number of screens for general behavioral phenotypes were performed including ubiquitous, neural, and imaginal discs knockdown. These uncovered possible effects of kek1 neural knockdown, as well as possible interaction of Kek1 with neurotactin, neuroglian and kek2. NMJ analysis of Kek5 and Kek6 was also carried out and preliminary results indicate possible interaction of kek5 in NMJ, although no statistical significance was detected.

INTRODUCTION

The nervous system is arguably the most complex biological system. Proper function relies greatly on a pattern of highly stereotyped neural projections and very precise connections formed during the development, as well as the proper transmission and receipt of signals that direct neuronal activity. As a result, enormous emphasis has been placed in understanding the molecular mechanisms that control, regulate and modulate these processes. Consequently, significant progress in elucidating these processes has been made in recent decades. Despite this progress, however, our overall understanding of neural development and brain function is still in its infancy.

NeUral Cell adhesion molecules

At the molecular level, our understanding of the processes involved in neural development has been enhanced by the identification of neural adhesion molecules (Van Vactor, 1998). Such molecules are transmembrane proteins, often with defined extracellular motifs, that have been demonstrated to be essential for various aspects of neural development and linked to a variety of neural diseases (Katidou et al., 2008). For example, one such molecule, Neural Cell Adhesion Molecule (NCAM), is a key adhesion molecule in the vertebrate nervous system and contains 5 Immunoglobulinlike (IG) domains and 2 fibronectin (FN) type III domains within its extracellular domain (Cunningham et al., 1987). NCAM mutant mice have
diminished overall brain and olfactory bulb size, but otherwise normal nervous system structure (Campos-Ortega, 1997; Van Vactor, 1998). NCAM has been associated with various neurological disorders, such as schizophrenia, bipolar disorder, depression and anxiety disorders (Katidou et al., 2008). While no direct link has been found between genetic mutations in NCAM and the aforementioned diseases, differential regulation of NCAM isoforms has been clearly associated with these disorders. It is possible, therefore, that differences in NCAM regulation reflects a feature of these disorders, rather than represents an underlying cause. Additional links come from the use of a NCAM derived peptide for therapeutic treatment of Alzheimer's Disease (AD) due to its neuro-protective role in the pathology of AD (Klementiev et al., 2007).

The L1 family, with six IG domains, followed by three to five FN II domains, represent another important class of neural adhesion molecules (Maness and Schachner, 2007). Mutations in L1, which is known to interact with NCAM in the nervous system, has been clearly linked to an X-linked neurological syndrome of broad spectrum called CRASH syndrome (acronym for corpus collosum hypoplasia, retardation, adducted thumbs, spastic paraplegia and hydrocephalus)(Fransen et al., 1996). L1 activity may be associated with other neurological disorders as well. Fetal alcohol disorder, for instance, seems to be in part due to alcohol inhibition of some L1 functions during fetal development(Bearer, 2001). Furthermore, modification
of L1 activity has shown promising results in treatment of spinal cord injury in mouse models. Additional members of the L1 subfamily have also been associated with neural disorders, including schizophrenia, mental retardation, autism, multiple sclerosis and vulnerability to drug addiction.

LIGS REPRESENT A NEW CLASS OF NEURAL MOLECULES

In addition to the aforementioned IG and FN motifs, adhesion molecules may contain additional sequence elements governing their function. These include Leucine rich repeats (LRRs), which represent a protein-protein interaction motif consisting of a β-strand and a α-helix connected by loops, that together often form a curved, horseshoe-shaped structure. As with other NCAMs, LRR containing molecules have also been implicated in neurological disorders. For instance, SLITRK1 seems to be associated with Tourette's syndrome (Abelson et al., 2005), LGI1 is connected to temporal lobe epilepsy (Kalachikov et al., 2002) and NYCTALOPIN with congenital stationary night blindness (Bech-Hansen et al., 2000; Pusch et al., 2000).

A more recently identified class of adhesion molecules contains both LRRs and IG domains and is referred to as the LIG superfamily (MacLaren et al., 2004). Although individually, both the IG domain and the LRR motifs are very common, relatively few molecules contain both together and these molecules are often associated with enriched or exclusive expression in the
nervous system. Since LIGs have only recently been a focus of research, information on the functional significance of these molecules is limited (Fig. 1).

One of the most characterized sub-families of LIGs is LINGO, a family of 4 molecules with 12 LRRs and 1 IG domain (Chen et al., 2006). LINGO-1 interacts with the Nogo receptor and p75 NRT and acts through RhoA to inhibit
 linked to neurite outgrowth. However,

Figure 1: Members of the LIG superfamily. LIGs have variable numbers of LRRs (illustrated in red) and Ig domains (gray horseshoe), a transmembrane and an intracellular region. Only the Trks, which are receptor tyrosine kinases, have an identified enzymatic domain (green).
same region as loci associated with Alzheimer's disease type 5 and Parkinson's disease type 8 were mapped, however the molecular nature of these disease variants has not yet been determined.

Other subfamilies of LIGs include Netrin G1 ligand (NGL-1), NLRR and FLRT, all of which again appear to have associations with neural development. NGL-1 promotes growth of neurons in the thalamus during embryogenesis (Lin et al., 2003). For the NLRR family, NLRR-3 was shown to be upregulated when damage is afflicted to the brain cortex of mouse and NLRR-4 seems to have a role in hippocampal-dependent memory retention(Bando et al., 2005; Ishii et al., 1996). Finally, FLRT3 has been shown to promote neurite outgrowth and is upregulated during peripheral nerve injury(Tsuji et al., 2004).

While various links have been established between adhesion molecules and diseases, the exact mechanisms by which these molecules contribute to nervous system development and to the pathology of neural disorders is largely unknown. An improved understanding of how adhesion molecules function in the formation of the nervous system and the mechanisms through which they accomplish their various roles is an important step in unraveling the basis of neurological disorders and developing effective therapeutic strategies.

Ethical and moral complications make animal model organisms vital to the study of neuronal developmental process. The inherent tractability and
the genetic tools available in Drosophila melanogaster, in addition to a simplified, but largely homologous developmental mechanism, makes Drosophila instrumental in understanding the basic interaction of adhesion mechanisms in neural processes.

Embryogenesis

Early embryonic development of the fly is marked by the formation of a syncytium, a single multinucleated cell. Subsequently, as the embryo develops, membranes form creating a cellular blastoderm stage, and gastrulation starts along with formation of the germ band. Soon after the start of gastrulation, the germ band elongates, folding internally and extending anteriorally, thereby causing the posterior extremity of the embryo to approach the anterior extremity. Later in embryogenesis the germ band retracts until the posterior extremity of embryo reaches the posterior end

Fig 2: schematic illustration of embryonic staging and main events of embryonic development. Number at top left indicates staging. Stage 6 starts gastrulation. Stage 9 indicates neural progenitor segregation (purple) (vnb-ventral neuroblasts, pnb - procephalic neuroblasts). Stage 10 shows further segregation of neuroblasts and first neuroblast division and appearance of ganglion mother cells. Germ band elongation stops. Stage 11 epidermal segmentation becomes evident and neuroblasts division continues. Stage 12 shows ventral nerve cord entirely separated from epidermis and appearance of first neural processes and fibers. Stage 13 signifies well-differentiated ventral nerve cord and supraoesophageal ganglion and head involution begins. Fiber connectives and commissures linking the different neuromeres and muscle cells are visible at this stage. In stage 16 synapse formation starts and lasts well into time of hatching. During stage 17 ventral cord further retracts. (Campos-Ortega, 1997)
proper.
To better understand embryonic development, a classification system involving stages based on prominent features of the embryo has been developed. Figure 2 illustrates the main stages of embryonic development and its staging classification (Campos-Ortega, 1997).

NeUROGENESIS

There are three main processes in Drosophila neurogenesis:

1. Acquisition of neural identity,
2. Axonal guidance/fasciculation, and
3. Synapse formation.

The first process is the specification of neuroblasts followed by the formation and differentiation of neurons. Once cells have adopted a neuronal identity neurite outgrowth is initiated, thus starting the process of axonal guidance and pathfinding. The first differentiated neurons are called pioneer neurons and their axons lay out a scaffold for further development of the nervous system. Subsequently, differentiated neurons then extend their axons which fasciculate to pioneer neurons' axons. The axons of these neurons reach their appropriate target by constantly selecting and fasciculating with correct axons among many choices, a process often referred to as selective fasciculation (Goodman and Doe, 1993). The final process is the formation of synapse, which consists of three distinct steps.

The first step is appropriate synaptic target recognition, which is then followed by structural, molecular and physiological changes that characterize synapse formation. Synapses reach functional maturity by the time embryos hatch, however synapse maintenance, growth and plasticity, the third step of synapse formation, continues.

1. Acquisition of neural identity

The Drosophila nervous system develops in a bilateral symmetrical segmented pattern forming a sequence of repeated units called neuromeres (Campos-Ortega, 1993; Campos-Ortega, 1997). At each neuromere, clusters of neuroectodermal cells are formed and generate only one neural progenitor cell per cluster - the neuroblast. Neural fate determination is conferred by expression of proneural genes, such as members of the achete-scute complex, and is controlled by Delta/Notch signaling (Campos-Ortega, 1995; Duffy and Gergen, 1994). Proneural genes encode transcription factors and promote accumulation of Delta. Delta interacts with the receptor Notch on neighboring cells and induces down-regulation of the proneural genes. As a result the cell with highest levels of proneural genes expression becomes a neuroblast and delaminates from the cluster. Segmentation genes, such as the pair-rule genes fushi tarazu and even skipped and the segment polarity genes wingless, hedgehog, patched, gooseberry and engrailed, along with apicobasal polarity genes are also involved with specifying neuroblast
identity(Siller and Doe, 2009). Specification of a neuroblast's particular identity by the patterning genes determines its lineage, ultimately determining the identify of daughter neurons.

After a neuroblast delaminates from the ectodermal layer, it undergo several rounds of asymmetric divisions, generating a ganglion mother cell (GMC) at each division while still preserving its stem cell properties. GMCs then undergo one division to generate two distinct neurons and/or glial cells. Within Drosophila the number and identity of neurons generated by each neuroblast is invariant and highly reproducible.

2. Axonal guidance and fasciculation

During the second phase of neural development, the first set of differentiated neurons elongate axonal projections that are directed by guidance cues throughout the nervous system (Goodman and Doe, 1993). These cues may be released (by glial cells) and diffusible as is the case of Slits and Netrins, or they may be membrane bound molecules such as Ephrins. Semaphorins can be membrane bound or released. Guidance molecules can act as attractants or repellents depending on cell type, context and timing. Slits and Semaphorins act principally as repellent signals, and Netrin acts primarily as an attractive cue, while Ephrin can act either way.

A paradigm for axonal guidance is midline axonal crossing in Drosophila (Chilton, 2006; Sanchez-Soriano et al., 2007). In Drosophila, Slit and Netrin are both expressed and released by the midline glial cells. Expression of Slit in the midline repels growth cones thereby preventing ipsilateral projecting neurons from crossing the midline. This repulsion is mediated by Slit's receptor Roundabout (Robo), by interaction of Slit's LRR with Robo's Ig domain. In neurons that project contralaterally across the midline, however, the repulsive effect of Slit is negated by Commissureless (Comm) expression, which prevents Robo transport to the growth cone. Then the growth cone is able to cross the midline in response to Netrin attraction though the Frazzled receptor. Once growth cones cross the midline, Comm is down-regulated and Slit/Robo mediated repulsion takes place, allowing axons to proceed past the midline (Fig. 3). Independently Netrin also mediates repulsion from midline though receptor UNC-5, which is upregulated after midline crossing.

Figure 3: Illustration of Robo and Slit signaling in midline crossing. Robo expression profile determines the axonal track that axons select as they join the ventral nerve chord. Comm expression blocks Slit mediated repulsion and enable axons to cross midline. Once across midline, Comm down-regulation reinstates Slit-mediated repulsion and axon proceed to the axonal track of choice via Robo signaling.(Sanchez-Soriano et al., 2007)

Once pioneer neurons have established their axonal tracks, remaining neurons extend their axons through selective fasciculation (Goodman and Doe, 1993). Although some molecules involved in this process have been identified, the signaling mechanisms involved are not well understood. For instance FasciclinII (FasII), the Drosophila homolog of Neural Cell Adhesion Molecule (NCAM), has been shown to mediate axonal fasciculation. In animals overexpressing Fas II, over-fasciculation is observed to the point where axons do not defasciculate and diverge from pathways when they normally would. Furthermore, in fasII mutants axonal fascicles are not bundled together as tightly as wild type, indicating lack of proper fasciculation. However, no defective projections are observed in these mutants (Lin et al., 1994; Lin and Goodman, 1994). These results indicate that the mechanisms that govern selective fasciculation may be distinct from guidance cues mechanisms (Goodman and Doe, 1993; Van Vactor, 1998).

Neuroglian (NRG), a homolog of the vertebrate L1 adhesion molecule, (Bieber et al., 1989; Hall and Bieber, 1997), N-type Cadherin (DN-cadherin) (Iwai et al., 1997), matrix metalloproteinase (Miller et al., 2008) and Neurotactin (NRT) (Speicher et al., 1998) have also been implicated in axonal fasciculation. In addition, substrate adhesion molecules (SAMs), such as integrins, were shown to be involved in neuronal migration and axonal fasciculation in C. elegans (Baum and Garriga, 1997). Considering the more limited family of integrins in C. elegans, this result is believed to be
indicative of a novel role for integrins in other species as well (Baun \& Garriga, 1997).

Two other major families of molecules also implicated in axonal fasciculation are receptor tyrosine kinases (RTKs), such as Derailed (Drl), and receptor protein tyrosine phosphatases (RPTPs), such as DPTP69D and DPTP99A (Van Vactor, 1998). Both kinases and phosphatases seem to modulate both axonal fasciculation as well as axonal guidance, indicating that although these processes may have separate mechanisms, they appear to share a common pathway. Figure 4 depicts several molecules involved in axonal fasciculation.
(a) CAMs and SAMs

Figure 4: Molecules involved in selective fasciculation. Cell adhesion molecules featuring IG and fibronectin domains represent the most characterized molecules involved in axonal fasciculation. Substrate adhesion molecules represent a more recent class of molecules that also seems to be involved in this process. RTKs and RPTPs are seems to modulate both fasciculation and guidance. (Van Vactor, 1998)

Semaphorin Ia and Beaten Path Ia (Beat) are also believed to act as repellents in axonal fasciculation (Van Vactor, 1998). For instance, Beat Ia accumulates in high concentration on specific choice points where fascicles divide. It has been proposed that Beat Ia decreases adhesion of FasII and other CAMs to allow branching of nerves.

As a result of the mechanisms in place for axonal guidance and selective fasciculation, very clear axonal patterns are formed. Different aspects of this pattern can be observed with different markers. For instance upon staining with the antibody BP102, which targets an epitope on CNS axons, a ladder like structure can be observed in the ventral nerve cord, where the two commissures per segment can be distinguished (Fig.5A). Alternatively detecting expression of FasII in embryos with the 1D4 antibody yields a view of the three axonal tracks on each side of the midline, as well as some of the peripheral nervous system (Fig. 5B).

Figure 5: Axonal patterns of Dosophila embryo. Panel A shows CNS upon staining with BP102 antibody, which marks all CNS axons. Panel B shows staining with ID04 antibody against FASII, which marks the three major axonal tracks on each side of the midline as well as some of the peripheral nervous system. Both images were taken at stage $15 / 16$ at $100 x$ magnification, using Zeiss apotome processing. Right panel is a z-stack maximum image projection.

3. Synapse formation - NMJ as a model

Structure of the NMJ

The last phase of neural development involves synapse formation, the study of which is limited to a few in vivo models, due to the scale and complexity of synapses. Of these, the Neuromuscular Junction (NMJ) in Drosophila has long been used as a model for synapse formation, due to the relative ease of its manipulation and observation, as compared to synapses in the CNS. Furthermore, general aspects of NMJ formation are stereotypical and reproducible. In each hemisegment (the lateral half of each segment),

Figure 6: Muscle and motor neuron patterns. Schematic illustrations of a hemisegment muscle system. Muscle groups and nerve branches are color coded. Top panel indicates muscle pattern and muscle numbering nomenclature. Bottom panel shows section of vnc and MN cell bodies as well as labelling of nerve branches. (Campos-Ortega, 1997)

30 muscles are innervated by 33-40 motor neurons. Figure 6 shows a schematic of the observed muscle pattern; the top panel indicates the numerical nomenclature used, while the bottom panel shows the innervating neurons and their trajectories through the various nerve branches.

Generally speaking, each motor neuron (MN) innervates one or more muscle fiber and forms a specific type of synapse, Ib, Is, II, or III. Since only a few neurons have been identified to innervate specific muscle fibers, synapses are identified by bouton size. Each fiber is innervated by only one neuron of each type (Hoang and Chiba, 2001). Structurally, type Ib (for big) boutons are the largest, measuring $3-6 \mu \mathrm{~m}$; they are glutamatergic, are present in all muscles and tend to be in short and minimally branched terminals. The majority of MNs form type Ib boutons and innervate only one or immediately adjacent muscle fibers (as is the case of muscle 6/7, 21-24 and 15-17). Type Is (small) boutons are slightly smaller than Ib, about 2$4 \mu \mathrm{~m}$, also glutamatergic and exist in longer and more elaborate terminals. They are believed to be present in all muscles, though in some cases the exact bouton type present is not clear. Type II boutons are small (1 to $2 \mu \mathrm{~m}$), they use glutamate and octopamine as neurotransmitters, and are present in most muscle in very long and elaborate terminals. The innervation pattern of Is and II are similar, with one MN innervating multiple muscle fibers in a given muscle group. Finally, type III boutons are of a medium size, about 2-
$3 \mu \mathrm{~m}$, are believed to be present only on muscle 12 , and contain both glutamate and insulin.

Target recognition and Synaptogenesis

A key aspect of synapse formation involves target recognition. Axonal guidance mechanisms collaborate in achieving synaptic specificity as they lead the growth cone toward the appropriate synaptic target. The final step before synapse formation is the selection of the target cell from among its many neighbors. Filopodial processes in presynaptic growth cones probe the environment to identify the appropriate target, following the same strategy as used during axonal pathfinding. Likewise, filopodia-like processes are also present in postsynaptic cells, both in dendrites and muscles (Ritzenthaler and Chiba, 2001). These processes in muscles are called myopodia and they enable direct and dynamic interaction between the growth cone and possible muscle targets at relatively long distances. The interaction between filopodia and myopodia is sufficient for target recognition and formation of a stable connection between growth cone and muscle.

Target identification is believed to occur through molecules with very specific expression patterns. Arguably, one of the most well-characterized examples is FasIII (Rose and Chiba, 2000). During synapse formation within the PNS, FasIII is expressed in the RP3 motor neurons and its synaptic targets - muscles 6 and 7. In fasIII null mutants, incorrect innervation is observed, albeit at low frequency - 9\% of RP3 neurons form connections
with other muscles. In Fas3 overexpression in muscles, however, incorrect innervation is observed in 72% of the cases, indicating that gain-of-function experiments can have stronger phenotypes than loss-of-function experiments, most likely because of redundant mechanisms that exist to ensure precise connectivity. When FasIII is overexpressed in muscles in a null background (no FasIII in RP3 neurons), the frequency of incorrect innervation decreases to 14%, demonstrating that phenotype is potentially conferred primarily through a homophilic interaction.

Another important molecule linked to synapse formation is the LRR containing immune receptor Toll, which is also a synaptic repellent molecule expressed in muscles $15,16,17$ and 29 , a muscle group that the RP3 growth cone crosses on its way to M6/7 (Rose and Chiba, 1999; Rose et al., 1997). In a toll knockout, only 10% of RP3 growth cones reach the appropriate target. Upon misexpression of Toll in muscle, only 14\% of RP3 growth cones form appropriate connections, while the other 86% form incorrect innervations or no innervations at all. Interestingly, misexpression of both Toll and Fas3, repellent and attractant respectively, in muscle results in few defects, indicating that growth cones receive and integrate multiple inputs to generate a decision regarding synaptic target recognition.

Likewise, temporal regulation is also key, as expression of Toll in proximal muscles ensures that inappropriate synapses are not formed by MNs that will innervate more distal muscles. Subsequently, Toll is then
down-regulated by the time the appropriate MNs should synapse in these proximal muscles.

Not surprisingly, ligands (Wnt4, Netrin), receptors (Frizzled and Derailed), LRR containing adhesion molecules (Capricious) and transcription factors have all been implicated in specific aspects of synaptogenesis. From work on these and other molecules, it has become clear that synaptic specificity is not only conferred by attractant signals, but also by repellent signals from surrounding inappropriate targets. In support of this latter notion, several synaptogenic inhibitory molecules have been identified to date, such as Dishevelled, Beaten path, and D-semaphorin. Moreover, it appears that some molecules may have dual roles. For instance, Netrin and Wnt-4 have been shown to have synaptogenic and anti-synaptogenic properties in a context dependent manner. Such effects are likely mediated by distinct receptors as observed in axonal guidance.

One model proposes that synaptogenesis occurs through two different classes of molecules (Hoang and Chiba, 1999). The first class includes molecules with very narrow expression patterns and promotes specific target recognition, such as FasIII. Manipulation of these molecules would generate very specific single cell level abnormalities. The second class includes molecules with broader expression profiles that promote synaptogenesis after initial target recognition steps. Manipulation of these molecules would cause more generalized defects, although these could be subtle due to
possible functional redundancy of molecules of this class. Consistent with this model, there are several molecules identified as general adhesion molecules that promote synaptic formation in a general manner, including Neuroglian, Integrin and Dn-Cadherin.

Upon target recognition, the relatively flat growth cone swells and forms large prevaricosities, which then constrict to form smaller varicosities or boutons, typical of a mature synaptic connection. At this point in time, clusters of presynaptic and postsynaptic apparatus is formed and colocalized across the synaptic cleft in distinct active zones. It is largely unknown how adhesion molecules promote the molecular changes associated with synaptogenesis, and what are the components/pathways involved in this process. It is known however that pre- and postsynaptic growth is tightly regulated and coordinated, particularly during larval development, when muscles grow to become about 150X their original volume.

A predictable series of events has been observed during the development of the synapse between muscle 6 and the RP3 motor neuron. Prior to synaptogenesis, neither neurotransmitter nor a functional receptor is present on MN or muscle. As the motor neuron growth cone contacts the muscle, transmitter expression starts, and myotubes uncouple soon after. Immediately after uncoupling of myotubes, a small number of functional glutamate receptors are evenly distributed on the muscle surface. Shortly
after motor neuron filopodia localize at the developing synaptic zone, functional receptor localization occurs. At this point a functional synapse forms, endogenous muscle activity begins and nerve stimulation leads to muscle contraction. Then presynaptic specialization develops, giving rise to the mature morphology. After that a second motor neuron contacts muscle 6 at the pre-established synaptic zone, a second stage of functional receptor expression emerges and vigorous neuromuscular activity characteristic of larval locomotory movement initiates.

Presynaptic activity, although not required for initial synapse formation is required for post synaptic clustering of Glutamate Receptors (GlutR) and regulates structure and strength during NMJ growth (Budnik, 1996; Nakayama et al., 2006; Prokop and Meinertzhagen, 2006). Pre and postsynaptic FasII levels are also tightly coregulated (Ashley et al., 2005). In fact, upregulating FasII activity only on one side of the synapse decreases synaptic size and bouton number and generates abnormal NMJ morphology. However, equal upregulation of FasII on both pre and post-synaptic cells increases NMJ size significantly, stimulating new bouton formation.

An additional mechanism to coordinate pre and postsynaptic growth is retrograde Bone Morphogenic Protein (BMP) signaling (Keshishian and Kim, 2004; Nakayama et al., 2006; Prokop and Meinertzhagen, 2006). BMP signaling is a conserved signaling cascade that controls many developmental processes. In Drosophila, members of the BMP pathway are required for
proper NMJ development and manipulations that decrease BMP signaling negatively affects synapse size, stability and homeostasis. It is believed that type II receptor Wishful thinking (Wit) as well as both type I receptors, Saxphone (Sax) and Thickvein (Tkv) are involved in retrograde signaling at the NMJ (Keshishian and Kim, 2004). Specifically, the ligand Glass bottom boat (Gbb) is released by the postsynaptic muscle terminal onto the synaptic cleft, which promotes phosphorylaton of the downstream transcription factor Mad in the motor presynaptic terminal (Goold and Davis, 2007). BMP component mutants, such as BMP receptor wishful thinking (wit), show decreased NMJ size and bouton number to approximately 40% of wild type (Aberle et al., 2002). On the other hand, overexpression of BMP components or mutants of negative regulators of BMP components exhibit larger NMJ size. For instance highwire (hiw) mutant, a putative E3 ligase that negatively regulates levels of co-Smad Medea shows synaptic bouton number increase of up to 200% over wild type (Aberle et al., 2002; McCabe et al., 2004).

The Kekkon Family

Our lab has been studying a set of proteins called the Kekkon family. This class of LIG family members are transmembrane proteins identified in invertebrates with seven leucine-rich repeats and an Immunoglobulin domain (Fig.7) (MacLaren et al., 2004). Embryonic expression profiles for family members indicates they are expressed in the nervous system,
however, to date little is known about the
functional role of these
molecules in neural
development.

Kekkon1 (Kek1)
was initially identified on
the basis of its expression in the

Figure 7: The Kekkon Family. Constituted of 6 transmembrane molecules containing 7 LRR and one Ig domain. Their intracellular region does not contain a catalytic activity domain but most display a PDZ binding site.
(Musacchio and Perrimon, 1996) and has subsequently been shown to interact with Epidermal Growth Factor receptor (EGFR) as a negative regulator (Ghiglione et al., 1999). In addition, in a study of neurotactin (nrt) role in axonal fasciculation, the nrt and kek1 double mutant shows ventral nerve cord fasciculation defects not seen in the single mutants, indicating a possible role of kek1 in axonal fasciculation (Speicher et al., 1998). Synergistic genetic interaction were also observed between nrt and neuroglian and derailed, but not with DPTP69D and DPTP99A. However, no mechanisms for these interactions have been proposed, leaving open the significance of these findings.

Kekkon5, another member of the Kek family, has recently been demonstrated to modulate Bone Morphogenesis protein (BMP) signaling in
the crossvein development in the Drosophila wing (Evans et al., 2009). Misexpression and loss-of-function of kek5 was shown to affect the profile of phosphorylated Mad and dSRF in presumptive crossvein cells. Furthermore, Kek5 phenotypes are similar to those obtained by manipulation of Short gastrulation (Sog), a secreted modulator of BMP signaling, but unlike phenotypes of dominant negative receptors, indicating Kek5 may be acting upstream of BMP receptors. Additionally Kek5 was shown to antagonize Glass bottom boat (gbb), a BMP ligand, supporting this claim.

Recently, Kekkon2 was identified in a microarray screen for genes involved in synaptic plasticity (Guan et al., 2005). Kek2 was upregulated and downregulated in mutants in which synaptic activity levels were increased and decreased long-term, respectively. It was then shown that the absolute level of kek2 expression modulates the extent of innervation in the NMJ, where both increase and decrease in Kek2 levels caused a decrease of bouton number in the NMJ (30-50\% decrease), thereby supporting a role for kek2 in synaptic plasticity.

The goal of my thesis research project was to perform a broad survey of the role of the Kek family in neural development. For family members this included expression profiling, functional tests using RNAi-mediated knockdown, and attempts to reproduce the reported phenotypes of axonal fasciculation and synaptic plasticity to further characterize these interactions and possibly determine specificity of the involved Kek family member.

RESULTS

Knockdown Strategy

To enable a survey of the function of Kek family members in Drosophila, RNA interference (RNAi) was used. In Drosophila, transgenic hairpin constructs capable of producing gene specific RNAi triggers can be coupled to the existing GAL4/UAS system to promote inducible knockdown of genes in specific tissues (Duffy, 2002). Manny lines have already been established which induce expression of the GAL4 transcription factor in a variety of tissues and patterns. When expressed, GAL4 binds its recognition site - upstream activating sequences (UAS), promoting expression of the desired target sequence. This system is often used to promote misexpression of genes in a tissue of interest, by inserting the coding region of the genes of interest downstream of the UAS recognition site. In this bipartite system, UAS responder lines are created, and then flies are mated with GAL4 drivers of interest to promote expression of the gene of interest.

Recently, the Vienna Drosophila RNAi Center (VDRC) has created a library of transgenic stocks with inducible RNAi constructs targeting 88.2\% of the Drosophila genome (Fig.8) (Dietzl et al., 2007). In this library, the UAS promoter is attached to an inverted repeat sequence of approximately 300-400bp that matches the target gene. Upon transcription, the inverted repeat folds over creating a hairpin RNA (hpRNA). The hpRNA is recognized by the RNA interference machinery of the cell and the Dicer enzyme (Dcr-2 in Drosophila) cuts the hpRNA into short stretches of RNA of about 19-23bps each, thereby forming a set of silencing RNAs (siRNA) all matching the target mRNA (Ghildiyal and Zamore, 2009). With the help of Dcr-2 and the double stranded RNA binding protein R2D2 the siRNAs are subsequently loaded onto the RNA-induced silencing complex (RISC), which with the help of Argonaute2 (Ago2) selects the guide strand from the siRNA.

Figure 8: The GAL4-UAS.RNAi system. Parental flies have driver constructs directing GAL4 expression in tissue specific manner (e.g. nervous system), or a responder construct that directs RNAi trigger transcription under control of UAS sites. Progeny express GAL4 in the nervous system, which then directs transcription of the RNAi trigger in that tissue. RNAi trigger forms hpRNAi, which is processed by Dicer-2, generating siRNAs. The gene specific siRNAs then couple with the RISC complex to promote degradation of the target gene mRNA, thereby silencing target gene expression.

At this stage, Ago2 cleaves the passenger strand of the siRNA, forming mature RISC loaded with a single stranded RNA (guide strand). This guide strand then directs identification of mRNAs that have complementary sequence, promoting their degradation, and effectively preventing translation of target mRNA.

In theory, then, with the VDRC strains and existing GAL4 lines, the function of $\sim 88 \%$ of the genes in the Drosophila genome can quickly be assessed in the tissue of interest (Fig. 8). Transgenic RNAi responder lines targeting each of the keks were available and obtained from VDRC. The sequences used to generate the hairpin for each kek family member are shown in Appendix 2. To examine further the published genetic interactions between Kek1 and Neurotactin (Nrt) and to study the possibility of an interaction between Neuroglian (Nrg) and Kek1, VDRC RNAi lines targeting nrt and nrg were also obtained.

A significant concern when using RNAi mediated knockdown is possible OFF target effects; that is adverse effects caused by knockdown of non-target genes whose sequence matches possible siRNA sequences derived from the hairpin sequence, but which are not the intended target. To address this concern, the VDRC has created a scoring system to evaluate their constructs for possible off-target effects (Dietzl et al., 2007). For each line created, the number of ON targets is published, as well as the number of OFF targets, and a relative specificity ranking called the S19 score.

Definition of an ON target is any gene that contains a perfect match to at least 50% of the 19 -mer siRNAs generated by a hairpin construct. In contrast, an OFF target is defined as any gene that contains sequence similarity with at least one 19 -mer, but less than 50% of all 19 -mers possibly generated by the construct. To calculate a the S19 relative specificity score, the following formula is used:

S19 = Σ ON target matches $/(\Sigma$ ON target matches $+\Sigma$ OFF target matches $)$.
Hence, in a line that has only one ON target and no OFF target, S19 equals 1 . This is the most desirable scenario to insure that only the desired target gene is knocked down, and it is the case with most of the VDRC lines obtained for this work. One exception is kek5 RNAi strain 47770, which has one ON target and 5 OFF target genes. However, the calculated S19 for this line is 0.98 , which means that although there are 5 OFF targets, 98% of the possible 19 -mer siRNAs produced are complementary to the kek5 mRNA, while only 2% of the 19 -mer siRNAs have complementarity with OFF targets. Moreover, for the five OFF target genes, four genes are targeted by only a single 19-mer siRNA and the fifth gene is only targeted by three possible 19mer siRNAs. This is in contrast to kek5, which is targeted by all of the possible 290 19-mer siRNAs produced by the hairpin. This indicates that even though OFF target effects are possible for this line, such effects are unlikely to reduce expression of the OFF target genes to a level that would
be physiologically significant. Table 1 lists all lines obtained from VDRC, including number of OFF targets and S19 score for each line.

Table 1: RNAi lines obtained from VDRC and validation data

Target Gene	Line \#	Inserte d chromo.	OFF target	$\mathbf{S 1 9}$	PCR	GFP	Phen.	Tested against
Kek 1	36252	3	0	1	\checkmark	\checkmark	\checkmark	-
Kek 1	43521	2	0	1	\checkmark	\checkmark	\checkmark	Kek 6
Kek 1	4761	2	0	1	-	\checkmark	\checkmark	-
Kek 2	42449	2	1	1	-	\checkmark	-	Kek 1, 6
Kek 3	6354	3	0	1	\checkmark	-	-	-
Kek 3	6356	2	0	1	\checkmark	-	-	-
Kek 4	915	2	0	1	-	\checkmark	-	-
Kek 5	27249	1	5	0.98	\checkmark	\checkmark	\checkmark	-
Kek 5	47770	2	5	0.98	\checkmark	\checkmark	\checkmark	Kek 1, 2, 4
Kek 6	27164	0	0	1	\checkmark	\checkmark	-	Kek 1
Kek 6	27165	0	0	1	\checkmark	\checkmark	-	Kek 1, 2, 5
NRT	8495	2	0	1	\checkmark	-	-	-
NRG	27201	3	0	1	\checkmark	-	-	-

OFF target - indicates number of OFF target genes for each line
S19 - score calculated as Σ ON matches / (Σ ON matches $+\Sigma$ OFF matches)
PCR - indicates result of construct validation by PCR
GFP - result of functional validation by knockdown of GFP-tagged target gene
Phen. - functional validation by suppression of misexpression phenotype of target gene
\checkmark - indicates positive validation was obtained
"-" - indicates no validation data was obtained
Tested against - indicates target genes against which indicated RNAi line was tested as a negative controls in functional validation assays. No cross activity was observed with any controls tested

RNAi Line Validation

Since the project was largely reliant on the RNAi lines obtained, it was crucial to confirm their identity and efficacy. Initially, to verify the presence of the indicated construct, PCR was performed using a primer designed to
match a short sequence in the pUAST transgene vector within the UAS binding region and a gene specific primer to amplify a section of the construct excluding the inverted repeat. Lines that were validated by use of PCR are also indicated in Table 1. To verify that the lines were capable of effecting silencing of the desired target gene, functional validation was also carried out. This was assayed in two ways. First, the RNAi lines were crossed to strains in which a GFP tagged version of the desired target gene is expressed in the eye using the GMRGAL4 driver. The presence of the RNAi trigger should then lead to degradation of the mRNA for the GFP tagged target gene resulting in a loss of GFP fluorescence in the adult eye. For keks $1,2,4,5$, and 6 , gene specific loss of GFP fluorescence was observed, thereby demonstrating that each respective $R N A i$ line is capable of effectively reducing expression of the desired target gene (Fig. 9 and 10 and Table 1). In addition, RNAi effects are limited to single family members with no cross family effects observed (Fig. 9, Table 1). Because of the lack of a GFPtagged version this assay was not carried out for kek3.

Figure 9: Functional validation of kek family RNAi lines through Kek-GFP knockdown. Brightfield ($\mathrm{A}-\mathrm{M}$) and epifluorescent ($\mathrm{A}^{\prime}-\mathrm{M}^{\prime}$) micrographs of adult compound eyes. Upon GMRGAL4 mediated misexpression of Kek-GFPs, significant GFP expression is observed in the adult eye (panels $\mathrm{A}^{\prime}, \mathrm{E}^{\prime}, \mathrm{H}^{\prime}$ and K^{\prime}. Introducing the presence of gene specific RNAi results in efficient knockdown of appropriate target gene as observed by the loss of Kek-GFP expression in the adult eye ($B^{\prime}, C^{\prime}, F^{\prime}, I^{\prime}, J^{\prime}, K^{\prime}$ and L^{\prime}).

Another method to functionally validate the lines obtained was through suppression of misexpression phenotypes. In the case of Kek1 and Kek5, misexpression has known phenotypes. Therefore, RNAi lines could be validated by their ability to suppress the misexpression phenotypes when coexpressed with the target gene (Table 1). Misexpression of Kek1 in the eye with the GMRGAL4 driver causes a rough eye phenotype and kek1 RNAi lines were able to fully suppress this phenotype (Fig. 10). Likewise, kek5 RNAi
lines suppress the effects of misexpression of Kek5 in the wing (severe wing blisters) by the apterousGAL4 (apGAL4) driver (Fig. 10).

In the case of Kek1, less GFP is detected in the eye, relative to the other Keks, even in the absence of the RNAi trigger. This is due to inhibition of the EGFR by misexpression of GFP-tagged Kek1, which leads to a loss of the Kek1GFP expressing photoreceptor cells and thus the rough eye phenotype (Alvarado et al., 2004).

Figure 10: Functional validation of RNAi lines by suppression of misexpression phenotypes.
Brightfield micrographs of adult compound eyes (A-F) and wings (G-M). GAL4 mediated misexpression of Kek1 and Kek5 leads to rough eye and abnormal wing phenotypes, respectively (B, G, J). Introducing the presence of gene specific RNAi results in suppression of these phenotypes (D-F, H, K, and L).

However, coexpression of the kek1 RNAi hairpin triggers knockdown of Kek1-GFP expression, thereby restoring EGFR activity and the presence of photoreceptor cells as observed by suppression of rough eye phenotype. However, although photoreceptor cells are restored, GFP expression is not present also confirming knockdown of the kek1-GFP mRNA (data not shown). Thus, all of the assayed kek family RNAi lines appear to promote efficient, gene specific knockdown in the tissues tested. It should be noted however, some non-specific effects are observed, as expression of RNAi lines using apGAL4 driver appears to promote a held out wing phenotype.

Developmental Assessment of RNAi Knockdown Efficacy

The validation tests above confirmed effectiveness and specificity of the RNAi lines in the developing eye and wing. However, the effectiveness of transgenic RNAi in the Drosophila nervous system has not been addressed to date. Moreover, communication with others in the field indicated that the efficacy of transgenic RNAi in the embryonic nervous system was questionable.

Hence, I aimed to validate the use of the transgenic RNAi technique in this context. To that end we expressed GFP tagged Kek5 in the nervous system using the pan neural C155GAL4 driver, with and without coexpression of the kek5 RNAi trigger. Levels of GFP in the nervous system in embryo, $1^{\text {st }}$ instar and $3^{\text {rd }}$ instar larva were then compared among the
genotypes. Some knockdown was observed in the presence of RNAi; knockdown was more robust in $3^{\text {rd }}$ instar larva than in embryos or $1^{\text {st }}$ instar, but not as significant as might be necessary in order to carry out functional studies (Fig. 11). Therefore, I attempted to improve efficiency of knockdown either by expressing 2 copies of kek5 RNAi trigger and/or by co-expressing Dcr2. Expressing 2 copies of Kek5 RNAi gave a minimal increase in knockdown efficiency. One possibility is that Dcr2, which is required to generate siRNA triggers from the hairpin RNA, is limiting in the nervous system. If so, then increasing Dcr2 levels should lead to increased knockdown effects in the nervous system. Consistent with this, significant knockdown of Kek5-GFP was observed in the presence of Dcr2 co-expression (Fig. 11). It was observed that the co-expression of Dcr2 increases the variability of Kek5-GFP expression levels in the nervous system. Furthermore, even in the presence of Dcr2 and RNAi, GFP expression varied and very often some GFP can still be observed in the embryo and $1^{\text {st }}$ instar larva, indicating that knockdown of Kek5-GFP is not complete in early stages of development. In contrast, GFP levels in dissected $3^{\text {rd }}$ instar larval brains were not variable and seemed to indicate complete GFP knockdown.

Figure 11: Assessment of RNAi knockdown in developing nervous system. Epifluorescent micrographs of the nervous system of embryos (A-C), early $1^{\text {st }}$ instar larva (D-I) and $3^{\text {rd }}$ instar larva (J-M). Bright GFP can be observed in the ventral nerve cord when Kek5-GFP is misexpressed by C155GAL4 (A, D, J). Some, albeit not robust, knockdown is observed when Kek5 RNAi triggers are also expressed (B, E, K). Having two RNAi trigger constructs is not sufficient to increase knockdown significantly (F). Adding Dicer does slightly decrease GFP intensity in the absence of RNAi (G, L) but in the presence of RNAi, it enhances knockdown appreciably ($\mathrm{C}, \mathrm{H}, \mathrm{M}$). However some GFP is still visible in early development even in the presence of Dcr and RNAi. All images are taken with similar exposure and adjusted to similar brightness, contrast and color levels, except inset in H , which has been adjusted in brightness and contrast to become visible.

Creating Combinatorial Knockdown Strains

Overt neuronal phenotypes have not yet been reported for single mutants of Kek1 and Kek5. In addition, Kek2 phenotypes reported in NMJ are quite subtle. It is believed that functional redundancy in the nervous system is prevalent which may be particularly relevant in the study of the Kek family function since the Keks share strong structural homology. Hence, combinatorial knockdown may be an important component of the Kek functional investigation. Prior phylogenetic analyses in the lab revealed that the Kek family is divided into 2 clades where Keks1, 2 and 3 form a clade separate from Keks4, 5 and 6 (MacLaren et al., 2004) (Fig. 12), suggesting an initial combination for multiple knockdowns. Furthermore, this phylogenetic analysis shows that although the Kek family has been evolutionarily conserved for approximately 500 million years, Kek4 arose

Figure 12. Phylogenetic analysis of Kek family (from T. Evans
more recently than that, and Kek3 has been lost in some species after its emergence (A. mellifera and A. gambiae; Fig. 13), indicating they may be more dispensable for the organism.

Figure 13. Analysis of Kek family evolution (from T. Evans).

Therefore, as an initial strategy, lines were created to generate pairwise knockdowns for the most well conserved loci in the two clades, namely a kek1 and kek2 recombinant and a kek5 and kek6 recombinant. These lines were validated using similar strategies as the original RNAi lines as is summarized in Table 2. Recombinant lines were also created with kek1, $n r t, n r g$ and $k e k 2$ to further investigate the reported interaction between kek1 and nrt and to study the specificity of this interaction.

Table 2: Recombinant RNAi lines created and validation data

Target Genes	Line \#	1st Line	2nd Line	Chrom.	PCR		GFP		Phen.	
Kek1 Kek2	43	43521	42449	2	\checkmark	-	-	\checkmark	\checkmark	-
Kek1 Kek2	47	4761	42449	2	-	-	-	\checkmark	\checkmark	-
Kek5 Kek6	64	47770	27164	2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Kek5 Kek6	65	47770	27165	2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Kek1 NRT	43	43521	8495	2	\checkmark	\checkmark	\checkmark	-	\checkmark	-
Kek1 NRT	47	4761	8495	2	-	\checkmark	\checkmark	-	\checkmark	-
Kek1 NRG		36252	27201	3	\checkmark	\checkmark	\checkmark	-	\checkmark	-
Kek2 NRT		42449	8495	2	-	\checkmark	\checkmark	-	-	-

PCR - indicates result of construct validation by PCR
GFP - result of functional validation by knockdown of GFP-tagged target gene
Phen. - functional validation by suppression of misexpression phenotype of target gene
\checkmark - indicates positive validation was obtained
"-" - indicates no validation data was obtained

Primary Screen for Kek Family Function

Ubiquitous knockdown

Expression of the kek family has been demonstrated to be principally in neural tissue, but expression in additional tissues has also been observed. For example, kek1 expression has been reported in the wing and ovary, in addition to the eye, where it is a downstream target of the EGFR, while kek5 expression appears to be more ubiquitious with some enrichment in the embryonic nervous system. Therefore, to assess the effect of global knockdown, the role of each kek in the organism was assessed using two ubiquitous drivers, tubulinGAL4 (tubGAL4) and actinGAL4 (actGAL4). No
overt phenotype was observed other than reduced viability, which was observed for Kek1, Kek3 and Kek5 (Tables 3 and 4). Viability for each cross was calculated based on the following formula:
\# (UAS-kek ${ }^{\text {RNAi }}$ GAL4 driver) / \#(UAS-RNAi/Balancer), n equals the total number of flies scored. Although percent viability for each kek family member varied between both drivers, effects with tubGAL4 appear more severe with lower viability numbers.

Table 3: Screen of Tubulin driven RNAi knockdown

Target Gene	Line \#	Viability	n	Observation
Kek1	43521	0%	55	
Kek1	4761	0%	52	
Kek2	42449	215%	41	
Kek3	6354	0%	45	pupal lethality
Kek3	6356	0%	58	pupal lethality
Kek4	915	159%	75	
Kek5	27249	5%	22	
Kek5	47770	4%	29	
Kek6	27164	120%	8	
Kek6	27165	104%	47	
Kek5 Kek6	64 V	50%	57	
Kek5 Kek6	65 V	53%	26	
Kek5 Kek6	64 IV	29%	79	

Table 4: Screen of Actin driven RNAi knockdown

Target Gene	Line \#	Viability	n	Observation
Kek1	43521	2%	59	Walk up deficiency
Kek1	4761	2%	86	
Kek2	42449	109%	90	
Kek4	915	118%	61	
Kek5	27249	29%	40	Walk up deficiency
Kek5	47770	15%	38	
Kek6	27164	106%	55	Jumpy
Kek6	27165	80%	88	

Based on the RNAi results, kek1, kek3, and kek5 appear to be vital loci, essential for viability, while no major effects are seen for keks 2,4 and 6, with the latter results arguing against lethality as a non-specific result of RNAi induction. For kek5, the reduced viability with RNAi is consistent with reported data for a kek5 null mutant, albeit more severe in the case of the tubGAL driver. In contrast, the lethality observed with the kek1 RNAi was somewhat unexpected as deletion of kek1 is viable (Musacchio and Perrimon, 1996). Although this raises suspicion over the 0% viability observed with the tubGAL4 driver, the relative viability of the kek1 null mutant has not been reported and thus could indeed be low. Similarly, although circumstantial evidence suggests that loss of kek3 is not lethal, kek3 null mutants have not yet been isolated, so it remains possible that knockdown of kek3 could lead to effects on viability. Consistent with this, lethality observed with the kek3 RNAi occurred during the pupal stage, which was not observed in kek1 RNAi, supporting the possibility of a distinct functions for these genes.

It is important to note that for both kek1 and kek3 there appear to be no OFF target genes based on the VDRC scoring system. However, if lethality associated with GAL4 mediated knockdowns is non-specific - caused by soaking up essential cellular components of the RNAi processing machinery, increasing levels of this component would restore levels, thereby yielding more accurate results. Since Dcr2 seems to be a limiting factor for

RNAi processing in the nervous system, it is possible that it may be a limiting factor in other contexts as well. Therefore, knockdowns of kek1 and kek3 were tested again using actGAL4 in the presence of additional Dcr2 (genotypes - UASkek1 ${ }^{\text {RNAi }}$, actGAL4 UASdcr2 and UASkek3 ${ }^{\text {RNAi }}$, actGAL4 UASdcr2). In addition, an RNAi trigger for GFP, which is not present in the Drosophila genome and for which knockdown should have no effect, was used as a control. Surprisingly, in the presence of additional Dcr2, no RNAi expressing flies were recovered, including the GFP RNAi control (although it's not clear if OFF targets for the GFP RNAi hairpin exist). The number of control (balancer) flies recovered was $15,21,31$ and 34 for UASkek1 ${ }^{\text {RNAi-4761 }}$, UASkek3 ${ }^{\text {RNAi-6354 }}$, UASkek $3^{\text {RNAi-6356 }}$ and UASGFPRNAi-9331 respectively. Although only a small number of progeny were scored, the data obtained with GFPRNAi9331 indicates that simply activating the RNAi mechanism in the presence of Dcr2 misexpression by actGAL4 greatly reduces viability.

Thus, although RNAi can trigger gene specific knockdown with no obvious non-specific or detrimental effects in the eye, interpretation of results with ubiquitious drivers appears much more complex.

Neuronal knockdown I

Given that the results with a tissue specific driver (GMRGal4) provided clear-cut results and expression of kek family members is principally in the nervous system, I limited the remainder of my RNAi studies to tissue-specific
drivers. For this I utilized pan-neural drivers C155Gal4 and ElavGAL4, which express Gal4 under the control of a gene, elav, expressed predominantly in all neurons. Initially, knockdown of keks in the nervous system was performed without the presence of additional Dcr2 as an enhancer. Flies were then assayed at the cellular and organismal levels. First, the overall pattern of the embryonic nervous system was assessed with antibodies that identify the longitudinals and commissures (anti-FasII and BP104). Using these antibodies, no obvious defects were uncovered for any of the keks tested, as well as for the kek5/kek6 and kek1/nrt recombinants (Fig. 5 and data not shown).

At the organismal level, three assays (tap, vortex, and flight) were used to evaluate the behavior of adult flies. In the tap assay flies are tapped down in the vial and their behavior observed. Wild type flies climb up the vial immediately after being tapped down. The vortex assay was performed to evaluate flies response to physical stress. After wild type flies in a vial are vortexed for 5 seconds they quickly recover - regain balance, move up, and groom. Finally, a flight assay was done to evaluate flies' flight response. Upon being dropped into a graduated cylinder, wild type flies fly and alight onto the walls, without falling to the bottom.

After running all the adult assays, no significant behavioral anomaly was observed. It was noted that RNAi expressing flies groomed less, particularly after vortex assay, and that they jumped around more.

However, this phenotype was observed in all genotypes and does not seem to reflect a specific gene function. Nonetheless, in view of my results indicating the limited RNAi knockdown efficiency in developing nervous system in the absence of additional Dcr2, I can only conclude that the keks are not essential for basic adult nervous system function. This conclusion is supported in part by another study in the lab that indicates that without additional dicer, RNAi mediated knockdown may be effective in the nervous system as early as late pupae stage. In this case it can also be concluded that the Keks function is also not vital in late pupal development.

Viability data was also obtained using ElavGAL4 driver in a similar method as viability data was obtained for ubiquitous drivers. This line has the same expression profile as C155, but it was observed to induce lower levels of responder expression. Slightly decreased viability was observed for a few lines, particularly Kek4, with no effects observed for GFP RNAi trigger in contrast to the

viability results	Target gene	Line \#	Viability	n
	Kek1	36252	148\%	82
obtained with the ubiquitious drivers	Kek1	43521	79\%	93
	Kek1	4761	89\%	70
	Kek2	42449	102\%	107
(Table 5, data not shown).	Kek3	6354	142\%	29
	Kek3	6356	111\%	154
	Kek4	915	66\%	128
	Kek5	47770	111\%	74
	Kek5	27249	103\%	201
	Kek6	27164	235\%	124
	Kek6	27165	81\%	107

Neuronal knockdown II: addition of Dicer2

To better address the role of keks during neural development, RNAi lines were also crossed to a strain containing both the C155GAL4 driver and UASDcr2. Since the driver and most RNAi lines were homozygous, the lack of control classes in the progeny precluded the ability to obtain accurate viability data for most lines (Table 6). However, all crosses (including wild type and UASGFP ${ }^{\text {RNAi }}$ controls) were set up with the same number of parental males and females of approximately the same age. Thus, between cross comparisons provide an approximate estimate of the number of progeny that should be recovered. Although not standard, in the absence of sib control classes this comparison provides one simple measure for determining if large effects on viability occur. For lines without control sibs, estimated viability was calculated as: \# gene specific RNAi progeny/116 (the average for the two control crosses). Where Balancer (control) sibs were present and standard percent viability could be calculated, the \% of control recovered should be approximately half of the viability for that line.

Although the results of the behavioral assays were not quantified, behavioral observations were noted. In particular it was observed that in a few lines most larva pupated near the food or in the food itself. Upon increases in levels of the molting hormone ecdysone, wild type larva crawl out of the food and pupate up on the sides of the vial. Inability to do this may denote a larval behavioral deficit, either in locomotor activity, the
ecdysone pathway, or in environment sensing. This was most severe in the nrg, kek1 and kek1/nrg recombinant lines, and also occurred in the kek5/kek6 recombinant line, albeit less severely. Other observations worth noting were that in the nrg/kek1 recombinant knockdown, flies did not walk up the vial normally and were visibly uncoordinated, which likely resulted in the large numbers of adults stuck in the food. Large numbers of adults stuck in the food, consistent with a locomotion deficit, was also observed in other lines, including the $n r g$ and kek1 individual knockdowns. Additionally, in the kek1/kek2 combinatorial knockdown, flies did not walk up the vial normally and appeared visibly uncoordinated. Although no clear phenotype was observed for any of the single kek knockdowns, kek1 knockdown shows evidence of a locomotor deficit and decreased viability. Furthermore, 2 of the kek1 recombinant knockdowns (kek1/nrg and kek1/kek2) demonstrated increased locomotor deficit. It is still unclear if the increased deficit is due to a synergistic interaction or an additive effect. Either way, this is the first time that any interaction has been observed between kek1 and kek2 or kek1 and nrg. Likewise, this is also the first time that any indications of a neuronal phenotype has been reported for single kek1 knockdown. In comparison no phenotype was observed for the other keks. Nonetheless, this could be a result of inefficient knockdown early in development or due to a lack of specific and sensitive assays to detect behavioral anomalies.

Target Gene	Line \#	RNAi	Balancer	Viability	\% control	\% males	\% Stuck	Observations
K1	35252	70			60\%	39\%	6\%	-
K1	43521	23			20\%	0\%	100\%	PCF
K1	4761	34			29\%	26\%	62\%	PCF
K2	42449	89			76\%	56\%	2\%	-
K3	6354	83			71\%	40\%	5\%	-
K3	6356	47			40\%	19\%	4\%	1 missing 1/2 thorax
K4	915	72			62\%	52\%	1\%	-
K5	27249	80			69\%	50\%	3\%	-
K5	47770	111			95\%	42\%	0\%	-
K6 (cyo)	27164	41	53	77\%	35\%	44\%	0\%	-
K6	27165	56			48\%	57\%	0\%	-
Lambik	42570	88			76\%	50\%	2\%	-
LIG	7993	113			97\%	44\%	0\%	-
NRG	27201	37			32\%	46\%	32\%	MPCF, 2 CW, 40\% SU, uncoordinated
NRT	8495	52	44	118\%	45\%	35\%	21\%	-
GFP	9331	111			95\%	36\%	10\%	-
K1K2	47 I	61			52\%	6\%	20\%	PCF, 1 curly wing
K1K2	47 II	24			21\%	13\%	58\%	PCF
K1K2	43II	10			9\%	0\%	60\%	MPCF, very uncoordinated
K1K2	43III	5			4\%	0\%	80\%	MPCF, very uncoordinated
K1 NRT	47I	47			40\%	15\%	57\%	MPCF
K1 NRT	47 II	41			35\%	7\%	10\%	PCF, 1 SU
K1 NRT (cyo)	43I	2	82	2\%	2\%	N/A	100\%	PCF
K1NRG (TM3)	I	0	37	0\%	0\%	N/A	N/A	PCF, uncoordicated
K1NRG (TM3)	II	15	N/A		13\%	0\%	67\%	MPCF, uncoordicated
K1NRG (TM3)	III	8	40	20\%	7\%	0\%	0\%	MPCF, uncoordicated
K5K6 (cyo)	64IV	32	27	119\%	27\%	23\%	19\%	PCF
K5K6	64 V	63			54\%	38\%	16\%	PCF
K5K6	65 II	53			45\%	25\%	0\%	PCF
K5K6	65IV	49			42\%	27\%	2\%	PCF
WT	W1118	122			105\%	48\%	2\%	-

$\begin{array}{lll}\text { Legend: } & \text { PCF = some pupae cases close to or in food } & \text { SU = stuck unfurled } \\ & \text { MPCF = most pupae cases in food itself } & C W=\text { curly wing }\end{array}$

Imaginal discs knockdown

One of the best-characterized members of the Kek family is Kek5, which has been shown to interact with BMP signaling in wing crossvein development. Mutants in kek5 exhibit crossvein defects, both in anterior (ACV) and posterior crossvein (PCV), in approximately 30% of adults. Defects include ectopic crossvein around ACV, truncated, missing or meandering PCV and ectopic PCV material. Crossvein signaling is also disrupted when kek5 is misexpressed using engrailedGAL4 (enGAL4), a segment polarity gene that drives expression on the posterior compartment of each segment, including the region of presumptive ACV and PCV in the developing wing. This allowed me to explore the efficacy of RNAi in a different tissue for which a kek null phenotype has been well characterized. RNAi lines against kek5, kek6 and their recombinant were crossed to enGAL4. Wings were then scored for crossvein defects.

Some defects were observed with enGAL4 and the kek5 RNAi line, including ectopic ACV material and truncated PCV (Table 7). Knockdown with one kek6 RNAi line gave a high penetrance of crossvein defects, but not in the other. In this combinatorial knockdown, defects were mostly missing or truncated ACV. When both kek5 and kek6 were simultaneously knocked down, defects in ACV increased to 100%. Moreover, the percent of missing ACV increased as compared to kek6 alone and defects in PCV also increased
when compared to kek5 alone, supporting a possible interaction between kek5 and kek6.

Table 7: Crossvein Screen using En driven RNAi knockdown

Target Gene	Line \#	\mathbf{n}	\% defects	
			PCV	
Kek5	47770	98	1	5
Kek6	65	112	69	0
Kek6	64	88	6	1
Kek5 Kek6	65 II	61	100	44
Kek5 Kek6	64 V	148	1	3

However, additional results cause concern regarding the validity of this phenotype. To start with, the frequency of defects observed with the kek5 line is significantly lower than that observed with the null allele ($20-30 \%$ missing or truncated PCV). Second, only one of the kek6 lines presented any phenotype or interaction with kek5, while no significant phenotype or interaction was observed in the other kek6 RNAi line. This could be explained by a difference in expression levels of the corresponding UASkek6 ${ }^{\text {RNAi }}$ lines due to position effects on the transgenes, however both lines were equally effective in knocking down Kek6-GFP expression in the eye with GMRGal4. $k e k 5^{\text {RNAi }}, k e k 6^{\text {RNAi }}$ and the kek5/kek6 RNAi recombinants were also tested with the neural driver ScabrousGAL4 and no overt phenotypes were observed.

Neuronal Misexpression

Although the true benchmark for characterizing gene function in vivo is the analysis of loss-of-function effects, important information can often be derived from gain-of-function studies as well. Thus, as a complement to the RNAi approach to assessing Kek function in the nervous system, I also performed a screen in which members of the kek family were individually misexpressed in neural tissues, with the exception of kek3 for which no transgenic misexpression lines exist. Specifically, kek1, 2, 4, 5 and 6 were misexpressed with the pan-neural driver C155GAL4. No overt abnormalities in adult behavior were observed upon misexpression of the single responders. However, misexpression of kek5 with a strain containing two responders led to an extremely high percentage of flies stuck in the food (82%) and flies that were not stuck on the food showed clear behavioral defects: they did not climb up the vial, walk around, groom, attempt flight or display any movement typical of wild type flies and typically were dead in a few days. In addition, many flies had wings that remained uninflated, consistent with a lack of motor coordination since wings require stroking for inflation. Thus, Kek5 expression must be appropriately regulated for wild type neural development to occur.

To gain better insight into the mechanism underlying the misexpression effect of Kek5, an intracellular variant - Kek5 ${ }^{\text {IC } \Delta 123}$, which lacks three conserved motifs within the intracellular domain, was also tested.

Misexpression of this Kek5 variant appears to have increased activity in other misexpression assays, producing phenotypes often more severe than 2X misexpression of wild type Kek5. Similar effects to 2 X wild type Kek5 misexpression were observed with respect to viability and flies stuck in the food, although all stuck flies had uninflated wings. In contrast, however, the Kek5 ${ }^{\text {IC } \Delta 123}$ flies that did not get stuck exhibited behavior much more typical of wild type flies than those with 2 X Kek5 misexpression. Hence, it seems that at least in the context of neural misexpression this variant does not produce increased activity relative to wild type Kek5.

NMJ ANALYSIS

No clear and overt phenotype was observed in the general screen, but it is possible that kek neural phenotypes are highly specific and would only be detected at the tissue or cellular level. For instance a kek2 phenotype has only been observed in the NMJ (Guan et al., 2005). kek5 was also reported to be downregulated by chronically increased synaptic activity by the same study that reported a kek2 function in synaptic structure. Furthermore, Kek5's interaction with BMP signaling, a known modulator of synaptic structure, makes it a likely effector in elaborating NMJ structure and would be a plausible explanation for the overt behavioral phenotypes observed with high levels of Kek5 misexpression. Thus, given the technical demands of NMJ analysis and the putative likelihood of uncovering a role for Kek5, I focused
primarily on Kek5 in the interest of uncovering a novel phenotype. Analysis was carried out in kek5 null mutant, kek5 RNAi-mediated neural knockdown (with Dcr2 coexpression), and misexpression of both Kek5 ${ }^{\text {WT }}$ and Kek5 $5^{\text {IC } \Delta 123}$. To test the hypothesis of functional complementation, Kek5/Kek6 combinatorial knockdown was also tested, as well as Kek6 RNAi neural knockdown (with Dicer) and neural misexpression.

Initial analysis of the kek5 null mutant, kek5 ${ }^{\text {fe148 }}$, suggested muscle pattern and innervation defects. Defects in the uncoupling of muscles 6 and 7 were observed in 2 out of 5 larva, and complete lack of innervation of muscle 6 and 7 was also observed in the same larvae, in a total of 3 hemisegments. However, similar defects were not observed in larva from a kek5 null mutation with a different genetic background ($\left.D f(1) J A 27 / k e k 5^{f e 148}\right)$ and were occasionally observed in wild type larva, indicating that this is unlikely to represent a kek5 phenotype.

In the Drosophila neurobiology field, standard analysis of NMJ structure relies on quantification of boutons and is often normalized over muscle surface area. Thus, quantification of boutons in the NMJ of muscles 6 and 7 in segment $A 2$ was carried out at $10 x$ magnification (representative images in Fig. 14). Value from both sides were averaged and analysis of variance (ANOVA) was carried out among genotypes comparing raw values of bouton number, as well as bouton number normalized over muscle surface area (Table 8 and 9 respectively). Because of developmental
correlations between physiological activity and overall muscle size, I also
tested bouton number normalized by average muscle length.

Figure 14: Representative images of NMJ. Epifluorescent micrographs of the NMJ of muscle $6 / 7$ of $3^{\text {rd }}$ instar larva for indicated genotypes. Anti-HRP (nervous system) stained in green and post-synaptic marker, Discs large, in red. Images captured at 10x with apotome processing.

Table 8: Analysis of Variance for bouton number

Groups	Sample size	Sum	Mean	Mean relative to wild type	Variance
W1118	17	2264.5	133	100.0\%	496
K5Fe148	10	1151.5	115	86.4\%	1236
C155>Dcr,K5RNAi	10	1520.5	152	114.1\%	423
C155>Dcr,K5K6RNAi	8	1160.5	145	97.9\%	542
C155>K52x	12	1667.495	139	102.3\%	690
C155 >K5IC?123	5	681.5	136	114.0\%	1111
C155 > Dcr,K6RNAi	6	911.5	152	106.7\%	1335
C155>K6	4	568.5	142	108.9\%	770

ANOVA

Source of Variation	SS	$d f$	$M S$	F	p-level	F crit
Between Groups	9239.1	7	1319.882	1.772	10.84%	2.1564
Within Groups	47671.7	64	744.8709			
Total	56910.9	71				

Table 9: Analysis of Variance for bouton per muscle surface area

Summary

Groups	Sample size	Sum	Mean	Mean relative to wild type	Variance
W1118	17	0.0279	0.0016	100.0\%	0.
K5Fe148	10	0.0168	0.0017	102.6\%	0.
C155>Dcr,K5RNAi	10	0.0178	0.0018	108.7\%	0.
C155>Dcr,K5K6RNAi	8	0.015	0.0019	97.2\%	0.
C155>K52x	12	0.0206	0.0017	114.0\%	0.
C155>K5IC?123	5	0.0093	0.0019	109.8\%	0.
C155>Dcr,K6RNAi	6	0.0108	0.0018	92.5\%	0.
C155 $>$ K6	4	0.0061	0.0015	114.7\%	0.

ANOVA

Source of Variation	$S S$	$d f$	$M S$	F	p-level	F crit
Between Groups	0.	7	0.	0.5106	82.32%	2.1564
Within Groups	0.	64	0.			
Total	0.	71				

Table 10: Analysis of Variance for bouton per muscle length

Summary

Groups	Sample size	Sum	Mean	Mean relative to wild type	Variance
W1118	17	4.8277	0.284	99.9\%	0.0026
K5Fe148	10	2.6092	0.2609	91.9\%	0.0082
C155>Dcr,K5RNAi	10	3.1399	0.314	110.6\%	0.0017
C155 > Dcr,K5K6RNAi	8	2.534	0.3167	97.0\%	0.0065
C155>K52x	12	3.6693	0.3058	107.4\%	0.0028
C155>K5IC? 123	5	1.5245	0.3049	110.6\%	0.0054
C155>Dcr,K6RNAi	6	1.8846	0.3141	104.0\%	0.0044
C155 $>$ K6	4	1.1817	0.2954	111.5\%	0.0034

ANOVA

Source of Variation	SS	$d f$	$M S$	F	p-level	F crit
Between Groups	0.0249	7	0.0036	0.8697	53.53%	2.1564

No statistically significant difference was detected in NMJ size, irrespective of the normalization performed. Trends were observed, particularly in the number of boutons per NMJ (Fig. 15). However their relevance is unclear, for example, while bouton number in the kek5 null is approximately 14% lower than wild type, RNAi knockdown of kek5 resulted in an increase in the number of boutons (approximately 14\%).

Although we might expect similar trends in both genotypes, it is important to note that there is a tissue-specific difference in the two loss-offunction approaches. In the null allele, kek5 activity is removed both pre and post synaptically, while in the RNAi knockdown it was only removed pre-synaptically. Thus, it is possible that relative levels of Kek5 in neural tissue and muscle tissue are important for proper NMJ size and structure. In fact, this is exactly the case for FasII and maybe consistent with the role of BMP signaling in pre and postsynaptic co-regulation. Although no effect was observed in response to Kek5 misexpression pre-synaptically, there was a general impression that NMJ structure seemed less developed with smaller boutons. The quantification of bouton size was not carried out, but indicates that further analysis is warranted to establish Kek5 function in NMJ development. Furthermore, higher resolution analysis (such as 40x magnification) may be required to obtain more accurate and possibly less variable results (Fig. 16).

Figure 16: High resolution (40X) images of NMJ. Epifluorescent micrographs of the NMJ of muscle 6/7 of $3^{\text {rd }}$ instar larva as in Fig. 14, z-stack MIP projection, apotome. processing.

DISCUSSION

It is imperative to take advantage of the emerging tools and techniques to keep research at the forefront of science. Small silencing RNA was first discovered 15 years ago, and our knowledge of RNA has boomed in the last decade. RNAi has since been the focus of much interest and press and promises to be a powerful and convenient technique to promote gene silencing in both research and therapeutic fronts.

With genome-wide transgenic RNAi libraries made available from the VDRC and similar projects (i.e. TRIP at Harvard), the Drosophila community has a new set of tools to advance genetic inquiries (Ni et al., 2009). Here I have validated the identity and knockdown effectiveness of several RNAi lines targeted against the members of the Kek family for current and future investigations of their function. Furthermore, effectiveness of RNAi mediated knockdown in the developing nervous system was assessed, making this information available for the first time. Although some knockdown is observed in the developing nervous system, this effect is unlikely to be significant enough to result in detectable phenotypes, particularly considering that neuronal phenotypes are often subtle.

In addition our data indicates that coexpression of dcr2 greatly increases the effectiveness of RNAi mediated knockdown, promoting significant knockdown in the embryo and early larva, and virtually complete knockdown in late larval stages. This data suggests that Dcr2 processing is
the limiting step in the processing of RNAi in the nervous system; hence future neuronal studies using transgenic RNAi must incorporate UASDcr2 for effective results.

It should be noted that effectiveness of knockdown only of Kek5 RNAi was tested in the developing nervous system. Although all lines presented similar knockdown effectiveness in adult eye, it is possible that different lines may have different effectiveness temporally in the nervous system.

Screen for Kek Family Function

Neural knockdown of the keks with dcr coexpression shows no effect on adult behavior with the exception of kek1 knockdown, which based on preliminary analyses shows aspects of locomotor deficits. Observations from this screen also indicate possible interactions between kek1 and kek2, nrt and $n r g$. Since no interaction between kek1 and $n r g$ has been published to date, this is a novel result worth further investigating. kek1 has been previously shown to interact with nrt in axonal guidance and fasciculation as detected in the axonal pattern of the CNS. It would be of interest to investigate if $\mathrm{kek} 1 / n r$ double knockdown would also generate a phenotype in the same tissue.

Since kek2 was previously shown to interact in the NMJ structure (Guan et al., 2005), it would also be worthwhile investigating if kek1/kek2 double knockdown shows a synergistic effect in the NMJ. Furthermore, since
various molecules such as FasII have been shown to interact both in axonal guidance and fasciculation as well as NMJ structure, the potential for an interaction of kek1 with nrg and nrt should also be investigated in the context of NMJ structure.

Kek5 role in the NMJ

BMP signaling regulates NMJ size and structure via retrograde signaling from the muscle to the pre-synaptic MN (Keshishian and Kim, 2004). An increase in BMP signaling promotes growth of the NMJ as can be observed by increased bouton numbers. Given the kek5 inhibitory interaction with BMP signaling in wing pattern formation (Evans et al., 2009), it was proposed that kek5 null mutant would increase NMJ size due to increased BMP signaling. Likewise, kek5 misexpression would inhibit BMP signaling, thereby inhibiting NMJ growth.

Preliminary analysis of NMJ indicates that this is not the case; albeit no statistically significant effect was observed, decreased bouton numbers was seen in the loss of function, while no trend was detected in the kek5 gain of function. Furthermore pre-synaptic knockdown of kek5 shows increased bouton number, indicating that if these trends are real, kek5 is involved in a different mechanism of NMJ regulation. NMJ analysis at a higher resolution should be carried out to support and extend preliminary results. In addition, manipulating levels of kek5 post-synaptically may provide further insight
into any possible involvement of kek5 in NMJ regulation. Similarly, although a possible synergistic interaction was observed between kek5 and kek6 in the wing cross vein formation, no interaction was detected in the NMJ structure, nor was any effect of kek6 itself observed on the NMJ.

RNAI AS A SCREENING TOOL

The screening of the Kekkon family function produced some results that need to be reconciled with previous data, such as the effects on viability of kek1 and kek3 ubiquitous knockdown. A meticulous evaluation of single kek1 and kek3 null mutant viability may confirm this novel phenotype, and would also validate transgenic RNAi as a legitimate tool for phenotypic screens.

Another unexpected result was the cross vein defect observed with kek6 knockdown in imaginal disc. A kek6 mutant has been previously characterized in the lab and no wing phenotype was observed. However, it is not clear that the characterized mutant was indeed a null mutation. Another observation of concern is the variation of penetrance between different RNAi lines. Although position effects due to chromosomal location of the transgenes can be expected among lines, such drastic variation is unusual.

Much is still unknown about the pathways controlling RNAi and it is uncertain what other possible artifacts may arise from using this technique. New classes of small RNAs are constantly being discovered and many still
have unclear biosynthesis, functions and pathway components. Moreover, cross talk among the different small RNA pathways have recently been detected. This is particularly concerning given that many classes of small RNA regulate chromatin states and general transcription. Furthermore, various components interact in the processing of different types of small RNA, and expressing high levels of exogenous RNAi triggers may titrate these components from other endogenous functions.

Another serious concern regards the use of Dcr2 to promote knockdown in the developing nervous system. Although efficiency of knockdown is significantly increased, raising the levels of Dcr2 may have detrimental effects to the organism and to the nervous system itself. For instance, in addition to exogenous dsRNA, Dicer is also involved in endogenous small silencing RNA (Chung et al., 2008; Okamura et al., 2008) and small nucleolar RNAs (snoRNAs) (Taft et al., 2009), some of which are actively regulated. Altering Dcr2 levels may affect the regulation of other genes, with unpredictable outcomes. Hence RNAi can be used as a powerful tool to screen and identify relevant phenotypes, but careful confirmation and validation of phenotypes with conventional and cleaner genetic techniques must follow initial identification.

MATERIALS AND METHODS

Genetics

Fly stocks were kept at room temperature $\left(24^{\circ} \mathrm{C}\right)$ and raised on standard media. Experimental crosses involving the Gal4/UAS system were raised on $28^{\circ} \mathrm{C}$ on standard media. Flies used for NMJ analysis were raised at $28^{\circ} \mathrm{C}$ in brown media. w^{1118} was used as the wild type strain, Kek $5^{2 \mathrm{x}}$ is [UASKek5GFP] ${ }^{16,52}$ and the Kek5 ${ }^{\text {IC }}{ }^{123}$ line used was CE1-12F-1M.

RNAi transgenic lines were obtained from Vienna Drosophila Research Center (VDRC) (table 1) and presence of each construct was verified by PCR using standard procedures and gene specific primers as indicated in appendix 2. Drosophila genomic DNA templates were prepared by squishing a single fly in $50 \mu \mathrm{l}$ a solution of 10 mM Tris buffer pH8, 1 mM EDTA, 2.5 mM NaCl and $0.2 \mathrm{mg} / \mathrm{ml}$ proteinase K . This was then incubated at room temperature for 20 min ., heated to $95^{\circ} \mathrm{C}$ in a hot block for 2 min . and centrifuged at maximum speed for 5 minutes in a microfuge. $4-8 \mu \mathrm{l}$ of this genomic prep was then used for PCR reactions.

Recombinant lines were created according scheme in Fig17 and validated according to table2. Table 2 also includes line number used to identify different lines. Roman numerals in these recombinants lines are used to identify various copies (different recombination events) of the same genotype.

Figure 17: Schematic for creation of recombinants.

Recombinants lines used for validation of lines are listed below. GMR recombinants with Kek1 and Kek5 had been previously created Remaining recombinant lines were created by scheme in figure below, and selected by expression of GFP or PCR.

- GMRGAL4, [UAS.Kek1.GFP] ${ }^{59 I I}$
- GMRGAL4, [UAS.Kek2.GFP] R6-1a
- GMRGAL4, [UAS.Kek4.GFP] ${ }^{7-4,38-5}$
- GMRGAL4, [UAS.Kek5.GFP] ${ }^{16,52}$
- GMRGAL4, [UAS.Kek6.GFP] ${ }^{12}$
- C155GAL4,UASkek5 ${ }^{\text {RNAi-47770 }}$
- [UAS.kek5.GFP] ${ }^{11}$,UASkek5 ${ }^{\text {RNAi-27249 }}$

Driver lines used are listed below with a Stock number. Full genotype and further information can be found at Flybase or Bloomington Drosophila Stock Center:

- GMRGAL4 - 1104
- apGAL4 - 3041
- tubGAL4 -5138
- actGAL4 - 4414
- actGAL4; UASdcr-2 - 25708
- ElavGAL4 - 8765
- C155GAL4 - 458
- C155GAL4; UASdcr-2 -25750
- enGAL4 - 6356
- ScabrousGAL4 -6479

AsSESSMENT OF KNOCKDOWN IN DEVELOPING NERVOUS SYSTEM

The lines used for RNAi knockdown assessment in the developing nervous system were C155GAL4;UASDcr2 ${ }^{25750}$, [C155GAL4,UASkek5 $\left.{ }^{\text {RNAi }}\right]^{I I I}$, [UASkek5-GFP,UASkek5 ${ }^{\text {RNAi }}{ }^{\vee}$ and UASkek5-GFP ${ }^{16}$.

Embryos - Live embryos were washed into collection nets, placed into petri dishes, dechorionated using 50\% bleach. The bleach was removed and vitelline membranes were then removed by popping embryos with a sharp tungstein needle in water after adhering embryos to the petri dish plate by allowing them to dry briefly. Embryos were then mounted in water and imaged immediately.
$1^{\text {st }}$ instar larva - live larva $24-30 \mathrm{hrs}$ after egg lay were incubated in PBT with 4% formaldehyde for $15-20$ min, then mounted in water and imaged immediately.
$3^{\text {rd }}$ instar larva - wandering larval brains were dissected and fixed in PBT with 4% formaldehyde for 15 min , then mounted in mounting media (50\% glycerol in PBS).

Immunohistochemistry - Embryos

Embryos were collected overnight, dechorionated with 50\% bleach and fixed for 20 minutes in a mixture of 6 mls heptane and 1 ml fixative (10% formaldehyde and 50mM EGTA in PBS). Fixative was then removed (bottom layer), 8 ml of methanol added and solution was shaken vigorously for 1 min. Embryos were then extensively rinsed with 100% methanol and stored in methanol at $-20^{\circ} \mathrm{C}$. Embryos were rehydrated in PBS with 0.1% Tween20 and blocked for 30minutes in PBT with 5\% NGS at room temperature. Primary antibody was incubated overnight at $4^{\circ} \mathrm{C}$ in PBT with 5% normal goat serum (NGS). Primary antibodies and dilutions were as follows: antiGFP (BD Bioscience) 1:500, BP102 (DSHB) 1:500, and 1D4 (DSHB) 1:100. Secondary antibody was incubated for two hours in room temperature in PBT with 5\% normal goat serum. The secondary antibody was anti-mouse or rabbit Alexa 488 used at 1:500. Samples were mounted in 70\% Glycerol in PBS.

ImMUNOHISTOCHEMISTRY - LARVA

Dissecting magnetic chambers were constructed similar to published protocol (Bellen \& Budnik, 2000), with the necessary adaptations as indicated in Appendix 1. Third instar wandering larva were selected and dissected in Ca^{+}free saline ($128 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mMKCl}, 4 \mathrm{mM} \mathrm{MgCl} 2,35.5 \mathrm{mM}$ Sucrose, 5 mM Hepes, 1 mM EGTA). Larvae were pinned down by posterior and anterior extremities and opened dorsally along midline using dissecting scissors (Roboz RS5618). Interior organs and gut were removed with fine forceps and larval cuticle (with attached muscles) were opened and pinned at the 4 extremities so that cuticle of larva is flat against chamber surface. While pinned down, larvae were fixed with 4\% formaldehyde (alcohol free) in 0.1 M phosphate buffer pH 7.2 . Samples were then transferred to round bottom wells (maximum 4/well), washed and stained according to standard immunostaining procedures using 0.1 M phosphate buffer pH7.2 with 0.2% TritonX-100. Samples were arranged in desired orientation and mounted cuticle downward in glycerol/PBS. Primary antibodies used were rabbit antiHRP (Jackson ImmunoResearch) - 1:1000, mouse anti-Discs large (DSHB) 1:2000 and rabbit Anti-GFP - 1:1000. Secondary antibodies used were goat anti mouse and rabbit Alexa 488 or 568 at 1:500.

REFERENCES

Abelson, J. F., Kwan, K. Y., O'Roak, B. J., Baek, D. Y., Stillman, A. A., Morgan, T. M., Mathews, C. A., Pauls, D. L., Rasin, M. R., Gunel, M. et al. (2005). Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310, 317-20.

Aberle, H., Haghighi, A. P., Fetter, R. D., McCabe, B. D., Magalhaes, T. R. and Goodman, C. S. (2002). wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545-58.

Alvarado, D., Rice, A. H. and Duffy, J. B. (2004). Knockouts of Kekkon1 define sequence elements essential for Drosophila epidermal growth factor receptor inhibition. Genetics 166, 201-11.
Ashley, J., Packard, M., Ataman, B. and Budnik, V. (2005). Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint. J Neurosci 25, 5943-55.
Bando, T., Sekine, K., Kobayashi, S., Watabe, A. M., Rump, A., Tanaka, M., Suda, Y., Kato, S., Morikawa, Y., Manabe, T. et al. (2005). Neuronal leucine-rich repeat protein 4 functions in hippocampus-dependent long-lasting memory. Mol Cell Biol 25, 416675.

Baum, P. D. and Garriga, G. (1997). Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19, 5162.

Bearer, C. F. (2001). Mechanisms of brain injury: L1 cell adhesion molecule as a target for ethanol-induced prenatal brain injury. Semin Pediatr Neurol 8, 100-7.

Bech-Hansen, N. T., Naylor, M. J., Maybaum, T. A., Sparkes, R. L., Koop, B., Birch, D. G., Bergen, A. A., Prinsen, C. F., Polomeno, R. C., Gal, A. et al. (2000). Mutations in NYX, encoding the leucine-rich
proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 26, 319-23.
Bieber, A. J., Snow, P. M., Hortsch, M., Patel, N. H., Jacobs, J. R., Traquina, Z. R., Schilling, J. and Goodman, C. S. (1989).
Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59, 447-60.
Budnik, V. (1996). Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr Opin Neurobiol 6, 858-67.

Campos-Ortega, J. A. (1993). Early Neurogenesis in Drosophila Melanogaster. In The Develoment of Drosophila melanogaster, vol. II (ed. A. M. A. M. Bate): Cold Spring Harbor Lab Press.

Campos-Ortega, J. A. (1995). Genetic mechanisms of early neurogenesis in Drosophila melanogaster. Mol Neurobiol 10, 75-89.

Campos-Ortega, J. A. H., V. (1997). The embryonic development of Drosophila melanogaster. Germany: Springer.
Chen, Y., Aulia, S., Li, L. and Tang, B. L. (2006). AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res Rev 51, 265-74.

Chilton, J. K. (2006). Molecular mechanisms of axon guidance. Dev Biol 292, 13-24.

Chung, W. J., Okamura, K., Martin, R. and Lai, E. C. (2008). Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18, 795-802.
Cunningham, B. A., Hemperly, J. J., Murray, B. A., Prediger, E. A., Brackenbury, R. and Edelman, G. M. (1987). Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236, 799-806.

Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S. et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-6.
Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1-15.

Duffy, J. B. and Gergen, J. P. (1994). Sex, segments, and the CNS: Common mechanisms used to determine cell fates in Drosophila. Advances in Genetics 31, 1-28.
Evans, T. A., Haridas, H. and Duffy, J. B. (2009). Kekkon5 is an extracellular regulator of BMP signaling. Dev Biol 326, 36-46.
Fransen, E., Vits, L., Van Camp, G. and Willems, P. J. (1996). The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule. Am J Med Genet 64, 73-7.
Ghiglione, C., Carraway, K. L., 3rd, Amundadottir, L. T., Boswell, R. E., Perrimon, N. and Duffy, J. B. (1999). The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell 96, 84756.

Ghildiyal, M. and Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nat Rev Genet 10, 94-108.

Goodman, C. S. and Doe, C. Q. (1993). Embryonic development of the Drosophila central nervous system. In The Development of Drosophila melanogaster, vol. II (ed. M. A. Bate, A.M.): Cold Spring Harbor Lab. Press.

Goold, C. P. and Davis, G. W. (2007). The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 56, 109-23.

Guan, Z., Saraswati, S., Adolfsen, B. and Littleton, J. T. (2005). Genome-wide transcriptional changes associated with enhanced activity in the Drosophila nervous system. Neuron 48, 91-107.

Hall, S. G. and Bieber, A. J. (1997). Mutations in the Drosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning. J Neurobiol 32, 325-40.

Hoang, B. and Chiba, A. (1999). 'Identify' and 'lock in': molecular integration during synaptic target recognition. Cell Mol Life Sci 55, 1399-406.

Hoang, B. and Chiba, A. (2001). Single-cell analysis of Drosophila larval neuromuscular synapses. Dev Biol 229, 55-70.

Ishii, N., Wanaka, A. and Tohyama, M. (1996). Increased expression of NLRR-3 mRNA after cortical brain injury in mouse. Brain Res Mol Brain Res 40, 148-52.
Iwai, Y., Usui, T., Hirano, S., Steward, R., Takeichi, M. and Uemura, T. (1997). Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 7789.

Kalachikov, S., Evgrafov, O., Ross, B., Winawer, M., BarkerCummings, C., Martinelli Boneschi, F., Choi, C., Morozov, P., Das, K., Teplitskaya, E. et al. (2002). Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 30, 335-41.

Katidou, M., Vidaki, M., Strigini, M. and Karagogeos, D. (2008). The immunoglobulin superfamily of neuronal cell adhesion molecules: lessons from animal models and correlation with human disease. Biotechnol J 3, 1564-80.

Keshishian, H. and Kim, Y. S. (2004). Orchestrating development and function: retrograde BMP signaling in the Drosophila nervous system. Trends Neurosci 27, 143-7.
Klementiev, B., Novikova, T., Novitskaya, V., Walmod, P. S., Dmytriyeva, O., Pakkenberg, B., Berezin, V. and Bock, E. (2007). A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta2535. Neuroscience 145, 209-24.

Lin, D. M., Fetter, R. D., Kopczynski, C., Grenningloh, G. and Goodman, C. S. (1994). Genetic analysis of Fasciclin II in Drosophila: defasciculation, refasciculation, and altered fasciculation. Neuron 13, 1055-69.

Lin, D. M. and Goodman, C. S. (1994). Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507-23.

Lin, J. C., Ho, W. H., Gurney, A. and Rosenthal, A. (2003). The netrinG1 ligand NGL-1 promotes the outgrowth of thalamocortical axons. Nat Neurosci 6, 1270-6.
MacLaren, C. M., Evans, T. A., Alvarado, D. and Duffy, J. B. (2004). Comparative analysis of the Kekkon molecules, related members of the LIG superfamily. Dev Genes Evol 214, 360-6.

Maness, P. F. and Schachner, M. (2007). Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10, 19-26.

McCabe, B. D., Hom, S., Aberle, H., Fetter, R. D., Marques, G., Haerry, T. E., Wan, H., O'Connor, M. B., Goodman, C. S. and Haghighi, A. P. (2004). Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41, 891-905.

Miller, C. M., Page-McCaw, A. and Broihier, H. T. (2008). Matrix metalloproteinases promote motor axon fasciculation in the Drosophila embryo. Development 135, 95-109.
Musacchio, M. and Perrimon, N. (1996). The Drosophila kekkon genes: novel members of both the leucine-rich repeat and immunoglobulin superfamilies expressed in the CNS. Dev Biol 178, 63-76.
Nakayama, H., Kazama, H., Nose, A. and Morimoto-Tanifuji, T. (2006). Activity-dependent regulation of synaptic size in Drosophila neuromuscular junctions. J Neurobiol 66, 929-39.
Ni, J. Q., Liu, L. P., Binari, R., Hardy, R., Shim, H. S., Cavallaro, A., Booker, M., Pfeiffer, B., Markstein, M., Wang, H. et al. (2009). A Drosophila Resource of Transgenic RNAi Lines for Neurogenetics. Genetics.
Okamura, K., Balla, S., Martin, R., Liu, N. and Lai, E. C. (2008). Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol 15, 998.
Ono, T., Sekino-Suzuki, N., Kikkawa, Y., Yonekawa, H. and Kawashima, S. (2003). Alivin 1, a novel neuronal activity-dependent gene, inhibits apoptosis and promotes survival of cerebellar granule neurons. J Neurosci 23, 5887-96.
Prokop, A. and Meinertzhagen, I. A. (2006). Development and structure of synaptic contacts in Drosophila. Semin Cell Dev Biol 17, 20-30.
Pusch, C. M., Zeitz, C., Brandau, O., Pesch, K., Achatz, H., Feil, S., Scharfe, C., Maurer, J., Jacobi, F. K., Pinckers, A. et al. (2000). The complete form of X -linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet 26, 324-7.
Ritzenthaler, S. and Chiba, A. (2001). Multiple personalities: synaptic target cells as introverts and extroverts. Dev Growth Differ 43, 503-8.

Rose, D. and Chiba, A. (1999). A single growth cone is capable of integrating simultaneously presented and functionally distinct molecular cues during target recognition. J Neurosci 19, 4899-906.

Rose, D. and Chiba, A. (2000). Synaptic target recognition at Drosophila neuromuscular junctions. Microsc Res Tech 49, 3-13.

Rose, D., Zhu, X., Kose, H., Hoang, B., Cho, J. and Chiba, A. (1997). Toll, a muscle cell surface molecule, locally inhibits synaptic initiation of the RP3 motoneuron growth cone in Drosophila. Development 124, 1561-71.

Sanchez-Soriano, N., Tear, G., Whitington, P. and Prokop, A. (2007). Drosophila as a genetic and cellular model for studies on axonal growth. Neural Dev 2, 9.
Siller, K. H. and Doe, C. Q. (2009). Spindle orientation during asymmetric cell division. Nat Cell Biol 11, 365-74.
Speicher, S., Garcia-Alonso, L., Carmena, A., Martin-Bermudo, M. D., de la Escalera, S. and Jimenez, F. (1998). Neurotactin functions in concert with other identified CAMs in growth cone guidance in Drosophila. Neuron 20, 221-33.

Taft, R. J., Glazov, E. A., Lassmann, T., Hayashizaki, Y., Carninci, P. and Mattick, J. S. (2009). Small RNAs derived from snoRNAs. RNA 15, 1233-40.

Tsuji, L., Yamashita, T., Kubo, T., Madura, T., Tanaka, H., Hosokawa, K. and Tohyama, M. (2004). FLRT3, a cell surface molecule containing LRR repeats and a FNIII domain, promotes neurite outgrowth. Biochem Biophys Res Commun 313, 1086-91.
Van Vactor, D. (1998). Adhesion and signaling in axonal fasciculation. Curr Opin Neurobiol 8, 80-6.

APPENDIX

APPENDIX 1

Magnetic Chambers and Pins - Assembly

Materials

- Glass slides - Glass cut into 2 "x3", approx $1 / 16-1 / 8^{\prime \prime}$ thickness obtained from a window store. Edges were polished for safety.
- Adhesive magnet business card size obtained from office supply store.
- Silicone sealant
- Beaded stainless steel insect pins size 00 obtained from Carolina Biological Supply Co. item\#65-4331
- Prong fasteners from office supply store
- Epoxy glue (5 min.)
- Fine thin-nose pliers
- Sharp cutting pliers
- Snap blade knife
- Sand paper grit 200 and 400 (silicone carbide recommended).

Chambers Assembly

1) Using the adhesive in the magnetic sheet, glue 2 magnets sheets together.
2) Cut a hole around a nickel coin as a template with a snap blade knife.
3) Remove the adhesive protector and place a bead of silicone sealant around the perimeter of the strip and then again right at the rim of the cut hole (see diagram). Make sure there are no breaks around the inner rim. 5) Place the $2 " \times 3$ " glass slide over the back side of the magnetic strip and press into the adhesive. Some sealant should leak into the hole. Use the excess sealant to seal the inner edge of the magnetic assembly, to make sure no liquid will penetrate in between the magnetic sheets. Carefully place a heavy, flat object over the chambers for several hours (12-24hrs). A heavy book lined with aluminum foil or wax paper works well. Some sealants release acetic acid, so fill chambers with water and let sit 1224hrs.

Pins assembly

1) Form beaded end insect pins as in Fig. 1 by using a thin-nosed pair of pliers. Rinse the formed end with 95% alcohol.
2) Cut prong fastener approx. $3-5 \mathrm{~mm}$ before fold (the thinner side) and about 15 mm after fold (bottom part), as indicated in the diagram above figures. Using pliers fold handle end in the middle, then fold again the edges 90° to have it stand up on its own. For safety and comfort, also fold raised edge from the tab base. Final assembly should look like figure 2.
3) Sand down the surfaces to be glued. This makes epoxy adhere better. Clean and rinse with alcohol to remove any oils from fingers, etc.
4) Using quick setting epoxy, glue pins to tabs as in Fig. 2. Apply one drop of glue from a toothpick or wooden applicator stick. Middle section left from prong fasteners works well. The pin tip should be raised about 23 mm (set tip on a strip of cardboard, etc. before gluing, diagram on bottom of figures). This raised angle will prevent the solution from
spreading all over the top of the chamber via capillary action. Let glue sit overnight to harden completely.
5) After glue has hardened, cut the two center pins to $\sim 16 \mathrm{~mm}$ and the 4 corner pins to $\sim 18-20 \mathrm{~mm}$ (for $2^{\text {nd }}-3^{\text {rd }}$ instars), measured from the end of the tab (the end with the glue). Pin tips should be sanded flat and thin with silicon carbide paper - grit \#220. Finish with grit \# 400-600. See diagram. Tip can be sharp but not too narrow. It's convenient for your index fingernail to have 2 mm of white showing.
6) Bend the pins as in Fig. 3. Dimensions are in millimeters. The last bend ($0.5-1 \mathrm{~mm}$) is best done with old and somewhat dull forceps under a low power dissecting scope.
7) Corner pins should also be bent from the side as in Fig. 4. Pin tips should have moderate to light tension when bent to position on surface of glass. Too much tension rips cuticle, especially when larvae are very young. Not enough tension will not keep larva in place. All dimensions are approximate and may need to be adjusted for chamber.

Tab assembly

Fig. 2

Fig. 1
Side view
Top view

Fig. 4

magnetic strip

Fig. 3
Length is measured from end of tab. See Fig. 2, bottom right.

8 " x 1" strip of 220 silicone carbide paper; 2-3 passes, top and bottom of pin; get tip quite thin

Then do likewise with 400-600 grit paper

Place glass slide over strip and position carefully to allow proper 1 mm overlap of strip.

Finished Chamber

Ruler, cardboard, etc. 3-4 mm high. Tape to bench.

Double-sided tape

APPENDIX 2

GENETIC SEQUENCES

The sequences of the vectors used to clone individual keks are indicated here. Within each sequence is the open reading frame (ORF) of each kek, and within it, some structures are marked (such as LRRs and transmembrane region). Also marked (in dark yellow) are the trigger sequence of the RNAi lines, labeled as RNAi-\#\#\#\# (line number), and the oligo used in PCR to identify presence of construct, marked in black, labeled with oligo number starting with W (e.g. W65). RNai trigger and oligos are also marked on ORF of nrt and $n r g$.

UAS Kek1 GFP

 76 GGGGCACGIGGTGTTCGACGATGIGCAGCTAATTTCGCCCGGCTCCACGTCCGCCCATIGGTTAATCAGCAGACC 151_ CTCGTTGGCGTAACGGAACCATGAGAGGTACGACAACCATTTGAGGTATACTGGCACCGAGCCCGAGITCAAGAA 226_ GAAGGCGTITTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA_
_ - 301 CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCC _ _ _ 376 GCTTACCGGATACCTGTCCGCCTITCTCCCTICGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGIATCT _
 _ _ 526 ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACIGGTAACAG _ _ _ 601_ GATIAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCTAACTACGGCTACACTAGAAG _ _ 676 GACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAA _ 751_ ACAAACCACCGCTGGTAGCGGTGGTTTITTTGITTGCAAGCAGCAGATTACGCGCAGAAAAAAGGATCTCAAGA 826 AGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAG
\qquad 901_ ATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGA _ - $\mathbf{~}_{2} 76$ GTAAACTTGGTCTGACAGTIACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATC - _ 1051_ CATAGTTGCCTGACTCCCCGTCGIGTAGATAACTACGATACGGGAGGGCTIACCATCTGGCCCAGIGCTGCAAT - $\quad 1126$ GATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAG - _ 1201 AAGTGGTCCTGCAACTITATCCGCCTCCATCCAGTCTATIAATTGTTGCCGGGAAGCTAGAGTAAGIAGTTCGCC _ _ 1276 AGTTAATAGTTTGCGCAACGTTGITGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTITGGTATGGCTTC
 _ 1426 CGGTCCTCCGATCGTIGTCAGAAGTAAGTTGGCCGCAGTGTTATCACICATGGTIATGGCAGCACTGCATAATTC _ 1501_ TCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG _ _ 1576 TATGCGGCGACCGAGITGCTCTTGCCCGGCGICAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGI _
 _ - 1726 ACCCACTCGTGCACCCAACTGATCTTCAGCATCTITTACTTCACCAGCGTTTCTGGGTAGCAAAACAGGAAG - 1801 GCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTCAATATTA _ _ 1876 TTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTIAGAAAAATAAACAAATAGG _ _ 1951_ GGTICCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATIATTATCATGACATTAACCTATAA _ _ 2026 AAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAACCTCTGACACATGCAGCT _ _ 2101_ CCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGT _ _ 2176 TGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGA - _ 2251_ AATACCGCACCGAATCGCGCGGAACTAACGACAGTCGCTCCAAGGTCGTCGAACAAAAGGTGAATGTGTTGCGGA. - _ 2326 GAGCGGGTGGGAGACAGCGAAAGAGCAACTACGAAACGTGGTGTGGTGGAGGTGAATTATGAAGAGGGCGCGCGA - - 2401_ TTTGAAAAGTATGTATATAAAAAATATATCCCGGTGTTTATGIAGCGATAAACGAGTITTTGATGIAAGGTATG - _ 2476 CAGGTGTGTAAGICTITTGGTTAGAAGACAAATCCAAAGICTACTTGTGGGGATGITCGAAGGGGAAATACTTGT - _ 2551 ATTCTATAGGTCATATCTTGTTTTTATTGGCACAAATATAATTACATTAGCTTTTTGAGGGGGCAATAAACAGTA _ _ 2626_ AACACGATGGTAATAATGGIAAAAAAAAAAACAAGCAGTIATTTCGGATATATGTCGGCTACICCTIGCGTCGGG

2776 TAAGGTGGTCCCGTCGGCAAGAGACATCCACTTAACGTATGCTTGCAATAAGTGCGAGTGAAAGGAATAGTATTC

UAS sites
3076 CGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCG

3151 CCGGAGTATAAATAGAGGCGCTTCGTCTACGGAGCGACAATTCAATTCAAACAAGCAAAGTGAACACGTCGCTAA

3226 GCGAAAGCTAAGCAAATAAACAAGCGCAGCTGAACAAGCTAAACAATCTGCAGTAAAGTGCAAGTTAAAGTGAAT

3301 CAATTAAAAGTAACCAGCAACCAAGTAAATCAACTGCAACTACTGAAATCTGCCAAGAAGTAATTATTGAATACA

Polylinker
EcoR1 Hpal Bglli attB1
3376 AGAAGAGAACTCTGAATAGGGAATTGGGGAATTCGTTAACAGATCTGACAAGTTTGTACAAAAAAGCAGGCTGAA - - - . - - - - - - - - -

3451 A ATG CAT ATC AGG GAA GCA GTT TTC CTG GTC CTC ACC CTG CTG CCT GGA ATG ATC

3506 CTG GGC ACT CGC TAC AAT CAG CTG CAT CTG TAT GCC AAT GGA GGA GCA TCG TCA TCG

3563 GGC CCT GGA GGC TAC AGG CCC GCC CCC TCG TCC CAG AAC GAG GTG TAC TCC ATA GCG
 3620 GAC AGC CAG CCG ATG ACT GAG GAT GGC TAC ATG CCC CCC AGC CAG CAC TTT CCG CCC
 N Flank
3677 ACC CAC TCC GAC TTG GAT CCC CCC GCC CAG CAG CAG AGC ACC TGC CAA ACG GTT TGC
 3734 GCC TGC AAG TGG AAG GGT GGC AAG CAG ACG GTG GAG TGC ATC GAT CGC CAC CTC ATC
 LRR1
3791 CAG ATA CCC GAG CAC ATC GAT CCC AAT ACC CAG GTG CTG GAC ATG TCC GGT AAT AAG 114* Q I $\mathrm{P} \quad \mathrm{E} \quad \mathrm{H} \quad \mathrm{I} \quad \mathrm{D} \quad \mathrm{P} \quad \mathrm{N} \quad \mathrm{T} \quad \mathrm{Q} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{D} \quad \mathrm{M} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{N} \quad \mathrm{K}$

LRR3

3959 CTG ACC AAT CTG GTG GAG TTG GAT CTG TCA CAT AAT CTG CTG GTT ACC GTG CCC AGT

- - - 170 LRR4
4016 TTG GCC CTG GGC CAC ATA CCC TCA CTG CGC GAA CTC ACC CTG GCC TCC AAT CAC ATA

LRR5
4073 CAC AAA ATC GAG AGC CAG GCC TTC GGG AAC ACA CCA TCG CTG CAC AAA TTG GAT CTG

LRR6
4130 TCG CAT TGC GAT ATT CAG ACC ATT TCC GCC CAG GCA TTT GGT GGC CTC CAA GGA TTG

4187 ACT TTG CTC CGA TTG AAT GGC AAT AAA CTG AGC GAG CTT TTG CCC AAG ACA ATT GAG

LRR7

C Flank
4244 ACC CTG AGT CGA CTT CAT GGC ATC GAA CTG CAC GAC AAT CCC TGG CTC TGT GAT TGT 265. T L L S 4301 CGA TTG AGG GAC ACG AAG CTC TGG CTG ATG AAG AGG AAC ATA CCC TAT CCG GTG GCT

284* R R D T K L W L M K R N I P Y P V A

kok 118 P309S
 kok 65 P309L

4358 ccg gtt tge tcg ggt ggc Ccc gaa agg att atc gat cgc agc ttt gcg gat ctg cat 303' P V C S G G P E R I I D R S F A D L H

kok 82A P329S

4415 gtg gat gag ttt gcc tgc cga Ccg gag atg ttg ccc ata tcg cat tat gtg gag gcg

4472 GCC ATG GGC GAG AAT GCC tCG ATt ACA TGT CGA GCT CGA GCG gtt CCA GCT GCG AAT 341* A _ _M _ _ _ _E _ _N _ _ _ _ 4529 ATC AAC TGG TAC TGG AAC GGA CGG CTG CTG GCC AAC AAT TCC GCC TTC ACC GCG TAC

RNA1 43521 / 4761

W65
4586 CAG AGG ATA CAC ATG TTG GAG CAG GTG GAA GGT GGA TTC GAA AAG CGA TCC AAA CTG 379. $\mathrm{Q} \quad \mathrm{R} \quad \mathrm{I} \quad \mathrm{H} \quad \mathrm{M} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{Q} \quad \mathrm{V} \quad \mathrm{E} \quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{F} \quad \mathrm{E} \quad \mathrm{K} \quad \mathrm{R} \quad \mathrm{S} \quad \mathrm{K} \quad \mathrm{L}$ 4643 GTG CTG ACC AAC GCA CAG GAA ACG GAT TCC AGT GAG TTC TAC TGC GTG GCC GAG AAT

Tm Swap

4700 CGA GCT GGG ATG GCC GAG GCC AAC TTC ACC CTG CAC GTG AGC ATG AGA GCT GCG GGC
 4757 ATG GCC TCC CTG GGT AGT GGC CAA ATT GTG GGT CTG AGT GCC GCC CTG GTT GCT CTG 436 M \quad A $\quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{Q} \quad \mathrm{I} \quad \mathrm{V} \quad \mathrm{G} \quad \mathrm{L} \quad \mathrm{S} \quad \mathrm{A} \quad \mathrm{A} \quad \mathrm{L} \quad \mathrm{V} \quad \mathrm{A} \quad \mathrm{L}$

4814 ATT GTG TTT GCC CTT GGG GTT ATC ATG TGC CTG CTC CTG AGG GTA AAA CGG CAG CCG

4871 TAT GTC GAT AGC AAG ACG CCC AAT CAC ATG GAG GTG ATA ACA TCT GTT AAC CAC CAG
 4928 AAC TCC ATA ACA AAC AAG ACG CAG CCC GCA ACG GGA AAT GGC AGT ATT GGC GGC GTG

4985 GTC ATC GCC AAT GGA GCT GTG GCC AAC ATA ATC GAT GGC GGA GTG GTG CAG GGA GGA

5042 ACT CTG GAG CGG AAA AGC AGC GGA CGG GGA GGT GTA CCG CAT GGA GTT CAC GAT CAG
 Bglll
5099 CGC AGT GCA AAT CCC GTG CAG AAA CCG CCG AGG CTA ACA GAT CTT CCG TAC TCT ACG 550k R _ _ 5156 CAG GGC TAT GAC AAC AAC GGA AGT GTC CTG TCC ACT GCC TCC TGT TTC ATC TCG CCC

5213 AGT GGA TCC ACC GGA AAC GGT GGC AAC AAT CCT GAT CTC ATT AAT GAT ACC AAA CGT

5270 TTT GGG AGC GAC GAG TTT GCG GAT CTG AAG ATA CCA CCC ATC AGT GGT GTT GGA GTC

RNAi-36252

W64
5327 GGC GGC AGT GGG GAG TAT AGT CGC GCC AAC GGC TGC GAT TCC CTG TAT CCT TCG GGT
 5384 CTG TGG GAA CAT GGT GCT CCA GTG GGC ACC ACA TCC GCG GAT GAC CTC TTC ATG AAG

5441 CGC TAC ACC GAC AAG ACG CCC ATC ATA GAC TCC ACA CAG CTG TAC GAC CTT CAT GAG

Bglll

5498 CGA ACG GCG GCC ACG GAT TAT TTT AGC AAG ACA TTC CCG AGA TCT CAC CTC CAG CAG

5555 GGC ATG ATG ACG GGT GGC GGT GGA GGA ACC TCG ACG GCG TCG ACG GTA ACC ACT AAT

5612 TTG TCG GGT GGC TCC TCA TCG GGT TAC CCC AAC GAT TAT GGT CTG CCT CTG GTG CCG

5669 GGG GCA GAG CAC CAG CAC AAC CAC CAG CTG CAG ATG CAT CCA CTG CAG CAG CTC CAG

5726 CAG CAG CTG ACC TCC ACG CTG AAC CAT CAG AAG CAG GAG GGC AGC TCC ACC GGG AGC 759: Q Q L T S T L N H Q K Q E G S S T G S

5783 AGT CCG CAC TTC AGT AGC CGC ACA CTG CCA CGC CTG CAC GAG GGC AGT GGC GGG GGC
 5840 GGC AGT TCA CGG TCG TCG CCG ACG CCA GCG ATT AGC GGT GGC CAT GCC AAC CAG GCG 797- G _ _S _ _ 5897 GCA AAT CCC AGC ACC TCC AGT TCC TCC TGC TCC ATC CTG CCC AAC GGG CAG CCA ATT
 5954 AAC GCC AAG ACG ATA CGG GTG TGG CAA AAG GGC GGT GTG CCC GTC CTG CCA CCC GTG
 6011 ACG GCG CTG AAA AGG GCC CTG ATC AGC AGC AGC CGG AAT TCG CCG GAC GAG GGA TAC
 6068 CAG GAA GGA TGC GGC ACG GAT GTG CAC CCA GCT TTC TTG TAC AAA GTG GTG GTA CCG 873゙ _Q _ _ ATG for EGFPN1
6125 CGG GCC CGG GAT CCA CCG GTC GCC ACC ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC
 6182 GGG GTG GTG CCC ATC CTG GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC
 6239 GTG TCC GGC GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC
 6296 TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC CTG ACC TAC
 6353 GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CAG CAC GAC TTC TTC AAG
 6410 TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG CGC ACC ATC TTC TTC AAG GAC GAC GGC
 6467 AAC TAC AAG ACC CGC GCC GAG GTG AAG TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC
 6524 GAG CTG AAG GGC ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG
 6581 TAC AAC TAC AAC AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC GGC ATC
 6638 AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC GTG CAG CTC GCC GAC

6695 CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC GTG CTG CTG CCC GAC AAC CAC
 6752 TAC CTG AGC ACC CAG TCC GCC CTG AGC AAA GAC CCC AAC GAG AAG CGC GAT CAC ATG
 6809 GTC CTG CTG GAG TTC GTG ACC GCC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC
 SV40 Poly A
Xbal Bglll
6866 AAG TAA AGC GGC CGC GAC TCT AGA GATCTTTGTGAAGGAACCTTACTTCTGTGGTGTGACATAATTG 1139: _K _ _ _ _S _ G _ _R_ _D _ _S _ _R 6933 GACAAACTACCTACAGAGATTTAAAGCTCTAAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTAAACTACTG 7008 ATTCTAATTGTTTGTGTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGGTGGAATGCCTTTAAT
 Hpal 7608 CTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTC
white gene B amHI
7683 ACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCGGATCCACTAGAAGGCC

7758 TTAGTATGTATGTAAGTTAATAAAACCCTTTTTTGGAGAATGTAGATTTAAAAAAACATATTTTTTTTTTATTTT

7833 TTACTGCACTGGACATCATTGAACTTATCTGATCAGTTTTAAATTTACTTCGATCCAAGGGTATTTGAAGTACCA

7908 GGTTCTTTCGATTACCTCTCACTCAAAATGACATTCCACTCAAAGTCAGCGCTGTTTGCCTCCTTCTCTGTCCAC

7983 AGAAATATCGCCGTCTCTTTCGCCGCTGCGTCCGCTATCTCTTTCGCCACCGTTTGTAGCGTTACCTAGCGTCAA

8058 TGTCCGCCTTCAGTTGCACTTTGTCAGCGGTTTCGTGACGAAGCTCCAAGCGGTTTACGCCATCAATTAAACACA

11733 TTACAATTTGAACTGAAAGTGACATCCAGTGTTTGTTCCTTGTGTAGATGCATCTCAAAAAAATGGTGGGCATAA

11808	TAGTGTTGTTTATATATATCAAAAATAACAACTATAATAATAAGAATACATTTAATTTAGAAAATGCTTGGATTT
11883	CACTGGAACTAGAATTAATTCGGCTGCTGCTCTAAACGACGCATTTCGTACTCCAAAGTACGAATTTTTTCCCTC
11958	AAGCTCTTATTTTCATTAAACAATGAACAGGACCTAACGCACAGTCACGTTATTGTTTACATAAATGATTTTTT
12033	TACTATTCAAACTTACTCTGTTTGTGTACTCCCACTGGTATAGCCTTCTTTTATCTTTTCTGGTTCAGGCTCTAT
12108	CACTTTACTAGGTACGGCATCTGCGTTGAGTCGCCTCCTTTTAAATGTCTGACCTTTTGCAGGTGCAGCCTTCCA
12183	CTGCGAATCATTAAAGTGGGTATCACAAATTTGGGAGTTTTCACCAAGGCTGCACCCAAGGCTCTGCTCCCACAA
12258	TTTTCTCTTAATAGCACACTTCGGCACGTGAATTAATTTTACTCCAGTCACAGCTTTGCAGCAAAATTTGCAATA
12333	TTTCATTTTTTTTTATTCCACGTAAGGGTTAATGTTTTCAAAAAAAAATTCGTCCGCACACAACCTTTCCTCTCA
12408	ACAAGCAAACGTGCACTGAATTTAAGTGTATACTTCGGTAAGCTTCGGCTATCGACGGGACCACCTTATGTTATT
12483	$\begin{aligned} & \text { 5' } \mathrm{P} \\ & \text { TCATCATG } \end{aligned}$

UAS Kek2 GFP

1 GGCCAGACCCACGTAGTCCAGCGGCAGATCGGCGGCGGAGAAGTTAAGCGTCTCCAGGATGACCTTGCCCGAACT CCGGTCTGGGTGCATCAGGTCGCCGTCTAGCCGCCGCCTCTTCAATTCGCAGAGGTCCTACTGGAACGGGCTTGA

76 GGGGCACGTGGTGTTCGACGATGTGCAGCTAATTTCGCCCGGCTCCACGTCCGCCCATTGGTTAATCAGCAGACC
\qquad CCCCGTGCACCACAAGCTGCTACACGTCGATIAAAGGGGCCGAGGTGCAGGGGGTAACCAATIAGICGTCTGG
151 CTCGTTGGCGTAACGGAACCATGAGAGGTACGACAACCATTTGAGGTATACTGGCACCGAGCCCGAGTTCAAGAA GAGCAACCGCATTGCCTTGGTACTCTCCATGCTGTTGGTAAACTCCATATGACCGTGGCTCGGGCTCAAGTTCTI

226 GAAGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA CTTCCGCAAAAAGGTATCCGAGGCGGGGGGACTGCICGTAGTGITTTIAGCTGCGAGTICAGTCTCCACCGCTTI

301 CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCC - - - - - _ GGGCTGTCCTGATATTICTATGGTCCGCAAAGGGGACCTTCGAGGAGCACGCGAGAGGACAAGGETGGACGG

376 GCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCT CGAATGGCCTATGGACAGGCGGAAAGAGGGAAGCCCTTCGCACCGCGAAAGAGTTACGAGTGCGACATCCATAGA

451 CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT GTCAAGCCACATCCAGCAAGCGAGGTTCGACCCGACACACGTGCTTGGGGGGCAAGTCGGGCTGGCGACGCGGAB

526 ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAG TAGGCCATTGATAGCAGAACTCAGGTTGGGCCATTCTGTGCTGAATAGCGGTGACCGTCGTCGGTGACCATTGTC
601 GATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAG CTAATCGTCTCGCTCCATACATCCGCCACGATGTCTCAAGAACTTCACCACCGGATTGATGCCGATGTGATCTTC

676 GACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAA CTGTCATAAACCATAGACGCGAGACGACTTCGGTCAATGGAAGCCTITITCTCAACCATCGAGAACTAGGCCGTI

751 ACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGA TGTTTGGTGGCGACCATCGCCACCAAAAAAACAAACGTTCGTCGTCTAATGCGCGTCTITTTITCCTAGAGTTCT
826 AGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAG TCTAGGAAACTAGAAAAGATGCCCCAGACTGCGAGICACCITGCTTTIGAGTGCAATTCCCTAAAACCAGTACTC

901 ATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGA TAATAGTTTTTCCTAGAAGTGGATCTAGGAAAATTIAATTTTACTTCAAAATTAGTTAGATTTCATATATACT
976 GTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATC CATITGAACCAGACTGTCAATGGTTACGAATIAGTCACTCCGTGGATAGAGTCGCTAGACAGATAAAGCAAGTAG
1051 CATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAAT - - - - _ _ GTATCAACGGACTGAGGGGCAGCACATCTATTGATGCTATGCCCTCCGGATGGTAGACCGGGGCACGACGTTA

1126 GATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAG

1201 AAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCC TTCACCAGGACGITGAAATAGGCGGAGGTAGGTCAGATAATTAACAACGGCCCTTCGATCTCATTCATCAAGCGG
1276 AGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTC TCAATTATCAAACGCGITGCAACAACGGTAACGATGTCCGTAGCACCACAGTGCGAGCAGCAAACCATACCGAAG

1351 ATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTT TAAGTCGAGGCCAAGGGTTGCTAGTTCCGCTCAATGTACTAGGGGGTACAACACGTTTTTTCGCCAATCGAGGAA
1426 CGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTC GCCAGGAGGCTAGCAACAGTCTTCATTCAACCGGCGTCACAATAGTGAGTACCAATACCGTCGIGACGTATTAAG

1501 TCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG AGAATGACAGTACGGTAGGCATTCTACGAAAAGACACTGACCACTCATGAGTTGGTTCAGTAAGACTCTTATCAC

1576 TATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGT ATACGCCGCTGGCTCAACGAGAACGGGCCGCAGTTGTGCCCTATTATGGCGCGGTGTATCGTCTTGAAATITTCA
1651 GCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTA CGAGTAGTAACCTTTTGCAAGAAGCCCCGCTTTTGAGAGTTCCTAGAATGGCGACAACTCTAGGTCAAGCTACAT

1726 ACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAG TGGGTGAGCACGTGGGTTGACTAGAAGTCGTAGAAAATGAAAGTGGTCGCAAAGACCCACTCGTTTTTGTCCTTC

1801 GCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTA CGTTTTACGGCGTTTTTTCCCTTATTCCCGCTGTGCCTTIACAACTTATGAGTATGAGAAGGAAAAGTTATAAT
1876 TTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGG AACTTCGTAAATAGTCCCAATAACAGAGTACTCGCCTATGTATAAACTTACATAAATCTTTTATTTGTTATCC
1951 GGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAA CCAAGGCGCGTGTAAAGGGGCTTITCACGGTGGACTGCAGATICTTTGGTAATAATAGTACTGTAATTGGATATI

2026 AAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCT TTTATCCGCATAGTGCTCCGGGAAAGCAGAGCGCGCAAAGCCACTACTGCCACTTITGGAGACTGTGIACGTCGA
2101 CCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGT GGGCCTCTGCCAGTGTCGAACAGACATTCGCCTACGGCCCTCGTCTGTTCGGGCAGTCCCGCGCAGTCGCCCACA

2176 TGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGA ACCGCCCACAGCCCGACCGAATTGATACGCCGTAGTCTCGTCTAACATGACTCTCACGTGTATACGCCACACT

2251 AATACCGCACCGAATCGCGCGGAACTAACGACAGTCGCTCCAAGGTCGTCGAACAAAAGGTGAATGTGTTGCGGA TTATGGCGTGGCTTAGCGCGCCTTGATTGCTGTCAGCGAGGTTCCAGCAGCTTGTTTTCCACTTACACAACGCCI
2326 GAGCGGGTGGGAGACAGCGAAAGAGCAACTACGAAACGTGGTGTGGTGGAGGTGAATTATGAAGAGGGCGCGCGA

2401 TTTGAAAAGTATGTATATAAAAAATATATCCCGGTGTTTTATGTAGCGATAAACGAGTTTTTGATGTAAGGTATG AAACITTTCATACATATATITTTIATATAGGGCCACAAAATACATCGCTATITGCTCAAAAACTACATTCCATAC

2476 CAGGTGTGTAAGTCTTTTGGTTAGAAGACAAATCCAAAGTCTACTTGTGGGGATGTTCGAAGGGGAAATACTTGT GTCCACACATTCAGAAAACCAATCTTCTGTTTAGGTTTCAGATGAACACCCCTACAAGCTTCCCCTTTATGAACA
2551 ATTCTATAGGTCATATCTTGTTTTTATTGGCACAAATATAATTACATTAGCTTTTTGAGGGGGCAATAAACAGTA TAAGATATCCAGTATAGAACAAAAATAACCGTGTTTATATTAATGTAATCGAAAAACTCCCCCGTTATTTGTCAT

2626 AACACGATGGTAATAATGGTAAAAAAAAAAACAAGCAGTTATTTCGGATATATGTCGGCTACTCCTTGCGTCGGG TTGTGCTACCATTATIACCATTTITTTITTTGTTCGICAATAAAGCCTATATACAGCCGATGAGGAACGCAGCCC

3 'P
2701 CCCGAAGTCTTAGAGCCAGATATGCGAGCACCCGGAAGCTCACGATGAGAATGGCCAGACCATGATGAAATAACA GGGCTTCAGAATCTCGGTCTATACGCTCGTGGGCCTTCGAGTGCTACTCTTACCGGTCTGGTACTACTTTATTGT

3301 CAATTAAAAGTAACCAGCAACCAAGTAAATCAACTGCAACTACTGAAATCTGCCAAGAAGTAATTATTGAATACA

 GTTAATTTTCATTGGTCGTTGGTTCATTTAGTTGACGTTGATGACTTTAGACGGTTCTTCATTAATAACTTATGTPolylinker
EcoR1 Hpal Bglli attB1
3376 AGAAGAGAACTCTGAATAGGGAATTGGGGAATTCGTTAACAGATCTG ACA AGT TTG TAC AAA AAA GCA TCTTCTCTTGAGACTTATCCCTTAACCCCTTAAGCAATTGTCTAGAC TGT TCA AAC ATG TTT TTT CGT ------.--

6
3444 GGC T GAAA ATG AGT GGT CTG CCA ATC TGG ATA CCG CTC CTT GCA CTT CTG GCC ATA CCG A CTTT TAC TCA CCA GAC GGT TAG ACC TAT GGC GAG GAA CGT GAA GAC CGG TAT

N Flank

3500 ACT GCC GCC TGT CCG CCG GAG GTG TGT GTA TGC AAA TGG AAG GGG GGC AAG CAG ACG TGA CGG CGG ACA GGC GGC CTC CAC ACA CAT ACG TTT ACC TTC CCC CCG TTC GTC TGC

LRR1
3557 GTG GAG TGC GGC GGC CAG CAG CTC TCC AAT CTA CCG GAG GGC ATG GAT CCG GGC ACC CAC CTC ACG CCG CCG GTC GTC GAG AGG TTA GAT GGC CTC CCG TAC CTA GGC CCG TGG

- - - 36

3614 CAG GTC CTC AAC TTT AGC GGC AAT GCG CTG CAG GTA CTG CAA TCG GAG CGG TTT CTA GTC CAG GAG TTG AAA TCG CCG TTA CGC GAC GTC CAT GAC GTT AGC CTC GCC AAA GAT
 LRR2
3671 CGT ATG GAT CTG CTA AAC CTG CAG AAG ATT TAT CTG TCA CGG AAT CAG TTG ATC CGG GCA TAC CTA GAC GAT TTG GAC GTC TTC TAA ATA GAC AGT GCC TTA GTC AAC TAG GCC

LRR 3
3728 ATA CAC GAG AAG GCC TTC AGG GGG CTG ACG AAT CTG GTC GAG CTG GAT CTC AGC GAG TAT GTG CTC TTC CGG AAG TCC CCC GAC TGC TTA GAC CAG CTC GAC CTA GAG TCG CTC

LRR 4
3785 AAT GCG CTG CAG AAT GTG CCA AGC GAA ACG TTT CAG GAC TAC AGC TCT CTA ATG CGC TTA CGC GAC GTC TTA CAC GGT TCG CTT TGC AAA GTC CTG ATG TCG AGA GAT TAC GCG

3899 TCT TTT CTC ACG ACA CTA GAG CTG TCC AAC TGC CAG GTG GAG CGG ATC GAG AAT GAG AGA AAA GAG TGC TGT GAT CTC GAC AGG TTG ACG GTC CAC CTC GCC TAG CTC TTA CTC

LRR6
3956 GCC TTC GTG GGC ATG GAC AAC CTG GAG TGG CTG CGA CTG GAC GGC AAT CGG ATT GGG CGG AAG CAC CCG TAC CTG TTG GAC CTC ACC GAC GCT GAC CTG CCG TTA GCC TAA CCC

LRR7
4013 TTC ATC CAG GGC ACC CAC ATC CTG CCC AAG TCG CTG CAC GGC ATC AGC CTG CAC AGC AAG TAG GTC CCG TGG GTG TAG GAC GGG TTC AGC GAC GTG CCG TAG TCG GAC GTG TCG

C Flank
4070 AAT CGG TGG AAC TGC GAC TGC CGC CTT CTA GAC ATC CAC TTC TGG CTG GTC AAC TAT TTA GCC ACC TTG ACG CTG ACG GCG GAA GAT CTG TAG GTG AAG ACC GAC CAG TTG ATA

4127 AAC ACG CCT CTG GCG GAG GAA CCC AAA TGT ATG GAA CCG GCG AGG CTG AAA GGT CAG TTG TGC GGA GAC CGC CTC CTT GGG TTT ACA TAC CTT GGC CGC TCC GAC TTT CCA GTC

4184 GTG ATC AAG AGC CTG CAG CGG GAG CAG CTG GCC TGT CTG CCG GAG GTT AGT CCC CAG CAC TAG TTC TCG GAC GTC GCC CTC GTC GAC CGG ACA GAC GGC CTC CAA TCA GGG GTC

245* ${ }^{\text {V }}$ -
4241 TCG AGT TAT ACG GAG GTG AGT GAG GGC AGG AAC ATG TCC ATC ACC TGC CTG GTC AGG AGC TCA ATA TGC CTC CAC TCA CTC CCG TCC TTG TAC AGG TAG TGG ACG GAC CAG TCC

4298 GCC ATC CCG GAG CCG AAG GTC CTT TGG CTG TTC AAT GGC CAG GTG ATG AGC AAC GAC CGG TAG GGC CTC GGC TTC CAG GAA ACC GAC AAG TTA CCG GTC CAC TAC TCG TTG CTG
_ _ _ 283
4355 AGC CTG ATG GAC AAC CTG CAC ATG TAC TAC TAT ATC GAC GAG ACG ATC GGA GTA AGC TCG GAC TAC CTG TTG GAC GTG TAC ATG ATG ATA TAG CTG CTC TGC TAG CCT CAT TCG

4412 GGC GCC GAG GAG AAG CGC AGC GAG ATC TTC ATC TAC AAC GTT GGT GCC GAG GAT AAT CCG CGG CTC CTC TTC GCG TCG CTC TAG AAG TAG ATG TTG CAA CCA CGG CTC CTA TTA

- 321F G A E E K

4469 GGC ACC TTC TCC TGT GTG GGC CAG AAC ATA GCT GGC ACC ACC TTC AGT AAC TAC ACC CCG TGG AAG AGG ACA CAC CCG GTC TTG TAT CGA CCG TGG TGG AAG TCA TTG ATG TGG

JT-CL
4526 CTG AGA GTC ATA ATC AAG GAG CCG CCG GTG GTG AAT GAG GTC TCC TTC CCC AGG GAT GAC TCT CAG TAT TAG TTC CTC GGC GGC CAC CAC TTA CTC CAG AGG AAG GGG TCC CTA

4583 TAC ATG AAC TAC ATT GTG GCC AGC AGT GCC GGA GGC GGC ATT ATC TTC GTG GTA CTC ATG TAC TTG ATG TAA CAC CGG TCG TCA CGG CCT CCG CCG TAA TAG AAG CAC CAT GAG

4640 CTC TGC ACC ATA GTG GTC AAG TGC AAG AAG ACC TCA GAG CCG GCC AAG CAG CGC AAG GAG ACG TGG TAT CAC CAG TTC ACG TTC TTC TGG AGT CTC GGC CGG TTC GTC GCG TTC

4697 AAG TGC GAT CAG GTG ACG AGT ATT GCC GGT GGC ACT GAC TCC TCG ACG GGG AGC ACC TTC ACG CTA GTC CAC TGC TCA TAA CGG CCA CCG TGA CTG AGG AGC TGC CCC TCG TGG

4754 CAG GAC ACG GGC ATG GGC ATG ATG AAG TGC GCC TCG ATA CTG AAT GAT GGC GGT GAT GTC CTG TGC CCG TAC CCG TAC TAC TTC ACG CGG AGC TAT GAC TTA CTA CCG CCA CTA

4811 AGT ATG AAC GGA AAC GCA GGA CTT CTA CTG GGC GAT ACC TTG ACA CCC ACC AAG GCG TCA TAC TTG CCT TTG CGT CCT GAA GAT GAC CCG CTA TGG AAC TGT GGG TGG TTC CGC

4868 GCG AAT GGA GCA GCT GGC GGT GGC ATT ATT TTG GGC AAT CAG ATG AAG CAG AAC CTA CGC TTA CCT CGT CGA CCG CCA CCG TAA TAA AAC CCG TTA GTC TAC TTC GTC TTG GAT

4925 CTC CTC TAC GCC ACT CCG AAC TCC GCC CAG CAG CAG CTG CAG CTG AAT GTC AAC CTG GAG GAG ATG CGG TGA GGC TTG AGG CGG GTC GTC GTC GAC GTC GAC TTA CAG TTG GAC

4982 ATG GGC ACT GGA CCG GGA TCA CCG CCG TTG CTC CTG AGC AAT GGC CAC GGC TTG GCG TAC CCG TGA CCT GGC CCT AGT GGC GGC AAC GAG GAC TCG TTA CCG GTG CCG AAC CGC

5039 GCA GCC TAC TGC TCT CCT CCA GCT TCG CTG CGG AAC TAC CAA GAG AAA AAT CCG GAC CGT CGG ATG ACG AGA GGA GGT CGA AGC GAC GCC TTG ATG GTT CTC TTT TTA GGC CTG

5096 TTG GTC AAC GAT GCG GAG AGT GTC AAG CAC AAG CTT AAG ACG GCG GTA AGT CTG GAC AAC CAG TTG CTA CGC CTC TCA CAG TTC GTG TTC GAA TTC TGC CGC CAT TCA GAC CTG

5153 GGA GCC GGG GAG TAC GAG ACG CAG AGC GAC TGT GGT CAG TAC GAG GGC TGC TAT CAG CCT CGG CCC CTC ATG CTC TGC GTC TCG CTG ACA CCA GTC ATG CTC CCG ACG ATA GTC

5210 CTG GCG GCC GCT CCA CAT CCG CAT CAG GGA CAC CAG CAC CCT CAT CCG GGA CAT CCG GAC CGC CGG CGA GGT GTA GGC GTA GTC CCT GTG GTC GTG GGA GTA GGC CCT GTA GGC

- - 587 _

5267 CTG ATG GAA CGT TTT GCC CAG GCG ATG ACC ACT TTG CCG CGC GGC ATG CAA CTG AAG GAC TAC CTT GCA AAA CGG GTC CGC TAC TGG TGA AAC GGC GCG CCG TAC GTT GAC TTC

5324 CCG GCT CCC CAT CAA GTT GAT GTC CAC CTG AAT CCG GTG TGC TTC CTG GGC CAA GAT GGC CGA GGG GTA GTT CAA CTA CAG GTG GAC TTA GGC CAC ACG AAG GAC CCG GTT CTA

5381 GGA TCC TTC GCA TAT GAT TAC AGC AGT GCC CAT ATG GTG CAG CAG CCA CCT CAG CAA CCT AGG AAG CGT ATA CTA ATG TCG TCA CGG GTA TAC CAC GTC GTC GGT GGA GTC GTT

5438 CAG CAG CAG CAG CAA CAG GTG CAG CCT GCC AAT AAC TTC TAT CGC ACG TTG CCA CAC GTC GTC GTC GTC GTT GTC CAC GTC GGA CGG TTA TTG AAG ATA GCG TGC AAC GGT GTG

5495 AAT AGG TTG CAC AAA CAG CAG CAA TTT CAG GCG GCT GCG GCG GCA GGC GGA AAT GTC TTA TCC AAC GTG TTT GTC GTC GTT AAA GTC CGC CGA CGC CGC CGT CCG CCT TTA CAG

5552 GGT GTG GGT GGC AAT CCC ACA CTG CGC TAC AGC CTC GAG GCC GAG TTC ATC CAG AGG CCA CAC CCA CCG TTA GGG TGT GAC GCG ATG TCG GAG CTC CGG CTC AAG TAG GTC TCC
701. G V G V P T L R Y S L E A E F I Q R

5609 GGT CCG ACG GTG AGC TAC GAG AAG TAC CAG CTG CCC AAT GTG CGC TTC ACA GCG GAG CCA GGC TGC CAC TCG ATG CTC TTC ATG GTC GAC GGG TTA CAC GCG AAG TGT CGC CTC


```
    5 6 6 6 ~ G G T ~ T A T ~ C C T ~ C A G ~ C A G ~ C A G ~ C A G ~ C A G ~ C A A ~ C A G ~ C A G ~ C A A ~ C T T ~ C A G ~ C A G ~ C A G ~ C A A ~ C A G ~ T T G ~
        CCA ATA GGA GTC GTC GTC GTC GTC GTT GTC GTC GTT GAA GTC GTC GTC GTT GTC AAC
```



```
    5 7 2 3 ~ C A G ~ C T C ~ C A G ~ C A G ~ C A G ~ C A T ~ C A G ~ T T C ~ C C C ~ T C A ~ C C G ~ C C A ~ G A G ~ G G C ~ T A C ~ A A A ~ A G C ~
        GTC GAG GTC GTC GTC GTA GTC AAG GGG AGT GGC GGT CTC CCG ATG TTT TCG
```


5774 GAT TTG GCG GTG ATGCCGGCGCCGTTTCAGCAATGGCCCAGCTGT TTG
CTA AAC CGC CAC TAC GGC CGC GGC AAA GTC GTT ACC GGG TCG ACA AAC

5822 CCC GGC TAC CGATTC GCC CAGTCACCC ACC AGC CTGCCA GCGGTTGCA
GGGCCGATG GCTAAGCGG GTC AGTGGGTGGTCGGACGGTCGCCAACGT

RNAi 42449
Oligo W66
5870 ACT CCA CCA CCA GCC GCA GTG GTG GCA ACA CCACCACCGCCCACA TCA TGA GGTGGT GGTCGGCGTCACCACCGTTGTGGTGGTGGCGGGTGTAGT

5918 GCA GTA AGC ACA CAA TCC ACG GCC ACA TCC ACC ATT CCGGAGCTGGAT CGT CAT TCG TGT GTT AGG TGC CGG TGT AGG TGG TAA GGC CTC GAC CTA

5966 GAA AGC GAG GCG AGT TCG CCG CGC CTC GAG GAA GCC GCC GGG TCT GCA CTt tcg ctc cgC tca agc gac gcg gag ctc ctt cgacgg ccc aga cgt

- - 839*

6014 GCGCCACCT GCC GGT GAG GAG GAG AGT TCG GAC ACC GCA AAACTC AAA CGC GGT GGA CGGCCACTC CTC CTC TCA AGC CTG TGGCGT TTT GAG TTT

6062 CAG CTT AAT GGC CCC TTG GCC GAC AGT CCC GAC GAG GGA TAC GTG GGC GTC GAA TTA CCG GGG AAC CGGCTG TCA GGG CTGCTC CCTATG CAC CCG

871 Q L N G P L A D S P D E G Y V G
attB2
6110 GAT GGC CAG GAA ACC AGC GAC ATT GAC CCA GCT TTC TTG TAC AAA GTG CTA CCG GTC CTT TGG TCG CTG TAA CTG GGT CGA AAG AAC ATG TTT CAC
 Kpnl
6158 GTG GTA CCG CGG GCC CGG GAT CCA CCG GTC GCC ACC ATG GTG AGC AAG CAC CAT GGC GCC CGG GCC CTA GGT GGC CAG CGG TGG TAC CAC TCG TTC

6206 GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG GTC GAG CTG GAC GGC GAC CCG CTC CTC GAC AAG TGG CCC CAC CAC GGG TAG GAC CAG CTC GAC CTG CCG CTG

6260 GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC GAG GGC GAG GGC GAT GCC ACC TAC GGC CAT TTG CCG GTG TTC AAG TCG CAC AGG CCG CTC CCG CTC CCG CTA CGG TGG ATG CCG

6317 AAG CTG ACC CTG AAG ITC ATC IGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC TTC GAC TGG GAC TTC AAG TAG ACG TGG TGG CCG TTC GAC GGG CAC GGG ACC GGG TGG

6374 CTC GTG ACC ACC CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG GAG CAC TGG TGG GAC TGG ATG CCG CAC GTC ACG AAG TCG GCG ATG GGG CTG GTG TAC

6431 AAG CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG CGC ACC TTC GTC GTG CTG AAG AAG TTC AGG CGG TAC GGG CTT CCG ATG CAG GTC CTC GCG TGG

6488 ATC TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG GTG AAG TTC GAG GGC TAG AAG AAG TTC CTG CTG CCG TTG ATG TTC TGG GCG CGG CTC CAC TTC AAG CTC CCG

6545 GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC ATC GAC TTC AAG GAG GAC GGC AAC CTG TGG GAC CAC TTG GCG TAG CTC GAC TTC CCG TAG CTG AAG TTC CTC CTG CCG TTG

6602 ATC CTG GGG CAC AAG CTG GAG TAC AAC TAC AAC AGC CAC AAC GTC TAT ATC ATG GCC TAG GAC CCC GTG TTC GAC CTC ATG TTG ATG TTG TCG GTG TTG CAG ATA TAG TAC CGG

1051 L G H K L E Y N Y N S H N V Y I M A

6659 GAC AAG CAG AAG AAC GGC ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC CTG TTC GTC TTC TTG CCG TAG TTC CAC TTG AAG TTC TAG GCG GTG TTG TAG CTC CTG
_ - 1070
6716 GGC AGC GTG CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC CCG TCG CAC GTC GAG CGG CTG GTG ATG GTC GTC TTG TGG GGG TAG CCG CTG CCG GGG

6773 GTG CTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC AAA GAC CCC CAC GAC GAC GGG CTG TTG GTG ATG GAC TCG TGG GTC AGG CGG GAC TCG TTT CTG GGG

6830 AAC GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG ACC GCC GCC GGG ATC ACT TTG CTC TTC GCG CTA GTG TAC CAG GAC GAC CTC AAG CAC TGG CGG CGG CCC TAG TGA
 Notl Xbal Bglll
6887 CTC GGC ATG GAC GAG CTG TAC AAG TAA AGC GGC CGC GAC TCT AGA GATCTtTGTGAAGGA GAG CCG TAC CTG CTC GAC ATG TTC ATT TCG CCG GCG CTG AGA TCT CTAGAAACACTTCCT

6947 ACCTTACTTCTGTGGTGTGACATAATTGGACAAACTACCTACAGAGATTTAAAGCTCTAAGGTAAATATAAAATT TGGAATGAAGACACCACACTGTATTAACCTGTTTGATGGATGTCTCTAAATTTCGAGATTCCATTTATATTTTAA

7022 TTTAAGTGTATAATGTGTTAAACTACTGATTCTAATTGTTTGTGTATTTTAGATTCCAACCTATGGAACTGATGA AAATTCACATATTACACAATTTGATGACTAAGATTAACAAACACATAAAATCTAAGGTTGGATACCTTGACTACT
\qquad
7097 ATGGGAGCAGTGGTGGAATGCCTTTAATGAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGATGA TACCCTCGTCACCACCTTACGGAAATTACTCCTTTTGGACAAAACGAGTCTTCTTTACGGTAGATCACTACTACT

7172 GGCTACTGCTGACTCTCAACATTCTACTCCTCCAAAAAAGAAGAGAAAGGTAGAAGACCCCAAGGACTTTCCTTC CCGATGACGACTGAGAGTTGTAAGATGAGGAGGTTTTTTCTTCTCTTTCCATCTTCTGGGGTTCCTGAAAGGAAG
\qquad
7247 AGAATTGCTAAGTTTTTTGAGTCATGCTGTGTTTAGTAATAGAACTCTTGCTTGCTTTGCTATTTACACCACAAA TCTTAACGATTCAAAAAACTCAGTACGACACAAATCATTATCTTGAGAACGAACGAAACGATAAATGTGGTGTTT

7322 GGAAAAAGCTGCACTGCTATACAAGAAAATTATGGAAAAATATTCTGTAACCTTTATAAGTAGGCATAACAGTTA CCTTTTTCGACGTGACGATATGTTCTTTTAATACCTTTTTATAAGACATTGGAAATATTCATCCGTATTGTCAAT

7472 GTGTACCTTTAGCTTTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGACTAGAGATCA CACATGGAAATCGAAAAATTAAACATTTCCCCAATTATTCCTTATAAACTACATATCACGGAACTGATCTCTAGT

7547 TAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAAC ATTAGTCGGTATGGTGTAAACATCTCCAAAATGAACGAAATTTTTTGGAGGGTGTGGAGGGGGACTTGGACTTTG

8747 TTGCAGGGTGACAGCGGAGCGGCTTCGCAGAGCTGCATTAACCAGGGCTTCGGGCAGGCCAAAAACTACGGCACG AACGTCCCACTGTCGCCTCGCCGAAGCGTCTCGACGTAATTGGTCCCGAAGCCCGTCCGGTTTTTGATGCCGTGC

8822 CTCCTGCCACCCAGTCCGCCGGAGGACTCCGGTTCAGGGAGCGGCCAACTAGCCGAGAACCTCACCTATGCCTGG GAGGACGGTGGGTCAGGCGGCCTCCTGAGGCCAAGTCCCTCGCCGGTTGATCGGCTCTTGGAGTGGATACGGACC

8897 CACAATATGGACATCTTTGGGGCGGTCAATCAGCCGGGCTCCGGATGGCGGCAGCTGGTCAACCGGACACGCGGA GTGTTATACCTGTAGAAACCCCGCCAGTTAGTCGGCCCGAGGCCTACCGCCGTCGACCAGTTGGCCTGTGCGCCT
\qquad
8972 CTATTCTGCAACGAGCGACACATACCGGCGCCCAGGAAACATTTGCTCAAGAACGGTGAGTTTCTATTCGCAGTC GATAAGACGTTGCTCGCTGTGTATGGCCGCGGGTCCTTTGTAAACGAGTTCTTGCCACTCAAAGATAAGCGTCAG

9047 GGCTGATCTGTGTGAAATCTTAATAAAGGGTCCAATTACCAATTTGAAACTCAGTTTGCGGCGTGGCCTATCCGG CCGACTAGACACACTTTAGAATTATTTCCCAGGTTAATGGTTAAACTTTGAGTCAAACGCCGCACCGGATAGGCC

9122 GCGAACTTTTGGCCGTGATGGGCAGTTCCGGTGCCGGAAAGACGACCCTGCTGAATGCCCTTGCCTTTCGATCGC CGCTTGAAAACCGGCACTACCCGTCAAGGCCACGGCCTTTCTGCTGGGACGACTTACGGGAACGGAAAGCTAGCG

9197 CGCAGGGCATCCAAGTATCGCCATCCGGGATGCGACTGCTCAATGGCCAACCTGTGGACGCCAAGGAGATGCAGG GCGTCCCGTAGGTTCATAGCGGTAGGCCCTACGCTGACGAGTTACCGGTTGGACACCTGCGGTTCCTCTACGTCC

9272 CCAGGTGCGCCTATGTCCAGCAGGATGACCTCTTTATCGGCTCCCTAACGGCCAGGGAACACCTGATTTTCCAGG GGTCCACGCGGATACAGGTCGTCCTACTGGAGAAATAGCCGAGGGATTGCCGGTCCCTTGTGGACTAAAAGGTCC

9347 CCATGGTGCGGATGCCACGACATCTGACCTATCGGCAGCGAGTGGCCCGCGTGGATCAGGTGATCCAGGAGCTTT GGTACCACGCCTACGGTGCTGTAGACTGGATAGCCGTCGCTCACCGGGCGCACCTAGTCCACTAGGTCCTCGAAA

9422 CGCTCAGCAAATGTCAGCACACGATCATCGGTGTGCCCGGCAGGGTGAAAGGTCTGTCCGGCGGAGAAAGGAAGC GCGAGTCGTTTACAGTCGTGTGCTAGTAGCCACACGGGCCGTCCCACTTTCCAGACAGGCCGCCTCTTTCCTTCG

9497 GTCTGGCATTCGCCTCCGAGGCACTAACCGATCCGCCGCTTCTGATCTGCGATGAGCCCACCTCCGGACTGGACT CAGACCGTAAGCGGAGGCTCCGTGATTGGCTAGGCGGCGAAGACTAGACGCTACTCGGGTGGAGGCCTGACCTGA

9572 CATTTACCGCCCACAGCGTCGTCCAGGTGCTGAAGAAGCTGTCGCAGAAGGGCAAGACCGTCATCCTGACCATTC GTAAATGGCGGGTGTCGCAGCAGGTCCACGACTTCTTCGACAGCGTCTTCCCGTTCTGGCAGTAGGACTGGTAAG
\qquad
9647 ATCAGCCGTCTTCCGAGCTGTTTGAGCTCTTTGACAAGATCCTTCTGATGGCCGAGGGCAGGGTAGCTTTCTTGG TAGTCGGCAGAAGGCTCGACAAACTCGAGAAACTGTTCTAGGAAGACTACCGGCTCCCGTCCCATCGAAAGAACC

9722 GCACTCCCAGCGAAGCCGTCGACTTCTTTTCCTAGTGAGTTCGATGTGTTTATTAAGGGTATCTAGCATTACATT CGTGAGGGTCGCTTCGGCAGCTGAAGAAAAGGATCACTCAAGCTACACAAATAATTCCCATAGATCGTAATGTAA

9797 ACATCTCAACTCCTATCCAGCGTGGGTGCCCAGTGTCCTACCAACTACAATCCGGCGGACTTTTACGTACAGGTG TGTAGAGTTGAGGATAGGTCGCACCCACGGGTCACAGGATGGTTGATGTTAGGCCGCCTGAAAATGCATGTCCAC
9872 TTGGCCGTTGTGCCCGGACGGGAGATCGAGTCCCGTGATCGGATCGCCAAGATATGCGACAATTTTGCTATTAGC AACCGGCAACACGGGCCTGCCCTCTAGCTCAGGGCACTAGCCTAGCGGTTCTATACGCTGTTAAAACGATAATCG

9947 AAAGTAGCCCGGGATATGGAGCAGTTGTTGGCCACCAAAAATTTGGAGAAGCCACTGGAGCAGCCGGAGAATGGG TTTCATCGGGCCCTATACCTCGTCAACAACCGGTGGTTTTTAAACCTCTTCGGTGACCTCGTCGGCCTCTTACCC
$\left.\begin{array}{cc}10022 & \text { TACACCTACAAGGCCACCTGGTTCATGCAGTTCCGGGCGGTCCTGTGGCGATCCTGGCTGTCGGTGCTCAAGGAA } \\ & \text { ATGTGGATGTTCCGGTGGACCAAGTACGTCAAGGCCCGCCAGGACACCGCTAGGACCGACAGCCACGAGTTCCTT }\end{array}\right]$.

11297	TAGAATACAAGTATTTCCCCTTCGAACATCCCCACAAGTAGACTTTGGATTTGTCTTCTAACCAAAAGACTTACA
	ATCTTATGTTCATAAAGGGGAAGCTTGTAGGGGTGTTCATCTGAAACCTAAACAGAAGATTGGTTTTCTGAATGT

Kek3 ORF

kek3/CG4192 ATG

AttB1 oligo W97
1 ATG GCA GCG GGA AGA GCA GCC GCT ACG CTG GAG GCT CCG GGA CCG CCC AGC GGT CAG TAC CGT CGC CCT TCT CGT CGG CGA TGC GAC CTC CGA GGC CCT GGC GGG TCG CCA GTC

58 GAC ATA GCC AGC GAC AAC AGC GCC CAG CGC CGC ACG CTG GCG ACG AAG GTG CGT CGA CTG TAT CGG TCG CTG TTG TCG CGG GTC GCG GCG TGC GAC CGC TGC TTC CAC GCA GCT
201 $\mathrm{D} \quad \mathrm{I} \quad \mathrm{A} \quad \mathrm{S} \quad \mathrm{D} \quad \mathrm{N} \quad \mathrm{S} \quad \mathrm{A} \quad \mathrm{Q} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{K} \quad \mathrm{V} \quad \mathrm{R} \quad \mathrm{R}$
115 AAA GGG CCA CGC CCC CAA CGG CGC CTG CAC CCG CCC CTG CGC CCT CGC CTG CCG CTC TTT CCC GGT GCG GGG GTT GCC GCG GAC GTG GGC GGG GAC GCG GGA GCG GAC GGC GAG
39* K 172 CAT TTG CAC CTG CTA CTC TGG CTG CTG TGC TGC TGT TCT CAG CTG GGC CAG CTG AGG GTA AAC GTG GAC GAT GAG ACC GAC GAC ACG ACG ACA AGA GTC GAC CCG GTC GAC TCC
$58 \quad \mathrm{H} \quad \mathrm{L} \quad \mathrm{H} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{W} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{C} \quad \mathrm{C} \quad \mathrm{C} \quad \mathrm{S} \quad \mathrm{Q} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{Q} \quad \mathrm{L} \quad \mathrm{R}$ 229 GCC GAG TGT CCA GCG GTG TGC GAG TGC AAG TGG AAG AGT GGC AAG GAG TCC GTC TTG CGG CTC ACA GGT CGC CAC ACG CTC ACG TTC ACC TTC TCA CCG TTC CTC AGG CAG AAC
 LRR1
286 TGC CTT AAC GCC AAC CTA ACC CAC ATC CCG CAG CCG CTG GAC GCG GGA ACT CAG TTG ACG GAA TTG CGG TTG GAT TGG GTG TAG GGC GTC GGC GAC CTG CGC CCT TGA GTC AAC
96. $\mathrm{C} \quad \mathrm{L} \quad \mathrm{N} \quad \mathrm{A} \quad \mathrm{N} \quad \mathrm{L} \quad \mathrm{T} \quad \mathrm{H} \quad \mathrm{I} \quad \mathrm{P} \quad \mathrm{Q} \quad \mathrm{P} \quad \mathrm{L} \quad \mathrm{D} \quad \mathrm{A} \quad \mathrm{G} \quad \mathrm{T} \quad \mathrm{Q} \quad \mathrm{L}$ 343 CTG GAC CTT AGC GGC AAT GAG ATC CAA CTA ATA CCC GAC GAT AGC TTC GCA ACC GCC GAC CTG GAA TCG CCG TTA CTC TAG GTT GAT TAT GGG CTG CTA TCG AAG CGT TGG CGG
 LRR2
400 CAG TTG CTC AAC CTA CAG AAG GTG TAC CTG GCC AGG TGT CAC CTC CGG CTT ATC GAA GTC AAC GAG TTG GAT GTC TTC CAC ATG GAC CGG TCC ACA GTG GAG GCC GAA TAG CTT 134 $\mathrm{Q} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{N} \quad \mathrm{L} \quad \mathrm{Q} \quad \mathrm{K} \quad \mathrm{V} \quad \mathrm{Y} \quad \mathrm{L} \quad \mathrm{A} \quad \mathrm{R} \quad \mathrm{C} \quad \mathrm{H} \quad \mathrm{L} \quad \mathrm{R} \quad \mathrm{L} \quad \mathrm{I} \quad \mathrm{E}$ LRR3
457 CGC CAT GCC TTC CGT AAG CTG ATC AAT CTA GTG GAA CTG GAT CTA AGC CAG AAC CTG GCG GTA CGG AAG GCA TTC GAC TAG TTA GAT CAC CTT GAC CTA GAT TCG GTC TTG GAC
 LRR4
514 CTC TCG GCA ATA CCC TCA TTG GCG CTC TAC CAT GTC TCA GAG CTA AGG GAG CTC CGA GAG AGC CGT TAT GGG AGT AAC CGC GAG ATG GTA CAG AGT CTC GAT TCC CTC GAG GCT
 LRR5
571 CTG AGT GGC AAT CCC ATA CTG AGA GTG CCA GAC GAT GCA TTT GGT CAT GTC CCA CAA GAC TCA CCG TTA GGG TAT GAC TCT CAC GGT CTG CTA CGT AAA CCA GTA CAG GGT GTT
191* $\mathrm{L} \quad \mathrm{S} \quad \mathrm{G} \quad \mathrm{N} \quad \mathrm{P} \quad \mathrm{I} \quad \mathrm{L} \quad \mathrm{R} \quad \mathrm{V}$ 628 TTG GTG AAG CTG GAG CTG AGC GAC TGC CGC CTT TCG CAC ATC GCT GTG CGA GCA TTT AAC CAC TTC GAC CTC GAC TCG CTG ACG GCG GAA AGC GTG TAG CGA CAC GCT CGT AAA
 LRR6
685 GCC GGG CTG GAG AGC AGT CTG GAG TGG CTA AAA CTG GAT GGG AAT CGG CTG AGC GAG CGG CCC GAC CTC TCG TCA GAC CTC ACC GAT TTT GAC CTA CCC TTA GCC GAC TCG CTC

LRR7

742 GTC AGG AGT GGC ACG ATC ACC TCG CTG GCT TCA CTG CAT GGT CTG GAG TTG GCG CGC CAG TCC TCA CCG TGC TAG TGG AGC GAC CGA AGT GAC GTA CCA GAC CTC AAC CGC GCG
 C Flank
799 AAT ACC TGG AAT TGC AGC TGC TCC TTG CGT CCT TTG AGG GCC TGG ATG CTG CAG CAG TTA TGG ACC TTA ACG TCG ACG AGG AAC GCA GGA AAC TCC CGG ACC TAC GAC GTC GTC 267* $\mathrm{N} \quad \mathrm{T} \quad \mathrm{W} \quad \mathrm{N} \quad \mathrm{C} \quad \mathrm{S} \quad \mathrm{C} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{R} \quad \mathrm{P} \quad \mathrm{L} \quad \mathrm{R} \quad \mathrm{A} \quad \mathrm{W} \quad \mathrm{M} \quad \mathrm{L} \quad \mathrm{Q} \quad \mathrm{Q}$ 856 AAT ATA CCG AGT GGC ATA CCG CCA ACA TGT GAG TCT CCT CCT AGA TTG TCC GGG AGG TTA TAT GGC TCA CCG TAT GGC GGT TGT ACA CTC AGA GGA GGA TCT AAC AGG CCC TCC

913 GCT TGG GAT AAG CTC GAT GTA GAT GAC TTT GCG TGC GTT CCA CAA ATT GTG GCC ACG CGA ACC CTA TTC GAG CTA CAT CTA CTG AAA CGC ACG CAA GGT GTT TAA CAC CGG TGC 305* $\mathrm{A} \quad \mathrm{W} \quad \mathrm{D} \quad \mathrm{K} \quad \mathrm{L}$ D $\mathrm{V} \quad \mathrm{D} \quad \mathrm{D} \quad \mathrm{F} \quad \mathrm{A} \quad \mathrm{C} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{Q} \quad \mathrm{I} \quad \mathrm{V} \quad \mathrm{A} \quad \mathrm{T}$ 970 GAC ACC ACA GCG CAT GGA GTG GAG GGC AGG AAC ATA ACC ATG AGC TGC TAC GTG GAA CTG TGG TGT CGC GTA CCT CAC CTC CCG TCC TTG TAT TGG TAC TCG ACG ATG CAC CTT 324 D T T A $\mathrm{H} \quad \mathrm{G} \quad \mathrm{V} \quad \mathrm{E} \quad \mathrm{G} \quad \mathrm{R} \quad \mathrm{N} \quad \mathrm{I} \quad \mathrm{T} \quad \mathrm{M} \quad \mathrm{S} \quad \mathrm{C} \quad \mathrm{Y} \quad \mathrm{V} \quad \mathrm{E}$ 1027 GGA GTA CCC CAA CCG GCT GTC AAG TGG CTG CTT AAA AAC CGA CTG ATA GCC AAT CTC CCT CAT GGG GTT GGC CGA CAG TTC ACC GAC GAA TTT TTG GCT GAC TAT CGG TTA GAG 343* $\mathrm{G} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{Q} \quad \mathrm{P} \quad \mathrm{A} \quad \mathrm{V} \quad \mathrm{K} \quad \mathrm{W} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{K} \quad \mathrm{N} \quad \mathrm{R} \quad \mathrm{L} \quad \mathrm{I} \quad \mathrm{A} \quad \mathrm{N} \quad \mathrm{L}$ 1084 AGT GCT GGC GGG GAT GGT GAC TCC GAT TCG GAG CCC AGG ACA GCG GCA GCA ACT CAG TCA CGA CCG CCC CTA CCA CTG AGG CTA AGC CTC GGG TCC TGT CGC CGT CGT TGA GTC
 1141 GGT AGG AAG ACC TAT GTG GTC AAC ATG CTG AGA AAT GCC TCG AAC CTG ACC ATT CTC CCA TCC TTC TGG ATA CAC CAG TTG TAC GAC TCT TTA CGG AGC TTG GAC TGG TAA GAG 381

1198 ACG GCT GAC ATG CAG GAT GCC GGG ATC TAT ACG TGT GCG GCG GAA AAT AAG GCT GGA TGC CGA CTG TAC GTC CTA CGG CCC TAG ATA TGC ACA CGC CGC CTT TTA TTC CGA CCT 400. T A D M $\quad \mathrm{D} \quad \mathrm{D} \quad \mathrm{A} \quad \mathrm{G} \quad \mathrm{I} \quad \mathrm{Y} \quad \mathrm{T} \quad \mathrm{C} \quad \mathrm{A} \quad \mathrm{A} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{K} \quad \mathrm{A} \quad \mathrm{G}$ 1255 AAA GTG GAG GCC AGT GTG ACT CTG GCA GTA TCC CGT AGA CCC CCG GAA GCT CCG TGG TTT CAC CTC CGG TCA CAC TGA GAC CGT CAT AGG GCA TCT GGG GGC CTT CGA GGC ACC
 Tm?
1312 GGC GTA AGA ATT ATT CTG CTG GGG GCG GTA GCC GCT CTG CTC CTC GTC GGT GGA TCC CCG CAT TCT TAA TAA GAC GAC CCC CGC CAT CGG CGA GAC GAG GAG CAG CCA CCT AGG
 IC?
1369 TCC TTT GCG GCC ATT TGC TTG TGT TCC CTA CAA AGG CGA AGA AAG CTG CGT CTC TGG AGG AAA CGC CGG TAA ACG AAC ACA AGG GAT GTT TCC GCT TCT TTC GAC GCA GAG ACC 457* $\mathrm{S} \quad \mathrm{F} \quad \mathrm{A} \quad \mathrm{A} \quad \mathrm{I} \quad \mathrm{C} \quad \mathrm{L} \quad \mathrm{C} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{Q} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{K} \quad \mathrm{L} \quad \mathrm{R} \quad \mathrm{L} \quad \mathrm{W}$ 1426 AAC TCT GTA CCT CCT GTG AGG AGA AGC GAG AGC TAC GAA AAG ATC GAG ATG ACG GCC TTG AGA CAT GGA GGA CAC TCC TCT TCG CTC TCG ATG CTT TTC TAG CTC TAC TGC CGG 476 $\mathrm{N} \quad \mathrm{S} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{S} \quad \mathrm{E} \quad \mathrm{S} \quad \mathrm{Y} \quad \mathrm{E} \quad \mathrm{K} \quad \mathrm{I} \quad \mathrm{E} \quad \mathrm{M} \quad \mathrm{T} \quad \mathrm{A}$
1483 AGA ACG AGA CCG GAT CTG GGA GGA GGG GCT AGT TGC GGA GGC GGC AGT GCC ACG GGC TCT TGC TCT GGC CTA GAC CCT CCT CCC CGA TCA ACG CCT CCG CCG TCA CGG TGC CCG
 1540 GCC GGA CTC TTT CAC GAT GCC GAG GAG CAG GGC TAT CTG CGG GCA GCT CAT ACG CCA CGG CCT GAG AAA GTG CTA CGG CTC CTC GTC CCG ATA GAC GCC CGT CGA GTA TGC GGT
 1597 CTA AAT GAC AAC GAT GCC GGG CAG GCG GCG GCC ATC GTA AAT CCG AGT GCA GGA AGT GAT TTA CTG TTG CTA CGG CCC GTC CGC CGC CGG TAG CAT TTA GGC TCA CGT CCT TCA 533* L N $\quad \mathrm{D}$
1654 GCA CAG CGA AGA AAT GGA GAC TAC CTG CAC GTG TCC ACC CAC TGC GAT GAT GAG GAG CGT GTC GCT TCT TTA CCT CTG ATG GAC GTG CAC AGG TGG GTG ACG CTA CTA CTC CTC

1711 GAG GAC CAA CAG CTG CAT CAC CAC CCA CAA CAG CAG CCC GCG AGC CAG CAC CAC CCA CTC CTG GTT GTC GAC GTA GTG GTG GGT GTT GTC GTC GGG CGC TCG GTC GTG GTG GGT 571
1768 CAT CCC AAT CAG CAG CAG CAT CAG CAA AGG AAG GGC TCC CAG GGC CAT GTT GTC TCC GTA GGG TTA GTC GTC GTC GTA GTC GTT TCC TTC CCG AGG GTC CCG GTA CAA CAG AGG 590. $\mathrm{H} \quad \mathrm{P} \quad \mathrm{N} \quad \mathrm{Q} \quad \mathrm{Q} \quad \mathrm{Q} \quad \mathrm{H} \quad \mathrm{Q} \quad \mathrm{Q} \quad \mathrm{R} \quad \mathrm{K} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{Q} \quad \mathrm{G} \quad \mathrm{H} \quad \mathrm{V} \quad \mathrm{V} \quad \mathrm{S}$ 1825 GCA TCC GGG GCG AAT AAT TCA GCA CCG CTG GAG GAA ACG GAT CTG CAC ATA CCG CGC CGT AGG CCC CGC TTA TTA AGT CGT GGC GAC CTC CTT TGC CTA GAC GTG TAT GGC GCG
 splice
1882 CTC ATC GAC ATC GGC GGC ACC GAT TCC GCA TCG AGT TCA ATC TCC AGC CAG GTG GAC GAG TAG CTG TAG CCG CCG TGG CTA AGG CGT AGC TCA AGT TAG AGG TCG GTC CAC CTG 628 L

Oligo W67

RNAi 6354
1939 GCT GCT GCC CGC TTA GCG GGC TAT GCC GGA CAC ACC TGG AAG ACC ACA CCC ATT GCC CGA CGA CGG GCG AAT CGC CCG ATA CGG CCT GTG TGG ACC TTC TGG TGT GGG TAA CGG 647. A A A R L A G Y A G H T W K T T P I A

1996 ACC ACC AAG ATC AAT TCC CCG CAC AGC AAA CCA GTG ACC TCG GCG GCA CCA TCG TCT

 TGG TGG TTC TAG TTA AGG GGC GTG TCG TTT GGT CAC TGG AGC CGC CGT GGT AGC AGA

2053 CTG AAT ACA CAG GCC ACG CCA TAC GCG CAC TAT GGA AAC CAT CCG GCG GAC GAG ATG GAC TTA TGT GTC CGG TGC GGT ATG CGC GTG ATA CCT TTG GTA GGC CGC CTG CTC TAC


```
2 1 1 0 ~ G C C ~ A C C ~ T C G ~ G T G ~ T T C ~ T G C ~ A G C ~ G A G ~ G G G ~ C A G ~ G A G ~ A G C ~ G A C ~ T T G ~ T T T ~ G A T ~ A G C ~ A A C ~ T A T ~ CGG TGG AGC CAC AAG ACG TCG CTC CCC GTC CTC TCG CTG AAC AAA CTA TCG TTG ATA 704* A T S V F C S E G C E E S
```

2167 CCG GAT CTG CTG GAT ATA GCC AAG TAT GCA GTG GCC CAG GCG CAA CAG GAA GGT CGG GGC CTA GAC GAC CTA TAT CGG TTC ATA CGT CAC CGG GTC CGC GTT GTC CTT CCA GCC 723. P D L L D I A K

2224 GGT CAG GGT TAT GCC CAA GCC ACG ACC ACT CCA AAT GGG GGC TTG TGC ACG CTC CCC CCA GTC CCA ATA CGG GTT CGG TGC TGG TGA GGT TTA CCC CCG AAC ACG TGC GAG GGG
 CGC AAA CTA AAG ACC AGT GGA AAG TAC TTC CGC AAC TCC TCG GAT AGC CAA TCA CCC GCG TTT GAT TTC TGG TCA CCT TTC ATG AAG GCG TTG AGG AGC CTA TCG GTT AGT GGG
 2338 CTG CTG GCG GAT AAC TCC AGT AAA TAT GGT AGT AGC ACC TTG GGC GAT GGA AGC TTC GAC GAC CGC CTA TTG AGG TCA TTT ATA CCA TCA TCG TGG AAC CCG CTA CCT TCG AAG
 pWIZ
2395 CTT AAC GAA GCG ATG GGT CTG GGC AGG AGA TAT TCT GCG GAA TCG AGT TAT GCA AAC GAA TTG CTT CGC TAC CCA GAC CCG TCC TCT ATA AGA CGC CTT AGC TCA ATA CGT TTG
 2452 TAT TCA AGC ACG GCC ACC TAC ACG GGC GGT GGC CAG CGG GCC AAT AGT TTC CTT AAC ATA AGT TCG TGC CGG TGG ATG TGC CCG CCA CCG GTC GCC CGG TTA TCA AAG GAA TTG
 2509 CTC GTG CAA AGT GGC GCC CAC CAA GGG AAA CTG CTG CCG AGT CAT CTG GGC CAG AAG GAG CAC GTT TCA CCG CGG GTG GTT CCC TTT GAC GAC GGC TCA GTA GAC CCG GTC TTC

2566 CCC AGC CTG CCC TCA AGT CCG GTC CAG CAT CAG CGA TCT CTG TCG AGT GCG GCC ACG GGG TCG GAC GGG AGT TCA GGC CAG GTC GTA GTC GCT AGA GAC AGC TCA CGC CGG TGC

2623 CCC CTT CTG GAC TTC TCA GCC CTG GCA TCG AGG GCC GCC GGA GCT GCC AAC ACA TCG GGG GAA GAC CTG AAG AGT CGG GAC CGT AGC TCC CGG CGG CCT CGA CGG TTG TGT AGC

2680 GTG GCC GCT TAT GAT TAT CAT GCC GCG CAG CTG GAG AGG TTT CTG GAA GAG TAC CGC CAC CGG CGA ATA CTA ATA GTA CGG CGC GTC GAC CTC TCC AAA GAC CTT CTC ATG GCG
 2737 AAC CTG CAG GAT CAG CTG TGC AAG ATG AAG GAG ACC TGC GAT ACG ATC CGT AAA AAG TTG GAC GTC CTA GTC GAC ACG TTC TAC TTC CTC TGG ACG CTA TGC TAG GCA TTT TTC

pUAS Kek4

1

77

153

- - - -

229 GGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCG _ _ _ CCGCAAAAAGGTATCCGAGGGGGGGGGACTGCTCGTAGTGTTTTTAGCTGCGAGTTCAGTCTCCACCGCTITGGGC
305 ACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTA \quad TGTCCTGATATTICTATGGTCCGCAAAGGGGGACCITCGAGGGAGCACGCGAGAGGACAAGGCTGGGACGGCGAAT

381 CCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTC _ GGCCTATGGACAGGCGGAAAGAGGGAAGCCCTTCGCACCGCGAAAGAGTTACGAGIGCGACATCCATAGAGTCAAG

457 GGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGT _ _ CCACATCCAGCAAGCGAGGITCGACCCGACACACGIGCTIGGGGGGCAAGTCGGGCTGGCGACGCGGAATAGGCCA

533 AACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCA _ TTGATAGCAGAACTCAGGTIGGGCCATTCTGTGCTGAATAGCGGTGACCGTCGTCGGTGACCATTGTCCTAATCGT

609 GAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATT CTCGCTCCATACATCCGCCACGATGTCTCAAGAACTTCACCACCGGATTGATGCCGATGTGATCTTCCTGTCATAA
685 TGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACC ACCATAGACGCGAGACGACTTCGGTCAATGGAAGCCTTTITCTCAACCATCGAGAACTAGGCCGTTTGTTTGGTGG
761 GCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGA CGACCATCGCCACCAAAAAAACAAACGTTCGTCGTCTAATGCGCGTCTTTTTTCCTAGAGTTCTTCTAGGAAACT
837 TCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAG AGAAAAGATGCCCCAGACTGCGAGTCACCTTGCTTTTGAGTGCAATTCCCTAAAACCAGTACTCTAATAGITTTTC
913 GATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCT
\qquad

989 GACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGAC CTGTCAATGGTTACGAATTAGTCACTCCGTGGATAGAGTCGCTAGACAGATAAAGCAAGTAGGTATCAACGGACTG
1065 TCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCC
\qquad AGGGGCAGCACATCTATTGATGCTATGCCCTCCCGAATGGTAGACCGGGGTCACGACGTTACTATGGCGCTCTGGG
1141 ACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACT _ \quad GGGAGTGGCCGAGGTCTAAATAGTCGITATITGGTCGGICGGCCTICCCGGCTCGCGTCTTCACCAGGACGTTGA

1217 TTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCA _ _ - . . _ AATAGGCGGAGGTAGGTCAGATAATTAACAACGGCCCTTCGATCTCATTCATCAAGCGGTCAATTATCAAACGCGT

1293 ACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCA TGCAACAACGGTAACGATGICCGTAGCACCACAGTGCGAGCAGCAAACCATACCGAAGTAAGICGAGGCCAAGGGT

1369 ACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTC \quad TGCTAGTICCGCTCAATGTACTAGGGGGTACAACACGTTTTTTCGCCAATCGAGGAAGCCAGGAGGCTAGCAACAG
1445 AGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCG

1521 TAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTC 1521 ATTCTACGAAAAGACACTGACCACTCATGAGTTGGTTCAGTAAGACTCTTATCACATACGCCGCTGGCTCAACGAG
\qquad ATTCTACGAAAAGACACTGACCACTCATGAGITGGTTCAGTAAGACTCTTATCACATACGCCGCTGGCTCABCGAG
1597 TTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCT AACGGGCCGCAGTTGTGCCCTATTATGGCGCGGTGTATCGTCTTGAAATTTTCACGAGTAGTAACCTTTGGAAGA
1673 TCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGAT 1673 AGCCCCGCTTTTGAGAGTTCCTAGAATGGCGACAACTCTAGGTCAAGCTACATTGGGTGAGCACGTGGGTTGACTA

1749 CTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAAT

1825 AAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGT TTCCCGCTGTGCCTTTACAACTTATGAGTATGAGAAGGAAAAAGTTATAATAACTTCGTAAATAGTCCCAATAACA

1901 CTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAG GAGTACTCGCCTATGTATAAACTIACATAAATCTTITTATTTGITTATCCCCAGGCGCGTGTAAAGGGCTTTIC 1977 TGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCG ACGGTGGACTGCAGATTCTTTGGTAATAATAGTACTGTAATTGGATATTTTTATCCGCATAGTGCTCCGGGAAAGC
2053 TCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAA AGAGCGCGCAAAGCCACTACTGCCACTITTGGAGACTGTGTACGTCGAGGGCCTCTGCCAGTGTCGAACAGACATT
2129 GCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATG CGCCTACGGCCCTCGTCTGTTCGGGCAGTCCCGCGCAGTCGCCCACAACCGCCCACAGCCCCGACCGAATGATAC
2205 CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACCGAATCGCGCGGAACTAACG GCCGIAGTCTCGICTAACATGACICTCACGTGGTATACGCCACACTTIATGGCGTGGCTIAGCGCGCTTGATTGC
2281 ACAGTCGCTCCAAGGTCGTCGAACAAAAGGTGAATGTGTTGCGGAGAGCGGGTGGGAGACAGCGAAAGAGCAACTA TGTCAGCGAGGITCCAGCAGCTTGTTTICCACTTACACAACGCCTCTCGCCACCCTCTGTCGCTTICTCGTGAT
2357 CGAAACGTGGTGTGGTGGAGGTGAATTATGAAGAGGGCGCGCGATTTGAAAAGTATGTATATAAAAAATATATCCC GCTTTGCACCACACCACCTCCACTTAATACTICTCCCGCGCGCTAAACTTITCATACATATATITTITATATAGGG
2433 GGTGTTTTATGTAGCGATAAACGAGTTTTTGATGTAAGGTATGCAGGTGTGTAAGTCTTTTGGTTAGAAGACAAAT CCACAAAATACATCGCTATTTGCTCAAAACTACATTCCATACGTCCACACATTCAGAAAACCAATCTTCTGTTTA
2509 CCAAAGTCTACTTGTGGGGATGTTCGAAGGGGAAATACTTGTATTCTATAGGTCATATCTTGTTTTTATTGGCACA GGTITCAGATGAACACCCTACAAGCTICCCCTTXTGAACATAAGATATCCAGTATAGAACAAAAATAACGTGT
2585 AATATAATTACATTAGCTTTTTGAGGGGGCAATAAACAGTAAACACGATGGTAATAATGGTAAAAAAAAAAACAAG TTATATTAATGTAATCGAAAACTCCCCGTTATTTGTCATTTGTGCTACCATTATTACCATITTTTTTITGTIC
2661 CAGTTATTTCGGATATATGTCGGCTACTCCTTGCGTCGGGCCCGAAGTCTTAGAGCCAGATATGCGAGCACCCGGA GTCAATAAAGCCTATATACAGCCGATGAGGAACGCAGCCCGGGCTTCAGAATCTCGGTCTATACGCTCGTGGCCT
2737 AGCTCACGATGAGAATGGCCAGACCATGATGAAATAACATAAGGTGGTCCCGTCGGCAAGAGACATCCACTTAACG TCGAGTGCTACTCTTACCGGTCTGGTACTACTTTATTGTATTCCACCAGGGCAGCCGTTCTCTGTAGGTGAATTGC

2813 TATGCTTGCAATAAGTGCGAGTGAAAGGAATAGTATTCTGAGTGTCGTATTGAGTCTGAGTGAGACAGCGATATGA ATACGAACGTTATTCACGCTCACTTTCCTTATCATAAGACTCACAGCATAACTCAGACTCACTCTGTCGCTATACT

2889 TTGTTGATTAACCCTTAGCATGTCCGTGGGGTTTGAATTAACTCATAATATTAATTAGACGAAATTATTTTTAAAG AACAACTAATTGGGAATCGTACAGGCACCCCAAACTTAATTGAGTATTATAATTAATCTGCTTTAATAAAAATTTC

UAS sites
3117 AGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCGCCGGAGTATAAATAGAGGCGCTTCGTCTACGGAGCGACAATT
 3193 CAATTCAAACAAGCAAAGTGAACACGTCGCTAAGCGAAAGCTAAGCAAATAAACAAGCGCAGCTGAACAAGCTAAA GTTAAGTTTGTTCGTTTCACTTGTGCAGCGATTCGCTTTCGATTCGTTTATTTGTTCGCGTCGACTTGTTCGATTT

3269 CAATCTGCAGTAAAGTGCAAGTTAAAGTGAATCAATTAAAAGTAACCAGCAACCAAGTAAATCAACTGCAACTACT GTTAGACGTCATTTCACGTTCAATTTCACTTAGTTAATTTTCATTGGTCGTTGGTTCATTTAGTTGACGTTGATGA
\qquad
Polylinker
3345 GAAATCTGCCAAGAAGTAATTATTGAATACAAGAAGAGAACTCTGAATAGGGAATTGGGGAATTCGTTAACAGATC CTTTAGACGGTTCTTCATTAATAACTTATGTTCTTCTCTTGAGACTTATCCCTTAACCCCTTAAGCAATTGTCTAG

4170 TTT CGT GAC TTC GTT ATA GGC ATG AAC CTG TAT ACA CCG CCC ACA TCC TGC CAT TAT AAA GCA CTG AAG CAA TAT CCG TAC TTG GAC ATA TGT GGC GGG TGT AGG ACG GTA ATA

4227 CCT TTG CAG TTA CGT GGT CGT CTG TGG ATC GAG GAT CAG CCG GAG GCG TTT GCC TGC GGA AAC GTC AAT GCA CCA GCA GAC ACC TAG CTC CTA GTC GGC CTC CGC AAA CGG ACG
 -

4284 AAG CCG AAG ATT GTG TAT CCA ACA CTC AGT ACT TCC ATC AAC ACT TCC AAG GAG AAC TTC GGC TTC TAA CAC ATA GGT TGT GAG TCA TGA AGG TAG TTG TGA AGG TTC CTC TTG 277. K \quad P \quad K \quad I $\quad \mathrm{V}$

4341 GTA ACG CTT ATA TGT CGC GTC CAC GGA TCT CCC AAT ACG GTT ATT GCC TGG GAT TAC CAT TGC GAA TAT ACA GCG CAG GTG CCT AGA GGG TTA TGC CAA TAA CGG ACC CTA ATG

4455 ATC TAC ATA GAA CTG TTG CGT GAG GAT GAA TCA AAG ATT CGA AAA TTC GGA CAT GAT TAG ATG TAT CTT GAC AAC GCA CTC CTA CTT AGT TTC TAA GCT TTT AAG CCT GTA CTA

4512 GTT TTT GTG TCA CGT CTA ACG ATA GTT AAT GCC CGT AAG AGC GAT GAG GGC GTC TAT CAA AAA CAC AGT GCA GAT TGC TAT CAA TTA CGG GCA TTC TCG CTA CTC CCG CAG ATA

4569 ACC TGT CTG GCG GAA AAT CCC GGT GGC AAG GAT TCG GTT CAC ATA AGT GTG GTG GTG TGG ACA GAC CGC CTT TTA GGG CCA CCG TTC CTA AGC CAA GTG TAT TCA CAC CAC CAC

4626 CAA AAG GAT ATG GAA AGG ATT TCC CTC ATC GAC AGC AAC TTC TTT GCA ATA GTC TGC GTT TTC CTA TAC CTT TCC TAA AGG GAG TAG CTG TCG TTG AAG AAA CGT TAT CAG ACG

4683 CTT ATA GCC ATG GGT TTT CTC AGC ATG TCG ATT CTA TTT TCG TTG GTA ACA TGC CTA GAA TAT CGG TAC CCA AAA GAG TCG TAC AGC TAA GAT AAA AGC AAC CAT TGT ACG GAT

4740 ATA TTT AAG AGA TTC AAG CAG TTC CAT CCC GGC CAG CAC ACT TAT TTG CAA CCC ACT TAT AAA TTC TCT AAG TTC GTC AAG GTA GGG CCG GTC GTG TGA ATA AAC GTT GGG TGA

4797 AGT TTG CCC GTT CAG TCA CCT GGC AGT GAA GAA GCC ACC GCC ATC AGC GCC CTA AGT TCA AAC GGG CAA GTC AGT GGA CCG TCA CTT CTT CGG TGG CGG TAG TCG CGG GAT TCA

4854 TCT GGA GTT ATA AGG GAA AGT AAA ATA GTG CTG GAT CCA TTA AGT GCT ATC AAT GAA aga cct caa tat tcc ctt tca ttt tat cac gac cta ggt ait tca cga tag tta ctt

4911 CCA TCA AAT AAA AAT TAC ACT TTA TTT AAA ACA TCC AAT TCG AAT GGC AGC GAG TAT GGT AGT TTA TTT TTA ATG TGA AAT AAA TTT TGT AGG TTA AGC TTA CCG TCG CTC ATA

4968 ATG CAC ACG AGA AAT TAT AAA GAC GTG AGA TTA AAC AGC AAC ACA TAT ACT GAA AAT TAC GTG TGC TCT TTA ATA TTT CTG CAC TCT AAT TTG TCG TTG TGT ATA TGA CTT TTA

5025 CTA GAC AAT CAG GCG GAA TCC ATT TCA TCG CGG AAT CGG GAG CTC TAT TCA AAT ATA GAT CTG TTA GTC CGC CTT AGG TAA AGT AGC GCC TTA GCC CTC GAG ATA AGT TTA TAT 524 L D N Q A E S I S S R N R E L Y S N I

5082 GCT GGT GAC CGG GAA AAG GAA GAG CTC AAA CAG AAA GAT GAG CTC GAT AAG GAT TCC CGA CCA CTG GCC CTT TTC CTT CTC GAG TTT GTC TTT CTA CTC GAG CTA TTC CTA AGG

5139 CGG CAG AGT TCC TTG CAA TCA ACA GGC TGC TCA AGA AAG AAG GGA CAA ATC GAT GAA GCC GTC TCA AGG AAC GTT AGT TGT CCG ACG AGT TCT TTC TTC CCT GTT TAG CTA CTT

5196 CTC CAA CCG GAC CTT TTG CCT TCC ACT CAA CCT ACT GCC TTA AAA AAT ATT AAT GAA GAG GTT GGC CTG GAA AAC GGA AGG TGA GTT GGA TGA CGG AAT TTT TTA TAA TTA CTT

5253 ACT TTC GGT CCA TCA GCG AAA AAA GCA GAA GTT AAT CCC CGA AGC AAG TAC AAT ACC TGA AAG CCA GGT AGT CGC TTT TTT CGT CTT CAA TTA GGG GCT TCG TTC ATG TTA TGG 600 _T _ F _ _ _ _P _ _ 5310 AAT GTG CAA AAG TAC CTA AAG GAG AAG TAC GGC AGT GTT AGA ATA AAG AAT ATC AGT TTA CAC GTT TTC ATG GAT TTC CTC TTC ATG CCG TCA CAA TCT TAT TTC TTA TAG TCA
 attB2
5367 ACT AAA GAA CCC ATT ACT GGT GTT GAT ATC TCA ATA GAC CCA GCT TTC TTG TAC AAA TGA TTT CTT GGG TAA TGA CCA CAA CTA TAG AGT TAT CTG GGT CGA AAG AAC ATG TTT
 V5 epitope
5424 GTG GTG GTA CCG GGT AAG CCT ATC CCT AAC CCT CTC CTC GGT CTC GAT TCT ACG CGT CAC CAC CAT GGC CCA TTC GGA TAG GGA TTG GGA GAG GAG CCA GAG CTA AGA TGC GCA
 $6 \times \mathrm{His} \quad$ SV40 Poly A
5481 ACC GGT CAT CAT CAC CAT CAC CAT TGA TCTAGAGATCTTTGTGAAGGAACCTTACTTCTGTGGTGTG TGG CCA GTA GTA GTG GTA GTG GTA ACT AGATCTCTAGAAACACTTCCTTGGAATGAAGACACCACAC

5548 ACATAATTGGACAAACTACCTACAGAGATTTAAAGCTCTAAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTA TGTATTAACCTGTTTGATGGATGTCTCTAAATTTCGAGATTCCATTTATATTTTAAAAATTCACATATTACACAAT

5624 AACTACTGATTCTAATTGTTTGTGTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGGTGGAATGC TTGATGACTAAGATTAACAAACACATAAAATCTAAGGTTGGATACCTTGACTACTTACCCTCGTCACCACCTTACG

5700 CTTTAATGAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCTGACTCTCAACAT GAAATTACTCCTTTTGGACAAAACGAGTCTTCTTTACGGTAGATCACTACTACTCCGATGACGACTGAGAGTTGTA

5776 TCTACTCCTCCAAAAAAGAAGAGAAAGGTAGAAGACCCCAAGGACTTTCCCTTCAGAATTGCTAAGTTTTTTGAGTC

\qquad
5852 ATGCTGTGTTTAGTAATAGAACTCTTGCTTGCTTTGCTATTTACACCACAAAGGAAAAAGCTGCACTGCTATACAA tacgacacaant cattatcttgagaicgaicgaancgatanatgtgatgittcctttttcgacgtgacgatatgit

5928 GAAAATTATGGAAAAATATTCTGTAACCTTTATAAGTAGGCATAACAGTTATAATCATAACATACTGTTTTTTCTT CTTTTAATACCTTTTTATAAGACATTGGAAATATTCATCCGTATTGTCAATATTAGTATTGTATGACAAAAAAGAA

6004 ACTCCACACAGGCATAGAGTGTCTGCTATTAATAACTATGCTCAAAAATTGTGTACCTTTAGCTTTTTAATTTGTA TGAGGTGTGTCCGTATCTCACAGACGATAATTATTGATACGAGTTTTTAACACATGGAAATCGAAAAATTAAACAT

6080 AAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGACTAGAGATCATAATCAGCCATACCACATTTGTAGAGG TTCCCCAATTATTCCTTATAAACTACATATCACGGAACTGATCTCTAGTATTAGTCGGTATGGTGTAAACATCTCC

6156	TTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAA aAAATGAACGAAATTTTTTGGAGGGTGTGGAGGGGGACTTGGACTTTGTATTTTACTTACGTTAACAACAACAATT
6232	CTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCA GAACAAATAACGTCGAATATTACCAATGTTTATTTCGTTATCGTAGTGTTTAAAGTGTTTATTTCGTAAAAAAAGT
6308	BamH/white gene CTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCGGATCCACTAGAAGGCCTT GACGTAAGATCAACACCAAACAGGTTTGAGTAGTTACATAGAATAGTACAGACCTAGCCTAGGTGATCTTCCGGAA
6384	AGTATGTATGTAAGTTAATAAAACCCTTTTTTGGAGAATGTAGATTTAAAAAAACATATTTTTTTTTTTATTTTTTA TCATACATACATTCAATTATTTTGGGAAAAAACCTCTTACATCTAAATTTTTTTGTATAAAAAAAAAATAAAAAAT
6460	CTGCACTGGACATCATTGAACTTATCTGATCAGTTTTAAATTTTACTTCGATCCAAGGGTATTTGGAAGTACCAGGTT GACGTGACCTGTAGTAACTTGAATAGACTAGTCAAAATTTAAATGAAGCTAGGTTCCCATAAACTTCATGGTCCAA
6536	CTTTCGATTACCTCTCACTCAAAATGACATTCCACTCAAAGTCAGCGCTGTTTGCCTCCTTCTCTGTCCACAGAAA GAAAGCTAATGGAGAGTGAGTTTTACTGTAAGGTGAGTTTCAGTCGCGACAAACGGAGGAAGAGACAGGTGTCTTT
6612	TATCGCCGTCTCTTTCGCCGCTGCGTCCGCTATCTCTTTCGCCACCGTTTGTAGCGTTACCTAGCGTCAATGTCCG ATAGCGGCAGAGAAAGCGGCGACGCAGGCGATAGAGAAAGCGGTGGCAAACATCGCAATGGATCGCAGTTACAGGC
6688	CCTTCAGTTGCACTTTGTCAGCGGTTTCGTGACGAAGCTCCAAGCGGTTTACGCCATCAATTAAACACAAAGTGCT GGAAGTCAACGTGAAACAGTCGCCAAAGCACTGCTTCGAGGTTCGCCAAATGCGGTAGTTAATTTGTGTTTCACGA
6764	GTGCCAAAACTCCTCTCGCTTCTTATTTTTGTTTGTTTTTTGAGTGATTGGGGTGGTGATTGGTTTTGGGTGGGTA CACGGTTTTGAGGAGAGCGAAGAATAAAAACAAACAAAAAACTCACTAACCCCACCACTAACCAAAACCCACCCAT
6840	AGCAGGGGAAAGTGTGAAAAATCCCGGCAATGGGCCAAGAGGATCAGGAGCTATTAATTCGCGGAGGCAGCAAACA TCGTCCCCTTTCACACTTTTTTAGGGCCGTTACCCGGTTCTCCTAGTCCTCGATAATTAAGCGCCTCCGTCGTTTGT
6916	CCCATCTGCCGAGCATCTGAACAATGTGAGTAGTACATGTGCATACATCTTAAGTTCACTTGATCTATAGGAACTG GGGTAGACGGCTCGTAGACTTGTTACACTCATCATGTACACGTATGTAGAATTCAAGTGAACTAGATATCCTTGAC
6992	CGATTGCAACATCAAATTGTCTGCGGCGTGAGAACTGCGACCCACAAAAATCCCAAACCGCAATCGCACAAACAAA GCTAACGTTGTAGTTTAACAGACGCCGCACTCTTGACGCTGGGTGTTTTTAGGGTTTGGCGTTAGCGTGTTTGTTT
7068	TAGTGACACGAAACAGATTATTCTGGTAGCTGTGCTCGCTATATAAGACAATTTTTAAGATCATATCATGATCAAG ATCACTGTGCTTTGTCTAATAAGACCATCGACACGAGCGATATATTCTGTTAAAAATTCTAGTATAGTACTAGTTC
7144	ACATCTAAAGGCATTCATTTTCGACTACATTCTTTTTTACAAAAAATATAACAACCAGATATTTTAAGCTGATCCT TGTAGATTTCCGTAAGTAAAAGCTGATGTAAGAAAAAATGTTTTTTATATTGTTGGTCTATAAAATTCGACTAGGA
7220	AGATGCACAAAAAATAAATAAAAGTATAAACCTACTTCGTAGGATACTTCGTTTTGTTCGGGGGTTAGATGAGCATA tCTACGTGTTTTTTATTTATTTTCATATTTGGATGAAGCATCCTATGAAGCAAAACAAGCCCCAATCTACTCGTAT
7296	ACGCTTGTAGTTGATATTTGAGATCCCCTATCATTGCAGGGTGACAGCGGAGCGGCTTCGCAGAGCTGCATTAACC TGCGAACATCAACTATAAACTCTAGGGGATAGTAACGTCCCACTGTCGCCTCGCCGAAGCGTCTCGACGTAATTGG
7372	AGGGCTTCGGGCAGGCCAAAAACTACGGCACGCTCCTGCCACCCAGTCCGCCGGAGGACTCCGGTTCAGGGAGCGG TCCCGAAGCCCGTCCGGTTTTTGATGCCGTGCGAGGACGGTGGGTCAGGCGGCCTCCTGAGGCCAAGTCCCTCGCC

7448	CCAACTAGCCGAGAACCTCACCTATGCCTGGCACAATATGGACATCTTTGGGGGCGGTCAATCAGCCGGGCTCCGGAA
	GGTTGATCGGCTCTTGGAGTGGATACGGACCGTGTTATACCTGTAGAAACCCCGCCAGTTAGTCGGCCCGAGGCCT

10184	AATGGTTCCGAGTGGTTCATTTCGTCTCAATAGAAATTAGTAATAAATATTTGTATGTACAATTTATTTGCTCCAA TTACCAAGGCTCACCAAGTAAAGCAGAGTTATCTTTAATCATTATTTATAAACATACATGTTAAATAAACGAGGTT
10260	TATATTTGTATATATTTCCCTCACAGCTATATTTATTCTAATTTAATATTATGACTTTTTTAAGGTAATTTTTTGTG ATATAAACATATATAAAGGGAGTGTCGATATAAATAAGATTAAATTATAATACTGAAAAATTCCATTAAAAAACAC
10336	ACCTGTTCGGAGTGATTAGCGTTACAATTTGAACTGAAAGTGACATCCAGTGTTTGTTCCTTGTGTAGATGCATCT tGGACAAGCCTCACTAATCGCAATGTTAAACTTGACTTTCACTGTAGGTCACAAACAAGGAACACATCTACGTAGA
10412	CAAAAAAATGGTGGGCATAATAGTGTTGTTTATATATATCAAAAATAACAACTATAATAATAAGAATACATTTAAT GTTTTTTTACCACCCGTATTATCACAACAAATATATATAGTTTTTATTGTTGATATTATTATTCTTATGTAAATTA
10488	TTAGAAAATGCTTGGATTTCACTGGAACTAGAATTAATTCGGCTGCTGCTCTAAACGACGCATTTCGTACTCCAAA AATCTTTTACGAACCTAAAGTGACCTTGATCTTAATTAAGCCGACGACGAGATTTGCTGCGTAAAGCATGAGGTTT
10564	GTACGAATTTTTTCCCTCAAGCTCTTATTTTCATTAAACAATGAACAGGACCTAACGCACAGTCACGTTATTGTTT CATGCTTAAAAAAGGGAGTTCGAGAATAAAAGTAATTTGTTACTTGTCCTGGATTGCGTGTCAGTGCAATAACAAA
10640	ACATAAATGATTTTTTTTACTATTCAAACTTACTCTGTTTGTGTACTCCCACTGGTATAGCCTTCTTTTATCTTTT TGTATTTACTAAAAAAAATGATAAGTTTGAATGAGACAAACACATGAGGGTGACCATATCGGAAGAAAATAGAAAA
10716	CTGGTTCAGGCTCTATCACTTTACTAGGTACGGCATCTGCGTTGAGTCGCCTCCTTTTAAATGTCTGACCTTTTGC GACCAAGTCCGAGATAGTGAAATGATCCATGCCGTAGACGCAACTCAGCGGAGGAAAATTTACAGACTGGAAAACG
10792	AGGTGCAGCCTTCCACTGCGAATCATTAAAGTGGGTATCACAAATTTGGGAGTTTTCACCAAGGCTGCACCCAAGG TCCACGTCGGAAGGTGACGCTTAGTAATTTCACCCATAGTGTTTAAACCCTCAAAAGTGGTTCCGACGTGGGTTCC
10868	CTCTGCTCCCACAATTTTCTCTTAATAGCACACTTCGGCACGTGAATTAATTTTACTCCAGTCACAGCTTTGCAGC GAGACGAGGGTGTTAAAAGAGAATTATCGTGTGAAGCCGTGCACTTAATTAAAATGAGGTCAGTGTCGAAACGTCG
10944	AAAATTTGCAATATTTCATTTTTTTTTATTCCACGTAAGGGTTAATGTTTTCAAAAAAAAATTCGTCCGCACACAA tTtTAAACGTTATAAAGTAAAAAAAAATAAGGTGCATTCCCAATTACAAAAGTTTTTTTTTAAGCAGGCGTGTGTT
11020	CCTTTCCTCTCAACAAGCAAACGTGCACTGAATTTAAGTGTATACTTCGGTAAGCTTCGGCTATCGACGGGACCAC GGAAAGGAGAGTTGTTCGTTTGCACGTGACTTAAATTCACATATGAAGCCATTCGAAGCCGATAGCTGCCCTGGTG
11096	CTTATGTTATTTCATCATG gaAtacaataang tagtac

UAS Kek5 GFP

1 GGCCAGACCCACGTAGTCCAGCGGCAGATCGGCGGCGGAGAAGTTAAGCGTCTCCAGGATGACCTTGCCCGAACT CCGGTCTGGGTGCATCAGGTCGCCGTCTAGCCGCCGCCTCTTCAATTCGCAGAGGTCCTACTGGAACGGGCTTGA

76 GGGGCACGTGGTGTTCGACGATGTGCAGCTAATTTCGCCCGGCTCCACGTCCGCCCATTGGTTAATCAGCAGACC
\qquad CCCCGTGCACCACAAGCTGCTACACGTCGATIAAAGGGGCCGAGGTGCAGGGGGTAACCAATIAGICGTCTGG
151 CTCGTTGGCGTAACGGAACCATGAGAGGTACGACAACCATTTGAGGTATACTGGCACCGAGCCCGAGTTCAAGAA GAGCAACCGCATTGCCTTGGTACTCTCCATGCTGTTGGTAAACTCCATATGACCGTGGCTCGGGCTCAAGTTCTI

226 GAAGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA CTTCCGCAAAAAGGTATCCGAGGCGGGGGGACTGCICGTAGTGITTTIAGCTGCGAGTICAGTCTCCACCGCTTI

301 CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCC - - - - - _ GGGCTGTCCTGATATTICTATGGTCCGCAAAGGGGACCTTCGAGGAGCACGCGAGAGGACAAGGETGGACGG

376 GCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCT CGAATGGCCTATGGACAGGCGGAAAGAGGGAAGCCCTTCGCACCGCGAAAGAGTTACGAGTGCGACATCCATAGA

451 CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT GTCAAGCCACATCCAGCAAGCGAGGTTCGACCCGACACACGTGCTTGGGGGGCAAGTCGGGCTGGCGACGCGGAB

526 ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAG TAGGCCATTGATAGCAGAACTCAGGTTGGGCCATTCTGTGCTGAATAGCGGTGACCGTCGTCGGTGACCATTGTC
601 GATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAG CTAATCGTCTCGCTCCATACATCCGCCACGATGTCTCAAGAACTTCACCACCGGATTGATGCCGATGTGATCTTC

676 GACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAA CTGTCATAAACCATAGACGCGAGACGACTTCGGTCAATGGAAGCCTITITCTCAACCATCGAGAACTAGGCCGTI

751 ACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGA TGTTTGGTGGCGACCATCGCCACCAAAAAAACAAACGTTCGTCGTCTAATGCGCGTCTITTTITCCTAGAGTTCT
826 AGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAG TCTAGGAAACTAGAAAAGATGCCCCAGACTGCGAGICACCITGCTTTIGAGTGCAATTCCCTAAAACCAGTACTC

901 ATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGA TAATAGTTTTTCCTAGAAGTGGATCTAGGAAAATTIAATTTTACTTCAAAATTAGTTAGATTTCATATATACT
976 GTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATC CATITGAACCAGACTGTCAATGGTTACGAATIAGTCACTCCGTGGATAGAGTCGCTAGACAGATAAAGCAAGTAG
1051 CATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAAT - - - - _ _ GTATCAACGGACTGAGGGGCAGCACATCTATTGATGCTATGCCCTCCGGATGGTAGACCGGGGCACGACGTTA

1126 GATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAG

1201 AAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCC TTCACCAGGACGITGAAATAGGCGGAGGTAGGTCAGATAATTAACAACGGCCCTTCGATCTCATTCATCAAGCGG
1276 AGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTC TCAATTATCAAACGCGITGCAACAACGGTAACGATGTCCGTAGCACCACAGTGCGAGCAGCAAACCATACCGAAG

1351 ATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTT TAAGTCGAGGCCAAGGGTTGCTAGTTCCGCTCAATGTACTAGGGGGTACAACACGTTTTTTCGCCAATCGAGGAA
1426 CGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTC GCCAGGAGGCTAGCAACAGTCTTCATTCAACCGGCGTCACAATAGTGAGTACCAATACCGTCGIGACGTATTAAG

1501 TCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG AGAATGACAGTACGGTAGGCATTCTACGAAAAGACACTGACCACTCATGAGTTGGTTCAGTAAGACTCTTATCAC

1576 TATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGT ATACGCCGCTGGCTCAACGAGAACGGGCCGCAGTTGTGCCCTATTATGGCGCGGTGTATCGTCTTGAAATITTCA
1651 GCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTA CGAGTAGTAACCTTTTGCAAGAAGCCCCGCTTTTGAGAGTTCCTAGAATGGCGACAACTCTAGGTCAAGCTACAT

1726 ACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAG TGGGTGAGCACGTGGGTTGACTAGAAGTCGTAGAAAATGAAAGTGGTCGCAAAGACCCACTCGTTTTTGTCCTTC

1801 GCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTA CGTTITACGGCGITTITTCCCTTATTCCCGCTGTGCCTTIACAACTTATGAGTATGAGAAGGAAAAAGTTATAAT
1876 TTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGG AACTICGTAAATAGTCCCAATAACAGAGTACTCGCCTATGTATAAACTTACATAAATCTTTTATTTGTTTATCC
1951 GGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAA CCAAGGCGCGTGTAAAGGGGCTTITCACGGTGGACTGCAGATICTTTGGTAATAATAGTACTGTAATTGGATATI

2026 AAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCT TTTATCCGCATAGTGCTCCGGGAAAGCAGAGCGCGCAAAGCCACTACTGCCACTTITGGAGACTGTGIACGTCGA
2101 CCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGT GGGCCTCTGCCAGTGTCGAACAGACATTCGCCTACGGCCCTCGTCTGTTCGGGCAGTCCCGCGCAGTCGCCCACA

2176 TGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGA ACCGCCCACAGCCCGACCGAATTGATACGCCGTAGTCTCGTCTAACATGACTCTCACGTGTATACGCCACACT
2251 AATACCGCACCGAATCGCGCGGAACTAACGACAGTCGCTCCAAGGTCGTCGAACAAAAGGTGAATGTGTTGCGGA TTATGGCGTGGCTTAGCGCGCCTTGATTGCTGTCAGCGAGGTTCCAGCAGCTTGTTTTCCACTTACACAACGCCI
2326 GAGCGGGTGGGAGACAGCGAAAGAGCAACTACGAAACGTGGTGTGGTGGAGGTGAATTATGAAGAGGGCGCGCGA

2401 TTTGAAAAGTATGTATATAAAAAATATATCCCGGTGTTTTATGTAGCGATAAACGAGTTTTTGATGTAAGGTATG AAACITTTCATACATATATITTTTATATAGGGCCACAAAATACATCGCTATITGCTCAAAAACTACATTCCATAC

2476 CAGGTGTGTAAGTCTTTTGGTTAGAAGACAAATCCAAAGTCTACTTGTGGGGATGTTCGAAGGGGAAATACTTGT GTCCACACATTCAGAAAACCAATCTTCTGTTTAGGTTTCAGATGAACACCCCTACAAGCTTCCCCTITATGAACA
2551 ATTCTATAGGTCATATCTTGTTTTTATTGGCACAAATATAATTACATTAGCTTTTTGAGGGGGCAATAAACAGTA TAAGATATCCAGTATAGAACAAAAATAACCGTGTTTATATTAATGTAATCGAAAAACTCCCCCGTTATTTGTCAT

2626 AACACGATGGTAATAATGGTAAAAAAAAAAACAAGCAGTTATTTCGGATATATGTCGGCTACTCCTTGCGTCGGG TTGTGCTACCATTATIACCATTTITTTITTTGTTCGICAATAAAGCCTATATACAGCCGATGAGGAACGCAGCCC

3 'P
2701 CCCGAAGTCTTAGAGCCAGATATGCGAGCACCCGGAAGCTCACGATGAGAATGGCCAGACCATGATGAAATAACA GGGCTTCAGAATCTCGGTCTATACGCTCGTGGGCCTTCGAGTGCTACTCTTACCGGTCTGGTACTACTTTATTGT

Sphl
3001 TGCATGAGCTCGGATCCAAGCTTGCATGCCTGCAGGTCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAG

UAS sites
3076 CGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCG GCCTCATGACAGGAGGCTCGCCTCATGACAGGAGGCTCGCCTCATGACAGGAGGCTCGCCTCTGAGATCGCTCGC

3151 CCGGAGTATAAATAGAGGCGCTTCGTCTACGGAGCGACAATTCAATTCAAACAAGCAAAGTGAACACGTCGCTAA GGCCTCATATTTATCTCCGCGAAGCAGATGCCTCGCTGTTAAGTTAAGTTTGTTCGTTTCACTTGTGCAGCGATT
\square
3226 GCGAAAGCTAAGCAAATAAACAAGCGCAGCTGAACAAGCTAAACAATCTGCAGTAAAGTGCAAGTTAAAGTGAAT CGCTTTCGATTCGTTTATTTGTTCGCGTCGACTTGTTCGATTTGTTAGACGTCATTTCACGTTCAATTTCACTTA

3301 CAATTAAAAGTAACCAGCAACCAAGTAAATCAACTGCAACTACTGAAATCTGCCAAGAAGTAATTATTGAATACA GTTAATTTTCATTGGTCGTTGGTTCATTTAGTTGACGTTGATGACTTTAGACGGTTCTTCATTAATAACTTATGT

Polylinker
 EcoR1 Hpal
 oligo743 apK5_seq_5' BgIII attB1

3376 AGAAGAGAACTCTGAATAGGGAATTGGGGAATTCGTTAACA GAT CTG ACA AGT TTG TAC AAA AAA TCTTCTCTTGAGACTTATCCCTTAACCCCTTAAGCAATTGT CTA GAC TGT TCA AAC ATG TTT TTT

KEK5
signal sequence
3441 GCA GGC tCCAGGAAA ATG ATC CTT CTG CTG CTG GGT GTG CTA GTG GTT CTA ATG GCC CGT CCG AGGTCCTTT TAC TAG GAA GAC GAC GAC CCA CAC GAT CAC CAA GAT TAC CGG

N FLANK
3498 CTA CCG CCG CCC ACC GCA GGC ACC ACC GAT TGG ATG CAG AGC TGC GGT ACA TGC CAC GAT GGC GGC GGG TGG CGT CCG TGG TGG CTA ACC TAC GTC TCG ACG CCA TGT ACG GTG

3555 TGT CAG TGG AAT TCG GGC AAG AAG AGC GCC GAC TGC AAG AAC AAG GCG CTA ACC AAA ACA GTC ACC TTA AGC CCG TTC TTC TCG CGG CTG ACG TTC TTG TTC CGC GAT TGG TTT
 LRRs
3612 ATT CCG CAG GAC ATG AGC AAC GAG ATG CAG GTG CTG GAC TTT GCC CAC AAT CAA ATA TAA GGC GTC CTG TAC TCG TTG CTC TAC GTC CAC GAC CTG AAA CGG GTG TTA GTT TAT

- - _ 5 3' BgIII
3669 CCC GAG CTG CGG CGC GAA GAG TTC CTA CTG GCC GGT CTG CCC AAT GTG CAC AAG ATC GGG CTC GAC GCC GCG CTT CTC AAG GAT GAC CGG CCA GAC GGG TTA CAC GTG TTC TAG

3726 TTT TTG CGC AAC TGC ACC ATC CAG GAG GTG CAT CGC GAG GCC TTC AAG GGT CTG CAT AAA AAC GCG TTG ACG TGG TAG GTC CTC CAC GTA GCG CTC CGG AAG TTC CCA GAC GTA

oligo k5t7/2 fwd
3783 ATC CTA ATC GAG CTG GAC CTG TCG GGC AAT CGG ATA CGG GAA CTG CAT CCG GGC ACT TAG GAT TAG CTC GAC CTG GAC AGC CCG TTA GCC TAT GCC CTT GAC GTA GGC CCG TGA

oligo23
3840 TTC GCC GGC CTG GAG AAG CTG CGC AAC GTG ATC ATC AAC AAC AAC GAG ATC GAG GTG AAG CGG CCG GAC CTC TTC GAC GCG TTG CAC TAG TAG TTG TTG TTG CTC TAG CTC CAC

3897 CTG CCC AAC CAT CTG TTC GTC AAC CTG AGC TTC CTG TCG CGC ATC GAG TTC CGG AAC GAC GGG TTG GTA GAC AAG CAG TTG GAC TCG AAG GAC AGC GCG TAG CTC AAG GCC TTG
148 L P N H L F V N L S F L S R I E F R N

3954 AAT CGA TTG CGC CAG GTG CAG CTG CAC GTC TTC GCT GGC ACA ATG GCG CTG AGC GCC TTA GCT AAC GCG GTC CAC GTC GAC GTG CAG AAG CGA CCG TGT TAC CGC GAC TCG CGG

4011 ATT TCG CTG GAA CAG AAC CGC CTC TCA CAT CTG CAC AAG GAG ACA TTC AAG GAT CTG TAA AGC GAC CTT GTC TTG GCG GAG AGT GTA GAC GTG TTC CTC TGT AAG TTC CTA GAC

C FLANK oligo594
4068 CAG AAG CTG ATG CAT CTA TCG CTG CAG GGT AAC GCA TGG AAC TGC AGC TGC GAG CTG GTC TTC GAC TAC GTA GAT AGC GAC GTC CCA TTG CGT ACC TTG ACG TCG ACG CTC GAC

4125 CAG GAC TTT CGC GAC TTT GCG ATC AGC AAA CGG CTC TAC ACA CCG CCC ACC GAT TGC GTC CTG AAA GCG CTG AAA CGC TAG TCG TTT GCC GAG ATG TGT GGC GGG TGG CTA ACG

4182 CAG GAG CCG CCA CAG CTG CGC GGC AAG CTG TGG AGC GAG GTG CCA TCG GAG AAC TTC GTC CTC GGC GGT GTC GAC GCG CCG TTC GAC ACC TCG CTC CAC GGT AGC CTC TTG AAG
 Ig
4239 GCC TGC CGG CCG CGC ATT TTG GGT TCC GTG CGC TCC TTC ATC GAG GCC AAT CAC GAC CGG ACG GCC GGC GCG TAA AAC CCA AGG CAC GCG AGG AAG TAG CTC CGG TTA GTG CTG

4296 AAT ATC TCG CTA CCC TGC CGC ATT GTC GGC AGT CCG CGT CCC AAT GTC ACC TGG GTG TTA TAG AGC GAT GGG ACG GCG TAA CAG CCG TCA GGC GCA GGG TTA CAG TGG ACC CAC

4353 TAC AAC AAG CGG CCA TTG CAG CAG TAC GAC CCG CGT GTG CGT GTC CTC ACC TCC GTG ATG TTG TTC GCC GGT AAC GTC GTC ATG CTG GGC GCA CAC GCA CAG GAG TGG AGG CAC

4410 GAA CAG ATG CCG GAG CAG CCC TCC CAG GTG CTC ACC TCG GAG CTG CGC ATC GTG GGC CTT GTC TAC GGC CTC GTC GGG AGG GTC CAC GAG TGG AGC CTC GAC GCG TAG CAC CCG

4467 GTA CGG GCC TCC GAC AAG GGT GCC TAC ACC TGT GTG GCG GAT AAC CGG GGC GGA CGG CAT GCC CGG AGG CTG TTC CCA CGG ATG TGG ACA CAC CGC CTA TTG GCC CCG CCT GCC
 end Ig?
4524 GCG GAG GCC GAG TTC CAG CTG CTC GTG AGC GGT GAC TAT GCC GGC GCG GTA TCC GCC CGC CTC CGG CTC AAG GTC GAC GAG CAC TCG CCA CTG ATA CGG CCG CGC CAT AGG CGG
357. A E A E F Q L L V S G D Y A G A V S A

RNAi 27249 / 47770

W69
4581 TCC GAT GGC ATG GGC ATG GGC GCC ATT GGG GCA CCA ACC ATT GAT CCG CAA ACG AAC $A G G$ CTA CCG TAC CCG TAC CCG CGG TAA CCC CGT GGT TGG TAA CTA GGC GTT TGC TTG

Tm
4638 ATG TTT CTC ATC ATC TGT CTA ATC ATT ACG ACG CTG CTG CTC CTG CTG CTC GTG GCG TAC AAA GAG TAG TAG ACA GAT TAG TAA TGC TGC GAC GAC GAG GAC GAC GAG CAC CGC

IC
oligo745 apK5_seq_ir
4695 GTG CTG ACG CTC TTC TGG TAC TGC CGT CGC ATC AAG ACC TAT CAA AAG GAC ACC ACC CAC GAC TGC GAG AAG ACC ATG ACG GCA GCG TAG TTC TGG ATA GTT TTC CTG TGG TGG

4752 ATG ATG AGC GGC GAC GGG CTG ATC TCT TCC AAG ATG GAC AAG ACG CAC AAC GGC TCC TAC TAC TCG CCG CTG CCC GAC TAG AGA AGG TTC TAC CTG TTC TGC GTG TTG CCG AGG

4809 ATG CTC GAG GGT TCC GTC ATC ATG GAG ATG CAG AAG AGC CTG CTC AAC GAG GTC AAT TAC GAG CTC CCA AGG CAG TAG TAC CTC TAC GTC TTC TCG GAC GAG TTG CTC CAG TTA

 oligo240
4866 CCA GTC GAG AAG CCG CCA CGG CGC ACG GAC ATC GAG AGC GTG GAT GGT GGC GAT GAC GGT CAG CTC TTC GGC GGT GCC GCG TGC CTG TAG CTC TCG CAC CTA CCA CCG CTA CTG

4923 GTG CTC GAG ATC AAG AAG ACG CTG CTC GAC GAC ACC GTC TAT GTG GCC AAT CAC TCG CAC GAG CTC TAG TTC TTC TGC GAC GAG CTG CTG TGG CAG ATA CAC CGG TTA GTG AGC

4980 CGC GAC GAA GAA GCC GTC TCA GTG GCC ATG TCG GAT ACG ACG ACC ACG CCC CGA TCT GCG CTG CTT CTT CGG CAG AGT CAC CGG TAC AGC CTA TGC TGC TGG TGC GGG GCT AGA
 IC2
5037 CGA CAC ACC TAC GTG GAT GAT GCG TAT GCC AAT AGC TTG CCA CCG GAT CTG CTG GCC GCT GTG TGG ATG CAC CTA CTA CGC ATA CGG TTA TCG AAC GGT GGC CTA GAC GAC CGG

5094 TTT CCC GCT CGC GTG CCG CCC ACC TCG CCC TCG ATG CAA TCG TCG CAG TCG AAC ATA AAA GGG CGA GCG CAC GGC GGG TGG AGC GGG AGC TAC GTT AGC AGC GTC AGC TTG TAT

5151 CCC GAC CAG GTG ATC TAC GGC ATC CGT TCG CCA CCG TCG CTA ACC AGT CCG GTC TAC GGG CTG GTC CAC TAG ATG CCG TAG GCA AGC GGT GGC AGC GAT TGG TCA GGC CAG ATG

5208 ACG CAT ATG ACG CCG CAC GGC ATC TAC GGC ACC AAG ACG ATG ACG GCT CCG CAT AAC TGC GTA TAC TGC GGC GTG CCG TAG ATG CCG TGG TTC TGC TAC TGC CGA GGC GTA TTG

5265 GGC TTT ATG ACG CTG CAG CAT CCC AAG TCG CGC AAC CTG GCG CTC ATT GCC ACC ACC CCG AAA TAC TGC GAC GTC GTA GGG TTC AGC GCG TTG GAC CGC GAG TAA CGG TGG TGG

5322 AAC AGC AGT CGC CAG CAC CAG CAC CAC CAT CAG CTG CAG CAG CAG CAG CAG CAC CAC TTG TCG TCA GCG GTC GTG GTC GTG GTG GTA GTC GAC GTC GTC GTC GTC GTC GTG GTG

5379 CAC CAC CAC CAG CAG CAA CAA CAA CAG CAG CAG CAG CAG CAA CAT CCG CTG GCC ACC GTG GTG GTG GTC GTC GTT GTT GTT GTC GTC GTC GTC GTC GTT GTA GGC GAC CGG TGG

5436 ACA TCG CCC TTC CTG CCC GCA CCC GTC GTC TAT TCG CCG GCC ACG GGT GTG GTC ATG TGT AGC GGG AAG GAC GGG CGT GGG CAG CAG ATA AGC GGC CGG TGC CCA CAC CAG TAC
 IC3
5493 AAA CAG GGA TAT ATG ACC ATT CCG CGC AAG CCG CGC GCT CCC AGC TGG GCG CCC AGT TTT GTC CCT ATA TAC TGG TAA GGC GCG TTC GGC GCG CGA GGG TCG ACC CGC GGG TCA

5550 ACT TCC GGT GCC GCT GGC CAC GGA TCC ATT CAG CTA AGT GAA TTC CAG AGC CCC ACA TGA AGG CCA CGG CGA CCG GTG CCT AGG TAA GTC GAT TCA CTT AAG GTC TCG GGG TGT

oligo241
IC4
5607 TCG CCG AAT CCC AGC GAG ACT GGC ACC GCC ACC ACC GCG GAA CTG CAG GCG GAG CCA AGC GGC TTA GGG TCG CTC TGA CCG TGG CGG TGG TGG CGC CTT GAC GTC CGC CTC GGT

5664 GTG TAC GAC AAC TTG GGA TTG CGA ACC ACT GCC GGC GGC AAC TCC ACC CTC AAT CTG CAC ATG CTG TTG AAC CCT AAC GCT TGG TGA CGG CCG CCG TTG AGG TGG GAG TTA GAC

5721 ACC AAG ATC GCC GGC TCA CAG GGG GGC GCT GGT CAG CAG TAC TCG ATG CGG GAC CGA TGG TTC TAG CGG CCG AGT GTC CCC CCG CGA CCA GTC GTC ATG AGC TAC GCC CTG GCT

5778 CCA CTT CCG GCC ACG CCC AGC CTG ACA TCG GTG TCC TCG GCG ACC AAT GCC AGT AAG GGT GAA GGC CGG TGC GGG TCG GAC TGT AGC CAC AGG AGC CGC TGG TTA CGG TCA TTC

5835 ATT TAC GAG CCC ATA CAC GAG CTG ATT CAG CAG CAA CAG CAG TTG CAA CAA CAA CAA TAA ATG CTC GGG TAT GTG CTC GAC TAA GTC GTC GTT GTC GTC AAC GTT GTT GTT GTT
794. I E P I H E L I Q Q Q Q Q L Q Q Q Q

5892 CAG CAG CAG CAG CAG CGA CTG GGC TCC ATG GAC ACG GAA CCC CTG TAC GGA GTT CGG GTC GTC GTC GTC GTC GCT GAC CCG AGG TAC CTG TGC CTT GGG GAC ATG CCT CAA GCC

5949 CAA CAG GGG ATC ACG ATA CTG CCC GGC TCG AGC ATT AGC GGT GCC GGA CTG GGC CAC GTT GTC CCC TAG TGC TAT GAC GGG CCG AGC TCG TAA TCG CCA CGG CCT GAC CCG GTG

6006 GCC GCC TAC CTT TCA CCC GGC TCG GGT GCC GCC GTA TCG CCA AGC CAC GCC AGC AGC CGG CGG ATG GAA AGT GGG CCG AGC CCA CGG CGG CAT AGC GGT TCG GTG CGG TCG TCG

IC5
6063 AGC GGT GAC TCT CCG AAG GCC GCC AAG ATC CCA CCA CGC CCA CCA CCG AAG CCC AAG TCG CCA CTG AGA GGC TTC CGG CGG TTC TAG GGT GGT GCG GGT GGT GGC TTC GGG TTC
_
6120 AAG AAG ATG TCC GTG ACG ACG ACG CGC AGC GGC CAG GGC AGC ACC AGC CAG CTC TTC TTC TTC TAC AGG CAC TGC TGC TGC GCG TCG CCG GTC CCG TCG TGG TCG GTC GAG AAG
 IC6 (PDZ) attB2
6177 GAC GAC GAG GGC GAG GAT GGC ACC GAG GTC GAC CCA GCT TTC TTG TAC AAA CTG CTG CTC CCG CTC CTA CCG TGG CTC CAG CTG GGT CGA AAG AAC ATG TTT

EGFPN1 polylinker
Kpnl oligo 445 T7
Oligo 453
Oligo 416
EGFPN 1
6228 GTG G TG GTA CCG CGG GCC CGG GAT CCA CCG GTC GCC ACC ATG GTG AGC AAG GGC CAC CAC CAT GGC GCC CGG GCC CTA GGT GGC CAG CGG TGG TAC CAC TCG TTC CCG
 —
oligo744 apK5_seq_3'
6282 GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG GTC GAG CTG GAC GGC GAC GTA AAC
CTC CTC GAC AAG TGG CCC CAC CAC GGG TAG GAC CAG CTC GAC CTG CCG CTG CAT TTG
 \#54
6339 GGC CAC AAG TTC AGC GTG TCC GGC GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG CCG GTG TTC AAG TCG CAC AGG CCG CTC CCG CTC CCG CTA CGG TGG ATG CCG TTC GAC

6396 ACC CTG AAG TTC ATC TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG TGG GAC TTC AAG TAG ACG TGG TGG CCG TTC GAC GGG CAC GGG ACC GGG TGG GAG CAC

6453 ACC ACC CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CAG TGG TGG GAC TGG ATG CCG CAC GTC ACG AAG TCG GCG ATG GGG CTG GTG TAC TTC GTC

6510 CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG CGC ACC ATC TTC GTG CTG AAG AAG TTC AGG CGG TAC GGG CTT CCG ATG CAG GTC CTC GCG TGG TAG AAG

6567 TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG GTG AAG TTC GAG GGC GAC ACC AAG TTC CTG CTG CCG TTG ATG TTC TGG GCG CGG CTC CAC TTC AAG CTC CCG CTG TGG
_ $1038{ }^{\prime}$ F _ _ 6624 CTG GTG AAC CGC ATC GAG CTG AAG GGC ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG GAC CAC TTG GCG TAG CTC GAC TTC CCG TAG CTG AAG TTC CTC CTG CCG TTG TAG GAC
1057.

6681 GGG CAC AAG CTG GAG TAC AAC TAC AAC AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CCC GTG TTC GAC CTC ATG TTG ATG TTG TCG GTG TTG CAG ATA TAG TAC CGG CTG TTC

6738 CAG AAG AAC GGC ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC GTC TTC TTG CCG TAG TTC CAC TTG AAG TTC TAG GCG GTG TTG TAG CTC CTG CCG TCG

6795 GTG CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC GTG CTG CAC GTC GAG CGG CTG GTG ATG GTC GTC TTG TGG GGG TAG CCG CTG CCG GGG CAC GAC

6852 CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC AAA GAC CCC AAC GAG GAC GGG CTG TTG GTG ATG GAC TCG TGG GTC AGG CGG GAC TCG TTT CTG GGG TTG CTC

6909 AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG ACC GCC GCC GGG ATC ACT CTC GGC TTC GCG CTA GTG TAC CAG GAC GAC CTC AAG CAC TGG CGG CGG CCC TAG TGA GAG CCG

1152 Notl Xbal SV40 Poly A
6966 ATG GAC GAG CTG TAC AAG TAA AGCGGCCGCGACTCTAGAGGATCTTTGTGAAGGAACCTTACTTCTGT TAC CTG CTC GAC ATG TTC ATT TCGCCGGCGCTGAGATCTCCTAGAAACACTTCCTTGGAATGAAGACA

7034 GGTGTGACATAATTGGACAAACTACCTACAGAGATTTAAAGCTCTAAGGTAAATATAAAATTTTTAAGTGTATAA CCACACTGTATTAACCTGTTTGATGGATGTCTCTAAATTTCGAGATTCCATTTATATTTTAAAAATTCACATATT

7109 TGTGTTAAACTACTGATTCTAATTGTTTGTGTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGG ACACAATTTGATGACTAAGATTAACAAACACATAAAATCTAAGGTTGGATACCTTGACTACTTACCCTCGTCACC

7184 TGGAATGCCTTTAATGAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCTGAC ACCTTACGGAAATTACTCCTTTTGGACAAAACGAGTCTTCTTTACGGTAGATCACTACTACTCCGATGACGACTG

7259 TCTCAACATTCTACTCCTCCAAAAAAGAAGAGAAAGGTAGAAGACCCCAAGGACTTTCCTTCAGAATTGCTAAGT AGAGTTGTAAGATGAGGAGGTTTTTTCTTCTCTTTCCATCTTCTGGGGTTCCTGAAAGGAAGTCTTAACGATTCA

334 TTTTTGAGTCATGCTGTGTTTAGTAATAGAACTCTTGCTTGCTTTGCTATTTACACCACAAAGGAAAAAGCTGCA AAAAACTCAGTACGACACAAATCATTATCTTGAGAACGAACGAAACGATAAATGTGGTGTTTCCTTTTTCGACGT

7409	CTGCTATACAAGAAAATTATGGAAAAATATTCTGTAACCTTTATAAGTAGGCATAACAGTTATAATCATAACATA GACGATATGTTCTTTTAATACCTTTTTATAAGACATTGGAAATATTCATCCGTATTGTCAATATTAGTATTGTAT
7484	CTGTTTTTTCTTACTCCACACAGGCATAGAGTGTCTGCTATTAATAACTATGCTCAAAAATTGTGTACCTTTAGC GACAAAAAAGAATGAGGTGTGTCCGTATCTCACAGACGATAATTATTGATACGAGTTTTTAACACATGGAAATCG
7559	TTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGACTAGAGATCATAATCAGCCATAC AAAAATTAAACATTTCCCCAATTATTCCTTATAAACTACATATCACGGAACTGATCTCTAGTATTAGTCGGTATG
7634	CACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGC gTGTAAACATCTCCAAAATGAACGAAATTTTTTGGAGGGTGTGGAGGGGGACTTGGACTTTGTATTTTACTTACG

Hpal	
7709	AATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAA
	TTAACAACAACAATTGAACAAATAACGTCGAATATTACCAATGTTTATTTCGTTATCGTAGTGTTTAAAGTGTTT

7784 TAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCGG ATTTCGTAAAAAAAGTGACGTAAGATCAACACCAAACAGGTTTGAGTAGTTACATAGAATAGTACAGACCTAGCC
white gene
7859 ATCCACTAGAAGGCCTTAGTATGTATGTAAGTTAATAAAACCCTTTTTTGGAGAATGTAGATTTAAAAAAACATA TAGGTGATCTTCCGGAATCATACATACATTCAATTATTTTGGGAAAAAACCTCTTACATCTAAATTTTTTTGTAT

7934 TTTTTTTTTTATTTTTTACTGCACTGGACATCATTGAACTTATCTGATCAGTTTTAAATTTACTTCGATCCAAGG AAAAAAAAAATAAAAAATGACGTGACCTGTAGTAACTTGAATAGACTAGTCAAAATTTAAATGAAGCTAGGTTCC

8009 GTATTTGAAGTACCAGGTTCTTTCGATTACCTCTCACTCAAAATGACATTCCACTCAAAGTCAGCGCTGTTTGCC CATAAACTTCATGGTCCAAGAAAGCTAATGGAGAGTGAGTTTTACTGTAAGGTGAGTTTCAGTCGCGACAAACGG

8534	TCCCAAACCGCAATCGCACAAACAAATAGTGACACGAAACAGATTATTCTGGTAGCTGTGCTCGCTATATAAGAC agGgittggcgitagcgigittgittatcactgtgctitctctaitaigaccatcgacacgagcgatatattctg
8609	aATTTTTAAGATCATATCATGATCAAGACATCTAAAGGCATTCATTTTCGACTACATTCTTTTTTACAAAAAATA tTAAAAATTCTAGTATAGTACTAGTTCTGTAGATTTCCGTAAGTAAAAGCTGATGTAAGAAAAAATGTTTTTTTAT
8684	TAACAACCAGATATTTTAAGCTGATCCTAGATGCACAAAAAATAAATAAAAGTATAAACCTACTTCGTAGGATAC attgitg ictataiaittcgactaggatctacgtgtttttiatttattttcatatttggatgaigcatcctatg
8759	TTCGTTTTGTTCGGGGTTAGATGAGCATAACGCTTGTAGTTGATATTTGAGATCCCCTATCATTGCAGGGTGACA aAGCAAAACAAGCCCCAATCTACTCGTATTGCGAACATCAACTATAAACTCTAGGGGATAGTAACGTCCCACTGT
8834	GCGGAGCGGCTTCGGCAGAGCTGCATTAACCAGGGCTTCGGGCAGGCCAAAAACTACGGCACGCTCCTGCCACCCA CGCCTCGCCGAAGCGTCTCGACGTAATTGGTCCCGAAGCCCGTCCGGTTTTTGATGCCGTGCGAGGACGGTGGGT
8909	GTCCGCCGGAGGACTCCGGTTCAGGGAGCGGCCCAACTAGCCGAGAACCTCACCTATGCCTGGCACAATATGGACA CAGGCGGCCTCCTGAGGCCAAGTCCCTCGCCGGTTGATCGGCTCTTGGAGTGGATACGGACCGTGTTATACCTGT
8984	TCTTTGGGGCGGTCAATCAGCCGGGCTCCGGATGGCGGCAGCTGGTCAACCGGACACGCGGACTATTCTGCAACG AGAAACCCCGCCAGTTAGTCGGCCCGAGGCCTACCGCCGTCGACCAGTTGGCCTGTGCGCCTGATAAGACGTTGC
9059	AGCGACACATACCGGCGCCCAGGAAACATTTGGCTCAAGAACGGTGAGTTTCTATTCGCAGTCGGCTGATCTGTGT TCGCTGTGTATGGCCGCGGGTCCTTTGTAAACGAGTTCTTGCCACTCAAAGATAAGCGTCAGCCGACTAGACACA
9134	GAAATCTTAATAAAGGGTCCAATTACCAATTTGAAACTCAGTTTGCGGCGTGGCCTATCCGGGCGAACTTTTTGGC CTTTAGAATTATTTCCCAGGTTAATGGTTAAACTTTGAGTCAAACGCCGCACCGGATAGGCCCGCTTGAAAACCG
9209	CGTGATGGGCAGTTCCGGTGCCGGAAAGACGACCCTGCTGAATGCCCTTGCCTTTCGATCGCCGCAGGGCATCCA GCACTACCCGTCAAGGCCACGGCCTTTCTGCTGGGACGACTTACGGGAACGGAAAGCTAGCGGCGTCCCGTAGGT
9284	AGTATCGCCATCCGGGATGCGACTGCTCAATGGCCAACCTGTGGACGCCAAGGAGATGCAGGCCAGGTGCGCCTA TCATAGCGGTAGGCCCTACGCTGACGAGTTACCGGTTGGACACCTGCGGTTCCTCTACGTCCGGTCCACGCGGAT
9359	TGTCCAGCAGGATGACCTCTTTATCGGCTCCCTAACGGCCAGGGAACACCTGATTTTCCAGGCCATGGTGCGGAT ACAGGTCGTCCTACTGGAGAAATAGCCGAGGGATTGCCGGTCCCTTGTGGACTAAAAGGTCCGGTACCACGCCTA
9434	GCCACGACATCTGACCTATCGGCAGCGAGTGGCCCGCGTGGATCAGGTGATCCAGGAGCTTTCGCTCAGCAAATG CGGTGCTGTAGACTGGATAGCCGTCGCTCACCGGGCGCACCTAGTCCACTAGGTCCTCGAAAGCGAGTCGTTTAC
9509	TCAGCACACGATCATCGGTGTGCCCGGCAGGGTGAAAGGTCTGTCCGGCGGAGAAAGGAAGCGTCTGGCATTCGC AGTCGTGTGCTAGTAGCCACACGGGCCGTCCCACTTTCCAGACAGGCCGCCTCTTTCCTTCGCAGACCGTAAGCG
9584	CTCCGAGGCACTAACCGATCCGCCGCTTCTGATCTGCGATGAGCCCACCTCCGGACTGGACTCATTTACCGCCCA GAGGCTCCGTGATTGGCTAGGCGGCGAAGACTAGACGCTACTCGGGTGGAGGCCTGACCTGAGTAAATGGCGGGT
9659	CAGCGTCGTCCAGGTGCTGAAGAAGCTGTCGCAGAAGGGCAAGACCGTCATCCTGACCATTCATCAGCCGTCTTC GTCGCAGCAGGTCCACGACTTCTTCGACAGCGTCTTCCCGTTCTGGCAGTAGGACTGGTAAGTAGTCGGCAGAAG
9734	CGAGCTGTTTGAGCTCTTTGACAAGATCCTTCTGATGGCCGAGGGCAGGGTAGCTTTCTTGGGCACTCCCAGCGA GCTCGACAAACTCGAGAAACTGTTCTAGGAAGACTACCGGCTCCCGTCCCATCGAAAGAACCCGTGAGGGTCGCT

9809	agccGTCGACTTCTTTTCCTAGTGAGTTCGATGTGTTTATTAAGGGTATCTAGCATTACATTACATCTCAACTCC TCGGCAGCTGAAGAAAAGGATCACTCAAGCTACACAAATAATTCCCATAGATCGTAATGTAATGTAGAGTTGAGG
9884	TATCCAGCGTGGGTGCCCAGTGTCCTACCAACTACAATCCGGCGGACTTTTTACGTACAGGTGTTGGCCGTTGTGC ATAGGTCGCACCCACGGGTCACAGGATGGTTGATGTTAGGCCGCCTGAAAATGCATGTCCACAACCGGCAACACG
9959	CCGGACGGGAGATCGAGTCCCGTGATCGGATCGCCAAGATATGCGACAATTTTGGCTATTAGCAAAGTAGCCCGGGG GGCCTGCCCTCTAGCTCAGGGCACTAGCCTAGCGGTTCTATACGCTGTTAAAACGATAATCGTTTCATCGGGCCC
10034	ATATGGAGCAGTTGTTGGCCACCAAAAATTTGGAGAAGCCACTGGAGCAGCCGGAGAATGGGTACACCTACAAGG TATACCTCGTCAACAACCGGTGGTTTTTAAACCTCTTCGGTGACCTCGTCGGCCTCTTACCCATGTGGATGTTCC
10109	CCACCTGGTTCATGCAGTTCCGGGCGGTCCTGTGGCGATCCTGGCTGTCGGTGCTCAAGGAACCACTCCTCGTAA GGTGGACCAAGTACGTCAAGGCCCGCCAGGACACCGCTAGGACCGACAGCCACGAGTTCCTTGGTGAGGAGCATT
10184	AAGTGCGACTTATTCAGACAACGGTGAGTGGTTCCAGTGGAAACAAATGATATAACGCTTACAATTCTTGGAAAC TTCACGCTGAATAAGTCTGTTGCCACTCACCAAGGTCACCTTTGTTTACTATATTGCGAATGTTAAGAACCTTTG
10259	AAATTCGCTAGATTTTAGTTAGAATTGCCTGATTCCACACCCTTCTTAGTTTTTTTTCAATGAGATGTATAGTTTA TTTAAGCGATCTAAAATCAATCTTAACGGACTAAGGTGTGGGAAGAATCAAAAAAAGTTACTCTACATATCAAAT
10334	TAGTTTTGCAGAAAATAAATAAATTTCATTTTAACTCGCGAACATGTTGAAGATATGAATATTAATGAGATGCGAG ATCAAAACGTCTTTTATTTATTTAAAGTAAATTGAGCGCTTGTACAACTTCTATACTTATAATTACTCTACGCTC
10409	TAACATTTTAATTTGCAGATGGTTGCCATCTTGATTGGCCTCATCTTTTTGGGCCAACAACTCACGCAAGTGGGC ATTGTAAAATTAAACGTCTACCAACGGTAGAACTAACCGGAGTAGAAAAACCCGGTTGTTGAGTGCGTTCACCCG
10484	GTGATGAATATCAACGGAGCCATCTTCCTCTTCCTGACCAACATGACCTTTCAAAACGTCTTTGCCACGATAAAT CACTACTTATAGTTGCCTCGGTAGAAGGAGAAGGACTGGTTGTACTGGAAAGTTTTGCAGAAACGGTGCTATTTA
10559	GTAAGTCTTGTTTTAGAATACATTTGCATATTAATAATTTACTAACTTTCTAATGAATCGATTCGATTTAGGTGTT CATTCAGAACAAATCTTATGTAAACGTATAATTATTAAATGATTGAAAGATTACTTAGCTAAGCTAAATCCACAA
10634	CACCTCAGAGCTGCCAGTTTTTATGAGGGAGGCCCGAAGTCGACTTTATCGCTGTGACACATACTTTCTGGGCAA GTGGAGTCTCGACGGTCAAAAATACTCCCTCCGGGCTTCAGCTGAAATAGCGACACTGTGTATGAAAGACCCGTT
10709	AACGATTGCCGAATTACCGCTTTTTCTCACAGTGCCACTGGTCTTCACGGCGATTGCCTATCCGATGATCGGGACT TTGCTAACGGCTTAATGGCGAAAAAGAGTGTCACGGTGACCAGAAGTGCCGCTAACGGATAGGCTACTAGCCTGA
10784	GCGGGCCGGAGTGCTGCACTTCTTCAACTGCCTGGCGCTGGTCACTCTGGTGGCCAATGTGTCAACGTCCTTCGG CGCCCGGCCTCACGACGTGAAGAAGTTGACGGACCGCGACCAGTGAGACCACCGGTTACACAGTTGCAGGAAGCC
10859	ATATCTAATATCCTGCGCCAGCTCCTCGACCTCGATGGCGCTGTCTGTGGGTCCGCCGGTTATCATACCATTCCT TATAGATTATAGGACGCGGTCGAGGAGCTGGAGCTACCGCGACAGACACCCAGGCGGCCAATAGTATGGTAAGGA
10934	GCTCTTTGGCGGCTTCTTCTTGAACTCGGGCTCGGTGCCAGTATACCTCAAATGGTTGTCGTACCTCTCATGGTT CGAGAAACCGCCGAAGAAGAACTTGAGCCCGAGCCACGGTCATATGGAGTTTACCAACAGCATGGAGAGTACCAA
11009	CCGTTACGCCAACGAGGGTCTGCTGATTAACCAATGGGCGGACGTGGAGCCGGGCGAAATTAGCTGCACATCGTC GGCAATGCGGTTGCTCCCAGACGACTAATTGGTTACCCGCCTGCACCTCGGCCCGCTTTAATCGACGTGTAGCAG

11084	GAACACCACGTGCCCCAGTTCGGGCAAGGTCATCCTGGAGACGCTTAACTTCTCCGCCGCCGATCTGCCGCTGGA
	CTTGTGGTGCACGGGGTCAAGCCCGTTCCAGTAGGACCTCTGCGAATTGAAGAGGCGGCGGCTAGACGGCGACCT
$-\mathbf{- 1 1 5 9}$	CTACGTGGGTCTGGCCATTCTCATCGTGAGCTTCCGGGGTGCTCGCATATCTGGCTCTAAGACTTCGGGCCCGACG
	GATGCACCCAGACCGGTAAGAGTAGCACTCGAAGGCCCACGAGCGTATAGACCGAGATTCTGAAGCCCGGGCTGC

12359 GCTCTGCTCCCACAATTTTCTCTTAATAGCACACTTCGGCACGTGAATTAATTTTACTCCAGTCACAGCTTTGCA CGAGACGAGGGTGTTAAAAGAGAATTATCGTGTGAAGCCGTGCACTTAATTAAAATGAGGTCAGTGTCGAAACGT

UAS Kek6 GFP

1 GGCCAGACCCACGTAGTCCAGCGGCAGATCGGCGGCGGAGAAGTTAAGCGTCTCCAGGATGACCTTGCCCGAACTG CCGGTCTGGGTGCATCAGGTCGCCGTCTAGCCGCCGCCTCTTCAATTCGCAGAGGTCCTACTGGAACGGGCTTGAC

77 GGGCACGTGGTGTTCGACGATGTGCAGCTAATTTCGCCCGGCTCCACGTCCGCCCATTGGTTAATCAGCAGACCCT

153 CGTTGGCGTAACGGAACCATGAGAGGTACGACAACCATTTGAGGTATACTGGCACCGAGCCCGAGTTCAAGAAGAA GCAACCGCATTGCCTTGGTACTCTCCATGCTGTTGGTAAACTCCATATGACCGTGGCTCGGGCTCAAGTTCTTCTT

229 GGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCG CCGCAAAAAGGTATCCGAGGCGGGGGGACTGCTCGIAGTGTTITTAGCTGCGAGITCAGTCTCCACCGCTITGGGC

305 ACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTA TGTCCTGATATTTCTATGGTCCGCAAAGGGGGACCTTCGAGGGAGCACGCGAGAGGACAAGGCTGGGACGGCGAAT

381 CCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTC GGCCTATGGACAGGCGGAAAGAGGGAAGCCCTTCGCACCGCGAAAGAGTTACGAGTGCGACATCCATAGAGTCAAG

457 GGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGT CCACATCCAGCAAGCGAGGITCGACCCGACACACGIGCTIGGGGGGCAAGTCGGGCTGGCGACGCGGAATAGGCCA

533 AACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCA - . - . - _ TTGATAGCAGAACTCAGGTIGGGCCATICTGTGCTGAATAGCGGTGACCGTCGTCGGTGACCATTGTCCTAATCGT

609 GAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATT CTCGCTCCATACATCCGCCACGATGTCTCAAGAACITCACCACCGGATTGATGCCGATGTGATCTTCCTGTCATAA

685 TGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACC ACCATAGACGCGAGACGACITCGGTCAATGGAAGCCTTTITCTCAACCATCGAGAACTAGGCCGTTIGTTIGGTGG

761 GCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGA CGACCATCGCCACCAAAAAAACAAACGITCGTCGTCTAATGCGCGTCTTTTTTTCCTAGAGTTCTTCTAGGAAACT
837 TCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAG AGAAAAGATGCCCCAGACTGCGAGTCACCTTGCTITTGAGTGCAATTCCCTAAAACCAGIACTCTAATAGITTTTC

913 GATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCT

989 GACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGAC _ _ _ _ _ _ $\mathbb{C} T G T C A A T G G T T A C G A A T T A G T C A C T C C G T G G A T A G A G T C G C T A G A C A G A T A A A G C A A G T A G G T A T C A A C G G A C I G$

1065 TCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCC AGGGGCAGCACATCTATTGATGCTATGCCCTCCCGAATGGTAGACCGGGGTCACGACGTTACTATGGCGCICTGGG

1141 ACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACT TGCGAGTGGCCGAGGTCTAAATAGTCGITATTTGGTCGGICGGCCTTCCCGGCTCGCGTCTTCACCAGGACGTTGA

1217 TTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCA _ . - . . _ AATAGGCGGAGGTAGGTCAGATAATTAACAACGGCCCTTCGATCTCATTCATCAAGCGGTCAATTATCAAACGCGT

1293 ACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCA TGCAACAACGGTAACGATGICCGIAGCACCACAGTGCGAGCAGCAAACCATACCGAAGTAAGICGAGGCCAAGGGT

1369 ACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTC - . - - - - TGCTAGTICCGCTCAATGTACTAGGGGGTACAACACGTTITTTCGCCAATCGAGGAAGCAGGAGGCTAGCAACAG

1445 AGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCG TCTTCATICAACCGGCGTCACAATAGTGAGTACCAATACCGTCGTGACGTATTAAGAGAATGACAGTACGGTAGGC

1521 TAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTC

1597 TTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCT AACGGGCCGCAGITGTGCCCTATIATGGCGCGGTGTATCGTCTTGAAATTTTCACGAGTAGTAACCITTTGCAAGA

1673 TCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGAT AGCCCCGCTTTTGAGAGTTCCTAGAATGGCGACAACTCTAGGTCAAGCTACATTGGGTGAGCACGTGGGTTGACTA

1749 CTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAAT GAAGTCGTAGAAAATGAAAGTGGTCGCAAAGACCCACTCGTTTTTGTCCTTCCGTTTTACGGCGTTTTTTCCCTTA

1825 AAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGT TTCCCGCTGTGCCTTTACAACTTATGAGTATGAGAAGGAAAAGTTATAATAACTICGTAAATAGTCCCAATAACA
1901 CTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAG GAGIACTCGCCIATGTATAAACTTACAIAAATCTTITTATITGITTAICCCAAGGCGCGTGIAAAGGGGCTTIC -
1977 TGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCG ACGGTGGACTGCAGATICTITGGTAATAATAGTACIGTAATTGGATATITITATCCGCATAGIGCTCCGGGAAGC
2053 TCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAA AGAGCGCGCAAAGCCACTACIGCCACTITTGGAGACIGTGTACGICGAGGGCCTCIGCCAGTGTCGAACAGACATI
2129 GCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATG CGCCTACGGCCCICGICTGITCGGGCAGICCCGCGCAGTCGCCCACAACCGCCACAGCCCCGACCGAATIGATAC
2205 CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACCGAATCGCGCGGAACTAACG GCCGTAGTCTCGICTAACATGACICTCACGTGGTATACGCCACACTITATGGCGTGGCITAGCGCGCCTTGATIGC
2281 ACAGTCGCTCCAAGGTCGTCGAACAAAAGGTGAATGTGTTGCGGAGAGCGGGTGGGAGACAGCGAAAGAGCAACTA TGTCAGCGAGGITCCAGCAGCTTGITTTCCACITACACAACGCCTCTCGCCCACCCICTGTCGCTTICTCGTTGAT
2357 CGAAACGTGGTGTGGTGGAGGTGAATTATGAAGAGGGCGCGCGATTTGAAAAGTATGTATATAAAAAATATATCCC GCTITGCACCACACCACCTCCACTTAATACTICTCCCGCGCGCTAAACTTTTCATACATATATTTTTTATATAGGG

2433 GGTGTTTTATGTAGCGATAAACGAGTTTTTGATGTAAGGTATGCAGGTGTGTAAGTCTTTTGGTTAGAAGACAAAT CCACAAAATACATCGCTATITGCICAAAAACIACATTCCATACGTCCACACATTCAGAAAACCAATCITCTGTTIA
2509 CCAAAGTCTACTTGTGGGGATGTTCGAAGGGGAAATACTTGTATTCTATAGGTCATATCTTGTTTTTATTGGCACA GGTTTCAGATGAACACCCCTACAAGCTTCCCCTTTATGAACATAAGATATCCAGTATAGAACAAAAATAACCGTGT
2585 AATATAATTACATTAGCTTTTTGAGGGGGGCAATAAACAGTAAACACGATGGTAATAATGGTAAAAAAAAAAACAAG TTATATTAATGTAATCGAAAAACTCCCCCGTIATTTGTCATTTGTGCTACCATTATTACCATITTTITTTITGTIC

2661 CAGTTATTTCGGATATATGTCGGCTACTCCTTGCGTCGGGCCCGAAGTCTTAGAGCCAGATATGCGAGCACCCGGA GTCAATAAAGCCTATATACAGCCGATGAGGAACGCAGCCCGGGCITCAGAAICTCGGTCTATACGCICGTGGGCCI

3 'P
2737 AGCTCACGATGAGAATGGCCAGACCATGATGAAATAACATAAGGTGGTCCCGTCGGCAAGAGACATCCACTTAACG tCGAGTGCTACTCTTACCGGTCTGGTACTACTTTATTGTATTCCACCAGGGCAGCCGTTCTCTGTAGGTGAATTGC

2813 TATGCTTGCAATAAGTGCGAGTGAAAGGAATAGTATTCTGAGTGTCGTATTGAGTCTGAGTGAGACAGCGATATGA ATACGAACGTTATTCACGCTCACTTTCCTTATCATAAGACTCACAGCATAACTCAGACTCACTCTGTCGCTATACT

2889 TTGTTGATTAACCCTTAGCATGTCCGTGGGGTTTGAATTAACTCATAATATTAATTAGACGAAATTATTTTTAAAG AACAACTAATTGGGAATCGTACAGGCACCCCAAACTTAATTGAGTATTATAATTAATCTGCTTTAATAAAAATTTC

2965 TTTTATTTTTAATAATTTGCGAGTACGCAAAGCTTCTGCATGAGCTCGGATCCAAGCTTGCATGCCTGCAGGTCGG AAAATAAAAATTATTAAACGCTCATGCGTTTCGAAGACGTACTCGAGCCTAGGTTCGAACGTACGGACGTCCAGCC

3041 AGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGG TCATGACAGGAGGCTCGCCTCATGACAGGAGGCTCGCCTCATGACAGGAGGCTCGCCTCATGACAGGAGGCTCGCC

3117 AGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCGCCGGAGTATAAATAGAGGCGCTTCGTCTACGGAGCGACAATT TCATGACAGGAGGCTCGCCTCTGAGATCGCTCGCGGCCTCATATTTATCTCCGCGAAGCAGATGCCTCGCTGTTAA GTTAAGTTTGTTCGTTTCACTTGTGCAGCGATTCGCTTTCGATTCGTTTATTTGTTCGCGTCGACTTGTTCGATTT

3269 CAATCTGCAGTAAAGTGCAAGTTAAAGTGAATCAATTAAAAGTAACCAGCAACCAAGTAAATCAACTGCAACTACT GTTAGACGTCATTTCACGTTCAATTTCACTTAGTTAATTTTCATTGGTCGTTGGTTCATTTAGTTGACGTTGATGA

	Polylinker
3345	GAAATCTGCCAAGAAGTAATTATTGAATACAAGAAGAGAACTCTGAATAGGGAATTGGGGAATTCGTTAACAGATC
	ETTTAGACGGTTCTTCATTAATAACTTATGTTCTTCTCTTGAGACTTATCCCTTAACCCCTTAAGCAATTGTCTAG

attB1

Putative ORF CG1804

3421 TGACAAGTTTGTACAAAAAAGCAGGCTCAAC ATG CAT CGC AGC ATG GAT CGC AGA AGG AGC AGA ACTGTTCAAACATGTTTTTTCGTCCGAGTTG TAC GTA GCG TCG TAC CTA GCG TCT TCC TCG TCT
 Predicted exon end
3485 ACC CCG AGG ACT CTG CCA G GTGAGTTGTCATTCCCAGGTAGCAGGTGCCACACTCCAAAATAGACGGTC IGG GGC TCC TGA GAC_ GGT_ C CACTCAACAGTAAGGGCCATCGTCCACGGTGTGAGGTTTATCTGCCAG
3554 AATACAAAGGAAACCCACAGATTAGCTACGTACATATGTATATATGTATATGATCTTAGACCCCAGCTTTAATGTG ITATGTTTCCTITGGGIGTCTAATCGATGCATGTATACATATATACATATACTAGAATCIGGGGTCGAAITACAC _ .

KEK homology

Predicted exon begin
3630 GCTATGTGATTTATAAGTGCTACATTTAAATTCGTTTTCCTCATTTCTCCTTTAGTC TGC TGG ATT CTG CGATACACTAAATATTCACGATGTAAATITAAGCAAAAGGAGTAAGAGGAAATCAG ACG ACC IAA GAC - - -
3699 CTG TGC CTG GTG GCC TGG ACT GTT GCA GAT GAC TGG TCT CTA AGT TGC GCC TCC AAC GAC ACG GAC CAC CGG ACC TGA CAA CGT_CTA_CTGACC AGA GAT TCAACGCGG AGG TTG
3756 TGC ACC TGC AAG TGG ACC AAT GGC AAG AAG TCG GCC ATC TGC AGC TCC CTG CAG CTG ACG IGG ACG ITC_ACC TGG TTA CCG TTC_TTC_AGC_CGGTAG_ACG_TCG_AGG_GAC GTC GAC . . .
3813 ACC ACC ATT CCG AAC ACC CTG AGC ACA GAG CTG CAG GTG CTG GTG CTC AAT GAC AAC

3870 CAC ATC CCG TAC CTC AAC CGG GAG GAG TTC TCC ACT CTG GGC CTG TTG AAC TTG CAG -.-.... GTG TAG GGC ATG GAG TTG GCC CTC CTC AAGAGG TGA GAC CCG GAC AAC TTG AAC GTC . - .

3927 CGA ATT TAC CTC AAG AAG TCC GAG GTG CAG TAC ATA CAC AAG GAG TCG TTC CGC AAT GCT TAA ATG GAG TTC TTC AGG CTC CAC_GTC_ATG TAT_GTG_TTC_CTC_AGCAAG GCG TTA - -
3984 CTG AAG ATA CTG GTG GAG ATC GAC CTG TCG GAC AAT AAG CTG GAG ATG CTC GAC AAG - - - - - GAC ITC TAT GAC CAC CTC TAG_CTG_GACAGC CTG TTA TTC_GAC_CTCTAC GAG_CTG TTC . . .

4041 GAC ACC TTC ATG GGG AAC GAT CGC CTG AGG ATA CTC TAT TTG AAT GGA AAT CCC CTC - - - - - - CTG TGG AAG TAC CCC ITG CTA GCG_GAC TCC TAT GAG_ATA_AAC_TTACCT TTA GGG GAG - - -

4098 AAG CGC CTA GCG GCT TAT CAG TTT CCT ATT CTG CCC CAT CTG CGC ACC TTG GAC ATG ITC GCG GAT_ CGC CGA ATA GTC AAA GGA_TAA_GAC_GGGGTA_GAC_GCG_TGGAAC CTG TAC - - -
4155 CAC GAC TGC CTC ATC TCC TAC ATT GAT CCC ATG TCC CTG GCC AAT CTT AAT CTG CTG - - - - - - GTG CTG ACG GAG TAG AGG ATG TAA CTA_GGG TAC AGG_GAC_CGG_TTA_GAA TTA GAC GAC - - -

4212 GAG TTC CTC AAC CTA AAG AAC AAC CTG CTG GAG AGC CTG AGC GAG TAC GTG TTC CAG - - - . . . CTC AAG GAG TTG GAT ITC ITG TTG GAC GAC CTC TCG GAC TCG_CTC ATG CAC AAG GTC - -

4269 CAC ATG GCC AAT CTG AAG ACG CTC TCC CTG GAG GAG AAT CCC TGG CAG TGC AAC TGC GTG TAC CGG TTA GAC ITC TGC_GAG_AGG GAC CTC CTC TTA_GGG_ACC GTC ACG TTG ACG
4326 AAA CTG CGA AAG TTC CGG GGC TGG TAT GTG AAC AGC CGC CTG AGC TCC GTG AGT CTG ITT_ GAC GCT TTC AAG GCC CCG ACC ATA CAC TTG TCG_GCG_GAC_TCG_AGG_CAC TCA GAC - -
4383 GTA TGC AAG GGC CCT CCG GCC CAG AAG GAT CGC ACA TGG GAT AGC GTG GAC GAC GAG CAT ACG TTC CCG GGA GGC_ CGG_GTC TTC_CTA_GCG_TGTACC_CTA_TCG_CAC_CTG_CTG_CTC . .

BgIII

4440 CTC TTC GGC TGT CCG CCG CGC GTT GAG ATC TTC AAC AAT GAA GAG GTG CAG AAC ATC GAG AAG CCG ACA GGC GGC GCG_CAA CTC TAG_AAG_TTG_TTA_CTT_CTC CAC_GTC TTG TAG

4497 GAC ATC GGA AGT AAT ACC ACC TTT AGC TGC CTG GTG TAC GGG GAT CCC CTG CCG GAG CTG TAG CCT TCA TTA TGG TGG AAA TCG ACG GAC CAC ATG CCC CTA GGG GAC GGC CTC

4725 AAC ATC AGT ATC TAC CTC AGC GAG ATC GTT CAG CAT GTG CTG GAG AAA ACT CCG GAG tTG TAG TCA TAG ATG GAG TCG CTC TAG CAA GTC GTA CAC GAC CTC TTT TGA GGC CTC

4782 ACC TTC TGG TAC TTT GGC CTC ATC ATG GGC ATC TTC GGA ACC GTC TTT CTG CTG ATC TGG AAG ACC ATG AAA CCG GAG TAG TAC CCG TAG AAG CCT TGG CAG AAA GAC GAC TAG

4839 TCC ATC TCG TTT GTG GTC TGT CTC TGC AAA CGC ACT ACC CGC CAG CAC CGT CAT GCC AGG TAG AGC AAA CAC CAG ACA GAG ACG TTT GCG TGA TGG GCG GTC GTG GCA GTA CGG

4896 AAC AAG GCC GGC GTG AAG TCG AGT GTT AGC TTC AAT GAT CAG GAA AAG AAA CTT CTC ITG ITC CGG CCG CAC ITC.AGC TCA CAA_TCG_AAG TTA CTA_GTC_CTT_TTC_TTT GAA GAG - - -
4953 GAC TCg AGC GTC ACC ACG ACC ACC AAT GAT CGC GGT GAC AGC TAT GGC ATC GAC AAC - - - - . - CTG AGC TCG CAG TGG TGC TGG TGG TTA CTA GCG CCA CTG TCG_ATA CCG TAG CTG TTG - -

5010 CAG CCC ACT TCC ATC GGT ATG AAC AAG GGG GAC TCG GCC GGA ATG GGC TTC AAC CAA

5067 ATA GAG ATC CAT GCG GTG GAG AGT CAT CGG CAT GGA AGC ATG TTG GTG CAG CAG CAG TAT CTC TAG GTA CGC CAC CTC TCA GTA_GCC_GTA CCT TCG_TAC AAC CAC GTC GTC GTC - -
5124 CCG CAA CAG CAA CAG GTT GCA GGT GGT GGT GGA ATG CGG CAA CAG CTG ATG CAG GTC GGC GTT GTC GTT GTC CAA CGT CCA CCA CCA CCT TAC GCC GTT GTC GAC TAC GTC CAG
pWIZ 3' oligo
5181 AAA GAT TCC ACC TGC GGC ATG ATG AGT GTG CCC ACC TCA ATG GCA GGC CAT GCC CAT TTT CTA AGG TGG ACG CCG TAC TAC TCA CAC GGG TGG AGT TAC CGT CCG GTA CGG GTA

BgIII

5238 TCG CAT CCT GCC CAG ATC TCT GAG GAG TTC CCG CTG AAC GTG GGC GTC TTT CCA CCG AGC GTA GGA CGG GTC TAG_AGA CTC_CTCAAG GGC GAC TTG CAC CCG CAG AAA GGT GGC
5295 CCA CCA GAG TTT TGT TCG AAC ATA GTC CCG AAT CCA GCG TTT GGG GGC AAC ATT TTC GGT GGT CTC AAA ACA AGC TTG TAT CAG GGC TTA GGT CGC AAA CCC CCG TTG TAA AAG

5352 ATC GGG GTA TCC GTC ACA CAG GAC ATG CTG GAT GGT GCG GAC GTG AAC ATG TAT
5352 ATC CGG GTA TCC GTC ACA CAG GAC ATG CTG GAT GGT GCG GAC CTG AAC ATG TAT CCA

5409 GAT CTG CTG AAC ATT CCG AAG AGG ATG CAG GAC GTA CAG GAG AGT GGT GCT GGT GCA

5466 GTT GCC GTG CCC GAG GGT CAG TTT GCC ACT CTG CCG AGA CAC ACA GCC CGG AGA GGT

5523 ATT CTC AAG AAG GAC ACC TCC TTG CAG CAA CAG CAG CAG CAG CAC CAG CAG CAG CAT

5580 CAA CAT CAA CAG CAG CAG CAG CAA CAG CAG ATA CAG CAG CAG CAG CAC CAG CAG CTG

5637 CAA CAG CAA CAC CAG CCA TCC GGA CTC TAC ACA CAT GAT GAA ATC GTG ACC TAC AAC

Kpnl Ncol
5694 CTG GAG GCC AGT GGC TAC GAC CCC CAC CAG TCG GGG TAC CAC AGC AAT GCC ATG GAG

5751 CTG CCT CCT CCG CCG CCG CCG CCC GCC GTA ACA GCG GTG GTG CAG TGT CAT CAC CCG GAC_ GGA GGA GGC_ GGC_ GGC_GGC_GGG_CGG_CAT_TGT_CGC_CAC_CAC_GTC_ACA_GTA_GTG_GGC

5808 AGT CCC AAC AAC TGC GCC AGC TGC ATC AAC AAT GCG CCG CCA CCG CCC TCC GCC TGC

5865 CAA TCG CCG CCC GTC GAG GTG ACG CCC ATG AGG CCG CTG GAC AGC TCC GCC TAC CCC GTT_ AGC_ GGC_ GGG_ CAG_ CTC_CAC_TGC_GGG_TAC_TCC_GGC_GAC_CTG_TCG_AGG_CGG_ATG_GGG

BamH

5922 AAG TAC GAC AAC ATG GGT CGG CGG ATC ACC GCA AGC GGA GGA CTA GGT GGA TCC AAT

5979 CTT TCG CTG CAC GAC GAG GAG CGC TAC GAA AAT GAG ACG CTC TTT GGC CAG GCG GAG

6036 AGT CAG ACC AAG GGA ATG CCG GAG CAG TCA CAG GAT CTT CAC CAG CCG CAG GAG GTG

attB2
attL2
6093 ACT CAA GGC CAG GAC AAG GGC GGC GGT CCT GGC GAG TTC GTG TCG CTC CAC CCA TGA GTT CCG GTC CTG TTC CCG CCG CCA GGA CCG CTC AAG CAC AGC GAG GTG GGT

EGFPN1 polylinker
Kpnl oligo 445 T7
6147 GCT TTC TTG TAC AAA GTG GTG GTA CCG CGG GCC CGG GAT CCA CCG GTC GCC ACC CGA AAG AAC ATG TTT CAC CAC CAT GGC GCC CGG GCC CTA GGT GGC CAG CGG TGG
\qquad
EGFPN 1
6201 ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG GTC GAG CTG TAC CAC TCG TTC CCG CTC CTC GAC AAG TGG_CCC CAC CAC GGG TAG_GAC CAG CTC GAC \#54
6258 GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC GAG GGC GAG GGC GAT GCC CTG CCG CTG CAT TTG CCG GTG TTC AAG TCG CAC AGG CCG CTC CCG CTC CCG CTA CGG

6315 ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG ATG CCG TTC GAC TGG GAC TTC AAG TAG ACG TGG TGG CCG TTC GAC GGG_CAC GGG

6372 TGG CCC ACC CTC GTG ACC ACC CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC ACC GGG TGG GAG CAC TGG TGG GAC_TGG_ATG CCG CAC GTC ACG_AAG TCG GCG ATG GGG
6429 GAC CAC ATG AAG CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG

6486 GAG CGC ACC ATC TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG GTG AAG

6543 TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC ATC GAC TTC AAG GAG - - - - - AAG CTC CCG CTG TGG GAC CAC TTG GCG TAG CTC GAC TTC CCG TAG CTG AAG TTC CTC . . .

6600 GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC AAC TAC AAC AGC CAC AAC GTC TAT

6657 ATC ATG GCC GAC AAG CAG AAG AAC GGC ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC TAG TAC CGG CTG ITC GTC_TTC_TTG CCG TAG TTC CAC_TTGAAGTTC TAG GCG GTG TTG
6714 ATC GAG GAC GGC AGC GTG CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC TAG CTC CTG CCG TCG CAC GTC GAG CGG CTG GTG ATG GTC GTC_TTG TGG GGG TAG CCG
6771 GAC GGC CCC GTG CTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC CTG CCG GGG CAC GAC GAC GGG CTG TTG GTG_ATG GAC TCG TGG_GTC AGG_CGG GAC TCG - . -
6828 AAA GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG ACC GCC GCC

Xbal SV40 Poly A
6885 GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA AGCGGCCGCGACTCTAGAGGATCTTTGT CCC TAG TGA GAG CCG TAC CTG CTC GAC ATG TTC ATT TCGCCGGCGCTGAGATCTCCTAGAAACA

6949 GAAGGAACCTTACTTCTGTGGTGTGACATAATTGGACAAACTACCTACAGAGATTTAAAGCTCTAAGGTAAATATA CTTCCTTGGAATGAAGACACCACACTGTATTAACCTGTTTGATGGATGTCTCTAAATTTCGAGATTCCATTTATAT
 TTTAAAAATTCACATATTACACAATTTGATGACTAAGATTAACAAACACATAAAATCTAAGGTTGGATACCTTGAC

7101 ATGAATGGGAGCAGTGGTGGAATGCCTTTAATGAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGA TACTTACCCTCGTCACCACCTTACGGAAATTACTCCTTTTGGACAAAACGAGTCTTCTTTACGGTAGATCACTACT

7177 TGAGGCTACTGCTGACTCTCAACATTCTACTCCTCCAAAAAAGAAGAGAAAGGTAGAAGACCCCAAGGACTTTCCT ACTCCGATGACGACTGAGAGTTGTAAGATGAGGAGGTTTTTTCTTCTCTTTCCATCTTCTGGGGTTCCTGAAAGGA

7253 TCAGAATTGCTAAGTTTTTTGAGTCATGCTGTGTTTAGTAATAGAACTCTTGCTTGCTTTGCTATTTACACCACAA agTCTTAACGATTCAAAAAACTCAGTACGACACAAATCATTATCTTGAGAACGAACGAAACGATAAATGTGGTGTT

7329 AGGAAAAAGCTGCACTGCTATACAAGAAAATTATGGAAAAATATTCTGTAACCTTTATAAGTAGGCATAACAGTTA TCCTTTTTCGACGTGACGATATGTTCTTTTAATACCTTTTTATAAGACATTGGAAATATTCATCCGTATTGTCAAT

7405 TAATCATAACATACTGTTTTTTCTTACTCCACACAGGCATAGAGTGTCTGCTATTAATAACTATGCTCAAAAATTG attagtattgtatgacaaianagaitgaggtgtgtccgtatctcacagacgatanttattgatacgagttttianc

7481 TGTACCTTTAGCTTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGACTAGAGATCATA ACATGGAAATCGAAAAATTAAACATTTCCCCAATTATTCCTTATAAACTACATATCACGGAACTGATCTCTAGTAT

7557 ATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATA TAGTCGGTATGGTGTAAACATCTCCAAAATGAACGAAATTTTTTGGAGGGTGTGGAGGGGGACTTGGACTTTGTAT

Hpal

7633 AAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAA TTTACTTACGTTAACAACAACAATTGAACAAATAACGTCGAATATTACCAATGTTTATTTCGTTATCGTAGTGTTT

	TTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCA

8317 TATTAATTCGCGGAGGCAGCAAACACCCATCTGCCGAGCATCTGAACAATGTGAGTAGTACATGTGCATACATCTT ATAATTAAGCGCCTCCGTCGTTTGTGGGTAGACGGCTCGTAGACTTGTTACACTCATCATGTACACGTATGTAGAA

8393 AAGTTCACTTGATCTATAGGAACTGCGATTGCAACATCAAATTGTCTGCGGCGTGAGAACTGCGACCCACAAAAAT TTCAAGTGAACTAGATATCCTTGACGCTAACGTTGTAGTTTAACAGACGCCGCACTCTTGACGCTGGGTGTTTTTA

8469 CCCAAACCGCAATCGCACAAACAAATAGTGACACGAAACAGATTATTCTGGTAGCTGTGCTCGCTATATAAGACAA GGGTTTGGCGTTAGCGTGTTTGTTTATCACTGTGCTTTGTCTAATAAGACCATCGACACGAGCGATATATTCTGTT
\qquad
8545 TTTTTAAGATCATATCATGATCAAGACATCTAAAGGCATTCATTTTCGACTACATTCTTTTTTACAAAAAATATAA AAAAATTCTAGTATAGTACTAGTTCTGTAGATTTCCGTAAGTAAAAGCTGATGTAAGAAAAAATGTTTTTTATATT

8621 CAACCAGATATTTTAAGCTGATCCTAGATGCACAAAAAATAAATAAAAGTATAAACCTACTTCGTAGGATACTTCG GTTGGTCTATAAAATTCGACTAGGATCTACGTGTTTTTTATTTATTTTCATATTTGGATGAAGCATCCTATGAAGC
\qquad
8697 TTTTGTTCGGGGTTAGATGAGCATAACGCTTGTAGTTGATATTTGAGATCCCCTATCATTGCAGGGTGACAGCGGA AAAACAAGCCCCAATCTACTCGTATTGCGAACATCAACTATAAACTCTAGGGGATAGTAACGTCCCACTGTCGCCT

8773 GCGGCTTCGCAGAGCTGCATTAACCAGGGCTTCGGGCAGGCCAAAAACTACGGCACGCTCCTGCCACCCAGTCCGC CGCCGAAGCGTCTCGACGTAATTGGTCCCGAAGCCCGTCCGGTTTTTGATGCCGTGCGAGGACGGTGGGTCAGGCG

8849	CGGAGGACTCCGGTTCAGGGAGCGGCCAACTAGCCGAGAACCTCACCTATGCCTGGCACAATATGGACATCTTTGG GCCTCCTGAGGCCAAGTCCCTCGCCGGTTGATCGGCTCTTGGAGTGGATACGGACCGTGTTATACCTGTAGAAACC
8925	GGCGGTCAATCAGCCGGGCTCCGGATGGCGGCAGCTGGTCAACCGGACACGCGGACTATTCTGCAACGAGCGACAC CCGCCAGTTAGTCGGCCCGAGGCCTACCGCCGTCGACCAGTTGGCCTGTGCGCCTGATAAGACGTTGCTCGCTGTG
9001	ATACCGGCGCCCAGGAAACATTTGGCTCAAGAACGGTGAGTTTCTATTCGCAGTCGGCTGATCTGTGTGAAATCTTA TATGGCCGCGGGTCCTTTGTAAACGAGTTCTTGCCACTCAAAGATAAGCGTCAGCCGACTAGACACACTTTAGAAT
9077	ATAAAGGGTCCAATTACCAATTTGAAACTCAGTTTGCGGCGTGGCCTATCCGGGCGAACTTTTTGGCCGTGATGGGC TATTTCCCAGGTTAATGGTTAAACTTTGAGTCAAACGCCGCACCGGATAGGCCCGCTTGAAAACCGGCACTACCCG
9153	AGTTCCGGTGCCGGAAAGACGACCCTGCTGAATGCCCTTGCCTTTCGATCGCCGCAGGGCATCCAAGTATCGCCAT TCAAGGCCACGGCCTTTCTGCTGGGACGACTTACGGGAACGGAAAGCTAGCGGCGTCCCGTAGGTTCATAGCGGTA
9229	CCGGGATGCGACTGCTCAATGGCCAACCTGTGGACGCCAAGGAGATGCAGGCCAGGTGCGCCTATGTCCAGCAGGA GGCCCTACGCTGACGAGTTACCGGTTGGACACCTGCGGTTCCTCTACGTCCGGTCCACGCGGATACAGGTCGTCCT
9305	TGACCTCTTTATCGGCTCCCTAACGGCCAGGGAACACCTGATTTTCCAGGCCATGGTGCGGATGCCACGACATCTG ACTGGAGAAATAGCCGAGGGATTGCCGGTCCCTTGTGGACTAAAAGGTCCGGTACCACGCCTACGGTGCTGTAGAC
9381	ACCTATCGGCAGCGAGTGGCCCGCGTGGATCAGGTGATCCAGGAGCTTTCGCTCAGCAAATGTCAGCACACGATCA TGGATAGCCGTCGCTCACCGGGCGCACCTAGTCCACTAGGTCCTCGAAAGCGAGTCGTTTACAGTCGTGTGCTAGT
9457	TCGGTGTGCCCGGCAGGGTGAAAGGTCTGTCCGGCGGAGAAAGGAAGCGTCTGGCATTCGCCTCCGAGGCACTAAC AGCCACACGGGCCGTCCCACTTTCCAGACAGGCCGCCTCTTTCCTTCGCAGACCGTAAGCGGAGGCTCCGTGATTG
9533	CGATCCGCCGCTTCTGATCTGCGATGAGCCCACCTCCGGACTGGACTCATTTACCGCCCACAGCGTCGTCCAGGTG GCTAGGCGGCGAAGACTAGACGCTACTCGGGTGGAGGCCTGACCTGAGTAAATGGCGGGTGTCGCAGCAGGTCCAC
9609	CTGAAGAAGCTGTCGCAGAAGGGCAAGACCGTCATCCTGACCATTCATCAGCCGTCTTCCGAGCTGTTTGAGCTCT GACTTCTTCGACAGCGTCTTCCCGTTCTGGCAGTAGGACTGGTAAGTAGTCGGCAGAAGGCTCGACAAACTCGAGA
9685	TTGACAAGATCCTTCTGATGGCCGAGGGCAGGGTAGCTTTCTTGGGGCACTCCCAGCGAAGCCGTCGACTTCTTTTC AACTGTTCTAGGAAGACTACCGGCTCCCGTCCCATCGAAAGAACCCGTGAGGGTCGCTTCGGCAGCTGAAGAAAAG
9761	CTAGTGAGTTCGATGTGTTTATTAAGGGTATCTAGCATTACATTACATCTCAACTCCTATCCAGCGTGGGTGCCCA GATCACTCAAGCTACACAAATAATTCCCATAGATCGTAATGTAATGTAGAGTTGAGGATAGGTCGCACCCACGGGT
9837	GTGTCCTACCAACTACAATCCGGCGGACTTTTACGTACAGGTGTTGGCCGTTGTGCCCGGACGGGAGATCGAGTCC CACAGGATGGTTGATGTTAGGCCGCCTGAAAATGCATGTCCACAACCGGCAACACGGGCCTGCCCTCTAGCTCAGG
9913	CGTGATCGGATCGCCAAGATATGCGACAATTTTGCTATTAGCAAAGTAGCCCGGGATATGGAGCAGTTGTTGGCCA GCACTAGCCTAGCGGTTCTATACGCTGTTAAAACGATAATCGTTTCATCGGGCCCTATACCTCGTCAACAACCGGT
9989	CCAAAAATTTGGAGAAGCCACTGGAGCAGCCGGAGAATGGGTACACCTACAAGGCCACCTGGTTCATGCAGTTCCG GGTTTTTAAACCTCTTCGGTGACCTCGTCGGCCTCTTACCCATGTGGATGTTCCGGTGGACCAAGTACGTCAAGGC
10065	GGCGGTCCTGTGGCGATCCTGGCTGTCGGTGCTCAAGGAACCACTCCTCGTAAAAGTGCGACTTATTCAGACAACG CCGCCAGGACACCGCTAGGACCGACAGCCACGAGTTCCTTGGTGAGGAGCATTTTCACGCTGAATAAGTCTGTTGC

10141	GTGAGTGGTTCCAGTGGAAACAAATGATATAACGCTTACAATTCTTGGAAACAAATTCGCTAGATTTTAGTTAGAA
	CACTCACCAAGGTCACCTTTGTTTACTATATTGCGAATGTTAAGAACCTTTGTTTAAGCGATCTAAAATCAATCTT

11433	TATATTTTTTATATACATACTTTTCAAATCGCGCGCCCTCTTCATAATTCACCTCCACCACACCACGTTTCGTAGT
	ATATAAAAAATATATGTATGAAAAGTTTAGCGCGCGGGAGAAGTATTAAGTGGAGGTGGTGTGGTGCAAAGCATCA

NRT ORF

1 ATGGGCGAACTCGAGGAGAAGGAAACCCCGCCCACTGAGACGACAGCCGCCCAGCAAGAGGCGCTAGAGGAGCCCAA

$$
78 \text { GGAAACGGACAAAATGTTGGACAAAAAAGAGGACGCCAAGGAGAAGACACCCAGTCCACAGACCTCCAAGCCCGCAT }
$$

155 CTCCAAATGCCGGCAAGAAATCCTCACCAGTGGCCGAGAAAAAGATCGACGATGCTGAATTAGCGAAATCCAAATCA

232 GGCAATGGAGAAGAGATTATCGATATTCCCGCCGAGAATGGCACAAAGCCAGACAGCGCTGATGACAAAAAGATAAG

309 CAAGGAGGAGCGCGAGGTCAAGCCCAAAAAGATACCGATCGGAGGTCTCAAACTGCCTGGTTTCTTCATGAAGAACA

386 AGCCGAAGGCAGATGGTGATGGGGCCGAGGGCGAGCTGCTCGAAAAGGAGAAGGAAGAGGATAAGGATAAGGAAGCC

463 AATGGAGATGCCGCCACCGGTTCCGGCAAGGACGAACAGAAATCTCGCCCAGGACTGGGAGAACGCCTGCGCAGCTT

540 CTTTGCCCGCAAGCCATCCGCCGAAAAGGAAAAGAAGCAGCTGGTCAACGGTGACGCGGATGCCAAGTCTGAAGCCA

617 CAGCTGAAGCAACGCCCGCTGAAGATGCCTCCGATGCACCACCAAAGCGTGGACTTTTGAACGCCATCAAGCTGCCA

694 ATCGCTAACATGATACCGAAAAAGAAGAGCAACGATGATGTGGAGCTGGGCTTGGGCAAGGCCGGTCTGGCCTCGAT

771 GGAGACCCTCGATGATTCCCTTAAGGATCAAGACACAGTGGATCGGGCTCCCGTCAAGACCAACGGTACCGAGGAAC

848 TAAAGGGCGAGCTAAAGGATGAGAAGCTGGCGGCGGAGGAAAAACTAGCCGCCGAGGAGGAGGAGCAAAACCGACCC

925 GTCTCCTTGCTAACCCGTCTGCGTGGCTACAAGTGCAGTGTGGACGATGCCCTGATTGTGTTTGGCATCCTGCTATT

1002 TGTGCTCCTGTTGGGCGTGATTGGTTATGTACTAACCCACGAGACTTTGACCTCGCCGCCGCTGCGGGAAGGACGCT

1079 ACATAATGGCAGTGACGGGGTGCGGACCTGTGGAGGGCGTTAAGGAAGATGGAGCCTTTGCCTTCCGTGGCATTCCG

1156 TATGCAAAGCCACCCGTAGACAGACTGAGATGGAAGCCGGCTGAACTGATTGATGACATCAATATGTGCTGGAATGA

1233 TACACTGCAAACCCATAACAGCAGTGTGGTGTGCACGCAGCGATTGGGCAATGGCACCACAGTTGGCGACGAGGATT

1310 GTCTATACCTTGACGTGGTTACTCCCCATGTGCGGTACAATAACCCCTTGCCTGTGGTCGTCCTGATCGGAGCAGAA 4376 L Y L D V V T P H V R Y N N P L P V V V V L I G A E

1387 TCTTTGGCTGGTCCTTCGCCGGGTATTCTCCGTCCATCGGCTCGCTATTCTCGATCGCACGATGTGATCTTTGTGCG

1464 TCCCAATTTCCGTTTGGGGTGTCTTCGGCTTCCTAGCCCTCGACGCTCTGACCAAGGAGGCACACCCGCCAACTTCGG

1541 GCAACTATGCGCTCACCGACATCATTGCCGTGCTGAACTGGATCAAGTTGAACATCGTACATTTTTGGTGGCGACCCG

1618 CAATCCGTCACCCTGCTGGGTCATCGGGCCGGAGCCACTCTGGTGACTCTTCTAGTTAACTCACAAAAGGTCAAGGG

1695 TCTGTACACCAGGGCCTGGGCATCATCTGGATCAGCAATTCTGCCTGGTAAACCATTGAGCGAGTCTGGTAAACAAA

1772 ACGAGCAGCTGATGGCCACCCTCGAGTGTGCTGATATCCAGTGCCTGCGTGAAGCGTCCAGCGAACGACTTTGGGCC

1849 GCCACTCCCGACACCTGGCTGCACTTCCCCGTGGATCTGCCGCAGCCGCAGGAGGCGAATGCCAGCGGTAGCCGTCA

1926 CGAATGGTTGGTTCTCGATGGAGATGTGGTCTTTGAACATCCTTCCGATACCTGGAAGCGCGAACAGGCCAACGACA

2003 AGCCGGTGCTGGTTATGGGCGCCACGGCGCATGAGGCGCACACCGAGAAACTGCGCGAATTGCATGCGAACTGGACG

RNAi 8495

Oligo W71
2080 CGAGAGGAGGTGCGTGCCTATCTGGAAAACTCCCAGATTGGAGCATTGGGCCTCACCGACGAGGTTATCGAGAAGTA

2157 CAACGCCAGCAGCTATGCGTCGCTGGTTTCTATCATTTCGGACATTCGCAGCGTTTGCCCGCTGCTGACGAATGCGA 719* N A $\mathrm{A} \quad \mathrm{S}$

2234 GACAGCAGCCCAGTGTGCCGTTCTATGTTGTCACCCAAGGCGAGGGACCCGATCAGCTGGCCACGGTGGACGCCGAT 745* R \quad Q $\quad \mathrm{Q} \quad \mathrm{P}$

2311 GTCCAGGCCATTCTCGGCCGCTATGAGCCGCACACCGTAGAGCAGCGCCGCTTCGTTTCGGCCATGCAGCAGCTGTT
 2388 CTACTACTATGTCTCGCACGGCACGGTGCAGTCGTTTGTCCAGAACCGCCGGGTCATCAATGTTGGCCAGGATGCGC

2465 AGCCGGAAGAGGACTACTTGCCCTGCAACTACTGGATCAGCAAGGATATTGTGCCGCGGTATGCGCGCGTCGATTAA

NRG ORF

1 ATGTGGCGGCAGTCAACGATACTGGCCGCGTTACTAGTGGCTCTTTTGTGTGCGGGCAGTGCAGAAAGCAAAGGCAA

78 TCGCCCACCAAGAATCACCAAACAACCGGCACCCGGAGAATTGCTCTTCAAAGTGGCGCAACAGAATAAGGAAAGTG

155 ACAATCCATTCATAATCGAGTGCGAAGCCGATGGACAACCCGAGCCAGAATATAGTTGGATCAAGAACGGCAAGAAG

232 TTCGATTGGCAGGCGTACGATAACCGCATGCTGCGGCAGCCAGGACGTGGCACCCTGGTGATCACCATACCCAAGGA

309 CGAGGATCGCGGCCACTATCAGTGCTTTGCGTCCAATGAATTCGGAACGGCCACCTCGAACTCAGTATATGTGCGTA

386 AGGCCGAGCTGAATGCCTTCAAGGATGAGGCGGCCAAGACACTGGAGGCCGTCGAGGGTGAGCCCTTTATGCTGAAA

463 TGTGCCGCACCCGATGGTTTTCCCAGTCCGACAGTCAACTGGATGATCCAGGAGTCCATCGATGGCAGCATCAAGTC 155. C A

540 GATCAACAACTCTCGCATGACCCTCGATCCTGAGGGTAATCTCTGGTTCTCGAATGTTACCCGTGAGGATGCCAGCT

617 CCGATTTCTACTATGCCTGCTCGGCCACCTCGGTGTTTCGCAGTGAATACAAGATTGGCAACAAGGTGCTCCTCGAT

694 GTCAAACAGATGGGCGTTAGTGCCTCGCAGAACAAGCATCCGCCCGTGCGTCAATATGTTTCCCGTCGCCAGTCCTT

771 GGCGTTGCGTGGCAAGCGAATGGAACTGTTTTGCATCTACGGTGGAACACCGCTGCCGCAGACCGTGTGGAGCAAGG

848 ATGGCCAGCGTATACAGTGGAGCGATCGAATAACGCAAGGACACTATGGCAAATCACTGGTCATTCGGCAGACAAAT

925 TTCGATGATGCCGGCACATACACCTGCGACGTGTCCAACGGTGTGGGCAATGCCCAATCCTTCTCCATCATTCTGAA

1002 TGTTAACTCCGTGCCGTACTTTACCAAAGAACCTGAAATCGCCACCGCCGCCGAAGACGAAGAGGTTGTCTTCGAGT

1079 GTCGCGCTGCTGGTGTACCAGAGCCCAAGATCAGTTGGATTCACAATGGTAAGCCCATCGAGCAGAGCACCCCGAAT

1156 CCCCGACGAACGGTTACGGACAACACAATTCGCATTATCAATCTGGTTAAGGGCGATACTGGTAACTACGGTTGCAA

1233 CGCCACCAATTCGCTGGGATATGTGTATAAGGATGTCTATCTAAATGTCCAGGCTGAGCCGCCAACGATTTCCGAAG

1310 CTCCAGCAGCTGTATCCACTGTCGATGGAAGGAATGTGACCATTAAGTGCAGGGTTAACGGTTCCCCCAAGCCTCTG

1387 GTTAAATGGCTAAGGGCCAGCAACTGGCTGACCGGAGGTCGTTACAATGTCCAAGCTAACGGTGACCTGGAGATCCA

1464 AGATGTGACATTCTCGGATGCCGGCAAATACACATGCTATGCGCAGAACAAGTTTGGTGAAATTCAAGCCGATGGTT

1541 CGCTGGTGGTCAAGGAGCATACGAGAATTACCCAAGAGCCGCAAAACTACGAGGTGGCCGCCGGACAATCGGCCACG

1618 TTCCGCTGTAACGAGGCCCACGACGATACGCTGGAGATTGAGATCGATTGGTGGAAGGATGGCCAGTCCATTGACTT

1695 TGAGGCCCAGCCGCGATTCGTGAAGACCAATGATAATTCCCTGACGATTGCCAAGACAATGGAGTTGGATTCTGGCG

1772 AATATACGTGCGTGGCCCGGACGCGTTTGGATGAGGCAACGGCCAGGGCGAATTTGATTGTCCAGGATGTGCCGAAT

1849 GCACCAAAACTGACCGGCATCACCTGCCAGGCCGACAAGGCCGAGATCCACTGGGAACAGCAGGGTGACAATCGTTC
 1926 GCCCATTCTGCACTACACCATTCAGTTCAATACATCGTTCACGCCCGCCTCCTGGGATGCCGCCTACGAGAAGGTGC

2003 CCAACACGGACTCCTCGTTCGTCGTCCAGATGTCACCGTGGGCCAACTATACGTTCCGTGTGATTGCCTTCAACAAG

2080 ATCGGAGCCTCGCCGCCGTCGGCGCACAGCGATAGCTGCACCACCCAGCCGGATGTGCCCTTCAAGAATCCCGACAA

2157 TGTCGTTGGCCAGGGCACTGAGCCCAACAATCTGGTCATCTCGTGGACTCCCATGCCCGAAATCGAGCACAATGCCC

2234 CCAATTTCCATTATTATGTTAGCTGGAAACGCGATATTCCTGCCGCTGCGTGGGAAAACAATAACATATTCGACTGG

2311 CGACAGAACAACATTGTGATTGCCGATCAACCGACTTTCGGTGAAATACCTGATCAAGGTGGTGGCCATCAACGATAG

2388 GGGTGAGTCCAATGTGGCCGCCGAGGAGGTGGTTGGCTACTCTGGCGAAGATCGTCCCCTGGATGCGCCCCACCAACT

2465 TCACAATGAGGCAAATCACATCATCGACCAGTGGCTACATGGCCTGGACGCCGGTAAGTGAGGAATCGGTGCGCGGA

2542 CACTTCAAGGGCTACAAAATCCAAACGTGGACGGAGAACGAGGGCGAGGAGGGTCTGCGGGAGATCCATGTGAAGGG

2619 TGATACCCACAACGCTCTGGTCACACAATTCAAGCCCGATTCAAAGAACTATGCCCGCATTTTGGCTTACAATGGAC

2696 GCTTCAATGGCCCACCCAGTGCCGTCATCGACTTCGATACTCCGGAGGGGTGTACCATCGCCGGTTCAGGGACTGGAT

2773 GCCTATCCTCTGGGCTCCTCGGCCTTCATGCTCCACTGGAAGAAGCCGCTGTATCCCAATGGCAAGCTCACTGGCTA

2850 CAAGATCTACTACGAGGAGGTTAAGGAGAGCTATGTGGGCGAGCGACGCGAATACGATCCACACATCACCGATCCCA 950 K I Y Y E E V_K E S Y V G E R R_E Y D P H I I D_P

2927 GGGTCACACGCATGAAGATGGCCGGCCTGAAGCCCAACTCCAAGTACCGCATCTCCATCACTGCCACCACGAAAATG
 3004 GGCGAGGGATCTGAACACTATATCGAAAAGACCACGCTCAAGGATGCCGTCAATGTGGCCCCTGCCACGCCATCTTT
 3081 CTCCTGGGAGCAACTGCCATCCGACAATGGACTAGCCAAGTTCCGCATCAACTGGCTGCCAAGTACCGAGGGTCATC

3158 CAGGCACTCACTTCTTTACGATGCACAGGATCAAGGGCGAAACCCAATGGATACGCGAGAATGAGGAAAAGAACTCC
 3235 GATTACCAGGAGGTCGGTGGCTTAGATCCGGAGACCGCCTACGAGTTCCGCGTGGTGTCCGTGGATGGCCACTTTAA

3312 CACGGAGAGTGCCACGCAGGAGATCGACACGAACACCGTTGAGGGACCAATAATGGTGGCCAACGAGACGGTGGCCA

3389 ATGCCGGATGGTTCATTGGCATGATGCTGGCCCTGGCCTTCATCATCATCCTCTTCATCATCATCTGCATTATCCGA

3466 CGCAATCGGGGCGGAAAGTACGATGTCCACGATCGGGAGCTGGCCAACGGCCGGCGGGATTATCCCGAAGAGGGCGG

3543 ATTCCACGAGTACTCGCAACCGTTGGATAACAAGAGCGCTGGTCGCCAATCCGTGAGTTCAGCGAACAAACCGGGCG

3620 TGGAAAGCGATACTGATTCGATGGCCGAATACGGTGATGGCGATACAGGCATGAATGAAGATGGATCCTTTATTGGC

3697 CAATATGGACGCAAAGGACTTTGA
_ 12333_ Q_ Y _ G_ _ _ _ _ G_ L_ .

